
Created: 27-Aug-2013

Entity Recognition
Module
1.0 Documentation

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 2 19

Table of Contents
Entity Recognition Module Installation ___ 4

System Requirements __ 4
Installation __ 4
Start and Stop __ 5
Integration with LucidWorks Search ___ 5

Entity Recognition Quick Start ___ 7
Entity Recognition Module Configuration ___ 9

Module Configuration ___ 9
Extraction Configuration ___ 11
Related Topics ___ 13

Extractors __ 14
OpenNLP Extractor ___ 14
Lookup Extractor ___ 14
RegEx Extractor __ 15

Indexing Documents ___ 16
HTTP Endpoint ___ 16
Avro IPC Endpoint __ 17

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 3 19

Entity Recognition Module
The Entity Recognition module provides entity recognition
and entity extraction from text documents.

It can extract these entities by default, with minimal
configuration:

Person
Location
Organization
Time
Date
Currency
Percent

This documentation covers:

How to install the Entity
 and useRecognition module

it with your existing Solr
implementation
How to configure entity

 for your schemaextraction
Details on the extractors
used with the module and
how to tweak them for your
needs
Information on indexing

 and extractingdocuments
entities

The module includes many options for configuration, including named lists of entities, the fields
entities are extracted from, and how the entities are stored in the index. These configuration
options can be modified for each Solr collection, or applied globally.

The free download includes a 60-day license for use of the module. After the 60-day trial
period, the software will stop working. If you would like to purchase this module, please
contact for pricing and further details.sales@lucidworks.com

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 4 19

1.

2.

Entity Recognition Module Installation
Installing the Entity Recognition module is straightforward. This section also describes how to start
and stop the module, as well as a few approaches to integration with LucidWorks Search if desired.

System Requirements
Installation
Start and Stop
Integration with LucidWorks Search

System Requirements
The Entity Recognition module has the following requirements:

Solr version 4.0 or higher. The module is not required to be located on the same server as
Solr, but wherever it is installed, it must be able to communicate with Solr to send
documents that have been analyzed.
Wherever the module is located, the server should have at least 4Gb of memory, more if
possible.

Installation
Installation of the Entity Recognition Module is completed in a few steps.

Download the package package from the LucidWorkslwx-named-entity-module.tar.gz

Marketplace and move it to the server and filesystem location of your choice. You could use a
command like:
tar xzvf lwx-named-entity-module.tar.gz -C </path/>

This will extract the packages files to the location specific with . Note also that the</path>

package name may include a version number reference so the package you have may not
match exactly the package name shown above.
Once unpacked, navigate to the path defined. You should have a directory named

 (again, this may contain a version number reference in thelwx-named-entity-module

directory name). In that directory, you should also have the following sub-directories:

conf

excludes

gazeteer

legal

lib

models

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 5 19

Once installed, see the section for for a simple example on how toEntity Recognition Quick Start
use it. Or, jump straight into .Entity Recognition Module Configuration

Start and Stop
Before starting the Entity Recognition module, you should verify that the host and port definitions
in are correct.$NER_HOME/conf/lwx-indexing-module.properties

To start the module, issue this command:

java -Xmx2g -cp .:lib/*:conf/:models/:gazetteer/:excludes/ com.lucid.lwx.SpringMain

camelContext.xml

Integration with LucidWorks Search
It is possible to integrate the Entity Module with LucidWorks Search, which will allow you to use the
crawlers with LucidWorks Search as a source of content to be analyzed. Be warned, however, that
this approach has not yet been fully tested, and may not work with all LucidWorks Search
configurations. A future release of the module will include a more complete integration.

The integration works by sending the output of each connector through the Entity Recognition
module before indexing. There are three parts to achieving this.

 There are five files in the directory of the moduleStep 1: Move files into place..jar .jar lib

that should be moved to LucidWorks Search, specifically to
. These files are:$LWS_HOME/app/webapps/connectors/lib

avro-1.7.3.jar
avro-ipc-1.7.3.jar
avro-update-controller-0.1.jar
lwx-shared-0.1.jar
netty-3.6.5.Final.jar

If LucidWorks Search is running when you move these files, the system should be restarted.

 Connectors in LucidWorks SearchStep 2: Create data sources with special output options.
send their output to Solr by default, but there are two options to change the output.

Output Type (or, with the API): This should be set to output_type

.com.lucid.lwx.AvroUpdateController

Output Arguments (or, with the API): This should be set to the Avro host andoutput_args

TCP port defined in , in the format lwx-indexing-module.properties

. So, using the default of "localhost" and the default avro.host:avro.tcp.port avro.host

 of "8998", you would enter "localhost:8998".avro.tcp.port

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 6 19

 CheckStep 3: Ensure is updated with correct field names.lwx-named-entity-module.xml

and makes sure that the entries in match definedtargetField lwx-named-entity-module.xml

fields or dynamic field rules.

When large, entity-rich files are being processed, the consumption of incoming documents
should be throttled. This is done by adding two properties to the incoming endpoint in

, specifically the size of the queue when new documents shouldconf/camlelContext.xml

start blocked, and enabling parameter (by setting it to true). The defaultblockWhenFull

incoming endpoint does not include these parameters; to add them, you would make the
line look like this:

<endpoint id="incoming" uri="seda:incoming?size=1000&blockWhenFull=true"/>

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 7 19

Entity Recognition Quick Start
If you have not already installed the Entity Recognition module, please see the section Entity

.Recognition Module Installation

To get started with entity recognition, let's follow an example. We'll just extract entities from one
simple document, shown below.

First, we need to modify a configuration file to tell the module where to find Solr. Navigate to
 and open the file . In the section marked $NER_HOME/conf lwx-indexing-module.properties

, find the following two lines:#SOLR

Solr

solr.host = localhost

solr.port = 8888

Change the value to the hostname of where Solr is running (if you are using LucidWorkssolr.host

Search, this would be the same host where LucidWorks Search is running). Then change
 to equal the port used to connect to Solr. By default in LucidWorks Search this issolr.port

'8888'; in a default Solr installation this is '8983'. If you have modified the port, enter the correct
value. Save the file when finished.

There are other parameters in , we'll learn more aboutlwx-indexing-module.properties

them in the section MODULES:Named Entity Recognition Configuration.

Next, start the module with this command:

java -Xmx2g -cp .:lib/*:conf/:models/:gazetteer/:excludes/ com.lucid.lwx.SpringMain

camelContext.xml

Once started, we can submit a simple document. We can do this with an API request, formatting
the document in JSON. For now, submit this document from the server where the Entity
Recognition module is running; in you'll learn how toEntity Recognition Module Configuration
change the properties to allow submitting documents from another server.

curl -H "Content-Type: application/json" -d '{"id": "document-1","metadata": \

{"collection":"collection1","needsCommit":"true"},"fields":{"title":"LucidWorks Entity

Recognition document","body_t": \

"This is a simple document to get started with LucidWorks Entity Recognition for

Solr."}}' \

 http://localhost:8000/documents

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 8 19

Once this document loads, you should find when you query the index that two fields have been
added to the document: "organization_ss" and "time_ss". These are the entities that have been
extracted from the document. Here is an example of the output of Solr's Query screen:

{

 "responseHeader": {

 "status": 0,

 "QTime": 1,

 "params": {

 "indent": "true",

 "q": "*:*",

 "_": "1375730287991",

 "wt": "json"

 }

 },

 "response": {

 "numFound": 1,

 "start": 0,

 "docs": [

 {

 "id": "document-1",

 "title": [

 "LucidWorks Entity Recognition document"

],

 "body_t": "This is a simple document for getting started with LucidWorks Entity

Recognition for Solr.",

 "organization_ss": [

 "LucidWorks",

 "Search ."

],

 "time_ss": [

 "This"

],

 "_version_": 1442557263964274700,

 "timestamp": "2013-08-05T19:10:12.587Z"

 }

]

 }

}

For more detailed information about using this module for customized entity extraction, see the
section .Entity Recognition Module Configuration

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 9 19

Entity Recognition Module Configuration
There are several configuration options for the Entity Recognition module. We can split these
options between two types: module configuration, defining the ports and hostnames of the systems
the module will interact with, and extraction configuration, where we define the various models and
rules the extraction process should use.

Each of the configuration files is described below. However, the two main files that you will need to
work with most often are and .lwx-indexing-module.properties lwx-named-entity-module.xml

Module Configuration
Indexing Properties
Camel Context
Other Configurations

Extraction Configuration
Entity Recognition and Extraction

Extractors
Entity Profiles
Field Mapping

Indexing
Related Topics

Module Configuration

Indexing Properties
The primary configuration file for module configuration is .lwx-indexing-module.properties

This is where hosts and ports are defined for several components. They are described below in the
order they appear in the properties file.

Avro IPC

The Entity Recognition module uses for data serialization tasks. Specifically, it usesApache Avro
the inter-process calls (IPC) to facilitate communication between external connections and Solr.

The available settings are:

: The host address that Avro will listen on.avro.host
: The port that Avro Netty will listen on.avro.tcp.port
: The HTTP port that Avro will listen on.avro.http.port

JSON Endpoint

http://avro.apache.org/

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 10 19

The JSON endpoint allows sending documents directly to the module for entity extraction.
Documents are then sent to Solr for indexing. There are two settings:

: The host that the JSON endpoint will listen on.json.host
: The port that the JSON endpoint will listen onjson.port

Pipeline

The pipeline is used with Camel routes. There is one available configuration parameter,
, which defines how many threads the routes can use during processing.pipeline.threads

Solr

The Entity Recognition module uses Solr for document indexing. There are four available settings:

: The host that Solr is listening on. If you are using LucidWorks Search, this wouldsolr.host
be the same host that was defined for the LWE-Core component.

: The port that Solr is listening on. Again, if you are using LucidWorks Search, thissolr.port
is the same port that was defined for the LWE-Core component.

: The number of documents to accumulate before sending the documents tosolr.batch.size
Solr. The default is 10.

: The number of milliseconds to wait for documents before sendingsolr.batch.timeout
documents to Solr. If the is not reached, the module will wait this amountsolr.batch.size

of time before sending the smaller batch to Solr for indexing.

Camel Context
The file provides with the route configurations that will be loadedcamelContext.xml Apache Camel
when the system is started. This has been pre-defined with the needed contexts, and it's not
necessary to modify this file when just starting to use the system.

However, when large, entity-rich files are being processed, the consumption of incoming
documents should be throttled to avoid running out of memory. This is done by adding two
properties to the incoming endpoint in , specifically the size of the queueconf/camlelContext.xml

when new documents should start blocked, and enabling parameter (by setting itblockWhenFull

to true). The default incoming endpoint does not include these parameters; to add them, you
would make the line look like this:

<endpoint id="incoming" uri="seda:incoming?size=1000&blockWhenFull=true"/>

Other Configurations
The file is not yet used for any purpose, but is a placeholder forlwx-named-entity.properties

future options.

Entries in should not be modified, as they are the main definitions for the module.lwx-config.xml

http://camel.apache.org

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 11 19

Extraction Configuration
There are two files that impact how entities are extracted (or, in some cases, recognized) and
indexed.

Entity Recognition and Extraction
The file is the primary file that will define the extractors. There arelwx-named-entity-module.xml

several sections to this file.

Extractors
This is in two sections of the file, "Extractor Factories" and "Extractors". These sections define three
extractors included with the Entity Recognition module, called OpenNLP, Lookup and RegEx. These
extractors use trained models, rules, and regular expressions to extract the entity types defined
from documents.

You are able to define different extractor rules for different entity types. This is particularly useful
with the Lookup Extractor, where item lists are used to define known entities:

<entry key="location">

 <list>

 <value>classpath:gazetteer/city*.lst</value>

 <value>classpath:gazetteer/country*.lst</value>

 <value>classpath:gazetteer/loc*.lst</value>

 <value>classpath:gazetteer/province*.lst</value>

 <value>classpath:gazetteer/region*.lst</value>

 </list>

 </entry>

Because the extractors have a number of options, please see the section for moreExtractors
information on how to configure the three types of extractors.

Entity Profiles
The profiles allow you to define extractors for specific types of entities. For example, you could use
OpenNLP and RegEx extractors for one type of entity, and only the Lookup extractor for another
type. Here is an example of defining the organization entity type:

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 12 19

<bean id="orgProfile" class="com.lucid.lwx.modules.ner2.EntityProfile"

scope="singleton">

 <property name="entityType" value="organization"/>

 <property name="extractors">

 <list>

 <ref bean="opennlpExtractor"/>

 <ref bean="lookupExtractor"/>

 </list>

 </property>

 </bean>

For best results, consider using multiple extractors for each entity profile as often as possible. This
will provide the maximum entity recognition and extraction.

Field Mapping
It's possible to specify how incoming fields will be analyzed for entities, and to what field the
extracted entities should be saved. The mapping is done per entity profile, defined earlier. A source
field can be analyzed for more than one target field, and also for more than one entity type.

The mapping is done by defining a , which is field in the source document, a sourceField

, which is the target field in Solr. The must have been previously definedtargetField targetField

in Solr as either a field or a dynamic field rule. Finally, a profile to use for that mapping is defined.
If we take a look at this example:

<bean class="com.lucid.lwx.modules.ner2.FieldConfiguration">

 <property name="sourceField" value="title" />

 <property name="targetField" value="person_ss" />

 <property name="collection" value="collection1" />

 <property name="profile" ref="personProfile" />

 </bean>

The is defined as "title" (the title of the document) and the is defined assourceField targetField

"person_ss". In Solr's file, we have a dynamic field rule "*_ss". The field type andschema.xml

analysis will be applied to the incoming content before indexing, same as any other incoming
content. If the does not exist, or if the field defined doesn't match a dynamic fieldtargetField

rule, Solr will not be able to index the entities.

The value allows you to apply a configuration to a specific collection instead of to allcollection

collections.

Finally, the references an entity profile to use.profile

Indexing
The file defines Camel routes and processors for document acquisitionlwx-indexing-module.xml

and Solr indexing. It's not necessary to change any of the configurations defined there.

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 13 19

Related Topics

Extractors
Solr and from the Apache Solr Reference GuideFields Dynamic Fields
LucidWorks Search documentation on and Fields Dynamic Fields

https://cwiki.apache.org/confluence/display/solr/Defining+Fields
https://cwiki.apache.org/confluence/display/solr/Dynamic+Fields
http://docs.lucidworks.com/display/lweug/Fields
http://docs.lucidworks.com/display/lweug/Dynamic+Fields

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 14 19

Extractors
The Named Entity Recognition module includes three types of extractors, described below. These
extractors can work together, or they can be defined separately.

OpenNLP Extractor
Lookup Extractor
RegEx Extractor

OpenNLP Extractor
The OpenNLP Extractor uses a pre-trained to extract entities from documents. The model was
trained with tools. It can currently recognize the following entity types: person,Apache OpenNLP
location, organization, money, time, date, and percentage.

Note that the pre-trained model was created with English language news articles. If you are
working with content in another language, or need models better suited for other styles of content,
you may want to consider additional models available through OpenNLP (available through

, or training your own model. For more information about training your own models,SourceForge
see the OpenNLP documentation at . Once a new model has been trained, itName Finder Training
should be located in , and defined in .$NER_HOME/models lwx-named-entity-module.xml

Lookup Extractor
The Lookup Extractor uses predefined lists of items that will be extracted from documents. You can
find the pre-defined lists in . You can edit them, or add new lists as needed.$NER_HOME/gazetteer

Once defined, the lists can be combined to make an aggregated list for a specific entity type. The
aggregated list is configured in the file, in the section "Extractorlwx-named-entity-module.xml

factories". First, the bean needs to be defined, with the class, followed by the entity maps. This is
already in the file:lwx-named-entity-module.xml

<bean id="lookupExtractorFactory"

class="com.lucid.lwx.modules.ner2.impl.LookupExtractor$Factory" scope="singleton">

 <property name="extendedChars" value="€£"/>

 <property name="entityTypes">

 <map>

...

 </map>

 </property>

 </bean>

Between the tags, the entity types are defined. For example, here is an aggregated list for a<map>

location entity type.

http://opennlp.apache.org/
http://opennlp.sourceforge.net/models-1.5/
http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html#tools.namefind.training

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 15 19

<entry key="location">

 <list>

 <value>classpath:gazetteer/city*.lst</value>

 <value>classpath:gazetteer/country*.lst</value>

 <value>classpath:gazetteer/loc*.lst</value>

 <value>classpath:gazetteer/province*.lst</value>

 <value>classpath:gazetteer/region*.lst</value>

 </list>

 </entry>

Other types are also defined by default. You can add to an existing type, or add your own type.
You could make a list of rivers, for example, and add the list to the location entity type. Or you
could define a new type "rivers" and only use your list as the value.

RegEx Extractor
The RegEx Extractor allows you to use a regular expression to match data in a document. This can
be done with a few pre-defined regular expression libraries, or by defining your own. Below there
are three pre-defined types to extract dates, currencies, and percentages.

<bean id="regexExtractor" class="com.lucid.lwx.modules.ner2.impl.RegexEntityExtractor">

 <property name="entityTypes">

 <map>

 <entry key="date"

value="#{T(com.lucid.lwx.modules.ner2.impl.RegexEntityExtractor).DATE_TIME_ISO8601}" />

 <entry key="money"

value="#{T(com.lucid.lwx.modules.ner2.impl.RegexEntityExtractor).US_CURRENCY}" />

 <entry key="percentage"

value="#{T(com.lucid.lwx.modules.ner2.impl.RegexEntityExtractor).PERCENTAGE}" />

 </map>

 </property>

 </bean>

To define your own, you could add a new entry like this, where the is the<constructor-arg>

pattern to match:

<entry key="a_words">

 <bean class="java.util.regex.Pattern" factory-method="compile">

 <constructor-arg value="\b[Aa]\w*\b"/>

 </bean>

 </entry>

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 16 19

Indexing Documents
The Entity Recognition module is able to accept documents for analysis, and then pass the
documents to Solr for addition to the index. With Solr, one usually sends the documents to Solr via
an update processor. However, when you want to extract entities from those documents and apply
them to the documents before indexing, you first send the documents through the Entity
Recognition module.

There are two ways to send documents through the module: with the , or with the HTTP endpoint
.Apache Avro IPC endpoint

HTTP Endpoint
This is possible due to an HTTP endpoint, which is defined in lwx-indexing-module.properties
(as described in) and a document schema used throughoutEntity Recognition Module Configuration
the system.

Here is an example of a minimal representation of a document:

{"id": "document-1",

 "metadata": {

 "collection": "collection1",

 "needsCommit": "true"},

 "fields": {

 "foo": "bar",

 "x": 1}

}

The schema allows the following elements to be defined for each document:

Element Description

id The document ID. If the document ID is not unique to the index, Solr will
overwrite an existing document with the incoming document

metadata Defines elements that describe the document itself.

collection The Solr collection the document will be a part of. This element is contained within
the element.metadata

needsCommit Whether Solr should execute a commit, which will save the document to the index
and make it searchable. This is recommended to be set to .true

fields A JSON map of field names and their attributes

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 17 19

With the HTTP endpoint, only one document can be sent per call, and it must be formatted
in JSON.

Avro IPC Endpoint
The Entity Recognition module can use for data serialization tasks. Specifically, it usesApache Avro
the inter-process calls (IPC) and Netty to speed document transfers during indexing. As of this
release, it is primarily used with LucidWorks Search connectors (see also the section Integration

, but it could be used with a bit of custom Java code to send documents towith LucidWorks Search
Solr.

As an example, here is a simple class that connects to the Avro endpoint and send a simple
document.

http://avro.apache.org/

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 18 19

import java.io.IOException;

import java.net.InetSocketAddress;

import java.util.HashMap;

import java.util.Map;

import org.apache.avro.ipc.specific.SpecificRequestor;

import org.apache.avro.ipc.NettyTransceiver;

import com.lucid.lwx.Constants;

import com.lucid.lwx.Document;

import com.lucid.lwx.rpc.SendDocument;

public class AvroExample {

 public static void main(String[] args) throws Exception {

 // Connect to the remote Avro receiver

 String host = "localhost";

 int port = 8998;

 NettyTransceiver client = new NettyTransceiver(new InetSocketAddress(host, port));

 // Create the local IPC proxy object

 SendDocument proxy = (SendDocument)

SpecificRequestor.getClient(SendDocument.class, client);

 // Build a Document

 Document.Builder builder = Document.newBuilder();

 builder.setId("doc-1");

 Map<String, Object> fields = new HashMap<String, Object>();

 fields.put("title", "LucidWorks Entity Recognition document");

 fields.put("body_t", "This is a simple document for getting started with LucidWorks

Entity Recognition for Solr.");

 builder.setFields(fields);

 Map<String, Object> metadata = new HashMap<String, Object>();

 metadata.put(Constants.COLLECTION, "collection1");

 metadata.put(Constants.NEEDS_COMMIT, true);

 builder.setMetadata(metadata);

 Document doc = builder.build();

 // Send the Document

 proxy.send(doc);

 // Clean up

 client.close();

 }

}

Note that this class is named 'AvroExample'; if you modify the name, remember to also modify the
compile and run examples below.

Entity Recognition Module 27-Aug-2013

© 2013 LucidWorks. All rights reserved. Page of 19 19

If you'd like to use this class as a base for your own custom code, keep in mind the libraries
packaged with the Entity Recognition module are required to compile the code and also to run the
client. To compile the code, you need these five dependencies, all found in the directory for thelib

module:

avro-1.7.3.jar
avro-ipc-1.7.3.jar
avro-update-controller-0.1.jar
lwx-shared-0.1.jar
netty-3.6.5.Final.jar

For example, you could compile the custom class with this command (which assumes your custom
class is named 'AvroExample.java'):

javac -cp

.:lib/avro-1.7.3.jar:lib/avro-ipc-1.7.3.jar:lib/avro-update-controller-0.1.jar:lib/lwx-shared-0.1.jar:lib/netty-3.6.5.Final.jar

AvroExample.java

To run the code, you need the same .jars used to compile, plus a few more:

avro-1.7.3.jar
avro-ipc-1.7.3.jar
avro-update-controller-0.1.jar
lwx-shared-0.1.jar
netty-3.6.5.Final.jar
slf4j-api-1.6.6.jar
slf4j-log4j12-1.6.6.jar
log4j-1.2.17.jar
jackson-core-asl-1.9.12.jar
jackson-mapper-asl-1.9.12.jar

For example, you could run the custom class with this command (again assuming your custom
class is named 'AvroExample') :

java -cp

.:lib/avro-1.7.3.jar:lib/avro-ipc-1.7.3.jar:lib/avro-update-controller-0.1.jar:lib/lwx-shared-0.1.jar:lib/netty-3.6.5.Final.jar:lib/slf4j-api-1.6.6.jar:lib/slf4j-log4j12-1.6.6.jar:lib/log4j-1.2.17.jar:lib/jackson-core-asl-1.9.12.jar:lib/jackson-mapper-asl-1.9.12.jar

AvroExample

Alternately, you could also simply refer to the directory of the Entity Recognition modulelib

without having to name the specific .jars, like this (to compile):

javac -cp .:lib/* AvroExample.java

	Entity Recognition Module Installation
	System Requirements
	Installation
	Start and Stop
	Integration with LucidWorks Search

	Entity Recognition Quick Start
	Entity Recognition Module Configuration
	Module Configuration
	Indexing Properties
	Camel Context
	Other Configurations

	Extraction Configuration
	Entity Recognition and Extraction
	Extractors
	Entity Profiles
	Field Mapping

	Indexing

	Related Topics

	Extractors
	OpenNLP Extractor
	Lookup Extractor
	RegEx Extractor

	Indexing Documents
	HTTP Endpoint
	Avro IPC Endpoint

