

Characterizing all 136 Tetra- to Octachlorinated Dioxins and Furans

Using the Rtx[®]-Dioxin2 Column

By Jack Cochran, Director of New Business and Technology

- · Known elution orders for all tetra- through octachlorinated dioxin and furan congeners.
- Resolve 14 of 17 tetra- through octachlorine 2,3,7,8-substituted dioxins and furans.
- TCDD and TCDF specificity, with a column stable up to 340°C.

Successful analyses of dioxins and furans are critical because of the extremely toxic nature of these compounds. However, confidently resolving the most toxic congeners, 2,3,7,8-substituted tetrachlorinated dibenzodioxin (TCDD) and tetrachlorinated dibenzofuran (TCDF), is often complicated by the presence of the many other possible congeners. Even with high resolution GC/high resolution MS methods, the proper choice of chromatographic column is essential for separating 2,3,7,8substituted dioxins and furans from the less toxic congeners and matrix-related compounds.

Complete Column Characterization

It is rare that a column's performance is characterized against all possible 136 tetra- through octachlorinated dioxins and furans. These standards are difficult to obtain, and testing can be time consuming. However, here the Rtx®-Dioxin2 column is characterized against all 136 compounds using standards from Cambridge Isotope Laboratories, Inc. When compared to industry standard stationary phases, a unique selectivity is observed for the Rtx®-Dioxin2 column, and specific resolutions and coelutions are noted. Very few coelutions involving the toxic 2,3,7,8-substituted congeners are observed, making the Rtx®-Dioxin2 column an excellent choice for single column analyses of dioxins and furans (Tables I and II.)

Figure 1 shows fly ash samples, run under the same chromatographic conditions used to characterize the column. 2,3,7,8-tetrachlorodibenzofuran is not resolved under these conditions. However, the characterization study used simple linear temperature programming, and additional work exploring nonlinear oven programs and different flow parameters yielded better resolution between some congeners, especially 2,3,7,8-TCDF (data available upon request). The value in this work is not necessarily to show complete separation of all the congeners on a single column, but to show where all of the 136 compounds of interest elute, making all possible coelutions known.

Figure 2 GC/HR-MS analysis of tetrachlorinated furans in fly ash on an Rtx[®]-Dioxin2 column.

The Rtx®-Dioxin2 column is an excellent column for the analysis of dioxin and furan congeners. It has a unique selectivity for the toxic congeners, including specificity for 2,3,7,8-TCDD and 2,3,7,8-TCDF. Here we characterized all 136 tetra- through octachlorine dioxins and furans and defined all possible coeutions. While commonly used cyanopropyl columns are limited by a low maximum operating temperature of 240°C, the Rtx®-Dioxin2 column is stable up to 340°C, extending column lifetime and improving analyses of dioxins and furans.

Rtx[®]-Dioxin2 Columns (fused silica)

ID	df (µm)	temp. limits	length	cat. #
0.18mm	0.18	20°C to 340°C	40-Meter	10759
0.25mm	0.25	20°C to 340°C	60-Meter	10758

Stable up to 340° for extended column lifetime!

Table I Retention times (RT) and relative retention times (RRT) for all tetra- through octachlorinated dioxins on an Rtx[®]-Dioxin2 column.

tetrachlorinated		pentachlorinated		hexachlorinated		heptachlorinated			octachlorinated					
Congener	RT (min)	RRT (min)	Congener	RT (min)	RRT (min)	Congener	RT (min)	RRT (min)	Congener	RT (min)	RRT (min)	Congener	RT (min)	RRT (min)
1368	29.43	0.8198	12468	33.75	0.9401	124679	37.89	1.0554	1234679	42.44	1.1822	12346789	46.93	1.3069
1379	29.64	0.8256	12479	33.80	0.9415	124689	37.89	1.0554	1234678	43.34	1.2072			
1369	29.84	0.8312	12469	34.17	0.9515	123468	38.53	1.0730						
1469	30.25	0.8424	12368	34.67	0.9657	123679	38.79	1.0805						
1246	30.38	0.8462	12478	34.83	0.9702	123689	38.82	1.0813						
1249	30.42	0.8474	12379	34.92	0.9727	123469	38.90	1.0833						
1247	30.43	0.8476	12467	35.02	0.9755	123478	39.55	1.1017			•			
1248	30.44	0.8479	12369	35.08	0.9769	123678	39.66	1.1047		Number Sequence for Polychlorinated				
1378	30.64	0.8535	12489	35.08	0.9772	123467	39.78	1,1081			Dibenzo	Dioxins		
1268	30.68	0.8546	12346	35.36	0.9850	123789	39.98	1.1136						
1478	30.88	0.8599	12347	35 40	0 9858						1	0	0	
1279	30.95	0.8621	12367	35.89	0.9997					1	r	2		
1269	31.12	0.8669	12378	35.91	1.0003					~		へく		0
1234	31.15	0.8677	12389	36.21	1 0086				4	6	Y	Y		0
1236	31.25	0.8705	12000	00.21						11		- 11		
1237	31.47	0.8766			Blue boxe	s represent	1			11	22			
1238	31.50	0.8774			coelutions				3	5		~	/	7
1239	31.51	0.8777								~			1	
2378	31.79	0.8855			Red boxes	s represent	1			4		· ·	6	
1278	31.90	0.8883			coelutions	with 2378-					2			
1267	31.90	0.8886			substituted	d congeners								
1289	32.27	0.8989					•							
RRTs were	calculated	l versus 123	78 ¹³ C-labele	d dioxin.	Bold red tex	t indicates co	ongeners w	ith 2378 sub	stitution					

Table II Retention times (RT) and relative retention times (RRT) for all tetra- through octachlorinated furans on an Rtx[®]-Dioxin2 column.

