

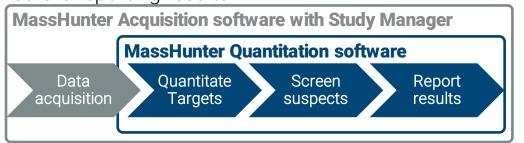
Poster Reprint

ASMS 2019 TP201

Simultaneous Target Quantitation and Suspect Screening of Environmental Contaminants in Sewage Sludge

James S. Pyke¹, Gabrielle Black², Kai Chen¹, Tarun Anumol¹, Thomas M. Young^{2.}

¹ Agilent Technologies, Inc. Santa Clara CA USA


² University of California, Davis CA USA

Introduction

Sewage sludge is a concentrated, complex mixture of compounds that, in many instances, is treated for land application. Regulated monitoring of persistent toxic chemicals originating from consumer products is limited for land applied sewage sludge. However, toxicity values of many of these compounds remain unknown, which suggests a need to investigate and mitigate risks of ecosystem effects after land application. The challenge is that the list of toxicants and their transformation products are consistently increasing as more and more products are made available. Broad screening for these compounds can provide a more holistic picture of highly persistent chemicals originating in consumer products and their environmental effects when they are unable to be removed during robust waste treatment techniques.

Endocrine disruptors are chemicals that interfere with biological systems controlled by hormones, and as such, are commonly investigated (or researched, or something similar) in sewage treatment plant discharges. An analytical method¹ describing the analysis of endocrine active organic environmental contaminants in sewage sludge was updated to make the best use of the new Agilent 6546 quadrupole timeof-flight (Q-TOF) system.

The 6546 LC/Q-TOF has simultaneous extended dynamic range and high mass resolution capability, without compromise to acquisition rate. When coupled with the Agilent 1290 Infinity II liquid chromatography (LC) system to apply fast LC gradients to increase chromatographic resolution also ensures that run times are amenable for high throughput operations. MassHunter Workstation Software automates the workflow (Figure 1) which is acquiring All Ions MS/MS data, which is automatically processed utilizing Agilent SureMass technology¹ to allow rapid and more accurate quantitation of targets, and simultaneous detection of suspect compounds, before reporting results.

Experimental

Sample preparation

Samples were sourced from a water treatment facility in California, USA, and prepared as previously described². Where possible, the sample preparation procedure of sewage sludge samples was deliberately as nonchemically selective as possible, allowing the detection of a broad range environmental contaminants.

Target preparation

23 targets (listed in Table 1) were selected for method validation that were representative of a larger list's physiochemical properties.

Table 1 : Target compounds and thei					
Compound Name	Chemical Formula	Neutral Mass	LLOD (µg/L)	LOS (µg/L)	RT (min)
AHTN / Tonalide	C ₁₈ H ₂₆ O	258.1984	5	1000	12.219
Carbamazepine	$C_{15}H_{12}N_2O$	236.0950	1	250	5.731
DEET / Diethyltoluamide	C ₁₂ H ₁₇ NO	191.1310	0.5	500	6.382
Diclofenac	$C_{14}H_{11}CI_2NO_2$	295.0167	25	>1000	8.547
Dihydrojasmonic acid, methyl ester	$C_{13}H_{22}O_3$	226.1569	50	>1000	8.432
Efavirenz	$C_{14}H_9CIF_3NO_2$	315.0274	5	>1000	9.006
Flunixin	$C_{14}H_{11}F_3N_2O_2$	296.0773	0.5	2500	6.767
Fluoxetine	$C_{17}H_{18}F_{3}NO$	309.1341	0.5	>1000	6.476
Fluvoxamine	$C_{15}H_{21}F_3N_2O_2$	318.1555	1	>1000	6.081
Lamotrigine	$C_9H_7Cl_2N_5$	255.0079	0.1	100	3.532
Mefenamic acid	$C_{15}H_{15}NO_2$	241.1103	5	>1000	9.335
Metoprolol	$C_{15}H_{25}NO_3$	267.1834	0.5	>1000	3.708
Miconazole	$C_{18}H_{14}CI_4N_2O$	413.9860	0.5	500	8.049
Norgestrel	$C_{21}H_{28}O_2$	312.2089	2.5	750	7.927
Sulfamethoxazole	$C_{10}H_{11}N_3O_3S$	253.0521	50	>1000	4.109
Triclocarban	$C_{13}H_9CI_3N_2O$	313.9781	50	>1000	10.15
Trimethoprim	$C_{14}H_{18}N_4O_3$	290.1379	0.1	100	2.964
Estrone	$C_{18}H_{22}O_2$	270.1620	2.5	>1000	7.441
Ethinylestradiol	$C_{20}H_{24}O_2$	296.1776	5	>1000	7.343
2-Phenylphenol	$C_{12}H_{10}O$	170.0732	25	>1000	7.55
Gemfibrozil	$C_{15}H_{22}O_3$	250.1569	5	>1000	8.833
Estriol	$C_{18}H_{24}O_3$	288.1725		>1000	4.709
4-tert-octylphenol	$C_{14}H_{22}O$	206.1671	5	>1000	10.382

To evaluate the dynamic range and sensitivity of the 6546 Q-TOF LC/MS system, standards were prepared in 20 % methanol in water at calibration levels of 1000, 750, 500, 250, 100, 50, 25, 10, 5, 2.5, 1, 0.5, 0.25, and $0.1 \,\mu$ g/L. No internal standards were used to normalize the data.

Instrumentation

The 6546 LC/Q-TOF system was configured as previously described.³

Data analysis workflow

Figure 1. Target quantitation and suspect screening workflow.

We assessed the workflows quantitative capability with carefully selected compounds spiked into sewage sludge matrix while monitoring up to 4,856 suspect compounds with highly curated MS/MS spectra.

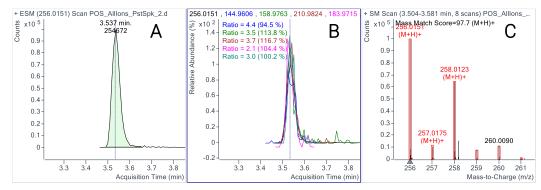
The simplified data analysis workflow (Figure 1) extracts a compound's known precursor and fragment masses sourced from Agilent's highly curated compound libraries of high resolution mass spectrometry data and reports identifications according to SANTE guidelines.⁴

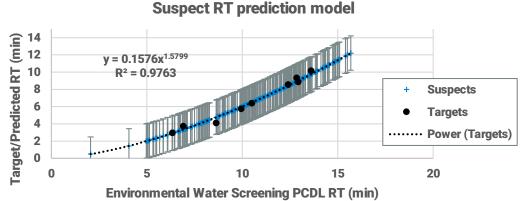
2

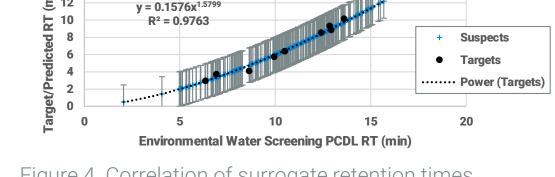
Target quantitation capability

By monitoring spiked targets in sewage sludge, we evaluated the quantitative capability of the analytical method applied to a 6546 LC/Q-TOF system. The linear dynamic range for compounds is listed in Table 1.

Target compound results are shown in the same way as LC/TQ data (see Figure 2). The quantifier integration and expected RT (Figure 2A) and the coelution of qualifying ions (Figure 2B, scaled according to expected ratio determined from calibrators), are common between LC/TQ and LC/Q-TOF acquisition methods. The extra decimal places from an accurate mass measurement and ability to compare expected (Figure 2C, red boxes) versus measured isotope pattern (Figure 2C, black spectra), given a known chemical formula and natural isotope abundances, provides an extra level of confidence in a compound identification.




Figure 2. Lamotrigine results in 500 ppb spiked sewage sludge.


Compounds were fitted with a non-linear power curve regression, weighted 1/x (where x is the concentration). The calibration curves used for the target compounds in this analysis are shown in Figure 3.

Suspect screening capability

Suspect compounds were appended to MassHunter Quantitation methods by importing compounds from Agilent's highly curated Personal Compounds Database and Library (PCDL). The quality checking of data in the Agilent PCDL and the recommended process to add future emerging contaminates has been outlined⁵. Quantifier ions are set to the precursor ion, and at least two MS/MS fragment ions were set as gualifier ions for each compound.

Agilent's highly curated Environmental Water Screening PCDL has curated RTs from an analytical method described previously⁶. As the spiked targets in this analysis are chemically diverse enough to elute throughout the chromatogram, we correlated the retention times (RTs) of the target compounds with those published. A model was then used to project the RTs of a broader range of toxicants from the same data file (Figure 4). Additionally, compounds with no RT correlation were also monitored.

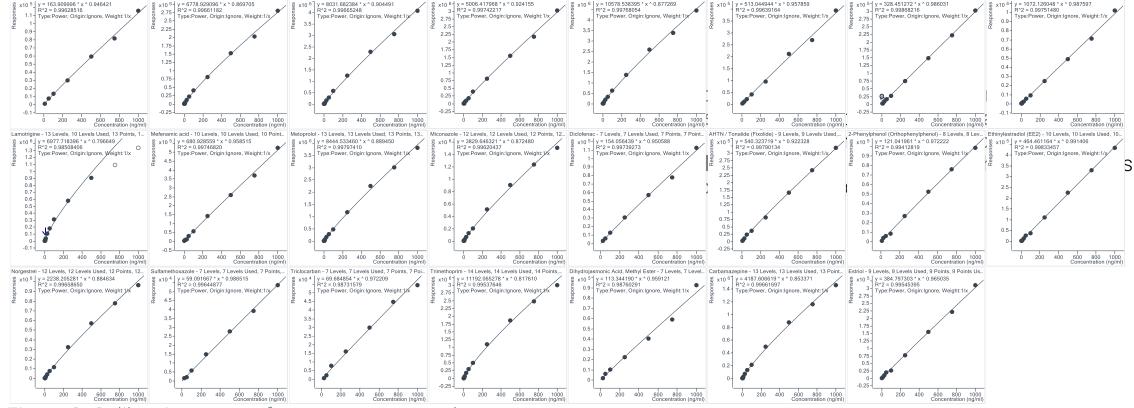
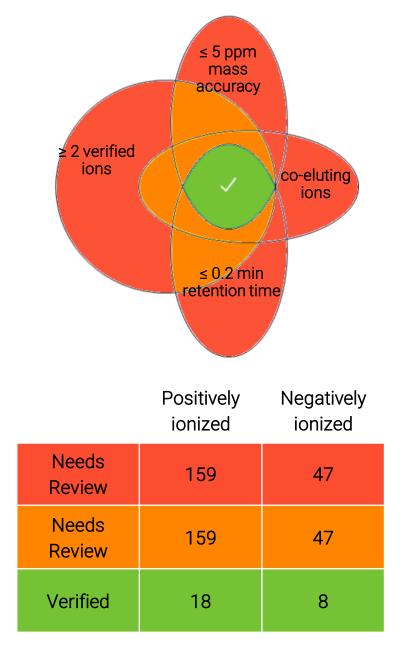


Figure 3. Calibration curves for target compounds.


Results and Discussion

-		Number of compounds									
la	ble Filters	Me	et criteri	a	Nee	d review		ot detecte	d To	Ü	
										_	
			Screening -	[Result Re	view]	-			- 0		
	A Previous Sample NEG_AllIons_P	stSpk_3	 Next Sample 	e 🗸 8		39 1275	Total: 1322				
atus	Compound Name	CAS#	Formula	R.T.	R.T. Diff.	Mass Match Score	Target Ion	Mass Accuracy	# of Verified Ions		
Â	THC / delta9-Tetrahydrocannabinol (Δ 9	1972-08-3	C21H30O2	12.739	12.645	83.2	313.2173	-0.5678	3	ł	
Â	(-)CP-55,940	83002-04-4	C24H40O3	8.981	8.890	97.8	375.2905	-0.7742	2	2	
Â	(±)CP-55,940	83003-12-7	C24H40O3	8.981	8.890	97.8	375.2905	-0.7742	2	2	
Â	(-)-THC-COOH / (-)-11-Nor-9-Carboxy	56354-06-4	C21H28O4	9.488	9.382	65.6	343.1915	-0.5152	3	ł.	
⚠	8-Hydroxyefavirenz	205754-32-1	C14H9CIF3NO3	8.143	8.044	99.5	330.0150	0.5488	6	6	
Â	CBD / Cannabidiol	13956-29-1	C21H30O2	12.739	12.640	83.2	313.2173	-0.5678	2	2	
Â	CBN / Cannabinol	521-35-7	C21H26O2	12.282	12.173	83.1	309.1860	-0.0757	2	Ł	
Â	Embelin	550-24-3	C17H26O4	6.280	6.191	99.9	293.1758	0.4943	2	2	
Â	Isobutylparaben	4247-02-3	C11H14O3	3.574	3.497	47.0	193.0870	1.7728	2	2	
Â	Thebaol	481-81-2	C16H14O3	6.165	6.095	42.7	253.0870	4.4431	2	Ł	
Â	Diphenylmethoxyacetic acid	21409-25-6	C15H14O3	5.558	5.458	91.7	241.0870	0.1840	2	Ł	
<u>î</u>	Fenoprofen	31879-05-7	C15H14O3	5.558	5.453	91.7	241.0870	0.1840	2	2	
Â	Nabumetone	42924-53-8	C15H16O2	6.727	6.649	92.7	227.1078	-0.4148	2	Ł	
Â	BPA / Bisphenol A	80-05-7	C15H16O2	6.727	6.629	92.7	227.1078	-0.4148	2	2	
Ŷ	Zingerone	122-48-5	C11H14O3	3.574	3.505	47.0	193.0870	1.7728	2	ł	
Â	Meconin (Opianyl)	569-31-3	C10H10O4	3.620	3.521	83.1	193.0506	0.2936	2	ł	
Ŷ	Aspirin (Acetylsalicylic acid)	50-78-2	C9H8O4	4.520	4.437	98.4	179.0350	-0.2555	2	2	
<u>î</u>	Methylsalicylate	119-36-8	C8H8O3	2.691	2.595	87.1	151.0401	0.8973	3	1	
	lopromide	73334-07-3	C18H24I3N3O8	2.179	0.393	78.2	789.8625	0.1974	2	Ł	
Â	5-Methylbenzotriazole	136-85-6	C7H7N3	3.853	0.536	84.0	132.0567	0.0483	1		
	Estriol	50-27-1	C18H24O3	4.707	0.000	96.4	287.1653	-0.7288	3	6	
	Ethinylestradiol (EE2)	57-63-6	C20H24O2	7.343	0.053	85.6	295.1704	0.5521	2	2	
	Estrone (E1)	53-16-7	C18H22O2	7.441	0.001	98.6	269.1547	-1.0347	2	Ł	
	2-Phenylphenol (Orthophenylphenol)	90-43-7	C12H100	7.546	0.033	75.2	169.0659	0.0022	2	2	
	Fludioxonil	131341-86-1	C12H6F2N2O2	7.937	0.238	85.5	247.0325	-0.1607	3	1	
	Gemfibrozil	25812-30-0	C15H22O3	8.838	0.001	97.0	249.1496	0.1523	3	1	
Â	Mefenamic acid	61-68-7	C15H15NO2	7.195	1.720	99.3	240.1030	0.1474	3	1	
Â	Triclosan	3380-34-5	C12H7CI3O2	10.151	0.536	98.4	286.9439	0.0161	1		
\checkmark	4-tert-Octylphenol	140-66-9	C14H22O	10.384	0.000	84.2	205.1598	0.4881	2	ł	
										2	

The LC Screener tool (shown in Figure 5) built into MassHunter Quantitative software color codes putative identifications according to criteria that represent SANTE guidelines⁴. The putative identifications follow basic identification criteria, as recommended by SANTE guidelines³, while the software focuses the reviewing process and reduces the potential of false positives.

Green indicates that more than two ions (precursor and/or fragment ions) were measured with the desired mass accuracy, were coeluting and within an expect RT range (when known). Additionally, the isotope pattern of the precursor ions were also verified. All six target compounds expected to be measured in negative ionization mode were verified, as shown in Figure 5. Two additional compounds were also verified in negative ionization mode.

Conclusions

The combination of new hardware and software capabilities enables rapid quantitation of known toxicants while monitoring the presence of many other suspected toxicants, adding value to work already done. The data independent acquisition (DIA) capability also allows retrospective analysis for new toxicants, as they are discovered.

References

- 1. Agilent Technologies, 5991-8048EN, 2017.
- Black, GP; Anumol, T; Young, TM (In review).

Orange indicates a compound where the identification needs to be reviewed, and red indicates the compound was not detected in the selected sample. The total compounds measured with a level of identification according to SANTE guidelines and shown in Figure 5.

- 3. Pyke, JS, Black, GP; Chen, K; Anumol, T; Young, TM. Agilent Technologies, 5994-0750EN, 2019.
- 4. SANTE/11813/2017. 21-22 November 2017 rev.0
- 5. Rennie, EE; Williams, RH; Garnica, R; VanDamme, M. Agilent Technologies, 5991-8580EN, 2017.
- 6. Berset, JD; Rennie, EE; Glauner, T. Agilent Technologies, 5991-6627EN, 2016.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2019 Published in USA, June 2, 2019