Access to your success

Identification of Phospholipid Molecular Species Using Neutral Loss Survey and MS³ Analysis

Technical Report vol.2

1. Introduction

To elucidate the functions of phospholipids, it is important to conduct analysis not only of their classes and sub-classes, but of their molecular species as well. At Shimadzu, we found that electrospray ionization (ESI) MS³ analysis is effective for more detailed and accurate annotation of each molecular species. We established a system for phospholipid molecular species analysis using a neutral loss (NL) survey experiment of the head-group-related mass values, and succeeding MS³ analyses by selecting the resulting product ions as precursor ions for MS³ analyses (Fig. 1). Using this new method, 34 different molecular species of phosphatidylcholine (PC) were identified even without pre-separation by LC. We then turned our attention to establishing a system for analysis of phosphatidylethanolamine (PE) and phosphatidylserine (PS) in a mixture of lipids.

Fatty acyl chain at sn-1 : number of carbon is [a+1], and unsaturated degree is [{(ax2+1)-b)/2] Fatty acyl chain at sn-2 : number of carbon is [c+1], and unsaturated degree is [{(cx2+1)-d}/2] Base : X : ex. Choline, -CH₂CH₂N+(CH₃)₃ (PC)

Fig. 1 System for Analysis of Phospholipid Molecular Species - Neutral Loss (NL) Survey and MS^3 Analysis -

In the NL survey + MS^3 analysis, information for class and fatty acyl chains were obtained to make detailed analysis of diradyl phospholipids

2. Method

All of the phospholipids were extracted from rat brain (approx. 2 g), liver (approx. 5 g) and calf serum (100 μ L) according to Bligh and Dyer's method. The ESI-MS analysis was conducted using a Shimadzu LCMS-IT-TOF (ion trap-time-of-flight mass spectrometer). The extracted phospholipids were directly subjected to ESI MS² and MS³ analysis, using a Si60 column (1 x 100 mm, Nomura Chem., Japan). The mobile phase consisted of acetonitrile/ methanol (spiked with 0.1 % ammonium and 0.3 % acetate).

3. Results

The [M-phosphorylethanolamine] ($[M-(Pi-EthN)]^+$) ion corresponding to the [diglyceride-OH]⁺ ion is generated by MS² analysis of the [M+H]⁺ ion of PE in the positive mode (Fig. 2). By conducting MS³ analysis, selecting this [M-(Pi-EthN)]⁺ as the second precursor ion, [fatty acid (FA)-OH]⁺ ions are generated through neutral loss of monoglyceride (MG) moieties, and [MG-H]⁺ ions are generated by neutral loss of FA-related moieties, allowing effective identification of PE species fatty acyl chains. By conducting MS² of the [M-H]⁻ ion in the negative mode, the [M-serine]⁻ ion, corresponding to the [phosphatidic acid-H]⁻ ion, was generated as a product ion (Fig. 3). By selecting this [M-serine]⁻ ion as the second precursor ion, the fatty acyl chains of the PS species were effectively identified by MS³ analysis, which generated the corresponding [FA-H]⁻ ion.

Ser

Fig. 2 Neutral Loss Survey and MS³ Analysis of PE Two fatty acyl chains of PE were identified using a combination of NL survey of 141 u (C2H3NH2+H) and MS³ of DG (MS² product ion).

Sample : diacyl 16:0-16:0 PS (standard)

Fig. 3 Neutral Loss Survey and MS^3 Analysis of PS Two fatty acyl chains of PS were identified using a combination of NL survey of 87 u [C2H₃(NH₂)COOH+H] and MS^3 of PA (MS^2 product ion). Using this new method in conjunction with the MS² method in rapid analysis allowed identification of 7 molecular species of PS (Table 1, Figs. 4, 5). Using MS³ in combination with NL survey allowed highly accurate identification of two fatty acyl chains of the phospholipids. In addition to the NL survey information obtained in MS² analysis, the LCMS-IT-TOF proved very useful in assuring reliable identification of the two fatty acyl chains by providing excellent mass accuracy for the MS³ product ions (Table 2). 132 (one hundred thirtytwo) phospholipids (including PC, sphingomyelins, lysophosphatidylcholine, PE, lysoPE, PS, phosphatidylinositol, phosphatidylglycerol, and triglyceride) were identified in the lipid mixture derived from the rat liver, as summarized in Table 3. The possibility of using this method for quantitative analysis of the metabolome was also investigated. A 1.3-fold increase or 20% decrease in detection was obtained using this method. It is expected that this new method will be effective for comprehensive lipid metabolome analysis.

Fig. 4 Retention Times of Respective Lipid Classes Using a Si Column

		Molecular Species	Theoretical m/z	Difference (Da)	Mass Accuracy (ppm)
₹	1	diacyl 38:4 PS (18:0-20:4)	810.5285	0.0017	2.1
2	2	diacyl 40:6 PS (18:0-22:6)	834.5285	0.0020	2.4
2	3	diacyl 40:5 PS (18:0-22:5)	836.5442	0.0034	4.0
2	4	diacyl 36:1 PS (18:0-18:1)	788.5442	0.0019	2.4
3	5	diacyl 36:2 PS (18:0-18:2)	786.5285	0.0069	8.8
	6	diacyl 36:4 PS (16:0-20:4)	782.4972	0.0037	4.7
	7	diacyl 38:6 PS (16:0-22:6)	806.4972	0.0015	1.8

Table 1 Identification of PS in Rat Liver

Fig. 5	Mass	Spectrum	of PS	in	Rat Liver
--------	------	----------	-------	----	-----------

	Possible candidates for peak at m/z 810				theoretical m/z	difference (Da)	mass accuracy (ppm)
1	diacyl	38 : 4	PS	-H	810.5285	0.0017	2.1 [↑] 10ppm
2	alkacyl	41 : 10	DiMePE	-H	810.5438	0.0170	20.9
3	alkacyl	43 : 10	PE	-H	810.5438	0.0170	20.9 ↑ 20ppm
4	diacyl	40 : 10	DiMePE	-H	810.5074	0.0194	24.0
5	diacyl	42 : 10	PE	-H	810.5074	0.0194	24.0
6	alkacyl	39 : 4	PS	-H	810.5649	0.0381	47.0
7	alkacyl	40 : 11	PS	-H	810.4710	0.0558	68.9
8	diacyl	39 : 3	DiMePE	-H	810.6013	0.0745	91.9
9	diacyl	41 : 3	PE	-H	810.6013	0.0745	91.9
10	diacyl	39 : 11	PS	-H	810.4346	0.0922	113.8 1 30ppm
11	alkacyl	40 : 3	DiMePE	-H	810.6377	0.1109	136.8
12	alkacyl	42 : 3	PE	-H	810.6377	0.1109	136.8

Reduction in number of possible candidates					
10ppm : 1					
20ppm : 3					
130ppm : 10					
percentage of reduction					
10ppm : 100% (=1/1*100)					
20ppm : 33% (=1/3*100)					
130ppm : 10% (=1/10*100)					

	Possible candidates for peak at m/z 283		theoretical m/z	difference (Da)	mass accuracy (ppm)	Reduction in number of possible candidates
1	acyl 18 : 0 FA	-H	283.2637	0.0000	0.0 10ppm	10ppm : 1
2 3 4	alk $19 : 0 IA$ alk $20 : 7 FA$ acyl $19 : 7 FA$	-H -H	283.2062 283.1698	0.0575	203.1 331.6	
	Possible candidates for peak at $m/a = 203$		theoretical	difference	mass accuracy	Reduction in number
1	acyl 20 : 4 FA	-н	303.2324	0.0028	9.3 10ppm	10ppm : 1
2	alk 21 : 4 FA	-H	303.2688	0.0392	129.2	

Table 2 Possible Peak Identifications for MS and MS³ Ions

Class of phospholipid	Identification summary	Class of phospholipid	Identification summary	Class of phospholipid	Identification summary
PC	10	LPE	9	PG	11
SM	3	PS	7	LPG	5
LPC	8	PI	2	TG	67
PE	7	LPI	3	Total	132

Table 3 Summary of Identified Phospholipids in a Lipid Mixture from Rat Liver

Number of possible candidates : m/z of MS

Number of possible candidates : m/z of MS3

Fig. 6 A possibility of this method for use in quantitative analysis of a metabolome.

4. Conclusion

 By selecting the proper conditions for neutral loss scanning of 141 u or 87 u, PE or PS species were identified separately from other phospholipids (Figs. 2, 3).
The new systematic analysis of individual classes of phospholipids by conditional NL survey (MS & MS²) combined with subsequent MS³ has been shown to be a very effective method (Fig. 6). This method will be useful for lipidome (lipid metabolome) analysis. 3) When using the IT-TOF, very high mass accuracy was obtained in MS, MS² and MS³ without using internal standards (Table 2), demonstrating that NL survey in combination with MS³ provides high mass accuracy identification of a set of two FA of phospholipids.

LCMS-IT-TOF LIQUID CHROMATOGRAPH MASS SPECTROMETER

Mayuko Ishida^{1,2}, Shinichi Yamaguchi³, Junichi Taniguchi³, Junko Iida³, Kozo Miseki³, Osamu Nishimura¹, Takao Shimizu², Ryo Taguchi^{2,4}

¹Life Science Laboratory, Life Science Business Unit, Analytical and Measuring Instruments Division, Shimadzu Corporation, Japan, ²Graduate School of Medicine, The University of Tokyo; ³MS/GC Business Unit, Analytical and Measuring Instruments Division, Shimadzu Corporation, Japan; ⁴Crest JST

Founded in 1875, Shimadzu Corporation, a leader in the development of advanced technologies, has a distinguished history of innovation built on the foundation of contributing to society through science and technology. We maintain a global network of sales, service, technical support and applications centers on six continents, and have established long-term relationships with a host of highly trained distributors located in over 100 countries. For information about Shimadzu, and to contact your local office, please visit our Web site at

www.shimadzu.com

SHIMADZU CORPORATION. International Marketing Division 3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan Phone: 81(3)3219-5641 Fax. 81(3)3219-5710 URL http://www.shimadzu.com