Eliminate your Application and Chromatography Challenges

LC Application Scientist Session

Information Contributed by USA HPLC Applications Scientist Team

Speaker: Lorena Lopez LC Application Scientist Lexington, MA

800.

June 22, 2020 D

This Session will cover

Troubleshooting your Method, Application / Chromatography

- Sample prep considerations
- Troubleshooting by following the LC flow. Mobile Phase and System Hygiene
- Step through Method Setup to highlight parameters that are critical but often overlooked or misunderstood

Optimizing your Application / Method Transfer considerations

- What needs to be considered when implementing App notes and transferring method between systems
- Delay volume, column void volumes
- Capillary selection and connections
- Column considerations (dimension and particle size)

Advancing your Application / Chromatography

- How to choose the appropriate LC system for the application that is going to be run.
- Where to find resources or info

Sources of Error Generated During Chromatographic Analysis

Agilent

What is Method Transfer?

Different Aspects

From particle size to particle size (HPLC to UHPLC)

⇒ often associated with a change of instruments due to constraints in max. pressure, extra-column band broadening etc.. Some fine-tuning of method might be required due to frictional heating effects

⇒ available tools: Agilent Method translator, Third Party Method development SW (S-Matrix, ACD Labs, ChromSword, etc.)

From one eluent type or phase chemistry to an other

- ⇒ Method development
- ⇒ available tools: Method development SW (ACD Labs, ChromSword, S-Matrix etc.)

From column dimension to column dimension (e.g. 4.6 to 2.1 mm i.d., 50 mm to 100 mm)

- ⇒ recalculate flow rates, recalculate gradient times, adjust connection capillaries and flow cells, due to delay volume results may vary, method might need revalidation
- ⇒ available tools: Method Translator

From Instrument to Instrument

⇒ with method/instrument change: Isocratic Hold / Pre-injection, Vol. Modification

⇒ available tools w/o method or instrument change: none until ISET

Method Transfer Considerations & Application Optimization

Design Differences (U)HPLC Systems

- Delay volumes (gradient formation)
- Power range (flow x pressure)
- Extra column volume
- Temperature
- Data rates
- Sensitivity

Problem:

Instrument to Instrument Method Transferability

- Not possible
- Requires Re-Development
- Requires Re-Validation

Resulting in huge additional cost factor

Instrument to Instrument Method Transferability - Important Parameters

Comparison of Gradient Delay Volume (Dwell Volume)

1290 Infinity II Flexible Pump (Quaternary)

- Integrated Degasser
- 4 solvent channels with concurrent mixing of all 4 channels
- Lower in price, typically, than binary pump

1290 Infinity II High Speed Pump (Binary)

- Integrated Degasser
- 4 solvent channels available, mixing of 2 channels possible
- Better performance concept is widely accepted
- Greater control over dwell volume vs. Quaternary pump

*Incl. Degasser for both pumps **with solvent selection valve

1290 Family Delay Volume Profiles

1290 Delay Volume - 10-90% Transition

Method Transfer to UHPLC instruments Impact of delay volume and mixing behavior...

Chromatographic Test Result; Different Delay Volumes

Example -- How to Calculate Delay Volume

Delay Volume Summary for Agilent Infinity 1290 Systems

Pump	Configuration	Sampler	Liftoff	Midpoint	Transition
1290 bin @ 350 Bar	35ul JetWeaver	G4226A	125	225	130
1290 quat @ 350 Bar	no mixer	G4226A	375	570	330
1290 quat @ 350 Bar	380ul JetWeaver	G4226A	450	820	820
For Reference					
1260 bin @ 350 Bar	as shipped	G1367E	720	1105	545

Summary of Available Data

Delay Volume Summary for Binary 1260 Systems							
Pump	Configuration	Sampler	Liftoff	Midpoint	Transition		
1260 bin @ 350 Bar	as shipped	G1367E	720	1105	545		
1260 bin @ 350 Bar	minus damper	G1367E	635	955	460		
1260 bin @ 350 Bar	minus damper with purge valve in channel A	G1367E	550	835	425		
1260 bin @ 350 Bar	minus mixer/damper with purge valve in channel A	G1367E	270	375	175		
1260 bin @ 350 Bar	minus mixer/damper with purge valve in channel A	G1367E with bypass (ADVR)		110			
For Reference							
1290 bin @ 350 Bar	35ul JetWeaver	G4226A	125	225	130		

Intelligent System Emulation Technology (ISET) One-Click LC System Emulation

- Emulates other (U)HPLC instruments
 by a simple mouse click
- Runs existing (U)HPLC methods
 without modifying method or system
- Delivers same retention times and peak resolution
 - for infinitely better method transfer

ISE'

Intelligent System Emulation Technology (ISET) How does it work?

Intelligent System Emulation Technology (ISET)

Can you tell which is which?

You can run the fastest UHPLC methods, and still run your legacy methods

Lowest dispersion for highest resolution

Agilent **A-Line Quick Connect UHPLC column fittings** for truly dead-volume-free fluidic connections

- Tool-free connection up to 1300 bar
- Spring loaded design for easy and **truly zero-dead volume** connection

System dispersion

- Removable and reusable for all column types
- "Dispersion is the sample bandspreading or dilution which occurs in connecting tubing, sample valves, flow cells and in column end-fittings."

Peak height: Loss of sensitivity

Peak width: Loss of resolution

• Capillaries (Inner diameter, length)

Parameter	Black	Red	Green	Blue
Tubing Description	1	2	3	4
i.d. (mm)	0.075	0.127	0.178	0.254
Total Length (mm)	500	500	500	500
Flow rate (ml/min)	1.000	1.00	1.00	1.00
Solvent Name	ACN/wa	ACN/wa	ACN/ <u>wa</u>	ACN/wa
Viscosity (cP)	1.2	1.2	1.2	1.2
Internal Volume (ul)	2.209	6.334	12.4	25.3
Expected pressure (bar)	129.1	15.7	4.1	1.0

Tubing Pressure and Internal Volume

500mm – typical sample flow path with UV detn. LC/MS -- near 1000mm

	<u>Color</u>	<u>i.d.</u>
	Black	0.075 mm (0.003 inches)
-	Red	0.12 mm (0.005 inches)
	Green	0.17 mm (0.007 inches)
	Blue	0.25 mm (0.01 inches)
	Clear	0.50 mm (0.02 inches)

A MARKET

Tubing Dimensions and System Dispersion

https://www.agilent.com/cs/library/usermanuals/public/Copy%20of%20UltraLowDispersionKit_TN_EN.pdf

Optimize Dispersion for Small Columns 2.1 x 50 mm Poroshell 120 1.9um

- Figure 1A. The performance of an Agilent InfinityLab Poroshell 1.9 μm column is improved when LC system volume is reduced by using smaller internal diameter capillaries and a smaller volume detector flow cell.
- Figure 1B. The performance of an Agilent InfinityLab Poroshell 1.9 μm column is improved when LC system volume is reduced by using smaller internal diameter capillaries and a smaller volume detector flow cell.

App Note: 5991-7560EN

Optimizing System Dispersion on the Agilent 1290 Infinity II LC

App Note: 5991-5984EN

Increased Pressure Requirements (column particle size)

d _p (μm)	ΔP (bar)	Ν
5.0	14.5	25,000
3.0	66.9	41,000
1.5	531	83,000
1.0	1800	125,000
0.75	4270	166,000
0.50	14400	250,000

For a 30 cm column, 5.0 to 0.50 µm particle size reduction:

≻N (theoretical plates) increases 10-fold

 $\geq \Delta P$ (change in pressure) increases 1000-fold

Column Length and Particle Size

* Reduction in analysis time compared to 150 mm column; all columns 4.6-mm i.d.

Predicting Column Pressure and Performance

Parameter	Media		ZORBAX		Porosh	ell 120
i.d. (mm)		2.100	3.000	3.000	3.000	3.000
Length (mm)		50.0	50.0	100.0	100.0	100.0
Particle Size (uM)		1.8	1.8	1.8	1.9	2.7
Column void fraction	1	0.60	0.60	0.60	0.60	0.60
Permeability (PF)		900	900	900	900	900
Reduced plate heigh	t value	2.30	2.30	2.30	1.70	1.70
Flow rate (ml/min)		0.5000	1.0000	1.000	1.000	1.000
Linear Velocity (mm/	sec)	4.01	3.93	3.93	3.93	3.93
Viscosity (cP) 25C A	CN/Water	1.2	1.2	1.2	1.2	1.2
Column Volume (ml)		0.104	0.212	0.424	0.424	0.424
Expected pressure (bar)	401.0	393.0	785.9	705.4	349.3
Estimated Efficiency	** (Neue)	12077	12077	24155	30960	21786

**Estimates do not consider system dispersion effects. Actual results will vary.

Yield estimates – 1.8um particles 2.1-4.6mm i.d.

Multi-Detector Connections Bandspreading

Use The Right Tool for the Job

We might get this to work, but the results may not be what we needed

(U)HPLC Systems

- Each component of the system has settable values, however not all settable values can be achieved
- Before using or purchasing a system, the user must be certain that the desired parameters can be run accurately and reproducibly
- Instrument specifications should be obtained from the appropriate manuals
- From these specifications, it can be determined if that component may be used

Pump Parameters

- Low flow rate (<0.5 ml/min) start to move to binary pump due lower delay volumes
- Shallow gradient (<1%B/min) requires binary pump due to lower delay volume and more precise changes

AutoSampler Parameters

Injecti			Advanced	l					
Injection volu	0.50 ÷ µ		▲ Injection Path Cleaning Standard W					Newer, UHPLC methods may	
Needle W Multi-wash Stopti	▼ Postti					M T L	lode: Was ime: ocati epea	sh Vial ▼ 3 ↓ s 3 ↓	
 As Pump/No Li 1.00 î mi 	 Of O 	<u>1.00</u> 🗘 mi	Multi-wa Step 1 2 3 Start C	Solvent S1 S2 S3 S1	Time [s 0 0 0	Seat Back FI	Needle W	Comment	'Sticky samples or more sensitive detectors may require aggressive cleaning

- Shorter (<150mm) and narrower columns (<3mm) may have lower injection volumes. Make sure the sampler precision and accuracy are correct for low volumes
- More sensitive detectors (or higher salt concentrations in the buffers) may require additional wash steps for both the needle and needle seat

Detector Parameters

🚆 Binary Pump 👯 Quat. Pump2 🧇 Multisampler 🧇 Multisampler Injector Prog	ram 🗬 Column Comp. 🔘 Valve 🔘 Valve2 🔘 Valve3 👗 Flow Mo	odulator4 🔇 Valve5 🔻 DAD 🔻 DAD2 🤌 FLD 🔆 Instrumen 💶
		DAD (G7117A)
Signa	Advanced	
Wavelengt Bandwid Reference Acquire h th Bandwidth	Spectru	
Signal A \checkmark $254.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal B \checkmark $210.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal C \checkmark $214.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal C \checkmark $214.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal D \checkmark $230.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal E \checkmark $260.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal F $=$ $273.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal G $=$ $280.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n Signal H $=$ $250.(\div)$ $4.0 \div$ \checkmark $360.(\div)$ $100.(\div)$ n	Store : All Rance from: 190.0 ÷ Step: 20 ÷ Analog Out Zero Offset: 5 ÷ % Attenuation: 1000 ▼ mA	▼ t <u>600.0</u> n n
Peakwi		
 > 0.013 min (0.25 s response time) (20 ▼ < 0.0016 min (0.016 s response time) (12 Stopti > 0.0016 min (0.031 s response time) (12 	Margin for negative Abso	
> 0.0031 min (0.063 s response time) (80	Autobala	Lamps on required for acq
 As f > 0.0063 min (0.13 s response time) (40 > 0.013 min (0.25 s response time) (20 H > 0.025 min (0.5 s response time) (10 Hz) > 0.05 min (1 s response time) (5 Hz) > 0.1 min (2 s response time) (2.5 Hz) > 0.2 min (4 s response time) (1.25 Hz) > 0.4 min (8 s response time) (0.62 Hz) > 0.85 min (16 s response time) (0.31 Hz) 	✓ Prerun □ Postrun	UV Lamp

As columns become shorter peaks elute more quickly requiring detector data rates to increase.

Resources — Primers

5990-7595EN The LC Handbook Guide to LC Columns and Method Development

5991-2359EN Two Dimensional Liquid Chromatography

5990-3777EN High Performance Capillary Electrophoresis

5991-5509EN Supercritical Fluid Chromatography

5989-6639EN Principles in Preparative HPLC

5991-3326EN Sample Preparation Fundamentals for Chromatography

5980-1397EN Fundamentals of UV-visible Spectroscopy

Resources for Support

- Collection of LC resources: <u>https://community.agilent.com/docs/DOC-1852-lc-insights-to-go#jive_content_id_LC_Troubleshooting</u>
- Agilent support resources: <u>https://community.agilent.com/community/resources</u>
- Agilent University: http://www.agilent.com/crosslab/university
- Agilent resource center:
 <u>http://www.agilent.com/chem/agilentresources</u>
- InfinityLab Supplies Catalog (<u>5991-8031EN</u>)
- Your local FSE and Specialists
- Youtube <u>Agilent Channel</u>
- Sales and support phone assistance (US and Canada):

1-800-227-9770 Phone Tree Navigation Assistance

Agilent Technologies

E VIDEOS PLAYLISTS COMMUNITY CHANNELS ABOUT AGILENT MAIN

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com

Thanks for your attention!

Universal Low Dispersion Fittings

Quick Turn

