

Poster Reprint

ASMS 2020 ThP 412

Development of an automated MHC-associated peptide enrichment method for immunopeptidomics analysis using AssayMAP large capacity cartridges

Samuel Pollock¹, Shuai Wu², Jerry Han², Steve Murphy²

¹ Genentech, South San Francisco, CA, USA

² Agilent Technologies Inc., Santa Clara, CA, USA

Introduction

Immunopeptidomics is generally considered more challenging than conventional proteomics workflows for a number of reasons: First, the MHC-associated peptides are extremely low in abundance compared to other cellular peptides (or proteins), which makes their enrichment and detection very difficult. Second, the mechanism of generating the mature peptide-MHC complex is unclear as it involves multiple proteases and peptidases. The peptides that bind with MHC complex have similarity in terms of length and sequence which are different from proteolytic digested peptides.

In this workflow, we used the AssayMAP Bravo for automated immunoaffinity purification and peptide clean-up that provided users with a high throughput and reproducible method for MHC peptidomics.

Experimental

Antibody Cross-link with PAW Cartridge

1 mg of anti-human MHC-I antibody (w6/32) was loaded on new AssayMAP 25 µL PAW cartridges in parallel (x6) using the Affinity Purification application (Figure 1). Dimethyl pimelimidate (DMP) was used to cross-link the antibody to protein A, before being washed away with TBS. The just-crosslinked cartridges were then washed with 1% acetic acid to remove unbound antibody, equilibrated in TBS, and stored at 4 °C until use.

Immunoaffinity Purification of MHC-I Complex

GRANTA-519 cell pellets were lysed in non-denaturing buffer as previously described. The MHC-I complexes were immunoprecipitated with the antibody crosslinked cartridges. About 3 mg GRANTA lysate was loaded on each of 6 cartridges and the MHC complex was enriched out of the lysate and combined to give sample 1. The same experiment was repeated on different days to give samples 2 and 3. The MHCassociated peptides were separated from MHC protein and desalted on C18 cartridges using Peptide Cleanup Application. The AssayMAP protocols are summarized in Table 1.

Experimental

LC/MS Analysis

The Agilent 1290 Infinity II LC system was converted to nanoflow LC with the Agilent Infinity UHPLC Nanodapter. This nanoflow LC was connected to the Agilent nanoESI source and coupled to the 6550 iFunnel Q-TOF (Figure 2).

Peptide samples were analyzed with a 90-min gradient using data-dependent acquisition (Table 2). The tandem MS results were analyzed with Byonic software using human UniProt database with no enzyme specificity. Methionine oxidation, deamidation, were used as variable modifications for database search.

Table 2. Nano-LC Parameters

LC Conditions					
Trap-Column	 PepMap C18, 75 μm x 2 cm, at 60 °C				
Analytical Column	PepMap C18, 75 µm x 25 cm, at 60 °C				
Solvent A	0.1% Formic Acid in Water				
Solvent B	0.1% Formic Acid in 90 % Acetonitrile				
Flow rate	0.085 mL/min primary flow				
	300 nL/min on-column flow rate				
Gradient	Time (min)	B (%)	Time (min)	B (%)	
	0	3	97	70	
	90	35	100	3	
	95	70	120	3	
Injection volume	5 uL				

Figure 2. Nanodapter converts standard flow LC to nanoflow LC coupled with Q-TOF

2

Table 1. AssayMAP Bravo protocols

Affinity Durification Cross-linking Immunoaffinity purification Pentide Class

Figure 1. AssayMAP Bravo platform with new AssayMAP 25 µL PAW cartridge (Right)

	Anning Purnication	CIUSS-IIIKIIIg	minunoarmity purification	replice clean-up
Resin volume	25 µL	25 μL	25 μL	5 µL
Affinity Medium	Protein A	Protein A + antibody	Protein A +Xlinked antibody	C18
Prime buffer	PBS, pH=7.4	0.2 M triethanolamine, pH=8.1	TBS, pH=7.4	70% ACN, 0.1% TFA in water
Equilibration buffer	PBS, pH=7.4	0.2 M triethanolamine, pH=8.1	TBS, pH=7.4	2% ACN, 0.1% TFA in water
Loading buffer	Antibody storage buffer	5mM DMP in 0.2M TEA	3 mg/mL GRANTA lysate	1% Acetic Acid
Loading volume	1000 µL	250 μL	1000 μL	100 µL
Loading flow rate	20 µL/min	10 μL/min	20 μL/min	5 μL/min
Washing buffer 1	PBS, pH=7.4	TBS, pH=7.4	TBS, pH=7.4	2% ACN, 0.1% TFA in water
Washing volume 1	250 µL	250 μL	250 μL	50 μL
# washes 1	1	3	3	1
Washing buffer 2	NA	1% Acetic Acid	25mM Tris, pH=8.0	NA
Washing volume 2	NA	100 μL	250 μL	NA
# washes 2	NA	3	3	1
Elution buffer	NA	TBS, pH=7.4	1% Acetic Acid	30% ACN, 0.1% TFA in water
Elution volume	NA	250 µL	100 µL	100 µL

MHC Peptide Identification and Quantitation

Figure 3 is the total ion chromatogram (TIC) of the three samples using a 90-minute gradient. The TIC shows reproducible retention time and peak abundance between the samples. The tandem MS data were analyzed by Byos workflow with Byonic for peptide identification and Byologic for peptide quantitation (Figure 4). In Byonic, both singly and multiply charged ions were considered as precursor ions. A manual score cut, 150, was used for filtering identified peptides.

The identified peptides were imported into Byologic with their sequences. Byologic extracted each identified peptide with its peak area and further filtered peptides with certain number of decoys defined by user. The final

Figure 3. TIC of MHC peptides using 90 minute gradient

peptide IDs are summarized in Figure 5. The unique MHC class I peptides identified in each sample ranged from 2282 to 2424 with a CV% at about 3.0%. The number of unique peptides identified across all three samples is 3604.

The total peptide abundances in each sample are summarized in Figure 6 with a CV% at about 11.1%. Considering multi-steps were used including GRANTA lysate loading on PAW cartridges at different days with a following C18 cleanup, the CV% calculated from the three samples are within a good range, which showed a good reproducibility from the automated sample preparation.

Unique Peptide Number

Figure 5. The **unique** peptide number identified using 6550 iFunnel Q-TOF LC/MS

Peptide Abundance

Figure 6. MHC Class I peptide abundance for each sample with CV% at about 11.1%

Peptide Length Distribution

The frequency distribution of peptide length is plotted in Figure 7 to further confirm the identification of MHC Class I peptides. Data shown in figure 7 are compiled from the overall peptide identified after Byos workflow analysis. The 3604 unique peptides (Figure 5) spanned peptide lengths from 3 to 17 residues. However, the vast majority of peptides (94%) were 8 to 11 residues long, with most (75%) at 9 residues. This is well in line with what has been reported in literature.

Frequency Distribution of Peptide

Peptide-binding Motif Analysis

It is critical to carefully evaluate the HLA-bound peptide data to ensure the quality of the results. One popular method is to visualize positions of residue preference within the immunopeptidomic datasets. This can be achieved using online tools such as Seq2Logo. <u>http://www.cbs.dtu.dk/biotools/Seq2Logo/</u>

Since the majority of the peptides identified were 8-, 9-, 10- and 11-mers with 9-mers being the most abundant peptides (> 75%), all 9-mer sequences were uploaded to the Seq2Logo website and generated the HLA peptidebinding motif in Figure 8. The analysis of the HLA motif showed a strong preference for L or V at position 9 (C terminus) and at position 2.

Figure 8. HLA peptide-binding motif was constructed on the basis of nonamer peptides (created by Seq2Logo)

% Peptide 40.00% 30.00% 20.00% 9.98% 10.00% 5.26% 3.48% 2.16% ⁶0.64%<u>0.23</u>% 0.49%0.23%0.05%0.01%0.00%0.01% 0.00% 8 9 10 11 12 13 14 15 16 17 5 6 7 3 Peptide Length

Figure 7. The frequency distribution of the peptide length of MHC class I peptides from the average of 3 samples

Conclusions

70.00%

60.00%

50.00%

An automated MHC-associated peptide enrichment for immunopeptidomics analysis has been developed. This workflow provides a high throughput, reproducible and easy-to-use enrichment for MHC peptide analysis.

75.30%

- AssayMAP 25 μL PAW cartridges are well suited for low concentration MHC-complex enrichment. 5 μL C18 cartridge provides an efficient peptide separation and cleanup from protein complexes.
- The number of unique peptides identified from the samples are highly consistent.
- The peptide abundance between the samples showed good reproducibility with predominantly 9-mer peptides.

For Research Use Only. Not for use in diagnostic procedures.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2020 Published in USA, June 1, 2020

