Evaluation of a microfluidic electrophoresis device coupled to an Orbitrap mass spectrometer for the characterization of biotherapeutics proteins.

ABSTRACT

Purpose: To evaluate the performance of a chip-based electrophoresis device coupled to an Orbitrap mass spectrometer for intact and sub-unit mass analyses and peptide mapping.

Results: Using the ZipChip device, the lysine variants of the NIST mAb were successfully identified at the intact and sub-unit level. For the glycoforms G0F/G1F and G1F/G1F of trastuzumab emtansine, the average DAR values were respectively 3.46 and 3.47, which are in accordance with previously published data. Using the ZipChip device, a sequence coverage in excess of 97% was observed for the light and heavy chains after a 10 min peptide mapping experiment.

INTRODUCTION

The discovery and development of biotherapeutics continues to accelerate. The complexity of these agents and the increasing requirements to characterize them for both safety and efficacy places a large burden on the analytical scientists tasked with these challenging demands. Intact and sub-unit mass analysis as well as peptide mapping are widely used to get insights on biotherapeutics. Often these assays are LC-MS based, but the development of a new microfluidic capillary electrophoresis device could offer a fast and sensitive orthogonal mode of separation. Here we evaluate the performance of a chip-based electrophoresis device coupled to an Orbitrap mass spectrometer for some of the major workflows used to characterize biotherapeutics

MATERIALS AND METHODS

Sample Preparation

The analyzed samples were the NIST mAb and trastuzumab emtansine. For intact mass analysis, the sample was simply diluted in water prior to analysis.

For sub-unit mass analysis, the sample was first diluted in Tris HCI 0.1M and digested with the IdeS protease. Subsequently, the sample was denatured with Guanidine 8M and reduced with DTT. The final step is a buffer exchange with the dilution buffer provided by 908 Devices in the peptide kit.

For peptide mapping, NIST mAb was denatured in guanidine HCI and Tris followed by reduction and alkylation with DTT/IAA. The alkylation was guenched with DDT following buffer exchange in 50 mM Tris using BioSpin[™] 6 columns (Bio-Rad Laboratories). Trypsinization was performed at 37 °C for 30 min and guenched by lowering the pH with formic acid. Finally, the sample was diluted with the peptide dilution buffer provided in the 908 devices peptide kit.

Methods

Microfluidic electrophoresis

The ZipChip[™] HR chip from 908 Devices (Boston, MA) was used for all experiments. For intact and subunit mass analysis and peptide mapping, field strengths of 500V, 220V and 400V were respectively used.

Mass Spectrometry

Mass spectrometer: A Thermo Scientific[™] Q Exactive[™] HF MS operated in high mass range (HMR) mode was used for the intact mass analysis and in standard mode operation for peptide mapping. A Thermo Scientific[™] Q Exactive[™] Plus in protein mode was used for the sub-unit mass analysis.

Data Analysis

For all of the experiments, Thermo Scientific[™] BioPharma Finder[™] 2.0 software was used. Figure 1. a) Data were collected using the ZipChip device coupled to a Q Exactive Plus or Q Exactive HF instrument and processed with BioPharma Finder softwar . b)The ZipChip HR is a twenty two centimeter etched channel with a neutral hydrophilic coating with an integrated nanoelectrospray emitter

RESULTS

A) Intact Mass Analysis

1) NIST mAb

Figure 2. a) Electropherogram of NIST mAb (0.1 ug/uL). b) Spectra of the NIST mAb and the lysine variants. c) Zoom in the region of the charge +30 ions.

m/z

Drotoin Namo	Modification	Average	Theoretical	Matched Mass	Sum	Relative	Fractional
Protein Marie	wouldcation	Mass	Mass (Da)	Error (ppm)	Intensity	Abundance	Abundance
NIST		148038.8	148037.1	11.5	1.28E+09	58.82	16.61
NIST_plus1K	G0F/G0F	148165.6	148165.3	1.9	7.66E+07	3.51	0.99
NIST_plus2K		148295.4	148293.5	13.1	1.04E+07	0.48	0.14
NIST		148200.0	148199.3	5.0	2.18E+09	100.00	28.24
NIST_plus1K	G0F/G1F	148327.4	148327.4	0.1	1.39E+08	6.36	1.80
NIST_plus2K		148456.9	148455.6	9.0	1.56E+07	0.72	0.20
NIST		148362.1	148361.2	6.0	1.82E+09	83.26	23.51
NIST_plus1K	G1F/G1F	148489.7	148489.4	2.5	1.18E+08	5.40	1.53
NIST_plus2K		148618.4	148617.5	5.6	1.51E+07	0.69	0.20
NIST		148522.7	148523.5	5.8	1.00E+09	46.00	12.99
NIST_plus1K	G1F/G2F	148652.3	148651.7	3.6	5.97E+07	2.74	0.77
NIST_plus2K		148779.4	148779.9	3.1	8.07E+06	0.37	0.10
NIST		148684.6	148685.7	7.2	4.84E+08	22.21	6.27
NIST_plus1K	G2F/G2F	148811.9	148813.9	13.4	2.90E+07	1.33	0.38
NIST_plus2K		148942.0	148942.0	0.4	3.49E+06	0.16	0.05

0.65 nL of the NIST mAb at 0.1 ug/uL was injected and the three lysine variants are almost baseline separated. The shift in mass can be observed in the zoom in the region of the +30 charge state ions. The fast and almost base line separation of the lysine variants using the ZipChip combined with the high mass accuracy of the Orbitrap analyzer translated to the identification of 15 different glycoforms with a mass error below 14 ppm.

Stephane Houel¹, Terry Zhang¹, Erin Redman², Scott Mellors², Aaron Bailey¹, Chris Petty², Aran Paulus¹, Kai Zhou¹, Jonathan Josephs¹., ¹Thermo Fisher Scientific, San Jose, CA, USA, 95134; ²908 Devices, Boston, MA, USA

Table 2. Deconvoluted masses and intensities of the NIST mAb for the glycoforms G0F/G1F and G1f/G1F at different concentrations

Injection Volume = 0.65 nL									
	NIST	T GOF/G1F				NI	ST G1F/G1F		
Concentration (ug/uL)	Average Mass (Da)	Theoretical Mass (Da)	Matched Mass Error (ppm)	Sum Intensity	Concentration (ug/uL)	Average Mass (Da)	Theoretical Mass (Da)	Matched Mass Error (ppm)	Sum Intensity
0.001	148199.55	1/12/199 26	2.0	1.66E+06	0.001	148362.39	1/18261 20	8.0	1.55E+06
0.001	148198.63	148133.20	4.2	2.48E+06	0.001	148361.96	148501.20	5.1	1.91E+06
0.01	148199.59	1/12/199-26	2.2	2.26E+07	0.01	148362.02	1/18261 20	5.5	2.23E+07
0.01	148199.47	140155.20	1.5	1.95E+07	0.01	148361.14	140301.20	0.4	1.63E+07
0.1	148200.60	1/12/109 26	9.1	2.70E+08	0.1	148361.93	1/19261 20	4.9	2.35E+08
0.1	148200.36	140199.20	7.4	1.96E+08	0.1	148362.41	146501.20	8.2	1.71E+08
1	148199.01	1/10100 26	1.7	1.43E+09	1	148362.74	1/10261 20	10.4	1.18E+09
1	148199.55	140133.20	4.1	1.29E+09	1	148360.64	140501.20	3.8	1.20E+09

6.5 7.0 7.5 80 RT (min) Figure 5. Deconvoluted spectrum of the of the NIST mAb and lysine variants sub-units. LC_NIST_mAb 23113.281 -TDM1_G0F_G1F 148537.3 153964.5 -155143.3scFc_NIST_mAb_1K scFc_NIST_mAb_1K 1xG1F RT (min) 25348.494 25510.569 150000 152000 154000 Mass scFc_NIST_mAb 1xG0F scFc_NIST_mAb 1xG1I <u>25220.4</u>16 25<u>382.4</u>68 🖆 🔲 Protein Name Drug Load Modification Average Mass (mean) Theoretical Mass (Da) Sum Intensity (mean) Relative 23095.240 $\underline{Aa} \quad \bullet \quad \overline{u_x} = \quad$ <u>25544.5</u>45 152048.7 152047.7 1.53E+09 93.88 ┍┰╼┰╼┰╼┰┲┰┲┲╝╺╱╱╱**╺**┲╍╍╇

Table 3. Average DAR calculation for glycoforms G0F/G1F and G1F/G1F of trastuzumab emtansine

verag	e DAR					Re	calculate 🔻	×	Average [DAR					Re	calculate
E	perimenta arget Mod	al Average DAR dification Name	3.46 DM1		G	0F/G [^]	1F	^	Expe Tar <u>c</u>	erimenta get Moc	al Average DAR 3. lification Name D	47 M1			G1F/G	1F
Raw I	ile Name			Average	DAR 🔻				Raw File	Name			Average	DAR 🔻		
<u>\</u> a				- T _x =	- T _x				<u>A</u> a				- T _x =	- T _x		
E:\Ra	∧908_devi	ices\Boston_11_1	7_16\2016x11x1	7хх	3.46				E:\Raw\9	08_dev	ices\Boston_11_17_	16\2016x11x1	7хх	3.47		
				Co	mponent Specific S	ummary							Co	mponent Specific	Summary	
	Drug Load	Protein Name	Modification	Average Mass (mean)	Matched Mass Error (ppm) (mean)	r Relative Abundance	Intensity (mean)		Dn Loi	ug ad	Protein Name	Modification	Average Mass (mean)	Matched Mass Err (ppm) (mean)	ror Relative Abundance	Intensit (mean)
6	= - T _x	<u>A</u> a - T	_κ <u>A</u> a → Υ _x	= • T _x	= • V,	. = • T _x	= - T _x	Ξ	∿ =	▼ T _x	Aa • V _x	<u>A</u> a – V _x	= • T _x	1	$\tau_x = -\tau_x$	= 1
1	0	TDM1_G0F_G1		148220.6	12.7	18.42	3.00E+08		► 1	0	TDM1_G1F_G1F		148379.0	10	i.7 9.95	1.62
2	1	TDM1_G0F_G1	1xDM1	149176.3	2.3	46.65	7.60E+08		2	1	TDM1_G1F_G1F	1xDM1	149336.8	7	.5 33.47	5.4
3	2	TDM1_G0F_G1	2xDM1	150134.3	7.5	79.06	1.29E+09		3	2	TDM1_G1F_G1F	2xDM1	150294.9	1	2 58.97	9.6
4	3	TDM1_G0F_G1	3xDM1	151091.8	9.1	. 97.63	1.59E+09		4	3	TDM1_G1F_G1F	3xDM1	151252.7	2	.4 79.90	1.3
5	4	TDM1_G0F_G1	4xDM1	152048.7	6.9	93.88	1.53E+09		5	4	TDM1_G1F_G1F	4xDM1	152210.5	5	.6 69.92	1.1
	5	TDM1 GOF G1	5xDM1	153007.0	13.8	72.49	1.18E+09		6	5	TDM1_G1F_G1F	5xDM1	153168.3	9	.1 49.14	8.0
6																
6 7	6	TDM1_G0F_G1	6xDM1	153964.5	15.1	. 35.56	5.79E+08		1	6	TDM1_G1F_G1F	6xDM1	154126.3	13	1.9 28.97	4.7
6 7 8	6	TDM1_GOF_G1 TDM1_GOF_G1	6xDM1	153964.5 154921.9	15.1 15.7	. 35.56 18.46	5.79E+08 3.01E+08		8	6 7	TDM1_G1F_G1F TDM1_G1F_G1F	6xDM1 7xDM1	154126.3 155082.9	13	.9 28.97 .9 12.64	2.0

Around 2.5 ng of Trastuzumab emtansine (1ug/uL) were injected on the microfluidic channel and all of the different forms of trastuzumab emtansine were separated in less than 40 seconds. Trastuzumab emtansine was only diluted in water and the average DAR values for different glycoforms were successfully determined. For the glycoforms G0F/G1F and G1F/G1F, the average DAR values are respectively 3.45 and 3.47 which is consistent with previous published data ¹. Even for this highly complex sample, the mass error for the different DAR is below 16 ppm.

B) Sub-Unit Mass Analysis

Figure 4. a) Electropherogram of NIST mAb and lysine variant sub-units. b) - c) Electropherogram of the components representing G0F scFc for the NIST mAb and the lysine variant.

Table 4. Deconvoluted masses of the of the NIST mAb and lysine variants sub-units.

				Matched				
		Monoisotopic	Theoretical	Mass Error	Sum	Relative	Fractional	
Protein Name	Modification	Mass	Mass (Da)	(ppm)	Intensity	Abundance	Abundance	RT (min)
LC NIST mAb		23113.281	23113.304	1.0	3.62E+07	100.00	45.61	7.54
Fd NISTmAb		25672.797	25672.807	0.4	1.38E+07	38.09	17.37	8.00
	1xG0F	25220.416	25220.463	1.9	1.15E+07	31.60	14.41	6.72
scFc NIST mAb	1xG1F	25382.468	25382.516	1.9	9.93E+06	27.41	12.50	6.72
	1xG2F	25544.545	25544.569	1.0	8.45E+05	2.33	1.06	6.72
coEc NIST mAb. 1K	1xG0F	25348.494	25348.558	2.5	5.15E+05	1.42	0.65	6.57
SCICINISTINAD_IK	1xG1F	25510.569	25510.611	1.6	5.09E+05	1.40	0.64	6.57

The scFc of the NIST mAb and the lysine variant have different migration times and were identified at less than 2.5 ppm.

C) Peptide mapping

Figure 6. Electropherogram of NIST mAb tryptic digest after processing in BioPharma Finder 2.0 software.

Table 5.Sequence coverage after processing in BPF 2.0.

Proteins	Number of MS Peaks	MS Peak Area	Sequence Coverage	Abundance
NSIT mAb light chain	141	26.4%	100.0%	41.67%
NIST mAb heavy chain	339	60.5%	97.6%	56.35%
Unidentified	1441	12.6%		

Figure 7. Examples of MS/MS acquired on the Q Exactive Plus instrument after separation on the ZipChip device.

High sequence coverage was obtained for the light and heavy chains with MS/MS confirmation after less than 10 min separation on the ZipChip.

CONCLUSIONS

- ZipChip-based electrophoresis combined with the Q Exactive mass spectrometer provides a fast and sensitive intact mass analysis assay.
- ZipChip-based electrophoresis can separate the lysine variants of the NIST mAb at the intact and sub-unit level.
- Lysine-linked ADCs are very heterogeneous samples and can be successfully analyzed without sample pre-treatment by ZipChip-based electrophoresis.
- Above 97% sequence coverage for the light and heavy chains of the NIST mAb are observed after a fast electrophoretic separation and MS/MS confirmation.

REFERENCES

1. Marcoux et al., Protein Sci. 2015 Aug;24(8):1210-23

TRADEMARKS/LICENSING

© 2017 Thermo Fisher Scientific Inc. All rights reserved. ZipChip is a trademark of 908 Devices. Bio Spin is a trademark of Bio-Rad Laboratories. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

		Level	Flag	No.	Protein
		protein		1	NIST mAb light chain
		Protein		2	NIST mAb heavy chain
100		Protein		3	Unidentified
	_90				
		9.63 10,02	10,8	:s	
8		10		1	

2.4573	y11 1237.5514	yıa <u>1409.</u> 5774
1200	1400	1600