## Basics of SPE Technology & Mechanisms

Pieter Grobler,

Sigma-Aldrich RSA

RESEARCH ESSENTIALS Customized Accou

SAFC Consistency ad Flexibility RESEARCH SPECIALTIES Broad Product Offering

RESEARCH BIOTECH

Innovation First to Market





## Agenda

- The Importance of Sample Prep
- Overview of SPE Technology
- SPE Strategies
- Understanding Retention Mechanisms





## **Analytical Chromatography Heaven**

- Short run times
- Baseline resolution
- Symmetric peak shape
- Good S/N ratio
- No misleading peaks
- High precision/accuracy





# **The Importance of Sample Preparation**





**Real World & Real Samples** 

The Importance of Sample Preparation



# Why is sample preparation required?

**Collected Sample** 

GC, HPLC, or LC-MS/MS Analysis



Current Sample = Unsuitable for further analysis!!... Why?

- Too dirty- contains other sample matrix components that interfere with the analysis
- Too dilute- analyte(s) not concentrated enough for quantitative detection
- Present sample matrix not compatible with or harmful to the chromatographic column/system





### **Sources of Chromatographic Errors**



## **Time Spend on Analytical Process**



(R.E. Majors, LC/GC Magazine, 1991, 1997, 2002)





## Many Tools/Technology for Sample Prep



•

## Separatory Funnels/LLE = Old Technology





- Large solvent consumption
  - Disposal of solvent
- Vigorous shaking/mixing
- Waiting for layers to separate
- Phase emulsions
- Longer Rotovap Times
- Separatory funnel is spacey equipment
  - (sample throughput, Automatisation?)





## **Purpose of Solid Phase Extraction (SPE)**

Prior to the actual analysis, SPE is most commonly used to...

- 1. Clean Up Strip the analyte(s) away from endogenous interferences.
- 2. Concentrate analytes(s) for better sensitivity.
- 3. Exchange sample environments for better chromatography
  - -e.g., analytes in serum => analytes in mobile phase.









# **Overview of Solid Phase Extraction (SPE)**





## **Basic SPE Concept**



- Another form of chromatography
- Hardware = plastic (polypropylene) or glass
- Sorbent held in place by two PE frits
- Packing material is very similar to HPLC
  - Often irregular shape vs. spherical (HPLC)
  - Much larger particle size (>50µm)
     vs. HPLC (≤ 5µm)
  - SPE particle size distribution much broader than HPLC
- Use it only once



sigma-aldrich.com

**SUPELCO** 

### **SPE Vacuum Manifold**

STUPELCO -

Sample introduction

**Indiv. Port Valves** 

Sample collection tubes (volumetric flasks)

#### Waste reservoir



#### **SPE tubes**

Vacuum manifold

Vacuum line and gauge



## **SPE Tube Device Processing Equipment**





SIGMA-ALDRICH

## **Most Common SPE Robots for Automated SPE**



Zymark RapidTrace System



TomTec Quadra System



## **Types of SPE Tubes/Cartridges**

#### SPE tubes are available in two materials:

- Polypropylene (serological grade)
  - Most common
  - Suitable for most SPE applications
  - Inexpensive



An assortment of Supelco SPE tubes. Second tubes in from either side are glass.

### Glass (serological grade)

- Greater solvent resistance than plastic
- No phthalates or plasticizers to leach into sample
- Can be heated
- More expensive than plastic
- Common in environmental analysis







## **SPE Bed Weight/Tube Size Selection**

- Smaller tube dimensions (1 mL) contain smaller bed weights.
  - reduced elution volumes which can be beneficial
- 3 mL SPE tubes are most common size
- 6 mL SPE tubes when one or more steps require volumes greater than 3 mL.
- 12, 20, and 60 mL tubes contain larger bed weights allow to use SPE as a prep purification or modified LPLC/Flash technique.

| Bed<br>Weight      | Tube<br>Volume          | Minimum<br>Elution Vol.           | Bed<br>Capacity*                   |
|--------------------|-------------------------|-----------------------------------|------------------------------------|
| 50-100 mg          | 1 mL                    | 100-200 μL                        | 2.5-10 mg                          |
| 500 mg             | 3 mL                    | 1-3 mL                            | 25-100 mg                          |
| 0.5-1 g            | 6 mL                    | 2-6 mL                            | 25-100 mg                          |
| 2 g<br>5 g<br>10 g | 12 mL<br>20 mL<br>60 mL | 10-20 mL<br>20-40 mL<br>40-100 mL | 0.1-0.2 g<br>1.25-2.5 g<br>0.5-1 g |

\* This value depends on the analyte and sample matrix. As a rule of thumb, the bed capacity can be estimated with ~5% of the bed weight.





## **Common SPE Hardware**

#### Funnels

Büchner format ideal for large sample volumes





Glass or plastic, tubes are the most common SPE format



96-well plates



**SUPELCO** 

## **Disk & 96-Well Plates Manifold**

## ENVI-Disk<sup>™</sup>



SPE packing embedded in glass fiber matrix





96-well SPE Plate

Acrylic Clear Top



Polypropylene Base

96 Square Well

SUPELCO

96-well plates

SUPELCO



## **SPE Advantages & Disadvantages**

## Disadvantages

- Perceived difficulty to master its usage (method development)
  - Wide range of chemistries, many choices for manipulating solvent and pH conditions make it difficult to grasp
- More steps and MD time required
- Greater cost per sample (really?)

## Advantages

- Greater selectivity- paramount importance (e.g. bioanalysis (pg/mL))
- Wide variety of sample matrices
- High recoveries & good reproducibility
- Amenable to automation
- Low solvent volumes



## **Three different SPE Strategies**

Which one to choose depends on the goal of the extraction.

### 1. Bind & Elute Strategy

- Most common
- Bind: Analytes bind to tube, unwanted matrix comp. are washed off
- Elute: Eluant changed to remove analytes from tube
- Analytes are concentrated via evaporation prior to HPLC or GC analysis
- 2. Interference Removal Strategy
  - Bind all unwanted matrix components and allow analytes to pass through during the sample loading stage
  - Like chemical filtration
- 3. Fractionation Strategy (Form of Bind Elute)
  - Retain and sequentially elute different classes of compounds by modifying eluant pH or % organic





### General Steps of an SPE Procedure (Bind & Elute)

- **1. Sample Pre-treatment**
- 2. Conditioning & Equilibration
- 3. Sample Load

4. Washing

- 5. Elution
- 6. Evaporation

#### 1) <u>Sample Pre-treatment:</u>

Dependent on analyte, sample matrix, and nature of retention chemistry; involves pH adjustment, centrifugation, filtration, dilution, buffer addition, etc..

### 2a) Conditioning:

Solvent is passed through the SPE material to <u>wet</u> the bonded functional groups => ensures consistent interaction.

### 2b) Equilibration:

Sorbent/ phase is treated with a solution that is similar (in polarity, pH, etc.) to the sample matrix => maximizes retention.

#### **SUPELCO**

### General Steps of an SPE Procedure (Bind & Elute)

#### 3) Sample Load:

Introduction of the sample = analytes of interest are bound/ extracted onto the phase/ sorbent.

#### 4) Washing:

Selectively remove unwanted interferences co-extracted with the analyte <u>without</u> prematurely eluting analytes of interest.

### 5) Elution:

**Removing analytes** of interest with a solvent that overcomes the primary and secondary retention interactions b/w sorbent and analytes of interest.

### 6) Evaporation

of eluent/ reconstitution with mobile phase (optional).





### **Bind-elute strategy diagram**

#### (Filtered) sample with internal standard (IS) $\rightarrow$ Analytes of interest in suitable matrix



### Interference removal strategy diagram

#### Sample with Internal Standard in Matrix $\rightarrow$ Matrix adsorbed $\rightarrow$ Analytes & IS pass



### **Fraction strategy diagram**

#### Form of Bind and Elute Strategy with multiple elution steps



# **Understanding Retention Mechanisms**





## **Reversed-Phase SPE**

| <b>Retention Mechanism:</b> | <ul> <li>Non-polar or hydrophobic interactions</li> <li>Van der Waals or dispersion forces</li> </ul>                                                                            | Aqueous Sai<br>Phase     |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Sample Matrix:              | Aqueous samples<br>• Biological fluids (serum, plasma, urine)<br>• Aqueous extracts of tissues<br>• Environmental water samples<br>• Wine, beer and other aqueous samples        | Z                        |
| Analyte Characteristics:    | <ul> <li>Analytes exhibiting non-polar functionalities</li> <li>Most organic analytes</li> <li>Alkyl, aromatic, alicyclic functional groups</li> </ul>                           | dnou                     |
| Elution Scheme:             | Disrupt reversed-phase interaction with solvent or solvent<br>mixtures of adequate non-polar character<br>• Methanol, acetonitrile, dichloromethane<br>• Buffer/solvent mixtures | Sorbent Functional Group |
| Common Applications:        | <ul> <li>Drugs and metabolites in biological fluids</li> <li>Environmental pollutants in water</li> <li>Aqueous extracts of tissues and solids</li> </ul>                        | Sorbe                    |
|                             |                                                                                                                                                                                  |                          |

Aqueous Sample Matrix/Mobile Phase Environment



SIGMA-ALDRICH

sigma-aldrich.com

**SUPELCO** 

## **Example RP SPE Protocol**

#### 1. Sample Pre-Treatment

- Dilute samples 1:1 with buffer (10mM ammonium acetate)
- pH manipulation important for ionizable analytes
- Filter or centrifuge out particulates

### 2. Condition & Equilibrate

- Condition with 1-2 tube volumes MeOH or MeCN
- Equilibrate with 1-2 tube volumes buffer
- 3. Load sample (consistent rate; 1-2 drops per second)





## **Example RP SPE Protocol**

- 4. Wash sorbent (elutes co-retained interferences)
  - Critical for improving selectivity
  - 5-20% MeOH common
  - Dilute MeOH in buffer used during sample load
- 5. Elute analytes of interest
  - MeOH or MeCN most common
  - pH manipulation can improve recovery (adjust pH opposite to load conditions)
- 6. Evaporate/reconstitute as necessary





### C18 vs. C8 vs. Ph vs. CN

More polar RP sorbents (e.g. CN, Ph) can offer better selectivity



## C18 vs. C8 vs. Ph vs. CN

### More polar RP sorbents

- can offer better selectivity
- Often allow for weaker & smaller elution volumes
- Greater risk of premature analyte elution during wash step
  - Requires weaker wash solvents
- Less risk of sorbent over drying
- More non-polar RP sorbents
  - Have broader analyte retention range
  - Greater risk insufficient clean-up
  - Allows for stronger wash solvents
  - May require increased elution volume





## **Useful RP SPE Tips**

- Drugs in biological fluids risk drug-protein binding effect
  - Disrupt during sample pre-treatment using 40uL 2% disodium EDTA or 2% formic acid per 100uL plasma
- Sorbent over drying only a concern during first conditioning step
  - Only critical with C18 & only critical in first conditioning step
  - Phase just needs to be moist during sample addition
  - All other steps non-critical
- If eluate evaporation necessary, dry SPE tube with vacuum for 10-15 min. prior to elution to remove residual moisture
- Pass DCM through SPE before conditioning to remove SPE tube impurities for highly sensitive analyses
- Reduce bed weight to minimize elution volume
- Increase bed weight to retain more polar compounds





## **Normal-Phase SPE**

| <b>Retention Mechanism:</b> | Polar Interactions <ul> <li>Hydrogen bonding, pi-pi, dipole-dipole, and induced di</li> </ul>                                                                                                                                                                        | pole-dipole              |                                             |             |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|-------------|
| Sample Matrix:              | Non-polar samples<br>• Organic extracts of solids<br>• Very non-polar solvents<br>• Fatty oils, hydrocarbons                                                                                                                                                         | dnoug                    | Non-polar sam<br>mobile phase e<br>Analytes | nvironment  |
| Analyte Characteristics:    | <ul> <li>Analytes exhibiting polar functionalities</li> <li>Hydroxyl groups, carbonyls, amines, double bonds</li> <li>Hetero atoms (O, N, S, P)</li> <li>Functional groups with resonance properties</li> </ul>                                                      | Sorbent Functional Group | но                                          | ) NHCOCH₃   |
| Elution Scheme:             | Polar interactions disrupted with a more<br>polar solvent or solution<br>• Acetonitrile, methanol, isopropanol<br>• Combinations of buffer/solvent or solvent/solvent mixto                                                                                          |                          |                                             | Interaction |
| Common Applications:        | <ul> <li>Combinations of burler/solvent of solvent/solvent mixtue</li> <li>Cleanup of organic extracts of soils and sludge</li> <li>Fractionation of petroleum hydrocarbons</li> <li>PCBs in transformer oil</li> <li>Isolation of compounds in cosmetics</li> </ul> | 1162                     |                                             |             |
|                             |                                                                                                                                                                                                                                                                      |                          |                                             |             |

SIGMA-ALDRICH



## **Example NP SPE Protocol**

#### **1. Sample Pre-Treatment**

- Liq samples extracted/diluted with non-polar solvent (e.g. hexane, DCM)
- Solid samples (soil, sediment, etc.) extracted (soxhlet, sonnication, etc.) with non-polar solvent, and concentrated
- **Dry solvent** extract with Na-sulfate or Mg-sulfate
  - Residual moisture can greatly affect analyte retention

### 2. Condition & Equilibrate

w/ 1-2 tube volumes non-polar solvent

#### **3.** Load sample (consistent rate; 1-2 drops per second)

• Sample should <u>not</u> be in MeCN or MeOH





## **Example NP SPE Protocol**

- 4. Wash sorbent (elutes co-retained interferences)
  - Use a more polar solvent, but not so polar as to elute analytes of interest
  - Fractionation common in NP SPE
- 5. Elute analytes of interest with polar solvent
  - MeOH, MeCN, Acetone, IPA are common
- 6. Evaporate/reconstitute as necessary





## Common Normal Phase Solvents



| Hexane0.00Promotes<br>Normal-Phase<br>RetentionIsooctane0.00Normal-Phase<br>RetentionCarbon0.14Image: Carbon<br>tetrachlorideImage: Carbon<br>0.14Toluene0.22Image: Carbon<br>Diethyl etherImage: Carbon<br>Diethyl etherMethylene chloride<br>(dichloromethane)0.32Image: Carbon<br>Diethyl etherDiethyl ether0.29Image: Carbon<br>Diethyl etherDiethyl ether0.32Image: Carbon<br>Diethyl etherDiethyl ether0.32Image: Carbon<br>Diethyl etherDiethyl ether0.35Image: Carbon<br>Diethyl etherDiethyl ether0.63Image: Carbon<br>Diethyl etherDiethyl ether0.67Image: Carbon<br>Diethyl etherDiethyl ether0.65Image: Carbon<br>Diethyl etherDiethyl ether0.65Image: Carbon<br>Diethyl etherDiethyl ether0.63Image: Carbon<br>Diethyl etherDiethyl ether <td< th=""><th colspan="3">Elutropic (e°) or<br/>elution strength<br/>Solvent on silica</th></td<> | Elutropic (e°) or<br>elution strength<br>Solvent on silica |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|--|
| Isooctanle0.00RetentionCarbon<br>tetrachloride0.14Image: Constraint of the systemToluene0.22Benzene0.27Tert-butyl<br>methyl ether0.29Chloroform0.31Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol<br>in diethyl ether0.63Isopropanol0.63Methanol<br>in diethyl ether0.73Water>0.73Promotes<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexane                                                     | 0.00  |  |
| Carbon<br>tetrachloride0.14Toluene0.22Benzene0.27Tert-butyl<br>methyl ether0.29Chloroform0.31Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol<br>in diethyl ether0.63Isopropanol0.63Methanol<br>in diethyl ether0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isooctane                                                  | 0.00  |  |
| Benzene0.27Tert-butyl<br>methyl ether0.29Chloroform0.31Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            | 0.14  |  |
| Tert-butyl<br>methyl ether0.29Chloroform0.31Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6320% methanol<br>in diethyl ether0.63Spropanol0.63Isopropanol0.63Water>0.73Water>0.73Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Toluene                                                    | 0.22  |  |
| methyl ether0.29Chloroform0.31Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol<br>in diethyl ether0.63Sopropanol0.63Isopropanol0.63Water>0.73Water>0.73Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Benzene                                                    | 0.27  |  |
| Methylene chloride<br>(dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol<br>in diethyl ether0.63Sopropanol0.63Isopropanol0.63Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                          | 0.29  |  |
| (dichloromethane)0.32Diethyl ether0.29Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chloroform                                                 | 0.31  |  |
| Ethyl acetate0.43Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | 0.32  |  |
| Tetrahydrofuran0.35Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diethyl ether                                              | 0.29  |  |
| Acetone0.45Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Isopropanol0.63Water>0.73Water>0.73Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethyl acetate                                              | 0.43  |  |
| Acetonitrile0.5040% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrahydrofuran                                            | 0.35  |  |
| 40% methanol<br>in acetonitrile0.6720% methanol<br>in diethyl ether0.6520% methanol in<br>methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acetone                                                    | 0.45  |  |
| in acetonitrile 0.67<br>20% methanol<br>in diethyl ether 0.65<br>20% methanol in<br>methylene chloride 0.63<br>Isopropanol 0.63<br>Methanol 0.73<br>Water >0.73<br>Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Acetonitrile                                               | 0.50  |  |
| in diethyl ether 0.65<br>20% methanol in<br>methylene chloride 0.63<br>Isopropanol 0.63<br>Methanol 0.73<br>Water >0.73<br>Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 0.67  |  |
| methylene chloride0.63Isopropanol0.63Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | 0.65  |  |
| Methanol0.73Water>0.73Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            | 0.63  |  |
| Water >0.73 Promotes<br>Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isopropanol                                                | 0.63  |  |
| Acatic sold Normal-Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methanol                                                   | 0.73  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water                                                      | >0.73 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acetic acid                                                | >0.73 |  |

## **Ion-Exchange SPE**

| Retention Mechanism:     | Electrostatic attraction of charged functional groups of the<br>analyte(s) to oppositely charged functional groups on the<br>sorbent. Combination of reversed-phase and ion-exchange<br>for mixed-mode                                                                                                                                                                                     |                                        |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Sample Matrix:           | Aqueous or organic samples of low salt concentration (< 0.1M<br>• Biological fluids<br>• Solution phase synthesis reactions                                                                                                                                                                                                                                                                |                                        |
| Analyte Characteristics: |                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| Elution Scheme:          | <ul> <li>Use anion-exchange for isolating acidic compounds: carboxylic acids, sulphonic acids, and phosphates</li> <li>Electrostatic interactions disrupted via:</li> <li>pH modification to neutralize compound and/or sorbent functional groups</li> <li>Increase salt concentration (&gt; 1M); or use a more selective counter-ion to compete for ion-exchange binding sites</li> </ul> | Electrostatic<br>Interaction<br>G00357 |
| Common Applications:     | <ul> <li>Drugs of abuse and pharmaceutical compounds in biological fluid</li> <li>Fatty acids removal in food/agricultural samples</li> <li>Cleanup of synthetic reactions</li> <li>Organic acids from urine</li> <li>Herbicides in soil</li> </ul>                                                                                                                                        | ls                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                            |                                        |

SIGMA-ALDRICH

sigma-aldrich.com

**SUPELCO** 

## **Example IOX SPE Protocol**

### **1. Sample Pre-Treatment:**

- Basic compounds: dilute w/ 10-25mM buffer (e.g., potassium phosphate, ammonium acetate), pH 3-6
- Acidic compounds: dilute with 10-25mM buffer (e.g. acetate), pH 7-9
- <u>BOTH</u> sorbent functional group & analyte most be ionized
- 2. Condition & Equilibrate
  - Condition with 1-2 tube volumes MeOH or MeCN
  - Equilibrate with 1-2 tube volumes buffer (used during sample pre-treatment)

#### 3. Load sample (consistent rate; 1-2 drops per second)





## **Example IOX SPE Protocol**

- 4. Wash sorbent (elutes co-retained interferences)
  - Wash interferences with buffer
  - Wash with <u>100% MeOH</u> to remove hydrophobic interferences

### 5. Elute analytes of interest

- Adjust pH opposite to load conditions (e.g. 2-5% ammon hydroxide for basic compounds)
- May require organic modifier (50-100% MeOH)
- 6. Evaporate/reconstitute as necessary





## **Useful IOX SPE Tips**

- IOX kinetics slower than RP & NP => reduce flow rate
- Strong vs. weak ion-exchangers
  - Strong = sorbent functional group always ionized regardless of pH
  - Weak = sorbent functional group has controllable pKa; commonly used for extracting strong analytes
- Counter-Ion Selectivity in IOX

For Cation Exchangers:

•  $Ca^{2+} > Mg^{2+} > K^+ > Mn^{2+} > RNH_3^{2+} > NH_4^+ > Na^+ > H^+ > Li^+$ 

#### For Anion Exchangers:

 Benzene Sulphonate > Citrate > HSO<sub>4</sub>- > NO<sub>3</sub><sup>-</sup> > HSO<sub>3</sub><sup>-</sup> > NO<sub>2</sub><sup>-</sup> > Cl<sup>-</sup> > HCO<sub>3</sub><sup>-</sup> > HPO<sub>4</sub><sup>-</sup> > Formate > Acetate > Propionate > F<sup>-</sup> > OH<sup>-</sup>



**SUPELCO** 

## The Critical Role of pH in SPE

Neutral State (Blue) = promotes hydrophobic (RP) interaction Ionized State (Green) = promotes electrostatic (IOX) interaction

#### **Ionization of Acidic & Basic Molecules-**

**Acids** (e.g., carboxylic acids): (e.g., R-COOH ⇔ R-COO<sup>-</sup>)



#### **Bases** (e.g., amines): (e.g., R-NH<sub>3</sub><sup>+</sup> ⇔ R-NH<sub>2</sub>)



#### **SUPELCO**

pKa of most acids (e.g. -COOH) is 3-5

- Presence of halogen atom near a carboxy group strengthens acid effect (electron sink)
- e.g., acetic acid (pKa 4.75), monochloro acetic acid (pKa 2.85), dichloroacetic acid (pKa 1.48)

#### pKa of most amines is 8-11

- Aromatic (electron sink) amines have a lower pKa than aliphatic amines
- e.g., Aromatic amines- aniline (pKa 4.6), pyridine (pKa 5.2); Aliphatic amines-(pKa 9.7), dimethylamine (pKa 10.7)

SIGMA-ALDRICH

## **SPE Phase Selection**



## **New SPE Brochure 2007**

- T402150 (FEB)
- 28 pages
- Complete list of SPE products and accessories





