



# Ultra-Sensitive Detection of PCBs and PAHs in seafood by GC-MS/MS following the European Union regulations

## Abstract

A GC-MS/MS method has been developed for the simultaneous analysis of non-dioxin-like polychlorinated biphenyls (NDL-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in seafood samples using the Bruker gas chromatography triple quadrupole mass spectrometry system EVOQ<sup>™</sup> GC-TQ Premium. The outstanding sensitivity, selectivity and robustness of the system enabled the detection of sub-ppb amounts with high confidence while injecting only  $1\,\mu$ L of sample. The calibration and reporting limits have Keywords: PCB, PAH, GC-TQ MS, seafood, food safety, Bruker EVOQ GC-TQ MS, Bruker MSWS 8.2.1./ TASQ 1.4

Authors: Javier López, Diego Martín-Ortiz, Miguel Ángel Pérez Bruker Applications Development Laboratory, Madrid, Spain been set at 0.5  $\mu$ g/kg, after achieving a limit of detection (LOD) < 0.1  $\mu$ g/kg in routine assays. This ultra-sensitivity permits the analysis of more dilute samples, which can reduce instrument cleaning and maintenance. This method exceeds the sensitivity, selectivity and specificity requirements demanded in European Union Regulations [1-6].

## Introduction

Polychlorinated Biphenyls (PCBs) encompass a class of chlorinated compounds with more than 200 variations, or congeners, with different physical and chemical characteristics. PCBs can be released into the general environment via several sources, e.g., from poorly maintained toxic waste sites, by illegal or improper dumping of PCB wastes, such as transformer fluids, through leaks or fugitive emissions from electrical transformers whose oil often contains PCBs, and by disposal of PCB-containing consumer products in municipal landfills. Chronic exposure of PCBs to animals can lead to hormone balance disruptions, reproductive failures, or cancer. Foods can be a major source of human PCB exposure, typically from fish and animal fat. PCBs are lipophilic, and they preferentially separate from water and adsorb onto sediment at the bottoms of lakes and rivers. Bottom feeders and other aquatic organisms then

Table 1: Maximum level for the sum of the six targeted PCBs and limit of quantitation per congener in seafood

| Foodstuff                                                  | Maximum level Limit of Quantitation   |                     |  |  |  |
|------------------------------------------------------------|---------------------------------------|---------------------|--|--|--|
|                                                            | Sum of PCB 28, 52, 101, 138, 153, 180 |                     |  |  |  |
| Muscle meat of fish,<br>shellfish, and products<br>thereof | 75 ng/g wet weight                    | 1 ng/g per congener |  |  |  |

ingest and accumulate PCBs, resulting in a bio-concentration effect which migrates upward in the food chain.

The European Commission Regulations EU 252/2012 [1] and 1259/2011 [2] distinguish between dioxin-like (DL-PCB) and non-dioxin-like PCBs (NDL-PCB) based on their structural characteristics and toxicity, consequently leading to different methodologies and maximum levels for these two groups. Six marker NDL-PCBs are included in the presented method: PCB 28, 52, 101, 138, 153 and 180.

These PCBs comprise about half of the total amount of NDL-PCBs present in foodstuffs and their sum is considered as an appropriate marker for occurrence and human exposure to NDL-PCBs and is therefore set as the maximum level [2]. Performance criteria for analysis of NDL-PCBs by GC-MS/MS are detailed within the EU 589/2014 regulations [4].

Polycyclic aromatic hydrocarbons

(PAHs) are potent atmospheric pollutants and are of concern because some have been identified as carcinogenic, mutagenic or teratogenic. As with PCBs, PAHs are lipophilic and generally have a very poor aqueous solubility. Therefore, they can accumulate in lipid tissues of plants and animals. Foods can be contaminated by PAHs that are present in air (by deposition), soil (by transfer) or water (deposition and transfer). Some PAHs are semi-volatile, but most tend to adsorb on organic particulate matter. Heavier PAHs preferentially associate with particulate matter, thus atmospheric fall out is a principal route of contamination. When particulates fall out onto a water surface, they are transported in suspension, eventually ending in fresh water or marine sediments. PAHs become strongly bound to these sediments, effectively creating a potential pollution reservoir for subsequent PAH release. Sediment-dwelling and filtering organisms are most susceptible to contamination. Most organisms have

Table 2: Maximum levels for benzo(a)pyrene and the sum of the four PAHs and limits of detection and quantitation

| Foodstuff                                                                                                                                                                    | Maximum I      | evel (µg/kg)  | Limit of Dotostion                                | Limit of<br>Quantitation                           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------------------------------------------|----------------------------------------------------|--|
| rooustun                                                                                                                                                                     | Benzo(a)pyrene | Sum of 4 PAHs |                                                   |                                                    |  |
| Smoked sprats and canned smoked<br>sprats, bivalve mollusks (fresh, chilled<br>or frozen), heat treated meat and heat<br>treated meat products sold to the final<br>consumer | 5.0            | 30.0          | ≤0.30 µg/kg for<br>each of the four<br>substances | ≤0.0 µg/kg for each<br>of the four sub-<br>stances |  |
| Bivalve mollusks (smoked)                                                                                                                                                    | 6.0            | 35.0          |                                                   |                                                    |  |



Figure 8: Three replicate injections of a mussel extract spiked with 0.8 µg/kg of PAHs and PCBs

mation ion 1 and 7.8% for confirmation ion 2. Accepted tolerances are  $\pm 20\%$ and  $\pm 50\%$ , respectively [4].

The robustness of the method was proven by analyzing replicates of bivalve mollusks spiked with PAHs and PCBs; specifically wedge and hard clams (in Spain known as berberechos and almejas, respectively).

Figures 10 and 11 show wedge clam extracts spiked at 0.8 µg/kg with PAHs and PCBs respectively. As shown, all analytes are perfectly identified, showing excellent response for the quantitation ion, as well as the confirmation ions for an unequivocal identification thus avoiding any false positive identification and reporting.

Minimizing the amount of matrix content injected is a valuable criterion for evaluation, because it often leads to a reduction of the maintenance required to maintain sensitivity and robustness. To evaluate the performance of the instrument with a more diluted sample, hard clam extracts spiked at slightly lower than the required limit of quantitation (LOQ) for PAHs/PCBs (0.8 µg/kg) was diluted two fold. The required LODs are still exceeded after diluting the samples by two fold, as shown in Figure 12. This supports an increase in both method and instrument robustness according the European regulations for a routine 24/7 operation.



Figure 9: Analysis of a wedge clam extract (left) in comparison to a pyrene standard solution (right). Orange: Quantitation ion, Sky Blue: Confirmation ion 1, Dark Blue. Confirmation ion 2



Figure 10: Analysis of different wedge clam extracts spiked at 0.8 µg/kg PAHs. Each time window shows the MRM transitions used for each compound.



Figure 11: Analysis of different wedge clam extracts spiked at 0.8 µg/kg PCBs. Each time window shows the MRM transitions used for each compound.



Figure 1: Sample preparation workflow

a high bio-transformation potential for PAHs, resulting in no significant bio-magnification in the aquatic food chain. However, filter-feeding bivalves (e.g., mussels and oysters) may accumulate PAHs as they filter large volumes of water and have a low metabolic capacity for these compounds.

Until 2008, benzo(a)pyrene was used as a marker for the occurrence of PAHs in foods. But, in 2008, the Scientific Panel on Contaminants in the Food Chain of the European Food Safety Authority (EFSA) concluded that benzo(a)pyrene alone was not a suitable marker for the occurrence of PAHs in foods and that a system of four specific substances (benzo(a) pyrene, benzo(a)anthracene, benzo(b) fluoranthene and chrysene) would be more suitable markers [4]. Consequently, Commission Regulation EU 835/2011 [5] amended Regulation (EC) 1881/2006 in order to set maximum levels in specific foodstuffs for the sum of these four PAHs, while their LODs and limits of quantitation (LOQs) were set by Commission Regulation

EU 836/2011 [6], as shown in Table 2.

A method has been developed for the simultaneous analysis of the six markers NDL-PCBs, and 16 PAHs (including the four specifically regulated PAHs) in bivalve mollusk samples using the Bruker EVOQ GC-TQ Premium MS/MS system.

### **Experimental**

### **Sample Preparation**

Clam and mussel samples were collected from the southern coast of Spain. Samples (8 g) were hydrolyzed with KOH and MeOH, filtered and extracted with n-hexane. Extracts were purified by loading into a cartridge containing alumina and florisil [7-9]. The purified extracts were evaporated to dryness under a nitrogen stream and reconstituted in 2 mL of cyclohexane:toluene (9:1). Figure 1 shows the sample preparation workflow.

PCBs and PAHs standards were obtained from Dr. Ehrenstorfer GmbH

(Augsburg – Germany) and spiked samples prepared.

### Methodology

A total number of 41 compounds were analyzed: 16 PAHs, 16 deuterated PAHs used as internal standards (IS) and 9 PCBs.

Where possible, up to three MRM transitions per compound were utilized in order to increase specificity. A complete list of MRM transitions is shown in Table 4.

## **Results and discussion**

The procedures and analytical requirements to monitor the levels of PAHs and NDL-PCBs in foodstuffs within the EU [1-6] are very strict, and are required to meet performance criteria regarding accuracy, linearity and precision, amongst other criteria. In accordance with the provisions of the EU regulations, laboratories shall be accredited following ISO 17025 stanTable 3: Mass Spectrometry Method Conditions

| Mass Spectrometer            | Bruker EVOQ GC-TQ MS system                                  |  |  |  |  |  |
|------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| MS Conditions                |                                                              |  |  |  |  |  |
| Ionization                   | EI, 70 eV                                                    |  |  |  |  |  |
| Emission Current             | 40 µA                                                        |  |  |  |  |  |
| Active Focusing Q0           | 135 °C with Helium                                           |  |  |  |  |  |
| Transfer Line Temperature    | 300 °C                                                       |  |  |  |  |  |
| Source Temperature           | 300 °C                                                       |  |  |  |  |  |
| CID Gas                      | Ar, 2.0 mTorr                                                |  |  |  |  |  |
| Detector Mode                | EDR                                                          |  |  |  |  |  |
| Scan Mode                    | MRM, 0.6 sec/scan                                            |  |  |  |  |  |
| Gas Chromatograph            | Bruker 436 GC                                                |  |  |  |  |  |
|                              | GC Conditions                                                |  |  |  |  |  |
| Injector                     | 1177 Split/splitless                                         |  |  |  |  |  |
| Sample Volume/Injection Mode | 1μL, splitless                                               |  |  |  |  |  |
| Injector Insert              | 4 mm single taper splitless with deact. wool (p/n: SG092003) |  |  |  |  |  |
| GC Oven Temperature          | 70 °C (1.7 min) 30 °C/min 180 °C (0´) 5 °C/min 320 °C (17´)  |  |  |  |  |  |
| GC Column                    | Bruker BR-PCB, 40 m x 0.18 mm, 0.18 micron (p/n: BR58697)    |  |  |  |  |  |
| Carrier Gas                  | Helium, 0.8 mL/min constant flow                             |  |  |  |  |  |
| Total Run Time               | 50 min                                                       |  |  |  |  |  |
| Autosampler                  | Bruker 8400 autosampler                                      |  |  |  |  |  |
| Software                     | Bruker MSWS 8.2.1/TASQ 1.4 processing software               |  |  |  |  |  |

dard by a recognized body operating as per ISO Guide 58 to ensure the analytical quality assurance. The results shown below include all the analytical quality criteria required by the European regulations.

#### **GC** separation

The GC operating conditions were optimized to obtain an optimal peak shape without any tailing effects, in particular for the late eluting PAHs as shown in Figure 2. Additionally, this optimized separation provided high sensitivity.

Using a narrow bore capillary column  $(40 \text{ m} \times 0.18 \text{ mm})$ , an outstanding chromatographic separation for the more critical pairs of compounds could be achieved (as shown in Figure 3) thus

avoiding peak co-elution that could potentially mask some peaks and produce erroneous results.

#### Linearity

The linearity of response of this method has been evaluated from the reporting limits upward. Nine different solutions of increasing concentrations were prepared: 0.5 ppb, 1 ppb, 2.5 ppb, 5 ppb, 12.5 ppb, 25 ppb, 50 ppb, 75 ppb and 100 ppb, and spiked with the same amount of deuterated standards. Each standard solution was analyzed in triplicate.

Selected calibration curves for PAHs and PCBs are shown in Figures 4 and 5, respectively.

Table 5 shows a summary of the calibration results showing the linearity of the method with regression coefficients  $R^2 > 0.995$  and relative standard deviation (RSD) < 15%.

#### **Sensitivity and detection limits**

To validate the sensitivity of the method, one standard solution with a concentration of 0.1 ppb (100 femtogram on-column) was injected three times. Signal-to-noise (S/N) > 40 was achieved for all compounds and replicates. Therefore, the LOD for all analytes is < 0.1 ppb. MRM chromatograms for selected PAHs and PCBs are shown in Figures 6 and 7, respectively.

#### **Precision and repeatability**

#### Table 4: MRM conditions for the PCBs and PAHs monitored

| Compound Name               | RT (min.) | Precursor<br>Ion | Quan<br>Ion | CE | Confirm<br>Ion 1 | CE  | Confirm<br>Ion 2 | CE  |
|-----------------------------|-----------|------------------|-------------|----|------------------|-----|------------------|-----|
| Naphthalene-d8              | 6.61      | 136              | 134         |    | 132              | -25 | -                | -   |
| Naphthalene                 | 6.70      | 128              | 102         |    | 126              | -20 | 127              | -5  |
| Acenaphthalene-d8           | 10.75     | 160              | 158         |    | 156              | -25 | -                | -   |
| Acenaphthalene              | 10.80     | 152              | 150         |    | 151              | -15 | 126              | -28 |
| Acenaphthene-d10            | 11.14     | 164              | 160         |    | 162              | -18 | -                | -   |
| Acenaphthene                | 11.24     | 153              | 127         |    | 151              | -25 | 152              | -20 |
| Fluorene-d10                | 12.84     | 174              | 172         |    | 170              | -30 | -                | -   |
| Fluorene                    | 12.95     | 165              | 164         |    | 163              | -30 | 139              | -30 |
| Phenanthrene-d10            | 16.67     | 188              | 184         |    | 186              | -20 | -                | -   |
| Phenanthrene                | 16.79     | 178              | 176         |    | 177              | -10 | 152              | -25 |
| Anthracene-d10              | 16.98     | 188              | 184         |    | 186              | -20 | -                | -   |
| Anthracene                  | 17.08     | 178              | 176         |    | 152              | -25 | 177              | -10 |
| PCB-28                      | 15.30     | 256              | 186         |    | 151              | -50 | -                | -   |
| PCB-30                      | 18.01     | 256              | 186         |    | 151              | -50 | -                | -   |
| PCB-52                      | 18.94     | 292              | 222         |    | 257              | -15 | -                | -   |
| PCB-101                     | 22.21     | 326              | 256         |    | 291              | -15 | -                | -   |
| Fluoranthene-d10            | 22.34     | 212              | 208         |    | 210              | -15 | -                | -   |
| Fluoranthene                | 22.44     | 202              | 200         |    | 201              | -15 | 152              | -32 |
| Pyrene-d10                  | 23.53     | 212              | 208         |    | 210              | -15 | -                | -   |
| Pyrene                      | 23.63     | 202              | 200         |    | 201              | -15 | 151              | -45 |
| PCB-153                     | 25.43     | 360              | 290         |    | 325              | -15 | -                | -   |
| PCB-138                     | 26.61     | 360              | 290         |    | 325              | -15 | -                | -   |
| PCB-183                     | 27.11     | 394              | 324         |    | 359              | -15 | -                | -   |
| PCB-180                     | 29.04     | 394              | 324         |    | 359              | -15 | -                | -   |
| Benzo(a)anthracene-d12      | 29.60     | 240              | 236         |    | 238              | -20 | -                | -   |
| Benzo(a)anthracene          | 29.73     | 228              | 226         |    | 202              | -30 | 227              | -18 |
| Chrysene-d12                | 29.82     | 240              | 236         |    | 238              | -20 | -                | -   |
| Chrysene                    | 29.96     | 228              | 226         |    | 202              | -25 | 227              | -18 |
| PCB-170                     | 30.22     | 394              | 324         | 32 | 359              | -15 | -                | -   |
| Benzo(b)fluoranthene-d12    | 35.06     | 264              | 260         |    | 262              | -30 | -                | -   |
| Benzo(b)fluoranthene        | 35.21     | 252              | 250         |    | 248              | -60 | 224              | -55 |
| Benzo(k)fluoranthene-d12    | 35.16     | 264              | 260         |    | 262              | -30 | -                | -   |
| Benzo(k)fluoranthene        | 35.30     | 252              | 250         |    | 248              | -60 | 224              | -55 |
| Benzo(a)pyrene-d12          | 37.06     | 264              | 260         |    | 262              | -30 | -                | -   |
| Benzo(a)pyrene              | 37.24     | 252              | 250         |    | 248              | -60 | 224              | -55 |
| Dibenzo(a,h)anthracene-d14  | 45.10     | 292              | 288         |    | 290              | -20 | -                | -   |
| Dibenzo(a,h)anthracene      | 45.50     | 278              | 276         |    | 250              | -50 | 277              | -20 |
| Indene(1,2,3-c,d)pyrene-d12 | 45.45     | 288              | 284         |    | 286              | -20 | -                | -   |
| Indene(1,2,3-c,d)pyrene     | 45.75     | 276              | 272         |    | 273              | -45 | 274              | -40 |
| Benzo(g,h,i)perylene-d12    | 48.16     | 288              | 286         |    | 284              | -40 |                  |     |
| Benzo(g,h,i)perylene        | 48.47     | 276              | 272         |    | 273              | -45 | 274              | -40 |



Figure 2: Total Ion Chromatogram (TIC) of 12.5 ppb standard mix (PAHs and PCBs)



Figure 3: Total Ion Chromatogram (TIC) of 12.5 ppb standard mix (PAHs and PCBs) expanded in indicated areas

The precision, expressed as repeatability, was calculated on the results achieved from three replicate analyses of a mussel extract spiked with PAHs and PCBs at 0.8  $\mu$ g/kg. Note this level is slightly below the LOQ (0.9  $\mu$ g/kg) required for PAHs (see Table 2).

An example of repeatability for selected PAHs and PCBs is shown in Figure 8.

Excellent relative standard deviation below 4% was obtained for all analytes

in mussel extract spiked at 0.8µg/kg as shown in Table 6.

## Selectivity, ion ratios stability and robustness

Selectivity was tested by comparing the response of analytes in spiked mussel samples with those of spiked standards. No interferences or co-elution effects were found in this study. Further, no deviation in retention times between samples and standard chromatograms was found. Stability of the ion ratio is also very important for an unequivocal identification when using triple quadrupole instruments, as it helps to avoid any false positive reporting. Figure 9 shows a comparison of pyrene analysis in a wedge clam extract and standard solution. The relative retention time (RRT) difference for pyrene in wedge clam extract and standard is -0.03%, where the tolerance allowed is  $\pm 0.25\%$  [4]. The ion ratios differences are 1.1% for confir-



Figure 4: Calibration curves for selected PAHs from 0.5 ppb to 100 ppb



Figure 5: Calibration curves for selected PCBs from 0.5 ppb to 100 ppb

Table 5: Summary of calibration results, with nine calibration levels from 0.5 to 100 ppb

| Compound name  | R <sup>2</sup> | RSD (%) | Compound name           | R <sup>2</sup> | <b>RSD</b> (%) |
|----------------|----------------|---------|-------------------------|----------------|----------------|
| Naphthalene    | 0.99995        | 8.88    | PCB-138                 | 0.99886        | 14.51          |
| Acenaphthalene | 0.99934        | 9.18    | PCB-183                 | 0.99558        | 14.51          |
| Acenaphthene   | 0.99620        | 11.42   | PCB-180                 | 0.99785        | 10.50          |
| Fluorene       | 0.99978        | 11.13   | Benzo(a)anthracene      | 0.99956        | 12.7           |
| Phenanthrene   | 0.99886        | 6.32    | Chrysene                | 0.99959        | 12.06          |
| Anthracene     | 0.99845        | 12.03   | PCB-170                 | 0.99613        | 14.94          |
| PCB-28         | 0.99989        | 1.86    | Benzo(b)fluoranthene    | 0.99854        | 7.90           |
| PCB-30         | 0.99931        | 8.57    | Benzo(k)fluoranthene    | 0.99674        | 11.12          |
| PCB-52         | 0.99982        | 4.83    | Benzo(a)pyrene          | 0.99721        | 13.78          |
| PCB-101        | 0.99936        | 8.31    | Dibenzo(a,h)anthracene  | 0.99613        | 14.40          |
| Fluoranthene   | 0.99896        | 15.11   | Indene(1,2,3-c,d)pyrene | 0.99752        | 12.88          |
| Pyrene         | 0.99855        | 7.50    | Benzo(g,h,i)perylene    | 0.99780        | 16.39          |
| PCB-153        | 0.99959        | 8.09    | -                       | -              | -              |

Table 6: Summary of area repeatability for selected PCBs and PAHs in a mussel extract spiked at 0.8 µg/kg

| Compound name           | Replicate 1<br>(Area) | Replicate 2<br>(Area) | Replicate 3<br>(Area) | Average (Area) | <b>RSD</b> (%) |
|-------------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| Acenaphthene            | 50042                 | 50822                 | 50083                 | 50316          | 0.7            |
| Acenaphthalene          | 10673                 | 10596                 | 10669                 | 10646          | 0.3            |
| Anthracene              | 44029                 | 43066                 | 43873                 | 43656          | 1.0            |
| Benzo(a)pyrene          | 23148                 | 23450                 | 23986                 | 23528          | 1.5            |
| Benzo(a)anthracene      | 43193                 | 43780                 | 44175                 | 43716          | 0.9            |
| Benzo(b)fluoranthene    | 261459                | 266883                | 261520                | 263287         | 1.0            |
| Benzo(g,h,i)perylene    | 12876                 | 12977                 | 13155                 | 13003          | 0.9            |
| Benzo(k)fluoranthene    | 29562                 | 29539                 | 29145                 | 29415          | 0.7            |
| Chrysene                | 42581                 | 43704                 | 43343                 | 43209          | 1.1            |
| Dibenzo(ah)anthracene   | 13906                 | 13937                 | 14000                 | 13948          | 0.3            |
| Phenanthrene            | 47378                 | 46220                 | 47637                 | 47078          | 1.3            |
| Fluoranthene            | 46342                 | 45928                 | 45007                 | 45759          | 1.2            |
| Fluorene                | 41185                 | 40994                 | 42628                 | 41602          | 1.8            |
| Indene(1,2,3-c,d)pyrene | 11494                 | 11184                 | 11072                 | 11250          | 1.6            |
| Naphthalene             | 21826                 | 22009                 | 22823                 | 22219          | 2.0            |
| PCB 101                 | 53189                 | 49522                 | 53118                 | 51943          | 3.3            |
| PCB 138                 | 40578                 | 40392                 | 40627                 | 40532          | 0.2            |
| PCB 153                 | 141830                | 137724                | 135958                | 138504         | 1.8            |
| PCB 180                 | 47887                 | 46108                 | 47638                 | 47211          | 1.7            |
| PCB 28                  | 33700                 | 33934                 | 32112                 | 33249          | 2.4            |
| PCB 52                  | 32109                 | 31240                 | 31233                 | 31527          | 1.3            |
| Pyrene                  | 74599                 | 73822                 | 73394                 | 73938          | 0.7            |



Figure 6: MRM chromatograms for selected PAHs at 0.1 ppb level (100 femtogram on-column)



Figure 7: MRM chromatograms for selected PCBs at 0.1 ppb level (100 femtogram on-column)



Figure 12: Analysis of a hard clam extract spiked at 0.8 µg/kg with PAHs/PCBs and diluted two fold (400 femtogram on-column). Each time window shows the MRM transitions used for each compound.

## Conclusion

A method for the analysis of 16 PAHs and 6 markers NDL-PCBs by GC-MS/MS in bivalve mollusks has been developed according to the European Regulations. The outstanding sensitivity, selectivity and robustness of the Bruker EVOQ GC-TQ Premium MS system enables limits of detection < 0.1 µg/kg while injecting only 1 µL of sample. With this sensitivity, it is possible to work with diluted samples, which may prolong the instrument cleaning and maintenance cycles. The fast 40 m x 0.18 mm GC column demonstrates good resolution for compounds that often co-elute (e.g., PCB28/PCB31, B(b)F/B(k)F, B(a)A/Chrysene/Triphenylene). The run time is also reduced considerably in comparison with 60 m columns. A wide linear calibration range (from 0.5 ppb to 100 ppb) with R<sup>2</sup> > 0.99 and RSD < 15% was obtained for all the analyzed compounds. The remarkable reproducibility and performance of the Bruker EVOQ™ GC-TQ MS produced RSD (%) lower than 4% at the limit of quantitation for all the compounds analyzed in the seafood samples. This method has been validated for routine 24/7 operation, if required.





# Learn More

You are looking for further Information? Check out the Link or scan the  $\Omega R$  Code.

www.bruker.com/evoq-gc



#### References

- [1] Commission regulation EU No 252/2012. Laying down methods of sampling and analysis for the official control of levels of dioxins, dioxin like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EC) No 1883/2006.
- [2] Commission regulation EU No 1259/2011 amending regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxinlike PCBs and non-dioxin-like PCBs in foodstuffs.
- [3] Scientific report of EFSA, Results of monitoring of non-dioxin-like PCBs in food and feed, EFSA Journal OR European Food Safety Authority Journal 2010; 8(7):1071.
- [4] Commission regulation (EU) No 835/2011 amending regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs.
- [5] Commission regulation (EU) No 836/2011 amending regulation (EC) No 333/2007 laying down the methods of sampling and analysis for the official control of the level of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs.
- [6] NOAA Technical Memorandum NMFS-NWFSC-59, Extraction, clean-up and Gas Chromatography/Mass Spectrometry analysis of sediments and tissues of organic contaminants, Catherine A. Sloan, Donald W. Brown, Ronald W. Pearce, Richard H. Boyer, Jennie L. Bolton, Douglas G. Burrows, David P. Herman and Margaret M. Krahn, Northwest Fisheries Science Center, Environmental Conservation Division, 2725 Montlake Blvd East, Seattle, Washington 98112, March 2004.
- [7]Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in seafood using Gas Chromatography-Mass Spectrometry: A collaborative study, Katerina Mastovski et al. Covance Laboratories Inc. 671 S. Meridian Road, Greenfield, IN 46140.
- [8] Evaluation of rapid extraction and analysis techniques for Polycyclic Aromatic Hydrocarbons (PAHs) in seafood by GC/MS/MS, Ed George, Bruker Application Note # GCMS-09 (2015), Bruker Daltonics Inc, Billerica, Massachusetts.
- [9] Determination of Polycyclic Aromatic Hydrocarbons in edible seafood by QuEChERS-based extraction and Gas Chromatography-Tandem Mass Spectrometry, Yoko S. Johnson, Journal of Food Science 2012; 77(7):131-136.

For research use only. Not for use in diagnostic procedures.

ms.sales.bdal@bruker.com - www.bruker.com

#### **Bruker Daltonik GmbH**

Bruker Scientific LLC

Bremen · Germany Phone +49 (0)421-2205-0 Billerica, MA · USA Phone +1 (978) 663-3660