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Chemometrics is a powerful tool widely used for 
method development in the pharmaceutical indus-
try. This whitepaper describes the lifecycle of multi-
variate models and summarizes the workflow of the 
development of chemometrical models according to 
the new USP chapter <1039>.
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Introduction

dozens of reference analyzers if it is calibrated for these tasks.
The methods of multivariate analysis can be applied for 
the analysis of data measured with various analytical tech-
niques such as Near-Infrared Spectroscopy (NIRS) [2], Raman 
Spectroscopy [3], chromatographic techniques such as ion 
chromatography [4] or other techniques, such as titration [5] 
or electrochemical analysis [6].

The potential of multivariate methods in the analysis of phar-
maceutical products was also recognized by the Unated States 
Pharmacopea and resulted in the new USP chapter <1039> 
Chemometrics, which was published on August 1, 2017 and 
which is valid since the December 1, 2017 [7]. This chapter 
focuses on the analysis of multidimensional data from ana-
lytical instruments like spectroscopic or chromatographic 
data. Generally, this chapter summarizes different stages of 
the development of multivariate analysis methods, as shown 
in Figure 1. Additionally, it introduces the «Analytical Proce-
dure Lifecycle» approach for multivariate methods. Each stage 
of method development is briefly summarized in the present 
white paper.

Chemometrics is originally defined as a tool for gathering che­
mical information from physical or chemical measurements 
[1]. This definition is very broad and can be related to all types 
of chemical and physical measurements e.g., starting from a 
simple pH measurement. In the modern narrower sense this 
term is related to extracting chemical information from multi-
variate data. The term «multivariate» describes the amount of 
data used for the information extraction. In classical univariate 
methods, chemical information is comprised in the intensity 
of a single peak that is specific for the analyte. In contrast, 
multivariate analysis uses the whole measured response for its 
analysis, e.g. a spectrum or chromatogram.

Because of the use of all of the available information, multi-
variate methods enable new analytical possibilities for various 
analytical techniques. Methods of multivariate analysis can be 
«fed» with the complete measured spectrum and at the same 
time provide solutions for multiple analytical tasks, e.g., iden-
tification, classification, or collecting quantitative information. 
When using multivariate analysis, one analyzer can provide 
the same amount of information after single measurment as 

Figure 1. Costs for the method development with and without method transfer.



Metrohm White Paper

03

The chemometric model as a part of an analytical procedure 
must fulfill a predefined, intended purpose, which should be 
in accordance with the previously defined analytical target 
profile (ATP). In this phase the requirements for the model de-
velopment and the performance criteria for the key characte
ristics of the analytical procedure should be specified. This 
phase involves different steps, namely the selection of the 
sample set followed by exploratory data analysis, algorithm 
selection, and risk analysis. These aspects are briefly described. 

Sample selection
The analytical performance of the application in routine analy-
sis depends on the properties of samples used for the calib
ration development. The range or type of variability as well 
the number of samples must be selected based on scientif-
ically sound principles. The range of the application should  
cover the range of the final routine application and should also  
include samples outside specification. Furthermore, sample 
variation expected in the final routine analysis should be in-
cluded in the calibration set. Such variability can be particle 
size variation of, e.g., cellulose, different lots of raw materials, 
or variations under intermediate conditions such as day-to-
day variations or multiple operators. The estimation of influ-
ence factors and types of variability can be realized using a 
risk based approach such as failure mode and effect analysis 
(FMEA) or a feasibility study.

The USP chapter does not provide exact information about the 
number of samples needed for the development of a calib
ration. However, it is mentioned that the number of samples 
increases with the increasing complexity of the application. 
Furthermore, a high number of samples can improve analy- 
tical figures of merit of the final application. In the ideal case, 
the samples should be distributed uniformly, which is not  
always possible. In this case, the sample selection must be ex-
plained using scientifically sound principles, such as Design of 
Experiments (DoE) or historical database approach.

Prior to the model development, data obtained from samples 
should be evaluated statistically. Approaches like exploratory 
data analysis can be used in order to understand the structure 
of the data, identify outliers, or select representative samples. 
Outliers can be identified, e.g., using Hotelling’s T2 statistics or 
residual distance.

Preprocessing
Various preprocessing techniques can be applied on the spec-
tra in order to remove redundant information, e.g., back-
ground. Such pretreatments can dramatically improve the an-
alytical performance of the model. Preprocessing algorithms 
should be selected based on the understanding of the data 
and the analytical techniques that were used. For example, 
some algorithms used in chromatography for the alignment of 
the x-axis are quite often unnecessary for spectroscopic data 
especially when using well-calibrated dispersive NIR instru-
ments. Preprocessing techniques should be applied iteratively 
and their outputs should be compared with each other. This 
can lead to a better understanding of the data and improve 
the analytical figures of merit of the final model. On the other 
hand, the analytical chemist must be aware of the fact that 
overprocessing of the data can reduce the signal and increase 
undesirable noise, which can significantly affect the analytical 
figures of merit (Example 1).

Development 

Example 1

Estimated analytical figures of merit (in mg) for the deter-
mination of ibuprofen (0–800 mg) in tablets by NIRS, using 
different preprocessing algorithms. The simplest prepro-
cessing (2nd derivative) results in low and similar analyti-
cal figures of merit. The quite often used combination of 
2nd derivative and standard normal variate (SNV) leads to 
overprocessing indicated by increased analytical figures of  
merit. Furthermore, the error of cross-validation is more 
than 50% higher than the error of calibration, which clearly 
indicates overfitting in this case.

Pretreatment RMSEC RMSECV

2nd derivative 5.8 7.4

2nd derivative, SNV 8.0 12.0

SNV, 2nd derivative 8.2 13.1
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Algorithm selection
USP mentions that it is not possible to predict the performance 
of different algorithms for a particular application. The combi-
nation of all steps of the model development, namely sample 
and variable selection, preprocessing, algorithm selection as 
well as optimization of algorithm specific parameters can have 
an impact on the analytical performance of the model. 

Generally, the selection of the algorithm depends on the aims 
of the previously defined ATP. Furthermore, this selection can 
be limited by the functionality of the software that is used. 
This should not be seen as a disadvantage. Quite often diffe- 
rent algorithms provide comparable results and the availability 
of only one or two algorithms saves time during model deve- 
lopment (Example 2).

Example 2

Estimated analytical figures of merit (in %) using different 
algorithms and same pretreatments for quality control of 
moisture in lactose solutions. The analytical figures of merit 
differ only slightly indicating similar analytical possibilities 
of the specific application.

Algorithm RMSEC RMSECV

Principal Component 
Regression (PCR)

0.29 0.32

Partial Least Squares 
Regression (PLS)

0.27 0.29

Support Vector  
Machines Regression 
(SVMR)

0.24 0.27

Variable selection
The selection of the subset of the original data can dramati-
cally improve the analytical figures of merit of the model such 
as accuracy, precision, and robustness. Through the reduction 
of the data, the influence of irrelevant variables in the data 
can be minimized by the variable selection. The selection of 
the data should be based on experience and knowledge. For 
example, determination of moisture content using NIR spec-
troscopy results in better analytical figures of merit when only 
sensitive water bands at 1450 and 1950 nm are included  
(Example 3).

Example 3

Estimated analytical figures of merit (in %) for the deter-
mination of moisture (60–85%) in skin creams using NIR 
spectroscopy using different wavelength regions. Selec-
tion of the specific wavelength region reduces dramatical-
ly calibration and cross-validation errors. Furthermore, the 
estimated error of cross-validation for the full wavelength  
region is two-times higher than the error of calibration 
when using the full spectral range. This is a clear indication 
for overfitting.

Spectral range RMSEC RMSECV

Full, 400–2 500 nm 0.83% 1.73%

1 350–1 550 and  
1 800–2 000 nm

0.57% 0.75%

A further reason for variable selection is improved robustness. 
The modelling of noise (overfitting) can occur when using the 
complete data set. This can have an influence on the predic-
tive properties of the model and therefore on the robustness 
of the model.

Summary
The mentioned steps are usually supported by dedicated soft-
ware provided together with the analyzer. Examples of such 
software are Vision Air Complete software for Metrohm  
Vis-NIR analyzers or MiraCal software for portable Metrohm  
Raman analyzers, which guide the operator through the 
different steps of the model development and support their  
users also in further steps.
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Model validation

General information
Each chemometric algorithm used for data analysis has its 
specific settings. Additionally, the implementation of the algo­
rithms and the visualization of results differs from vendor to 
vendor. Therefore, it is not possible to provide an overview, 
which is valid for all algorithms, vendors, and techniques.

However, the development of multivariate models has one 
step in common for all algorithms, vendors, and techniques. 
This step is an estimation of the model performance and the 
fine-tuning of algorithm specific settings based on the perfor-
mance of cross-validation. The cross-validation is usually auto-
matically performed by the used software during model deve- 
lopment. The software removes a subset of the data from the 
calculation and builds the model using the remaining set. This 
model is used for the prediction of the removed subset. The 
procedure is repeated until all subsets are predicted. Finally, 
the software calculates the analytical figures of merit for the 

cross-validation based on the predictions. The best approach 
for cross-validation is a so called «leave-one-out cross-valida-
tion», which means that only one sample is removed at a time.

The most common analytical figure of merit estimated dur-
ing cross-validation is the root-mean-squared error of cross-
validation (RMSECV). A further important parameter is the 
root-mean-squared error of calibration (RMSEC), which is esti
mated using the whole data set. The RMSEC decreases conti
nuously because the model describes additional variance of 
the data with increasing complexity. In contrast, RMSECV de-
creases only until the model describes the last meaningful in-
formation. Addition of further factor results in an increase of 
RMSECV: the model starts to describe irrelevant information, 
which leads to overfitting. This results in a strong difference 
between RMSEC and RMSECV values.

Calibration

It should be mentioned that the validation of the model men-
tioned here is not the same as the validation of the method. 
The aim of model validation is to demonstrate that it is suitable 
for its intended purpose. The validation of the model should  
be performed using a representative independent sample  
set. It must fulfill the requirements of the USP chapter <1225> 
Validation of Compendial Methods according to the method 
specific category [9].

Typical figures of merit estimated during validation of quan-
titative models are specificity, accuracy, precision, linearity, 
range, and robustness, which are described in USP chapter 
<1125> [9]. Additional figures of merit for quantitative appli-
cations such as limit of detection (LOD), limit of quantification 
(LOQ), sensitivity etc. may not be required but could provide 
additional application related knowledge relevant for the life-
cycle of the analytical procedure. Furthermore, it may be man-
datory to determine these analytical figures of merit according 
ICH Q2 [8]. Qualitative models require the determination of 
robustness and specificity.

Accuracy
The accuracy of quantitative models can be estimated by a 
statistical comparison of predicted values versus reference  
values. Analytical figures of merit such as root mean-squared 
error of prediction (RMSEP), standard error of prediction (SEP), 
and bias can be used as indicators of accuracy. Very impor-
tant is RMSEP, which should be comparable with RMSEC and 
RMSECV, and which should meet the requirements of ATP. For 
qualitative models, accuracy can be expressed as rate for posi-
tive or negative classification of validation samples.

Precision
The true precision can be estimated by the measurement of 
the same sample under intermediate conditions such as varia-
tion of the measurement time, operator, instruments, or labo-
ratories involved.

Specificity 
Scientific meaning of the chemometric model, e.g., selection 
of the wavelength range should be demonstrated and valida
ted wherever possible. The exact determination of specificity 
depends on the application and algorithm, e.g., qualitative 
models should be capable to identify or classify the samples 
correctly.
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Linearity
The direct estimation of linearity is not always possible since 
some of chemometric algorithms are nonlinear. However, 
it can be sufficient to demonstrate the performance of the 
model using the correlation coefficient, slope, intercept, and 
residual sum of squares of the plot between predicted versus 
reference values. Furthermore, the residues should not show 
specific patterns when plotted against concentration. 

Range
The range of the calculated model is defined by the range of 
calibration samples and should meet the requirements of the 
ATP.

Robustness
Robustness can be influenced by the calibration strategy that 
is used. Including expected variation (e.g., various operators, 
lots, days) into the calibration set has a positive impact on the 
robustness of the model.

Important for the model validation is the selection of the 
representative and independent sample set based on the re-
quirements of the ATP. Independency means that the selected  
samples were not used for the calibration development or 
model optimization. Being representative implies that the  
validation samples include all types of variance expected in 
routine analysis (e.g., particle size variations, manufacturer, 
geographical origin).

Precondition for a successful validation is the definition of 
the acceptance criteria before performing the model valida-
tion. These criteria can be specific for each technique, e.g., 
for secondary techniques like NIR, the accuracy is limited by 
the accuracy of the reference technique, but the precision can 
be better due to improved sample handling. In addition, it is 
indispensable to set the diagnostic limits of the model and 
implement an outlier detection. This outlier detection can be 
based on leverage statistics and should identify the out-of-
model-space samples. These can be for example samples out 
of the calibration range or completely different materials than 
those which were used in the calibration set (Example 4). 
Possible outliers should be included into the validation set in 
order to test the capability of the model to detect possible 
outliers in the final routine application.

Example 4

Quantitative models calculate the content of analytes (e.g., 
active ingredient or excipient) from the measured chroma
togram or spectrum without identification of the mate-
rial. Here, it is indispensable to implement identity test-
ing prior to quantification, since the operator runs a risk 
of accidentally analyzing the wrong material. Dedicated 
software products like Vision Air for Vis-NIR spectroscopy 
enable the combination of both methods in a single ope- 
rating procedure. The software performs verification of the 
material (e.g., nasal spray or not) and in case of a pass- 
result it automatically performs a quantitative analysis  
(e.g., xylometazoline as active ingredient). In case of wrong 
material (e.g., only water) it provides a fail result and mark 
the sample with a warning or error, if this is defined in the  
operating procedure for routine analysis.
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An essential part of the lifecycle of the analytical procedure 
based on chemometric methods is a continuous performance 
monitoring of the model, which should be conducted and 
documented as a part of the calibration and validation pro-
cedure. The control strategy should define the required ele-
ments and plan for on-going monitoring and evaluation of the  
model performance. Ideally, the used analytical instrument 
should be qualified and undergo specific performance verifi-
cation strategies, defined in related general USP chapters. The 

used control strategy should define intervals and events that 
trigger the review of the model. Exemplarily, events such as 
changes in samples or instrumental response, out-of-specifi-
cation and out-of-trend results are mentioned in the chapter.

Based on results of the performance monitoring, it is neces-
sary to perform risk assessment, which can lead to the imple-
mentation of changes in the operating procedure and trigger 
a predefined procedure for the model maintenance or update.

Model monitoring

Model maintenance

According to the proposed analytical procedure lifecycle app
roach, the knowledge gathered during procedure perfor-
mance qualification and continued performance verification 
should be used for continuous improvement of the analytical 
procedure (Figure 2, [10]). Therefore, it may be necessary 
to update the model after a certain period of use, based on 

the observations made during routine analysis. Such updates, 
especially adjustments and corresponding activities must be 
well documented. However, it is important to understand the 
reason for the updates prior their implementation, because 
it dramatically facilitates the selection of appropriate update 
procedures.

Figure 2. The analytical procedure lifecycle, adopted from [10].
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Changes in the analytical procedure. In this simple case, the 
calibration needs to be expanded, which can be caused by 
different reasons such as:
 •	 Expansion of the calibration range (e.g., from 0–600 mg 

ibuprofen to 0–800 mg)
 •	 New supplier for raw materials
 •	 Previously unseen variations (particle size distribution)

Important for the expansion of the calibration range is the 
number of new samples that should be added as well as the 
understanding of the impact of this addition on the calibra-
tion and validation. In general, the operator can add all new 
samples or select a subset of new samples based on different 
applicable scientific methods.

Changes on the instrumental part
The change of the instrumental response can occur as a  
result of replacement of spare parts (e.g., lamps, columns), re-
placement of the defect components (e.g., pumps), or simple  
model transfer between different instruments. However, when 
using a well calibrated and standardized instrument, changes 
of spare parts or method transfer to a similar instruments do 
not require any model update (Example 5).

On the other hand, changes in the analytical procedure (e.g., 
different sample preparation between the calibration and the 
validation step) may lead to the necessity of a model update. 
Here, simple adjustment methods such as slope and bias cor-
rection for quantitative models should be considered first. 

USP <1039> mentions the possibility of calibration transfer, 
which can be applied when changing the instrument (e.g., 
different vendors) or measurement conditions (e.g., transfer 
from the laboratory analyzer to a process analyzer). In this 
case, it is necessary to apply instrument standardization and 
calibration transfer methods using stable transfer samples. Figure 3. Simplified workflow for the model development.

Example 5

Metrohm NIR Application Note NIR-011 demonstrates 
the impact of the spare part replacement and method trans-
fer [11]. Here, the NIR model for the determination of  
caffeine content was transferred to 3 different units and 
validated using independent samples set. Additionally, in 
one unit, 4 different spare parts (lamps) were used. This 
work showed that RMSEP after the model transfer or re-
placement of the spare part is similar to the RMSEP of the 
original model due to excellent quality of the dispersive Vis-
NIR instruments and dedicated procedures for instrument 
standardization.

Finally, each step of model maintenance must be well docu-
mented. However, prior to the use of the updated model it 
must be revalidated using the acceptance criteria of the origi-
nal validation protocol. The process of revalidation as well as 
the results muss be both documented.

Summary
The present white paper describes the lifecycle of analytical 
procedures based on multivariate models and summarizes the 
workflow of the development of chemometric models accord-
ing to the new USP chapter <1039>. The simplified workflow 
for application and intervention is summarized in Figure 3. 
Additional information is available in the USP monograph  
itself and in technique specific USP chapters. The development 
of multivariate methods according to USP <1039> can be sup-
ported by a local Metrohm representative.



Metrohm White Paper
W

P-
03

1E
N

, p
ub

lis
he

d 
Ju

ne
, 2

01
8

www.metrohm.com

	 [1]	 R.G. Brereton, Applied Chemometrics for Scientists, John Wiley and Sons, 2007.
	 [2]	 D.A. Burns, E.W. Ciurczak, Handbook of Near-Infrared Analysis, CRC Press, 3rd Edition, 2007.
	 [3]	 I.R. Lewis, H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line,  

Marcel Dekker Inc., 2001.
	 [4]	 J. Zirojevic, Z. Jovic, A. Djurdjevic, A. Ciric, P. Djurdjevic, Chemometric-Assisted Determination of some Bisphosphonates 

and Their Related Substances in Pharmaceutical Forms by Ion Chromatography with Inverse UV Detection, Acta  
Chromatographica, 2015 (27) 1-23.

	 [5]	 M. Akhond, J. Tashkhourian, B. Hemmateenejad, Simultaneous determination of ascrobic, citric, and tartaric acids by 
potentiometric titration with PLS calibration, Journal of Analytical Chemistry, 2006 (61), 804-808.

	 [6]	 W. Henao-Escobar W, O. Domínguez-Renedo, M.A. Alonso-Lomillo, M.J. Arcos-Martínez, Resolution of quaternary  
mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares 
method, Talanta, 2015 (143), 97-100.

	 [7]	 Chemometrics, <1039>, USP 40 (2017).
	 [8]	 ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology, 1994.
	 [9]	 Validation of Compendial Methods, <1225>, USP 40 (2017).
	[10]	 Stimuli article, Proposed New USP General Chapter: The Analytical Procedure Lifecycle <1220>, USP, 2016,  

www.uspnf.com
	[11]	 Calibration model transfer of caffeine on the NIRS XDS Rapid Content Analyzer, Metrohm NIR Application Note NIR-011, 

www.metrohm.com

09

References

http://www.metrohm.com
http://www.uspnf.com
http://www.metrohm.com

