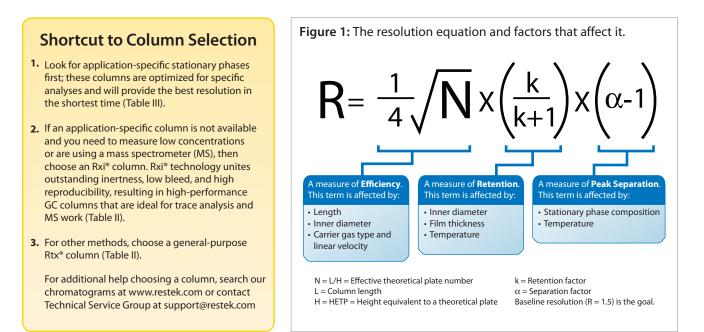

Guide to GC Column Selection and Optimizing Separations

WHICH COLUMN DO I NEED?


- Learn how to choose the right column the first time.
- Optimize separations for the best balance of resolution and speed.
- Troubleshoot quickly and effectively based on chromatographic symptoms.

WHICH COLUMN DO I NEED? Resolution Equation—The Key to Column Selection and Optimizing GC Separations

You can improve lab productivity by assuring that speed and resolution are optimized. One of the best ways to do this is to use the resolution equation (Figure 1) as the key to controlling your separations. This fundamental equation helps you choose the best column stationary phase, length, inner diameter (ID), and film thickness for your specific applications. Once you understand the basics of how resolution is related to column characteristics, optimizing your analysis for both separation and speed becomes easier. This GC column selection guide discusses the basics of separation and teaches you how to choose the right GC column!

Resolution is the goal of every chromatographer, but how much resolution is enough? Practically speaking, we need enough retention to get sharp symmetrical peaks that are baseline resolved from each other, but not too much retention, where retention times are too long and peaks start to broaden. To achieve this goal, we must consider the column and non-column factors that affect our "perfect separation". Only then can we work towards selecting the right column and optimizing GC separations and analysis speed. Now, let's consider separation factor (α), retention factor (k), and efficiency (N) in turn and how they can help you select the right column and optimize your separation.

Use Separation Factor (a) to Choose the Best Stationary Phase

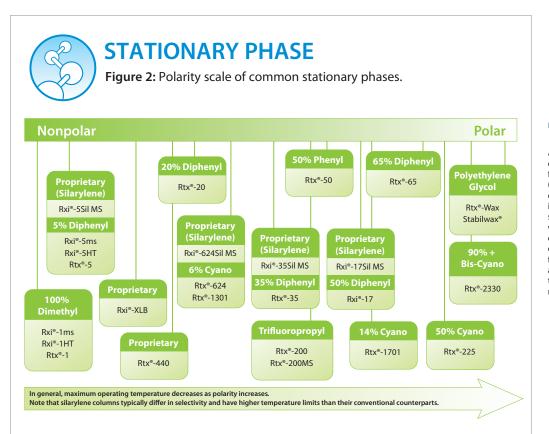
Choosing the right stationary phase is the first step toward optimizing your GC separation. It is the most important decision you will make because separation factor (α) has the greatest impact on resolution, and it is strongly affected by stationary phase polarity and selectivity.

Stationary phase *polarity* is determined by the type and amount of functional groups in the stationary phase. When choosing a column, consider the polarity of both the stationary phase and your target analytes. If the stationary phase and analyte polarities are similar, then the attractive forces are strong and more retention will result. Greater retention often results in increased resolution. Stationary phase polarity strongly influences column selectivity and separation factor, making it a useful consideration when selecting a column.

Stationary phase *selectivity* is defined by IUPAC as the extent to which other substances interfere with the determination of a given substance. Selectivity is directly related to stationary phase composition and how it interacts with target compounds through intermolecular forces (e.g., hydrogen bonding, dispersion, dipole-dipole interactions, and shape selectivity). As methyl groups in the stationary phase are replaced by different functionalities, such as phenyl or cyanopropyl pendant groups, compounds that are more soluble with those functional groups (e.g., aromatics or polar compounds, respectively) will interact more and be retained longer,

 $R = \left(\frac{1}{4}\sqrt{N}\right) \times \left(\frac{k}{k+1}\right) \times \left(\alpha - 1\right)$

Table I: Kovat's retention indices for GC phases can be used to approximate selectivity.


Stationary Phase	Benzene	Butanol	Pentanone	Nitropropane
100% Dimethyl polysiloxane	651	651	667	705
5% Diphenyl/95% dimethyl polysiloxane	667	667	689	743
20% Diphenyl/80% dimethyl polysiloxane	711	704	740	820
6% Cyanopropylphenyl/94% dimethyl polysiloxane	689	729	739	816
35% Diphenyl/65% dimethyl polysiloxane	746	733	773	867
Trifluoropropylmethyl polysiloxane	738	758	884	980
Phenyl methyl polysiloxane	778	769	813	921
14% Cyanopropylphenyl/86% dimethyl polysiloxane	721	778	784	881
65% Diphenyl/35% dimethyl polysiloxane	794	779	825	938
50% Cyanopropylmethyl/50% phenylmethyl polysiloxane	847	937	958	958
Polyethylene glycol	963	1,158	998	1,230

i tech tip

In many cases, different GC oven temperature programs can change the elution order of sample analytes on the same column. Reconfirm elution orders if changing GC oven temperature programs.

often leading to better resolution and increased selectivity. In another example of the effect of stationary phase-analyte interactions, an Rtx*-200 stationary phase is highly selective for analytes containing lone pair electrons, such as halogen, nitrogen, or carbonyl groups, due to interactions with the fluorine pendant group in this phase. Selectivity can be approximated using existing applications or retention indices (Table I), making these useful tools for comparing phases and deciding which is most appropriate for a specific analysis.

Due to their influence on separation factor, polarity and selectivity are primary considerations when selecting a column. However, temperature limits must also be considered. In general, highly polar stationary phases have lower maximum operating temperatures, so choosing a column with the appropriate maximum operating temperature as well as optimal polarity and selectivity for the type of compounds being analyzed is crucial. Use Table II and Figure 2 determine which general-purpose column is most appropriate based on the selectivity, polarity, and the temperature requirements of your analysis. See Table III for a list of specialty stationary phases designed for specific applications.

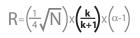
 ${f i}$ tech tip

Any homologous series of compounds, that is, analytes from the same chemical class (e.g., all alcohols, all ketones, or all aldehydes, etc.) will elute in boiling point order on any stationary phase. However, when different compound classes are mixed together in one sample, intermolecular forces between the analytes and the stationary phase are the dominant separation mechanism, not boiling point.

Restek	Phase Composition (USP Nomenclature)	Restek's Max Temps*	Agilent	Phenomenex
nester	mase composition (osr nomencature)	max remps	HP-1/HP-1ms. DB-1/DB-1ms.	I IICIIVIIICIICA
Rxi-1HT		400 °C	VF-1ms, CP Sil 5 CB, Ultra 1,	ZB-1, ZB-1MS,
Rxi-1ms, Rtx-1	100% Dimethyl polysiloxane (G1, G2, G38)	350 °C	DB-1ht, HP-1ms UI, DB-1ms UI	
Rxi-5HT		400 °C	HP-5/HP-5ms, DB-5, Ultra 2,	ZB-5, ZB-5HT Inferno,
Rxi-5ms, Rtx-5	5% Diphenyl/95% dimethyl polysiloxane (G27, G36)	350 °C	DB-5ht, VF-5ht, CP-Sil 8 CB	ZB-5ms
Rxi-5Sil MS	5% (1,4-bis(dimethylsiloxy) phenylene/95% dimethyl polysiloxane	350 °C	DB-5ms UI, DB-5ms, VF-5ms	ZB-5msi
Rxi-XLB	Proprietary Phase	360 °C	DB-XLB, VF-Xms	MR1, ZB-XLB
Rtx-20	20% Diphenyl/80% dimethyl polysiloxane (G28, G32)	320 °C		MIKI, ZD-ALD
	35% Diphenyl/65% dimethyl polysiloxane (G28, G32)	320°C	— HP-35, DB-35	
Rtx-35	55% Diprenyt/65% dimetriyt potysitoxane (642)	320 C	,	ZB-35
Rxi-35Sil MS	Proprietary Phase	360 °C	DB-35ms, DB-35ms UI, VF-35ms	MR2
Rtx-50	Phenyl methyl polysiloxane (G3)	320 °C	_	_
			DB-17ms, VF-17ms,	
Rxi-17	50% Diphenyl/50% dimethyl polysiloxane	320 °C	CP Sil 24 CB	ZB-50
			DB-17ms, VF-17ms,	
Rxi-17Sil MS	Proprietary Phase	360 °C	CP Sil 24 CB	ZB-50
Rtx-65	65% Diphenyl/35% dimethyl polysiloxane (G17)	300 °C	-	-
			DB-624 UI, VF-624ms,	
Rxi-624Sil MS	Proprietary Phase	320 °C	CP-Select 624 CB	ZB-624
Rtx-1301,		280 °C	DB-1301, DB-624, CP-1301,	70 (0)
Rtx-624	6% Cyanopropylphenyl/94% dimethyl polysiloxane (G43)	240 °C	VF-1301ms, VF-624ms	ZB-624
			DB-1701, VF-1701ms, CP Sil 19 CB, VF-1701	
Rtx-1701	14% Cyanopropylphenyl/86% dimethyl polysiloxane (G46)	280 °C	Pesticides, DB-1701R	ZB-1701, ZB-1701P
Rtx-200, Rtx-200MS	Trifluoropropyl methyl polysiloxane (G6)	340 °C	DB-200, VF-200ms, DB-210	_
	50% Cyanopropyl methyl/50% phenylmethyl polysiloxane			
Rtx-225	(G7, G19)	240 °C	DB-225ms, CP Sil 43 CB	_
Rtx-440	Proprietary Phase	340 °C	RESTEK INNOVATIO	DN
Rtx-2330	90% Biscyanopropyl/10% cyanopropylphenyl polysiloxane (G48)	275 °C	VF-23ms	_
Rt-2560	Biscyanopropyl polysiloxane	250 °C	HP-88, CP Sil 88	_
Rtx-Wax	Polyethylene glycol (G14, G15, G16, G20, G39)	250 °C	DB-Wax, Wax 52 CB	ZB-WAX
Stabilwax	Polyethylene glycol (G14, G15, G16, G20, G39)	260 °C	HP-INNOWax, VF-WaxMS	ZB-WAXPlus

Table II: Relative polarity and thermal stability are important considerations when selecting a GC stationary phase.

 * Maximum operating temperatures may vary with column film thickness.


 Table III: Application-specific phases designed for particular analyses.

Restek	Applications	Agilent	Supelco	Macherey-Nagel	SGE	Phenomenex
Rtx-Volatile Amine	Volatile amines	CP-VolAmine	_	_	_	_
Rtx-5Amine	Amines	CP-Sil 8 CB	_	OPTIMA 5 Amine	_	_
Rtx-35Amine	Amines	_	_	RESTEK INNOVAT	ION	_
Stabilwax-DB	Amines	CAM, CP WAX 51	Carbowax Amine	FS-CW 20 M-AM	_	_
Stabilwax-DA	Free fatty acids	HP-FFAP, DB-FFAP, VF-DA, CP WAX58 CB, CP-FFAP CB	Nukol	PERMABOND FFAP,OPTIMA FFAP, OPTIMA FFAP Plus	BP-21	ZB-FFAP
Chiral Columns						
Rt-βDEXm, Rt-βDEXsm, Rt-βDEXse, Rt-βDEXsp, Rt-βDEXsa, Rt-βDEXcst, Rt-γDEXsa	Chiral compounds	_	_	_	_	_
Foods, Flavors, & Fragrances						
Rt-2560	cis/trans FAMEs	HP-88	SPB-2560	_	_	_
FAMEWAX	Marine oils	Select FAME	Omegawax	_	_	_
Rtx-65 TG	Triglycerides	_	_	_	_	_
Rxi-PAH	Polycyclic aromatic hydrocarbons (PAHs)	Agilent Select PAH	_	_	_	_

Restek	Applications	Agilent	Supelco	Macherey-Nagel	SGE	Phenomenex
Petroleum & Petrochemical						
Rt-Alumina BOND/CFC	Chlorinated fluorocarbons (CFCs)	_	_	RESTEK INNOVAT	ΓΙΟΝ	_
Rtx-DHA	Detailed hydrocarbon analysis	HP-PONA, DB-Petro, CP Sil PONA CB	Petrocol DH	_	BP1PONA	_
Rtx-2887	Hydrocarbons (ASTM D2887)	DB-2887	Petrocol 2887, Petrocol EX2887	_	_	_
MXT-2887	Hydrocarbons (ASTM D2887)	DB-2887	Petrocol 2887, Petrocol EX2887	_	_	_
D3606	Ethanol (ASTM D3606)	_	_	RESTEK INNOVAT	TION	_
Rt-TCEP	Aromatics and oxygenates in gasoline	CP-TCEP	TCEP	_	_	_
MXT-1HT SimDist	Simulated distillation	DB-HT-SimDis,CP-SimDist, CP-SimDist Ultimetal	_	_	BPX1	ZB-1XT SimDist
MXT-1 SimDist	Simulated distillation	DB-HT-SimDis,CP-SimDist, CP-SimDist Ultimetal	_	_	_	_
MXT-500 SimDist	Simulated distillation	_	_	RESTEK INNOVAT	TION	
Rtx-Biodiesel TG, MXT-Biodiesel TG Clinical/Forensic	Triglycerides in biodiesel	Biodiesel, Select Biodiesel	_	OPTIMA Biodiesel	_	ZB-Bioethanol
Rtx-BAC Plus 1	Blood alcohol testing	DB-ALC1	_	_	_	ZB-BAC1
Rtx-BAC Plus 2	Blood alcohol testing	DB-ALC2	_	_	_	ZB-BAC2
Pharmaceutical	store aconor resulty					LU DACL
Rtx-G27 w/IntegraGuard	Organic volatile impurities (USP <467>)				_	
Rtx-G43 w/IntegraGuard	Organic volatile impurities (USP <467>)	_	_		_	
Rxi-624Sil MS	Organic volatile impurities (USP <467>)	DB-624,VF-624ms, CP-Select 624 CB	_	OPTIMA 624 LB	BP624	ZB-624
Rtx-5 (G27)	Organic volatile impurities (USP <467>)	HP-5, DB-5,CP Sil 8 CB	SPB-5	OPTIMA 5	BP5	ZB-5
Stabilwax (G16)	Organic volatile impurities (USP <467>)	HP-INNOWax,CP Wax 52 CB,VF-WAX MS	Supelcowax-10	OPTIMA WAXplus	_	ZB-WAXplus
Environmental		,		•		•
Rxi-5Sil MS	Semivolatiles	DB-5ms,DB-5msUI, VF-5ms,CP-Sil 8 CB	SLB-5ms	OPTIMA 5MS Accent	BPX5	ZB-5msi
	Volatiles (EPA Methods					
Rtx-VMS	8260, 624, 524) Volatiles	— DB-624.VF-624ms,	_	RESTEK INNOVAT	TION	
Rxi-624Sil MS	(EPA Methods 624) Volatiles (EPA Methods	CP-Select 624 CB	_	OPTIMA 624 LB	BP624	ZB-624
Rtx-502.2	8010, 8020, 502.2, 601, 602) Volatiles (EPA Methods	DB-502.2	VOCOL	_	_	_
Rtx-Volatiles	8010, 8020, 502.2, 601, 602) Volatiles (EPA Methods		VOCOL	_	_	_
Rtx-VRX	8010, 8020, 502.2, 601, 602)	DB-VRX	_	_	_	_
Rtx-CLPesticides	Organochlorine pesticides	_	_	RESTEK INNOVAT	ION	_
Rtx-CLPesticides2	Organochlorine pesticides	_	_	RESTEK INNOVAT		_
Rtx-1614	Brominated flame retardants	_	_	RESTEK INNOVAT		_
Rtx-PCB	Polychlorinated biphenyl (PCB) congeners	_	_	RESTEK INNOVAT		_
Rxi-XLB	Polychlorinated biphenyl (PCB) congeners	DB-XLB,VF-XMS	_	_	_	MR1, ZB-XLB
Rtx-OPPesticides	Organophosphorus pesticides	_	_	RESTEK INNOVAT	TION	_
Rtx-OPPesticides2	Organophosphorus pesticides	_	_	RESTEK INNOVAT	TION	_
Rtx-Dioxin2	Dioxins and furans	_	_	RESTEK INNOVAT		_
	Polycyclic aromatic	DB-17ms,VF-17ms,				
Rxi-17Sil MS	hydrocarbons (PAHs)	CP-Sil 24 CB	_	OPTIMA 17 MS	BPX50	ZB-50

Select Column Film Thickness and Column ID Based on Retention Factor

Once you have chosen the stationary phase, you need to determine which column film thickness and inner diameter combination will give the retention factor (k) needed for optimal resolution and speed. Retention factor is sometimes referred to as capacity factor, which should not be confused with sample loading capacity.

The retention factor (k) of a column is based on the time an analyte spends in the stationary phase relative to the time it spends in the carrier gas. As a general rule, the thicker the film and the smaller the inner diameter, the more an analyte will be retained. Note that as temperature increases k decreases, so at higher temperatures analytes stay in the carrier gas longer and are less retained.

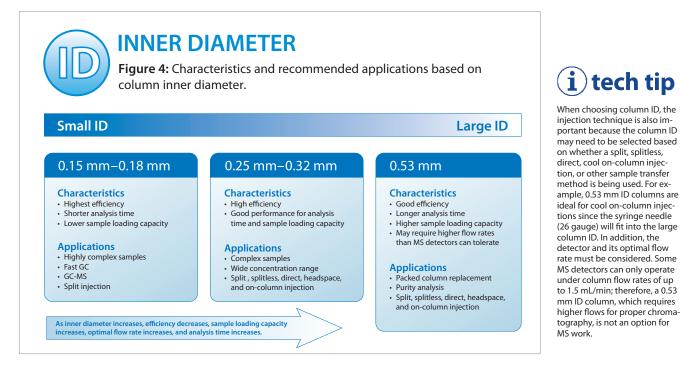
In practice, if the value of k is too large, the peak will broaden, which can reduce resolution by causing peaks to overlap or coelute. Narrow, symmetrical peaks are important to maximizing resolution, so the goal is to select a column with a sufficient retention factor, such that resolution occurs and peak shape does not suffer. Once the proper stationary phase is selected, column film thickness, column inner diameter, and elution temperature should be optimized to produce an acceptable retention factor.

Film Thickness

Film thickness (μ m) has a direct effect on both the retention of each sample component and the maximum operating temperature of the column. When analyzing extremely volatile compounds, a thick film column should be used to increase retention; more separation is achieved because the compounds spend more time in the stationary phase. If analyzing high molecular weight compounds, a thinner film column should be used, as this reduces the length of time that the analytes stay in the column and minimizes phase bleed at higher elution temperatures. Use Figure 3 to select the best film thickness for your application. Note that as a general rule, the thicker the film, the lower the maximum temperature; exceeding the maximum temperature can result in column bleed and should be avoided.

i tech tip

The sample loading capacity of the column also must be considered; if the mass of the target analyte exceeds the sample loading capacity of the column, loss of resolution, poor reproducibility, and fronting peaks will result. A larger ID column with thicker film is recommended for higher concentration samples, such as purity analysis, to minimize sample overload.



Remember, when changing either film thickness and/or the temperature program, you must reconfirm peak identifications as elution order changes can occur.

Inner Diameter (ID)

Column ID does not have as great an effect on retention factor as film thickness does. However, when selecting column ID with retention factor (k) in mind, a general rule of thumb applies; smaller ID columns produce higher retention factors compared to larger ID columns. This is due to less available mobile phase (carrier gas) volume in the column. Because smaller ID columns produce higher k values, they are more suited towards complex sample analysis where a range of low to high molecular weight compounds may exist in the sample (Figure 4). Keep in mind that both ID and film thickness should be optimized together to produce the best resolution and peak shape.

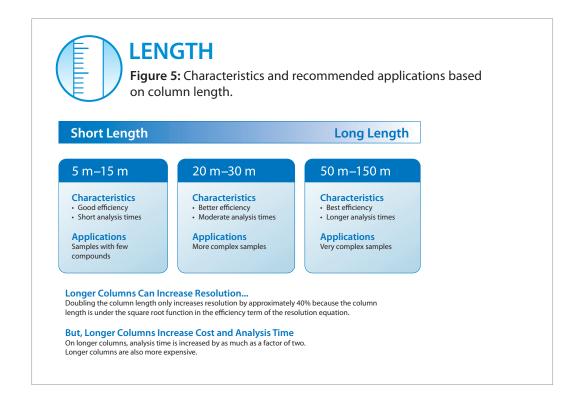
Phase Ratio (β)

The relationship between column inner diameter and stationary phase film thickness is expressed as phase ratio (β). If a good separation has been achieved on a larger diameter column and a faster analysis is desired, this can often be accomplished by reducing the inner diameter of the column without sacrificing, and sometimes even improving, separation efficiency. To maintain a similar compound elution pattern when narrowing column inner diameter, film thickness must also be changed. By choosing a column with a similar phase ratio, it will be easier to translate your application to the new column. Phase ratios for common column dimensions and the equation for β are given in Table IV. As shown here, an analyst wanting to decrease analysis time could switch from a 0.32 mm x 0.50 µm column (β = 160) to a 0.25 mm x 0.25 µm column (β = 250) and obtain a very similar separation upon proper method translation. Importantly, column inner diameter and stationary phase film thickness show a combined effect when it comes to sample loading capacity, which is decreased as column inner diameter and film thickness are reduced. It may be necessary to inject a lower sample amount in this case.

Table IV: Phase ratio (β)* values for common column dimensions. To maintain similar separations, choose columns with similar phase ratios when changing to a column with a different inner diameter or film thickness.

			F	ilm Thickness (d _f)		
Column ID	0.10 µm	0.25 µm	0.50 µm	1.0 µm	1.5 µm	3.0 µm	5.0 µm
0.18 mm	450	180	90	45	30	15	9
0.25 mm	625	250	125	63	42	21	13
0.32 mm	800	320	160	80	53	27	16
0.53 mm	1,325	530	265	128	88	43	27

*Phase ratio (β) = radius/2df (Note: Convert variables to the same units prior to calculation.)



Consider Efficiency when Choosing Column Length, Column ID, and Carrier Gas

Column Length

Capillary GC columns are made in various lengths, typically 10, 15, 30, 60, and 105 meters, depending on the inner diameter. Longer columns provide more resolving power than shorter columns of the same inner diameter, but they also increase analysis time and should be used only for applications demanding the utmost in separation power. Column length should only be considered once the stationary phase has been determined. This is because separation factor has the greatest effect on resolution, and it is maximized through proper stationary phase choice for the compounds of interest. Doubling the column length (e.g., 30 m to 60 m) increases resolution by approximately 40%, while analysis time can be twice as long. In addition, longer columns cost more. Conversely, if a separation can be performed on a shorter column (e.g., 15 m versus 30 m), then both analysis time and column cost will be less. Figure 5 summarizes the characteristics and general application parameters for a range of typical column lengths.

Inner Diameter (ID)

Compared to larger ID columns, smaller ID columns generate more plates per meter and sharper peaks, leading to better separation efficiencies. When more complex samples need to be analyzed, smaller ID columns can produce better separation of closely eluting peaks than larger ID columns. However, sample loading capacities are lower for smaller ID columns. Smaller ID columns, especially those at 0.18 mm and less, demand highly efficient injection techniques so that the column efficiency is not lost at the point of sample introduction. Column characteristics based on ID are presented in Table V.

Generally speaking, a 0.25 mm column will produce the most efficient sample analysis while simultaneously considering analysis time and sample loading capacity. For these reasons, in combination with its relatively low outlet flow, it is also the best column choice for GC-MS work.

			Column Inner D	iameter (mm)		
Characteristic	0.10	0.15	0.18	0.25	0.32	0.53
Nitrogen flow (mL/min)	0.2	0.3	0.3	0.4	0.6	0.9
Helium flow (mL/min)	0.6	0.8	1.0	1.4	1.8	3.0
Hydrogen flow (mL/min)	0.7	1.1	1.3	1.8	2.3	3.7
Sample loading capacity (ng)	2.5	10	20	50	125	500
Theoretical plates/meter	11,000	7,000	6,000	4,000	3,000	2,000

Carrier Gas Type and Linear Velocity

Carrier gas choice and linear velocity significantly affect column separation efficiency, which is best illustrated using van Deemter plots (Figure 6). The optimum linear velocity for each gas is at the lowest point on the curve, where plate height (H) is minimized, and efficiency is maximized. As seen in Figure 6, the optimum linear velocities differ among common carrier gases.

Nitrogen provides the best efficiency; however, the steepness of its van Deemter plot on each side of optimum means that small changes in linear velocity can result in large negative changes in efficiency. Compared to nitrogen, helium has a wider range for optimal linear velocity, but offers slightly less efficiency. In addition, because of its optimum velocity being faster, analysis times with helium are about half those when using nitrogen, and there is only a small sacrifice in efficiency when velocity changes slightly. Of the three common carrier gases, hydrogen has the flattest van Deemter curve, which results in the shortest analysis times and the widest range of average linear velocity over which high efficiency is obtained.

Regardless of the type of gas used, the carrier gas head pressure is constant during column temperature programming, whereas the average linear velocity decreases during the run. For constant pressure work then, the optimal linear velocity should be set for the most critical separations. More commonly today, electronic pneumatic control (EPC) of carrier gas allows for constant flow or even constant linear velocity, which helps maintain high efficiency throughout a temperature programmed run.

Another consideration for carrier gas type that is important, even if not directly related to column efficiency, is whether a mass spectrometer (MS) is used as a vacuum-outlet detector for GC. In almost all cases, helium is the carrier gas of choice, not only for its chromatographic efficiency, but also because it is easier to pump than hydrogen. Hydrogen can be reactive in MS sources, leading to undesirable spectrum changes for some compounds. Nitrogen is typically not a carrier gas option for GC-MS, as it severely reduces sensitivity.

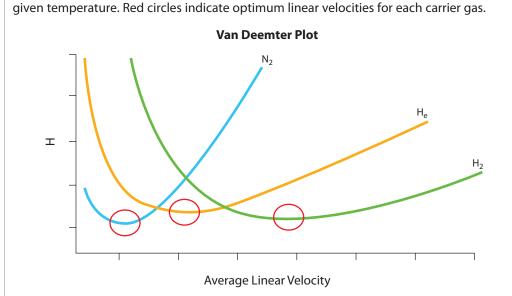


Figure 6: Operating carrier gas at the optimum linear velocity will maximize efficiency at a

When changing carrier gas flow rates you must reconfirm peak identifications as elution order changes can occur.

GC TROUBLESHOOTING TIPS

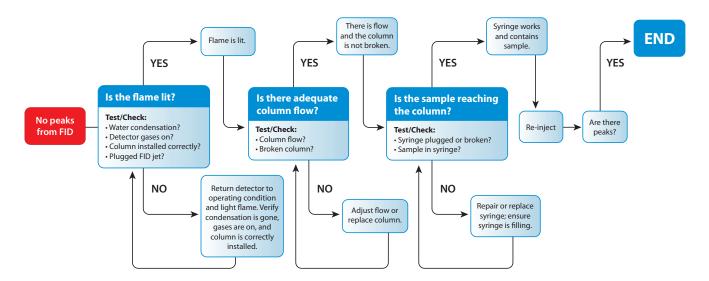
Basic Steps

Follow these basic troubleshooting steps to isolate problems related to the sample, injector, detector, and column. Check the obvious explanations first and change only one thing at a time until you identify and resolve the problem.

Check the Obvious:

- Power supply
- Gas purity
- Electrical connections
- Signal connections
- Gas flows
- Temperature settings
- Syringe condition
- Sample preparation
- Analytical conditions

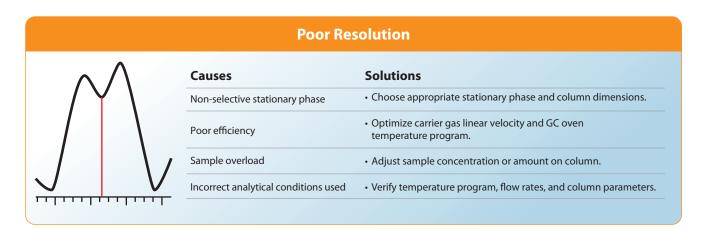
Identify the Cause:

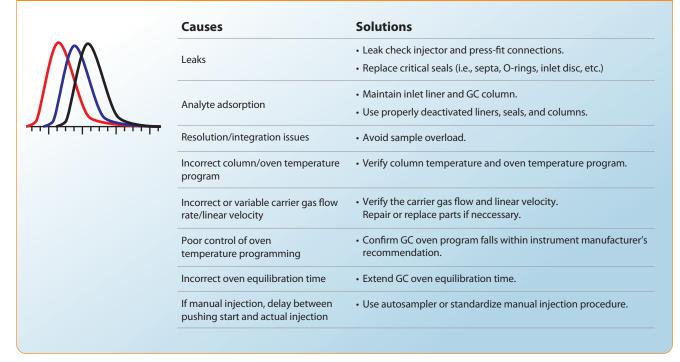

- Define the problem clearly; for example, "Over the last 4 days, only the phenols in my sample have been tailing."
- Review sample and maintenance records to identify trends in the data or problem indicators, such as area counts decreasing over time or injector maintenance not being performed as scheduled.
- Use a logical sequence of steps to isolate possible causes.

Document Work and Verify System Performance:

- Document all troubleshooting steps and results; this may help you identify and solve the next problem faster.
- Always inject a test mix and compare to previous data to ensure restored performance.

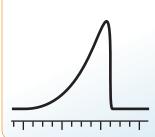
Example Troubleshooting Sequence


An analyst observed that no peaks appeared during a GC-FID analysis. The flowchart below shows a logical progression of steps that can be used to identify the cause and correct the problem.



Symptoms and Solutions

Good chromatography is critical to obtaining accurate, reproducible results. Coelutions, asymmetric peaks, baseline noise, and other issues are common challenges in the GC laboratory. These analytical problems and others can be overcome by troubleshooting your separations using the tips below.



Poor Retention Time Reproducibility

Fronting Peaks

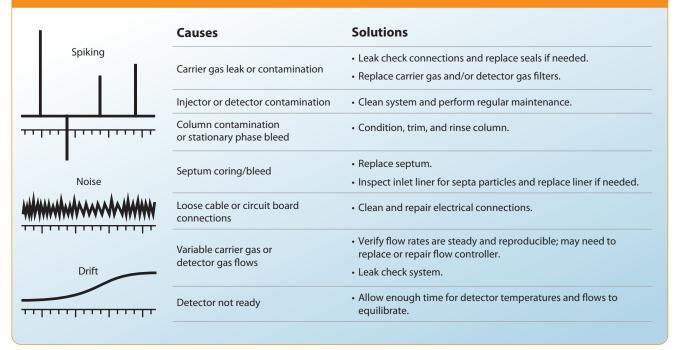
Causes	Solutions
Incompatible stationary phase	Choose appropriate stationary phase.
Column overloading	 Reduce amount injected, dilute sample. Increase column inner diameter and/or film thickness.

Tailing Peaks

•	Causes	Solutions
	Adsorption due to surface activity or contamination	 Use properly cleaned and deactivated liner, seal, and column. Trim inlet end of column. Replace column if damaged.
	Adsorption due to chemical composition of compound	Derivatize compound.
	Leak in system	Check for leaks at all connections, replace critical seals if needed.
		Minimize dead volume.
	Installation issues	Verify that the column is cut properly (square).
		 Verify correct installation distances.

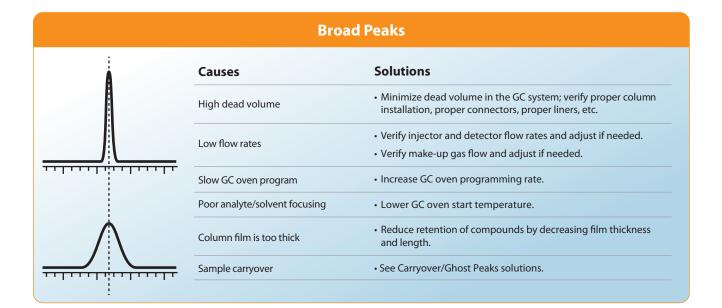
	Split	Peaks
	Causes	Solutions
Λ	Mismatched solvent/stationary phase polarity	Adjust solvent or stationary phase to allow wetting.
	Incomplete vaporization	 Add surface area, such as wool, to the inlet liner to enhance vaporization.
		Use proper injector temperature.
	Sample loading capacity exceeded	 Inject less sample (dilute, use split injection, reduce injection volume).
	Fast autosampler injection into open liner	Use wool or slow injection speed.

Carryover/Ghost Peaks


	Causes	Solutions
Injection 1	Contaminated syringe or	Replace rinse solvent.
	rinse solvent	Rinse or replace syringe.
		Inject a smaller amount.
		Use a liner with a large internal diameter.
		Increase head pressure (i.e., flowrate) to contain the vapor cloud
	Backflash (sample volume	Use slower injection rate.
	exceeds liner volume)	Lower inlet temperature.
		Increase split flow.
Injection 2		Use liner with packing.
		Use pressure-pulse injection.
	Last analysis ended too soon	 Extend analysis time to allow all components and/or matrix interferences to elute.

High Bleed Causes **Solutions** Improper column conditioning • Increase conditioning time and/or temperature. • Trim column and/or heat to maximum temperature to remove contaminants. Contamination • Replace carrier gas and/or detector gas filters. • Clean injector and detector. Check for oxygen leaks across the entire system and replace seals Leak in system and oxidation of and/or filters. stationary phase • Replace column.

Unstable Baseline (Spiking, Noise, Drift)



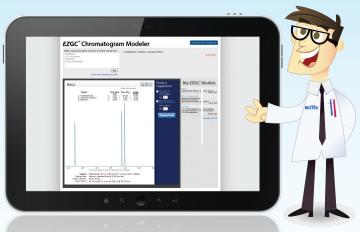
Response Variation

	Causes	Solutions
		Check sample concentration.
	Sample issues	Check sample preparation procedure.
		Check sample decomposition/shelf life.
	Syringe problems	Replace syringe.
	Synnge problems	Check autosampler operation.
٨	Electronics	Verify signal settings and adjust if needed.
	Electronics	Repair or replace cables or boards.
	Dirty or damaged detector	Perform detector maintenance or replace parts.
	Flow/temperature settings wrong or variable	 Verify steady flow rates and temperatures, then adjust settings and/or replace parts if needed.
	Adsorption/reactivity	 Remove contamination and use properly deactivated liner, seal, and column.
	Leaks	 Check for leaks at all connections and repair connections as needed.
		Verify injection technique and change back to
	Change in sample introduction/injection	original technique.
	method	Check that split ratio is correct.
		 Verify that the splitless hold time is correct.

Solutions Plugged syringe; clean or replace syringe.
Plugged syringe; clean or replace syringe.
 Verify there is sample in the syringe.
 Injecting into wrong inlet; reset autosampler.
Verify carrier gas is flowing.
Replace column.
• Re-install column.
 Signal not recorded; check detector cables and verify that detector is turned on.
 Detector gas turned off or wrong flow rates used; turn detector on and/or adjust flow rates.

Free posters! Request yours today.

Simplifying Column Selection


GC Troubleshooting Tips

Available at www.restek.com/posters

NOW ONLINE!

Our EZGC[™] Web App Will Kick-Start Your GC Method Development

It Doesn't Get Much Easier Than the EZGC™ Chromatogram Modeler

A revolutionary new version of our popular *EZ*GC[™] application is now live—it's easier to use and *it's absolutely free*. Just enter your compounds, and our cutting-edge system will recommend not only a GC column, but also the conditions to reliably separate your target analytes. It will even show you a modeled chromatogram! On a PC or Mac, desktop or tablet, the *EZ*GC[™] web app can go anywhere and will quickly become your go-to resource for creating robust, customized methods.

It's EZ to Register

 If you have a Restek login, you're already done! (And if you don't, you can get one at no charge and with no hassle.)

It's EZ to Get Started

- A quick, five-minute video will show you everything you need to know.

It's EZ to Use

 Just enter your target compounds, and in seconds, the EZGC[™] system gives you a customized method, including column, conditions, and model chromatogram.

It's EZ to Analyze

 Model chromatograms are fully interactive. Zoom in, view chemical structures, and even overlay mass spectra.

It's EZ to Save

- Print your chromatogram and custom settings, or save them for future reference.

Start developing incredible GC methods at www.restek.com/ezgc

Questions about this or any other Restek[®] product?

Contact us or your local Restek® representative (www.restek.com/contact-us). Restek® patents and trademarks are the property of Restek Corporation. (See www.restek.com/Patents-Trademarks for full list.) Other trademarks in Restek® literature or on its website are the property of their respective owners. Restek® registered trademarks are registered in the U.S. and may also be registered in other countries.

© 2013 Restek Corporation. All rights reserved. Printed in the U.S.A.

www.restek.com

