

Permanent gases and CO₂

Fast analysis of permanent gases and CO₂ using coupled tandem PLOT columns

Application Note

Environmental

Introduction

A parallel setup of 2 PLOT columns is tuned for separation of permanent gases in a short time. The sample is injected via a normal injection port and is split into the parallel setup of 2 columns. A short Agilent CP-Molsieve is used to separate the inert gases (helium, oxygen nitrogen, methane and CO) before the first peak (composite peak of all inert gases) elutes from the Agilent PoraBOND Q PLOT column. After the first peak, the methane and CO₂ elute from the PoraBOND Q column. If water is present, we will see that also on the PoraBond.

This analysis is done isothermally and can be speeded up significantly. The CO_2 and eventually water that enters the Molsieve column will be adsorbed. If the amount of CO_2 or water accumulated on the CP-Molsieve causes a shift of the retention time of the inert gases out of the integration window, the Agilent Select Permanent Gases/ CO_2 column can be regenerated by 30 minutes at 300 °C. In practice, we found that CO_2 and water adsorption has very little impact on the retention and many analyses can be done before regeneration is required. As methane elutes from both systems the split ratio between the columns can be calculated by the ratio of the methane peaks.

Authors

Agilent Technologies, Inc.

Conditions

Technique	:	GC
Column	:	Agilent Select Permanent Gases/CO ₂ Part no. CP7429
Temperature	:	50 °C
Carrier Gas	:	Helium, 100 kPa
Injector	:	Split 1:50
Detector	:	TCD
Sample Size	:	20 µL
Concentration Range	:	% level

: C. Duvekot, Agilent Laboratory, Middelburg, The Netherlands

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A02017

Agilent Technologies