

Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Tairo Ogura¹ Shimadzu Scientific Instruments, Inc. Columbia, MD, USA

PO-CON1758E

Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Introduction

Food allergy is an abnormal overreaction of immune system to a particular protein in food. It is becoming a major concern for public health and food industries. Typical food allergens are proteins and peptides. The signs and symptoms may range widely from itching, red skin, swelling, anaphylaxis etc. There is no cure for food allergy at present, so people with allergy must avoid food triggers. To avoid unexpected contact with food allergens, food labels are strictly used to indicate presence of specific allergens. The Food Allergen Labeling and Consumer Protection Act (FALCPA) identified eight foods or food groups as major allergens which include milk, eggs, fish (e.g., bass, flounder, cod), crustacean shellfish (e.g., crab, lobster, shrimp), tree nuts (e.g., almonds, walnuts, pecans), peanuts, wheat and soybeans and FALCPA mandates that the labels of foods containing eight major food allergens declare the presence of allergens. ELISA (enzyme-linked immunosorbent assay) and PCR (Polymerase chain reaction) are most commonly used technique to detect allergenic foods due to relatively simple handling. Even so,

cross-reactivity of ELISA can raise a the risk of false positive results. Additionally, ELISA requires separated analysis for each target. Since PCR assay is based on detection of DNAs rather than allergenic proteins, milk cannot be distinguished from beef and will be difficult to detect food contains egg white. Therefore, it is important to determine allergens in food by using more reliable detection method. Recently, liquid chromatography mass spectrometry becomes an alternative technique to detect allergenic proteins with high selectivity, sensitivity, and capability to analyze multiple allergens simultaneously. We developed a method to detect 31 peptides derived from eight allergens. We analyzed commercially available samples such as bread and gluten free bread etc to evaluate this method. We did not detected any peptides derived from gluten in gluten free bread and gluten free cracker. And we could detect peptides of 20 ppm wheat fortified to gluten free bread. We could detect other allergens shown on the label from commercial available food matrices.

Materials and methods

Sample preparation

Commercially available allergenic food materials were purchased at local grocery store and used for development of analytical methods. The samples were ground in fine powders by GM-200 (Retsch). 0.5 - 1 g of each ground samples was transferred into 50 mL tube. Hexane was used for removal of oils and fats from samples. Proteins were extracted by using the extraction

LC/MS analytical conditions

LC/MS analysis was conducted by using Shimadzu Nexera X2 UHPLC coupled to triple quadrupole mass spectrometer LCMS-8050. 0.1 % formic acid in water (A) and acetonitrile (B) were used for mobile phase at a flow rate of 0.5 mL/min. Shim-pack XR-ODS III (2.0 mmID x 75 mmL., 1.6 μ m) was used as analytical column. The high pressure gradient elution was set as follows: 2%B (0.0 min), 15%B (4 min), 40%B (7 min), 95%B (7.10-8.00

buffer containing 50 mM Tris-HCl (pH8.0) 2M Urea and protease inhibitors. Aliquot of extract containing $100 - 250 \mu g$ of proteins were denatured, alkylated, and digested into peptides by traditional in-solution protein digestion technique. Digested peptides were desalted by SPE, lyophilized, and stored until analysis.

min), 2%B (9.10-10.00 min). Peptides were detected by MRM acquisition. Other parameters for mass spectrometer were set as follows: positive mode electrospray ionization, nebulizing gas flow of 3 L/min, heating gas flow of 20 L/min, drying gas flow of 5 L/min, interface temperature of 250 °C, DL temperature of 150 °C, heat block temperature of 200 °C.

Excellence in Science Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer $\underbrace{food}_{Calculate pendides} \underbrace{food}_{Calculate pendides} \underbrace{food}_{Ca$

Figure 1 Work flow of MRM transition optimization using Skyline.

Result

Detection of allergenic proteins by LC-MS/MS

To establish analytical method, we selected MRM transitions of signature peptides by using Skyline (Figure 1) based on their peak intensity, peak shape, and similarity to other peptides of target proteins. As a result of method development, we finally selected 150 MRM transitions for monitoring 33 peptides derived from 13 proteins as allergenic proteins of eight foods or food groups. As Figure 2 shows, all of peptides were eluted within 6.5 min with good separation. Figure 2 also shows the linearity of peptides.

Figure 2 Chromatogram of peptides mixture derived from eight food allergens, and magnified view of five MRM transitions for wheat peptides and its calibration curve.

Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Food (Binomial name)		Protein name (IUIS name)	Peptides	Uniprot ID		
			FFVAPFPEVFGK	P02662, B5B3R8		
	5.4°11.	Caseins	YLGYLEQLLR	P02662, B5B3R8		
	(Bos taurus)	(Bos d 8)	NAVPITPTLNR	P02662, B5B3R8		
(======;			FALPQYLK	P02663		
		Beta-lactoglobulin (Bos d 5)	IDALNENK	P02754, G5E5H7, B5B0D4		
		Ovalbumin (Gal d 2)	NVLQPSSVDSQTAMVLVNAIVFK	P01012		
	Egg (Gallus gallus)	Ovotransferrin	ATYLDCIK	P02789, Q4ADJ7, Q4ADJ6, E1BQC2, Q4ADG4, A0A1D5P4L7		
		(Gal d 3)	TDERPASYFAVAVAR	P02789, Q4ADJ7, Q4ADJ6, E1BQC2, Q4ADG4, A0A1D5P4L7, A0A1L1RSU6		
	Atrantic cod	Beta-parvalbumin	ALTDAETK	P02622, A51873, Q90YL0		
Fish			AFFVIDQDK	Q90YL0, A51873		
			SGFIEEDELK	Q90YL0, A51873		
Ļ		Tropomyosin	IQLLEEDLER	В4ҮАН6		
ellfis	Whiteleg shrimp (Litopenaeus vannamei)	(Lit v 1)	IVELEEELR	B4YAH6		
n sh		Myosin, light chain 2 (Lit v 3)	EGFQLMDR	B7SNI3		
асеа			GTFDEIGR	B7SNI3		
rusta		Sarcoplasmic calcium-binding	VFIANQFK	C7A639		
Ū		protein (Lit v 4)	AGGLTLER	C7A639		
ee uts	Almonds (Prunus dulcis)	Amandin, 11S globulin legumin-like protein (Pru du 6)	ALPDEVLANAYQISR	E3SH28, Q43607		
L L			ALPDEVLQNAFR	E3SH29		
		Cupin	NNPFYFPSR	P43237, P43238, E5G076, B3IXL2, N1NG13, Q6PSU3		
Peanuts (Arachis hypogaea)		Vicillin-type, 7S globulin (Ara h 1)	GTGNLELVAVR	P43237, P43238, B3IXL2, Q6PSU6, Q6PSU3, N1NG13, Q6PSU5, E5G076, Q6PSU4		
		High molecular weight	ELQELQER	P10388, P08489 and 22 others in wheat		
		glutenin	SVAVSQVAR	P10387, P08488, and 21 others in wheat		
Wheat (Triticum aestivum)		(Tri a 26)	AQQPATQLPTVCR	P10387, P08488, and 21 others in wheat		
		Low molecular weight glutenin GluB3-23 (Tri a 36)	VFLQQQCIPVAMQR	P10385 and 71 others in wheat		
			VFLQQQCSPVAMPQR	P10386, P04729, P04730 and 114 others in wheat		
			CPLTVVQSR	P01070, P01071, P25272 and 13 others		
Soybeans (Glycine max)		Trypsin inhibitor (Glv m TI)	NKPLVVQFQK	P01070, P01071, P25272 and 8 others		
			NKPLVVEFQK	P25273		

Table 1 The target food matrices, protein name, peptides, and UniProt ID found in same food.

Excellence in Science Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Allergens in cooked food matrices

Chromatograms of commercially available food matrices were shown below. A mixture of eight allergenic food and seven cooked food were analyzed. As summarized in Table 3, even we missed soybeans from several food, these data shows that we could detect expected allergens from actual samples overall.

Figure 3 Chromatograms of seven cooked food matrices and mixture of allergenic food as positive control.

Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Food	Allergens	Gluten free bread		Gluten free cracker		Bread		Cracker	
		Label	Detect	Label	Detect	Label	Detect	Label	Detect
Milk	Caseins (Bos d 8)			x	х			(x)	
WIIK	Beta-lactoglobulin (Bos d 5)				х				
Egg	Ovalbumin (Gal d 2)			v	х	v	х	(x)	
-99	Ovotransferrin (Gal d 3)			×		^	x	(^/	
Atrantic cod	Beta-parvalbumin (Gad m 1)								
	Tropomyosin (Lit v 1)								
Whiteleg shrimp	Myosin, light chain 2 (Lit v 3)								
	Sarcoplasmic CBP (Lit v 4)								
Almonds	Amandin (Pru du 6)							(x)	
Peanuts	Cupin, vicillin-type, 7S globulin (Ara h 1)			x				(x)	
Wheat	High molecular weight glutenin (Tri a 26)					×	х	v	х
Wileat	Low molecular weight glutenin (Tri a 36)					X			х
Soybeans	Trypsin inhibitor (Gly m Tl)	х	х	х				х	
Food	Allergens	Peanuts cookies		Frozen fish "fried cod"		Frozen pasta "garlic shrimp"			
		Label	Detect	Label	Detect	Label	Detect		
Milk	Caseins (Bos d 8)	_	x	x	x	X	x	-	
	Beta-lactoglobulin (Bos d 5)		x		x		x	_	
Faa	Ovalbumin (Gal d 2)	_	x						
-99	Ovotransferrin (Gal d 3)		x						
Atrantic cod	Beta-parvalbumin (Gad m 1)	-		x	x				
	Tropomyosin (Lit v 1)						x		
Whiteleg shrimp	Myosin, light chain 2 (Lit v 3)	-				X'	x		
		1	1	1	1		1	1	

Table 2 The results of seven cooked food samples.

Sarcoplasmic CBP (Lit v 4) Х Almonds Amandin (Pru du 6) -Peanuts Cupin, vicillin-type, 7S globulin (Ara h 1) х High molecular weight glutenin (Tri a 26) -Х Х Х Wheat Х Х Low molecular weight glutenin (Tri a 36) х Х х Soybeans Trypsin inhibitor (Gly m TI) -Х 'Labeled as "Crustacean shellfish (Shrimp)"

Excellence in Science Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

"Gluten-free" food samples

As a part of evaluation of the method, we analyzed bread containing gluten and gluten-free bread. In US, as one of the criteria for using the claim "gluten-free", FDA set a gluten limit of less than 20 ppm in foods that carry this label. Then, we also analyzed gluten free-bread spiked with wheat extract at 10 ppm. As shown in Figure 4, those level of glutens was detected successfully.

Figure 3 Chromatograms of seven cooked food matrices and mixture of allergenic food as positive control.

Similarity to other food ingredients

In method development, we performed peptides search for amino acid sequences of theoretically calculated peptides by using UniProt database. Since gluten is a major protein in grains, those peptides sequences are commonly preserved in other edible grains as well (Table 3). To avoid miss identification of food ingredients, we selected the sequences not found in Barley or Rye as significant peptides. On the other hand, these peptides are also found in some sort of goat grass.

Figure 3 Work flow of MRM transition optimization using Skyline.

Simultaneous analysis of major allergens in food matrices by high sensitive mass spectrometer

Table 1 Peptides search result of predicted peptides

Analyzed wheat peptides (P10387)	Positions	Barley	Rye
AQQPATQLPTVCR	624-636		
ELQESSLEACR	33-43	х	х
LPWSTGLQMR	54-63	х	х
MEGGDALSASQ	637-647		х
QGSYYPGQASPQQPGQGQQPGK	135-156		х
QQPGQGQHPEQGK	469-481		х
QVVDQQLAGR	44-53		х
QYEQTVVPPK	86-95		
SVAVSQVAR	75-85		

x: found blank: not found

Conclusion

- Major food allergens were successfully detected by LC-MS/MS method.
- The method contains 150 MRMs for 31 peptides of 13 allergenic proteins identified in 8 foods.
- The presence of allergenic ingredients in cooked meal could be detected.

LCMS-8050 triple quadrupole mass spectrometer

The product and application are Research Use Only. Not for use in human clinical diagnostics or in vitro diagnostic procedures.

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or "®".

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "@". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: June, 2017