

SCIENTIFIC

Liquid Injection Techniques in GC and GC-MS

Inge De Dobbeleer Regional Marketing Manager GC and GC-MS, EMEA Thermo Fisher Scientific, Breda/The Netherlands

The world leader in serving science

Content

Hot split and splitless injection

- Important parameters
- Large volume injection
- Choosing the liner and other consumables
- Maintenance

Programmable temperature vaporization

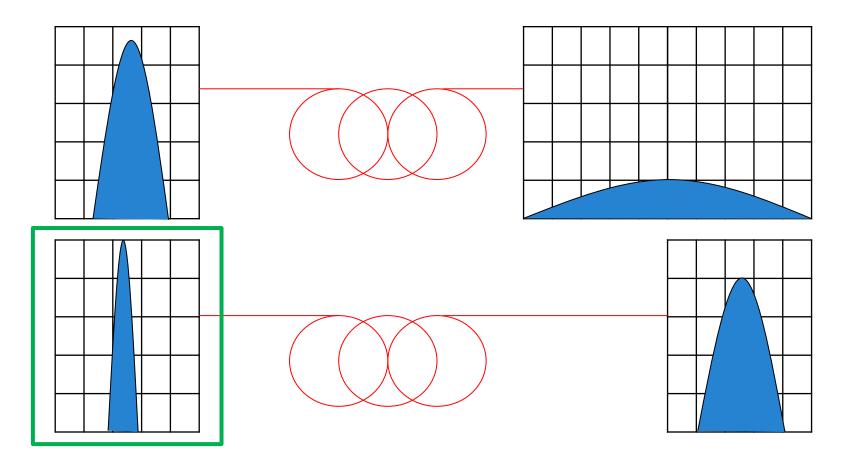
- Important parameters
- Large volume injection
- Choosing the liner and other consumables
- Maintenance

Backflush injection

Important parameters

Common issues and solutions

Overview of resources

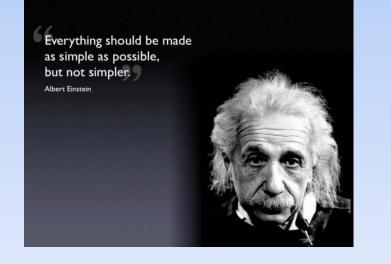


Hot Split/Splitless Injection

- Important parameters
- Large volume
- Liners and other consumables
- Maintenance

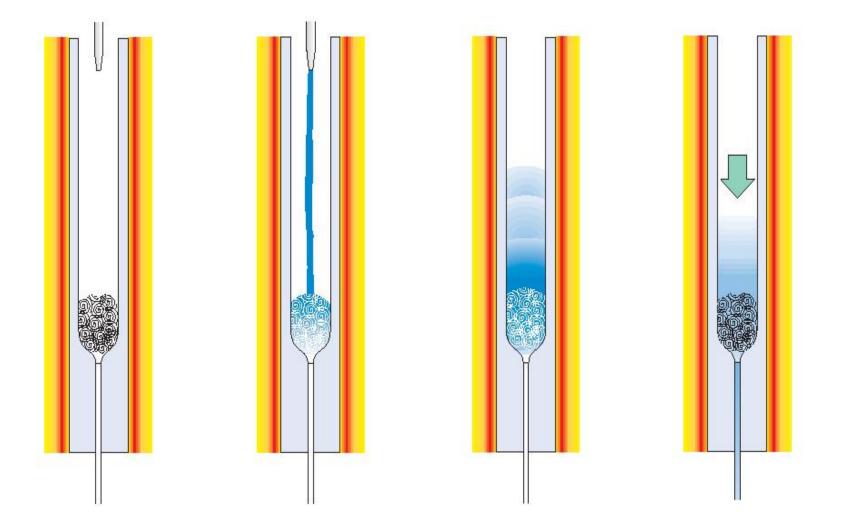
Chromatographic Peaks: Peak Broadening

Initial peak width

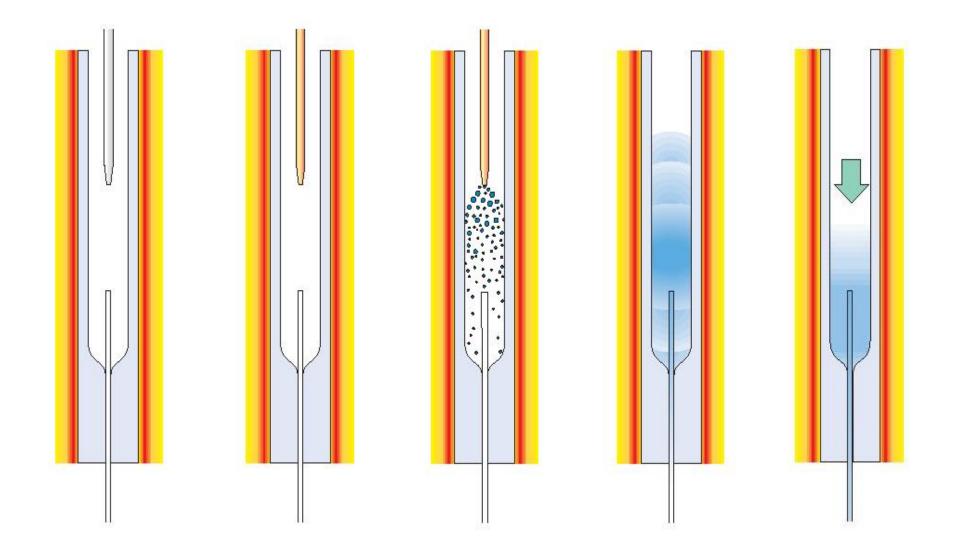

Final peak width

How to Get a Good Initial Peak Shape?

SPLIT injection


- Splitflow is ON
- High flow inside the injector
- Very rapid transfer to the column and no overloading of the phase
- Usually a good and sharp peak is obtained

SPLITLESS injection


- Splitflow is off
- Low flow inside the liner
- Sample transfer is slow, which could lead to broad peaks or double peaks
- Solvent trapping by setting the GC oven low
- Polarity of the solvent should match the polarity of the phase

Liquid Band Formation or "Fast Injection"

Thermospray

Important Instrument Parameters for Splitless Injection

Injection volume

- Typical volume is 1-2 µl
- Dependent on
 - Solvent vapour
 - Liner volume
 - Pressure
- Calculation inside GC software
- TIP: For more polar solvent A surge (Or elevated) pressure during injection will allow a larger injection volume
- Splitless time
 - Typical time is 1 minute
 - Analytes need to be vaporized and transferred to GC column
 - After splitless time: Split valve can be opened and liner can be cleaned; typical split flow 25 50ml/min

- Injection temperature
 - Typical temperature is 250 300 C
 - Dependent on analytes and solvent
- Initial GC temperature
 - Typical 10 to 20C below corrected boiling point solvent
 - Please note: Some column types, e.g. WAX have a minimal temperature (Package)

Ask yourself these questions

- ?
- Is the vapor volume not bigger as the liner volume?
- Am I transferring the sample completely to the GC?
- How is the peakshape?

Liner Choice

Liner Choice: Types and Recommendations (1)

SPLIT injection:

- Straight liner
- · Can be with or without packing
- In case of headspace a narrow liner is preferred

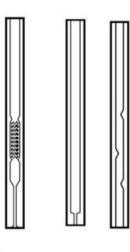
We have a selection tool for you

thermoscientific

Year Year Year Year Year Year Year

SPLITLESS injection; thermospray

- Typically no packing inside the liner
- Narrow end at the bottom of the liner


- Pro's: No packing
- No packing= Less active sites
- Con's: More high boiler discrimination due to heating of the syringe

Liner Choice: Types and Recommendations (2)

SPLITLESS injection:

Liquid band formation

Thermo Scientific™ LinerGOLD™ offer good inertness

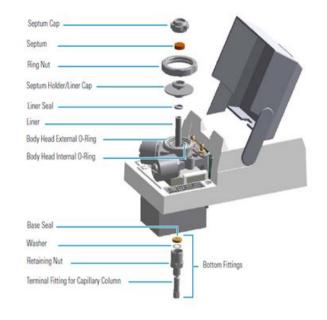
1: Tapered liner

- Helps to contain the vapor cloud away from the bottom seal.
- Also in double taper (Top and bottom) to keep the vapor away from septum purge
- Pro: Reduces activity and can be cleaned
- 2: Packed liner
 - Liner with packing, mostly glasswool, can also be carbofrit
 - More surface area; can contain more vapor
 - Pro: More volume can be injected, and particles are retained
 - Con: Can be slightly more active, dependent on packing
- 3: Baffled/ cyclo liner/ laminary cup
 - Liner with increased surface area for larger volume
 - Better for high boilers >C26
 - Baffles: Create faster flow inside liner
 - Laminary cup: Bigger volume

Need advise for your application? We are here: Ask us at analyze.eu@thermofisher.com or check out the Liner Selection guide

- BTO non stick septum: Up to 400 ° C (Standard septum)
- Blue" thermolite" 340 ° C (Less bleeding)

 Merlin septa: No bleeding, the whole is already punched, lasts a long time, but is expensive and needs a special gauge on the needle


- Typical mistake: Overtightening the septum
 After just a few injections there will be a leak in the septum
- Typical maintenance: Every 150 to 200 injections

Maintenance

Phenomena to consider maintenance

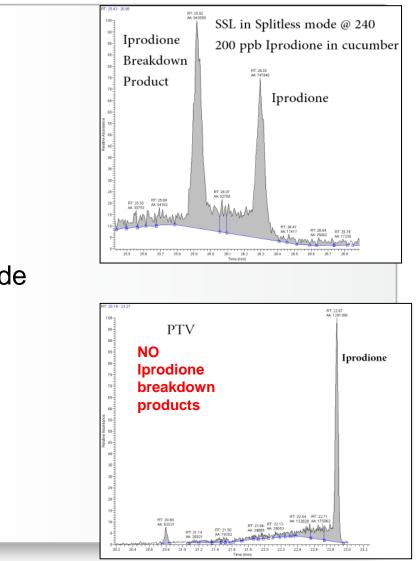
- LINER active sites will cause
 - ...degradation of analytes
 - ...absorption of the analyte causing bad transfer to the column: Very broad peakshape
- SEPTUM: Old septa will cause
 - ... leaks
- Typical frequency
 - Varies highly per application!
 - Liner replacement: Approx. 150 injections
 - Septum: Approx. 200 injections
 - In most labs: Both liner and septum are simultanuously replaced

TRACE 1300 GC benefits for you:

- The septum is cold, so no burning fingers; liner easily accessable with tweezers
- SSL module can be completely taken out with 3 screws
- The SSL body can be removed easily and sonicated
- For more info: <u>You tube link</u>

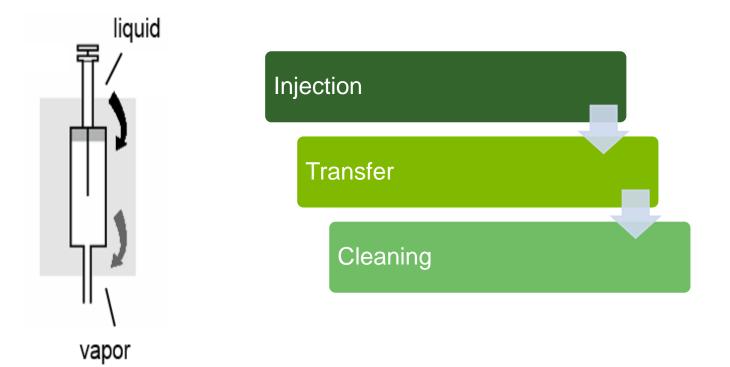
PTV Injection

- Important parameters
- Large volume
- Liners and other consumables
- Maintenance

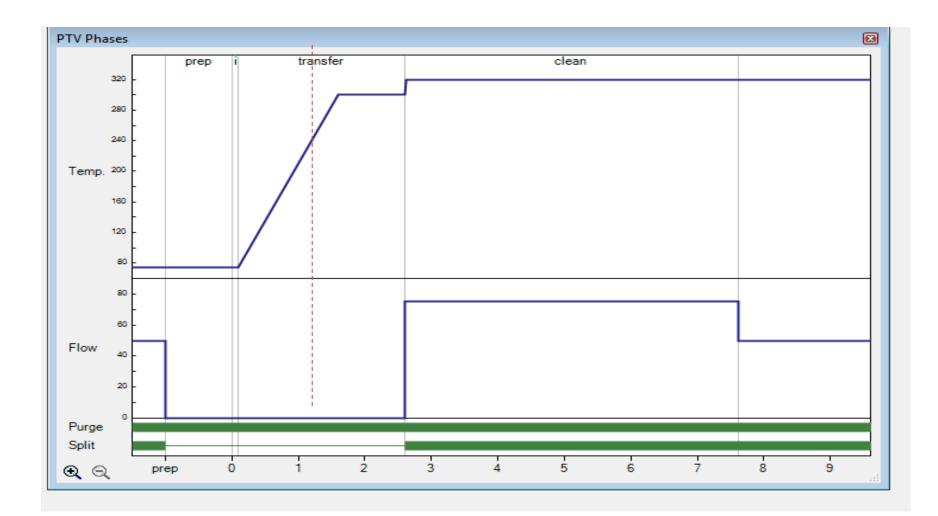


PTV - Key Features

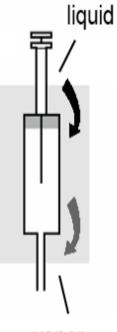
- No needle discrimination
- Less analytes thermal stress
- High transfer efficiency
- Better recovery of less-volatiles
- Low contamination effects
- Splitless and large volume injection mode


liquid

vapor

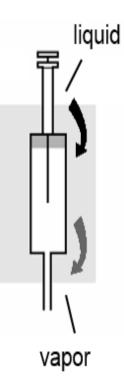


PTV - Splitless Injection Mode – 3 Main Stages


PTV - Splitless Injection Mode - 3 Stages in a Graph

Note split line closure time = Ramp time + splitless time

Injection step: Typical parameters



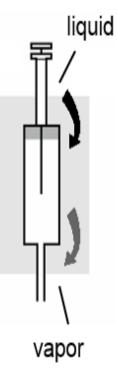
Parameters	Typical setting	Aim	
Temperature (PTV initial temperature)	< 10-20°C solvent BP	Minimum vaporization and no loss of low boiling compounds	
Time (Time before the transfer phase begins)	0,05-0,01 min		
Flow (Carrier gas flow through the split line)	Split line is closed		

vapor

Transfer step: Typical parameters Sample vaporization and transfer to the column

Parameters	Setting	Aim
Ramp	2,5°C/s	Slow heating rates allows a
(PTV heating rate to		slower solvent evaporation,
evaporate and transfer the		therefore the generated
analytes; during the heating		vapor cloud is smaller and it
ramp the split line is closed)		can easily be contained by
		the <u>liner</u>
Temperature	Last eluting compound BP	The temperature must be
(Maximum temperature for	dependent	high enough to evaporate
evaporating high boilers)		the high boilers but
		preventing their degradation
Time	= Splitless time; typical 1	Splitless time should be
(Time to assure the	minute	long enough to assure the
complete transfer of the		transfer of all the analytes
components to the column;		and should be set equal to
when the maximum temp is		the transfer time to avoid
reached the split line is re-		sample loss due to an early
opened)		split line opening

Transfer step: Heating rate comparison

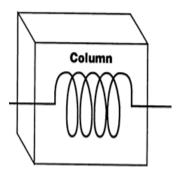

> Slow heating rates ensure better performances in terms of recovery and <u>repeatability</u>

Compound	2,5°C/s		14,5°C/s	
	Average area	%RSD	Average area	%RSD
Lindane	0,79	2,03	0,72	3,72
Aldrin	1,53	1,04	1,47	2,59
Dieldrin	1,58	1,40	1,51	3,82
Eldrin	0,79	3,09	0,64	5,47

Compound	2.5 °C/s		14.5 °C/s		
	Average Area	%RSD	Average Area	%RSD	
Diazinon	3766.8	3.1	1967.9	9.2	
Isazophos	6652.1	3.2	3724.4	9.1	
Chlorpyrifos-methyl	3362.3	2.8	2176.0	10.6	
Pirimiphos-methyl	3099.1	4.2	1885.5	8.6	
Fenitrothion	2764.0	3.5	1992.7	9.2	
Chlorpyrifos-ethyl	3978.1	1.8	2573.3	6.6	
Pirimiphos-ethyl	6946.2	3.8	4293.2	8.6	
Quinalphos	11848.5	3.2	8708.2	7.7	
Pyridaphenthion	4142.7	5.0	3786.3	16.1	
Phosmet	13657.2	3.6	12735.6	9.1	
EPN	10923.6	4.2	9402.3	12.4	
Phosalone	10899.2	3.5	9542.4	6.8	
Azinphos-methyl	8556.4	2.7	8542.9	9.7	
Pyrazophos	8294.5	3.3	7149.3	11.2	
Azinphos-ethyl	11450.3	2.5	9263.7	9.0	
Pyraclofos	4624.2	4.0	4746.6	11.5	

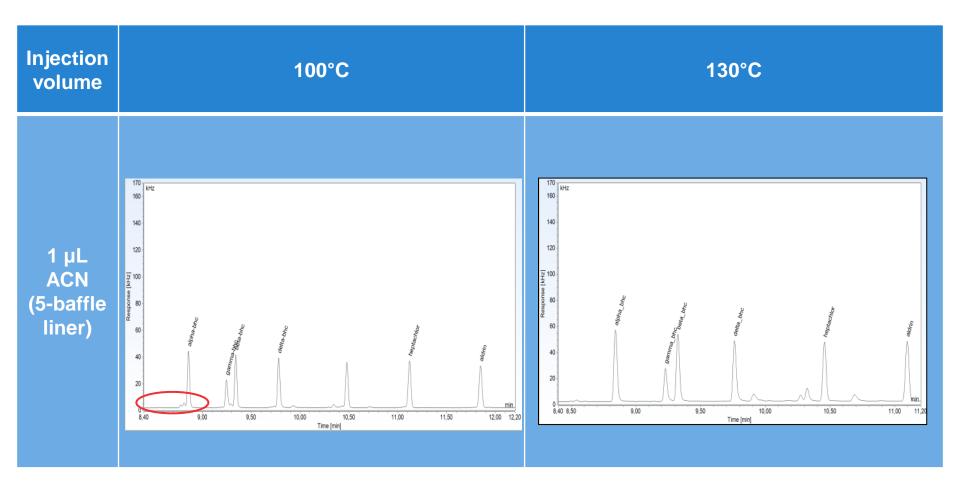
Cleaning step: Typical parameters

Further heating rate to clean the liner from residual vapors and matrix



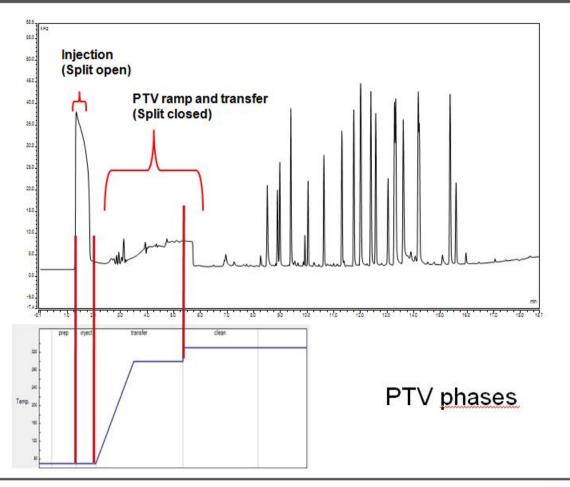
Parameters	Setting	Aim
Ramp (PTV heating rate to clean the liner)	14,5°C/s	Fast heating ramps allow better evaporation of residual matrix
Temperature (Maximum temperature for evaporating residuals)	Matrix dependent	Maximum cleaning temperature must be high enough to evaporate all the matrix in order to keep the liner clean
Time (Time to assure complete elimination of residuals)	Matrix dependent	High temperature must be held for enough time to assure the evaporation of all residuals in the liner
Flow (Carrier gas flow through the split line)	High (70 -80ml/min)	High split rates assure better elimination of residuals from the liner

Oven intital temperature typical setting

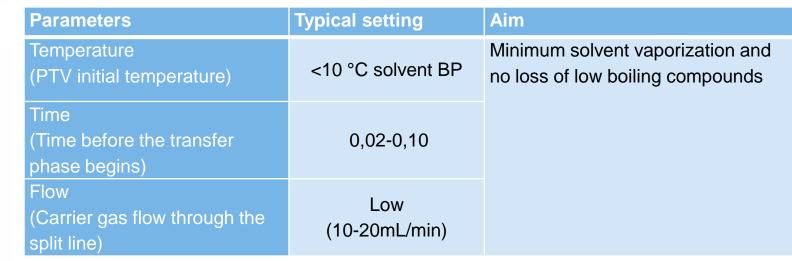

Column heating rate to perform chromatographic separation of components

Parameters	Setting	Aim	
Initial oven temperature	< Solvent BP	Refocusing the analytes	
(Temperature can be set	(If no flooding occurs)	at the top of the column	
according to the flooding effect)	Solvent BP(If flooding occurs)	Facilitating evaporation of solvent when injecting	
		so much that there is	
		flooding, typically for	
		more polar solvents and	
		for slightly larger volume	
		as 1-2 ul	

PTV Injection - Flooding

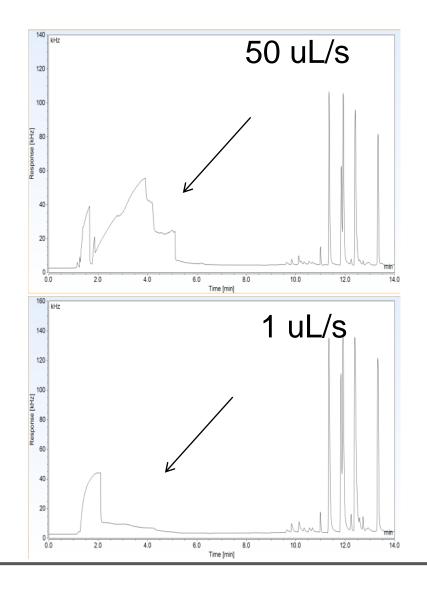

PTV - Large Volume Injection Mode

- Higher sensitivity thanks to solvent vent:
- Vapor
- Up to hundreds μL injection volume
- Sample pre-concentration during solvent evaporation
- Efficient transfer of low and high boiling compounds
- Trace and ultra-trace analysis
- Reduced sample preparation steps
- Decreased original sample size and lower solvent consumption and waste



LVI Injection Steps

liquid

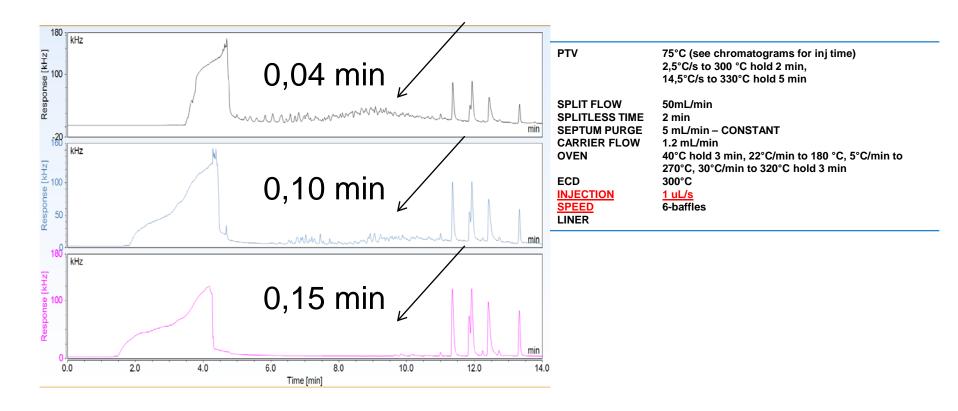


vapor

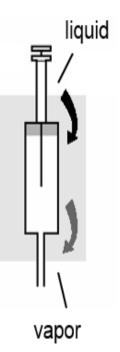
PTV LV - Injection Speed

10 uL injection volume solvent vent at different injection speeds

PTV	75°C hold 0,50 min
	2,5°C/s to 300 °C hold 2 min
	14,5°C/s to 330°C hold 5 min
SPLIT FLOW	50mL/min
SPLITLESS TIME	2 min
SEPTUM PURGE	5 mL/min – CONSTANT
CARRIER FLOW	1.2 mL/min
OVEN	40°C hold 3 min, 22°C/min to 180 °C, 5°C/min to 270°C, 30°C/min
ECD	to 320°C hold 3 min
LINER	300°C
	6-baffles

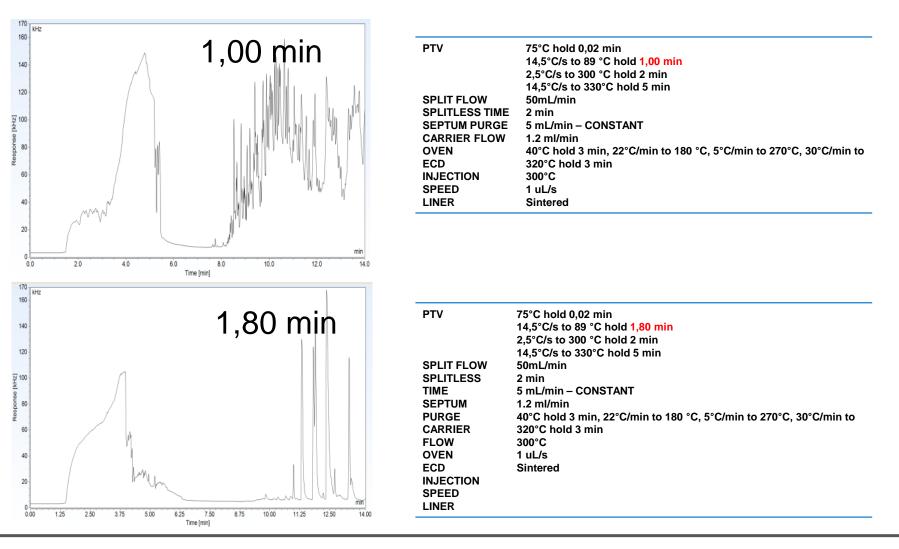

Slow injection speed (1uL/s) allows a progressive more efficient solvent evaporation during injection step

Injection time must be long enough to complete the injection + solvent vaporization


PTV LV - Injection Time

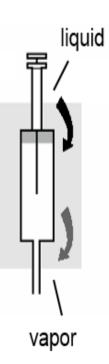
5 uL injection volume solvent vent at different injection times

PTV – LV Evaporation Step



Parameters	Setting	Aim
Ramp (PTV heating rate to vent the solvent)	14,5°C/s	Complete vaporization of solvent and minimized loss of volatile compounds
Temperature (Maximum allowed temperature for solvent venting)	Close to the pressure corrected solvent BP	
Time (Time for solvent)	Solvent volume dependent	
Flow (Carrier gas flow through the open split line)	Moderate (50ml/min)	

Please note: This is an optional step Recommended to be added when injecting over 10µl or in case flooding occurs


PTV LV – Vent Time

50 uL injection volume solvent vent at different vent times

PTV LV - Transfer

	Parameters	Setting	Aim
	Ramp	2,5°C/s	Slow heating rates allows a
	(PTV heating rate to		slower solvent evaporation,
	evaporate and transfer the		therefore the generated
2	analytes; during the heating		vapor cloud is smaller and it
	ramp the split line is closed)		can easily restrained be
			restrained by the liner
	Temperature	Last eluting compound BP	The temperature must be
	(Maximum temperature for	dependent	high enough to evaporate
	evaporating high boilers)		the high boilers but
			preventing their degradation
	Time	= Splitless time	Splitless time should be
	(Time to assure the		long enough to assure the
	complete transfer of the		transfer of all the analytes
	components to the column;		and should be set equal to
	when the maximum temp is		the transfer time to avoid
	reached the split line is re-		sample loss due to an early
	opened)		split line opening

PTV - Liners For Splitless Injection Mode

Liners enable:

- Correct sample vaporization
- Analyte transfer to the column

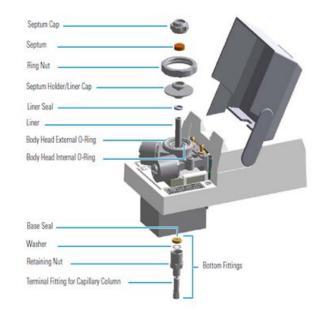
Liners can be:

Straight or baffled

Need advize for your application?

We are here: Ask us at

analyze.eu@thermofisher.com


- Empty, packed, sintered
- 1 or 2 mm ID
- Inertness toward the analytes

Liner	ID x L (mm)	Vapor Capacity (µL)	Deactivation	Suggested Conditions	Injection	Suggested Tip Syringe
Metal Liner (P/N 45322044)	2 x 120	380	Siltek [®]	Low boiling point solvent	Splitless	Cone/Bevel
Quartz Straight Liner (P/N 45322056)	1 x 120	150	Deactivated	High molecular weight compounds	Splitless	Cone/Bevel
3-baffle Liner (P/N 45352062	1 x 120	100	Deactivated	Medium/high boiling point solvent	Splitless	Cone
6-baffle Liner (P/N 453T2120)	2 x 120	350	Siltek [®]	Medium/high boiling point solvent	Splitless	Cone
5-baffle LinerGold [®] (P/N 453T2171-UI)	1 x 120	100	Highly Deactivated	Medium/high boiling point solvent, Very sensitive compounds	Splitless	Cone

PTV - Maintenance

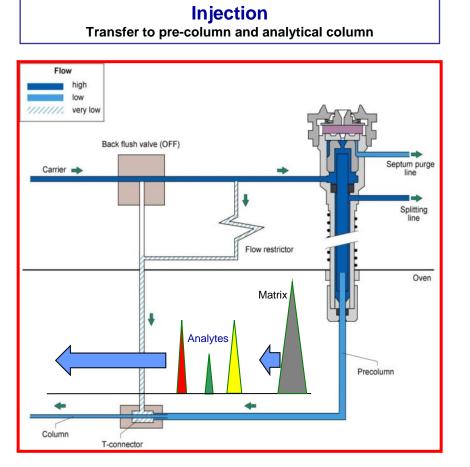
Phenomena to consider maintenance

- LINER active sites will cause:
 - ... Degradation of analytes
 - ..Absorption of the analyte casuing bad transfer to the column: very broad peakshape
- SEPTUM: Old septa will cause
 - ...Leaks
- Typical frequency
 - Varies highly per application!
 - Liner replacement: approx. 150 injections
 - Septum: approx 200 injections
 - In most labs: both liner and septum are simultanuously replaced

- Thermo Scientific[™] TRACE[™] 1300 series GC benefits for you:
 - The septum is cold, since the PTV is a "cold"injector; liner easily accessable with tweezers
 - PTV module can be completely taken out with 3 screws
 - For more info: <u>You tube link</u>

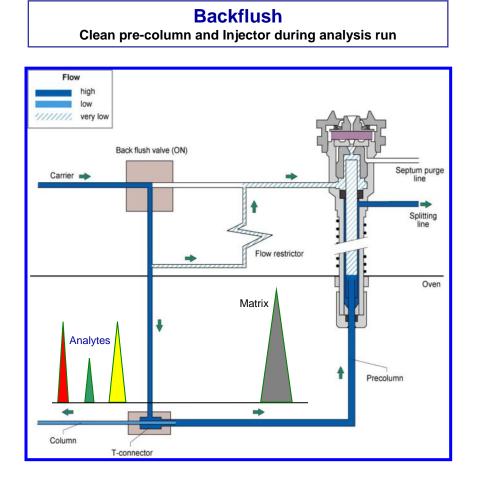
Backflush

- Important parameters and considerations
- Liners and other consumables
- Maintenance

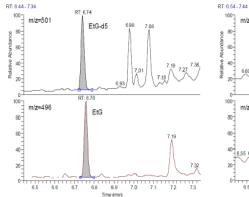

PTV in Backflush Mode

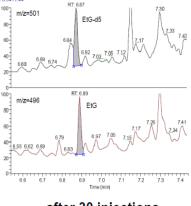
- Why was backflush developed?
 - Main reason: Column degradation caused by high boiling matrix compounds, such as sugars, sterols, triglycerides,....
 - The phase of the column ends up in a MS source and dirties up the surfaces.
 - Protection of the MS source
 - Longer column lifetime

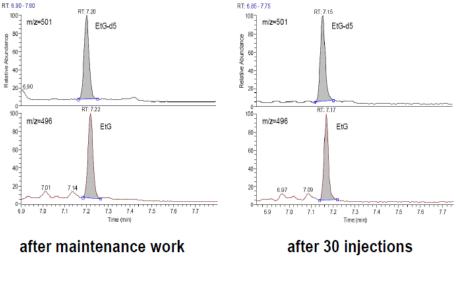
And to possibly shorten the analysis time


PTV Backflush Operation (1)

- Analytical set up
 - 3-way valve in carrier gas line
 - 2 m pre-column
 - 0.53 mm ID, deactivated
 - T- connector to column
 - Restrictor
 - To purge the T-piece, and flush the inlet during backflush
 - During injection
 - Standard carrier gas flow
 - Compounds move through pre-column
 - High boilers travel slowly

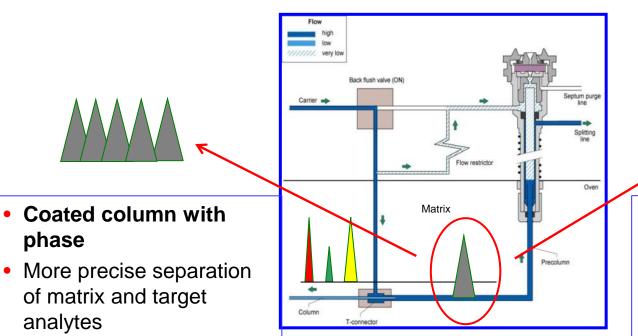

PTV Backflush Operation (2)


- Activate backflush
 - 3-way valve switches
 - After last compound of interest entered the analytical column
 - Carrier flow is redirected
 - Analysis runs as usual
 - Pre-column is back-flushed
- Backflush operation
 - On during analytical run (Concurrent to analysis)
 - High boilers get backflushed
 - Through regular split outled
 - Insert liner gets cleaned
 - By restrictor line


EtG with GCMS and PTV Backflush

SSL Injector

PTV Injector with Back-flush


Data courtesy from BRECHBÜHLER

after maintenance work

after 30 injections

PTV Backflush – Pre-Column Choice

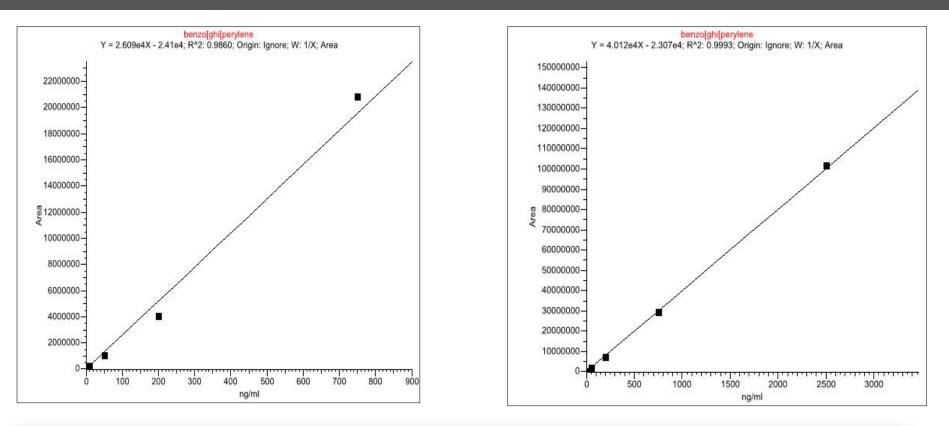
- 1 m*0.53 mm ID
- Usually 0.1 µm film thickness will do!
- Pro's: Better separation
- Con's: Price, and backflush time starts later

Uncoated, deactivated precolumn

- Very course separation of matrix and target analytes
- 2 m*0.53 mm ID
- Pro's: Cheap and easy
- Con's: Sometimes separation is needed

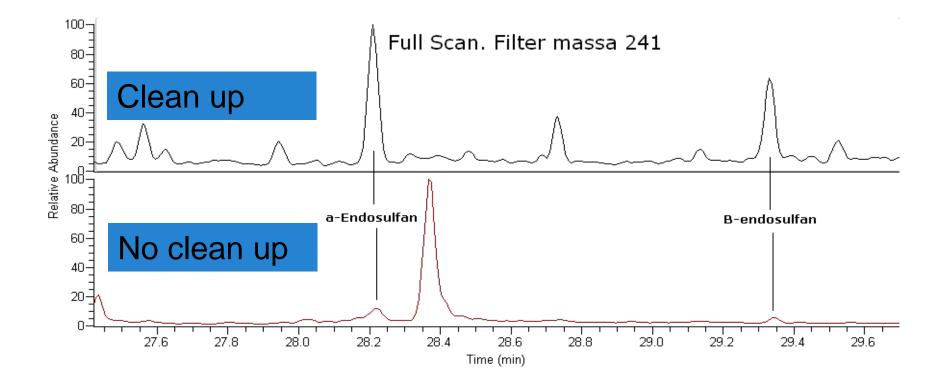
Common Issues and Solutions

- Absorption effects
- Peak shape degradation


 Effect of the sample matrix (By-products) on the chromatography of the solutes of interest:

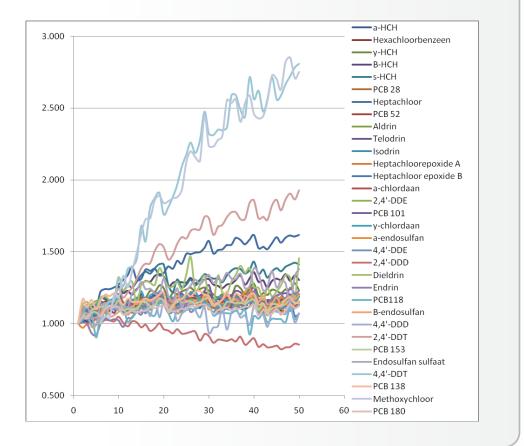
Calibration with clean solution may provide wrong results.

- Solution: Calibrate in the matrix
- Solution: Use internal standards
- Solution: Standard addition method


BrandA	BrandB
1.51	1.28
1.83	1.36
1.78	1.23
1.44	1.11
1.27	1.06
1.36	1.09
0.9	
	1.51 1.83 1.78 1.44 1.27 1.36

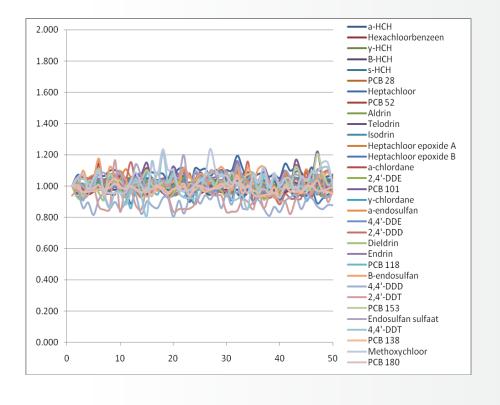
Linearity Issues – Liner Needs Matrix

- Typically: All liners have active sites that need to be disabled. Matrix does that job perfectly well.
- In case of adsorption issues inject approx. 5 times with matrix after liner replacement or use analyte protectants to cover the active sites.

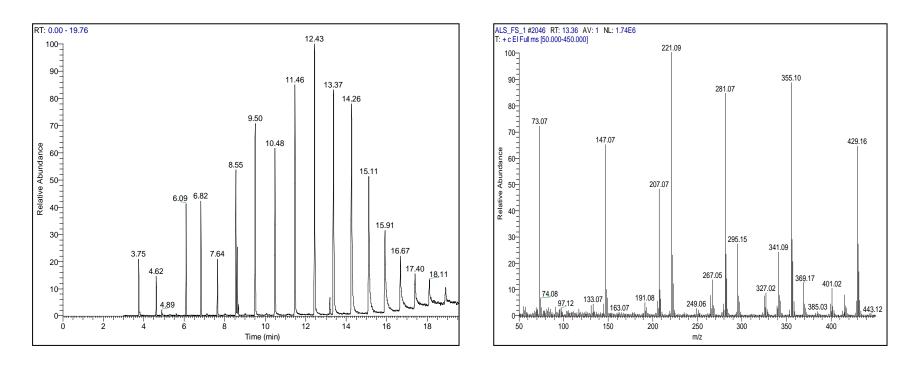

Why Do We Perform Sample Clean Up? Chromatography

Adsorption in the Liner

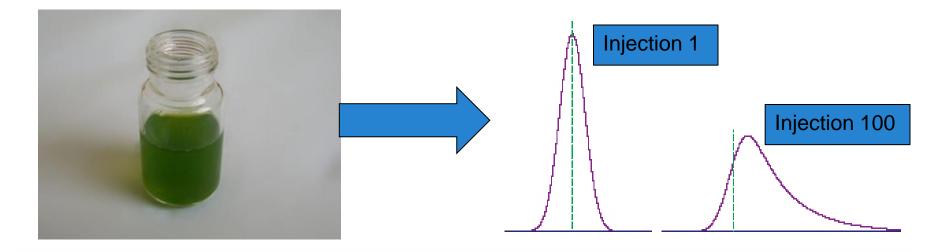
- Chlorinated pesticides in sediment sample (= Uncleaned, heaviest environmental matrix)
- 50 injections:
- Breakdown of DDT
- Increase of DDD
- Increase of methoxychloor



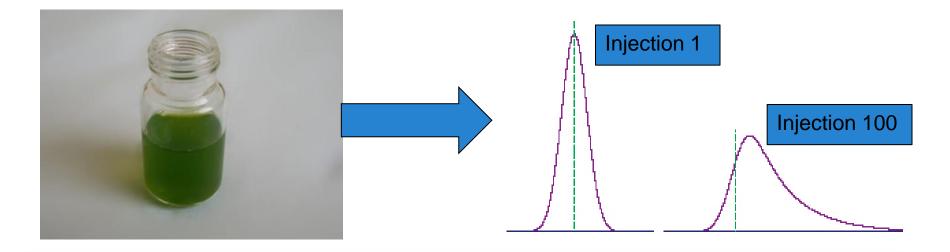
Sample Clean Up - Robustness


Chlorinated pesticides in sediment sample, with clean up (Cleaned, heaviest environmental matrix)

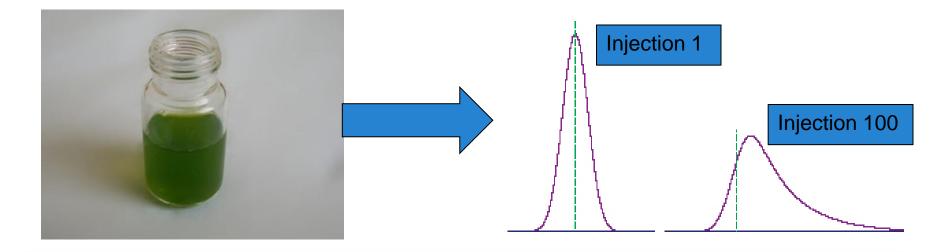
• 50 injections


Septum Material - Inside the Vial

- Typical chromatogram and spectrum of septum bleed
 - The source is almost always the septum of the vials, especially when stored for a longer time or when pierced several times.
 - But another source is the septum of the injector port itself: It will have the same pattern!

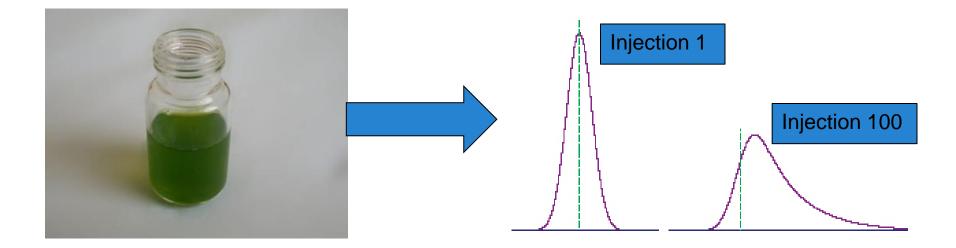

Column Quality - Protecting the Column (1)

- Some samples contain a lot of particles.
- The particles will have an effect on the column and eventually the peaks will tail.
- It is better to filter the extracts.
- Or if this is not possible: Choose a liner with glasswool, it will act as a filter for the column


Column Quality - Protecting the Column (2)

- Some samples contain a lot of heavy matrix like sugars, fats.
- Simply removing 30cm of the front of the column should generate better peakshapes.
- The better solution is to add a guard column in front of the analytical column.
 - Better refocussing (Better chromatography)
 - NO retention time shift when doing maintenance

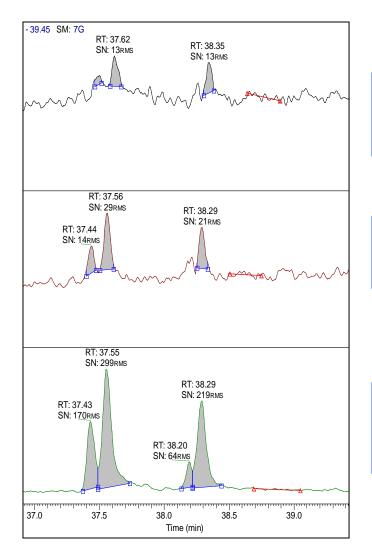
Column Quality - Protecting the Column (3)


- Some samples contain a lot of heavy matrix like sugars, fats.
- If a guard column does not help and the complete column needs to be replaced in under 500 injections...

...consider using backflush.

But take care: If this is a possible solution then it is best to use concurrent backflush so the matrix is eliminated from a pre-column, and never reaches the analytical column.

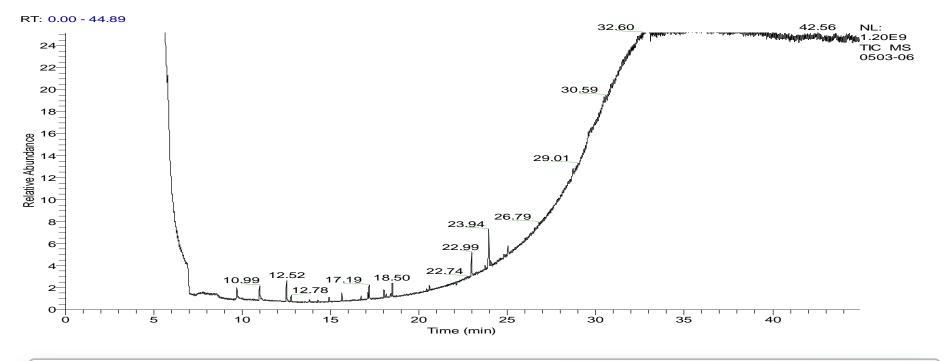
Take Care! It Can also be the Liner



In all the previous slides the column got the blame for this phenomenon.

• But adsorption effects in the liner can cause bad transfer to the GC column and so also peak tailing.

GC End Temperature



- PAH standards injected after a very heavy environmental matrix
- Make sure the column is clean and all heavy compounds are eluted
- Also if the ramp is fast: The high boilers "move" into the column bleed.

Column Bleed

- Chromatogram in FullScan mode is showing excessive column bleed.
 Normal column bleed has intensities below 1e7.
- Column bleed will end up in the MS source and dirty it up quickly.
- It is not visible in SIM or in MS/MS, so often this is a "hidden" problem.

Analyses Team for GC and GC-MS in Western Europe

- UK: Kerry Challenger and Greg Johnson
- France: Benedicte Gauriat, Celine Thevenin, Lavergne Laurent
- Germany/ Austria: Klaus Schrickel, Joachim Gummersbach, Jörn Logemann, and Urs Hofstetter
- Italy: Elena Cicieri, Davide Facciabene, Debore D'Addona,
- Nordic: Jörn Hannaum
- Spain: José Antonio Muñoz
- Benelux: Interscience
- Switzerland: Brechbühler
- Europen GC and GC-MS sales support expert: Elena Ciceri
- Global product specialists: Cristian Cojocariu, Dominic Roberts, Richard Law, Giulia Riccardino
- Typical profile for every specialist: More then 10 years of GC and GC-MS analytical expertise, in many cases longer!
- OR.....email: analyze.eu@thermofisher.com

- Liner Selection guide
- <u>Chrom Expert site</u>
- Downloadable applications

Do you have additional questions or do you want to talk to an expert from Thermo Fisher Scientific?

Please send an E-Mail to <u>analyze.eu@thermofisher.com</u> and we will get back to you.

