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Abstract
This application note provides an example of a novel food authenticity workflow 
that can be used for food classification and detection of food fraud. Different brands 
of yerba mate, a South American herbal tea, were used to illustrate the workflow. 
The food authenticity workflow described here takes advantage of high-resolution 
accurate mass GC/Q-TOF data, as well as differential analysis software that enables 
routine screening of food samples.

Workflow for Food Classification and 
Authenticity using Yerba Mate and 
High-Resolution GC/Q-TOF
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Introduction
Food fraud is a highly profitable business 
and includes various activities such 
as misbranding, mislabeling, dilution, 
counterfeiting, and adulteration.1 
Among foods and food ingredients, 
the most frequently adulterated are 
olive oil, seafood, milk, honey, fruit 
juices, spices, coffee, and tea.2 To 
identify adulteration of a broad variety 
of food products, numerous analytical 
techniques, including high-resolution 
time-of-flight (TOF) mass spectrometry 
are used.3 Previously, a complete food 
authentication workflow for both method 
development and routine sample testing 
was demonstrated using an LC/Q-TOF.4 
To streamline the characterization of 
foods with high-resolution GC/Q-TOF, 
a similar workflow using Agilent Mass 
Profiler Professional (MPP) and Classifier 
software has been developed. The 
workflow was evaluated using yerba 
mate (Ilex paraguariensis), a traditional 
South American herbal tea. Adulteration 
of yerba mate (intentional or not) with 
different Ilex species is a common 
issue, and contributes to a change in 
flavor, as well as a bitter taste of the 
final product.5,6 On the other hand, the 
processing of yerba mate involves 
several steps, such as blanching (rapid 
heating to deactivate enzymes), drying, 
and ageing that will also affect the 
aroma and chemical composition of 
yerba mate.5-7

The classification model for yerba mate 
authenticity described in this application 
note was able to distinguish between 
different brands of commercially 
available yerba mate. The three 
yerba mate brands presented distinct 
profiles of the volatile aroma, as well 
as detectable levels of contaminating 
polycyclic aromatic hydrocarbons 
(PAHs).

Experimental

Samples and extractions
Yerba mate samples of four different 
brands, A, B, C, and D were obtained 
from a supermarket in Buenos Aires, 
Argentina. Brand A was a premium 
brand and brand C was one of the less 
expensive supermarket brands. Before 
the extraction, the dry yerba samples 
of brand A were mixed with C to yield 5, 
10, 20, 50, and 80% adulterated yerba A 
samples. In one instance, yerba A and 
D were also mixed at a 50/50 ratio. The 
replicates of each of the pure samples, 
as well as adulterated samples, were 
extracted separately. Deionized (DI) 
water (10 mL) was added to each 
individual 2 g yerba sample. This was 
mixed, soaked for 30 minutes, then 
extracted using a standard unbuffered 
EN QuEChERS protocol along with 
method blanks. 

Data acquisition and processing
The samples were analyzed in random 
order using an Agilent 7890B GC coupled 
to an Agilent 7250 high-resolution 
Q-TOF MS. The full spectrum data were 
acquired in EI mode. The parameters 
are described in detail in Table 1. The 
Unknowns Analysis tool of Agilent 
MassHunter Quantitative Analysis 
software 10.1 was used to perform the 
chromatographic deconvolution and 
NIST 17.L library search. The retention 
indices were calculated based on the 
alkane ladder to improve accuracy of 
compound identification. The yerba mate 
classification model was built using 
pure yerba mate samples in MPP 15.1. 
Classifier 1.1 was further used to validate 
the model and analyze the “unknown”, or 
adulterated, yerba samples along with 
positive and negative controls.

Table 1. GC/Q-TOF acquisition parameters.

Parameter Value

Q-TOF Agilent 7250 Q-TOF MS

GC 7890B

Column Agilent DB-5ms UI, 30 m × 0.25 mm, 0.25 µm

Inlet MMI, 4 mm UI liner single taper with wool

Injection Volume 1 µL

Injection Mode Splitless

Inlet Temperature 280 °C

Oven Temperature Program
50 °C for 2 min;  
10 °C/min to 300 °C; 
10 min hold

Carrier Gas Helium

Column Flow 1.2 mL/min 

Transfer Line Temperature 300 °C

Quadrupole Temperature 150 °C

Source Temperature 200 °C

Electron Energy 70 eV

Emission Current 5 µA

Spectral Acquisition Rate 5 Hz

Mass Range 45 to 650 m/z
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Results and discussion

Yerba mate classification workflow
To build the classification model, 
six replicates of each type of yerba 
mate from three different brands 
were extracted and analyzed using 
a high-resolution GC/Q-TOF. A 
chromatogram overlay from these 
extracts is displayed in Figure 1. 
Although a few prominent components 
differentiating between the three yerba 
brands were observed, chromatographic 
profiles were very similar overall, 
suggesting that some minor but robust 
components would likely also have to be 
included in the class prediction model.

The general workflow is outlined in 
Figure 2. First, a classification model is 
built and validated in MPP and Classifier 
following the feature finding step in 
Unknowns Analysis tool (Figure 2A). 
After the classification model is created 
and exported, unknown samples can be 
characterized directly using Unknowns 
Analysis and Classifier, bypassing 
MPP (Figure 2B). Classifier software 
is designed for routine processing of 
unknown samples based on the existing 
classification model and features a few 
effective visualization tools. 

Feature finding was performed in 
Unknowns Analysis using SureMass 
deconvolution followed by NIST17.L 
library search (Figure 3). Identity of 
the compounds was confirmed with 
retention indices (RIs) as well as 
accurate mass (using the ExactMass 

feature of Unknowns Analysis, 
Figure 3A). For a true hit, the mass error 
for the majority of prominent peaks 
was within 2 ppm. The mass error 
for a false positive was significantly 
greater (Figure 3B). Accurate compound 
identification was key to correct 
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Figure 1. Overlaid chromatograms from the extracts of the three brands of yerba mate labeled A, B, and C. An arrow points to caffeine.
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Figure 2. Workflow for sample classification. (A) Class prediction model building and validation. 
(B) Unknown samples classification, with MPP bypassed.
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Figure 3. Compound identification and ID confirmation in Unknowns Analysis. The ExactMass feature (shown in the bottom table and the mirror plot of each 
screen capture) uses accurate mass information from a compound spectrum to check if a fragment formula is a subset of the molecular formula of the library hit. 
(A) Library hit confirmed by ExactMass. (B) False positives displaying large mass error on the component’s fragment ions.
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alignment in MPP and, although not 
always an essential part of a routine 
authenticity workflow, it helped create 
a robust class prediction model by 
monitoring the compound selection. 

The classification model was built 
using the soft independent modeling 
of class analogy (SIMCA) algorithm 
in MPP. In the first step, the data were 
imported into MPP from the Unknowns 
Analysis. This was followed by sample 
grouping, alignment, normalization, 
filtering, and quality control (QC) using 
principle component analysis (PCA). 
As shown in Figure 4, all three sample 

Figure 4. All three sample groups can easily be 
separated on a PCA plot.

A
C
B

Figure 5. Building SIMCA model in MPP. (A) Setting parameters for model validation. (B) Output of training 
algorithm: model distance for each sample group from sample A. (C) Discriminating power of a subset 
of compounds is shown (blue bar graph). Also shown is the abundance distribution (heat map) of the 
individual compound in the training set.
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groups can easily be separated on the 
PCA plot. At the next step, the number 
of features was further reduced through 
statistical analysis (p <0.05) and fold 
change analysis (F >2). The resulting 
set of compounds was used to create a 
class prediction model. Figure 5 displays 
parameter settings for the model 
validation as well as a selected output of 
the SIMCA model training algorithm. 

The SIMCA classification model for 
yerba mate was exported from MPP 
directly to the Classifier software and 
further validated using both positive 
and negative controls, prepared from 
pure and mixed brands of yerba 
samples, respectively.
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Results of differential analysis, 
identification of aroma volatiles 
and contaminants
The results of the fold change combined 
with statistical analysis for any pair of 
sample groups can be visualized on 
the volcano plot. An example of such 
visualization, comparing the yerba 
extracts of brand A and C, is shown 
on Figure 6. The characteristic volatile 
compounds that prevail in one of the 
yerba brands compared to the other 
are labeled.

Further details for these potential 
compounds of interest, predominantly 
those associated with flavor and aroma 
are provided in Table 2. The compound 
3-hydroxy-5,6-epoxy-β-ionone displayed 
one of the most significant fold change 
values among the identified aroma 
compounds (with high p-value) between 
the two groups. It could therefore 
potentially contribute to a significant 
difference in flavor between these 
brands of yerba mate. Interestingly, 
furanones (important flavor compounds) 
were found at higher levels in yerba A, 
while a few aldehydes, often found in 
adulterating species5 such as 4-heptenal 
and 2,4-heptadienal predominated in 
yerba C (Table 2).

Several PAHs and other environmental 
contaminants have also been identified 
in yerba mate extracts, and typically 
prevailed in one brand versus another 
(Figure 7). The presence of these 
contaminants is likely the result of 
the yerba processing steps such as 
blanching and smoke drying rather than 
soil and atmospheric contamination.8 
Typically, environmental contaminants 
are not included in the classification 
model, but in this particular case, PAHs 
may be considered to be part of the 
model, since processing of yerba mate 
samples could differ depending on 
the brand.

Figure 6. Volcano plot and fold change analysis. Comparison of brands A and C. Compounds highlighted 
in blue are those that are present in significantly higher levels in C as compared to A, and those labeled in 
red were accumulated in yerba sample A versus C.
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Table 2. Results of fold change analysis for selected volatile compounds. Some of these compounds were not necessarily included in the final 
classification model.

RT Compound
Mass 
Error* p Regulation Log FC Alias Flavor

4.96 2(3H)-Furanone, 5-methyl- 0.8 6.5E-03 Up 14.0 α-Angelica lactone Sweet, solvent-like, oily, coconut, nutty with coumarin, 
tobacco nuances1

5.51 4-Heptenal, (Z)- 1.0 1.3E-02 Down -13.7   Oily, dairy, creamy1

6.25 2(5H)-Furanone, 5,5-dimethyl- 0.5 2.6E-10 Up 2.4 4,4-Dimethyl-2-buten-4-olide Aroma component of hop extract, and of lavender, sage 
brush, narcissus and salmon oils2

6.29 2(3H)-Furanone, dihydro-5-methyl- 0.4 5.8E-19 Up 19.7 γ-Valerolactone Milky, fatty1

6.64 2(5H)-Furanone, 3-methyl- 0.4 9.5E-03 Up 13.1 α-Methyl-γ-crotonolactone Sweet, tobacco-like odor3

7.22 1-Propanone, 1-(2-furanyl)- 0.5 6.7E-03 Up 13.5 2-Furyl ethyl ketone Fruity taste, sweet and caramel odor4

7.30 2,4-Heptadienal, (E,E)- 0.3 3.5E-10 Down -1.9   Fatty, oily, cinnamon1

10.23 L-α-Terpineol 0.6 1.7E-02 Up 14.4   Citrus, tropical fruits, apple, tomato, and coffee flavors1

10.69 1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl- 0.3 3.4E-11 Up 1.1 Ethylmethylmaleimide Sweet, adds body, flue-cured note5

14.12 trans-β-Ionone 1.1 7.0E-06 Down -1.0   Cedar woods, violets2

14.63 2-Propanone, 1-(4-hydroxy-3-
methoxyphenyl)- 0.4 3.9E-07 Down -1.3 Guaiacylacetone Vanilla, wood origin6

16.48 3-Hydroxy-5,6-epoxy-β-ionone 0.6 5.1E-20 Up 24.3   Fruity, sweet, berry, woody, violet, orris (iris root), 
powdery1

16.72 3-Oxo-7,8-dihydro-α-ionone 0.9 4.5E-04 Down -18.9   Unknown

21.23 Abscisic acid 0.6 8.4E-03 Down -1.4   Plant hormone

* Mass error shown for quant ion
1 The Good Scents Company
2 PubChem
3 Perfume and Flavor Chemicals (Aroma Chemicals) Vol.1, By Steffen Arctander, Lulu.com, May 10, 2019
4 Coffee Flavor Chemistry. Ivon Flament. 2002
5 Tobacco Flavoring for Smoking Products. John C. Leffingwell, Harvey J. Young & Edward Bernasek. 1972
6 Red Wine Technology. Antonio Morata. 2019

Figure 7. PAH and other environmental contaminants identified in yerba mate extracts.
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Yerba mate classification results
The resulting class prediction model was 
evaluated using yerba A “adulterated” 
with 5% to 80% of yerba C. The 
visualization examples for the SIMCA 
classification model that include 3D PCA 
plots (right) and compound lists (left) 
are shown in Figure 8. Note that for the 
yerba A positive control (Figure 8A) most 
of the model compounds were within 
the model range (highlighted in green). 
For sample A adulterated with 5% C 
(Figure 8B), a few compounds were out 
of the model range. 

Figure 8. Results visualization in Classifier: 3D PCA plot and compound list are shown. (A) Positive control 
for yerba A. (B) Yerba A adulterated with 5% C.
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The results summary of the yerba mate 
authentication model is displayed in 
Figure 9. Since the SIMCA algorithm was 
used to create the model, the results 
of classification were reported as a 
distance, in this case from sample A. 
The model was able to successfully 
distinguish pure samples of A from other 
brands, including D, which was not part 
of the class prediction model. The model 
was also able to distinguish between 
pure and adulterated samples.

Conclusion
This application note provides an 
example of a workflow for food 
authenticity using yerba mate. A 
workflow that employs high-resolution 
GC/Q-TOF and Classifier software can 
be used for routine authenticity analysis 
beyond food applications.

The class prediction model that included 
various aroma volatiles as well as PAH 
contaminants identified in yerba mate 
extracts, was able to successfully 
differentiate between four brands of 
yerba mate (including the one not 
considered in the model) as well as 
adulterated yerba mate samples at a 
level of only 5% adulteration.

Figure 9. Authentication results for yerba mate samples A, B, C, and D (not included in the model), as well 
as A adulterated with C. The distance from sample A is reported.
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