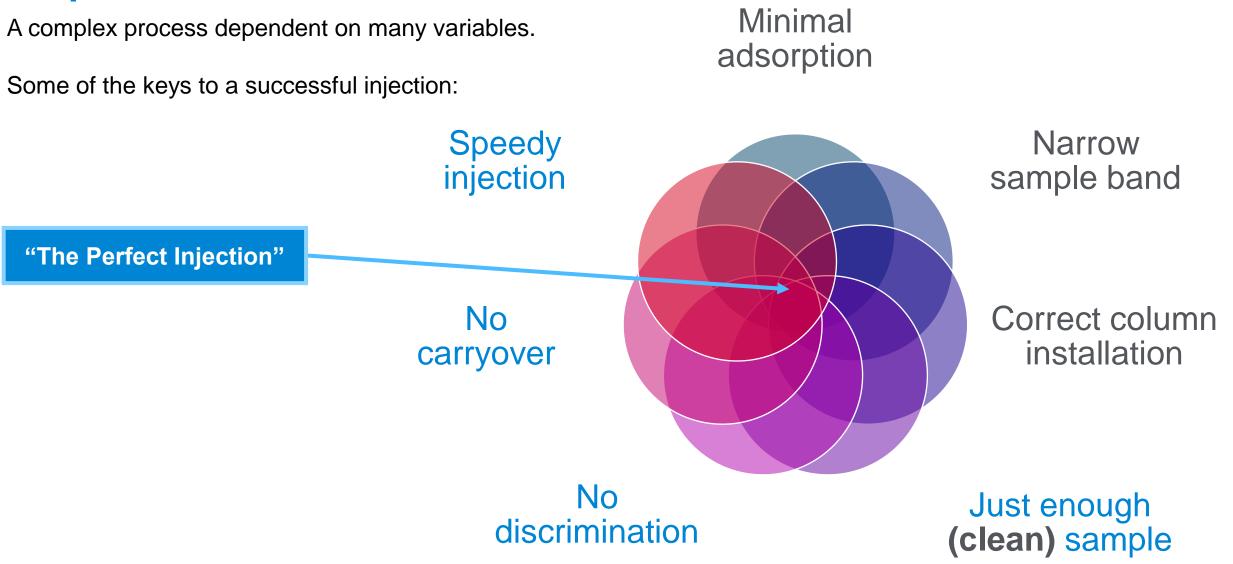
Simplifying Sample Introduction



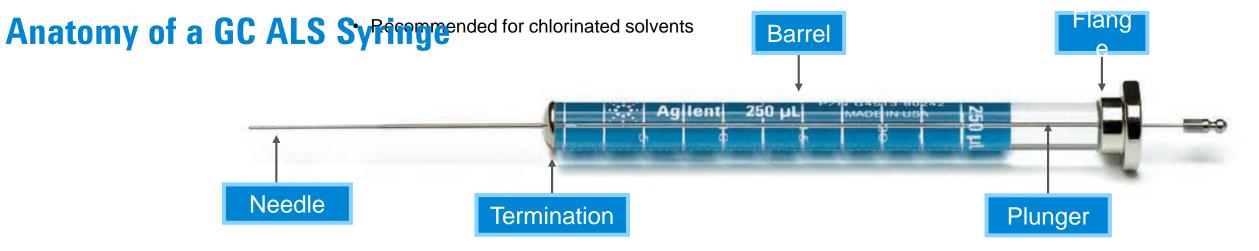
Rachael Simon Product Manager, GC Supplies

Sample Introduction

Cone Tip/PS AS (shown)

Used in Agilent autosamplers for optimum performance and reliability by reducing septum coring,

Bevel Tip/PS 2


General purpose, excellent choice for transferring liquids from ampoules or vials. For manual GC injections, a bevel tip is preferred for optimum septum penetration with minimal coring.

Side Hole Tip/PS 5

Recommended for thin gauged septa and large volume- or gas injections.

3

Cone Tip/PS AS (shown)

Used in Agilent autosamplers for optimum performance and reliability by reducing septum coring,

Bevel Tip/PS 2

General purpose, excellent choice for transferring liquids from ampoules or vials. For manual GC injections, a bevel tip is preferred for optimum septum penetration with minimal coring.

Side Hole Tip/PS 5

Recommended for thin gauged septa and large volume- or gas injections.

3

Anatomy of a GC ALS Syringreended for chlorinated solvents

Barrel

Cone Tip/PS AS (shown)

Used in Agilent autosamplers for optimum performance and reliability by reducing septum coring,

Bevel Tip/PS 2

General purpose, excellent choice for transferring liquids from ampoules or vials. For manual GC injections, a bevel tip is preferred for optimum septum penetration with minimal coring.

Side Hole Tip/PS 5

Recommended for thin gauged septa and large volume- or gas injections.

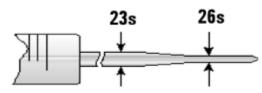
Standard plungers

- Fit tightly within syringe barrel
- Limit loss of volatile sample
- · Individually fitted to the syringe
- Not replaceable/Not interchangeable
- Recommended for analysis of liquid samples

Flang

PTFE-tipped (shown)

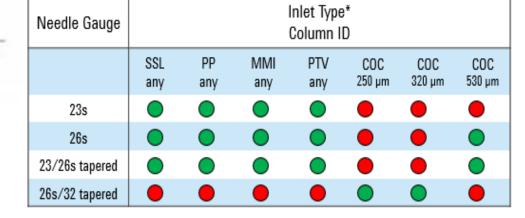
- · Limit sample deposit adsorption
- Forms gas-tight seal
- Replaceable
- Requires maintenance to maintain PTFE sea
- Recommended for:
 - "Dirty" samples
 - Highly volatile samples
 - Gas injections
 - Chlorinated solvents



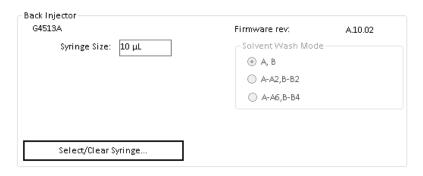
3

Syringe Selection Tips

- 10µL cone-tip, 23/26s tapered needle with PTFE tipped plunger for most SSL and MMI applications
- Taper provides strength of larger needle while minimizing puncture size in septum

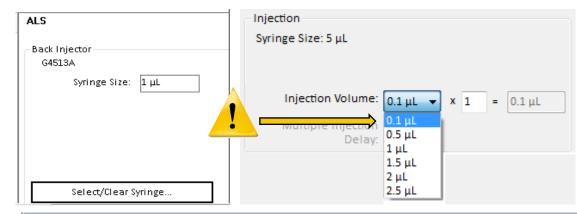


- Ensure proper syringe is configured in software
- Gold vs. blue syringes


٠

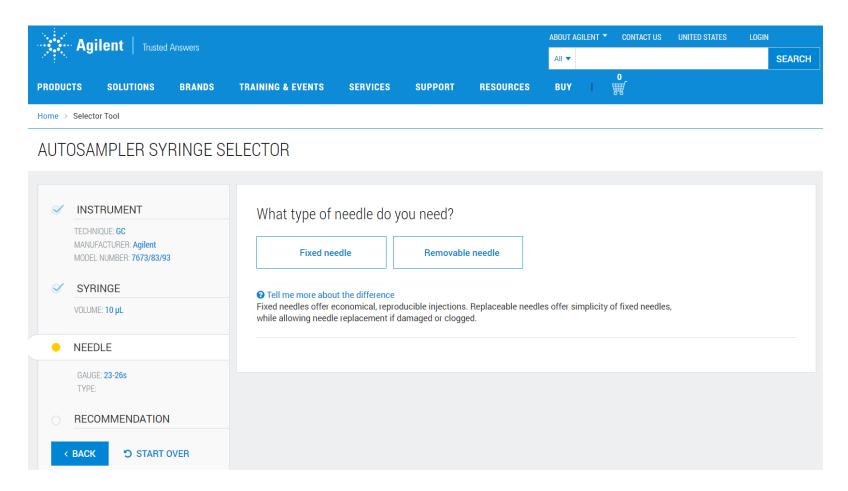
- Use blue when:
 - Analyzing trace samples
 - Plunger lifetime is a concern
 - Wear on inlet septa is a concern
- Use gold when:
 - Price is a concern
 - Analyzing heavily concentrated samples

ALS



Syringe Selection Tips: Microvolume Injections and Syringes

- 5µL syringes are ideal for small volume injections BUT:
- Typically shorter lifetime (narrow plunger diameter \rightarrow bends easier)
- Do NOT use in solvent saver mode (too much strain on plunger)
- Not available with PTFE tip (plunger sensitive to PTFE friction)
 - Why not? PTFE can't be accurately machined at that narrow a diameter
- Microvolume syringes
- Blue line nanovolume syringes are half-marked!
 - Need to configure ALS with 2x syringe volume
 - Otherwise risk getting half the response


GC	Syringe Catalog	3					
Ι	nventory C	reate Lay	yout Update				
G4513-80215 Tind Clear							
Dra	ag a column head	ler here to gr	oup by that column	1			
	Part Number	Manufa	Descriptio	n Favo	Volume, µL	Syringe Type	Needle
	E G4513-80215	Aailent	Syringe, 1 ul. 23)	/42/cone 🔽	1	Fitted	23/42/cone

Need help?

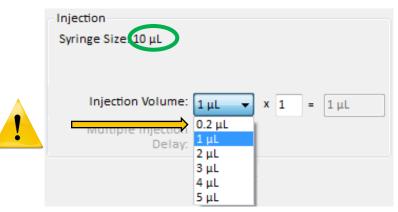
Check out our online syringe selector tool

https://www.agilent.com/search/gn/syringe-selector

ALS Method Parameters

Injection	Dwell Time
Syringe Size: 10 μL	Pre-Injection: 0 min
	Post-Injection: 0 min
Injection Volume: <u>1 µL</u>	Sample Depth
	Enable 0 mm
	Plunger Speed (Variable)
Washes and Pumps	○ Fast ○ Slow Variable
Preinj Postinj Volume (μL)	
Solvent A Washes: 1 1 Max	Draw Dispense
	SolventWash 300 μL/min 6000 μL/min
Solvent B Washes: 0 0 Max 🗸	Sample Wash 300 µL/min 6000 µL/min
Sample Washes: 0 Max 🗸	Inject 6000 μL/min
Sample Pumps: 1	Viscosity Delay. 0 🔹 sec
	Injection Type
	Standard -
	L1 air gap: 0.2 µL
	L2 volume: 1 µL
	L2 air gap: 0.2 µL
	L3 volume: 1 µL
	L3 air gap: 0.2 µL

Injection Volume


Syringe capacity:

- Avoid injection volumes below the lowest 10% of syringe capacity
 - Injection will work, but may reproducibility may suffer
- ALS software automatically limits max injection volume to 50% of the configured syringe volume
 - − 10 μ L syringe \rightarrow recommend 1 to 5 μ L injection size

New GC driver Injection volume selection

Injection
Syringe Size: 10 µL
Injection Volume: $1 \mu \mu$ $1 0.1 \le \mu \mu \le 5$
0.1 S hr S 2

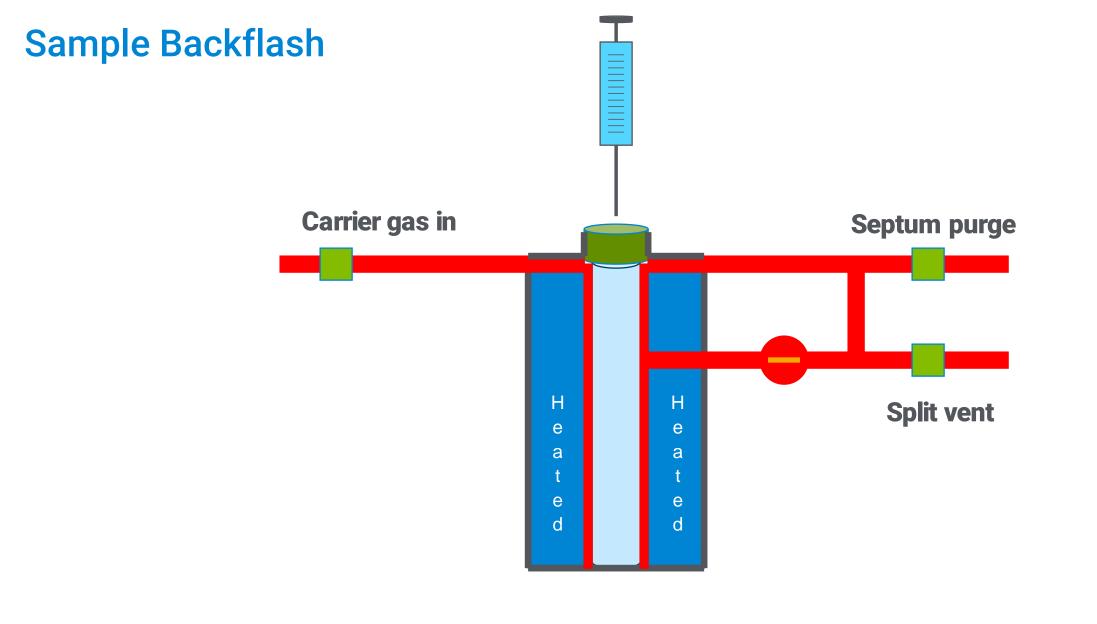
Old GC driver Injection volume selection

Starting points for injection volume

Goal: Inject as little sample as possible to meet detection limit

- Ensure compatibility between solvent type, volume, and inlet liner
 - Use vapor volume calculator
- Injection volumes for most organic solvents should be within $1 - 2 \mu L$ or less
 - Split vs. splitless
- Avoid injecting water- coefficient of expansion is too high
- Higher injection volumes:
 - dirty samples \rightarrow more maintenance
 - Concentrated samples \rightarrow overloading —

Tip: Download our vapor volume calculator to determine the highest volume compatible with your liner

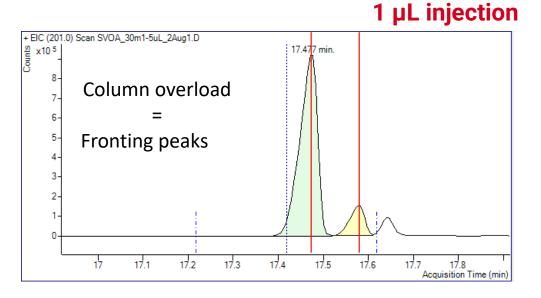

https://www.agilent.com/en/support/gas-chromatography/gccalculators

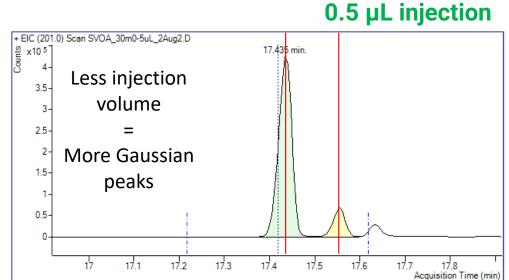
Split ≤ 1µL Splitless ≤ 2µL

Sample Backflash

How To Avoid/Minimize

- Reduce injection volume
- Larger liner volume

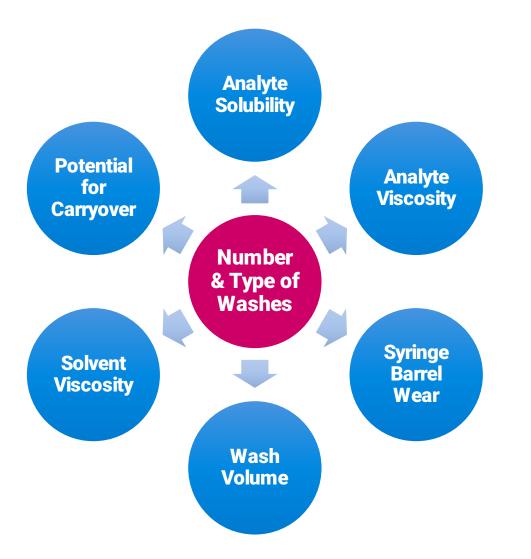

○ Poor reproducibility


• Use pressure pulse **Carrier gas in** Septum purge • Tapered liner • Choose the 20 UltiMetal Plus Inlet weldment Ο Η Η **Split vent Negative Effects** е е а а Tailing 0 е е d d • Low compound response Complete compound absorption 0

> Agilent Confidential May10, 2018

Chromatographic signs that your injection volume is too high

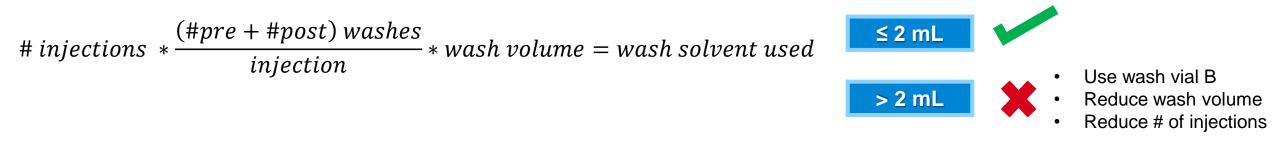
- **Overloading** •
- Watch for highly concentrated samples ${\color{black}\bullet}$
- Don't inject too much sample ullet

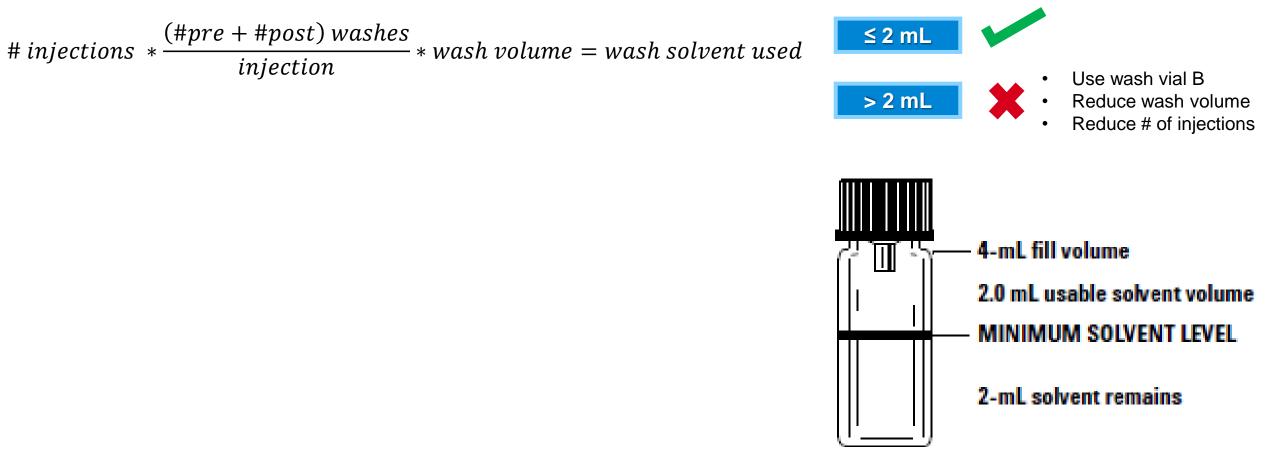


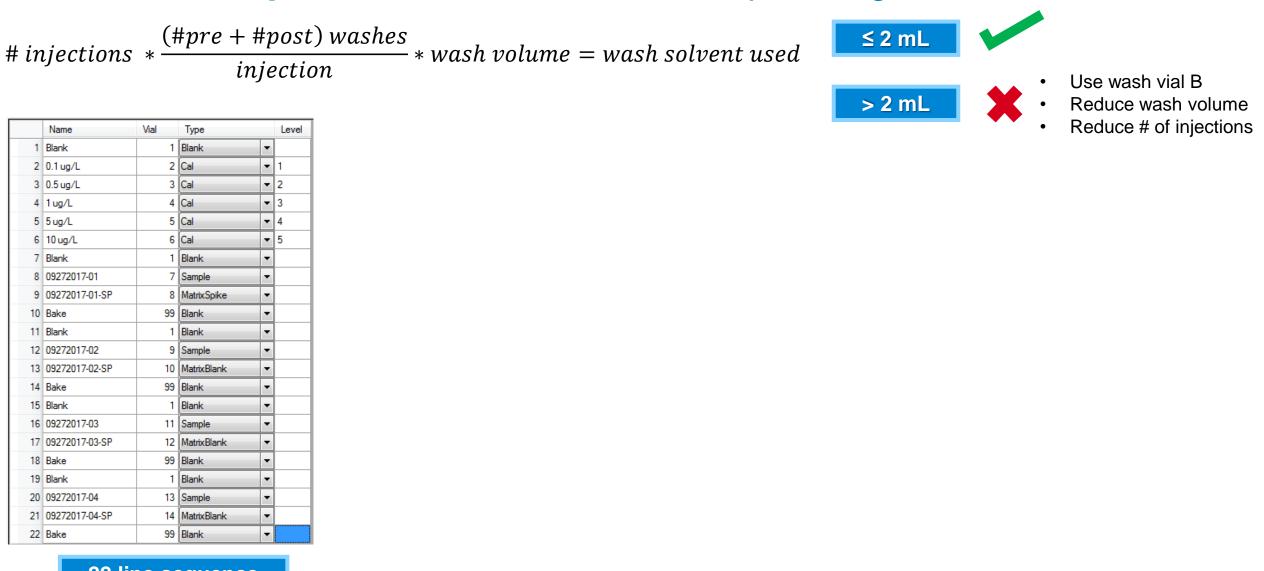
ALS Method Parameters

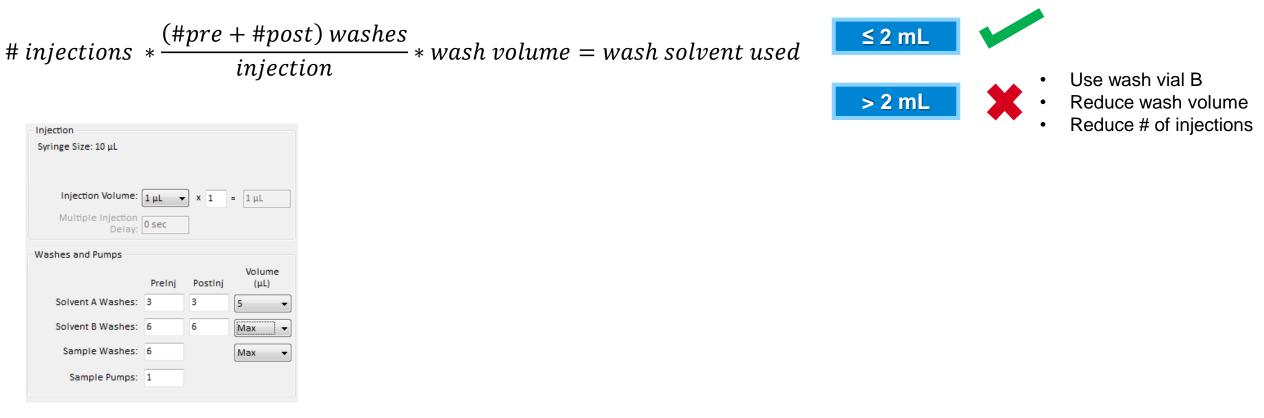
Injection	Dwell Time
Syringe Size: 10 µL	Pre-Injection: 0 min
	Post-Injection: 0 min
Injection Volume: 1 µL	Sample Depth
	Enable 0 mm
	Plunger Speed (Variable)
-Washes and Pumps	⊖ Fast ⊖ Slow ⊙ Variable
Preinj Postinj Volume (μL)	
	Draw Dispense
SolventAWashes: 1 1 Max 🔻	SolventWash 300 µL/min 6000 µL/min
Solvent B Washes: 0 0 Max 🗸	Sample Wash 300 µL/min 6000 µL/min
Sample Washes: 0 Max 🗸	Inject 6000 μL/min
Sample Pumps: 1	Viscosity Delay. 0 🔹 sec
~	-Injection Type
	Standard -
	L1 air gap: 0.2 µL
	L2 volume: 1 µL
	L2 air gap: 0.2 µL
	L3 volume: 1 µL
	L3 air gap: 0.2 µL

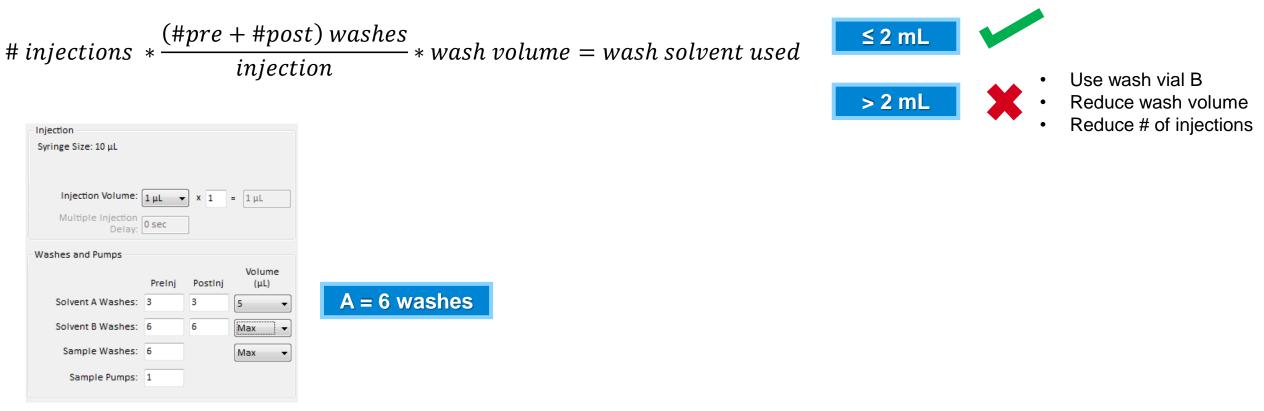
• Ideally, 4 max volume (80%) washes reduces carryover to one part in 10,000

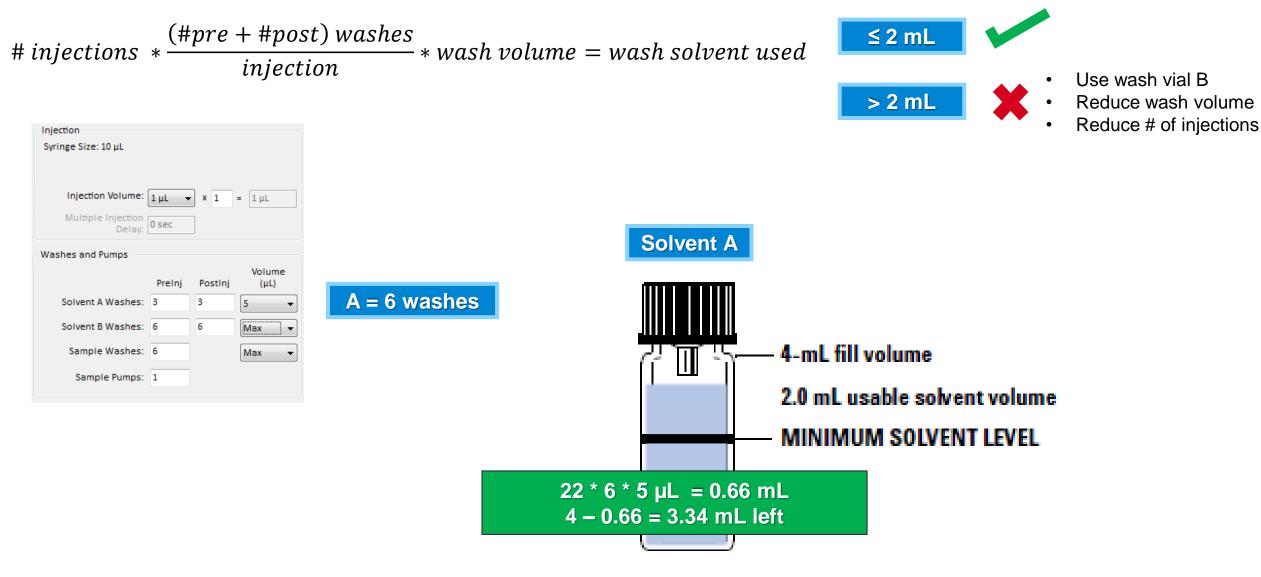


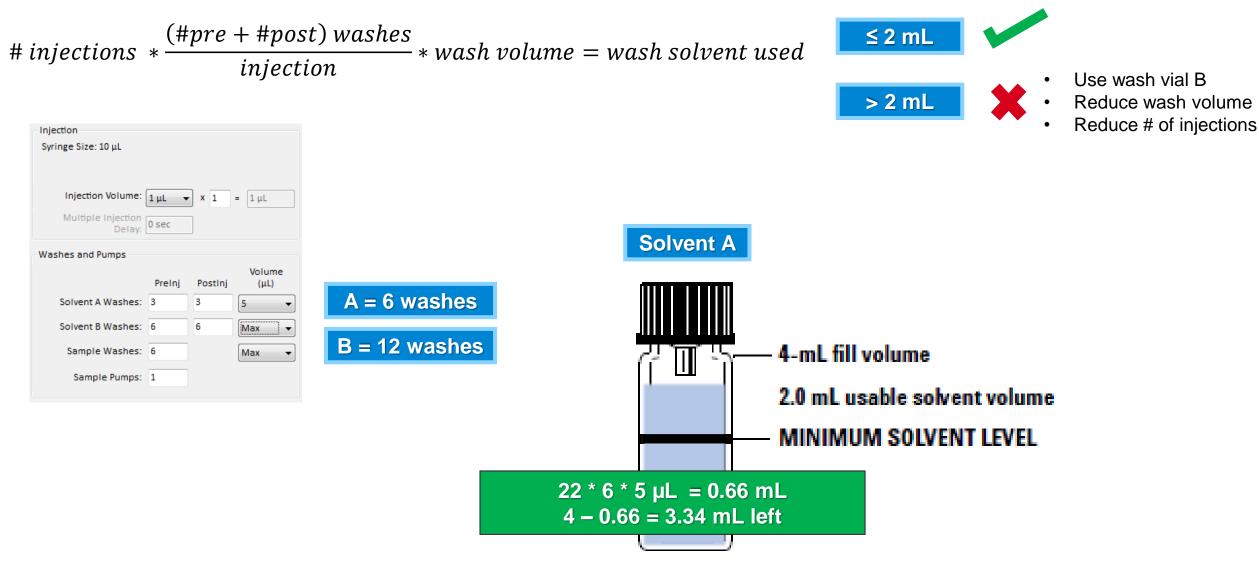

Washes and Pumps			Volume
	PreInj	PostInj	(μL)
Solvent A Washes:	4	4	Max 👻
Solvent B Washes:	0	0	Max 🔹
Sample Washes:	1		Max 🔹
Sample Pumps:	3		

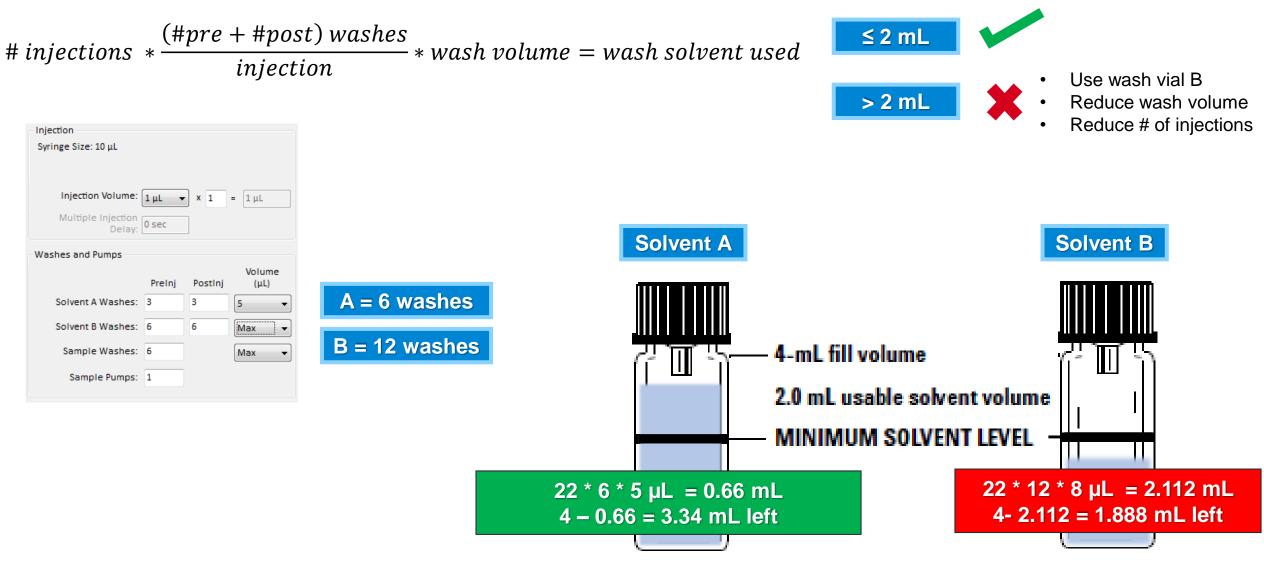

injections $*\frac{(\#pre + \#post) washes}{injection} * wash volume = wash solvent used$

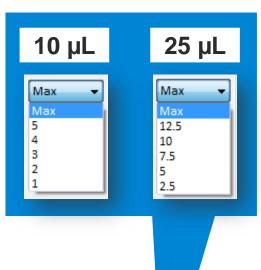


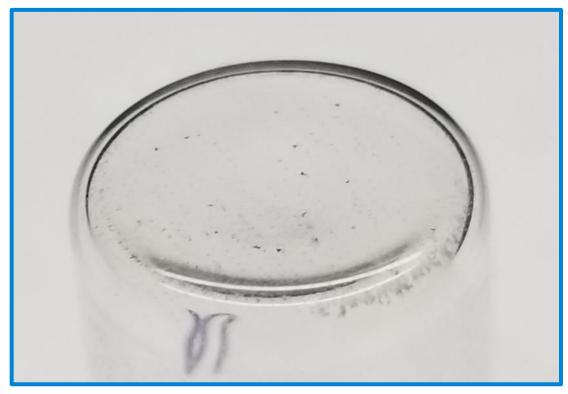


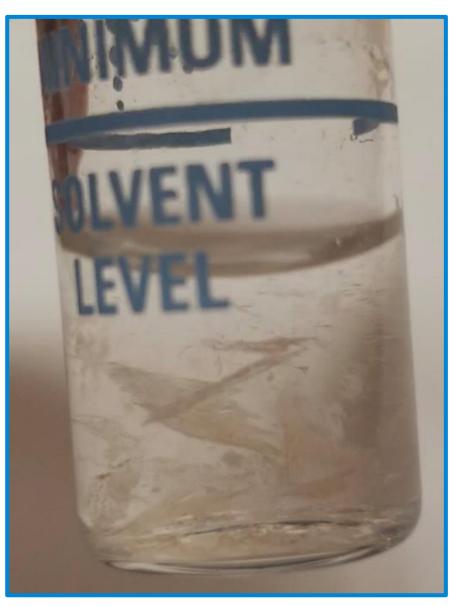






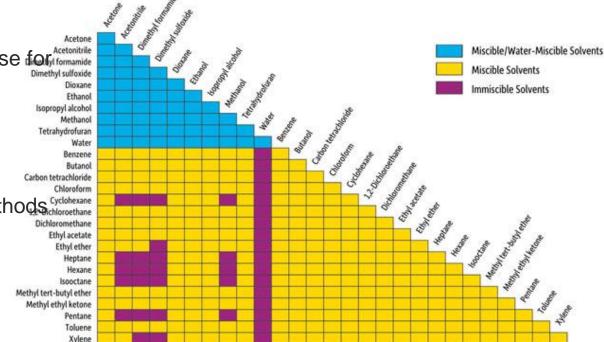



- High wash application? Try solvent saver
 - MUST use PTFE-tipped syringe
 - Fitted syringes lubricate sufficiently, causing premature failure
 - 10%, 20%, 30%, 40%, and 50% of syringe size (μL)
 - Wash volume will automatically be configured upon syringe size selection
 - Steps:
 - Syringe draws in solvent to specified amount
 - Syringe and needle rise from solvent bottle
 - Plunger rises to the 80% mark, rinsing syringe barrel with solvent, then air
 - Solvent and air discharged into waste bottle
- Don't let the wash vial run dry



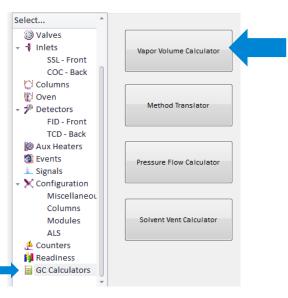
	Prelnj	Postlnj	Volum (µL)
Solvent A Washes:	3	3	Max 🔻
Solvent B Washes:	0	0	Max 🔻
Sample Washes:	0		Max 👻
Sample Pumps:	3		

- Frequently clean or replace wash vials
 - Traces of previous samples will accumulate over time
 - Do not refill or "top-off" the vial, instead empty, rinse, and replace solvent
 - Use a cotton swab to remove particulates from the glass surface

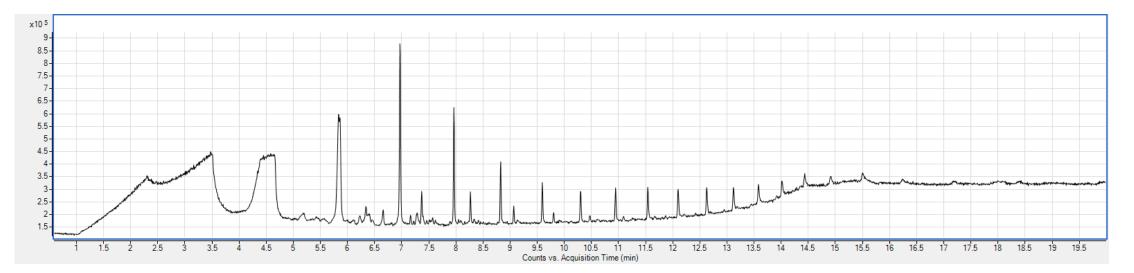


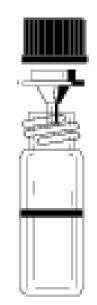
Contaminated wash vial bottom

Contaminated wash solvent



- Choose a (or a series of) wash solvent(s) that make(s) sense for Acetonitrile the analysis
 - Is the analyte soluble in the solvent?
 - If wash solvent ≠ sample solvent, are they miscible?
 - Do not use acidic or alkaline solvents with syringes
 - What other solvents are used/analytes determined in methods Cyclohexane on that same GC?
 Cyclohexane Dichloromethane Ethyl acetate
- Use both A and B wash vials
 - 2nd wash vial will be cleaner than first
 - 2nd wash vial should never be water (rust)


Avoid viscous solvents, and solvents with high vapor expansion volumes. Use the vapor volume calculator to make sure it will not overload the inlet liner.



- Diffusion caps are important.
 - Reduce volatile solvent diffusion
 - Better alternative than using vial septa, which could core, contaminate wash solvent vial → septum bleed peaks

5182-0551, 4 mL wash vials with fill markings and caps 25/pk 07673-40180, Diffusion inserts with black open top screw caps 12/pk

Use the right vial

- Choose high quality vials and caps
- Poorly constructed vial septa \rightarrow siloxanes \rightarrow bleed peaks
- Low quality vial \rightarrow leach contaminants into sample
- Choose the right cap/septa for your solvent

	High performance septa	Thin PTFE	PTFE/Silicone*	PTFE/Silicone/PTFE*	PTFE/Red rubber	Flouroelastomer	Butyl
Temperature range	40 °C to 300 °C**	Up to 260 °C	-40 °C to 200 °C	-40 °C to 200 °C	-40 °C to 90 °C	-40 °C to 260 °C	-50 °C to 150 °C
Use for multiple injections	No	No	Yes	Yes	No	No	No
Price	More expensive	Very economical	Economical	Most expensive	Very economical	Economical	Economical
Resistance to coring	Excellent	None	Excellent	Excellent	None	None	None
Recommended for storage	No	No	Yes	Yes	No	No	No
Best for	High temperature headspace applications	Superior chemical inertness, short cycle times, and single injections	Most common HPLC and GC analyses, not as resistant to coring as P/S/P	Superior performance for ultra trace analysis, repeat injections, and internal standards	Chlorosilanes, more economical option for single injections	Chlorinated solvents, higher temperatures	Organic solvents, acetic acids, impermeable to gases

* Agilent silicone is platinum cured (versus peroxide cured), making it more inert and less likely to interact with samples.

** For up to 1 hour.

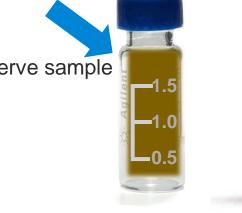
Injection Syringe Size: 10 μL				Dwell Time Pre-Injection: 0 min				
	1μL ▼ 0 sec	x 1	= 1 µL	Post-Injection: Plunger Speed Fast O Sic	0 min w	ariable		
Washes and Pumps		_		Solver	nt Wash	Draw 300 µL/min	Dispense 6000 µL/min	
Solvent A Washes:	Prelnj 3	Postlnj 3	Volume (μL) Max -	Sampl	le Wash Inject	300 μL/min	6000 μL/min 6000 μL/min	
Solvent B Washes:	0	0	Max 🗸	Vis	cosity De	lay: 6	▼ sec	
Sample Washes: Sample Pumps:			Max 👻	Sample Depth	nm			
			~~	Tower Fan	ı			

- Sample washes
 - Primes syringe barrel with sample, discards into waste bottle
 - Improves reproducibility
 - Exercise caution if sequence includes reduced volume samples

 Injection Syringe Size: 10 μL 			me Injection: 0 min Injection: 0 min		
Injection Volume: 1 Multiple Injection Oclav: 0	μL v X 1 =	□µL Plunger S ◎ Fas	Speed st 🔘 Slow 💿 \	/ariable	
Washes and Pumps			Solvent Wash	Draw 300 µL/min	Dispense 6000 µL/min
	Prelnj Postlnj	Volume (µL)	Sample Wash	300 µL/min	6000 μL/min
Solvent A Washes: 3		Max 🔻	Inject		6000 μL/mir
Solvent B Washes: 0 Sample Washes: 0		Max 🔻	Viscosity De	lay: 6	▼ sec
Sample Pumps: 3		Sample	Depth able 0 mm		
	<	Tower Fa	an werfan on		

- Sample washes
 - Primes syringe barrel with sample, discards into waste bottle
 - Improves reproducibility
 - Exercise caution if sequence includes reduced volume samples
- Sample pumps
 - Draws sample into syringe, discards into same vial
 - Eliminates air bubbles \rightarrow improves reproducibility
 - Important for volatile samples (leaves film on inner needle wall)
 - Exercise caution if using viscous samples or solvents
 - If needle contains solvent from previous wash, can dilute sample (use sample washes)
 - Don't overdo it
 - 3-5 pumps is usually adequate
 - Excessive pumping can reduce plunger lifetime

Syringe Size: 10 μL				Dwell Time Pre-Injection:	0 min		
				Post-Injection:	0 min		
Injection Volume	1μL •	• × 1	= 1μL	Plunger Speed		ariable	
Multiple Injection Delay	0 sec			S Past Sio	w o v	Draw	Dispense
Washes and Pumps				Solver	nt Wash	300 µL/min	6000 μL/mir
	Prelnj	Postinj	Volume (µL)	Sampl	e Wash	300 µL/min	6000 μL/mir
Solvent A Washes	3	3	Max 👻		Inject		6000 μL/mir
Solvent B Washes	0	0	Max 🔻	Viso	osity De	lay: 6] ▼ sec
Sample Washes	. 0		Max 🔻	Sample Depth			
Sample Pumps	3			Enable 0 n	nm		
		_		Tower Fan			
			**	🔽 Tower fan or			


Sample washes

- Primes syringe barrel with sample, discards into waste bottle
- Improves reproducibility
- Exercise caution if sequence includes reduced volume samples
- Sample pumps
 - Draws sample into syringe, discards into same vial
 - Eliminates air bubbles → improves reproducibility
 - Important for volatile samples (leaves film on inner needle wall)
 - Exercise caution if using viscous samples or solvents
 - If needle contains solvent from previous wash, can dilute sample (use sample washes)
 - Don't overdo it

•

- 3-5 pumps is usually adequate
- Excessive pumping can reduce plunger lifetime
- Fill sample vial up to shoulder
- Leaving small headspace prevents cavitation, vacuum formation
- Improves reproducibility
- Use microvial inserts to help assure good sampling depth for needle and to conserve sample

Injection				Dwell Time Pre-Injection:	0 min		
Syringe Size: 10 μL				Pre-injection.	0 min		
				Post-Injection:	0 min		
Injection Volume:	1μL -	x 1	= 1 µL	Plunger Speed			
Multiple Injection	0 sec			🔘 Fast 🔘 Slo	w o v	ariable	
Delay:	0.500					Drav	v Dispense
Washes and Pumps				Solver	nt Wash	300 µL/m	in 6000 μL/min
	PreInj	PostInj	Volume (μL)	Sampl	e Wash	300 μL/m	in 6000 μL/min
Solvent A Washes:	3	3	Max 👻		Inject		6000 μL/min
Solvent B Washes:	0	0	Max 🔻	Viso	osity De	lay: 6	
Sample Washes:	0		Max 🔻	Sample Depth			
Sample Pumps:	3			Enable 0 n	nm		
			~	Tower Fan			

Advanced Method Parameters

Injection	Dwell Time
Syringe Size: 10 μL	Pre-Injection: 0 min
	De ste luis stient 0 min
	Post-Injection: 0 min
Injection Volume: 1 μL	Sample Depth
Т	Enable 0 mm
	Plunger Speed (Variable)
	○ Fast ○ Slow Variable
Prelnj Postlnj Volume (μL)	Draw Dispense
SolventAWashes: 1 1 Max 🗸	
	SolventWash 300 μL/min 6000 μL/min
Solvent B Washes: 0 0 Max 🗸	Sample Wash 300 µL/min 6000 µL/min
Sample Washes: 0 Max 🗸	Inject 6000 μL/min
Sample Pumps: 1	
	Viscosity Delay. 0 🗾 👻 sec
	-Injection Type
	Standard -
	L1 air gap: 0.2 µL
	L2 volume: 1 µL
	L2 air gap: 0.2 µL
	L3 volume: 1 µL
	L3 air gap: 0.2 µL

Sample Depth

- Recommend default (3.6 mm from bottom of vial)
- Can change to sample from different heights in the vial
 - So -2 mm setpoint will sample 1.6 mm from vial bottom
 - Range is (-2 mm to 30 mm)
- Example uses:
 - analyzing samples that contain sediment (although properly filtering the sample is ideal)
 - Sampling from higher in the sample vial in liquid-liquid extractions
 - Small volume sampling
 - Exercise caution when using sample offsets in combination with vial inserts or conical vials
 - Ambient headspace analysis

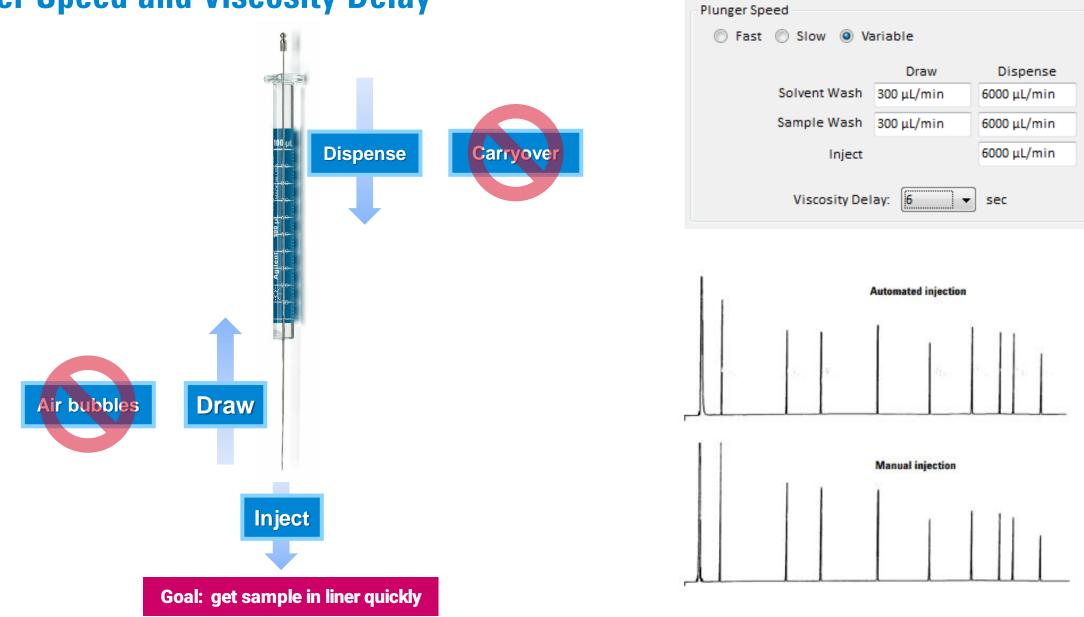
Liquid/liquid

extraction

Small-volume sampling

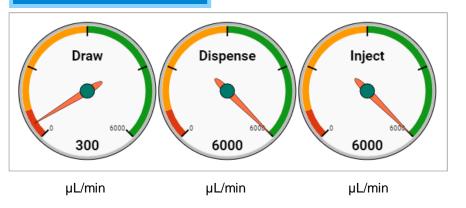
Reagent and standard addition

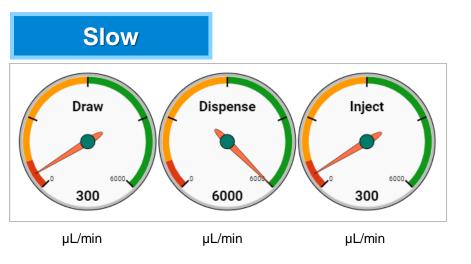
Heating/mixing



Bar code reading

Sample Depth			
🗌 Enable	0 mm		


Plunger Speed and Viscosity Delay



Plunger Speed and Viscosity Delay

Fast/Variable

- Speed setpoints depend on configured syringe size
- Fast/Variable
 - Same parameters to start, but fast is fixed
 - Best starting point for almost all hot S/SL applications
 - Slower draw ensures efficient sampling, prevents air bubbles
 - Fast dispense and inject to ensure rapid, complete transfer to inlet

- Slow
 - Slows inject rate only (draw and dispense rates remain fast)
 - Use for MMI/PTV/COC inlets
 - Too slow → broad or split peaks
 - Occurs when volatile compounds leave needle before plunger depressed

Plunger Speed and Viscosity Delay

- Viscosity Delay
 - Time (sec) plunger pauses between pump and injection
 - Allows additional time for viscous samples to flow into syringe during pump
 - Use for viscous solvents like isooctane
 - Use for highly volatile solvents dichloromethane (to prevent cavitation)
 - A 2 second viscosity delay can be beneficial for many applications
 - Including GC OQ, GC/MS OQ, and GC/MS IDL checkout parameters

Plunger Speed						
	Draw	Dispense				
Solvent Wash	300 µL/min	6000 μL/min				
Sample Wash	300 µL/min	6000 μL/min				
Inject		6000 μL/min				
Viscosity Del	ay: 6 🔻	sec				

Injection types and Automated Sample Preparation

- **Injection Types** ٠
 - Standard .
 - Sandwich injections •
 - Layered injections
 - .

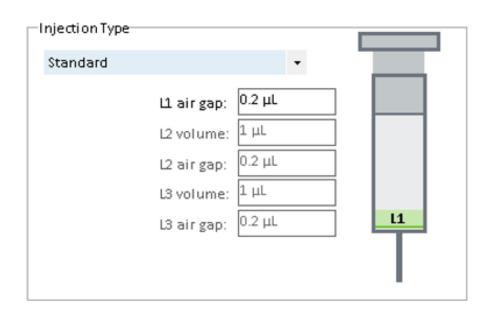
Solvent (L3)

Air gap 3

Air gap 1

Sample (L1) Internal standard (L2)

Air gap 2


- Multiple injections

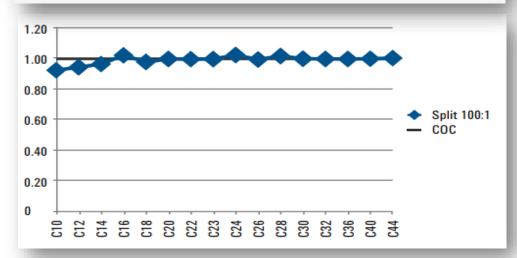
0.2 µL default


Air gap

٠

Helps retain sample in syringe before injection .

Commands Dispense Heat Load Mix sample	Program step setpoints	
Move vial Pumps Return All Wait Washes	From position: Mixer To position: Tray Vial Vial #: 1	
Sampler program ste	Comment: Append Insert Replace	
Move vial from tray v Dispense 900 µL fror Dispense 100 µL fror Wash syringe in Bac Move vial from back Move vial from back Mix at 1000 rpm 2 tim	111 to back turret position #2 11 to back turret position #1 al Wash A1 to vial Sample 1 on the Back tower al Sample 2 to vial Sample 1 on the Back tower wer, drawing from Wash B1 dispensing into Waste B1 2 times et position #2 to tray vial #11 et position #1 to mixee for 10 seconds	
Move vial from mixer	ay vial #1	



Dwell Time

- Types
 - Pre dwell time
 - Mins. needle remains in inlet before injection
 - Post dwell time
 - Mins. needle remains in inlet after injection
 - Example uses:
 - longer dwell time to simulate manual injection process
 - longer dwell time to warm syringe needle to inject viscous sample
- **Fast** injections are better, especially in split mode
 - Better precision and accuracy
 - Prevents broad or tailing peaks
 - Minimizes thermal degradation and analyte discrimination
 - Ensures narrow peaks
 - 7693 ALS injects in under 100 milliseconds

Dwell Time		
Pre-Injection:	0 min]
Post-Injection:	0 min	

Carbon #	Split Area % RSD	Splitless Area % RSD	On Column Area % RSD
10	0.20	0.26	0.33
12	0.20	0.27	0.36
14	0.20	0.27	0.40
16	0.21	0.30	0.41
18	0.23	0.28	0.27
20	0.25	0.28	0.41
22	0.28	0.28	0.41
24	0.30	0.28	0.42
32	0.39	0.30	0.41
36	0.29	0.35	0.41
40	0.34	0.27	0.42
44	0.27	0.33	0.42

Agilent

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:

- Option 1 for GC/GCMS Columns and Supplies
- Option 2 for LC/LCMS Columns and Supplies
- Option 3 for Sample Preparation, Filtration and QuEChERS
- Option 4 for Spectroscopy Supplies

- <u>gc-column-support@Agilent.com</u>
- Ic-column-support@agilent.com
- <u>spp-support@agilent.com</u>
- <u>spectro-supplies-support@agilent.com</u>

Problem: Bent Plunger or Stuck Syringe

Possible Cause(s):

- Particles such as dust, salts, metal, leftover sample, or glass can fill the narrow gap between the plunger shaft and the inside wall of the barrel.
- Overtightened septum nut compresses septa, causing excessive resistance during injection

- Switch to a syringe with PTFE-tipped plunger
- Avoid using 5µL syringes where possible
- If plunger movement feels "gritty", carefully remove plunger from barrel, flush with solvent, and wipe dry with lint-free cloth. Carefully reinsert plunger into barrel. Finally, submerge needle tip into container of solvent and cycle plunger to pull solvent into and out of the barrel.
- Never cycle the plunger in a dry syringe
- Do not "mix & match" plungers and barrels
- Immediately clean syringes after use
- Loosen septum nut

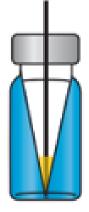
Problem: Bent needle

Possible Cause(s):

- Improper needle alignment
- Narrow gauge needles (26g) bend more easily than larger gauge (23g) needles
- Needles tend to bend when inserted into sample vial, not the inlet. This can be caused by septa that are too "rough"
- Needles bent during installation into the autosampler are more likely to bend when pushed through the sample vial cap septum.

- Use syringes with 23 to 26 gauge tapered needles
- Realign autosampler
- Verify septum nut is not over-tightened

Problem: No peaks



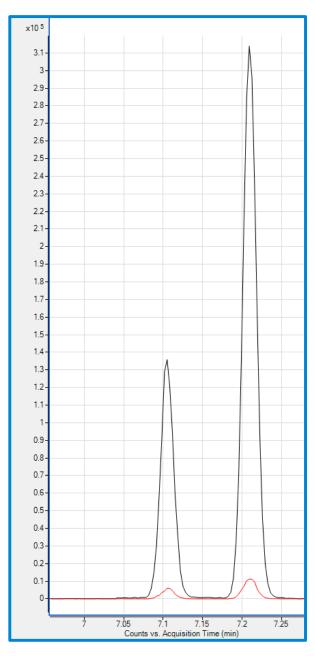
Possible Cause(s):

- Syringe plunger malfunction
- Plugged needle
- Sample level in vial too low
- Sample too viscous

- Clean or replace syringe
- Check sample level, refill or use low-volume vial insert
- Split ALS from rest of system by manually injecting sample to ensure peaks present
- Increase viscosity delay time
- Increase sample dilution factor
- Check sample depth setting in method

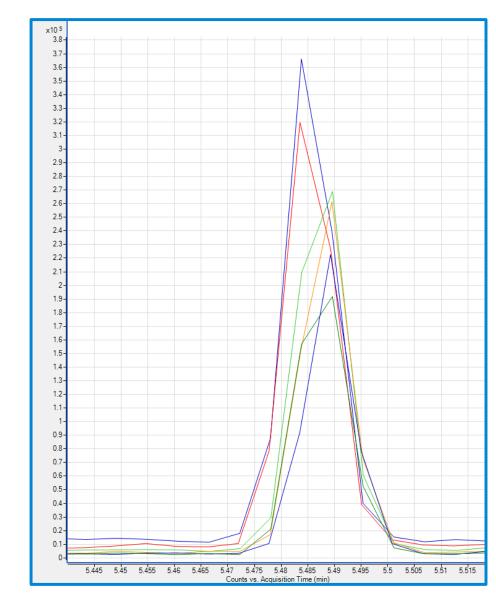
Problem: Sample carryover

Possible Cause(s):


- Insufficient number or type of washes
- Solvent wash vial empty
- Syringe worn or dirty
- Sample/solvent mismatch
- Dirty ALS needle guide
- Dirty septum nut

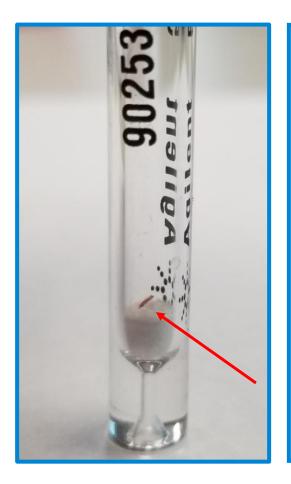
- Increase number or type of washes
- Rinse with a variety of solvents
- Rinse and refill solvent wash vial
- Clean or replace syringe
- Ensure samples and solvents, from one vial to the next, are miscible
- Occasionally replace needle guide (aka "needle foot")
- Check septum nut for sample residue

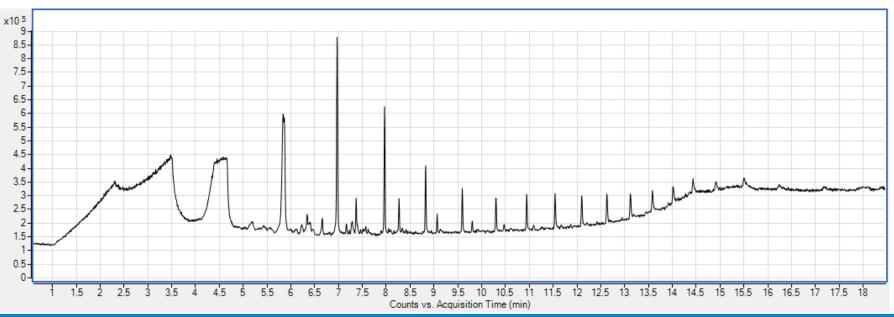
ALS needle guide- G4513-40525


Problem: Poor Reproducibility

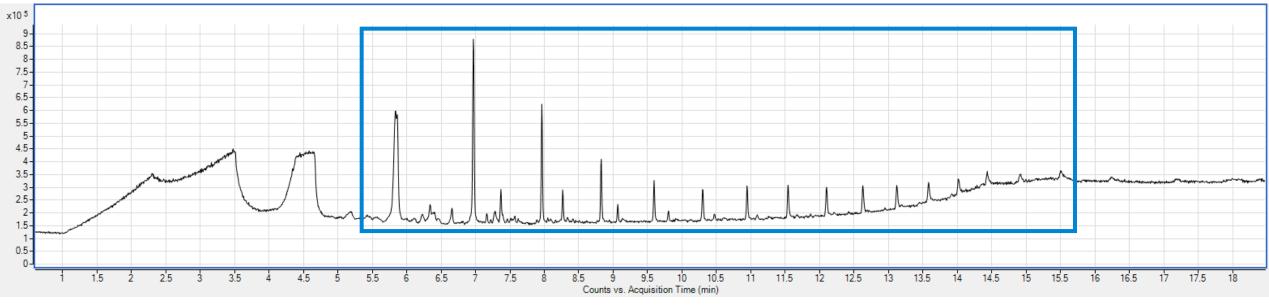
Possible Cause(s):

- Poor plunger seal
- Syringe worn or dirty
- Glass walls of syringe are scratched


- Clean or replace syringe
- Rinse and refill solvent wash vial
- Do not allow sample to crystallize inside syringe between injections
- Make sure solvents being used are miscible and compatible with the syringe


Septum maintenance: Septum coring

- After many injections, pieces of rubber from the septum may break off and fall into the inlet liner.
 - This is called septa coring
 - Replace the inlet septa and liner frequently to prevent septa contamination
 - Use a cone tipped syringe to reduce the chance of tearing the septum


Septum core placed in a clean liner, and a blank injection performed.

- Inlet: 320 °C, split mode, 10:1 split ratio
- Oven: 35 °C to 300 °C at 20 °C per minute
- Detector: Single quadrupole EI Scan, 35 to 500 amu

Septum maintenance: TIC of an inlet septum

Septa contamination in wash vials or inlet liners can be diagnosed by looking for siloxane polymers in your total ion chromatogram. Each peak in the chromatogram corresponds to a cyclized (ring structure) siloxane molecule. These molecules fragment with very similar patterns.

Common ions

for siloxane

molecules:

Sample Introduction: Important Takeaways

- Successful GC injection is a complex process
- Start with a PTFE-tipped 10 µL syringe
- Handle the syringe carefully
- Avoid pumping plunger when "dry"
- Don't let the wash solvent run low/dry/become contaminated
 - How long is your sequence?
 - How is your wash vial hygiene?
- Get the sample into the liner quickly
- Be aware of advanced parameters for special applications
- If you're not sure, reach out and ask for help

