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Abstract

This application note provides an example of a novel food authenticity workflow
that can be used for food classification and detection of food fraud. Different brands
of yerba mate, a South American herbal tea, were used to illustrate the workflow.
The food authenticity workflow described here takes advantage of high-resolution
accurate mass GC/Q-TOF data, as well as differential analysis software that enables
routine screening of food samples.



Introduction

Food fraud is a highly profitable business
and includes various activities such

as misbranding, mislabeling, dilution,
counterfeiting, and adulteration.’

Among foods and food ingredients,

the most frequently adulterated are
olive oil, seafood, milk, honey, fruit
juices, spices, coffee, and tea.? To
identify adulteration of a broad variety
of food products, numerous analytical
techniques, including high-resolution
time-of-flight (TOF) mass spectrometry
are used.® Previously, a complete food
authentication workflow for both method
development and routine sample testing
was demonstrated using an LC/Q-TOF.4
To streamline the characterization of
foods with high-resolution GC/Q-TOF,

a similar workflow using Agilent Mass
Profiler Professional (MPP) and Classifier
software has been developed. The
workflow was evaluated using yerba
mate (llex paraguariensis), a traditional
South American herbal tea. Adulteration
of yerba mate (intentional or not) with
different /lex species is a common
issue, and contributes to a change in
flavor, as well as a bitter taste of the
final product.>® On the other hand, the
processing of yerba mate involves
several steps, such as blanching (rapid
heating to deactivate enzymes), drying,
and ageing that will also affect the
aroma and chemical composition of
yerba mate.>”’

The classification model for yerba mate
authenticity described in this application
note was able to distinguish between
different brands of commercially
available yerba mate. The three

yerba mate brands presented distinct
profiles of the volatile aroma, as well

as detectable levels of contaminating
polycyclic aromatic hydrocarbons
(PAHs).

Experimental

Samples and extractions

Yerba mate samples of four different
brands, A, B, C, and D were obtained
from a supermarket in Buenos Aires,
Argentina. Brand A was a premium
brand and brand C was one of the less
expensive supermarket brands. Before
the extraction, the dry yerba samples
of brand A were mixed with C to yield 5,
10, 20, 50, and 80% adulterated yerba A
samples. In one instance, yerba A and
D were also mixed at a 50/50 ratio. The
replicates of each of the pure samples,
as well as adulterated samples, were
extracted separately. Deionized (DI)
water (10 mL) was added to each
individual 2 g yerba sample. This was
mixed, soaked for 30 minutes, then
extracted using a standard unbuffered
EN QUEChERS protocol along with
method blanks.

Table 1. GC/Q-TOF acquisition parameters.

Data acquisition and processing

The samples were analyzed in random
order using an Agilent 7890B GC coupled
to an Agilent 7250 high-resolution

Q-TOF MS. The full spectrum data were
acquired in El mode. The parameters

are described in detail in Table 1. The
Unknowns Analysis tool of Agilent
MassHunter Quantitative Analysis
software 10.1 was used to perform the
chromatographic deconvolution and
NIST 17.L library search. The retention
indices were calculated based on the
alkane ladder to improve accuracy of
compound identification. The yerba mate
classification model was built using

pure yerba mate samples in MPP 15.1.
Classifier 1.1 was further used to validate
the model and analyze the “unknown”, or
adulterated, yerba samples along with
positive and negative controls.

Parameter Value
Q-TOF Agilent 7250 Q-TOF MS
GC 7890B
Column Agilent DB-5ms Ul, 30 m x 0.25 mm, 0.25 ym
Inlet MMI, 4 mm Ul liner single taper with wool

Injection Volume

1L

Injection Mode

Splitless

Inlet Temperature

280 °C

Oven Temperature Program

50 °C for 2 min;
10 °C/min to 300 °C;

10 min hold
Carrier Gas Helium
Column Flow 1.2 mL/min
Transfer Line Temperature 300°C
Quadrupole Temperature 150 °C
Source Temperature 200°C
Electron Energy 70 eV
Emission Current 5pA
Spectral Acquisition Rate 5Hz

Mass Range

45 to 650 m/z
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Figure 1. Overlaid chromatograms from the extracts of the three brands of yerba mate labeled A, B, and C. An arrow points to caffeine.

Results and discussion Feature finding was performed in feature of Unknowns Analysis,
Unknowns Analysis using SureMass Figure 3A). For a true hit, the mass error
Yerba mate classification workflow deconvolution followed by NIST17.L for the majority of prominent peaks
To build the classification model library search (Figure 3). Identity of was within 2 ppm. The mass error
six replicates of each type of yerlba the compounds was confirmed with for a false positive was significantly
mate from three different brands retention indices (RIs) as well as greater (Figure 3B). Accurate compound
were extracted and analyzed using accurate mass (using the ExactMass identification was key to correct
a high-resolution GC/Q-TOF. A
chromatogram overlay from these
extracts is displayed in Figure 1. GC/Q -TOF
Although a few prominent components
Siffe;entiating tt))etwezn t;]e three yerbi. Data acquisition
rands were observed, chromatographic in full MS mode

profiles were very similar overall,
suggesting that some minor but robust
components would likely also have to be

included in the class prediction model. A Unknowns

The general workflow is outlined in Model Analysis MPP Classifier
Figure 2. First, a classification model is Building Building Sample

built ahd validated in MPP and CIqssnﬁer 3 Fgatyre i classification and
following the feature finding step in finding Model _ res'ults'
Unknowns Analysis tool (Figure 2A). visualization
After the classification model is created B

and exported, unknown samples can be Sample

characterized directly using Unknowns testing Sample
Analysis and Classifier, bypassing S Fgatyre classification and
MPP (Figure 2B). Classifier software finding results

visualization

is designed for routine processing of
unknown samples based on the existing Figure 2. Workflow for sample classification. (A) Class prediction model building and validation.
classification model and features a few (B) Unknown samples classification, with MPP bypassed.

effective visualization tools.
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Figure 3. Compound identification and ID confirmation in Unknowns Analysis. The ExactMass feature (shown in the bottom table and the mirror plot of each
screen capture) uses accurate mass information from a compound spectrum to check if a fragment formula is a subset of the molecular formula of the library hit.
(A) Library hit confirmed by ExactMass. (B) False positives displaying large mass error on the component’s fragment ions.



alignment in MPP and, although not
always an essential part of a routine
authenticity workflow, it helped create
a robust class prediction model by
monitoring the compound selection.

The classification model was built
using the soft independent modeling
of class analogy (SIMCA) algorithm

in MPP. In the first step, the data were
imported into MPP from the Unknowns
Analysis. This was followed by sample
grouping, alignment, normalization,
filtering, and quality control (QC) using
principle component analysis (PCA).
As shown in Figure 4, all three sample
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Figure 4. All three sample groups can easily be
separated on a PCA plot.

groups can easily be separated on the
PCA plot. At the next step, the number
of features was further reduced through
statistical analysis (p <0.05) and fold
change analysis (F >2). The resulting

set of compounds was used to create a
class prediction model. Figure 5 displays
parameter settings for the model
validation as well as a selected output of
the SIMCA model training algorithm.

The SIMCA classification model for
yerba mate was exported from MPP
directly to the Classifier software and
further validated using both positive
and negative controls, prepared from
pure and mixed brands of yerba
samples, respectively.
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Figure 5. Building SIMCA model in MPP. (A) Setting parameters for model validation. (B) Output of training
algorithm: model distance for each sample group from sample A. (C) Discriminating power of a subset
of compounds is shown (blue bar graph). Also shown is the abundance distribution (heat map) of the

individual compound in the training set.



Results of differential analysis,

identification of aroma volatiles " 3-Hydroxy-5,6-epoxy-B-ionone S
and contaminants LI vtAmylbutyrolactone ﬁ' -
The results of the fold change combined - P .

with statistical analysis for any pair of 15 1 - 2,4-Heptadienal y-Valerolactone . .
sample groups can be visualized on L] \

the volcano plot. An example of such " \\ Ethylmethylmaleimid

visualization, comparing the yerba
extracts of brand A and C, is shown
on Figure 6. The characteristic volatile

\
Guaiacyl acetone \

\
10 A \ \\

y-Palmitolactone

2(5H)-Furanone,

-log10(correctedPvalue)

compounds that prevail in one of the trans-B-lonone \ \ - 5,5-dimethyl-
yerba brands compared to the other |
a-Angelica
are labeled. 4-Heptenal ™ lactone 2-Furyl ethyl ketone
Further details for these potential \ /
compounds of interest, predominantly 54 3-Oxo0-7,8- \ . 1" s
i i dihyd ionol g a-Methyl-y- L-a-Terpineol
those associated with flavor and aroma thydro-a-ionol = apgcisic acid &
. . \ , crotonolactone \
are provided in Table 2. The compound o 3 N \ /“
3-hydroxy-5,6-epoxy-B-ionone displayed .\ \ Sy LV "
one of the most significant fold change ﬂg_% Bﬁ""ﬂu
values among the identified aroma 0 R, <P
compounds (with high p-value) between -20 -10 0 10 20

the two groups. It could therefore
potentially contribute to a significant
difference in flavor between these
brands of yerba mate. Interestingly, 20 Control Group ] ~

log2(Fold change)

Selectpair | [A] Vs [C]

furanones (important flavor compounds)
Figure 6. Volcano plot and fold change analysis. Comparison of brands A and C. Compounds highlighted

Were found at hlgher levels in yerba,A’ in blue are those that are present in significantly higher levels in C as compared to A, and those labeled in
while a few aldehydes, often found in red were accumulated in yerba sample A versus C.

adulterating species® such as 4-heptenal
and 2,4-heptadienal predominated in
yerba C (Table 2).

Several PAHs and other environmental
contaminants have also been identified
in yerba mate extracts, and typically
prevailed in one brand versus another
(Figure 7). The presence of these
contaminants is likely the result of

the yerba processing steps such as
blanching and smoke drying rather than
soil and atmospheric contamination.®
Typically, environmental contaminants
are not included in the classification
model, but in this particular case, PAHs
may be considered to be part of the
model, since processing of yerba mate
samples could differ depending on

the brand.



Table 2. Results of fold change analysis for selected volatile compounds. Some of these compounds were not necessarily included in the final
classification model.

RT Compound 2::’:: p Regulation | Log FC Alias Flavor
4.96 2(3H)-Furanone, 5-methyl- 0.8 6.5E-03 Up 14.0 a-Angelica lactone Sweet, soIvent—Iikibggﬁggﬁﬁz:‘g:;tty with coumarin,
5.51 4-Heptenal, (2)- 1.0 1.3E-02 Down -13.7 Qily, dairy, creamy’
6.25 2(5H)-Furanone, 5,5-dimethyl- 05 | 26E10 Up 24 44-Dimethyl2-buten-4-olide | A3 °°";)F:32§‘";:rfc?s"szz’:r’%";'a?;igfgﬁ‘;’f"de” sage
6.29 2(3H)-Furanone, dihydro-5-methyl- 0.4 5.8E-19 Up 19.7 y-Valerolactone Milky, fatty’
6.64 2(5H)-Furanone, 3-methyl- 0.4 9.5E-03 Up 131 a-Methyl-y-crotonolactone Sweet, tobacco-like odor®
7.22 1-Propanone, 1-(2-furanyl)- 0.5 6.7E-03 Up 13.5 2-Furyl ethyl ketone Fruity taste, sweet and caramel odor*
7.30 2,4-Heptadienal, (E,E)- 0.3 3.5E-10 Down -1.9 Fatty, oily, cinnamon’
10.23 L-a-Terpineol 0.6 1.7E-02 Up 14.4 Citrus, tropical fruits, apple, tomato, and coffee flavors’
10.69 | 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- 0.3 3.4E-11 Up 1.1 Ethylmethylmaleimide Sweet, adds body, flue-cured note®
14.12 trans-B-lonone 1.1 7.0E-06 Down -1.0 Cedar woods, violets?
14.63 2—Proprir;?::),(;':—)(ht:zgroxy-ii— 04 | 3.9E-07 Down 1.3 Guaiacylacetone Vanilla, wood origin®
16.48 3-Hydroxy-5,6-epoxy-B-ionone 0.6 5.1E-20 Up 24.3 Fiity, sweet, berry, ‘F',V:\zg‘ef‘,yo'et' oris (s root)
16.72 3-0Ox0-7,8-dihydro-a-ionone 0.9 4.5E-04 Down -18.9 Unknown
21.23 Abscisic acid 0.6 8.4E-03 Down -1.4 Plant hormone

* Mass error shown for quant ion
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Figure 7. PAH and other environmental contaminants identified in yerba mate extracts.




Yerba mate classification results A Compound list

The resulting class prediction model was Vs i foundaics Pl Profile
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Figure 8. Results visualization in Classifier: 3D PCA plot and compound list are shown. (A) Positive control
for yerba A. (B) Yerba A adulterated with 5% C.



The results summary of the yerba mate
authentication model is displayed in
Figure 9. Since the SIMCA algorithm was
used to create the model, the results

of classification were reported as a
distance, in this case from sample A.
The model was able to successfully
distinguish pure samples of A from other
brands, including D, which was not part
of the class prediction model. The model
was also able to distinguish between
pure and adulterated samples.

Conclusion

This application note provides an
example of a workflow for food
authenticity using yerba mate. A
workflow that employs high-resolution
GC/Q-TOF and Classifier software can
be used for routine authenticity analysis
beyond food applications.

The class prediction model that included
various aroma volatiles as well as PAH
contaminants identified in yerba mate
extracts, was able to successfully
differentiate between four brands of
yerba mate (including the one not
considered in the model) as well as
adulterated yerba mate samples at a
level of only 5% adulteration.
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Figure 9. Authentication results for yerba mate samples A, B, C, and D (not included in the model), as well
as A adulterated with C. The distance from sample A is reported.
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