IDENTIFICATION AND QUANTIFICATION OF HOST CELL PROTEIN IMPURITIES IN HIGH PURITY MONOCLONAL ANTIBODIES DOWN TO 1 PPM: AN INTER-LABORATORY STUDY

Catalin Doneanu¹, <u>Scott J. Berger¹</u>, Malcolm Anderson², Brad Williams³, Matt Lauber¹, Asish Chakraborty¹ and Weibin Chen¹ ¹Waters Corporation, Milford, MA USA; ²Wilmslow, UK; ³Beverly, MA USA

INTRODUCTION

- Host cell protein impurities (HCPs) in biopharmaceuticals raise immunogenicity, stability, and drug efficacy concerns, even when present at ppm levels.
- Regulatory guidances mandate that downstream processes are optimized to clear HCPs to the lowest levels that can be practically achieved, and that sensitive assays are in place to demonstrate clearance.
- The ELISA and immunoassay based HCP detection methods widely adopted today typically report total HCP burden, and often lack broad specificity required for comprehensive HCP monitoring.
- LC-MS based approaches for identification and quantification of HCPs in biopharmaceuticals have now been realized [Refs. 1-5, 7] to enable comprehensive HCP discovery and monitoring of individual HCP protein impurities.
- In this study, a novel analytical approach (2DLC-HDMS^E), that combines high pH/low pH reversed phase (RP/RP) separations with orthogonal ion mobility (IM) gas phase separations, is presented as a means to maximize analytical peak capacity and achieve robust low ppm HCP analysis.
- Our results indicate that LC-MS assays are now able to attain comparable sensitivity to traditional immunological based HCP assays, while offering discrete HCP identification and monitoring.

METHODS

Sample preparation

Three murine derived mAbs: a NIST reference mAb standard; Remicade, a commercial Infliximab (Innovator); and Inflectra (its approved Biosimilar) biotherapeutics were analyzed. Samples (2.5 mg mAb) were denatured with RapiGest[™] SF (60 °C, 15 min), DTT reduced (60 °C, 1h), alkylated with IAM (RT, 30 min) and digested with a mixture of Lys-C and porcine trypsin (Promega) overnight. Four protein digest standards were spiked post-digestion such that the amounts loaded on-column using a 250 uL injection were: 5,000 fmol ADH (yeast alcohol dehydrogenase), 1,000 fmol PHO (rabbit phosphorylase b), 250 fmol BSA (bovine serum albumin) and 50 fmol ENL (yeast enolase).

2D-LC configuration

ACQUITY[™] UPLC[®] M-Class system with 2D technology was used for reversed-phase/reversed-phase (RP/RP) 2D-LC separations of the antibody digest.

First Dimension (1D) pH 10: 1.0 x 50 mm XBridge C₁₈ column (5 µm particles), 10 µL/min flow. Mobile phase: 20 mM ammonium formate in water (Solvent A) and ACN (Solvent B).

Online dilution (1:10) of the eluent from 1D prior to the trap column.

Trap column: 0.3 x 50 mm packed with 5- μ m Symmetry C₁₈ particles.

MS and data processing

Data-independent acquisition (MS^E) were performed on a SYNAPT G2-S mass spectrometer:

- Acquisition cycle time was 0.5 sec, m/z range: 100-1990.
- Fixed CE at 5 V for MS scans; CE ramp 20-45 eV for MS^E scans.
- For IMS (HDMS^E) enabled acquisition, a fixed wave velocity (650 m/s) and fixed wave height (40 V) applied.
- Ion mobility specific CE were applied during HDMS^E acquisition [6]
- Data Processing: ProteinLynx Global Server (PLGS) 3.0.2

/aters THE SCIENCE OF WHAT'S POSSIBLE.

To learn more about LC-MS based approaches for HCP analysis, please visit: www.waters.com/HCP

Second Dimension (2D) pH 2.4: 0.3 x 150 mm analytical column CSH C₁₈ 1.7 µm, kept at 60 °C and operated at 10 μ L/min.

Fractions were eluted in ten steps of increasing organic strength, with each step diluted online to 1:10 ratio with 0.1% TFA in water (pH=2.1) before trapping. Low pH separations in the second chromatographic dimension used a 40 min gradient from 3 to 40% acetonitrile (0.1% formic acid).

B: 0.1% FA in ACN

Figure 1. Fluidic configuration for two-dimensional high pH/ low pH RP/RP chromatography, employing pre-trap on-line dilution.

SYNAPT G2-S HDMS system coupled to an ACQUITY UPLC M-Class with 2D technology.

ANALYTICAL DEVELOPMENT

Figure 2. LC separation reproducibility of the 2DLC chromatographic system. Extracted mass chromatograms were generated for the monoisotopic peaks of two low-abundance HCP peptides. The peptides reproducibly elute in the same fraction at consistent retention times over the course of the triplicate HCP discovery experiment.

Figure 3. Enabling Ion Mobility during 2DLC-MS^E acquisition (i.e. 2DLC-HDMS^E) separates peptide MS ions in the gas phase, and simplifies the resulting MS^E fragmentation spectra. The complex MS^E fragmentation spectra (TOP) seen without IMS separation, are greatly simplified by enabling IMS (MIDDLE), enabling clear ion detections. Confirmatory targeted MS/MS (2 m/z isolation window) independently validates fragment ion assignments. Example: NSFL1 Cofactor p47 peptide SYQDPSNAQFLESIR from NIST mAb.

HCP ANALYSIS OF NIST MAB REFERENCE STANDARD

Detecting low level (sub 20 PPM) HCPs in the NIST mAb Reference Standard from multiple peptides

Consistency of Hi3 Quantification of NIST mAb Reference Standard HCPs across three laboratories

HCP ANALYSIS OF REMICADE (INFLIXIMAB) AND ITS **BIOSIMILAR, INFLECTRA**

		No	Accesssion	Protein	Sequence	Average	Amount or	n column	Concent	tration	RSD
1 vial 100 mg		crt	Number	Description	Coverage (%)	MW (kDa)	fmoles	ng	ng/mL	ppm	(%)
Pomioado [®]		1	P00489	Glycogen phosphorylase rabbit (PHO) - 1000 fmoles	41.2	97.1 36.7	1000	97 73	1942 1454	92	0.0
100 mg	Remicado"	3	P02769	Bovine serum albumin (BSA) - 250 fmoles	21.9	66.3	296	20	392	19	10.3
powder for	100 mg	4	Q6GUQ1	Epidermal growth factor-like protein 8	8.2	33.3	792	26	527	25	14.2
concentrate	Preder for concentrat/	5	Q8CBE3	WD repeat-containing protein 37	4.8	55.1	288	16	317	15	23.1
for solution for	Infliksimab	6	P00924	Enolase 1 yeast (ENL) - 50 fmoles	15.7	46.6	102	5	95	5	10.8
Infliximab											
IIIIIAIIIdo							Total	ng/mL	845		
							Total	ppm		40	
							mAb	purity		99.996%	

No	Average HCP	НСР	Sequence	MW	Peptide	Monoisotopic	RT	Drift time	2D Fraction	
crt	conc (ppm)	Identification	Coverage (%)	(kDa)	Sequence	peak (charge)	(min)	(ms)	no	
1	16	Clathrin interactor 1	7.3		ELVEFAQDDDRLR	535.93 (+2)	11.7	3.3	1	
					SLENYHFVDEHGKDQGINIR	475.03 (+5)	10.2	1.9	3	
					YVGVSSDSVGGFR	665.33 (+2)	11.8	3.5	4	
2	14	Low affinity IgG gamma Fc region receptor	32.7	36.7	SQVQASYTFK	579.79 (+2)	7.2	3.5	3	
					TLHQSKPVTITVQGPK	578.67 (+3)	6.2	3.5	5	
					EMGETLPEEVGEYR	819.87 (+2)	17.8	5.1	5	No
					ISFFHNEK	511.26 (+2)	6.5	3.2	6	crt
					HPEALDEETEHDYQNHI	692.96 (+3)	8.1	3.7	6	
					ATVNDSGEYRCQMEQTR	682.30 (+3)	15.6	4.1	6	
					EDTVTLTCEGTHNPGNSSTQWFHNGR	737.09 (+4)	9.2	4.1	6	1
3	13	Stress induced phosphoprotein 1	9.0	62.6	LAYINPDLALEEK	744.90 (+2)	17.2	4.5	5	2
					ALSAGNIDDALQCYSEAIK	680.33 (+3)	17.9	3.7	5	3
					ALDLDSSCKEAADGYQR	633.62 (+3)	24.8	3.6	9	-
4	12	Glucose-6-phosphate isomerase	10.6	62.7	ELFEADPER	553.26 (+2)	16.7	3.5	4	4
					HFVALSTNTAK	594.82 (+2)	5.6	3.6	5	5
					AVLHVALR	439.78(+2)	7.3	2.7	7	6
					VWFVSNIDGTHIAK	529.62 (+3)	15.7	3.4	9	7
					TLASLSPETSLFIIASK	889.50(+2)	23.5	5.2	9	8
5	7	NSFL1 cofactor p47	28.2	40.7	EFVAVTGTEEDR	676.84 (+3)	16.1	4.5	1	0
		-			LGAAPEEESAYVAGER	824.89 (+2)	10.2	4.8	1	
					MAEERQDALR	609.80 (+2)	10.9	3.7	3	10
					LAHGGQVNLDMEDHRDEDFVKPK	530.86 (+5)	9.1	3.0	3	11
					SYQDPSNAQFLESIR	877.92 (+2)	15.5	5.1	3	12
					SPNELVDDLFK	638.82 (+2)	19.1	3.5	4	13
					DLIHDQDEEEEEEGQR	700.63 (+3)	17.6	3.9	4	14
6	7	Beta-2-microglobulin	22.7	13.8	TVYWDRDM	543.24 (+2)	10.9	3.2	1	14
		Ŭ			VEMSDMSFSK	580.75 (+2)	10.3	3.5	3	15
					TPQIQVYSR	546.29 (+2)	7.9	3.3	3	16
7	5	Serine/arginine-rich splicing factor 7	15.7	30.8	VYVGNLGTGAGK	568.31 (+2)	7.5	3.5	4	17
					NPPGFAFVEFEDPRDAEDAVR	793.37 (+3)	20.2	4.4	4	18
8	5	Transketolase	8.3	67.6	TSRPENAIIYSNNEDFQVGQAK	827.74 (+3)	11.3	4.1	3	
					NMAEQIIQEIYSQVQSK	670.34 (+3)	26.6	3.8	8	
					VLDPFTIKPLDRK	514.64 (+3)	12.9	3.3	9	
9	4	Adenvlate kinase 2	11.3	26.5	LEAYHTQTTPLVEYYR	661.99 (+3)	12.9	3.5	5	
					AVLLGPPGAGK	490.34 (+2)	9.5	3.0	6	
10	3	Prostaglandin reductase 1	8.2	35.6	MEGFIVNR	483.25 (+2)	9.7	2.9	3	Т
	-				TGPCPQGPAPEVVIYQQLR	1055.54(+2)	17.1	5.4	6	là
11	2	Flavin reductase (NADPH)	12.6	22.2	LPSEGPQPAHVVVGDVR	586.32 (+3)	10.2	3.6	3	
	_				IAIFGATGR	453.26(+2)	11.1	3.4	8	CC
12	1	Peroxiredoxin 5	25.7	21.8	VGDAIPSVEVFEGEPGK	865.44 (+2)	17.8	5.1	3	
	_				THLPGFVEQAGALK	734.40 (+2)	12.2	4.5	6	20
						795.08 (+2)	29.1	4.0	8	a

Reproducibility of the 2D LCMS^E HCP Discovery Methodology

Ion Mobility (HDMS^E) acquisition simplifies MS^E spectral complexity of HCP peptide fragments of an HCP Peptide Presursor Ion (m/z 877.92, 2+ Charge)

Accesssion	Protein	Identified	Average	Measure	on (ppm)		
Number	Description	without IM	MW (kDa)	Lab I	Lab II	Lab III	Average
P00489	Glycogen phosphorylase rabbit (PHO)-1000 fmoles	Y	97.1	155	155	155	155
P00330	Alcohol dehydrogenase yeast (ADH)-5000 fmoles	Y	36.7	106	125	164	132
P05064	Fructose biphosphate aldolase A isoform	Y	39.3	113	126	109	116
P05063	Fructose biphosphate aldolase C isoform	Y	39.4	106	93	91	97
P02769	Bovine serum albumin (BSA)-250 fmoles	Y	66.3	35	28	20	28
Q99KN9	Clathrin interactor	N	68.5	22	19	7	16
P08101	Low affinity IgG gamma Fc region receptor	Y	36.7	10	28	5	14
Q60864	Stress-induced phosphoprotein 1	N	62.5	10	16	13	13
P06745	Glucose-6-phosphate isomerase	N	62.7	7	15	13	12
P01887	Beta-2-microglobulin	N	13.8	5	14	1	7
Q9CZ44	NSFL1 cofactor p47	N	40.7	7	10	5	7
P00924	Enolase 1 yeast (ENL)-50 fmoles	Ν	46.6	7	7	3	6
Q8BL97	Serine/arginine-rich splicing factor 7	N	30.8	6	7	3	5
P40142	Transketolase	N	67.6	5	4	6	5
Q9WTP6	Adenylate kinase 2	N	26.5	4	6	2	4
Q91YR9	Prostaglandin reductase 1	N	35.5	4	3	3	3
Q923D2	Flavin reductase (NADPH)	N	22.2	1	3	1	2
P99029	Peroxiredoxin 5	N	21.8	1	2	1	1

Table I. List of peptides identified during $2D-LC/HDMS^{E}$
analysis of NIST mAb identifying HCPs at levels below
20 ppm. Detailed information is provided for each
peptide regarding the observed monoisotopic m/z,
charge state, ion mobility drift time, peptide LC
retention time from the 2 nd -dimension separation, as
well as peptide elution fraction from high pH 1st
dimension separation.

ble II. Fourteen NIST mAb HCPs were identified in ommon by all three laboratories performing 2DLC/HDMS^E equisition. Individual HCP concentrations (range of 1-200ppm) were calculated by the Hi3 methodology [Ref. 8] from three replicate injections, calibrated by the PHO protein standard, spiked in the NIST mAb post-digestion. Eleven HCPs (highlighted in yellow) required ion mobility based HDMS^E analysis for identification.

		No	No Accesssion Protein		Sequence	Average	Amount on column		Concen	RSD	
Inflectra [™] 100 mg		crt	Number	Description	Coverage (%)	MW (kDa)	fmoles	ng	ng/mL	ppm	(%)
powder for											
solution for infusion		1	P00489	Glycogen phosphorylase rabbit (PHO) - 1000 fmoles	35.7	97.1	1000	97	3884	388	0.0
Infliximab		2	P00330	Alcohol dehydrogenase yeast (ADH) - 5000 fmoles	40.7	36.7	2073	76	3043	304	4.5
		3	Q6GUQ1	Epidermal growth factor-like protein 8	8.2	33.3	687	23	915	92	18.9
For intravenous use after		4	P02769	Bovine serum albumin (BSA) - 250 fmoles	19.1	66.3	294	19	780	78	11.1
and dilution	Inflectra™ 100	5	Q8CBE3	WD repeat-containing protein 37	4.8	55.1	142	8	313	31	35.0
	solution for infusion	6	P00924	Enolase 1 yeast (ENL) - 50 fmoles	18.3	46.6	58	3	108	11	26.5
Hospira	Inflixing										
	avinab						Total	ng/mL	1228		
							Total	ppm		123	
							mAb	purity		99.988%	

Table III. Comparison of HCPs identified and quantified in Remicade and Inflectra. The same 2 HCPs were detected in common for both samples: epidermal growth-factor like protein 8 and WD repeat containing protein 37. Higher levels of the HCPs were detected for both proteins in the biosimilar version, for a total HCP burden roughly three times higher than the innovator.

References
1. Doneanu et. al. <i>mAbs</i> , 2012, 4, 24-44.
2. Schenauer, Anal Biochem, 2012, 428, 150-157.
3. Protein Downstream Processing, Methods in Molecular Biology 1129, 2014, Editor NE Labrou, chapter 25, 341-350.
4. Zhang et. al. <i>mAbs</i> , 2014, 6, 659-670.
5. Thompson et. al. Rapid Commun. Mass Spec, 2014, 28, 855-860.
6. Distler et. al. <i>Nat Meth</i> , 2014, 11, 167-170.
7. Doneanu, et al. Anal Chem, 2015, 87, 10283-10291. (Contains elements of the NIST mAb work in this poster)
8. Silva et. Al. Mol Cell Proteom, 2006, 144-127.

CONCLUSIONS

- An improved generic 2D-LC/HDMS^E assay was developed for quantitative HCP discovery analysis in biopharmaceuticals that incorporates ion mobility separations with 2D-LC/MS^E to extend assay sensitivity by an order of magnitude, allowing for the identification and quantification of HCPs at single digit ppm levels.
- A multi-laboratory trial of this methodology has established the quantitative robustness of the HCP discovery workflow.
- This methodology has been able to establish qualitative similarity of the HCP profile for an innovator biotherapeutic mAb and its approved biosimilar, but demonstrating quantitative differences in HCP levels.