
Fusion 2.1 Documentation
2017-12-07

Table of Contents
User Manual . 1

1. Fusion Installation and Upgrades . 2

1.1. Installation . 2

1.2. Upgrades . 2

1.3. Related Topics . 2

1.4. System Requirements . 3

1.4.1. Supported Operating Systems . 3

1.4.2. Hardware requirements . 3

1.4.3. Java. 4

1.4.4. Cluster Requirements . 5

1.4.5. Recommended HTTP Clients . 5

1.5. Install Fusion on a Single Node . 6

1.5.1. Ports . 6

1.5.2. Unix installation . 6

1.5.3. Windows installation . 7

1.5.4. Starting Fusion . 8

1.5.5. Stopping Fusion. 8

1.5.6. Installation with an existing Solr instance or cluster . 8

1.5.7. Troubleshooting . 8

1.5.8. Directories and Logs. 9

1.5.9. Checking System State . 11

1.6. Upgrade Fusion . 14

1.6.1. Per-version instruction sets . 14

1.6.2. Upgrade overview: migrating data, configurations, and customizations . 14

1.6.3. Version Incompatibilities . 16

1.6.4. Upgrade Fusion 2.1 or 2.2 to Fusion 2.4. 19

1.6.5. Upgrade Fusion 1.2 to Fusion 2.4 . 25

1.7. Integrate Fusion with an Existing Solr Deployment . 35

1.7.1. Prerequisites . 35

1.7.2. Configure Fusion to use an existing Solr deployment . 35

1.7.3. Sending Documents to Solr through Fusion. 36

1.7.4. Querying Solr via Fusion requests . 36

1.8. Configuring Fusion for SSL. 37

1.8.1. Installing an SSL certificate . 37

1.8.2. Configuring the Fusion UI. 37

1.8.3. Configure Jetty to use the JSSE keystore . 38

1.8.4. Configure the Fusion UI startup script . 38

1.8.5. Disabling HTTP . 39

1.8.6. Configuring Fusion for SSL Solr/SolrCloud. 39

1.8.7. Generating a self-signed certificate . 40

1.8.8. References and tutorials . 44

1.9. Web Authentication Cookie FAQs . 45

1.10. Application Configuration Template Expressions . 46

1.10.1. Index Pipeline Stage Templates . 46

1.10.2. Query Pipeline Stage Templates . 46

1.10.3. Messaging Services Templates . 46

1.11. System Usage Monitor . 47

1.11.1. Information Collected by the Usage Monitor. 47

1.11.2. How Data is Sent. 47

1.11.3. How to Opt-Out . 48

2. First Run Tutorial . 49

2.1. Fusion Key Concepts . 49

2.2. Download and Install Fusion . 49

2.3. Create a Collection . 50

2.4. Document Indexing with Datasources and Pipelines . 54

2.5. Search . 57

2.6. Lucene and Solr . 60

2.7. Further Reading . 61

3. Fusion Architecture . 62

3.1. Fusion Platform Component Architecture . 62

3.2. Fusion Platform Deployment Architecture . 63

3.3. The Fusion UI. 64

3.4. UI service . 65

3.4.1. The auth proxy . 65

3.4.2. UI configuration . 65

3.4.3. UI logs . 65

3.5. Connectors . 66

3.5.1. Connector configuration . 66

3.5.2. Connector logs . 67

3.6. REST API Services . 68

3.6.1. API Service configuration . 68

3.6.2. API Service logs . 68

3.7. Solr . 69

3.7.1. Solr configuration. 69

3.7.2. Solr logs. 69

3.7.3. Accessing the Solr UI . 69

3.7.4. Solr documentation . 69

3.8. Apache Spark. 70

3.9. ZooKeeper. 71

3.9.1. ZooKeeper Terminology . 71

3.9.2. Fusion ZooKeeper Nodes . 71

3.10. bin/fusion . 75

3.10.1. Start Fusion . 75

3.10.2. Check the status of Fusion . 75

3.10.3. Stop Fusion. 75

3.10.4. Troubleshooting . 76

4. Collections . 77

4.1. Primary and Auxiliary Collections . 77

4.2. System Collections . 78

4.3. Collection Configuration Properties. 78

4.4. Collection Profiles. 79

4.5. Solr Config Files. 80

4.6. Stopwords Files . 81

4.7. Synonyms Files . 82

4.7.1. Synonyms Manager . 82

5. Other Ingestion Methods . 84

5.1. Importing Data with Connectors. 85

5.1.1. Connector configuration . 85

5.2. Importing Data with Pig . 87

5.2.1. Available Functions . 87

5.2.2. Using the Functions . 87

5.2.3. Indexing to a Kerberos-Secured Solr Cluster . 87

5.2.4. Indexing to a SSL-Enabled Solr Cluster . 88

5.2.5. Sample CSV Script. 88

5.3. Importing Data with Hive. 91

5.3.1. Install the SerDe Jar to Hive . 91

5.3.2. Create External Tables. 91

5.3.3. Query and Insert Content . 92

5.3.4. Example Hive Table . 93

6. Indexing Data . 94

6.1. Index Pipelines . 95

6.1.1. Collection-specific Pipelines. 95

6.1.2. Pre-configured Pipelines. 96

6.2. Fusion PipelineDocument Objects . 98

6.2.1. The PipelineDocument Java Object . 98

6.2.2. JSON representation of a PipelineDocument . 98

6.2.3. Submitting PipelineDocuments Directly to a Pipeline via the REST API. 100

6.3. Index Pipeline Stages. 102

6.4. Index Profiles . 104

6.5. Entity Extraction. 105

6.5.1. Loading Models and Lookup Files to Solr. 105

6.5.2. Entity Extraction Capabilities . 105

6.6. Pushing Documents to a Pipeline . 107

6.6.1. Indexing PDFs and MS Office Documents . 107

6.6.2. Indexing CSV Files . 108

6.7. Blob Storage . 109

6.8. Custom JavaScript Stages For Index Pipelines . 110

6.8.1. JavaScript Index Stage Global Variables . 110

6.8.2. JavaScript Index Stage Examples . 112

6.8.3. Debugging and Troubleshooting. 114

6.8.4. The JavaScript Engine Used by Fusion . 114

7. Search . 115

7.1. Query Pipelines . 116

7.1.1. Default Query Pipelines . 116

7.1.2. Custom Query Pipelines . 117

7.2. Fusion Query Request Objects. 118

7.2.1. The Request Java API . 118

7.2.2. JSON representation of a Request object . 118

7.3. Fusion Query Response Objects . 121

7.4. Faceting. 122

7.4.1. Field faceting . 122

7.4.2. Range faceting . 122

7.4.3. Faceting concepts . 122

7.4.4. Further Reading . 123

7.5. Search Query Pipeline Stages . 124

7.5.1. Configuring query pipeline stages . 124

7.5.2. Conditional query processing . 124

7.5.3. Reference topics . 124

7.6. Query Profiles . 126

7.6.1. Query Profiles in the UI. 126

7.7. Fusion UI Search Tool . 127

7.7.1. Search Tool Elements . 127

7.7.2. Search Results Display. 127

7.7.3. Search Tool Options . 127

7.7.4. Comparing Query pipelines . 128

7.8. Using Query Pipelines with SolrJ . 130

7.8.1. Authentication with SolrJ . 130

7.8.2. Example . 130

7.9. Search Query Reporting . 132

7.9.1. Available Reports . 132

7.10. Custom JavaScript Stages for Query Pipelines . 134

7.10.1. JavaScript Query Stage Global Variables . 134

7.10.2. JavaScript Query Stage Examples. 135

7.10.3. Debugging and Troubleshooting . 135

7.10.4. The JavaScript Engine Used by Fusion . 135

8. Signals and Aggregations . 137

8.1. Signals . 137

8.2. Aggregations . 137

8.3. The cold start problem . 138

8.4. Signals . 139

8.4.1. Enabling and disabling signals . 139

8.4.2. Signal document structure . 139

8.4.3. The default signals index pipeline . 141

8.4.4. Removing signals . 141

8.4.5. Video tutorial. 141

8.5. Aggregations . 142

8.5.1. Aggregation Pipelines . 142

8.5.2. Aggregation Functions . 142

8.5.3. Aggregation properties . 142

8.5.4. EventMinerAggregator . 143

8.5.5. Aggregation job configuration . 145

8.5.6. EventMinerAggregator configuration parameters . 145

8.5.7. Example Configuration . 145

8.5.8. Aggregator Functions . 147

8.5.9. Aggregator Scripting . 159

8.5.10. Example Aggregation with Sample Data . 162

8.6. DateTime Processing . 167

8.6.1. DateUtils - Uniform API for Date Parsing and Formatting . 167

8.6.2. Supported Formats. 167

8.6.3. DateUtils Usage . 168

9. Dashboards . 170

9.1. Dashboard Access and Authorizations . 171

9.2. Dashboard Components . 171

9.3. Pre-configured Dashboards . 171

9.4. Getting Started . 171

9.5. Get Started with Fusion Dashboards . 172

9.5.1. Dashboard Controls . 172

9.5.2. Create the Raw Signals Collection . 173

9.5.3. Create the Dashboard . 175

9.5.4. Save the Dashboard . 177

9.5.5. Conclusion . 177

9.6. Log Analytics Dashboards . 179

9.6.1. Search query controls . 179

9.6.2. Display controls . 179

9.7. Signals Dashboards . 180

9.7.1. Signals Analytics Components. 180

9.8. Non-Time Series Dashboards. 181

9.8.1. Search query controls . 181

9.8.2. Display controls . 181

9.9. Dashboard Layouts . 182

9.9.1. Configuring Rows . 182

9.9.2. Configuring Panels . 182

9.9.3. Nested Panel Layout using Column Panels . 182

9.10. Input Panels. 183

9.10.1. Query Syntax . 185

9.10.2. Inspect a Panel Query . 186

9.10.3. Query Panel . 187

9.10.4. Timepicker Panel . 188

9.11. Display Panels . 189

9.11.1. What Data is Displayed . 189

9.11.2. Layout Panels . 189

9.11.3. Textual Information Panels . 189

9.11.4. Graphical Visualization Panels . 190

9.11.5. Bettermap Panel . 197

9.11.6. Filtering Panel. 198

9.11.7. Heatmap Panel . 199

9.11.8. Histogram Panel . 200

9.11.9. Hits Panel . 202

9.11.10. Map Panel . 203

9.11.11. Table Panel . 204

9.11.12. Terms Panel . 205

9.11.13. Text Panel. 206

9.11.14. Ticker Panel . 207

10. Dev Ops . 208

10.1. System Metrics . 209

10.1.1. Types of Metrics Collected . 209

10.1.2. Metrics of Particular Interest . 209

10.1.3. Changing Metric Collection Frequency. 214

10.2. Schedules . 215

10.2.1. Scheduler job definitions . 215

10.2.2. How to define a scheduler job. 216

10.3. Messaging and Alerting . 219

10.3.1. Supported Message Types . 219

10.3.2. Messaging Service Configuration . 219

10.3.3. Triggering Messages and Alerts . 220

11. Access Control . 222

11.1. User Authentication and Authorization . 222

11.2. User Account Admininistration . 222

11.3. Video tutorial. 222

11.4. Users . 223

11.4.1. Add Users . 223

11.4.2. Manage Users in the Fusion UI . 223

11.4.3. Manage Users via HTTP Requests to the Users API . 223

11.4.4. User Information . 223

11.5. Roles . 225

11.5.1. Where You Specify Roles . 225

11.5.2. Default Roles . 225

11.5.3. Role Information . 226

11.5.4. Manage Roles. 226

11.6. Permissions . 228

11.6.1. Specify UI Permissions . 228

11.6.2. Specify API Permissions . 228

11.6.3. Example Permissions Set . 229

11.7. Security Realms . 230

11.7.1. Security Realm Types . 230

11.7.2. Manage Security Realms. 231

11.8. Configuring Fusion for LDAP . 232

11.8.1. Fusion Configuration for an LDAP Realm . 232

11.8.2. Basic LDAP Concepts and Terminology . 235

11.9. Configuring Fusion for Kerberos . 239

11.9.1. Configuring the Kerberos client . 240

11.9.2. The Service Principal Keytab file . 241

11.9.3. Configuring Fusion Authentication for Kerberos Realm . 242

11.9.4. Kerberos/SPNEGO HTTP Authentication . 243

11.9.5. Testing and Troubleshooting. 244

11.9.6. References and Tutorials . 245

11.10. User Access Request Params . 246

11.10.1. Per-Request Authentication. 246

11.10.2. Session Cookies . 246

Reference Manual. 248

12. Connectors Configuration Reference . 249

12.1. Database Connectors . 249

12.2. Filesystem Connectors . 249

12.3. Hadoop Cluster Connectors . 249

12.4. Logging Connectors . 250

12.5. Push Content Connectors . 250

12.6. Repository Connectors . 250

12.7. Script Connectors . 250

12.8. Social Media Connectors. 250

12.9. Web Connectors . 251

Connectors. 252

12.10. Alfresco Connector and Datasource Configuration . 252

12.10.1. Configuration . 252

12.11. Azure Connector and Datasource Configuration . 253

12.11.1. Configuration . 253

12.12. Box.com Connector and Datasource Configuration. 257

12.12.1. Box Authorization, Access, and Refresh Tokens . 257

12.12.2. Configuration . 259

12.13. Couchbase Connector and Datasource Configuration . 260

12.13.1. Indexing and Commits . 260

12.13.2. Splitting Couchbase Documents . 260

12.13.3. Field Mapping with Couchbase. 261

12.13.4. Configuration . 263

12.14. Dropbox Connector and Datasource Configuration . 269

12.14.1. Dropbox Authentication. 269

12.14.2. Configuration . 269

12.15. Drupal 7.x Connector and Datasource Configuration . 270

12.15.1. Configuration . 270

12.16. FTP Connector and Datasource Configuration . 271

12.16.1. Configuration . 271

12.17. GitHub Connector and Datasource Configuration . 277

12.17.1. Configuration . 277

12.18. Google Drive Connector and Datasource Configuration . 278

12.18.1. Google Drive authentication . 278

12.18.2. Configuration . 285

12.19. HDFS Connector and Datasource Configuration . 287

12.19.1. Configuration . 287

12.20. Hadoop Connector and Datasource Configuration . 293

12.20.1. Hadoop Installation and Configuration . 294

12.20.2. Configuration . 295

12.21. JDBC Connector and Datasource Configuration . 299

12.21.1. SQL queries for document retrieval . 299

12.21.2. Uploading a JDBC driver. 299

12.21.3. Indexing binary data. 300

12.21.4. Troubleshooting . 301

12.21.5. Configuration . 301

12.22. JIRA Connector and Datasource Configuration . 306

12.22.1. Configuration . 306

12.23. Javascript Connector and Datasource Configuration . 307

12.23.1. The JavaScript Program . 307

12.23.2. Examples . 308

12.23.3. Configuration . 309

12.24. Jive Connector and Datasource Configuration . 310

12.24.1. Updating the Jive connector . 310

12.24.2. Security Trimming of Results . 311

12.24.3. Configuration . 312

12.25. Local Filesystem Connector and Datasource Configuration . 317

12.25.1. Configuration . 317

12.26. Logstash Connector and Datasource Configuration . 318

12.26.1. Configuration . 318

12.26.2. Running a Datasource Job . 318

12.26.3. Examples . 318

12.26.4. Tutorial . 319

12.27. MongoDB Datasource and Connector Configuration . 320

12.27.1. Configuration . 320

12.28. Solr Push Endpoint Datasource and Configuration . 324

12.28.1. Configuration . 324

12.29. S3 Connector and Datasource Configuration . 327

12.29.1. Bucket Permissions . 327

12.29.2. Configuration . 327

12.30. S3H Connector and Datasource Configuration . 333

12.30.1. Bucket Permissions . 333

12.30.2. Configuration . 333

12.31. Salesforce Connector and Datasource Configuration . 339

12.31.1. Security Trimming. 339

12.31.2. Creating a Salesforce Connected App . 339

12.31.3. Configuration . 340

12.32. ServiceNow Connector and Datasource Configuration . 344

12.32.1. Configuration . 344

12.33. SharePoint Connector and Datasource Configuration . 345

12.33.1. SharePoint Permissions . 345

12.33.2. Configuration . 347

12.34. Slack Connector and Datasource Configuration. 348

12.34.1. Configuration . 348

12.35. Solr Connector and Datasource Configuration . 352

12.35.1. Limitations. 352

12.35.2. Configuration . 352

12.36. SolrXML Connector and Datasource Configuration . 357

12.36.1. The SolrXML Format . 357

12.36.2. Configuration . 357

12.37. Subversion Connector and Datasource Configuration . 362

12.37.1. Configuration . 362

12.38. Twitter Search Connector and Datasource Configuration . 363

12.38.1. Registering for Twitter Credentials . 363

12.38.2. Configuration . 363

12.39. Twitter Stream Connector and Datasource Configuration . 368

12.39.1. Registering for Twitter Credentials . 368

12.39.2. Configuration . 368

12.40. Web Connector and Datasource Configuration . 373

12.40.1. Limiting Crawl Scope . 373

12.40.2. Extracting Content from Pages . 373

12.40.3. Sitemap Processing . 373

12.40.4. Website Authentication . 374

12.40.5. Configuration . 376

12.41. Websphere Connector and Datasource Configuration . 378

12.42. Windows Share Connector and Datasource Configuration . 379

12.42.1. Access Control Lists (ACLs) . 379

12.42.2. Configuration . 379

12.43. Zendesk Connector and Datasource Configuration . 388

12.43.1. Authorization . 388

12.43.2. Required Configuration Properties . 388

12.43.3. Configuration Properties . 388

13. Pipeline Stages Reference. 390

13.1. Pipeline Stage Properties . 390

13.2. Conditional Processing . 390

13.3. Index Pipeline Stages. 391

13.3.1. Apache Tika Parser Index Stage . 392

13.3.2. Call Pipeline Index Stage . 395

13.3.3. CSV Parsing Index Stage . 396

13.3.4. Date Parsing Index Stage . 399

13.3.5. Exclusion Filter Index Stage . 403

13.3.6. Field Mapping Index Stage. 404

13.3.7. Find and Replace Index Stage . 409

13.3.8. Gazetteer Lookup Extraction Index Stage . 411

13.3.9. HTML Transformation Index Stage . 413

13.3.10. REST Query Index Stage . 416

13.3.11. JavaScript Index Stage . 421

13.3.12. JDBC Index Stage . 424

13.3.13. JSON Parsing Index Stage. 427

13.3.14. Detect Language Index Stage . 430

13.3.15. Logging Index Stage. 432

13.3.16. Write Log Message Index Stage . 433

13.3.17. Resolve Multivalued Fields Index Stage . 435

13.3.18. OpenNLP NER Extraction Index Stage . 438

13.3.19. Tag Part-of-Speech Index Stage. 440

13.3.20. Regex Field Extraction Index Stage . 442

13.3.21. Regex Field Filter Index Stage. 444

13.3.22. Send SMTP Email Index Stage. 445

13.3.23. Send PagerDuty Message Index Stage. 447

13.3.24. Send Slack Message Index Stage. 451

13.3.25. Detect Sentences Index Stage . 453

13.3.26. Set Property Index Stage . 455

13.3.27. Filter Short Fields Index Stage . 457

13.3.28. Format Signals Index Stage . 458

13.3.29. Solr Indexer Stage . 460

13.3.30. Solr Partial Update Indexer Stage . 462

13.3.31. XML Transformation Index Stage . 468

13.4. Query Pipeline Stages . 473

13.4.1. Active Directory Security Trimming Stage. 474

13.4.2. Parameterized Boosting Stage. 477

13.4.3. Parameterized Faceting Stage . 479

13.4.4. Block Documents Stage . 480

13.4.5. Boost Documents Stage . 482

13.4.6. Facets Stage . 484

13.4.7. JavaScript Stage . 487

13.4.8. JDBC Lookup Stage . 488

13.4.9. Landing Pages Stage . 491

13.4.10. Logging Stage . 493

13.4.11. Write Log Message Stage . 494

13.4.12. Boost with Signals Stage . 496

13.4.13. Return Query Parameters Stage . 497

13.4.14. Rollup Aggregation Stage . 498

13.4.15. Query Fields Stage . 500

13.4.16. Security Trimming Stage . 501

13.4.17. Send SMTP Email Stage. 502

13.4.18. Send PagerDuty Message Stage. 504

13.4.19. Send Slack Message Stage . 508

13.4.20. Additional Query Parameters Stage . 510

13.4.21. Solr Query Stage . 512

13.4.22. Retrieve Stored Parameters Stage . 513

13.4.23. Solr SubQuery Stage . 514

13.4.24. User Recommendation Boosting Stage . 516

14. REST API Reference . 518

14.1. Listing all Fusion component services . 518

14.2. Fusion Components REST API Reference Pages . 518

14.3. Fusion Services . 520

14.3.1. Summary of Services. 520

14.4. Authentication and Authorization APIs . 524

14.5. Blob Store API . 525

14.5.1. Get, Upload, Update or Delete a Blob. 525

14.5.2. List a Blob Manifest . 525

14.5.3. Examples . 525

14.6. Collections API . 528

14.6.1. Create, List, Update or Delete Collections. 528

14.6.2. Get Collection Status or Statistics . 529

14.6.3. Examples . 529

14.7. Collection Features API . 532

14.7.1. Get a List of Collection Feature Properties . 532

14.7.2. Update a Specified Feature . 532

14.7.3. Examples . 533

14.8. Configurations API . 534

14.8.1. Get, Create or Update Configuration Items . 534

14.8.2. Examples . 534

14.9. Connector APIs . 536

14.10. Connector Datasources API . 537

14.10.1. List a Datasource or All Datasources. 537

14.10.2. Create or Update a Datasource . 538

14.10.3. Delete a Datasource or All Datasources . 540

14.11. Connector History API . 542

14.11.1. Get or Delete the History for a Datasource . 542

14.12. Connector JDBC API . 545

14.12.1. Upload a Driver . 545

14.12.2. List Available Drivers . 545

14.12.3. Delete a Driver . 546

14.13. Connector Jobs API . 548

14.13.1. Start, Stop or Check Status of a Job . 548

14.13.2. Get Detailed Job Statistics. 549

14.14. Connector Plugins API . 551

14.14.1. List Connectors . 551

14.14.2. List Connector Types . 551

14.14.3. Drop ConnectorDB State. 553

14.15. Connector Status API. 555

14.15.1. Reload, Quit or Get Status of Connector Registry . 555

14.16. Connectors Crawl Database API . 556

14.16.1. Get Statistics for a Datasource Database or Drop Database. 556

14.16.2. Get Table Statistics or Drop the Table . 557

14.16.3. Get or Delete Table Items . 558

14.17. History API. 560

14.17.1. List History and History Items . 560

14.17.2. Examples . 560

14.18. Index Pipelines API . 563

14.18.1. Manage Index Pipelines: List, Create, Update, Delete . 563

14.18.2. Refresh an Index Pipeline . 564

14.18.3. Submit a Set of Documents to an Index Pipeline . 564

14.18.4. Debug a Pipeline. 566

14.18.5. Examples . 566

14.19. Index Stages API . 578

14.19.1. List Index Stages or Properties of an Index Stage Type . 578

14.19.2. List an Index Stage. 578

14.19.3. Create, Update or Delete an Index Stage . 578

14.19.4. Send a Test Document through an Index Stage . 578

14.19.5. Examples . 579

14.20. Index Profiles API . 583

14.20.1. Create, List, Update or Delete an Index Profile . 583

14.20.2. Use a Profile to Index Documents . 583

14.21. Messaging API . 586

14.21.1. Attributes . 586

14.21.2. Add or Display a list of messaging service instances . 586

14.21.3. Send a message . 586

14.21.4. Schedule messaging. 587

14.21.5. Check message status . 587

14.21.6. Examples . 587

14.22. Nodes API . 589

14.22.1. Get Hosts, Node Status by Service or Node Status by Host. 589

14.22.2. Examples . 589

14.23. Query Pipelines API . 591

14.23.1. Manage Query Pipelines: List, Create, Delete . 591

14.23.2. Manage Query Pipelines: Update . 591

14.23.3. List a Query Pipeline . 591

14.23.4. Send a Query through a Pipeline . 592

14.23.5. Query Pipeline Definition Properties . 592

14.23.6. Examples . 592

14.24. Query Profiles API . 596

14.24.1. Create, List, Update or Delete a Query Profile. 596

14.24.2. Use a Profile to Run a Query . 596

14.24.3. Examples . 596

14.25. Query Stages API . 599

14.25.1. List Query Stages or Properties of an Query Stage Type . 599

14.25.2. List a Query Stage. 599

14.25.3. Create, Update, or Delete a Query Stage . 599

14.25.4. Send a Test Query through a Query Stage . 599

14.25.5. Examples . 600

14.26. Realms API . 604

14.26.1. Create, Update, Delete or List Realms . 604

14.27. Recommendations API . 606

14.27.1. Recommendation types . 606

14.27.2. Request Parameters. 606

14.27.3. Output . 608

14.27.4. Examples . 608

14.28. Reporting API . 612

14.28.1. Report Configuration Information. 612

14.28.2. Reports request syntax . 612

14.28.3. Format of Report Results . 612

14.28.4. Examples . 613

14.29. Roles API. 620

14.29.1. Create, Update or Delete Roles . 620

14.29.2. Role Specification. 620

14.29.3. Examples . 621

14.30. Scheduler API . 622

14.30.1. Manage Schedules: List, Create, Update, Delete . 622

14.30.2. Stop or List Running Scheduled Jobs. 622

14.30.3. Get Job History . 622

14.30.4. Schedule Definition Properties . 622

14.30.5. Examples . 624

14.31. Search Cluster API . 629

14.31.1. Manage Search Cluster Definitions: List, Create, Update, Delete . 629

14.31.2. Get System Information and Node Status for a Specific Search Cluster . 629

14.31.3. Search Cluster Definition Properties . 630

14.31.4. Examples . 630

14.32. Sessions API . 633

14.32.1. Create a Session . 633

14.33. Signals Aggregator API . 635

14.33.1. Create, Update, Delete or List an Aggregator Job . 635

14.33.2. Start or Check an Aggregator Job . 635

14.33.3. Get Aggregator Job History . 636

14.33.4. Signals Aggregator Definitions Properties . 636

14.33.5. Examples . 638

14.34. Signals API . 642

14.34.1. Index a Signal . 642

14.34.2. Signal document structure. 642

14.34.3. Examples . 644

14.35. Solr API . 647

14.35.1. Examples . 647

14.36. SolrAdmin API . 649

14.36.1. Example . 649

14.37. Solr Configuration API . 651

14.37.1. List and View Configuration Files . 651

14.37.2. Create or Update a File in ZooKeeper . 651

14.37.3. Solr Configuration Definition Properties . 651

14.37.4. ZooKeeper Collection Configuration Definition Properties . 652

14.37.5. Examples . 653

14.38. Stopwords API. 655

14.38.1. List or Update Stop Words . 655

14.38.2. Examples . 655

14.39. Synonyms API . 657

14.39.1. List or Update Synonyms . 657

14.39.2. Examples . 658

14.40. System Admin APIs . 660

14.41. System API . 661

14.41.1. Get Metric Names. 661

14.41.2. Get System Metrics. 661

14.41.3. Threads. 662

14.41.4. Buffers . 662

14.41.5. Ping . 662

14.41.6. Examples . 662

14.42. Usage API . 667

14.42.1. Get Usage Stats or the System ID . 667

14.42.2. Examples . 667

14.43. User API . 669

14.43.1. Create, Update, Delete or List Users. 669

14.44. ZooKeeper Import/Export API. 672

14.44.1. ZooKeeper . 672

14.44.2. Utility script zkImportExport.sh. 672

14.44.3. Fusion REST API service ZKImportExport . 674

User Manual

1

Chapter 1. Fusion Installation and Upgrades

1.1. Installation

You can install Fusion:

• On a single computer – Install Fusion on a single computer for purposes of development, evaluations, or
demonstrations.

For information, see Install Fusion on a Single Computer.

• On multiple servers (as a Fusion cluster) – For a number of reasons such as performance, scaling, and availability,
you must install Fusion on multiple servers for a production deployment.

Detailed instructions have been added in the documentation for Fusion 3.1.

These procedures are for initial installations of Fusion.

1.2. Upgrades

If you already have Fusion installed and want to upgrade to a later release, see the upgrade documentation.

1.3. Related Topics

Additional documentation that pertains to installation includes:

• System Requirements – Hardware and software needed to run Fusion in both single-node (trial) and multi-node
(production) deployments

• Components – An explanation of the components that comprise Fusion

• Troubleshoot When Installing Fusion – An explanation of how to troubleshoot difficulties that occur when installing
or upgrading Fusion

• Directories and Logs – What’s in the Fusion home directory (/path/to/fusion), including default log file locations

• Default Ports – Default Fusion server ports and how to change them

• Checking System State – How to check the default Fusion distribution

• Integrating with existing Solr instances – How to use existing Solr instances to store Fusion collections

After installation, proceed to these topics:

• Security – How to secure a Fusion deployment

• Administration – Information about configuration and monitoring

2

1.4. System Requirements

Requirements for Fusion installation are detailed below.

Important Lucidworks recommends not virus scanning the
fusion/data folder. Virus scanning can cause slow
performance, and it can cause downtime if it quarantines
an index file identified as a possible virus.

1.4.1. Supported Operating Systems

Supported for production use of Fusion services

Operating system:

• Windows Server 2012, 2012 R2, and 2016 (x64 only)

Note Windows systems must have the Microsoft Visual C++
2010 SP1 package installed.

• Linux 64-bit (x86_64/amd64 only) with 2.6 or later kernel

Note RedHat based Linux, including CentOS, must be 6.6.x or
later, or else the bug fix https://rhn.redhat.com/errata/
RHSA-2013-1605.html must have been applied. This fix
remediates a RedHat bug that causes Fusion to hang. See
http://www.infoq.com/news/2015/05/redhat-futex for
more information.

JVM:

• Oracle JRE or JDK 1.8, 64-bit (x64 only)

• OpenJDK JRE or JDK 1.8, 64-bit (x64/x86_64 only)

Also supported for trial and development use of Fusion services

Operating system:

• Windows 7, 8, 8.1, and 10 64-bit (x64 only)

• Mac OS X 10.8 or later

1.4.2. Hardware requirements

Fusion and Solr nodes

Here are some minimum recommendations for different Fusion deployments. These are for the nodes that run Fusion
(including ones that also run Solr and/or ZooKeeper, if those cluster arrangements are used), as well as for external
(non-Fusion) nodes for SolrCloud nodes:

3

https://www.microsoft.com/en-us/download/details.aspx?id=13523
https://www.microsoft.com/en-us/download/details.aspx?id=13523
https://rhn.redhat.com/errata/RHSA-2013-1605.html
https://rhn.redhat.com/errata/RHSA-2013-1605.html
http://www.infoq.com/news/2015/05/redhat-futex

Deployment type Memory CPU

Development/Testing 16 GB 4 cores

Small Production* 32 GB 8 cores

Large Production** 64+ GB 8+ cores

• Small production environments will have 2+ nodes with these specs, on which both Fusion and Solr are installed.
(3+ nodes are recommended.)

◦ Large production environments will have 3+ nodes with these specs. Additional nodes are needed for an
external SolrCloud cluster, if that is used. An external SolrCloud cluster is only necessary for Solr collections
with very large numbers of documents (for example, 100 million documents or more), though a Fusion
deployment can use it regardless. On these nodes, Fusion and Solr are installed if no external SolrCloud cluster
is used. If an external SolrCloud cluster is used, these nodes might or might not have Solr installed.

ZooKeeper nodes

Here are some minimum recommendations for the nodes that run ZooKeeper. These nodes can be more lightweight
than the nodes that run Fusion and/or Solr. With the exception of small development/testing deployments, ZooKeeper
nodes should only run ZooKeeper (not Fusion or Solr). Because ZooKeeper synchronizes all it’s operations to disk, we
recommend using a disk with high throughput and low latency for your ZooKeeper nodes.

Deployment type Memory CPU

Development/Testing 4 GB 4 cores

Small Production 4+ GB 4+ cores

Large Production 4+ GB 4+ cores

Fusion components

You can run Fusion components on different nodes. Different Fusion components require different amounts of
resources. Below are the minimum recommended memory requirements; consult Lucidworks for specific
recommendations tailored to your unique use case, data load, and production needs.

Fusion component Minimum RAM

Connectors 2 GB

API service 1 GB

Fusion UI 512 MB

Solr 2 GB

Spark master 512 MB

Spark worker 1 GB

1.4.3. Java

Fusion is a Java-based application, and thus requires a pre-installed JDK.

Fusion runs on JDK 1.8.

4

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Fusion’s JavaScript pipeline stages are application-specific custom JavaScript programs. The first time a pipeline is run,
the JDK compiles the JavaScript using the Nashorn JavaScript engine.

Fusion scripts execute both the java and javac commands, which are usually aliases for the current Java installation. To
check which version of Java is invoked, run the following commands from a shell or terminal window:

java -version
javac -version
echo $JAVA_HOME // Unix
echo %JAVA_HOME% // Windows

1.4.4. Cluster Requirements

Supported Solr and SolrCloud Versions

Fusion includes an embedded instance of Solr; see the release history to find out which Solr version is included in each
Fusion release.

If your search requirements are very large (for example, 100 million documents or more), we recommend that you use
an external SolrCloud cluster. (You can use an external SolrCloud cluster regardless.)

Optionally, you can use both embedded Solr instances and an external SolrCloud cluster. In this case, only store logs in
the embedded Solr instances. Store data in the external SolrCloud cluster.

Solr 4.4 and higher are supported. Solr 4.6 and 4.7 are not supported, as they contain severe bugs that will impact the
ability of Fusion to work with your Solr system.

If you want to know whether other versions of Solr might be compatible with Fusion, you can ask Lucidworks.

If you use an external SolrCloud cluster, it has ZooKeeper bundled with it. However, Apache recommends that you not
use the bundled ZooKeeper in production. Instead, create an external ZooKeeper cluster (external to both Fusion and
SolrCloud) or use the ZooKeeper embedded with Fusion, depending on the circumstance. For more information, see
Supported ZooKeeper Versions and Cluster Requirements.

Note If you decide to set up an external SolrCloud cluster, check
the requirements for this as well in the Solr
documentation.

We strongly recommend that you use Network Time Protocol (NTP) on a SolrCloud cluster to ensure that nodes use
synchronized time. While this is not strictly required, reasoning about log contents and database entries becomes
impossible without it. Information and instructions on how to install and run NTP are available at www.ntp.org.

1.4.5. Recommended HTTP Clients

The Fusion API can be accessed from any HTTP client, and allows you to build user interfaces and applications that
work with any browser. However, the Fusion Administration UI, Dashboards, and built-in Search UI are supported only
with:

• Chrome latest version

• Firefox latest version and latest ESR

• Internet Explorer 11

5

https://support.lucidworks.com/s/answers
https://lucene.apache.org/solr/guide/6_6/setting-up-an-external-zookeeper-ensemble.html
https://lucene.apache.org/solr/guide/6_6/setting-up-an-external-zookeeper-ensemble.html
https://lucene.apache.org/solr/guide/6_6/taking-solr-to-production.html
https://lucene.apache.org/solr/guide/6_6/taking-solr-to-production.html
http://www.ntp.org/

1.5. Install Fusion on a Single Node

Note These instructions are for an initial installation of Fusion
on a single node (computer). To install Fusion on multiple
nodes (a Fusion cluster), see Install a Fusion Cluster. If you
already have a version of Fusion installed and want to
upgrade it, see the Fusion upgrade instructions.

Out of the box, Fusion uses the instances of Solr, ZooKeeper, and Spark that are included in the Fusion distribution. See
the release history to find out which versions of Solr, Spark, and ZooKeeper are included in each Fusion release.

To use Fusion with your existing Solr installations, see Integrating with existing Solr instances.

1.5.1. Ports

To run Fusion as a single-server installation, the following ports should be available and not used by other applications
or services:

• 8764

• 8765

• 8983

• 8984

See Default Ports if you need to modify the default Fusion ports before starting the application.

1.5.2. Unix installation

Fusion for Unix is distributed as a gzipped tar file.

To install Fusion on Linux or Mac

1. Download the Fusion tar/zip file for the latest version of Fusion and move it to where you would like it to reside in
your filesystem (if you would like to use Upstart for process management, you must install Fusion in
/opt/lucidworks).

2. Become the user that will run Fusion.

Important Do not run Fusion as the root user.

3. Change your working directory to the directory in which you placed the fusion-version.x.tar.gz file, for example:

$ cd /opt/lucidworks

4. Unpack the archive with tar -xf (or tar -xvf), for example:

$ tar -xf fusion-version.x.tar.gz

The resulting directory is named fusion. You can rename this if you wish. This directory is considered your Fusion
home directory. See Directories and Logs for the contents of the fusion directory.

6

https://support.lucidworks.com/s/downloads

Starting Fusion

All Fusion start scripts must be executed by a user who has permissions to read and write to the directories where
Fusion is installed. These scripts don’t need to be run as root (or sudo), nor should they be. Use a suitable ID, or create a
new one, and then ensure that it owns the directory where Fusion resides, (e.g. /opt/lucidworks).

To start all required services

./bin/fusion start

For information about starting individual services, see Start and Stop Fusion.

Running Fusion In The Foreground

To run Fusion or any of its services in the foreground, use the run command-line argument in place of start.

Stopping Fusion

To stop Fusion or any of its services, use the stop command-line argument in place of start.

Ubuntu Upstart Scripts

Under Ubuntu 12.04 LTS or newer we support Upstart for process management. This requires Fusion to be installed in
the /opt/lucidworks/ directory.

To configure upstart, run the following commands:

$ cd init/upstart
$ sudo bash install.sh

If this complains with no JAVA_HOME set, replace sudo with sudo -E. Then you can use the service command to control the
server:

$ sudo service fusion-solr start
$ sudo service fusion-api start
$ sudo service fusion-connectors start
$ sudo service fusion-ui start

and similarly use stop and status.

Logfiles for Fusion services are found in directories under fusion/var/log.

Upstart log files for each service are in the /var/log/upstart directory.

For convenience, you can start/stop all services with Upstart using:

$ sudo bash start.sh
$ sudo bash stop.sh

1.5.3. Windows installation

Fusion for Windows is distributed as a compressed zip file. To unpack the Fusion zip file on Windows, you can use a

7

native compression utility or the freely available 7zip file archiver. Visit the 7zip download page for the latest version.

To install Fusion on Windows

1. Download the zip file for the latest version of Fusion and move it to where you would like Fusion to reside in your
filesystem. It will appear as a compressed folder.

2. Unpack the archive. In most cases, you need only right-click and choose "Extract all…". If you don’t see this option,
check that you have permissions to extract folders on your system.

The resulting directory has the same name as the base name of the zip file, such as fusion-2.1.0, and it contains
another directory named fusion. This directory is considered your Fusion home directory. See Directories and Logs
for the contents of the Fusion home directory.

Fusion releases earlier than 3.0 do not support installation as a Windows service.

1.5.4. Starting Fusion

All Fusion start scripts must be executed by a user who has permissions to read and write to the directories where
Fusion is installed. Ensure that such a user owns the directory where Fusion resides.

To start all required services

• bin\fusion.cmd start

• bin\start-services.cmd (Start all Fusion services as Windows services)

For information about starting individual services, see Start and Stop Fusion.

1.5.5. Stopping Fusion

To stop Fusion or any of its services, use the stop command-line argument in place of start.

1.5.6. Installation with an existing Solr instance or cluster

Fusion supports Solr versions 4.4 and higher. Solr 4.6.0 or 4.7.0 are not supported, as they contain severe bugs that will
impact the ability of Fusion to work with your Solr system.

If installing Fusion to work with an existing Solr instance, either in SolrCloud mode or standalone, you should install
Fusion as described above. You should start each of the services as described above.

Once Fusion installation is complete, you can register your existing Solr installation with Fusion to be able to use the
two systems together. For details on how to do that, see the section Search Clusters.

1.5.7. Troubleshooting

For information about problems you might encounter when installing Fusion, and solutions, see Troubleshoot When
Installing Fusion.

8

http://www.7-zip.org
http://www.7-zip.org/download.html

1.5.8. Directories and Logs

Directories

The directory where the Fusion files go for a specific version of Fusion is the Fusion home directory. The Fusion home
directory is the directory fusion.

The directories found in the Fusion home directory fusion are:

Name Description

apps Fusion components 3rd-party distributions used by
Fusion, including jar files and plugins

bin Master script to run Fusion, and per-component run
scripts

conf Configuration files for Fusion and ZooKeeper that contain
parameters settings tuned for common use cases

data Default location of data stores used by Fusion apps

docs License information

examples Fusion signals example

init systemd and upstart scripts and configurations for Linux

scripts Developer utilities, including diagnostic scripts, for Linux
and Windows. See scripts/diag/linux/README and
scripts/diag/win64/README.txt for details.

var Logfiles and system files created by Fusion components, as
well as .pid files for each running process

Logfiles

Logfiles are found in directories under fusion/var/log. Because the Fusion components run in separate JVMs, each
component has its own set of logfiles and files that monitor all garbage-collection events for that process.

Name Description

api Fusion REST API services logging and error messages. This
log shows the result of service requests submitted to the
REST API directly via HTTP and indirectly via the Fusion
UI.

connectors Fusion connector services logging and error messages.
Fusion index pipeline logging stages write to this file.

solr Messages from Solr

spark-master Spark-master logs

spark-worker Spark-worker logs

ui Fusion UI messages

zookeeper ZooKeeper messages

9

Every component logs all messages to a logfile named <component>.log. For example, the full path to the logfile for the
connectors services is:

fusion/var/log/connectors/connectors.log

In addition to component logfiles, every component maintains a set of garbage-collection logfiles which are used for
resource tuning. The garbage-collection logfiles are named gc_<YYYYMMDD>_<PID>.log.<CT>. In addition, the current
garbage-collection logfile has suffix .current.

The Fusion REST API, UI, connectors services, and Solr all run inside a Jetty server. The Jetty server logs are also written
to that component’s logfile directory. The Jetty server logs are named:

• jetty-YYYY_MM_DD.request.log

• jetty-YYYY_MM_DD.stderrout.log

Fusion uses the Apache Log4j 2 logging framework with Jetty to log each of the Fusion components. Logging is
configured via an xml configuration file named log4j2.xml. Log levels, frequencies, and log rotation policy can be
configured by changing these configuration files:

The Log4j2 Configuration guide provides documentation and examples of all logging configuration options.

10

http://logging.apache.org/log4j/2.x/manual/index.html
http://logging.apache.org/log4j/2.x/manual/configuration.html

1.5.9. Checking System State

As described in the section Default Ports, Fusion runs several components as separate JVMs running on different ports.
Each of the components is capable of reporting it’s status. The proxy component reports status for all of the other
components.

Full System Check

To see if each component has been started, a simple API call to the proxy (running on port 8764 by default) will return
the status of each component of the system.

 curl http://localhost:8764/api

The response should look similar to the following. If 'ping' is true for each service, all of the system components are
running.

{
 "version": "0.9.0-SNAPSHOT-jenkins.build.105+git.sha.b425e2a",
 "enabledRealms": [
 "native"
],
 "initMeta": {
 "version": "0.9.0-SNAPSHOT-jenkins.build.105+git.sha.b425e2a",
 "initializedAt": "2014-10-06T17:43:31Z",
 "createdAt": "2014-10-06T17:43:31Z"
 },
 "startTime": "2014-10-06T18:38:08Z",
 "status": {
 "connectors": {
 "ping": true
 },
 "apollo": {
 "ping": true
 },
 "apolloZk": {
 "ping": true
 },
 "db": {
 "ping": true
 }
 }
}

Solr Health Check

The Fusion UI and API services are not accessible if ZooKeeper and Solr are not in healthy state. A Solr health check can
be performed with a ping request.

 curl http://localhost:8983/solr/admin/ping

The response will be a standard Solr XML response, similar to the following.

11

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6</int>
 <lst name="params">
 <str name="df">text</str>
 <str name="echoParams">all</str>
 <str name="rows">10</str>
 <str name="echoParams">all</str>
 <str name="q">solrpingquery</str>
 <str name="distrib">false</str>
 </lst>
 </lst>
 <str name="status">OK</str>
</response>

The 'status' should be "OK" if Solr is running properly.

REST API Services Health Check

All of the Fusion API backend services (except Connectors and the UI) are started at port 8765 when the run.sh script is
executed. The Fusion UI depends on all these services.

If all the services are started without any issues, then the below ping request should return response 'ok'.

 curl http://localhost:8765/api/v1

As an additional check, you can also query the system/status endpoint, which should return a response 'started'.

curl http://localhost:8765/api/v1/system/status

The response would look like:

{
 "status" : "started"
}

Connectors Health Check

The Connectors health check can be performed by a ping request to port 8984. Similar to the previous ping request, the
returned response is 'ok' if the service starts successfully.

 curl http://localhost:8984/connectors/v1

As an additional check, you can also query the system/status endpoint, which should return a response 'started'.

curl http://localhost:8984/connectors/v1/system/status

12

The response would look like:

{
 "status" : "started"
}

13

1.6. Upgrade Fusion

After you have a Fusion-based search application running, at some point it might be necessary to upgrade to a later
version of Fusion. Your goal is to transfer over all of your data together with all configurations and customizations
necessary to support your applications.

In this topic, we:

• Provide links to upgrade instructions for specific versions of Fusion.

• Give a general overview of the procedure for upgrading.

• Present notes about version incompatibilities.

Tip See the release history to find out what’s new, including
which versions of Solr, Spark, and ZooKeeper are bundled
with each Fusion release.

1.6.1. Per-version instruction sets

To upgrade to a later version of Fusion from an existing installation requires transferring over all configurations and
data from your existing Fusion installation to the new version.

Perform the steps in the appropriate section:

• Upgrade Fusion 2.1 to Fusion 2.4 – Instructions for upgrading Fusion versions 2.1.x and 2.2.1 to Fusion 2.4.

• Upgrade Fusion 1.2 to Fusion 2.4 – Instructions for upgrading Fusion versions 1.2.3 through 1.2.8 and version 1.4.0 to
the latest version of Fusion 2.4.

• Upgrade Fusion 2.4 to Fusion 3.0 – Instructions for upgrading Fusion version 2.4.x to Fusion 3.0.0.

• Upgrade Fusion 3.0.0 to 3.0.1 – Instructions for upgrading Fusion version 3.0.0 to 3.0.1.

• Upgrade Fusion 3.x to a more recent release – Instructions for upgrading Fusion version 3.x to a more recent
release. This procedure uses a migrator that migrates all Fusion objects in a seamless upgrade.

1.6.2. Upgrade overview: migrating data, configurations, and customizations

The Upgrade Process

The upgrade process leaves the current Fusion deployment in place while a new Fusion deployment is installed and
configured. All of the upgrade operations copy information from the current Fusion over to the new Fusion. This
provides a rollback option should the upgrade procedure encounter problems.

The current Fusion configurations must remain as-is during the upgrade process. In order to capture indexing job
history, no indexing jobs should be running. If the new Fusion installation is being installed onto the same server that
the current Fusion installation is running on, you must either run only one version at a time or else change the Fusion
component server ports so that all components are using unique ports for both the current and new versions.

ZooKeeper

Migration consists of the following steps:

• Copy the ZooKeeper data nodes which contain Fusion configuration information from the FUSION-CURRENT

14

ZooKeeper instance to the FUSION-NEW ZooKeeper instance

• Rewrite Fusion datasource and pipeline configurations, working against the FUSION-NEW ZooKeeper instance

Important Because some Fusion configurations have changed,
ZooKeeper data must be rewritten accordingly using
scripts available in the public GitHub repository:
https://github.com/LucidWorks/fusion-upgrade-scripts.

Solr

Fusion-based search applications store your data in Solr. If your data is stored in an external Solr cluster, and if you
aren’t upgrading your Solr cluster, then you don’t need to migrate your Solr data at all; you just need to configure the
new Fusion deployment to use your external Solr cluster.

Fusion uses Solr as a data store for server logs, search logs, and binary components such as jar files and compiled
models used by Fusion pipelines. The Fusion distribution includes a complete Solr server and is configured to use this
embedded Solr instance by default. If the current Fusion deployment uses the embedded Solr for its system collections,
then you must copy all of these collections over to the embedded Solr instance included with the new Fusion
distribution.

Connector services data: crawldb, database drivers

The directory fusion/data/connectors/lucid.jdbc contains third party JDBC driver files that have been registered with
Fusion in order to run the JDBC connector.

The directory fusion/data/connectors/crawldb is managed by Fusion’s connector service. Fusion datasources that walk
over websites, filesystems, or similar repository use the crawldb to store information about files visited during the
crawl; this allows incremental updates and avoids data re-indexing. In current versions of Fusion, the default location is
the Fusion directory fusion/data/connectors/crawldb.

Important The crawldb data format was changed, therefore for
upgrades from Fusion 1.2.x to the latest Fusion 2.1, these
must be processed using a reformatting program that is
available in the public upgrade scripts repository:
https://github.com/LucidWorks/fusion-upgrade-scripts.

Pipeline services data: models used by pipeline stages

The directory fusion/data/connectors/lucid.jdbc contains third party JDBC driver files that have been registered with
Fusion in order to run the JDBC connector.

Customized settings for Fusion run commands and configuration scripts

The scripts used to start, stop, and restart Fusion and its components are found in the top-level "bin" directory of the
Fusion distribution. As of Fusion 2.0, the configuration scripts previously found in the "bin" directory were put in their
own top-level directory called "conf".

15

https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts

Important If you have customized the settings in these files and wish
to carry these settings over to the new Fusion deployment
the only way to do so is to edit the command and
configuration scripts in the new Fusion deployment by
hand. You cannot copy over the old configuration files
because they may contain commands or settings which are
no longer valid.

Custom Fusion connector plugins and pipeline stages

Custom Java components written for one version of Fusion must be re-compiled and and installed anew for the latest
version of Fusion as Fusion’s Java API may have changed.

1.6.3. Version Incompatibilities

Incompatibilities between Fusion 2.4 and version 2.1

Datasource Configuration

All datasource definitions are stored inside of ZooKeeper, and in Fusion 2.4 the structure of these definitions in
ZooKeeper has changed; the FUSION-UPGRADE-SCRIPTS repository contains a script which can rewrite these
definitions.

Deprecated Connectors

The following connectors have been deprecated:

• DropBox

• Logstash Connector

• S3H Connector

• Slack Connector

• Twitter Search

• Twitter Stream

JavaScript Index pipeline stages

JavaScript Index pipeline stage now requires that the function argument parameters list contain the names of any
variable used in the function body, excepting the global 'logger'. This includes references to:+

• object PipelineDocument 'doc'

• object PipelineContext 'ctx'

• string collection name 'collection'

• object BufferingSolrServer 'solrServer'

• object SolrClientFactory 'solrServerFactory'

Prior to 2.4, functions which referenced these objects worked even if they weren’t included in the function argument
parameters list. Here are two examples of JavaScript functions which will break in Fusion 2.4 but which work in prior
versions:

16

function returns object 'doc', empty parameter list

function () {
 doc.addField('example-field-100','some value');
 return doc;
}

function parameter list specifies 'doc' but not 'solrServerFactory'

function (doc) {
 var imports = new JavaImporter(
 org.apache.solr.client.solrj.SolrQuery,
 org.apache.solr.client.solrj.util.ClientUtils);
 with(imports) {
 var sku = doc.getFirstFieldValue("sku");
 if (!doc.hasField("mentions")) {
 var mentions = ""
 var productsSolr = solrServerFactory.getSolrServer("products");
 if(productsSolr != null){
 var q = "sku:"+sku;
 var query = new SolrQuery();
 query.setRows(100);
 query.setQuery(q);
 var res = contactsClient.query(query);
 mentions = res.getResults().size();
 doc.addField("mentions",mentions);
 }
 }
 }
 return doc;
}

Configuration file location changes

Previously, log configuration files were located in subdirectories of their Fusion components. As of version 2.4, the
Fusion distribution top-level directory 'conf' contains all log configuration files.

Incompatibilities between Fusion 2.1 and 1.2 releases

Fusion configuration properties

Several configuration properties for Fusion connectors and pipeline stages have changed. These configurations are
stored in Fusion’s ZooKeeper. The FUSION-UPGRADE-SCRIPTS repository contains a script which can rewrite these
definitions.

Crawldb format changes

The directory "FUSION_HOME/data/connectors/crawldb is managed by Fusion’s connector service. Fusion datasources
that walk over websites, filesystems, or similar repository use the crawldb to store information about files visited
during the crawl; this allows incremental updates and avoids data re-indexing.

The format of the crawldb was changed in Fusion 2.1. You must run the conversion utility from the FUSION-UPGRADE-
SCRIPTS repository: com.lucidworks.fusion-crawldb-migrator-0.1.0.jar to preserve crawldb information.

17

https://github.com/lucidworks/fusion-upgrade-scripts/blob/master/bin/com.lucidworks.fusion-crawldb-migrator-0.1.0.jar

Fusion distribution directory locations

The organization of Fusion distribution home directory changed in Fusion 2. The following diagram summarizes the
essential changes:

18

1.6.4. Upgrade Fusion 2.1 or 2.2 to Fusion 2.4

This instruction set is valid for all Fusion 2.1 releases as well as Fusion 2.2.0.

Note Fusion 2.4 introduces changes to the configuration
properties for some Fusion datasources. To update these
configurations, we have provided a program which can be
downloaded from: https://github.com/LucidWorks/fusion-
upgrade-scripts.

Once you have migrated all Fusion configurations from
the current Fusion 2.1 ZooKeeper service to the new
Fusion 2.4 ZooKeeper service, you must run this script
against the new ZooKeeper service, see Migrate ZooKeeper
data

The upgrade process leaves the current Fusion deployment in place while a new Fusion deployment is installed and
configured. All of the upgrade operations copy information from the current Fusion over to the new Fusion. This
provides a rollback option should the upgrade procedure encounter problems.

The current Fusion configurations must remain as-is during the upgrade process. In order to capture indexing job
history, no indexing jobs should be running. If the new Fusion installation is being installed onto the same server that
the current Fusion installation is running on, you must either run only one version at a time or else change the Fusion
component server ports so that all components are using unique ports for both the current and new versions.

Terminology

These instructions use the following names to refer to the directories involved in the upgrade procedure:

• FUSION_HOME: Absolute pathname to the top-level directory of the Fusion distribution

• FUSION-CURRENT: Name of the FUSION_HOME directory for the current Fusion version, e.g.
"/opt/lucidworks/fusion-2.1.2"

• FUSION-NEW: Name of the directory of the upgrade Fusion distribution during the upgrade process, e.g.
"/opt/lucidworks/fusion-2.4.1"

• INSTALL-DIR: Directory where the new Fusion version will be installed, e.g. "opt/lucidworks" All scripts and
commands in the upgrade instruction set are carried out from this directory.

• FUSION-UPGRADE-SCRIPTS: Full path to the directory that contains the upgrade scripts from https://github.com/
LucidWorks/fusion-upgrade-scripts.

Requirements

• File-system permissions: the user running the upgrade scripts and commands must have read/write/execute (rwx)
permissions on directory INSTALL-DIR.

• Download but do not unpack a copy of the FUSION-NEW distribution. The compressed Fusion distribution requires
approximately 1.7 GB disk space. All supported version are available from Lucidworks Fusion Get Started page.

• Disk space requirements: the INSTALL-DIR must be on a disk partition which has enough free space for the complete
FUSION-NEW installation, that is, there must be at least as much free space as the size of the FUSION-CURRENT
directory. On a Unix system, the following commands can be used:

19

https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts
https://lucidworks.com/products/fusion/download/get-started/

◦ du -sh fusion - total size of FUSION-CURRENT.

◦ df -kH - amount of free space on all file-systems.

• Download a copy of the Fusion upgrade scripts from the GitHub repository https://github.com/LucidWorks/fusion-
upgrade-scripts. These upgrade scripts run under Python 2.7. They have been tested with version 2.7.10. If this
version of Python isn’t available, you should use Python’s virtualenv. If you don’t have permissions to install
packages, you can use python to install virtualenv and then from your virtualenv python environment, you can
install your own versions of theses packages.

Note These scripts require the environment variable
FUSION_OLD_HOME which should be set to the location of the
current Fusion installation, i.e., the existing 1.2 or 2.1
install.

• Upgrades from 2.1 to 2.4 use the script src/upgrade-ds-2.1-to-2.4.py. This script requires the python package kazoo
which is a ZooKeeper client.

• Upgrades from 1.2 to 2.4 use two scripts: src/upgrade-ds-1.2-to-2.4.py and bin/download_upload_ds.py. These scripts
require python packages kazoo and requests, which is an HTTP request handler.

Procedure

Unpack FUSION-NEW

• Current working directory must be INSTALL-DIR
The commands in this section assume that your current working directory is INSTALL-DIR (e.g., "opt/lucidworks"),
therefore cd to this directory before continuing.

• Avoid directory name conflicts between FUSION-CURRENT and FUSION-NEW
By default, the Fusion distribution unpacks into a directory named "fusion". If the INSTALL-DIR is the directory
which contains the FUSION-CURRENT directory and if the FUSION-CURRENT directory is named "fusion", then you
must create a new directory with a different name into which to unpack the Fusion distribution. For example, if
your INSTALL-DIR is "/opt/lucidworks" and your FUSION-CURRENT directory is "/opt/lucidworks/fusion", then you
should create a directory directory named "fusion-new" and unpack the contents of the distribution here:

> mkdir fusion-new
> tar -C fusion-new --strip-components=1 -xf fusion-2.4.1.tar.gz

If you are working on a Windows machine, the zipfile unzips into a folder named "fusion-2.4.1" which contains a folder
named "fusion". Rename folder "fusion" to "fusion-new" and move it into folder INSTALL-DIR.

Customize FUSION-NEW configuration files and run scripts

The Fusion run scripts in the FUSION_HOME/bin directory start and stop Fusion and its component services. The Fusion
configuration files FUSION_HOME/conf define environment variables used by the Fusion run scripts. The configuration and
run scripts for the FUSION-NEW installation must be edited by hand, you cannot copy over existing scripts from the
current installation.

The Fusion configuration scripts might need to be updated if you have changed default settings. These scripts will need
to be updated for deployments that:

• Use an external ZooKeeper cluster as Fusion’s ZooKeeper service

20

https://github.com/lucidworks/fusion-upgrade-scripts/archive/master.zip
https://github.com/lucidworks/fusion-upgrade-scripts/archive/master.zip
https://virtualenv.pypa.io/en/stable/
https://kazoo.readthedocs.org/en/latest/install.html
https://kazoo.readthedocs.org/en/latest/install.html
http://docs.python-requests.org/en/latest/user/install/#install

• Use an external Solr cluster to manage Fusion’s system collections

• Run on non-standard ports

• Have been configured to run over SSL

To facilitate the task of identifying changes made to the current installation, the FUSION-UPGRADE-SCRIPTS repository
contains a directory "reference-files" which contains copies of the contents of these directories for all Fusion releases. To
identify changes, use the Unix diff command with the -r flag; e.g., if FUSION-CURRENT is 2.1.1, then these diff
commands will report the set of changed files and the changes that were made:

> diff -r FUSION-CURRENT/bin FUSION-UPGRADE-SCRIPTS/reference-files/bin-2.1.1
> diff -r FUSION-CURRENT/conf FUSION-UPGRADE-SCRIPTS/reference-files/conf-2.1.1

A copy of Fusion is installed on every node in a Fusion deployment. Depending on the role that node plays in the
deployment, the configuration settings and run scripts are customized accordingly. Therefore, if you are running a
multi-node Fusion deployment this configuration step will be carried out for each node in the cluster.

Copy local data stores in directory FUSION-CURRENT/data

The directory FUSION_HOME/data contains the on-disk data stores managed directly or indirectly by Fusion services.

• FUSION_HOME/data/connectors contains data required by Fusion connectors.

◦ FUSION_HOME/data/connectors/lucid.jdbc contains third-party JDBC driver files. If your application uses a JDBC
connector, you must copy this information over to every server on which will this connector will run.

◦ FUSION_HOME/data/connectors/crawldb contains information on the filed visited during a crawl. (Preserving
crawldb history may not be possible if there are multiple different servers running Fusion connectors services.)

• FUSION_HOME/data/nlp contains data used by Fusion NLP pipeline stages. If you are using Fusion’s NLP components
for sentence detection, part-of-speech tagging, and named entity detection, you must copy over the model files
stored under this directory.

• FUSION_HOME/data/solr contains the backing store for Fusion’s embedded Solr (developer deployment only).

• FUSION_HOME/data/zookeeper contains the backing store for Fusion’s embedded ZooKeeper (developer deployment
only).

If FUSION_CURRENT and FUSION_NEW are installed on the same server, you can copy a subset of these directories
using the Unix "cp" command, e.g.:

> cp -R FUSION-CURRENT/data/connectors/lucid.jdbc FUSION-NEW/data/connectors
> cp -R FUSION-CURRENT/data/connectors/crawldb FUSION-NEW/data/connectors
> cp -R FUSION-CURRENT/data/nlp FUSION-NEW/data/

If FUSION_CURRENT and FUSION_NEW are on different servers, use the Unix rsync utility.

Migrate ZooKeeper and Solr for single-node Fusion deployment

If you are running a single-node Fusion deployment and using both the embedded ZooKeeper and the embedded Solr
that ships with this distribution, then you must copy over both the configurations and data.

To copy the ZooKeeper configuration:

21

> cp -R FUSION-CURRENT/data/zookeeper FUSION-NEW/data

To copy the Solr data:

> cp -R FUSION-CURRENT/data/solr FUSION-NEW/data

If the Solr collections are very large this may take a while.

Migrate Fusion configurations between ZooKeeper instances

Migration consists of the following steps:

• Copy the ZooKeeper data nodes which contain Fusion configuration information from the FUSION-CURRENT
ZooKeeper instance to the FUSION-NEW ZooKeeper instance

Fusion’s utility script zkImportExport.sh is used to copy ZooKeeper data between ZooKeeper clusters. This script is
included with all Fusion distributions in the top-level directory named scripts.

• Rewrite Fusion datasource configurations

Fusion 2.4 changed and standardized the configuration properties used by several datasources. The public GitHub
repository https://github.com/LucidWorks/fusion-upgrade-scripts contains a python script src/upgrade-ds-2.1-to-
2.4.py which rewrites these properties.

Copying ZooKeeper data nodes

Note This step is not necessary if you are doing an in-place
upgrade of a single-node Fusion deployment; the copy
command described in procedure single-node Fusion
ZooKeeper data (above) is sufficient.

Fusion configurations are stored in Fusion’s ZooKeeper instance under two top-level znodes:

• Node lucid stores all application-specific configurations, including collection, datasource, pipeline, signals,
aggregations, and associated scheduling, jobs, and metrics.

• Node lucid-apollo-admin stores all access control information, including all users, groups, roles, and realms.

Fusion’s utility script zkImportExport.sh is used to migrate ZooKeeper data between ZooKeeper clusters. Migrating
configuration information from one deployment to another requires running this script twice:

• The first invocation runs the script in "export" mode, in order to get the set of configurations to be migrated as a
JSON dump file.

• The second invocation runs the script in "import" or "update" mode, in order to sent this configuration set to the
other Fusion deployment.

When running this script against a Fusion deployment, it is advisable to stop all Fusion services except for Fusion’s
ZooKeeper service.

22

https://github.com/LucidWorks/fusion-upgrade-scripts

Exporting Fusion configurations from FUSION-CURRENT ZooKeeper Service

The ZooKeeper service for FUSION-CURRENT must be running. Either stop all other Fusion services or otherwise ensure
that no changes to Fusion configurations take place during this procedure. If you are upgrading from a Fusion 1.2
installation which uses Fusion’s embedded Solr service and the ZooKeeper service included with that Solr installation,
then starting just the Solr service will start the ZooKeeper service as well. If you are upgrading from a Fusion 2
installation, you can start just the ZooKeeper service via the script "zookeeper" in the $FUSION_HOME/bin directory.

The zkImportExport.sh script arguments are:

• -cmd export - This is the command parameter which specifies the mode in which to run this program.

• -zkhost <FUSION_CURRENT ZK> - The ZooKeeper connect string is the list of all servers,ports for the FUSION_CURRENT
ZooKeeper cluster. For example, if running a single-node Fusion developer deployment with embedded ZooKeeper,
the connect string is localhost:9983. If you have an external 3-node ZooKeeper cluster running on servers
"zk1.acme.com", "zk2.acme.com", "zk3.acme.com", all listening on port 2181, then the connect string is
zk1.acme.com:2181,zk2.acme.com:2181,zk3.acme.com:2181

• -filename <path/to/JSON/dump/file> - The name of the JSON dump file to save to.

• -path <start znode>

◦ To migrate all ZooKeeper data, the path is "/".

◦ To migrate only the Fusion services configurations, the path is "/lucid". Migrating just the "lucid" node between
the ZooKeeper services used by different Fusion deployments results in deployments which contain the same
applications but not the same user databases.

◦ To migrate the Fusion users, groups, roles, and realms information, the path is "/lucid-apollo-admin".

Example of exporting Fusion configurations for znode "/lucid" from a local single-node ZooKeeper service:

> $FUSION_HOME/scripts/zkImportExport.sh -zkhost localhost:9983 -cmd export -path /lucid -filename
znode_lucid_dump.json

Importing ZooKeeper data into FUSION-NEW

ZooKeeper service for FUSION-NEW must be running.

To import configurations, run the zkImportExport.sh script, this time with arguments:

• command; must be import

• ZooKeeper connect string for the FUSION-NEW Zookeeper cluster

• Location of JSON dump file.

This command will fail if the "lucid" znode in this Fusion installation contains configuration definitions which are in
conflict with the exported data.

Example of importing exported data from previous step into FUSION_NEW ZooKeeper running on test server
'test.acme.com':

> $FUSION_HOME/scripts/zkImportExport.sh -zkhost test.acme.com:9983 -cmd import -filename
znode_lucid_dump.json

23

Note that the above command will fail if there is conflict between existing znode structures or contents between the
ZooKeeper service and the dump file.

Rewrite datasource configurations for Fusion 2.4

Once all Fusion configurations have been uploaded to the FUSION-NEW ZooKeeper service and while that service is
running, you can run the Python programs upgrade-ds-2.1-to-2.4.py or upgrade-ds-1.2-to-2.4.py to update these
configurations.

Note These programs require:

• The environment variable "FUSION_HOME" must be
set to the FUSION-NEW directory.

• The environment variable "FUSION_OLD_HOME" must
be set to the FUSION-CURRENT directory.

• Python version 2.7, preferably version 2.7.10.

• Package: kazoo - a ZooKeeper client

The Python virtualenv tool can be used to install the
correct Python version and required package.

Set environment variable "FUSION_HOME" to the full path of the FUSION-NEW directory, e.g.:

> export FUSION_HOME=/Users/demo/test_upgrade/fusion_2_4_1

Run this program with arguments: "--datasources all"

If your current Fusion version is 1.2, run:

> python upgrade-ds-1.2-to-2.4.py --datasources all

If your current Fusion is version 2, run:

> python upgrade-ds-2.1-to-2.4.py --datasources all

If a datasource wouldn’t have a valid implementation, the application will print a log message on console and continue
with the next datasource.

Troubleshooting the upgrade

• Clear your browser cache after starting the UI in the new Fusion instance

• The Fusion 2.4 Index Pipeline Simulator can be used to verify that the existing set of datasource configurations work
as expected.

24

https://github.com/lucidworks/fusion-upgrade-scripts/tree/master/src
https://github.com/lucidworks/fusion-upgrade-scripts/tree/master/src
https://kazoo.readthedocs.org/en/latest/install.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://doc.lucidworks.com/fusion/2.4/Indexing_Data/Index-Pipeline-Simulator.html

1.6.5. Upgrade Fusion 1.2 to Fusion 2.4

These instructions are valid for Fusion 1.2.3 releases through Fusion 1.2.8.

Note Several changes have been made to Fusion configurations
stored in ZooKeeper:

• Fusion 2.1 introduced enhanced security for Fusion
datasource passwords which are stored in ZooKeeper
as part of datasource and pipeline stage configuration
properties.

• Fusion 2.4 introduces changes to the configuration
properties for some Fusion datasources.

To update these configurations, we have provided two
python scripts which can be downloaded from:
https://github.com/LucidWorks/fusion-upgrade-scripts.

Once you have migrated all Fusion configurations from
the current Fusion 1.2.x ZooKeeper service to the new
Fusion 2.4 ZooKeeper service, you must run both of these
scripts against the new ZooKeeper service. This procedure
is covered in detail in section Migrate ZooKeeper data

The upgrade process leaves the current Fusion deployment in place while a new Fusion deployment is installed and
configured. All of the upgrade operations copy information from the current Fusion over to the new Fusion. This
provides a rollback option should the upgrade procedure encounter problems.

The current Fusion configurations must remain as-is during the upgrade process. In order to capture indexing job
history, no indexing jobs should be running. If the new Fusion installation is being installed onto the same server that
the current Fusion installation is running on, you must either run only one version at a time or else change the Fusion
component server ports so that all components are using unique ports for both the current and new versions.

Terminology

These instructions use the following names to refer to the directories involved in the upgrade procedure:

• FUSION_HOME: Absolute pathname to the top-level directory of the Fusion distribution

• FUSION-CURRENT: Name of the FUSION_HOME directory for the current Fusion version, e.g.
"/opt/lucidworks/fusion-2.1.2"

• FUSION-NEW: Name of the directory of the upgrade Fusion distribution during the upgrade process, e.g.
"/opt/lucidworks/fusion-2.4.1"

• INSTALL-DIR: Directory where the new Fusion version will be installed, e.g. "opt/lucidworks" All scripts and
commands in the upgrade instruction set are carried out from this directory.

• FUSION-UPGRADE-SCRIPTS: Full path to the directory that contains the upgrade scripts from https://github.com/
LucidWorks/fusion-upgrade-scripts.

25

https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts

Requirements

• File-system permissions: the user running the upgrade scripts and commands must have read/write/execute (rwx)
permissions on directory INSTALL-DIR.

• Download but do not unpack a copy of the FUSION-NEW distribution. The compressed Fusion distribution requires
approximately 1.7 GB disk space. All supported version are available from Lucidworks Fusion Get Started page.

• Disk space requirements: the INSTALL-DIR must be on a disk partition which has enough free space for the complete
FUSION-NEW installation, that is, there must be at least as much free space as the size of the FUSION-CURRENT
directory. On a Unix system, the following commands can be used:

◦ du -sh fusion - total size of FUSION-CURRENT.

◦ df -kH - amount of free space on all file-systems.

• Download a copy of the Fusion upgrade scripts from the GitHub repository https://github.com/LucidWorks/fusion-
upgrade-scripts. These upgrade scripts run under Python 2.7. They have been tested with version 2.7.10. If this
version of Python isn’t available, you should use Python’s virtualenv. If you don’t have permissions to install
packages, you can use python to install virtualenv and then from your virtualenv python environment, you can
install your own versions of theses packages.

Note These scripts require the environment variable
FUSION_OLD_HOME which should be set to the location of the
current Fusion installation, i.e., the existing 1.2 or 2.1
install.

• Upgrades from 2.1 to 2.4 use the script src/upgrade-ds-2.1-to-2.4.py. This script requires the python package kazoo
which is a ZooKeeper client.

• Upgrades from 1.2 to 2.4 use two scripts: src/upgrade-ds-1.2-to-2.4.py and bin/download_upload_ds.py. These scripts
require python packages kazoo and requests, which is an HTTP request handler.

Procedure

Unpack FUSION-NEW

• Current working directory must be INSTALL-DIR
The commands in this section assume that your current working directory is INSTALL-DIR (e.g., "opt/lucidworks"),
therefore cd to this directory before continuing.

• Avoid directory name conflicts between FUSION-CURRENT and FUSION-NEW
By default, the Fusion distribution unpacks into a directory named "fusion". If the INSTALL-DIR is the directory
which contains the FUSION-CURRENT directory and if the FUSION-CURRENT directory is named "fusion", then you
must create a new directory with a different name into which to unpack the Fusion distribution. For example, if
your INSTALL-DIR is "/opt/lucidworks" and your FUSION-CURRENT directory is "/opt/lucidworks/fusion", then you
should create a directory directory named "fusion-new" and unpack the contents of the distribution here:

> mkdir fusion-new
> tar -C fusion-new --strip-components=1 -xf fusion-2.4.1.tar.gz

If you are working on a Windows machine, the zipfile unzips into a folder named "fusion-2.4.1" which contains a folder
named "fusion". Rename folder "fusion" to "fusion-new" and move it into folder INSTALL-DIR.

26

https://lucidworks.com/products/fusion/download/get-started/
https://github.com/lucidworks/fusion-upgrade-scripts/archive/master.zip
https://github.com/lucidworks/fusion-upgrade-scripts/archive/master.zip
https://virtualenv.pypa.io/en/stable/
https://kazoo.readthedocs.org/en/latest/install.html
https://kazoo.readthedocs.org/en/latest/install.html
http://docs.python-requests.org/en/latest/user/install/#install

Customize FUSION-NEW configuration files and run scripts

The Fusion run scripts in the FUSION_HOME/bin directory start and stop Fusion and its component services. The Fusion
configuration files FUSION_HOME/conf define environment variables used by the Fusion run scripts. The configuration and
run scripts for the FUSION-NEW installation must be edited by hand, you cannot copy over existing scripts from the
current installation.

The Fusion configuration scripts might need to be updated if you have changed default settings. These scripts will need
to be updated for deployments that:

• Use an external ZooKeeper cluster as Fusion’s ZooKeeper service

• Use an external Solr cluster to manage Fusion’s system collections

• Run on non-standard ports

• Have been configured to run over SSL

To facilitate the task of identifying changes made to the current installation, the FUSION-UPGRADE-SCRIPTS repository
contains a directory "reference-files" which contains copies of the contents of these directories for all Fusion releases. To
identify changes, use the Unix diff command with the -r flag; e.g., if FUSION-CURRENT is 2.1.1, then these diff
commands will report the set of changed files and the changes that were made:

> diff -r FUSION-CURRENT/bin FUSION-UPGRADE-SCRIPTS/reference-files/bin-2.1.1
> diff -r FUSION-CURRENT/conf FUSION-UPGRADE-SCRIPTS/reference-files/conf-2.1.1

A copy of Fusion is installed on every node in a Fusion deployment. Depending on the role that node plays in the
deployment, the configuration settings and run scripts are customized accordingly. Therefore, if you are running a
multi-node Fusion deployment this configuration step will be carried out for each node in the cluster.

In Fusion 1.2, the FUSION_HOME/bin directory contains both the Fusion run scripts and the helper scripts which define
common settings and environment variables. In Fusion 2.1, the configuration files config.sh and config.cmd have been
moved to directory FUSION_HOME/conf.

Checking a 1.2 installation against the reference scripts for that release requires only a single diff command:

> diff -r FUSION-CURRENT/bin FUSION-UPGRADE-SCRIPTS/reference-files/bin-1.2.3

If either the "config.sh" or "config.cmd" files have changed, the corresponding files for the Fusion 2 release will be in
directory FUSION_HOME/conf.

Copy local data stores in the directory FUSION-CURRENT/data

The directory FUSION_HOME/data contains the on-disk data stores managed directly or indirectly by Fusion services.

• FUSION_HOME/data/connectors contains data required by Fusion connectors.

◦ FUSION_HOME/data/connectors/lucid.jdbc contains third-party JDBC driver files. If your application uses a JDBC
connector, you must copy this information over to every server on which will this connector will run.

◦ FUSION_HOME/data/connectors/crawldb contains information on the filed visited during a crawl. (Preserving
crawldb history may not be possible if there are multiple different servers running Fusion connectors services.)

• FUSION_HOME/data/nlp contains data used by Fusion NLP pipeline stages. If you are using Fusion’s NLP components

27

for sentence detection, part-of-speech tagging, and named entity detection, you must copy over the model files
stored under this directory.

• FUSION_HOME/data/solr contains the backing store for Fusion’s embedded Solr (developer deployment only).

• FUSION_HOME/data/zookeeper contains the backing store for Fusion’s embedded ZooKeeper (developer deployment
only).

If FUSION_CURRENT and FUSION_NEW are installed on the same server, you can copy a subset of these directories
using the Unix "cp" command, e.g.:

> cp -R FUSION-CURRENT/data/connectors/lucid.jdbc FUSION-NEW/data/connectors
> cp -R FUSION-CURRENT/data/connectors/crawldb FUSION-NEW/data/connectors
> cp -R FUSION-CURRENT/data/nlp FUSION-NEW/data/

If FUSION_CURRENT and FUSION_NEW are on different servers, use the Unix rsync utility.

Migrate ZooKeeper and Solr for single-node Fusion deployment

If you are running a single-node Fusion deployment and using both the embedded ZooKeeper and the embedded Solr
that ships with this distribution, then you must copy over both the configurations and data.

To copy the ZooKeeper configuration:

> mkdir -p FUSION-NEW/data/zookeeper
> cp -R FUSION-CURRENT/solr/zoo_data/* FUSION-NEW/data/zookeeper

To check your work: compare the directories FUSION-CURRENT/solr/zoo_data/ and FUSION-NEW/data/zookeeper using the
diff command. This command succeeds silently when the contents are the same.

> diff -r FUSION-CURRENT/solr/zoo_data FUSION-NEW/data/zookeeper

To copy the Solr data:

> find FUSION-CURRENT/solr -maxdepth 1 -mindepth 1 | grep -v -E "zoo*" | while read f ; do cp -R $f FUSION-
NEW/data/solr/; done

If the Solr collections are very large this may take a while.

You can use the diff command to check your work. The copy command excluded ZooKeeper config data, therefore you
should see the following output:

> diff -r FUSION-CURRENT/solr FUSION-NEW/data/solr
Only in FUSION-NEW/data/solr: configsets
Only in FUSION-CURRENT/solr: zoo.cfg
Only in FUSION-CURRENT/solr: zoo_data

Migrate Fusion configurations between ZooKeeper instances

Migration consists of three steps:

28

• Copy the ZooKeeper data nodes which contain Fusion configuration information from the FUSION-CURRENT
ZooKeeper instance to the FUSION-NEW ZooKeeper instance

Fusion’s utility script zkImportExport.sh is used to copy ZooKeeper data between ZooKeeper clusters. This script is
included with all Fusion distributions in the top-level directory named scripts.

• Rewrite Fusion datasource configurations

Fusion 2.4 changed and standardized the configuration properties used by several datasources. The public GitHub
repository https://github.com/LucidWorks/fusion-upgrade-scripts contains a python script src/upgrade-ds-1.2-to-
2.4.py which rewrites these properties.

• Rewrite stored password information used by Fusion datasources and pipelines.

Fusion 2 encrypts all passwords use by datasources and pipelines to access password-protected data repositories.
The public GitHub repository https://github.com/LucidWorks/fusion-upgrade-scripts. contains a a python script
bin/download_upload_ds_pipelines.py used to edit the stored password information.

Copying ZooKeeper data nodes

Note This step is not necessary if you are doing an in-place
upgrade of a single-node Fusion deployment; the copy
command described in procedure single-node Fusion
ZooKeeper data (above) is sufficient.

Fusion configurations are stored in Fusion’s ZooKeeper instance under two top-level znodes:

• Node lucid stores all application-specific configurations, including collection, datasource, pipeline, signals,
aggregations, and associated scheduling, jobs, and metrics.

• Node lucid-apollo-admin stores all access control information, including all users, groups, roles, and realms.

Fusion’s utility script zkImportExport.sh is used to migrate ZooKeeper data between ZooKeeper clusters. Migrating
configuration information from one deployment to another requires running this script twice:

• The first invocation runs the script in "export" mode, in order to get the set of configurations to be migrated as a
JSON dump file.

• The second invocation runs the script in "import" or "update" mode, in order to sent this configuration set to the
other Fusion deployment.

When running this script against a Fusion deployment, it is advisable to stop all Fusion services except for Fusion’s
ZooKeeper service.

Exporting Fusion configurations from FUSION-CURRENT ZooKeeper Service

The ZooKeeper service for FUSION-CURRENT must be running. Either stop all other Fusion services or otherwise ensure
that no changes to Fusion configurations take place during this procedure. If you are upgrading from a Fusion 1.2
installation which uses Fusion’s embedded Solr service and the ZooKeeper service included with that Solr installation,
then starting just the Solr service will start the ZooKeeper service as well. If you are upgrading from a Fusion 2
installation, you can start just the ZooKeeper service via the script "zookeeper" in the $FUSION_HOME/bin directory.

The zkImportExport.sh script arguments are:

29

https://github.com/LucidWorks/fusion-upgrade-scripts
https://github.com/LucidWorks/fusion-upgrade-scripts

• -cmd export - This is the command parameter which specifies the mode in which to run this program.

• -zkhost <FUSION_CURRENT ZK> - The ZooKeeper connect string is the list of all servers,ports for the FUSION_CURRENT
ZooKeeper cluster. For example, if running a single-node Fusion developer deployment with embedded ZooKeeper,
the connect string is localhost:9983. If you have an external 3-node ZooKeeper cluster running on servers
"zk1.acme.com", "zk2.acme.com", "zk3.acme.com", all listening on port 2181, then the connect string is
zk1.acme.com:2181,zk2.acme.com:2181,zk3.acme.com:2181

• -filename <path/to/JSON/dump/file> - The name of the JSON dump file to save to.

• -path <start znode>

◦ To migrate all ZooKeeper data, the path is "/".

◦ To migrate only the Fusion services configurations, the path is "/lucid". Migrating just the "lucid" node between
the ZooKeeper services used by different Fusion deployments results in deployments which contain the same
applications but not the same user databases.

◦ To migrate the Fusion users, groups, roles, and realms information, the path is "/lucid-apollo-admin".

Example of exporting Fusion configurations for znode "/lucid" from a local single-node ZooKeeper service:

> $FUSION_HOME/scripts/zkImportExport.sh -zkhost localhost:9983 -cmd export -path /lucid -filename
znode_lucid_dump.json

Importing ZooKeeper data into FUSION-NEW

ZooKeeper service for FUSION-NEW must be running.

To import configurations, run the zkImportExport.sh script, this time with arguments:

• command; must be import

• ZooKeeper connect string for the FUSION-NEW Zookeeper cluster

• Location of JSON dump file.

This command will fail if the "lucid" znode in this Fusion installation contains configuration definitions which are in
conflict with the exported data.

Example of importing exported data from previous step into FUSION_NEW ZooKeeper running on test server
'test.acme.com':

> $FUSION_HOME/scripts/zkImportExport.sh -zkhost test.acme.com:9983 -cmd import -filename
znode_lucid_dump.json

Note that the above command will fail if there is conflict between existing znode structures or contents between the
ZooKeeper service and the dump file.

Rewrite datasource configurations for Fusion 2.4

Once all Fusion configurations have been uploaded to the FUSION-NEW ZooKeeper service and while that service is
running, you can run the Python programs upgrade-ds-2.1-to-2.4.py or upgrade-ds-1.2-to-2.4.py to update these
configurations.

30

https://github.com/lucidworks/fusion-upgrade-scripts/tree/master/src
https://github.com/lucidworks/fusion-upgrade-scripts/tree/master/src

Note These programs require:

• The environment variable "FUSION_HOME" must be
set to the FUSION-NEW directory.

• The environment variable "FUSION_OLD_HOME" must
be set to the FUSION-CURRENT directory.

• Python version 2.7, preferably version 2.7.10.

• Package: kazoo - a ZooKeeper client

The Python virtualenv tool can be used to install the
correct Python version and required package.

Set environment variable "FUSION_HOME" to the full path of the FUSION-NEW directory, e.g.:

> export FUSION_HOME=/Users/demo/test_upgrade/fusion_2_4_1

Run this program with arguments: "--datasources all"

If your current Fusion version is 1.2, run:

> python upgrade-ds-1.2-to-2.4.py --datasources all

If your current Fusion is version 2, run:

> python upgrade-ds-2.1-to-2.4.py --datasources all

If a datasource wouldn’t have a valid implementation, the application will print a log message on console and continue
with the next datasource.

Rewrite stored password information used by Fusion datasources and pipelines

Once you have migrated all Fusion configurations to the FUSION_NEW ZooKeeper service, you must update the
migrated datasource configurations by running the script download_upload_ds_pipelines.py against the FUSION_NEW
zookeeper in order to rewrite any stored datasource passwords that are specified as part of the configuration for a
datasource or pipeline.

31

https://kazoo.readthedocs.org/en/latest/install.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://github.com/lucidworks/fusion-upgrade-scripts/blob/master/bin/download_upload_ds_pipelines.py

Note The script bin/download_upload_ds_pipelines.py requires:

• Python version 2.7, preferably version 2.7.10.

• Package: kazoo - a ZooKeeper client

• Package: requests - an HTTP request handler

• Environment variable FUSION_OLD_HOME set to location
of Fusion 1.2 home.

The Python virtualenv tool can be used to install the
correct Python version and required packages.

The rewrite process consists of a download step which exports the ZooKeeper configuration information and an upload
step which rewrites the information and then imports it back into ZooKeeper.

This script uses the following arguments and values:

• "--zk-connect": the ZooKeeper server:port for FUSION-NEW

• "--action": either "download" or "upload".

• "--fusion-url": URL of Fusion API service to upload configurations to

• "--fusion-username": name of Fusion user with admin privileges; the script will prompt for username’s password.

Download configurations from ZooKeeper

No services for FUSION-NEW should be running, except for ZooKeeper. If your Fusion installation uses an external
ZooKeeper, then this must be running. If your Fusion installation uses an embedded ZooKeeper, then you must have
copied the ZooKeeper data from FUSION-CURRENT to FUSION-NEW.

Start the ZooKeeper service:

> FUSION-NEW/bin/zookeeper start

Run the script to download the configurations.

> python FUSION-UPGRADE-SCRIPTS/bin/download_upload_ds_pipelines.py \
 --zk-connect localhost:9983 --action download

To check your work, check that directory "fusion_upgrade_2.1" was created and that is contains definitions for all
datasources and pipelines. Do not remove this directory until you have successfully completed the upload step.

If you are running embedded ZooKeeper, shut it down again:

> FUSION-NEW/bin/zookeeper stop

Upload configurations to the Fusion API service

Start FUSION-NEW:

32

https://kazoo.readthedocs.org/en/latest/install.html
https://pypi.python.org/pypi/requests/2.10.0
http://docs.python-guide.org/en/latest/dev/virtualenvs/

> FUSION-NEW/bin/fusion start

Once it is running, run the script in upload mode to propagate the configurations in directory "fusion_upgrade_2.1".

At this point in the migration process, the FUSION-NEW ZooKeeper information is the same as the FUSION-CURRENT
Zookeeper information; therefore the password for the admin user is the same.

To upload data to the Fusion API services, you must supply the admin username and password as arguments to the
script:

• "--fusion-username": name of Fusion user with admin privileges

• "--fusion-password": password for Fusion user

> FUSION-NEW/bin/fusion start
> python FUSION-UPGRADE-SCRIPTS/bin/download_upload_ds_pipelines.py \
 --zk-connect localhost:9983 --action upload --fusion-url http://localhost:8764/api \
 --fusion-username <admin>

Copy and convert the crawldb

The Fusion "crawldb" records the results of running datasource jobs. This information must be copied from FUSION-
CURRENT to FUSION-NEW and the data format must be converted to the format used in Fusion 2.1 via the conversion
utility com.lucidworks.fusion-crawldb-migrator-0.1.0.jar.

Copy the Fusion "crawldb" directory:

> cp -R FUSION-CURRENT/data/connectors/crawldb FUSION-NEW/data/connectors/

The crawldb data format changed in Fusion 2.1, therefore to upgrade to 2.1, the crawldb data must be converted with
the the conversion utility com.lucidworks.fusion-crawldb-migrator-0.1.0.jar.

The anda-v1-to-v2 command allows Fusion 1.2.x connector DBs to be updated to the new v2.x format. It requires:

• A Fusion pre 2.1 installation (FUSION-CURRENT)

• A Fusion 2.1 or later installation (FUSION-NEW).

◦ All FUSION-CURRENT datasource configurations must have been migrated to FUSION-NEW (see Migrate
ZooKeeper data)

◦ All FUSION-CURRENT crawldb files must have been copied over to the FUSION-NEW deployment.

If the FUSION-NEW installation is not currently running, start it:

> FUSION-NEW/bin/fusion start

The anda-v1-to-v2 takes the following arguments:

• path-to-FUSION-CURRENT

• path-to-FUSION-NEW

33

https://github.com/lucidworks/fusion-upgrade-scripts/blob/master/bin/com.lucidworks.fusion-crawldb-migrator-0.1.0.jar
https://github.com/lucidworks/fusion-upgrade-scripts/blob/master/bin/com.lucidworks.fusion-crawldb-migrator-0.1.0.jar

• the -z flag specifies the ZooKeeper server:port for FUSION-NEW

The command to run this utility from the INSTALL-DIR is:

> java -jar FUSION-UPGRADE-SCRIPTS/bin/com.lucidworks.fusion-crawldb-migrator-0.1.0.jar anda-v1-v2 fusion
fusion-new -z localhost:9983

Once the task successfully completes, the last few lines of logging show the output directory of the new DB files. The
output must be copied over to FUSION-NEW. To do this, remove the existing lucid.anda db directories, then copy the new
lucid.anda directories generated from this utility into that same location:

> rm -Rf FUSION-NEW/data/connectors/crawldb/lucid.anda/*
> mv ${path-printed-from-command-output} FUSION-NEW/data/connectors/crawldb/lucid.anda/

This completes the upgrade process.

Troubleshooting the upgrade

• Clear your browser cache after starting the UI in the new Fusion instance

• The Fusion 2.4 Index Pipeline Simulator can be used to verify that the existing set of datasource configurations work
as expected.

34

https://doc.lucidworks.com/fusion/2.4/Indexing_Data/Index-Pipeline-Simulator.html

1.7. Integrate Fusion with an Existing Solr Deployment

If you have already implemented Solr as a standalone instance or as a SolrCloud cluster, you can add Fusion to your
existing Solr deployment and import your Solr collections into Fusion. Each Fusion collection can import one Solr
collection.

• If your existing Solr instance is running in SolrCloud mode, you can use Fusion’s UI to modify configuration files (such
as schema.xml or solrconfig.xml) and create Solr collections.

• If your existing Solr instance is running in standalone mode, you can still connect it to Fusion. Fusion can send
documents to a standalone Solr instance and query the instance. But you won’t be able to use Fusion’s UI to create
Solr collections (Solr cores) or to modify Solr configuration files.

1.7.1. Prerequisites

• You have already installed Fusion.

• You have already installed Solr, which must meet these Solr requirements.

• You have already installed ZooKeeper, which must meet these ZooKeeper requirements.

Note We recommend that you create an external ZooKeeper
cluster (external to both Fusion and SolrCloud).

• Your Solr deployment must contain one or more collections (cores).

• In SolrCloud mode, Solr must be configured to use ZooKeeper.

1.7.2. Configure Fusion to use an existing Solr deployment

Use the Fusion UI or the Fusion API to integrate Fusion with an existing Solr deployment.

Use the Fusion UI

1. Create a Fusion search cluster:

a. In the Fusion UI, navigate to System > Solr Clusters and click New Solr Cluster.

b. Enter this information:

▪ A cluster ID of your choice

▪ Whether SolrCloud is enabled

▪ The connect string (to tell Fusion how to connect to the SolrCloud cluster or Solr instance)

▪ For SolrCloud, this is the ZooKeeper connect string.

▪ For a standalone Solr instance, this is the URL of the Solr instance.

c. Verify that the connection is working by clicking Cores in the new cluster and inspecting the contents.

2. Create a Fusion collection that points to your Solr cluster and collection:

a. In the UI, navigate to Collections and click Add a Collection.

b. Enter a name for the new collection.

c. Click Advanced.

d. Select your SolrCloud cluster or Solr instance from the dropdown.

35

e. Enter the name of the Solr collection to import.

Use the Fusion API

Use the Search Cluster API to create a Solr cluster.

Then use the Collections API to create and configure a collection.

1.7.3. Sending Documents to Solr through Fusion

You can use the Fusion connectors to crawl documents and index them to your existing Solr deployment.

1. Follow the steps above to create and configure a search cluster and a collection that points to Solr.

2. Define an index pipeline that ends with a Solr Indexer stage that sends the documents to Solr.

3. Use one of these methods to ingest your data:

◦ In the collection that points to your Solr collection, define a datasource using the connector of choice.

◦ Send prepared documents directly to the index pipeline for processing. See Pushing Documents to a Pipeline.

◦ It’s also possible to use a different indexing process besides a connector, such as a script that sends documents
through the index pipeline.

When documents are sent to Solr, a buffering solrServer is used. Buffering the updates reduces the number of HTTP
requests made from Fusion to Solr, which can significantly affect processing time. For example, when processing simple
documents, you should always try to buffer as many documents as possible to increase throughput. When processing
complex documents, you should use small batch sizes. You should only turn buffering off if you are using an older
version of Solr and you want Fusion to catch and document indexing errors.

1.7.4. Querying Solr via Fusion requests

Indexed documents are stored in Solr indexes. You can query for these documents by using query pipelines. The query
pipelines let you define your query parameters – such as how many records to return, the fields you’d like, how to
structure facets, and so on. You also have the ability to add JavaScript to the response processing, and define landing
pages or specific boost levels depending on the user’s query. See Query Pipelines.

If you prefer, you can also use the Solr API and SolrAdmin API to query Solr directly.

36

1.8. Configuring Fusion for SSL

Fusion uses the Java Secure Socket Extension (JSSE) framework to enable SSL configuration for secure communication
between the Fusion UI and any HTTP client.

To configure Fusion for SSL you must install an SSL certificate and enable SSL in the Fusion UI.

1.8.1. Installing an SSL certificate

The server has a locally-protected private key that is accessible via a JSEE keystore. The keystore maintains both the
server certificate and the private key.

Important In a production environment, SSL certificates must be
signed by a trusted Certificate Authority (CA).

To store certificates, you can use the Java keytool, which is part of the JDK. When you have a signed certificate, then you
create a JSSE keystore by using the keytool "import" command.

In the following example, we have a signed certificate, in pfx format, in a PKCS#12 file called fusion.keystore.p12. The
following command creates a new JSSE keystore (JKS):

keytool -importkeystore -srckeystore /opt/lucidworks/fusion/apps/jetty/ui/etc/fusion.keystore.p12 \
 -srcstoretype pkcs12 -destkeystore /opt/lucidworks/fusion/jetty/ui/etc/keystore -deststoretype JKS

If you have the certificate and private key as separate files, then you need to use openssl to create a PKCS#12 file. For
example:

openssl pkcs12 -export -out /home/admin/keys/keystore.pkcs12 -in /home/admin/keys/fullchain.pem -inkey
/home/admin/keys/privkey.pem

Note When prompted for a password, do not enter a blank
password.

Now use keytool to import the PKCS#12 file into Java keystore format and optionally delete the PKCS#12 file:

keytool -importkeystore -srckeystore /home/admin/keys/keystore.pkcs12 -srcstoretype PKCS12 -destkeystore
{fusion_path}/apps/jetty/ui/etc/keystore

Note If your server certificate is signed by an intermediate CA
rather than a root CA, you must add the intermediate
certificate to the keystore before you add the server
certificate.

1.8.2. Configuring the Fusion UI

The current version of the Fusion UI runs an embedded Jetty server. In the Fusion distribution, this server is in
directory fusion/apps/jetty/ui. Server configuration files including the keystore file and HTTPS and SSL config files are
stored in the subdirectory fusion/apps/jetty/ui/etc.

37

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#SSLOverview
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://www.openssl.org/

To configure the Fusion UI server for SSL, you must:

• configure the embedded web server to use the JSSE keystore which has your certificates

• configure the web server ports

• redirect HTTP request to HTTPS

As a training exercise, we show how to configure the Fusion UI for SSL with the default Fusion developer deployment
and test the configuration via a web browser running on the same machine, i.e., the web client sends requests to server
"localhost" on port 8764, the default port for the Fusion UI. In an enterprise deployment, of course, the browser client
and Fusion UI will be on different machines, and the Fusion UI wouldn’t be using port 8764.

1.8.3. Configure Jetty to use the JSSE keystore

The following details are taken from the eclipse.org Jetty documentation pages.

The generated SSL certificates held in the key store are configured on Jetty by injecting an instance of a
SslContextFactory object and passing it to the connector’s SslConnectionFactory, which is done in the Jetty distribution
in file jetty-https.xml. The SslContextFactory object is configured in the file jetty-ssl.xml.

These XML files are in the fusion/apps/jetty/home/etc directory. The directory that contains the Jetty server instance
which runs the Fusion UI is directory fusion/apps/jetty/ui.

This means that you must:

1. Copy the files jetty-https.xml and jetty-ssl.xml from fusion/apps/jetty/home/etc to fusion/apps/jetty/ui/etc.

2. Edit the jetty-ssl.xml file and update the following the sslContextFactory class properties so that they match the
actual keystore location and passwords:

◦ KeyStorePath

◦ KeyStorePassword

◦ KeyManagerPassword

◦ TrustStorePath

◦ TrustStorePassword

For our example, the path values are all "my.keystore.jks" and the password values are all "secret".

<Configure id="sslContextFactory" class="org.eclipse.jetty.util.ssl.SslContextFactory">
 <Set name="KeyStorePath"><Property name="jetty.base" default="." />/<Property name="jetty.keystore"
default="etc/my.keystore.jks"/></Set>
 <Set name="KeyStorePassword"><Property name="jetty.keystore.password" default="secret"/></Set>
 <Set name="KeyManagerPassword"><Property name="jetty.keymanager.password" default="secret"/></Set>
 <Set name="TrustStorePath"><Property name="jetty.base" default="." />/<Property name="jetty.truststore"
default="etc/my.keystore.jks"/></Set>
 <Set name="TrustStorePassword"><Property name="jetty.truststore.password" default="secret"/></Set>

1.8.4. Configure the Fusion UI startup script

The Fusion UI startup script, path fusion/bin/ui, sets a series of environment variables and then starts the Jetty server.
The arguments to exec command to start the Jetty server should be changed as follows:

38

http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html

• change command line argument "jetty.port=$HTTP_PORT" to "https.port=$HTTP_PORT"

• add XML config files to the command line arguments

Here is the command to start Jetty in the script fusion/bin/ui, after making the above edits:

exec "$JAVA" \
 $JAVA_OPTIONS \
 "-Djava.io.tmpdir=$JETTY_BASE/work" \
 "-Dlog4j.configurationFile=file:$JETTY_BASE/resources/log4j2.xml" \
 "-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager" \
 "-Dapollo.home=/path/to/fusion" \
 "-Dcom.lucidworks.apollo.admin.zk.connect=$FUSION_ZK" \
 "-XX:OnOutOfMemoryError=/path/to/fusion/bin/oom.sh ui" \
 -jar "$JETTY_HOME/start.jar" \
 "jetty.home=$JETTY_HOME" \
 "jetty.base=$JETTY_BASE" \
 "https.port=$HTTP_PORT" \
 "STOP.PORT=$STOP_PORT" \
 "STOP.KEY=$STOP_KEY" \
 "$JETTY_BASE/etc/jetty-ssl.xml" \
 "$JETTY_BASE/etc/jetty-https.xml" \
 "$JETTY_BASE/etc/jetty-logging.xml"

1.8.5. Disabling HTTP

Note Only do this if blocking access to HTTP using the firewall is
not feasible.

To entirely disable HTTP, remove the HTTP connector from the Jetty startup configuration:

rm {fusion_path}/apps/jetty/ui/start.d/http.ini

1.8.6. Configuring Fusion for SSL Solr/SolrCloud

To configure the Fusion HTTP client for a SSL-ed Solr or SolrCloud server, you must specify the javax.net.ssl system
properties.

See the Solr wiki instructions for enabling SSL for SolrCloud.

Step 1. Edit the configuration file

In the fusion/conf/config.sh file, add the following properties to the options API_JAVA_OPTIONS, CONNECTORS_JAVA_OPTIONS
and UI_JAVA_OPTIONS:

 -Djavax.net.ssl.keyStore=/path/to/solr-ssl.keystore.jks \
 -Djavax.net.ssl.keyStorePassword=secret \
 -Djavax.net.ssl.trustStore=/path/to/solr-ssl.keystore.jks \
 -Djavax.net.ssl.trustStorePassword=secret

39

https://cwiki.apache.org/confluence/display/solr/Enabling+SSL

Step 2. Register SolrCloud as a search cluster in Fusion

Send a request to the REST API 'searchCluster' endpoint:

curl -u admin:pass -H 'Content-type: application/json' -X POST
'http://localhost:8764/api/apollo/searchCluster' -d '
{
 "id" : "ssl",
 "connectString" : "localhost:2181",
 "cloud" : true
}

Step 3. Test: create collection, index data, query collection

Create collection in SolrCloud with configured SSL:

curl -u admin:pass -H 'Content-type: application/json' -X POST 'http://localhost:8764/api/apollo/collections'
-d '
{
 "id" : "mycollection",
 "searchClusterId" : "ssl"
}'

Index data using an existing pipeline:

curl -u admin:pass 'http://localhost:8764/api/apollo/index-pipelines/mycollection-
default/collections/mycollection/index' -XPOST -H "Content-type: application/json" -d '{
 "id": "1",
 "foo_s": "bar",
 "spam_s": 42
}'

Query the collection using the default query pipeline:

curl -u admin:pass 'http://localhost:8764/api/apollo/query-pipelines/mycollection-
default/collections/mycollection/select?q=*:*'

1.8.7. Generating a self-signed certificate

If don’t have signed certificates from an external CA, then you can generate a set of self-signed certificates using the Java
keytool utility to generate a public/private key pair and generate a self-signed certificate.

The keytool option "-genkeypair" generates a public/private key pair. It wraps the public key into an X.509 v3 self-signed
certificate, which is stored as a single-element certificate chain. This certificate chain and the private key are stored in a
new keystore entry identified by alias. The full set of arguments to this command are:

40

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

-genkeypair
 {-alias alias}
 {-keyalg keyalg}
 {-keysize keysize}
 {-sigalg sigalg}
 [-dname dname]
 [-keypass keypass]
 {-startdate value}
 {-ext ext}*
 {-validity valDays}
 {-storetype storetype}
 {-keystore keystore}
 [-storepass storepass]
 {-providerClass provider_class_name {-providerArg provider_arg}}
 {-v}
 {-protected}
 {-Jjavaoption}

Arguments of interest are:

• keyalg specifies the algorithm to be used to generate the key pair. This must be RSA in order to talk to browser
clients IE and Navigator.

• keysize specifies the size of each key to be generated. Depends on keyalg. For RSA, this should be 2048.

• dname specifies the X.500 Distinguished Name to be associated with the alias, and is used as the issuer and subject
fields in the self-signed certificate. If no distinguished name is provided at the command line, the user will be
prompted for one. An X.500 Distinguished name is a set of named fields, of these, the field named "CN", ("Common
Name"), is the internet-facing fully qualified domain name of the server.

• keypass is a password used to protect the private key of the generated key pair. If no password is provided, the user
is prompted for it. If you press RETURN at the prompt, the key password is set to the same password as that used for
the keystore. keypass must be at least 6 characters long.

• ext is used to embed extensions into the certificate generated. For Fusion, the server certificate should include the
"SAN" or SubjectAlternativeName extension which allows alternative URIs and IP addresses to be associated with
this certificate.

Keystore files created by the keystore tool are in the JKS format, which is a proprietary file format capable of storing
multiple key-pairs, certificates, and symmetric encryption keys, and with all entries indexed by the keypair alias.

To generate a self-signed certificate for the Fusion UI running as "localhost", we use the following arguments:

keytool -genkeypair \
 -alias localhost -keyalg RSA -keysize 2048 \
 -keypass secret -storepass secret \
 -validity 365 -keystore my.keystore.jks \
 -ext SAN=DNS:localhost,IP:127.0.0.1 \
 -dname "CN=localhost, OU=org unit, O=org, L=loc, ST=st, C=country"

Note The value for CN must match the hostname you will be
using to access Fusion. For example, if will use the URL
https://myfusion.com:8864 to access the UI then the CN
should have the value myfusion.com.

41

http://en.wikipedia.org/wiki/SubjectAltName
https://myfusion.com:8864

This keystore file can now be imported to the Fusion UI keystore. To check the generated keystore we use the openssl
tool to pretty-print the signed certificate in the file my.keystore.jks. This is not strictly necessary; this should always be
done before sending the certificate to a CA to get it signed properly in order to verify that the certificate information is
complete and correct.

To get from the keystore JKS format to a human-readable printout, it must be converted to the text-based "PEM" format,
which is ASCII (Base64) armored data prefixed with a —– BEGIN … line. This requires three steps.

First, we use the keytool to convert the proprietary JKS format to the PKCS #12 format:

keytool -importkeystore \
 -srckeystore my.keystore.jks -destkeystore my.keystore.p12 \
 -srcstoretype jks -deststoretype pkcs12

This command prompts for passwords - as before, the password is "secret".

Next, we use openssl to convert the PKCS format to PEM format:

openssl pkcs12 -in my.keystore.p12 -out my.keystore.pem

Finally, to pretty-print the certificate, we use the following openssl command:

openssl x509 -in my.keystore.pem -text -noout

This converts the PEM format to text format, and writes the output to the terminal. The output is:

42

http://en.wikipedia.org/wiki/PKCS_12

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1442779707 (0x55ff123b)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=country, ST=st, L=loc, O=org, OU=org unit, CN=localhost
 Validity
 Not Before: Apr 8 07:39:35 2015 GMT
 Not After : Apr 7 07:39:35 2016 GMT
 Subject: C=country, ST=st, L=loc, O=org, OU=org unit, CN=localhost
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
 Modulus (2048 bit):
 00:96:04:46:6c:be:7f:ec:ea:18:fa:28:11:a9:fb:
 3d:07:c5:3c:49:39:57:11:24:1d:75:47:5d:76:26:
 4b:73:c0:ea:44:7a:a5:59:3a:a7:4b:16:eb:1f:be:
 05:f1:2a:be:62:72:2c:67:ec:d3:8b:ad:76:af:dc:
 6d:14:ca:c9:75:5a:76:24:80:c6:f8:55:b0:27:6a:
 fa:a8:1b:4b:5c:55:93:49:ff:f8:84:67:29:56:80:
 ca:c1:d8:c4:8c:b8:57:a4:78:6a:e8:e0:2c:51:74:
 fb:fb:52:3d:d3:e9:58:e5:11:79:5f:5a:70:ec:c3:
 de:d7:56:36:67:fd:52:dd:73:60:f7:93:9f:00:c0:
 36:49:65:7d:77:45:76:34:0e:81:38:96:2b:19:b0:
 30:8b:ac:2f:ae:dd:92:41:78:da:47:32:02:f7:0d:
 04:f5:51:85:dc:06:58:08:9b:d2:a0:69:52:ac:b2:
 7d:c7:bd:16:1d:9e:af:e2:2b:6a:61:8e:cb:a9:ec:
 fc:01:fe:6b:34:49:1c:d8:75:8b:ca:ec:ea:fd:93:
 0a:8b:34:6b:77:98:ec:83:6f:d2:bc:81:ec:f5:18:
 48:41:db:92:da:ef:19:19:27:5b:05:5f:8c:6e:1e:
 9d:e5:90:42:6f:36:8f:11:49:05:aa:dd:a5:c9:0a:
 fe:81
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS:localhost, IP Address:127.0.0.1
 X509v3 Subject Key Identifier:
 E1:D1:66:F6:1F:5A:18:1A:82:33:A7:32:0E:0B:EA:8E:C0:D3:ED:05
 Signature Algorithm: sha256WithRSAEncryption
 56:a8:31:c0:94:8f:5a:80:27:17:36:ba:e0:ff:e6:59:13:9e:
 67:6b:1e:7d:67:04:5c:e1:88:9e:d9:89:11:ca:88:a0:21:4c:
 90:a8:8b:9d:b5:ba:0f:92:65:da:c5:a9:91:82:17:46:55:43:
 82:78:92:b1:f9:f5:2b:65:5e:b0:93:03:3b:94:83:bb:fe:9b:
 09:a9:f3:82:d2:4d:b5:72:e9:ee:75:15:31:3d:18:a7:c1:e8:
 45:44:1d:40:d2:eb:96:b7:01:41:dd:9d:1c:31:e6:45:4a:c2:
 3d:ec:22:1a:35:ec:38:62:e8:3d:b3:30:10:d3:88:09:5a:87:
 54:87:fb:92:d6:0e:74:52:3c:f2:c3:f5:70:61:ea:72:3f:cd:
 65:72:34:6f:51:94:13:e0:7a:73:bb:57:c8:ad:98:f7:3f:43:
 4d:75:96:db:cf:2e:e6:82:1c:c2:97:38:2d:37:06:c4:27:db:
 87:82:6b:c6:01:71:f7:e9:1f:69:62:0d:cc:54:e9:f4:25:86:
 6a:e2:38:72:c3:9c:53:b4:6e:4f:ae:8a:09:36:14:f0:10:57:
 9c:c9:a8:a3:a5:e6:db:d1:d4:39:95:f3:54:95:4f:2f:db:59:
 b6:bd:77:00:77:c2:9d:4f:d9:04:d5:af:33:bb:2e:0f:65:a9:
 74:ff:66:f2

43

1.8.8. References and tutorials

Transport Layer Security (wikipedia.org)

Public Key Certificate(wikipedia.org)

OpenSSL Cookbook (free ebook)

OpenSSL Command Line Utilities (openssl.org wiki)

Java Tutorials: Generating and Verifying Certificates

IBM developerWorks: What is the JSSE all about?

44

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Public_key_certificate
https://www.feistyduck.com/library/openssl-cookbook/online/
https://wiki.openssl.org/index.php/Command_Line_Utilities
https://docs.oracle.com/javase/tutorial/security/apisign/index.html
http://www.ibm.com/developerworks/websphere/techjournal/0502_benantar/0502_benantar.html

1.9. Web Authentication Cookie FAQs

Does the application use web authentication cookies?

Yes, we use a session cookie for maintaining authenticated user identification.

Is the cookie used for non-authentication purposes?

No, the cookie contains exactly one value, the session ID.

Is the cookie set to the narrowest/lowest path or domain needed in order to prevent inadvertent or unauthorized sharing of
cookies by other web applications?

Yes, the path is set to /api only (the narrowest path). As recommended by OWASP, we do not directly set the domain
attribute, so the default ends up being the origin server.

Are the cookies non-persistent?

The cookies are session based, and not persisted beyond logout or via timeout.

Is the value of the cookie not predictable and does it provide 64-bit entropy?

The cookie value is a Java UUID, which uses the SecureRandom class. A little research leads me to believe it’s a 128 bit
value, with 122 bit randomness.

Are default values not used for the name of the cookie?

As recommended by OWASP, the cookie name is vague/meaningless. It is simply, "id".

Is the cookie set via SSL channel and are the 'secure' and 'HTTPOnly' attributes set?

If the web server is running under SSL, then the cookie is set to secure and HttpOnly is set to true.

Can the cookie be manually deleted through a logout button that sets the cookie value to null or the cookie value is
rendered invalid on the server after a period of inactivity?

Yes, the cookie can be manually deleted. There is also a timeout mechanism:

• 8 hour absolute lifetime - it never lasts longer than 8 hours

• 1 hour soft lifetime - if the last request time was > than 1 hour, the session is destroyed. Otherwise, the lifetime is
bumped up 1 more hour, until the maximum 8 hour limit is met.

Is the cookie cleared during the authentication of a user?

Yes.

45

https://www.owasp.org/index.php/Main_Page

1.10. Application Configuration Template Expressions

Template expressions are used to configure some Fusion pipeline stage and messaging services. When the value of a
configuration parameter is a template expression, that expression is dynamically evaluated at runtime, by the
StringTemplate library.

Fusion template expressions are delimited by angle bracket characters '<' and '>'. The expression consists of the name of
a variable in the scope of that component. Since these variables are Java objects, if object "foo" of type Foo has a field
named "bar", the expression "<foo.bar>" will evaluate to the string representation of the contents of field "bar".

1.10.1. Index Pipeline Stage Templates

Index stages have available variables

• "ctx" - PipelineContext (com.lucidworks.apollo.pipeline.PipelineContext)

• "doc" - PipelineDocument (com.lucidworks.apollo.common.pipeline.PipelineDocument)

For example, given a PipelineDocument which has a field named "title" with value "Star Wars", the template expression
"<doc.title>" evaluates to "Star Wars".

1.10.2. Query Pipeline Stage Templates

Query stages have available variables:

• "ctx" - PipelineContext (com.lucidworks.apollo.pipeline.PipelineContext)

• "reqResp" - QueryRequestAndResponse (com.lucidworks.apollo.pipeline.query.QueryRequestAndResponse)

• "request" - Query Request (com.lucidworks.apollo.pipeline.query.Request)

• "response" - Query Response (com.lucidworks.apollo.pipeline.query.Response)

1.10.3. Messaging Services Templates

Messages have a set of variables which correspond to the parts of a system message:

• id

• to

• from

• subject

• body

• type

• schedule

A system message is the result of evaluating the following expression:

<id><to><from><subject><body><type><schedule>

46

https://github.com/antlr/stringtemplate4/blob/master/doc/cheatsheet.md

1.11. System Usage Monitor

The System Usage Monitor is a voluntary program to allow users to anonymously send basic information about their
system to Lucidworks. We use this information to analyze the types of systems in use by our customers and how they
are used so we can improve our product.

At no point does the system collect information that could identify you, your organization or the specific documents
indexed. Only minimal data is sent about the type of content indexed. Our website has more information about our
privacy policy.

1.11.1. Information Collected by the Usage Monitor

The System Usage Monitor collects the following information:

• uuid - a randomly generated identifier per Fusion cluster.

• System information: the operating system, version and java version will also be reported.

• nodes - the number of Apollo nodes in use. This is calculated from Jetty processes on the same node or on a different
node.

• Solr statistics:

◦ Number of Solr nodes, total number of collections and number of Fusion collections.

◦ Number of documents and the number that are regular documents and the number that are signals.

◦ Number of total search requests and the number that are document search requests and the number that are
signal search requests.

◦ Total time to execute all search requests, to execute only document search requests, and to execute signal search
requests.

• Aggregations:

◦ Number of aggregation runs and how long they took (in ms).

◦ Number of signals processed.

◦ Number of aggregated signals.

• Recommendations:

◦ Number of recommendation requests for each type of recommentation.

◦ Total time to execute each type of recommendation request.

You can see the data that will be sent to Fusion with the Usage API and also in the UI by going to the Systems tab, then
'Heartbeat data'. The UI and the REST API will only report the data currently scheduled to be sent so is not a complete
picture of all data collected.

1.11.2. How Data is Sent

Data is sent to Fusion once per week, and also whenever the system is restarted.

When Fusion is started, the System Usage Monitor will transmit data about your system to a server hosted by
Lucidworks with two HTTP requests. The first request contains system-level information and if that is successful, the
second request will send system-specific information.

47

http://www.lucidworks.com/privacy-policy/

The information is sent via an encrypted POST request to https://heartbeat.lucidworks.io. Each request includes a
unique identifier, which is anonymous and can’t be used to identify the sender. The IP that sent the request is not stored
with the request.

1.11.3. How to Opt-Out

By default, the usage monitor is enabled in your system. If you would like to opt-out of sending this data to Lucidworks,
you can disable the usage monitor. There are two ways to enable or disable the usage monitor:

1. Go to the Heartbeat Data page in the Fusion UI (System → Heartbeat Data), and deselect the "Report Heartbeat"
option.

2. Use the Configurations API and send a PUT request as follows:

curl -u user:pass -H 'Content-type: application/json' -X PUT -d '"false"'
http://localhost:8764/api/apollo/configurations/usageMonitor

48

https://heartbeat.lucidworks.io

Chapter 2. First Run Tutorial
This section is an introductory, step-by-step guide to using the Fusion UI for basic search and indexing. This guide helps
you to:

• Verify that the installed Fusion instance components are installed and communicating properly.

• Use the Fusion UI to create and search a small dataset.

• Introduce a few underlying principles of search and indexing over structured and semi-structured texts.

Fusion supports several approaches to indexing content. In this section we use Fusion’s web crawler to index a website
which contains Shakespeare’s sonnets. This dataset is chosen precisely because it is simple and trivial. Web data is
challenging to parse because a page of HTML contains many different kinds of elements: content, meta-data, scripts,
layout directives, and links, all of which can be effectively processed using Fusion pipelines. By the end of this exercise,
you should understand the Fusion UI and workflow and will be ready to create custom pipelines in order to effectively
process your data.

2.1. Fusion Key Concepts

Fusion uses the Solr/Lucene search engine to evaluate search requests and return results in the form of a ranked list of
document ids. Fusion extends Solr/Lucene functionality via a REST API and a UI built on top of that REST API.

The Fusion UI is organized around the following key concepts:

• Collections store your data.

• Documents are the items that are returned as search results.

• Fields are the things that are actually stored in a collection.

• Datasource are the conduit between your data repository and Fusion.

• Pipelines encapsulate a sequence of processing steps, called stages.

◦ Index pipelines process the raw data received from a datasource into fielded documents for indexing into a
Fusion collection.

◦ Query pipelines process search requests and return an ordered list of matching documents.

• Relevancy is the metric used to order search results. It is a non-negative real number that indicates the similarity
between a search request and a document.

2.2. Download and Install Fusion

Fusion is distributed as a gzipped tar file or as a compressed zip file that can be used directly to run a single-node local
Fusion instance.

On Linux and Mac OS, the Fusion distribution unpacks into a directory named fusion; this is the Fusion home directory.

On Windows, the archive unzips as a directory (folder) with the name of the zip file, for example, fusion-2.1.0. That
directory contains a single directory named fusion. The directory fusion is the Fusion home directory.

Note: If you install Fusion on Windows, use the freely available 7zip file archiver to unzip the archive, because 7zip is
more robust than the standard Windows compression utility. The Fusion archive contains a large number of 3rd party

49

http://www.7-zip.org

jar files, and the standard Windows compression utility cannot reliably deal with all of them. Visit the 7zip download
page for the latest version.

Use the script fusion/bin/fusion with the command-line arguments start and stop to start and stop Fusion, respectively.

Start Fusion from a terminal window (Linux or Mac):

$ cd /path/to/fusion
$./bin/fusion start

Successful startup results in several lines of output to the terminal window, listing the Fusion components and the ports
they are listening on:

2016-10-04 18:52:04Z Starting Fusion ZooKeeper on port 9983
2016-10-04 18:52:14Z Starting Fusion Solr on port 8983
2016-10-04 18:52:39Z Starting Fusion Spark Master on port 8766
2016-10-04 18:52:39Z Starting Fusion Spark Worker on port 8769
2016-10-04 18:52:39Z Starting Fusion API Services on port 8765
2016-10-04 18:52:45Z Starting Fusion Connectors on port 8984
2016-10-04 18:52:50Z Starting Fusion UI on port 8764

2.3. Create a Collection

The next step in getting started is to create a Fusion collection, the repository which stores your data. In this example,
we create a collection called "sonnets" which will store Shakespeare’s sonnets.

Once Fusion is running, open a web browser and access the server and port that the Fusion UI is listening on. For a
default single-node Fusion installation, the Fusion UI runs on port 8764 (as shown above), so the URL is:
http://localhost:8764/.

Upon initial installation, when you first access the Fusion UI, it will present a sequence of panels:

• The initial login panel, URL: "\http://localhost:8764/initial-login". Set the Fusion admin password. Remember to check
box "Agree to License Terms".

50

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html
http://localhost:8764/

• The registration panel, URL: "\http://localhost:8764/registration". Registration is optional. You can opt-out by clicking
the "Skip" link at the bottom of this panel. Please see System Usage Monitor for information about how Fusion
collects and uses this information.

51

• The welcome panel, URL: "\http://localhost:8764/welcome". This panel prompts you to create a collection. When
running a single-server developer instance of Fusion, the "Advanced" options don’t apply, therefore, just enter the
collection name. Here, we use the name "sonnets".

52

Note Although Fusion will recognize collections named "TesT"
and "tESt" as different collections, the filesystem on which
the underlying Solr collection is stored may not. Therefore,
avoid using letter case as the sole distinguishing feature
for a collection name.

Upon successful create on collection "sonnets", Fusion displays the main collections panel.

53

As the collection is created, the UI generates and stores a series of notifications. The rightmost icon on the Fusion top
menu bar toggles display of these notifications.

2.4. Document Indexing with Datasources and Pipelines

The target dataset for this example is the website "Shakespeare: Sonnets", URL: "http://poetry.eserver.org/sonnets/":

54

To do this, we need to configure and run a Fusion datasource over this collection. From the main collections panel
(which is shown in previous screenshot), click on the name of the collection "sonnets", so that the UI now displays the
sonnets collection home, URL "\http://localhost:8764/panels/sonnets". The default initial display for a collection has the
collection "Home" panel on the left and the collection search panel next to it:

55

At the top of the search panel display is the search query input text box and control in the form of a gear icon which
toggles display of the search results display controls. The search results display panel is underneath these elements. As
collection "sonnets" doesn’t yet contain any documents, the search results panel is empty.

The narrow panel on the left is the collection "Home" panel. The Home panel contains the list of collection admin tools
which are used for indexing, search, and system administration. It’s possible to have multiple home panels open at once,
as needed to view configuration information. Clicking the "+" button at the top of the home panel will open a new home
panel.

The collections admin tools under the "Index" heading are the controls for defining and using datasources and
pipelines. Click the "Datasources" tool at the top of the Index section.

After clicking on "Datasources", the admin panel displays a choice of connector types. Because we want to get data from
a website, we select Web > Anda Web. In configuring the web datasource, we only need to specify a datasource name,
here "ds-1", and a starting URL, http://poetry.eserver.org/sonnets/:

56

http://poetry.eserver.org/sonnets/
http://poetry.eserver.org/sonnets/
http://poetry.eserver.org/sonnets/

Note Configuration choices are only set/updated if you click on
the red "Save" button at the bottom of this panel. Always
scroll to the bottom of the panel and make sure that you
have saved your work! Fusion displays a notification to
confirm the datasource save.

Running the datasource will cause Fusion to fire up the connector, which will retrieve documents from the eserver.org
website. Each webpage is treated as a separate document. The datasource hands off each document to the index
pipeline. Here we ran the Anda Web datasource with index pipeline "Documents_Parsing", which is the default pipeline
for this datasource. The "Documents_Parsing" pipeline consists of the following processing stages:

• Apache Tika Parser - recognizes and parses most common document formats, including HTML

• Field Mapping - transforms field names to valid Solr field names, as needed

• Detect Language - transforms text field names based on language of field contents

• Solr Indexer - transforms Fusion index pipeline document into Solr document and adds (or updates) document to
collection.

To run the datasource, simply click the "Start" button on the Datasource panel. While the job is running, this control
changes to "Stop / Abort", when the job is finished, the control changes back to a "Start" button and the job status is
displayed directly below the "Start" button. To inspect the results, click on the control which toggles "show/hide" details.
This opens an adjoining panel which lists each run of the datasource job. Each job has a small control that expands the
job listing into a detailed listing the results of the pipeline processing stage:

2.5. Search

Once a datasource has been configured and the indexing job is complete, the collection can be searched using the search
results tool. The wildcard query "*" matches all documents in the collection. Here is the result of running this search,
showing all fields in one document:

57

In order to use the search results tool to examine the documents in this collection, we need to configure the search
results tool to show only those fields we care about. In this case the field "url" shows the sonnet number, and the field
"content_txt" shows the raw text contents extracted from the HTML page.

Clicking on the gear icon next to the search box toggles the Search Results Configuration Tool open and close. The get a
compact display of search results over this dataset, you should:

• Toggle the configuration tool open by clicking the gear icon.

• Choose the tab "Documents".

• Select the display "Primary".

• Uncheck all fields above field "URL".

• Select the display "Secondary".

• Uncheck all fields above the field "content_txt".

• Scroll down to the bottom of the control and click "Save".

• Toggle the configuration tool closed by clicking the gear icon.

58

With this configuration in place, a search on the word "love" returns the following result:

The most relevant document is Sonnet 40:

59

It contains eight instances of the word "love", and one instance of "loves", more than in any other sonnet. To understand
what we mean by relevancy, it is necessary to understand Lucene and Solr.

2.6. Lucene and Solr

Underlyingly, Fusion collections are Solr collections and Solr collections are comprised of Lucene indexes.

Lucene itself is a search API. Solr wraps Lucene in an web platform. Search and indexing are carried out via HTTP
requests and responses. Solr generalizes the notion of a Lucene index to a Solr collection, a uniquely named, managed,
and configured index which can be distributed ("sharded") and replicated across servers, allowing for scalability and
high availability.

Lucene started out a search engine, designed to perform the following information retrieval task: given a set of query
terms and a set of documents, find the subset of documents which are relevant for that query. Lucene provides a rich
query language which allows for writing complicated logical conditions. Lucene now encompasses much of the
functionality of a traditional DBMS, both in the kinds of data it can handle and the transactional security it provides.

Lucene maps discrete pieces of information, e.g., words, dates, numbers, to the documents in which they occur. This
map is called an inverted index because the keys are document elements and the values are document ids, in contrast to
other kinds of datastores where document ids are used as a key and the values are the document contents. This
indexing strategy means that search requires just one lookup on an inverted index, as opposed to a document oriented
search which would require a large number of lookups, one per document. Lucene treats a document as a list of named,
typed fields. For each document field, Lucene builds an inverted index that maps field values to documents.

With this inverted index, it is easy to compute relevancy based on the overall frequency of terms in documents. An
extremely relevant document for a query is a document that contains more of the terms in the query relative to all the

60

other documents in the collection, as seen in the above search example.

2.7. Further Reading

An expanded version of this getting started page is available on the Lucidworks blog as a two-part series:

Search Basics for Data Engineers

Preliminary Data Analysis with Fusion

The Lucidworks blog also has a series of articles on getting started with Signals in Fusion:

Signals Basics for Data Engineers

Better Search with Fusion Signals

61

https://lucidworks.com/blog/2015/07/23/search-basics-data-engineers/
https://lucidworks.com/blog/2015/07/23/preliminary-data-analysis-fusion-2-look-leap-repeat/
https://lucidworks.com/blog/2015/08/11/signals-basics-data-engineers/
https://lucidworks.com/blog/2015/09/01/better-search-fusion-signals/

Chapter 3. Fusion Architecture
The Fusion platform is designed to support enterprise search applications at any scale. Fusion can be deployed across
multiple servers in order to store large amounts of data or to achieve high processing throughput or both, and the set of
Fusion components running on each server can be adjusted to meet these processing requirements.

3.1. Fusion Platform Component Architecture

The Fusion platform is comprised of a series of Java programs, each of which runs in its own JVM. Apache ZooKeeper
provides the shared, synchronized data store for all user and application configuration information. The following
diagram shows the full set of Fusion processes that run on a single server and the default ports used by each, with
arrows representing the flow of HTTP requests between components for document search and indexing:

Search queries, which originate from the search application, are sent to the Fusion UI for authentication. The Fusion UI
sends the request to the Fusion API services component, which invokes the a query pipeline to build out the raw query
and send the resulting query to Solr. Document indexing is carried out by Fusion datasources which send raw data to
Fusion’s connector services. The connector invokes an index pipeline to extract, transform, and otherwise enrich the
raw data and sends the resulting document to Solr for indexing. Apache Spark is used for signal processing and
aggregation. All Fusion processes across all servers in a Fusion deployment communicate with the ZooKeeper ensemble
at the socket layer using ZooKeeper’s Java API.

See these topics for details about each component:

• Fusion UI

• UI Service

• Connectors

62

http://zookeeper.apache.org/doc/r3.4.6/api/org/apache/zookeeper/ZooKeeper.html

• REST API Services

• Solr

• Spark

• ZooKeeper

• bin/fusion

3.2. Fusion Platform Deployment Architecture

For Enterprise applications that consist of very large collections or that require high-throughput or high availability or
both, the Fusion deployment will consist of multiple servers. Each server is a Fusion node. All nodes in a Fusion
deployment communicate with a common ZooKeeper cluster.

Every Fusion node in a deployment runs the Fusion API Services process. Beyond that, the set of processes running on a
particular node depends on the processing and throughput needs of the search application.

• Running Solr on all Fusion nodes scales out document storage as well as providing data replication. (Alternatively,
external SolrCloud clusters can be used to store Fusion collections, see Integrating with existing Solr instances.)

• Running Fusion Connectors on multiple nodes provides high throughput for indexing and updates, e.g., applications
which run analytics over live data streams such as logfile indexing or mobile tracking devices.

• Running the Fusion UI on two or more nodes provides failover for Fusion’s authentication proxy.

• Running Apache Spark on multiple nodes provides processing power for applications that aggregate clicks and
other signals, or that use Fusion machine learning components.

63

3.3. The Fusion UI

The Fusion UI provides a graphical interface to Fusion’s REST APIs. To access it, point your browser to
http://localhost:8764/, or the host on which the UI Service is running.

The first time you log in to the UI, you’ll be prompted to create an admin account.

Note Save your admin credentials. There is no password
recovery system in Fusion.

Whenever you log in to Fusion (and it’s not the first login), the Launcher lets you choose a context for your workflow:

• The Search context provides all the tools you need to get your data into Fusion and develop a search-ready back end
for your application.

• The Analytics context gives you access to Fusion’s dashboard application, where you can customize your view into
system metrics and search activity.

• Use the Devops context to administrate and monitor the Fusion system.

Since the Fusion UI is just an interface to the REST API service, you can also use the APIs to do almost anything that the
UI can do.

64

http://localhost:8764/

3.4. UI service

The UI service is the interface between your applications and the REST API services. All HTTP requests from external
clients must pass through the UI service, because it hosts the auth proxy. It also hosts the Web-based Fusion UI.

3.4.1. The auth proxy

The auth proxy generates the session cookie required by all REST API services. The REST API services accept no
commands without this cookie. The auth proxy requires valid username/password credentials with every request, like
this:

curl -u <user>:<pwd> localhost:8764/api/apollo/<servicename>

3.4.2. UI configuration

The default port is 8764, configurable as UI_PORT in fusion/conf/config.sh.

UI Web service configuration is in fusion/apps/jetty/ui.

This blog post explains how to secure the UI using SSL.

3.4.3. UI logs

UI service log files are in fusion/var/log/ui.

65

https://lucidworks.com/blog/2016/02/23/secure-fusion-part-one-ssl-configuration/

3.5. Connectors

Connectors are the built-in mechanism for pulling your data into Fusion. Fusion comes with a wide variety of
connectors, each specialized for a particular data type. When you add a datasource to a collection, you specify the
connector to use for ingesting data. See Connector Types for a complete list of connectors, with links to configuration
reference information for each one.

3.5.1. Connector configuration

When you add a datasource to a collection, you select a connector and configure it. There are two ways to do this:

• Using the API

• Using the UI

Configuring Connectors Using The API

You can create or update a datasource with the Connector Datasources API, specifying the connector, its properties, and
their values.

Example: Create and configure a datasource to index Solr-formatted XML files

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"SolrXML",
"connector":"lucid.solrxml", "type":"solrxml", "properties":{"path":"/Applications/solr-
4.10.2/example/exampledocs", "generate_unique_key":false, "collection":"MyCollection"}}'
http://localhost:8764/api/apollo/connectors/datasources

See the Connectors and Datasources Reference for details about configuration options.

Tip Be sure the include the collection property; otherwise the
datasource will not be available in the Fusion UI.

Example: Change the max_docs value for the above datasource

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '{"id":"SolrXML", "connector":"lucid.solrxml",
"type":"solrxml", "properties":{"path":"/Applications/solr-4.10.2/example/exampledocs", "max_docs":10}}'
http://localhost:8764/api/apollo/connectors/datasources/SolrXML

Configuring Connectors Using The Fusion UI

• To create and configure a new datasource and its connector:

1. Click Applications > Collections.

2. Select a Collection, or click Add a Collection to create a new one.

3. Click Add a Datasource.

4. Select a datasource type; these correspond to Fusion’s Connectors.

5. Edit the configuration fields in the datasource panel that appears.

See the Connectors and Datasources Reference for details about configuration options.

66

6. Click Save.

• To change the connector configuration for an existing datasource:

1. Navigate to Applications > Collections.

2. Click your collection name.

3. Click the datasource you want to change.

4. Edit the configuration fields as needed.

5. Click Save. Edit next to the datasource.

3.5.2. Connector logs

You can find connector logs in fusion/var/log/connectors.

67

3.6. REST API Services

Fusion includes many REST APIs, all described in detail in the REST API Reference. Almost every aspect of Fusion can be
controlled via the APIs.

The Fusion UI provides another administrative interface to Fusion, using a subset of the REST APIs.

3.6.1. API Service configuration

The Web service for the APIs is configured in fusion/apps/jetty/api.

3.6.2. API Service logs

API log files are in fusion/var/log/api.

68

3.7. Solr

Solr is the search platform that powers Fusion. There are multiple aspects to Fusion’s use of Solr:

• Fusion components manage Solr search and indexing and provide analytics over these collections. Fusion’s
analytics components depend on aggregations over information which is stored in a Solr collection.

• Fusion collections are all Solr collections.

• Application data is stored as one or more Solr collections.

• Fusion’s own logs are stored as Solr collections.

• A few Fusion service APIs use Solr as a backing store, notably Parameter Sets.

3.7.1. Solr configuration

Fusion requires that Solr run with SolrCloud enabled.

Configuration for Solr’s Web service is in fusion/apps/jetty/solr.

3.7.2. Solr logs

Solr log files are in fusion/var/log/solr.

3.7.3. Accessing the Solr UI

With Fusion installed out of the box, you can still access the Solr UI at http://localhost:8983/solr/.

3.7.4. Solr documentation

Solr documentation and additional resources are available at http://lucene.apache.org/solr/resources.html.

You can also find plenty of Solr tips and technical discussions in our knowledge base, blog, and webinars. Lucidworks
also maintains a search interface to Solr’s community discussions at searchhub.org.

69

https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://localhost:8983/solr/
http://lucene.apache.org/solr/resources.html
https://support.lucidworks.com/s/topic/0TO80000000PoOZGA0/solr
https://lucidworks.com/?s=solr
https://lucidworks.com/resources/webinars/
http://find.searchhub.org/#%2Fp%3Asolr

3.8. Apache Spark

Apache Spark is a fast and general execution engine for large-scale data processing jobs that can be decomposed into
stepwise tasks which are distributed across a cluster of networked computers. Spark provides faster processing and
better fault-tolerance than previous MapReduce implementations. The following schematic shows the Spark
components available from Fuson:

Fusion 2.1 introcuced the use of a Spark cluster for all signal aggregation processes. This use of Spark is managed
entirely by Fusion and is hidden from view of a Fusion application developer or end user.

As of Fusion 2.4, the Spark Jobs API provides a set of REST API endpoints for configuring and running Spark jobs via
Fusion.

The section Spark and Machine Learning covers how to use use Fusion’s Spark cluster to run your own Spark jobs for
custom aggregations and Machine Learning tasks.

70

http://spark.apache.org/

3.9. ZooKeeper

Apache ZooKeeper is a distributed configuration service, synchronization service, and naming registry.

Fusion uses ZooKeeper to configure and manage all Fusion components in a single Fusion deployment, therefore a
ZooKeeper service must always be running as part of the Fusion deployment. For high availability, this should be an
external 3-node ZooKeeper cluster. All Fusion Java components communicate with ZooKeeper using the ZooKeeper API.

For ZooKeeper installation instructions, see the ZooKeeper documentation.

You can find ZooKeeper’s logs at fusion/var/log/zookeeper.

3.9.1. ZooKeeper Terminology

• znode: ZooKeeper data is organized into a hierarchal name space of data nodes called znodes. A znode can have
data associated with it as well as child znodes. The data in a znode is stored in a binary format, but it is possible to
import, export, and view this information as JSON data. Paths to znodes are always expressed as canonical, absolute,
slash-separated paths; there are no relative reference.

• ephemeral nodes: An ephemeral node is a znode which exists only for the duration of an active session. When the
session ends the znode is deleted. An ephemeral znode cannot have children.

• server: A ZooKeeper service consists of one or more machines; each machine is a server which runs in its own JVM
and listens on its own set of ports. For testing, you can run several ZooKeeper servers at once on a single
workstation by configuring the ports for each server.

• quorum: A quorum is a set of ZooKeeper servers. It must be an odd number. For most deployments, only 3 servers
are required.

• client: A client is any host or process which uses a ZooKeeper service.

See the official ZooKeeper documentation for details about using and managing a ZooKeeper service.

3.9.2. Fusion ZooKeeper Nodes

Fusion configuration data is stored in ZooKeeper under two znodes:

• Node lucid stores all application-specific configurations, including collection, datasource, pipeline, signals,
aggregations, and associated scheduling, jobs, and metrics.

• Node lucid-apollo-admin stores all access control information, including all users, groups, roles, and realms.

The Solr Admin tool provides a ZooKeeper node browser tool. In the case of the Fusion default developer deployment,
the Fusion runs scripts are configured to run the instances of both Solr and ZooKeeper which are included with the
Fusion distribution, and therefore we take a fresh installation of a Fusion developer instance and use the embedded
Solr’s Admin tool to explore how Fusion’s configurations are managed in ZooKeeper.

On initial install, the "lucid" znode contains the set of default configurations used by Fusion’s services:

71

http://zookeeper.apache.org/
http://zookeeper.apache.org/doc/trunk/zookeeperAdmin.html#ch_deployment
http://zookeeper.apache.org/doc/trunk/

The "lucid-apollo-admin" znode contains the set of nodes used by Fusion’s access control services:

72

In the above screenshot, the ZooKeeper node browser is browsing the contents of znode "lucid-apollo-admin/users"
which is empty. The Fusion distribution ships without any user accounts. The initial user added to Fusion is the Fusion
native realm "admin" user. This entry is only created on initial startup via the Fusion UI "set admin password" panel.
Once you submit the admin password, the admin user account is created. Until Fusion contains as least the admin user
account, you cannot use the system, because all Fusion requests require proper authorization.

Once the admin password is set, and you have created one or more Fusion collections and have populated them by
running one or more datasources, these collections, datasources, pipelines, and other application configuration settings
are stored under the "lucid" znode:

In the above screenshot, the ZooKeeper node browser is browsing the contents of znode
"lucid/connectors/datasources/ds1". This datasource was used to populate a Fusion collection with documents retrieved
via a webcrawl. Note that in the initial screenshot for znode "lucid", there is no "connectors" node at all.

The "lucid-apollo-admin" znode now contains one user accounts for user "admin":

73

74

3.10. bin/fusion

For every server in a Fusion deployment, the script fusion/bin/fusion is used to start, stop, and check the status of the
Fusion instance running on that server.

3.10.1. Start Fusion

Run the script fusion/bin/fusion with the argument start:

$ cd /path/to/fusion
$./bin/fusion start
2016-10-04 18:52:04Z Starting Fusion ZooKeeper on port 9983
2016-10-04 18:52:14Z Starting Fusion Solr on port 8983
2016-10-04 18:52:39Z Starting Fusion Spark Master on port 8766
2016-10-04 18:52:39Z Starting Fusion Spark Worker on port 8769
2016-10-04 18:52:39Z Starting Fusion API Services on port 8765
2016-10-04 18:52:45Z Starting Fusion Connectors on port 8984
2016-10-04 18:52:50Z Starting Fusion UI on port 8764

3.10.2. Check the status of Fusion

Run the script fusion/bin/fusion with the argument status:

$ cd /path/to/fusion
$./bin/fusion status
2016-10-04 20:14:43Z process 2525 from pid file /home/ubuntu/fusion-2.4.1/var/connectors/connectors.pid is
running
2016-10-04 20:14:43Z process 2230 from pid file /home/ubuntu/fusion-2.4.1/var/api/api.pid is running
2016-10-04 20:14:43Z process 1962 from pid file /home/ubuntu/fusion-2.4.1/var/spark-master/spark-master.pid is
running
2016-10-04 20:14:43Z process 2072 from pid file /home/ubuntu/fusion-2.4.1/var/spark-worker/spark-worker.pid is
running
2016-10-04 20:14:43Z process 2708 from pid file /home/ubuntu/fusion-2.4.1/var/ui/ui.pid is running
2016-10-04 20:14:43Z process 1793 from pid file /home/ubuntu/fusion-2.4.1/var/solr/solr.pid is running
2016-10-04 20:14:43Z process 1644 from pid file /home/ubuntu/fusion-2.4.1/var/zookeeper/zookeeper.pid is
running

3.10.3. Stop Fusion

Run the script fusion/bin/fusion with the argument stop:

$ cd /path/to/fusion
$./bin/fusion stop
2016-10-04 20:18:30Z Stopping Fusion UI on port 8764
2016-10-04 20:18:42Z Stopping Fusion Connectors on port 8984
2016-10-04 20:18:53Z Stopping Fusion API Services on port 8765
2016-10-04 20:19:05Z Stopping Fusion Spark Worker on port 8769
2016-10-04 20:19:10Z Stopping Fusion Spark Master on port 8766
2016-10-04 20:19:15Z Stopping Fusion Solr on port 8983
2016-10-04 20:19:27Z Stopping Fusion ZooKeeper on port 9983

75

3.10.4. Troubleshooting

The Java Virtual Machine Process Status Tool utility at /usr/bin/jps is useful for reporting on all Fusion processes
reported by script fusion/bin/fusion:

$ jps
1644 QuorumPeerMain (ZK)
1793 start.jar (solr)
1962 SparkAgent (spark)
2072 SparkAgent
2230 start.jar (api)
2389 SparkWorker
2410 SparkMaster
2525 start.jar (connectors)
2708 start.jar (ui)
3760 SparkDriver
4431 Jps

The process QuorumPeerMain is the ZooKeeper process used by Fusion. The 4 start.jar processes are Fusion’s Solr, API
Services, Connectors, and UI. Spark SparkMaster and SparkWorker processes are used for Fusion signals processing and
SparkAgent processes are used for the Spark shell.

If the path/to/fusion/bin/fusion script doesn’t run, or if it fails to start all services, see the Troubleshooting topic or the
knowledge base for help.

76

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html
https://support.lucidworks.com/

Chapter 4. Collections
Fusion collections are Solr collections managed by Fusion. A Solr collection is a distributed index defined by a named
configuration stored in ZooKeeper, with these properties:

• Number of shards

Documents are distributed across this number of partitions.

• Document routing strategy

How documents are assigned to shards.

• Replication factor

How many copies of each document in the collection.

• Replica placement strategy

Where to place replicas in the cluster.

Solr is the underlying engine which indexes, stores, and searches your data. Fusion manages Solr collections,
manipulates data and queries before passing them to Solr, and provides analytics and monitoring features.

If your data is already stored in a Solr instance or cluster, you can manage this collection in Fusion by creating a Fusion
collection which is configured to import the existing Solr collection. See Installation with an existing Solr instance or
cluster.

4.1. Primary and Auxiliary Collections

In Fusion, the "Primary" collection is the collection which contains your application data, that is, the set of documents
over which search and indexing happens. Fusion registers the collection name and information about the Solr cluster
that manages this collection.

Note All collection names should be considered to be case-
insensitive, even though Fusion preserves case in
referring to these collections.

If your application uses Fusion’s signals, analytics, or monitoring services, then Fusion will create a set of auxiliary
collections in which to store signals, query, and other logfiles. Naming conventions relate auxiliary collections with the
primary collection. Auxiliary collections have the same base name as the name of the primary collection plus a suffix
which indicates the kind of auxiliary collection, e.g., the suffix for a query logs auxiliary collection is "_logs" so that for a
primary collection named "COLL", Fusion creates an auxiliary collection named "COLL_logs". These auxiliary collections
include:

• A search query logs collection, suffix "_logs".

• A pair of associated collections for signals and aggregated signals, suffixes "_signals", "_signals_aggr" respectively.

77

Note Do not create primary collections with names that end in
suffix "_logs", "_signals", or "_signals_aggr". Such names
can only be used for Fusion auxiliary collections, which
are created and managed by Fusion directly.

Fusion maintains a set of Solr collections which store Fusion’s own logfiles and other internal information. These are
called System Collections, described below.

Note Do not create primary collections named "logs", or which
begin with "system_". These names are reserved for Fusion
system collections.

Fusion uses ZooKeeper to register information about all collections, and the Fusion components and services related to
a collection. The Fusion components associated with a collection include:

• Datasources

• Pipelines

• Profiles

• Signals and aggregations

• Analytics Dashboards

4.2. System Collections

Fusion uses system collections for internal purposes:

• logs indexes the log messages from the Fusion API services.

• audit_logs indexes all HTTP requests sent to the Fusion API services.

• system_banana stores configurations used by Fusion dashboards.

• system_blobs stores blobs in Solr. This is used to store model files for the NLP components and other binary files
used by Fusion components.

• system_messages is used by Fusion’s Messaging Services.

• system_metrics stores information about the running process itself, such as the amount of memory in the system,
the average response time for services, Solr heap size, etc. The data is polled at regular intervals according to the
internal configuration variable: com.lucidworks.apollo.metrics.poll.seconds. This collection doesn’t appear until
after the first set of metrics are collected.

4.3. Collection Configuration Properties

Collections have three configurable properties which are set to default values in the Fusion UI. They can be configured
as appropriate for your application by creating the collection using the Fusion API service Collections API.

78

Property Description

signals Property signals determines whether or not to create an
auxiliary collections "_signals" and "_signals_aggr".
When creating a collection in the Fusion UI, this property
defaults to true. When creating a collection using Fusion’s
API services, this property defaults to false.

searchLogs Property searchLogs determines whether or not to create
an auxiliary search query logs collection with suffix
"_logs".
When creating a collection in the Fusion UI, this property
defaults to true. When creating a collection using Fusion’s
API services, this property defaults to false.

dynamicSchema Property dynamicSchema always defaults to false.
When dynamicSchema is true, Fusion and Solr use
schemaless mode to administer search and indexing over
that collection.

Signals are events with timestamps that can be used to improve search results. For more information about signals in
Fusion, see the section Signals.

Search logs data is used for Search Query Reporting. The set of reports available includes most popular documents,
queries that generated less than a minimum number of results, and search histograms.

The name schemaless mode is misleading: Solr always uses a schema when managing a collection. In schemaless mode,
if a document contains a field not currently in the Solr schema, Solr processes the field value to determine what the field
type should be defined as, and then adds a new field to the schema with the field name and field type. This behavior
may be convenient during preliminary application development, but is rarely appropriate in a production environment,
therefore the default is false.

4.4. Collection Profiles

Profiles are used to create pipeline aliases for a specific collection. In Fusion, index and query pipelines are not
connected to a specific collection by default so that pipeline can be created once and re-used in several collections. This
complicates the way that pipelines are used with collections. Profiles provide a shortcut.

• Index Profiles work with index pipelines for getting content into the system.

• Query Profiles work with query pipelines for user queries.

79

https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode

4.5. Solr Config Files

Solr uses several XML configuration files to specify the contents and behavoir of a Solr collection. Fusion provides a set
of default configurations, but depending on your aplication needs, it may be necessary to edit these configuration files.

The "Configuration" section of the collection home panel contains option "Solr Config" which opens a "Solr Config"
panel. This panel displays the set of Solr configuration XML files that you can edit. This is an advanced feature, for
experienced Solr users. See the Solr wiki for more information on configuring Solr.

80

https://cwiki.apache.org/confluence/display/solr/Configuring+solrconfig.xml

4.6. Stopwords Files

Fusion collections are Solr collections which are managed by Fusion. Solr itself manages a set of resources for a
collection. Stopword lists are one such resource.

The Fusion UI provides a Stopwords manager tool which is reached from the "Stopwords" tab in the "Configuration"
section of the collection home panel. Clicking on this tool allows you to view the contents of all configured stopwords
files in an editable browser.

81

https://cwiki.apache.org/confluence/display/solr/Managed+Resources

4.7. Synonyms Files

Fusion collections are Solr collections which are managed by Fusion. Solr itself manages a set of resources for a
collection. These resources include stopword lists and synonyms.

There are two ways of specifying synonyms: as a set of interchangeable tokens, or as a mapping from one token to one
or more other tokens. A set of interchangeable tokens is specified as a series of comma-sperated words:

Television, Televisions, TV, TVs

This will be used to expand any document or query by expanding any single token in this set to all tokens in this set.

A mapping from one token to one or more other tokens is specified as follows:

pixima => pixma

In this case, tokens on the left hand side of the rule will be replaced by the tokens on the right hand side.

The "Configuration" section of the collection home panel contains options for managing each of these resources from
inside Fusion.

You can view this file as a text file from the "Solr Config" panel:

#some test synonym mappings unlikely to appear in real input text
aaafoo => aaabar
bbbfoo => bbbfoo bbbbar
cccfoo => cccbar cccbaz
fooaaa,baraaa,bazaaa

Some synonym groups specific to this example
GB,gib,gigabyte,gigabytes
MB,mib,megabyte,megabytes
Television, Televisions, TV, TVs
#notice we use "gib" instead of "GiB" so any WordDelimiterFilter coming
#after us won't split it into two words.

Synonym mappings can be used for spelling correction too
pixima => pixma

4.7.1. Synonyms Manager

The Fusion UI provides a Synonyms manager tool which is reached from the "Synonyms" tab in the "Configuration"
section of the collection home panel. Once opened, the Synonyms manager panel will display the synonyms.txt as a
series of editable objects, 1 per line.

82

https://cwiki.apache.org/confluence/display/solr/Managed+Resources

Moving the cursor out of the editor field will add the item, clicking "Save" in the upper right corner will apply it to the
current collection immediately, storing the config file in the correct Fusion folder. Choosing "Export" will download a
copy via the browser to the local user computer. "Import and Save" reads a local file into Fusion.

An additional feature of the Synonym manager in the Fusion UI is that label terms can be used to restrict the display of
synonyms to a browsable subset by adding a "category" label to the synonym set or mapping rule. This category label is
a convenience for working with data in the Fusion UI only. The information is not saved in the synonyms file used by
Solr.

83

Chapter 5. Other Ingestion Methods
Usually, the simplest way to get data into Fusion is through its connectors. However, in some cases it makes sense to use
other methods:

• Importing directly into Solr

Fusion can read any data that has been imported into its Solr core. If you’re already a proficient Solr user, you may
already have mechanisms in place for doing this. You can continue importing your data directly into Solr, then use
Fusion to read and manage it.

The Fusion package also includes tools for direct import into Solr:

◦ a Hive Serializer/Deserializer

◦ a set of Pig functions

• Pushing to an index pipeline

You can bypass the connectors and parsers to push documents directly to an index pipeline, using the Index-
Pipelines REST API. You’ll need to understand Fusion PipelineDocument Objects first.

84

5.1. Importing Data with Connectors

Connectors are the built-in mechanism for pulling your data into Fusion. Fusion comes with a wide variety of
connectors, each specialized for a particular data type. When you add a datasource to a collection, you specify the
connector to use for ingesting data. See Connector Types for a complete list of connectors, with links to configuration
reference information for each one.

5.1.1. Connector configuration

When you add a datasource to a collection, you select a connector and configure it. There are two ways to do this:

• Using the API

• Using the UI

Configuring Connectors Using The API

You can create or update a datasource with the Connector Datasources API, specifying the connector, its properties, and
their values.

Example: Create and configure a datasource to index Solr-formatted XML files

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"SolrXML",
"connector":"lucid.solrxml", "type":"solrxml", "properties":{"path":"/Applications/solr-
4.10.2/example/exampledocs", "generate_unique_key":false, "collection":"MyCollection"}}'
http://localhost:8764/api/apollo/connectors/datasources

See the Connectors and Datasources Reference for details about configuration options.

Tip Be sure the include the collection property; otherwise the
datasource will not be available in the Fusion UI.

Example: Change the max_docs value for the above datasource

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '{"id":"SolrXML", "connector":"lucid.solrxml",
"type":"solrxml", "properties":{"path":"/Applications/solr-4.10.2/example/exampledocs", "max_docs":10}}'
http://localhost:8764/api/apollo/connectors/datasources/SolrXML

Configuring Connectors Using The Fusion UI

• To create and configure a new datasource and its connector:

1. Click Applications > Collections.

2. Select a Collection, or click Add a Collection to create a new one.

3. Click Add a Datasource.

4. Select a datasource type; these correspond to Fusion’s Connectors.

5. Edit the configuration fields in the datasource panel that appears.

See the Connectors and Datasources Reference for details about configuration options.

85

6. Click Save.

• To change the connector configuration for an existing datasource:

1. Navigate to Applications > Collections.

2. Click your collection name.

3. Click the datasource you want to change.

4. Edit the configuration fields as needed.

5. Click Save. Edit next to the datasource.

86

5.2. Importing Data with Pig

You can use Pig to import data into Fusion, using the lucidworks-pig-functions-2.2.1.jar file found in
fusion/apps/connectors/resources/lucid.hadoop/jobs.

5.2.1. Available Functions

The Pig functions included in the lucidworks-pig-functions-2.2.1.jar are three UserDefined Functions (UDF) and one
Store function. These functions are:

• com/lucidworks/hadoop/pig/SolrStoreFunc.class

• com/lucidworks/hadoop/pig/EpochToCalendar.class

• com/lucidworks/hadoop/pig/Extract.class

• com/lucidworks/hadoop/pig/Histogram.class

5.2.2. Using the Functions

There are two approaches to using functions in Pig: to REGISTER them in the script, or to load them with your Pig
command line request.

If using REGISTER, the Pig function jars must be put in HDFS in order to be used by your Pig script. It can be located
anywhere in HDFS; you can either supply the path in your script or use a variable and define the variable with -p
property definition.

The example below uses the second approach, loading the .jars with -Dpig.additional.jars system property when
launching the script. With this approach, the .jars can be located anywhere on the machine where the script will be run.

When using the Pig functions, you can pass parameters for your script on the command line. The properties you will
need to pass are the location of Solr and the collection to use; these are shown in detail in the example below.

5.2.3. Indexing to a Kerberos-Secured Solr Cluster

When a Solr cluster is secured with Kerberos for internode communication, Pig scripts must include the full path to a
JAAS file that includes the service principal and the path to a keytab file that will be used to index the output of the
script to Solr.

Two parameters provide the information the script needs to access the JAAS file:

lww.jaas.file

The path to the JAAS file that includes a section for the service principal who will write to the Solr indexes. For
example, to use this property in a Pig script: +

set lww.jaas.file '/path/to/login.conf';

87

 +
 The JAAS configuration file *must* be copied to the same path on every node where a Node Manager is running
(i.e., every node where map/reduce tasks are executed).
`lww.jaas.appname`::
 The name of the section in the JAAS file that includes the correct service principal and keytab path. For
example, to use this property in a Pig script:
 +

set lww.jaas.appname 'Client';

Here is a sample section of a JAAS file:

Client { (1)
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/data/solr-indexer.keytab" (2)
 storeKey=true
 useTicketCache=true
 debug=true
 principal="solr-indexer@SOLRSERVER.COM"; (3)
};

1. The name of this section of the JAAS file. This name will be used with the lww.jaas.appname parameter.

2. The location of the keytab file.

3. The service principal name. This should be a different principal than the one used for Solr, but must have access to
both Solr and Pig.

5.2.4. Indexing to a SSL-Enabled Solr Cluster

When SSL is enabled in a Solr cluster, Pigs scripts must include the full paths to the keystore and truststore with their
respective passwords.

set lww.keystore '/path/to/solr-ssl.keystore.jks'
set lww.keystore.password 'secret'
set lww.truststore '/path/to/solr-ssl.truststore.jks'
set lww.truststore.password 'secret'

Tip The path (and secret configurations) should be the same in
all YARN/MapReduce hosts.

5.2.5. Sample CSV Script

The following Pig script will take a simple CSV file and index it to Solr.

88

set solr.zkhost '$zkHost';
set solr.collection '$collection'; (1)

A = load '$csv' using PigStorage(',') as
(id_s:chararray,city_s:chararray,country_s:chararray,code_s:chararray,code2_s:chararray,latitude_s:chararray,l
ongitude_s:chararray,flag_s:chararray); (2)
--dump A;
B = FOREACH A GENERATE $0 as id, 'city_s', $1, 'country_s', $2, 'code_s', $3, 'code2_s', $4, 'latitude_s', $5,
'longitude_s', $6, 'flag_s', $7; (3)

ok = store B into 'SOLR' using com.lucidworks.hadoop.pig.SolrStoreFunc(); (4)

This relatively simple script is doing several things that help to understand how the Solr Pig functions work.

1. This and the line above define parameters that are needed by SolrStoreFunc to know where Solr is. SolrStoreFunc
needs the properties solr.zkhost and solr.collection, and these lines are mapping the zkhost and collection
parameters we will pass when invoking Pig to the required properties.

2. Load the CSV file, the path and name we will pass with the csv parameter. We also define the field names for each
column in CSV file, and their types.

3. For each item in the CSV file, generate a document id from the first field ($0) and then define each field name and
value in name, value pairs.

4. Load the documents into Solr, using the SolrStoreFunc. While we don’t need to define the location of Solr here, the
function will use the zkhost and collection properties that we will pass when we invoke our Pig script.

Warning When using SolrStoreFunc, the document ID must be the
first field.

When we want to run this script, we invoke Pig and define several parameters we have referenced in the script with the
-p option, such as in this command:

./bin/pig -Dpig.additional.jars=/path/to/lucidworks-pig-functions-2.2.1.jar -p
csv=/path/to/my/csv/airports.dat -p zkHost=zknode1:2181,zknode2:2181,zknode3:2181/solr -p
collection=myCollection ~/myScripts/index-csv.pig

The parameters to pass are:

csv

The path and name of the CSV file we want to process.

zkhost

The ZooKeeper connection string for a SolrCloud cluster, in the form of
zkhost1:port,zkhost2:port,zkhost3:port/chroot. In the script, we mapped this to the solr.zkhost property, which is
required by the SolrStoreFunc to know where to send the output documents.

collection

The Solr collection to index into. In the script, we mapped this to the solr.collection property, which is required by
the SolrStoreFunc to know the Solr collection the documents should be indexed to.

89

Tip The zkhost parameter above is only used if you are
indexing to a SolrCloud cluster, which uses ZooKeeper to
route indexing and query requests.

If, however, you are not using SolrCloud, you can use the
solrUrl parameter, which takes the location of a
standalone Solr instance, in the form of http://host:port/
solr.

In the script, you would change the line that maps
solr.zkhost to the zkhost property to map solr.server.url
to the solrUrl property. For example:

`set solr.server.url '$solrUrl';`

90

http://host:port/solr
http://host:port/solr
http://host:port/solr

5.3. Importing Data with Hive

Fusion ships with a Serializer/Deserializer (SerDe) for Hive, included in the distribution as lucidworks-hive-serde-
2.2.1.jar in fusion/apps/connectors/resources/lucid.hadoop/jobs.

5.3.1. Install the SerDe Jar to Hive

In order for Hive to work with Solr, the Hive SerDe jar must be added as a plugin to Hive.

From a Hive prompt, use the ADD JAR command and reference the path and filename of the SerDe jar for your Hive
version.

 hive> ADD JAR lucidworks-hive-serde-2.2.1.jar;

This can also be done in your Hive command to create the table, as in the example below.

5.3.2. Create External Tables

An external table in Hive allows the data in the table to be used (read or write) by another system or application outside
of Hive. For integration with Solr, the external table allows you to have Solr read from and write to Hive.

To create an external table for Solr, you can use a command similar to below. The properties available are described
after the example.

hive> CREATE EXTERNAL TABLE solr (id string, field1 string, field2 int)
 STORED BY 'com.lucidworks.hadoop.hive.LWStorageHandler'
 LOCATION '/tmp/solr'
 TBLPROPERTIES('solr.server.url' = 'http://localhost:8888/solr',
 'solr.collection' = 'collection1',
 'solr.query' = '*:*');

In this example, we have created an external table named "solr", and defined a custom storage handler (STORED BY
'com.lucidworks.hadoop.hive.LWStorageHandler').

The LOCATION indicates the location in HDFS where the table data will be stored. In this example, we have chosen to
use /tmp/solr.

In the section TBLPROPERTIES, we define several properties for Solr so the data can be indexed to the right Solr
installation and collection:

solr.zkhost

The location of the ZooKeeper quorum if using LucidWorks in SolrCloud mode. If this property is set along with the
solr.server.url property, the solr.server.url property will take precedence.

solr.server.url

The location of the Solr instance if not using LucidWorks in SolrCloud mode. If this property is set along with the
solr.zkhost property, this property will take precedence.

solr.collection

The Solr collection for this table. If not defined, an exception will be thrown.

91

solr.query

The specific Solr query to execute to read this table. If not defined, a default of : will be used. This property is not
needed when loading data to a table, but is needed when defining the table so Hive can later read the table.

lww.commit.on.close

If true, inserts will be automatically committed when the connection is closed. True is the default.

lww.jaas.file

Used only when indexing to or reading from a Solr cluster secured with Kerberos. + This property defines the path to
a JAAS file that contains a service principal and keytab location for a user who is authorized to read from and write
to Solr and Hive. + The JAAS configuration file must be copied to the same path on every node where a Node
Manager is running (i.e., every node where map/reduce tasks are executed). Here is a sample section of a JAAS file: +

Client { (1)
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/data/solr-indexer.keytab" (2)
 storeKey=true
 useTicketCache=true
 debug=true
 principal="solr-indexer@SOLRSERVER.COM"; (3)
};

 +
 1. The name of this section of the JAAS file. This name will be used with the `lww.jaas.appname` parameter.
 2. The location of the keytab file.
 3. The service principal name. This should be a different principal than the one used for Solr, but must
have access to both Solr and Hive.
`lww.jaas.appname`::
 Used only when indexing to or reading from a Solr cluster secured with Kerberos.
 +
 This property provides the name of the section in the JAAS file that includes the correct service principal
and keytab path.

If the table needs to be dropped at a later time, you can use the DROP TABLE command in Hive. This will remove the
metadata stored in the table in Hive, but will not modify the underlying data (in this case, the Solr index).

5.3.3. Query and Insert Content

Once the table is configured, any syntactically correct Hive query will be able to query the Solr index.

For example, to select three fields named "id", "field1", and "field2" from the "solr" table, you would use a query such as:

hive> SELECT id, field1, field2 FROM solr;

To join data from tables, you can make a request such as:

hive> SELECT id, field1, field2 FROM solr left
 JOIN sometable right
 WHERE left.id = right.id;

And finally, to insert data to a table, simply use the Solr table as the target for the Hive INSERT statement, such as:

92

hive> INSERT INTO solr
 SELECT id, field1, field2 FROM sometable;

5.3.4. Example Hive Table

Solr includes a small number of sample documents for use when getting started. One of these is a CSV file containing
book metadata. This file is found in your Solr installation, at $SOLR_HOME/example/exampledocs/books.csv.

Using the sample books.csv file, we can see a detailed example of creating a table, loading data to it, and indexing that
data to Solr.

CREATE TABLE books (id STRING, cat STRING, title STRING, price FLOAT, in_stock BOOLEAN, author STRING, series
STRING, seq INT, genre STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY ','; (1)

LOAD DATA LOCAL INPATH '/solr/example/exampledocs/books.csv' OVERWRITE INTO TABLE books; (2)

ADD JAR {packageUser}-hive-serde-{connectorVersion}.jar; (3)

CREATE EXTERNAL TABLE solr (id STRING, cat_s STRING, title_s STRING, price_f FLOAT, in_stock_b BOOLEAN,
author_s STRING, series_s STRING, seq_i INT, genre_s STRING) (4)
 STORED BY 'com.lucidworks.hadoop.hive.LWStorageHandler' (5)
 LOCATION '/tmp/solr' (6)
 TBLPROPERTIES('solr.zkhost' = 'zknode1:2181,zknode2:2181,zknode3:2181/solr',
 'solr.collection' = 'gettingstarted',
 'solr.query' = '*:*'),
 'lww.jaas.file' = '/data/jaas-client.conf'; (7)

INSERT OVERWRITE TABLE solr SELECT b.* FROM books b;

1. Define the table books, and provide the field names and field types that will make up the table.

2. Load the data from the books.csv file.

3. Add the lucidworks-hive-serde-2.2.1.jar file to Hive. Note the jar name shown here omits the version information
which will be included in the jar file you have. If you are using Hive 0.13, you must also use a jar specifically built
for 0.13.

4. Create an external table named solr, and provide the field names and field types that will make up the table. These
will be the same field names as in your local Hive table, so we can index all of the same data to Solr.

5. Define the custom storage handler provided by the lucidworks-hive-serde-2.2.1.jar.

6. Define storage location in HDFS.

7. Define the location of Solr (or ZooKeeper if using SolrCloud), the collection in Solr to index the data to, and the query
to use when reading the table. This example also refers to a JAAS configuration file that will be used to authenticate
to the Kerberized Solr cluster.

93

Chapter 6. Indexing Data
When a connector ingests data, it passes the data through an index pipeline for transformation prior to indexing. The
format of your indexed data depends on the index pipeline, which is part of the datasource configuration.

An index pipeline consists of one or more configurable index pipeline stages, each performing a different type of
transformation on the incoming data. Each connector has a default index pipeline, but you can modify these or create
new ones.

The last stage in any index pipeline should be the Solr Indexer stage, which submits the documents to Solr for indexing.

The following pages provide details on how to configure and use Fusion’s index pipelines:

• Fusion PipelineDocument Objects describes the datatype on which pipelines operate.

• Pushing Documents to a Pipeline is a brief overview on how to quickly index content using the pipelines directly
(instead of using a datasource).

• Index Profiles allow the use of one pipeline for multiple collections.

• Entity-Extraction covers Natural Language Processing (NLP) tools and techniques for finding names of people places
and things.

• Blob Storage describes how to upload large binary objects to Fusion. Language model files needed for the entity
extraction pipeline stages are loaded into Fusion by this mechanism.

• Time-Based Partitioning explains how to configure a collection to automatically index data by time slice.

• The Index Pipeline Simulator is a tool for previewing the output of a pipeline while you configure it.

94

6.1. Index Pipelines

Index pipelines transform incoming data into PipelineDocument objects for indexing by Fusion’s Solr core. An index
pipeline consists of a series of configurable index pipeline stages, each performing a different transformation on the
data before passing the result to the next stage in the pipeline. The final stage is the Solr Indexer stage, which
transforms the PipelineDocument into a Solr document and submits it to Solr for indexing in a specific Collection.

Each configured datasource has an associated index pipeline and uses a connector to fetch data to parse and then input
into the index pipeline.

Alternatively, documents can be submitted directly to an Index Pipeline via the REST API; see Pushing Documents to a
Pipeline.

A pipeline can be re-used across multiple collections. Fusion provides a set of built-in pipelines. You can use the Index
Workbench or the REST API to develop custom index pipelines to suit any datasource or application.

6.1.1. Collection-specific Pipelines

When a Fusion collection is created using the Fusion UI, a pair of index and query pipelines are created to that pipeline,
where the pipeline name is the collection name with the suffix "-default". This pipeline consists of a Field Mapper index

95

stage

Although default pipelines are created when a Fusion collection is created, they are not deleted when the collection is
deleted. This is due to the fact that pipelines can be used across collections, therefore a named pipeline, although
originally associated with a collection, may be used by several collections.

6.1.2. Pre-configured Pipelines

Fusion includes several pre-configured pipelines which which provide out-of-the-box processing capabilities and/or a
starting point for customization. There are also a set of named pipelines which are used by Fusion services for logging,
signal processing, and signal aggregation.

General Purpose Pipelines

• CSV - a pipeline for handling tabular data from CSV files, using these stages:

1. CSV Parser index stage

2. Field Mapper index stage (with no pre-defined mappings)

3. Solr Indexer stage

• Default_Data - a pipeline for processing general key-value data, i.e., data which has already been parsed into key-
value pairs.

1. Field Mapper index stage

2. Solr Indexer stage.

• Discard (Fusion 2.0) / conn_noop** - a pipeline used for testing datasource configurations which has no defined
stages.

96

• Documents_Parsing (Fusion 2.0) - a pipeline used to parse and index documents.

1. Apache Tika Parser index stage, which can process a wide variety of common document formats and is able to
extract metadata as well.

2. Field Mapper index stage, which has mapping rules for common document elements.

3. Language Detection index stage

4. Solr Indexer stage

• Documents_Parsing_debug_logging (Fusion 2.0) - this pipeline is an augmented version of the Documents_Parsing
pipeline where a logging stage has been added before every processing stage.

• JSON - a pipeline for handling JSON data.

1. JSON Parser index stage.

2. Field Mapper index stage

3. Solr Indexer stage

• Logstash - a pipeline for handling Logstash data.

1. Field Mapper index stage which handles timestamp fields.

2. Field Mapper index stage (empty)

3. Solr Indexer stage

• Source_Code - a pipeline for extracting source code from Git and SVN repositories.

1. Apache Tika Parser index stage, to extract raw data.

2. Field Mapper index stage to map elements to proper Solr field names.

3. Solr Indexer stage

Legacy Pipelines

• conn_solr - a pipeline used to parse and index documents. The initial stage is a Tika Parser index stage. The next
stage is a Field Mapper index stage which has mapping rules for common document elements. The final stage is a
Solr Indexer stage.

• default - a pipeline which consists of just a Solr Indexer stage, used to push documents which have been completely
parsed and have appropriately named fields to Solr for indexing.

Internal Use Pipelines

• _aggregation_default - a pipeline which consists of a single Solr Indexer stage which sends aggregations to Solr.

• _aggregation_rollup - also a pipeline which consists of a single Solr Indexer stage which sends aggregations to Solr.

• _signals_ingest - a pipeline used to index raw signal data. It has three stages, a Format Signals stage, a Field
Mapping stage and a Solr Indexer stage to index the raw signal events.

• _system_metrics - a pipeline which consists of a single Solr Indexer stage which sends internal information to the
Fusion system_metrics collection.

97

6.2. Fusion PipelineDocument Objects

A PipelineDocument organizes the contents of each document submitted to the pipeline, document-level metadata, and
processing commands into a list of fields where each field has a string name, a value, an associated metadata object and
a list of annotations. A Solr Indexer stage transforms a PipelineDocument into a Solr document and submits it to Solr for
indexing.

6.2.1. The PipelineDocument Java Object

Under the Fusion hood, a PipelineDocument is a Java object, see the PipelineDocument javadocs.

6.2.2. JSON representation of a PipelineDocument

The JSON representation of a PipelineDocument object has four fields:

• id : value is a string identifier.

• commands : value is a list of processing commands for the index (optional)

• metadata : value is single object containing a name : value pair (optional)

• fields: value is a list of field objects, where a field object consists of four fields:

◦ name : value is a string containing the field name

◦ value : value is a string containing the field value

◦ metadata : value is a single object containing a name : value pair (optional)

◦ annotations : value is a list of annotations (optional)

Pipeline stages add, remove, and update the fields of the PipelineDocument. The Solr Indexer stage transforms the list of
PipelineDocument fields into a set of Solr document fields.

The commands field can be used to issue a commit at the end of document processing or to delete documents based on
documents that match an included query.

If a pipeline includes a logging stage, the PipelineDocument will be pretty-printed to the Fusion connectors logfile
(default location fusion/var/log/connectors/connectors.log). To see how this works, we set up a pipeline consisting of an
initial logging stage, followed by a Apache Tika Parser stage, followed by another logging stage, followed by a Field
Mapper stage.

We define a datasource named "email" configured with lucid.anda filesystem connector that submits the contents of a
file named "test_email.eml" to the pipeline.

The initial logging stage from the connectors logfile is shown below. The raw bytes from the file are encoded as a
BASE64 string in field "raw_content". After the initial logging stage (before Tika Parsing), the PipelineDocument object is:

98

{ "id" : "/Users/demo/test_email.eml",
 "metadata" : { },
 "commands" : [],
 "fields" : [
 { "name" : "_lw_batch_id_s",
 "value" : "14982991ada04c62a77cbb9ee4b32439",
 "metadata" : { },
 "annotations" : [] },
 { "name" : "_lw_data_source_s",
 "value" : "email",
 "metadata" : { },
 "annotations" : [] },
 { "name" : "_lw_data_source_collection_s",
 "value" : "foo",
 "metadata" : { },
 "annotations" : [] },
 { "name" : "_lw_data_source_pipeline_s",
 "value" : "conn_logging",
 "metadata" : { },
 "annotations" : [] },
 { "name" : "_lw_data_source_type_s",
 "value" : "lucid.anda/file",
 "metadata" : { },
 "annotations" : [] },
 { "name" : "lastModified_dt",
 "value" : "2015-02-28T14:14:32Z",
 "metadata" : { "creator" : "lucid.anda" },
 "annotations" : [] },
 { "name" : "_raw_content_",
 "value" :
"TUlNRS1WZXJzaW9uOiAxLjAKUmVjZWl2ZWQ6IGJ5IDEwLjIwMi4yMjguMTk3IHdpdGggSFRUUDsgRnJpLCAyNyBGZWIgMjAxNSAxOToxMzo0M
SAtMDgwMCAoUFNUKQpEYXRlOiBTYXQsIDI4IEZlYiAyMDE1IDE0OjEzOjQxICsxMTAwCkRlbGl2ZXJlZC1UbzogbWl0emkubW9ycmlzQGx1Y2l
kd29ya3MuY29tCk1lc3NhZ2UtSUQ6IDxDQU03UFJDVjVuYzQxMTJ2Ym5hdEtKNk05RFVEU0prVzFpeXcxUHhhLWJaWFVCZ1FlV3dAbWFpbC5nb
WFpbC5jb20+ClN1YmplY3Q6IHRoaXMgaXMgdGhlIHN1YmplY3Qgb2YgZW1haWwgbWVzc2FnZQpGcm9tOiBNaXR6aSBNb3JyaXMgPG1pdHppLm1
vcnJpc0BsdWNpZHdvcmtzLmNvbT4KVG86IE1pdHppIE1vcnJpcyA8bWl0emkubW9ycmlzQGx1Y2lkd29ya3MuY29tPgpDb250ZW50LVR5cGU6I
G11bHRpcGFydC9hbHRlcm5hdGl2ZTsgYm91bmRhcnk9MDQ3ZDdiZDc1ZjJhM2YzNGYzMDUxMDFkNWY5OQoKLS0wNDdkN2JkNzVmMmEzZjM0ZjM
wNTEwMWQ1Zjk5CkNvbnRlbnQtVHlwZTogdGV4dC9wbGFpbjsgY2hhcnNldD1VVEYtOAoKdGhpcyBpcyB0aGUgZmlyc3QgbGluZSBvZiB0aGUgY
m9keSBvZiBhbiBlbWFpbCBtZXNzYWdlLgoKYW5kIHRoaXMgaXMgdGhlIHNlY29uZCBsaW5lLgoKYW5kIHRoaXMgaXMgdGhlIGNsb3NpbmcsIGN
oZWVycywKCi0tMDQ3ZDdiZDc1ZjJhM2YzNGYzMDUxMDFkNWY5OQpDb250ZW50LVR5cGU6IHRleHQvaHRtbDsgY2hhcnNldD1VVEYtOAoKPGRpd
iBkaXI9Imx0ciI+dGhpcyBpcyB0aGUgZmlyc3QgbGluZSBvZiB0aGUgYm9keSBvZiBhbiBlbWFpbCBtZXNzYWdlLjxkaXY+PGJyPjwvZGl2Pjx
kaXY+YW5kIHRoaXMgaXMgdGhlIHNlY29uZCBsaW5lLjwvZGl2PjxkaXY+PGJyPjwvZGl2PjxkaXY+YW5kIHRoaXMgaXMgdGhlIGNsb3NpbmcsI
GNoZWVycyw8L2Rpdj48ZGl2Pjxicj48L2Rpdj48L2Rpdj4KCi0tMDQ3ZDdiZDc1ZjJhM2YzNGYzMDUxMDFkNWY5OS0tCg==" ,
 "metadata" : { },
 "annotations" : [] },
]
}

After processing by the Tika parser and the Field Mapping stage, the document contains additional fields, e.g.:

99

{ "id" : "/Users/mitzimorris/tmp/test_email.eml",
 "fields" : [{
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 157],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "subject",
 "value" : "this is the subject of email message",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "dcterms:created",
 "value" : "2015-02-28T03:13:41Z",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, ...

The following is an example of an empty PipelineDocument that issues a commit command on the index:

{ "fields" : [],
 "metadata" : { },
 "commands" : [{
 "name" : "commit",
 "params" : { }
 }]
}

6.2.3. Submitting PipelineDocuments Directly to a Pipeline via the REST API

PipelineDocuments can be submitted to a pipeline as a POST request to the Fusion REST API path:

/api/apollo/index-pipelines/<id>/collections/<collectionName>/index

where <id> is the name of an specific pipeline and <collectionName> is the name of a specific collection. The content
type header to use for this format is:

application/vnd.lucidworks-document

Example

Send two documents to collection named "docs" using the "conn_solr" pipeline:

curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-document" -d '[{"id":"myDoc1",
"fields":[{"name":"title", "value":"My first document"}, {"name":"body", "value":"This is a simple
document."}]}, {"id":"myDoc2", "fields":[{"name":"title", "value":"My second document"}, {"name":"body",
"value":"This is another simple document."}]}]' http://localhost:8764/api/apollo/index-
pipelines/conn_solr/collections/docs/index

100

Limitations of using the index-pipelines REST API

All fields of a pipeline document sent to a pipeline as an HTTP POST request are treated as plain text strings. If you
encode data in a binary format as a BASE64-encoded string, you must then add a stage to decode that data before the
Tika Parser stage, else it will be parsed as plain text by Tika.

101

6.3. Index Pipeline Stages

An Index Pipeline takes content and transforms it into a document suitable for indexing by Solr via a series of modular
operations called stages. The objects sent from stage to stage are PipelineDocument objects. Fusion provides many
specialized index stages as well as a JavaScript Index stage that allows for custom processing via a JavaScript program.
The general outline of theExtract/Transform/Load processing performed by an index pipeline is:

• Raw content is parsed into one or more PipelineDocument objects.

• Any number of intermediate stages operate on the document fields directly, or, in the case of specialized NLP tools,
add annotations to a document.

• Finally, the PipelineDocument is sent to Solr for indexing.

A pipeline stage definition associates a unique ID with a set of properties. Pipeline definitions are stored in ZooKeeper
for reuse across pipelines and search applications. The Fusion UI provides stage-specific panels used to define and
configure each pipeline stage. Alternatively, JSON can be used to specify the sequence of pipeline stages and registered
via the Fusion REST API. Some stages require additional resources, e.g., text files which contain lists of names,
synonyms, places, or binary files which NLP language models. These resources can be uploaded via the Fusion UI or the
REST API.

Available index pipeline stages are listed below:

• Apache Camel Pipeline

• Apache Tika Parser

• CSV Parser

• Date Parsing

• Detect Language

• Exclusion Filter

• Field Mapper

• Find Replace

• Fusion Pipeline

• Gazetteer Lookup Extractor

• HTML Transform

• Indexing RPC

• JDBC

• JSON Parser

• Javascript

• Language Detection

• Logging

• Logging Message

• Multi-value Resolver

• OpenNLP NER Extractor

102

• Part of Speech

• Regular Expression Extractor

• Regular Expression Filter

• Regular Expression Replacement

• Sentence Detection

• Set Property

• Short Field Filter

• Signal Formatter

• Solr Indexer

• Solr Partial Update Indexer

• XML Transform

103

6.4. Index Profiles

Index profiles allow your applications to send documents for indexing to a consistent endpoint (the profile alias) and
change the backend index pipeline as needed. The profile is also a simple way to use one pipeline for multiple
collections without any one collection "owning" the pipeline.

Associating a profile with a pipeline is simply a mapping, and the profile is considered an alias for the pipeline. The
mapping can be managed in the UI or with the Index Profiles API.

The Profiles tab shows the index profiles on the left and the query profiles on the right. Hover over the name of a
profile, and an edit button will appear to allow you to change the pipeline the profile is mapped to. Hover over the
name of a pipeline, and you will be able to jump to edit that pipeline.

Click Add Profile to add a profile. The next screen will show a form allowing you to define the profile name and either
select an existing pipeline or create a new pipeline with the name you choose. Click Create to save the new profile.

104

6.5. Entity Extraction

Fusion includes extensive entity extraction capabilities. Entity extraction is configured as an index pipeline stage and
there are several stage types to correspond to the different types of entity extraction you’d like to perform on your
documents. The different types are described in more detail below.

Many of the entity extraction capabilities require models or lookup files, and we have provided a number of these by
default. You can find the files in fusion/data/nlp/ but in order to use them in an index pipeline stage, you will need to
load them to Solr using the Blob Store API.

6.5.1. Loading Models and Lookup Files to Solr

To load the files, you simply need to make a PUT request with the Blob Store API, as in this example:

curl -u admin:pass -X PUT --data-binary @data/nlp/models/en-sent.bin -H 'Content-type: application/octet-
stream' http://localhost:8764/api/apollo/blobs/sentenceModel.bin

Note that the endpoint is the ID of the file. You will use the ID you’ve assigned with the endpoint in the index pipeline
definition to indicate the model or lookup file to use. If the ID is omitted from the request (which is possible with a POST
request), a random ID will be assigned and it will be difficult to tell one stored blob from another.

6.5.2. Entity Extraction Capabilities

Lookup Lists

The lookup lists are the most numerous of the available files. Many of these are simple lists that you will want to add
values to. However, some may be robust enough for your needs.

The available lists are found in fusion/data/nlp/gazetteer.

To use a lookup list-based entity extraction, you would configure a Gazetteer Lookup Extractor Index Stage as part of
your pipeline.

OpenNLP Models

We have also included entity extraction models from the OpenNLP project. These models are based on news articles and
may not be suitable for all entity extraction needs. The Fusion-supplied models are located in fusion/data/nlp/models.

If you have created your own model for your data, you can load it to the blob store and use it in the nlp index stage as
described above.

To use an OpenNLP-based entity extraction, you would configure a OpenNLP NER Extractor Index Stage as part of your
pipeline.

Regular Expression Extraction

The regular expression extraction allows using a regular expression to find entities in documents that should be
extracted. The extracted entities will then be copied to a field defined by you.

To use regular expression extraction, you would configure a Regular Expression Extractor Index Stage as part of your
pipeline.

105

Regex Field Filter

The Regex Field Filter stage allows you to remove a field based on a regular expression. This removes the entire field
from the document, there is not yet an option for removing only specific entities found in the field or for excluding
entire documents based on values found in a field.

To use Regex Field Filter, you would configure a Regular Expression Filter Index Stage as part of your pipeline.

Exclusion Lists

An exclusion list is a list of known items that should be removed from a document. This removes the entire field from
the document, there is not yet an option for removing only specific entities found in the field or for excluding entire
documents based on values found in a field.

Note that the list must be loaded to Solr using the Blob Store API before it can be used with a Fusion index pipeline.

To use exclusion list filtering, you would configure a Exclusion Filter Index Stage as part of your pipeline.

Filter Short Fields

The Filter Short Fields stage removes entities that are equal to or smaller than a defined character limit.

To use the Filter Short Fields stage, you would configure a Short Field Filter Index Stage as part of your pipeline.

106

6.6. Pushing Documents to a Pipeline

Documents can be sent directly to an index pipeline using the Index-Pipelines REST API. The request path is:

/api/apollo/index-pipelines/<id>/collections/<collectionName>/index

where <id> is the name of an specific pipeline and <collectionName> is the name of an specific collection.

These requests are sent as a POST request. The request header specifies the format of the contents of the request body.

To send in a streaming list of JSON documents to the index pipeline you can send the JSON file which holds these objects
to the API listed above with "application/json" as the content type. If your JSON file is a list/array of many items, the
pipeline will operate in a streaming way and index the docs as necessary.

Example:

The JSON document called "myJsonDoc.json" holds 4.3M entries. Send the document to the index pipeline with the
following command:

curl -u user:password -X POST -H 'Content-Type: application/json' -d@myJsonDoc.json
"http://localhost:8764/api/apollo/index-pipelines/<id>/collections/<collectionName>/index"

Documents can be created on the fly using the PipelineDocument JSON notation. See Fusion PipelineDocument Objects
for details and an example of how to do this.

6.6.1. Indexing PDFs and MS Office Documents

If you can access the filesystem in which the PDFs or MS Office documents reside, you can index these documents using
properly configured datasource with the appropriate connector for that filesystem type. See Connectors and
Datasources Reference for a list of all Fusion connectors.

If, however, there are obstacles to using the connectors, it may be simpler to index these types of documents with an
index pipeline. The pipelines can only be used with REST API calls, and there is complete documentation in the section
Index Pipelines API.

When sending the documents, it’s important to set the content type header properly for the content being sent. This is
not a complete list, but here are some frequently used content types:

• PDF documents: application/pdf

• MS Office:

◦ .docx: application/vnd.openxmlformats-officedocument.wordprocessingml.document

◦ .xlsx: `application/vnd.openxmlformats-officedocument.spreadsheetml.sheet `

◦ .pptx: `application/vnd.vnd.openxmlformats-officedocument.presentationml.presentation `

◦ More types: http://filext.com/faq/office_mime_types.php

• Text: text/json, text/xml, text/csv, etc.

Examples

Index a PDF document through the 'conn_solr' index pipeline to a collection named 'docs'. The pre-configured

107

http://filext.com/faq/office_mime_types.php

'conn_solr' pipeline includes stages to parse documents with Tika, map fields, and index the documents to Solr (in that
order).

curl -u user:pass -X POST -H "Content-Type: application/pdf" --data-binary @/solr/core/src/test-
files/mailing_lists.pdf http://localhost:8764/api/apollo/index-pipelines/conn_solr/collections/docs/index

Index one of the example Solr XML documents found in the ./example/exampledocs directory of Solr. For this example to
work well, the default pipeline was modified to include a field mapping stage in addition to indexing the documents to
Solr. In this example, the custom pipeline is named 'docs-default' and the collection is 'docs'.

curl -u user:pass -X POST -H "Content-Type: text/xml" --data-binary @/Applications/solr-
4.10.0/example/exampledocs/hd.xml http://localhost:8764/api/apollo/index-pipelines/docs-
default/collections/docs/index

6.6.2. Indexing CSV Files

In the usual case, to index a CSV (or TSV) file, the file is split into records, one per row, and each row is indexed as a
seperate document. Datasources which use crawlers that are based on either the lucid.anda or lucid.fs framework can
do the CSV splitting as part of the connector process.

Alternatively, the index pipeline can include a CSV Parser stage.

108

6.7. Blob Storage

Fusion accepts large binary objects (blobs) for upload, and stores them in Solr. Blob uploads are used to install models,
lookup lists, JDBC drivers, connectors, and more.

In Fusion versions earlier than 3.1, it is only possible to upload these blobs with the Blob Store API.

109

6.8. Custom JavaScript Stages For Index Pipelines

The JavaScript Index stage allows you to write a custom processing logic using JavaScript to manipulate Pipeline
Documents and the index pipeline context. which will be compiled by the JDK into Java bytecode that is executed by the
Fusion pipeline. The first time that the pipeline is run, Fusion compiles the JavaScript program into Java bytecode using
the JDK’s JavaScript engine.

For a JavaScript Index stage, the JavaScript code must return either: a single document or array of documents; or the
null value or an empty array. In the latter case, no further processing is possible, which means that the document will
not be indexed or updated.

6.8.1. JavaScript Index Stage Global Variables

JavaScript is a lightweight scripting language. The JavaScript in a JavaScript stage is standard ECMAScript. What a
JavaScript program can do depends on the container in which it runs. For a JavaScript Index stage, the container is a
Fusion index pipeline. The following global pipeline variables are available:

Name Type Description

doc PipelineDocument The contents of each document
submitted to the pipeline. See:
PipelineDocument Objects for a
complete description of this object.

ctx PipelineContext A reference to the container which
holds a map over the pipeline
properties. Used to update or modify
this information for downstream
pipeline stages.

collection String The name of the Fusion collection
being indexed or queried.

solrServer BufferingSolrServer The Solr server instance that manages
the pipeline’s default Fusion
collection. All indexing and query
requests are done by calls to methods
on this object. See SolrClient for
details.

Note The now-deprecated global variable "_context" refers to
the same object as "ctx".

The JavaScript in a JavaScript Index stage must return either a single document or an array of documents. This can be
accomplished by either:

• a series of statements where the final statement evaluates to a document or array of documents

110

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/ECMAScript
https://lucene.apache.org/solr/5_2_1/solr-solrj/org/apache/solr/client/solrj/SolrClient.html

• a function which returns a document or an array of documents

As of Fusion 2.4, all pipeline variables referenced in the body of the JavaScript function must be passed in as arguments
to the function. E.g., in order to access the PipelineDocument in global variable 'doc', the JavaScript function must be
written as:

function doWork(doc) {
 // do some work ...
 return doc;
}

The allowed set of function declarations are:

function doWork(doc) { ... return doc; }
function doWork(doc, ctx) { ... return doc; }
function doWork(doc, ctx, collection) { ... return doc; }
function doWork(doc, ctx, collection, solrServer) { ... return doc; }
function doWork(doc, ctx, collection, solrServer, solrServerFactory) { ... return doc; }

The order of these arguments is according to the (estimated) frequency of use. The assumption is that most processing
only requires access to the document object itself, and the next-most frequent type of processing requires only the
document and read-only access of some context parameters. If you need to reference the solrServerFactory global
variable, you must use the 5-arg function declaration.

In order to use other functions in your JavaScript program, you can define and use them, as long as the final statement
in the program returns a document or documents.

JavaScript Index stages prior to Fusion 2.4 allow use of global variables within a function, thus the following function
definition is equivalent to the example above:

function doWork() {
 // do some work ...
 return doc;
}

For long-term maintainability, you must list all pipeline variables as part of the function definition. Furthermore,
avoiding use of global variables in JavaScript is just good practice.

Global variable logger

The global variable named logger writes messages to the logfile of the server running the pipeline. This variable is truly
global and doesn’t need to be declared as part of the function parameter list.

Since Fusion’s connectors service does the index pipeline processing, these log messages go into the logfile:
fusion/var/log/connector/connector.log. There are 5 methods available, which each take either a single argument (the
string message to log) or two arguments (the string message and an exception to log). The five methods are, "debug",
"info", "warn", and "error".

111

http://stackoverflow.com/questions/5786851/define-global-variable-in-a-javascript-function

6.8.2. JavaScript Index Stage Examples

Add a field to a document

function (doc) {
 doc.addField('some-new-field', 'some-value');
 return doc;
}

Join two fields

The following example conjoins separate latitude and longitude fields into a single geo-coordinate field, whose field
name follows Solr schema conventions and ends in "_p". It also removes the original latitude and longitude fields from
the document.

function(doc) {
 var value = "";
 if (doc.hasField("myGeo_Lat") && doc.hasField("myGeo_Long")) {
 value = doc.getFirstFieldValue("myGeo_Lat") + "," + doc.getFirstFieldValue("myGeo_Long");
 doc.addField("myGeo_p", value);
 doc.removeFields("myGeo_Lat");
 doc.removeFields("myGeo_Long");
 logger.debug("conjoined Lat, Long: " + value);
 }
 return doc;
}

Return an array of documents

function (doc) {
 var subjects = doc.getFieldValues("subjects");
 var id = doc.getId();
 var newDocs = [];
 for (i = 0; i < subjects.size(); i++) {
 var pd = new com.lucidworks.apollo.common.pipeline.PipelineDocument(id+'-'+i);
 pd.addField('subject', subjects.get(i));
 newDocs.push(pd);
 }
 return newDocs;
}

Parse a JSON-escaped string into a JSON object

While it’s simpler to use a JSON Parsing index stage, the following code example shows you how to parse a JSON-
escaped string representation into a JSON object.

This code parses a JSON object into an array of attributes, and then find the attribute "tags" which has as its value a list
of strings. Each item in the list is added to a multi-valued document field named "tag_ss".

112

var imports = new JavaImporter(Packages.sun.org.mozilla.javascript.internal.json.JsonParser);
function(doc) {
 with (imports) {
 myData = JSON.parse(doc.getFirstFieldValue('body'));
 logger.info("parsed object");
 for (var index in myData) {
 var entity = myData[index];
 if (index == "tags") {
 for (var i=0; i<entity.length;i++) {
 var tag = entity[i][0];
 doc.addField("tag_ss",tag);
 }
 }
 }
 }
 doc.removeFields("body");
 return doc;
}

Do a lookup on another Fusion collection

function doWork(doc, ctx, collection, solrServer, solrServerFactory) {
 var imports = new JavaImporter(
 org.apache.solr.client.solrj.SolrQuery,
 org.apache.solr.client.solrj.util.ClientUtils);
 with(imports) {
 var sku = doc.getFirstFieldValue("sku");
 if (!doc.hasField("mentions")) {
 var mentions = ""
 var productsSolr = solrServerFactory.getSolrServer("products");
 if(productsSolr != null){
 var q = "sku:"+sku;
 var query = new SolrQuery();
 query.setRows(100);
 query.setQuery(q);
 var res = productsSolr.query(query);
 mentions = res.getResults().size();
 doc.addField("mentions",mentions);
 }
 }
 }
 return doc;
}

Reject a document

If the function returns null or an empty array, it will not be indexed or updated into Fusion.

function doWork(doc) {
 if (!doc.hasField("required_field")) {
 return null;
 }
 return doc;
}

113

6.8.3. Debugging and Troubleshooting

To debug a JavaScript Index stage you can:

• Check the Fusion api server logs for compilation errors.

• Check the Fusion connectors server logs for runtime processing errors.

• Use the logger object for print debugging (in the Fusion connectors logfile).

• Use the Pipeline Preview tool (not available in Fusion 2.0, 2.1, or 2.2).

6.8.4. The JavaScript Engine Used by Fusion

The JavaScript engine used by Fusion is the Nashorn engine from Oracle. See The Nashorn Java API for details.

Upgrading to the latest Nashorn engine

The default version of the Nashorn engine used by Fusion versions 2.4.1 and earlier is the nashorn-0.1-jdk7.jar which
contains many bugs that have since been fixed in the official JDK 1.8 version. In order to use the latest version of the
Nashorn engine, you must:

• Have an up-to-date version of Java 8 installed.

• Remove the nashorn-0.1-jdk7.jar from the Fusion classpaths:

◦ cd fusion

◦ find . -name "nashorn-0.1-jdk7.jar" -print -exec rm -i {} \;

Creating and accessing Java types

The following information is taken from Oracle’s JavaScript programming guide section 3, Using Java From Scripts.

To create script objects that access and reference Java types from Javascript use the Java.type() function:

var ArrayList = Java.type("java.util.ArrayList");
var a = new ArrayList;

114

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html
https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/javascript.html#A1147207

Chapter 7. Search
• Datasources are the configurations that import and index data into a collection.

• Query pipelines filter, transform, and augment Solr queries and responses in order to return all and only the most
relevant search results.

• Signals and aggregations are ways to collect and compile data for analysis or to boost search results in the future.

• Search applications are the front-end interfaces that you build on top of Fusion using its REST API.

115

7.1. Query Pipelines

A Query Pipeline transforms a set of inputs into a Solr query request and it can execute requests and manipulate the
Solr response as well, via a set of modularized operations called Query Stages. The objects sent from stage to stage are
Request objects and Response objects.

Fusion stores pipeline names and definitions, allowing a pipeline to be reused across applications. Pipeline definitions
can be modified, so that as an application evolves, the pipelines used by that application can evolve accordingly. During
application development, the Fusion UI can be used to develop and debug a Query Pipeline.

The available stage types allow setting specific parameters for the query, such as the number of results to return or the
query parser to use. You can also define facets and recommendations to be returned with the results. If Access Control
Lists (ACLs) are in use, you can apply a security-trimming stage to apply user access restrictions to the results.

For details about the available REST APIs, see Query Pipelines API and Query Stages API.

7.1.1. Default Query Pipelines

Fusion ships with one default query pipeline named 'default'.

This pipeline has the following pre-configured stages:

• A Recommendation Boosting stage which boosts based on signals (if signals are collected and sent to the app).

• A Search Fields stage which sets the default number of results returned to 10. The property "skip" is false and the
property "condition" is empty, so that all queries are processed.

• A Facet stage. No facet fields are specified. As configured, this stage has no effect on the pipeline.

• A Query Solr stage which sends the full query request to Solr.

When a collection is created, a default query pipeline for the collection is created. The pipeline name is the collection
name with '-default' appended. For example, collection foo will have default query pipeline foo-default. This pipeline has
the same configuration as the pipeline named 'default'.

116

7.1.2. Custom Query Pipelines

Using the Query Workbench or the REST API, you can develop custom pipelines to suit any search application. Start with
any of Fusion’s built-in query pipelines, then add, remove, and re-order the pipeline stages as needed to produce the
appropriate query results.

117

7.2. Fusion Query Request Objects

A Fusion Query Request organizes the contents of each query submitted to a Fusion query pipeline. A Request object is
comprised of the HTTP method, a set of HTTP headers, and a set of query parameters.

7.2.1. The Request Java API

Under the Fusion hood, a Request is a Java object. The link to the public API javadoc page is: Request

7.2.2. JSON representation of a Request object

The JSON representation of a Request object has three fields:

• httpMethod: value is a string, one of the defined HTTP methods (verbs), usually GET.

• headers : value is an object consisting of the set of defined header fields on the request.

• params : value is an object consisting of the set of query parameter names and corresponding parameter values.

The httpMethod and headers reflect the initial pipeline request. The Fusion Request object public API doesn’t provide
methods to update these fields.

The Fusion Request object public API provides methods to get and set the param fields and their values.

Query pipeline stages add, remove, and update the values in the params field. To see how the query parameters are
affected by query pipeline stage, we insert a Logging Query stage at the very beginning of a Query Pipeline and capture
the request object printed to the Fusion log file fusion/logs/api/api.log. The example query pipeline used here is called
"medsamp-default." This pipeline is composed of the following sequence of stages:

• Logging Query

• Query Fields

• Logging Query

• Facet

• Logging Query

• Solr Query

Using the Admin Search tool, we submit the query "oxygen". The initial Logging Query stage shows the Request object.
The "params" field takes an object consisting of a set of param names, param values. The param name "q" takes as its
value the list of query terms, which in this case, is a list consisting of the word "oxygen":

118

{
 "headers" : {
 "Accept-Collections" : ["*"],
 "Fusion-User-Auth-Realm" : ["native"],
 "Host" : ["172.16.2.12:8765"],
 "Content-Length" : ["0"],
 "Fusion-Session-Id" : ["e7085302-f5c5-4401-ba79-a4ead8a9f65a"],
 "Accept-Encoding" : ["gzip, deflate"],
 "User-Agent" : ["Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/41.0.2272.89 Safari/537.36"],
 "Via" : ["1.0 apollo-proxy"],
 "Fusion-User-Role" : ["admin"],
 "Accept" : ["application/json, text/plain, */*"],
 "Content-Type" : ["application/json; charset=UTF-8"],
 "Fusion-User-Name" : ["admin"],
 "Fusion-User-Id" : ["a4096f7e-2de8-4910-beb4-93f30a3a5eb6"]
 },
 "params" : {
 "echoParams" : ["all"],
 "start" : ["0"],
 "lw.pipelineId" : ["medsamp-default"],
 "q" : ["oxygen"],
 "json.nl" : ["arrarr"],
 "wt" : ["json"]
 },
 "httpMethod" : "GET"
}

The Query Fields stage updates the Request object, and the second Logging Query stage reflects these changes. Here we
have omitted the "headers", as they are unchanged (and unchangable). The Query Fields stage added params "fl" (fields
list - document fields returned), "qf" (query fields - the fields used for search), and "defType" (the default scoring type) to
the params set.

{
 "headers" : { ... }
 "params" : {
 "fl" : ["article-title_txt", "article-vernacular-title_txt", "article-author-lastname_txt", "mesh-
heading_ss", "pmid_txt", "article-language_s", "article-abstract_txt", "article-author-affiliation_txt"],
 "echoParams" : ["all"],
 "start" : ["0"],
 "lw.pipelineId" : ["medsamp-default"],
 "q" : ["oxygen"],
 "qf" : ["article-title_txt", "article-abstract_txt"],
 "json.nl" : ["arrarr"],
 "wt" : ["json"],
 "rows" : ["10"],
 "defType" : ["edismax"]
 },
 "httpMethod" : "GET"
}

The Facets stage further updates the Request object, and the third Logging Query stage reflects these changes. The
params set now includes param "facet".

119

 {
 "headers" : { ... }
 "params" : {
 "facet" : ["true"],
 "fl" : ["article-title_txt", "article-vernacular-title_txt", "article-author-lastname_txt", "mesh-
heading_ss", "pmid_txt", "article-language_s", "article-abstract_txt", "article-author-affiliation_txt"],
 "echoParams" : ["all"],
 "start" : ["0"],
 "lw.pipelineId" : ["medsamp-default"],
 "q" : ["oxygen"],
 "qf" : ["article-title_txt", "article-abstract_txt"],
 "json.nl" : ["arrarr"],
 "wt" : ["json"],
 "rows" : ["10"],
 "defType" : ["edismax"]
 },
 "httpMethod" : "GET"
}

120

7.3. Fusion Query Response Objects

A Fusion query Response object contains the Solr response as well as a set of HTTP headers. It is used to improve the
search experience by refining, expanding, filtering, or otherwise modifying the Solr response.

Under the Fusion hood, a Response is a Java object. The link to the public API javadoc page is: Response.

121

7.4. Faceting

Faceting is the name given to a set of computed counts over a search result which are returned together with the
documents which match the search query. Facets are most often used to create additional navigational controls on the
search results page or panel which allow users to expand and restrict their search criteria in a natural way, without
having to construct complicated queries. For example, popular e-commerce facets include product category, price range,
availability, and user ratings.

Fusion leverages Solr’s Faceting search components.

7.4.1. Field faceting

In Solr the most straightforward kind of faceting is field faceting, in which Solr’s FacetComponent computes the top
values for a field and returns the list of those values along with a count of the subset of documents in the search results
which match that term. Field faceting works best over fields which contain a single label or set of labels from a finite,
controlled lexicon such as product category. Fusion’s Facet Query Stage can be used to configure field faceting as part of
the search query pipeline.

7.4.2. Range faceting

Range facets are used for fields which contain date or number values. Values can be grouped into ranges by specifying
additional query parameters.

To configure range faceting, use the Additional Query Parameters Stage to specify Solr range faceting parameters.

7.4.3. Faceting concepts

Key Facet Concepts:

Term

A specific value from a field.

Limit

The maximum number of terms to be returned.

122

https://cwiki.apache.org/confluence/display/solr/Faceting
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-RangeFaceting

Offset

The number of top facet values to skip in the response (just like paging through search results and choosing an offset
of 51 to start on page 2 when showing 50 results per page).

Sort

The order in which to list facet values: count ordering is by documents per term, descending, and index ordering is
sorted on term values themselves.

Missing

The number of documents in the results set which have no value for the facet field.

Choice of facet method

(advanced) Specify Solr algorithm used to calculate facet counts. (See Facet Method Configuration for details). One of:
+

• enum - small number of distinct categories

• fc ("field cache") - many different values in the field, each document has low number of values, multi-valued
field

• fcs ("single value string fields") - good for rapidly changing indexes

7.4.4. Further Reading

https://lucidworks.com/blog/2014/10/03/pivot-facets-inside-and-out/

https://lucidworks.com/blog/2015/01/29/you-got-stats-in-my-facets/

https://lucidworks.com/blog/2016/08/12/pivoting-to-the-query-using-pivot-facets-to-build-a-multi-field-suggester/

123

https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Thefacet.methodParameter
https://lucidworks.com/blog/2014/10/03/pivot-facets-inside-and-out/
https://lucidworks.com/blog/2015/01/29/you-got-stats-in-my-facets/
https://lucidworks.com/blog/2016/08/12/pivoting-to-the-query-using-pivot-facets-to-build-a-multi-field-suggester/

7.5. Search Query Pipeline Stages

A query pipeline is made up of a series of query stages that process incoming search queries.

A pipeline stage definition associates a unique ID with a set of properties. These definitions are registered with the
Fusion API service and stored in ZooKeeper for re-use across pipelines and search applications.

Fusion includes a number of specialized query stages as well as a JavaScript stage that allows advanced processing via a
JavaScript program.

7.5.1. Configuring query pipeline stages

• In the Fusion UI, the Query Workbench provides an environment for configuring the stages in a query pipeline.

• The Query Stages API is used used to create, list, update, or delete query stages using JSON. See also the Query
Pipelines API.

7.5.2. Conditional query processing

Query Pipeline stages are used to modify Request objects and Response objects. Each stage can include a conditional
JavaScript expression (the 'condition' property in its configuration) that can access these objects.

For example, this condition first checks that the property "fusion-user-name" is specified in the Request object, then
checks for a particular value:

request.hasParam("fusion-user-name") && request.getFirstParam("fusion-user-name").equals("SuperUser");

7.5.3. Reference topics

See these reference topics for complete details about each query pipeline stage:

• Active Directory Security Trimming

• Advanced Boosting

• Block Documents

• Boost Documents

• Email

• Facet

• Javascript

• JDBC

• Landing Pages

• Logging

• Logging Message

• PagerDuty

• Recommendation Boosting

• Return QueryParams

124

• Rollup Aggregator

• Search Fields

• Security Trimming

• Set Query Params Stage

• Slack

• Solr Query

• Stored Parameters

• SubQuery

• User Recommendation Boosting

125

7.6. Query Profiles

Query profiles allow you to consistently point your search application at a static endpoint, but give you the flexibility to
change the actual query pipeline being used.

For example, an e-commerce site may want to create a query pipeline to support a month-long promotion. Once the
pipeline is configured, it can be easily enabled by changing the profile in use by the front-end application to use the new
pipeline.

A profile can be created or modified with the UI or with a REST API. The UI is described below, the REST API is described
in the section Query Profiles API.

7.6.1. Query Profiles in the UI

The Profiles tab shows the index profiles on the left and the query profiles on the right. Hover over the name of a
profile, and an edit button will appear to allow you to change the pipeline the profile is mapped to. Hover over the
name of a pipeline, and you will be able to jump to edit that pipeline.

Click Add Profile to add a profile. The next screen will show a form allowing you to define the profile name and either
select an existing pipeline or create a new pipeline with the name you choose. Click Create to save the new profile.

126

7.7. Fusion UI Search Tool

The Fusion UI Search Tool simulates the typical search application experience by running a user query over a collection
using a specified query pipeline. This tool can display the query as well as the results, so that specific queries can be
embedded in an application. It offers ways to customize the display of the Solr query results, but not the search
parameters. You can also use it to compare the results of two query pipelines.

Query pipeline configuration is done through the Query Pipeline tool.

To access this tool, you can either click on the icon for the Fusion UI Search Tool, shown above, which is found on the
main Fusion UI page, (the page displayed immediately after initial login and/or is reached by clicking on the Lucidworks
Fusion label in the very top left-hand corner of the UI), or you can enter the URL http://<host:port>/search, where <host>
and <port> point to your Fusion UI instance.

7.7.1. Search Tool Elements

The search tool provides drop-down selectors for the Collection to be searched and a text box for the search query. Next
to these is a gear icon. The gear icon toggles a configuration panel which is used to select the search pipeline that will
carry out the search and to specify the number of search results to display and how these results are displayed. See
section Search Tool Options, below.

The space below the selectors is used to display documents and/or system messages.

The left-hand side is used to display facets. Facets will only be displayed if the query-pipeline response contains facets
and according to the configuration settings (see below).

7.7.2. Search Results Display

The search results display panel displays the following:

• The number of results found and the query time.

• If the "Display Query URL" option is on, it will display the Solr query sent to the collection

• A set of controls used to display the documents retrieved by the query (if any). The set of controls are, from left to
right

◦ a drop-down menu used to select the Solr response field to sort on

◦ a drop-down menu used to select the sort order

◦ controls to page through the search results

◦ a control box allowing you to choose the number of results per page, either 10, 20, 50, or 100 results per page.

• The documents themselves

7.7.3. Search Tool Options

The configuration panel toggles between three displays: "General", "Document", and "Facets".

The general search tool configuration options are:

• Results Per-Page: The maximum amount of results that can be displayed for each query.

• Display Solr Response Highlighting: If the Query Pipeline contains highlighting information, you can choose to show

127

http://<host:port>/search

or hide it here. To add highlighting to a query pipeline, add the following two parameters to the set-query-params
stage: hl=true and hl.fl=*.

• Display Query URL: Display the full URL of the Query Pipeline search request.

The document configuration options are used to specify:

• "Primary" - a field which will be treated as the document title. The value of this field is displayed in bold text. The
field name is omitted.

• "Secondary" - a field which will be treated as the document summary. The value of this field is displayed below the
document title, in a smaller font. The field name is omitted.

• "Additional" - fields which will be displayed if the "more fields" label is expanded. These will display as a set of field
name:value pairs.

The facets configuration option allow you to choose which facets are displayed to the left of the documents. This only
applies if the query pipeline has a facets stage.

7.7.4. Comparing Query pipelines

You can use the search tool to compare the search results from two different query pipelines.

1. In the search panel, click the Compare button.

A second search panel appears on the right, indicating that no pipeline is selected for comparison.

2. In the right-hand search panel, select the query pipeline to compare.

You can select a preconfigured pipeline from the dropdown list, or click the Duplicate button to create a copy of the
current pipeline for this datasource.

Now the search results are displayed as a diff:

128

3. Modify the pipeline on the right as desired.

◦ You can block or boost results directly in the Search Panel.

◦ To edit one of the query pipelines, click Home > Query Pipelines > <pipeline name>.

129

7.8. Using Query Pipelines with SolrJ

Fusion Pipelines can be used in conjunction with a SolrJ client, allowing you to use the power of Fusion pipelines with
an existing Solr installation.

7.8.1. Authentication with SolrJ

Fusion user authentication and authorization is carried out by the Fusion UI service. For details on how Fusion handles
authentication and authorization, please see Access Control.

When using SolrJ, however, there are two approaches that can be used: basic authentication and passing credentials in
the URL. Once the authentication has occurred, the roles that have been assigned to the user provide the authorization.

Basic Authentication

The Basic authentication approach looks very similar to the session-based approach. However, some classes are
changed.

 HttpClient client = HttpClientBuilder.create().useSystemProperties()
 .addInterceptorLast(new PreEmptiveBasicAuthenticator(user, password))
 .build();
 HttpSolrServer server = new HttpSolrServer(url, client);
 // ...
 public static class PreEmptiveBasicAuthenticator implements HttpRequestInterceptor {
 private final UsernamePasswordCredentials credentials;
 public PreEmptiveBasicAuthenticator(String user, String pass) {
 credentials = new UsernamePasswordCredentials(user, pass);
 }
 public void process(HttpRequest request, HttpContext context) throws HttpException, IOException {
 request.addHeader(BasicScheme.authenticate(credentials,"US-ASCII",false));
 }
 }

URL Credentials

The URL credential approach provides the ability to pass the authentication properties in the URL, as in this example:

 String url = "http://user:pass@localhost:8764/api/apollo/solr/demo";
 HttpSolrServer server = new HttpSolrServer(url);

7.8.2. Example

The example below demonstrates the use of query profiles and query pipelines for querying a collection named 'test'
with a query pipeline named 'default', using the basic authentication approach.

130

package com.lucidworks.apollo.testQueryPipeline;

import org.apache.http.HttpRequestInterceptor;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.solr.client.solrj.SolrServerException;
import org.apache.solr.client.solrj.impl.HttpSolrServer;
import org.apache.solr.client.solrj.impl.XMLResponseParser;
import org.apache.solr.client.solrj.response.QueryResponse;
import org.apache.solr.common.params.ModifiableSolrParams;
public class TestQPSolrJ {
 public static void main(String[] args) throws SolrServerException {
 /**
 * Request URL points to Fusion UI which uses authentication proxy.
 * Example uses basic authentication
 * URL is Apollo query-pipelines endpoint:
 * http://{hostname}:{port_name}/api/apollo/query-
pipelines/{pipeline_name}/collections/{collection_name}
 */
 String url = "http://localhost:8764/api/apollo/query-pipelines/default/collections/demo";
 String user = "admin";
 String password = "password123";
 HttpClient client = HttpClientBuilder.create().useSystemProperties()
 .addInterceptorLast(new PreEmptiveBasicAuthenticator(user, password))
 .build();
 HttpSolrServer solrServer = new HttpSolrServer(url, client);
 solrServer.setParser(new XMLResponseParser());
 ModifiableSolrParams solrParams = new ModifiableSolrParams();
 solrParams.add("q", "*:*");
 QueryResponse out = solrServer.query(solrParams);
 System.out.println("QTime is " + out.getQTime());
 System.out.println("RH is " + out.getResponseHeader().toString());
 }
 public static class PreEmptiveBasicAuthenticator implements HttpRequestInterceptor {
 private final UsernamePasswordCredentials credentials;
 public PreEmptiveBasicAuthenticator(String user, String pass) {
 credentials = new UsernamePasswordCredentials(user, pass);
 }
 public void process(HttpRequest request, HttpContext context) throws HttpException, IOException {
 request.addHeader(BasicScheme.authenticate(credentials,"US-ASCII",false));
 }
 }

}

For more information about SolrJ, see the Apache Solr Reference Guide section Using SolrJ.

131

https://cwiki.apache.org/confluence/display/solr/Using+SolrJ

7.9. Search Query Reporting

Fusion includes several reports that can help you gain insight into the performance of your search application and the
behavior of your users.

In order to use these reports, you must have the 'searchLogs' feature enabled for a collection. This will create a parallel
collection named '<collection>_logs'. When requests for report data is sent to the main collection, the data is pulled from
the *_logs collection.

7.9.1. Available Reports

lessThanN

This report provides a way to discover queries that returned less than a defined number of results.

In addition to defining the number of results for inclusion in the report, you can also limit by a date range.

topQueries

This report shows the queries that were performed most often. It reports the user’s entire query.

While it does not take a minimum number parameter, it can be limited by a date range.

topN

The TopN report finds the most popular terms. This is distinct from the topQueries report because it reports on terms
and not the entire query.

Possible fields are those that appear when investigating a particular item:

• collection_s: the collection used for the query

• id: the document ID

• q_txt: the query text

• q_s:

• qtime_l: the length of time the query portion of the response

• totaltime_l: the total length of time for the response

• numdocs_l: the number of documents found for the query

• timestamp_dt: the timestamp of the query

• req_facet_ss: if facets were requested

• req_echoParams_ss: the setting for "echoParams" during the query

• req_q_ss: the request itself

• req_facet.field_ss: the facet fields requested

• req_rows_ss: the number of rows requested

• version: The document version at the time of the query

132

topClicked

This report shows the items that were clicked most often. It requires that Signals have been enabled for a collection, that
click events have been recorded, and that the click signals have been aggregated. See the section on Signals for more
information.

In addition to accepting a number to define how many items to return, it can also be limited by date range.

histo

This report provides a histogram that matches the query parameters. A field is defined as the basis for the data, and
then a range of values and an interval are provided.

The available fields are:

• qtime_l: the length of time the query portion of the response

• totaltime_l: the total length of time for the response

• numdocs_l: the number of documents found for the query

• timestamp_dt: the timestamp of the query

• req_rows_ss: the number of rows requested

dateHisto

This report provides a histogram of queries based on a provided date range.

133

7.10. Custom JavaScript Stages for Query Pipelines

The JavaScript Query stage allows you to write a custom processing logic using JavaScript to manipulate search requests
and responses. The first time that the pipeline is run, Fusion compiles the JavaScript program into Java bytecode using
the JDK’s JavaScript engine.

The JavaScript Query stage allows you to run JavaScript functions over search requests and responses by manipulating
variables called "request" and "response" which are Request and Response objects, respectively.

7.10.1. JavaScript Query Stage Global Variables

JavaScript is a lightweight scripting language. The JavaScript in a JavaScript stage is standard ECMAScript. What a
JavaScript program can do depends on the container in which it runs. For a JavaScript Query stage, the container is a
Fusion query pipeline. The following global pipeline variables are available:

Name Type Description

request Request The Solr query information.

response Response The Solr response information.

params PipelineContext A reference to the container which
holds a map over the pipeline
properties. Used to update or modify
this information for downstream
pipeline stages.

ctx PipelineContext A reference to the container which
holds a map over the pipeline
properties. Used to update or modify
this information for downstream
pipeline stages.

_context PipelineContext Another reference to the same object
as ctx, included because some stages
use this name instead.

collection String The name of the Fusion collection
being indexed or queried.

solrServer BufferingSolrServer The Solr server instance that manages
the pipeline’s default Fusion
collection. All indexing and query
requests are done by calls to methods
on this object. See SolrClient for
details.

134

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/ECMAScript
https://lucene.apache.org/solr/5_2_1/solr-solrj/org/apache/solr/client/solrj/SolrClient.html

Global variable logger

The global variable named logger writes messages to the logfile of the server running the pipeline. Since Fusion’s api
service does the query pipeline processing, these log messages go into the logfile: fusion/var/log/api/api.log. There are
5 methods available, which each take either a single argument (the string message to log) or two arguments (the string
message and an exception to log). The five methods are, "debug", "info", "warn", and "error".

7.10.2. JavaScript Query Stage Examples

Add a parameter to the query request

request.addParam("foo", "bar");

Add a parameter to the query response

This example contains a simple JavaScript function which adds information to the query response. Repeated calls to this
function build out the response.

function add_to_response(key, list) {
 if (list.length > 0) {
 response.initialEntity.appendStringList(key, Java.to(list, Java.type('java.util.List')));
 }
}
add_to_response('banners', ctx.getProperty('banners'));
add_to_response('landing-pages', ctx.getProperty('redirects'));

7.10.3. Debugging and Troubleshooting

To debug a JavaScript Index stage you can:

• Check the Fusion api server logs for errors.

• Use the logger object for print debugging (in the Fusion api logfile).

• Use the Pipeline Preview tool (only available in Fusion 1.x)

7.10.4. The JavaScript Engine Used by Fusion

The JavaScript engine used by Fusion is the Nashorn engine from Oracle. See The Nashorn Java API for details.

Upgrading to the latest Nashorn engine

The default version of the Nashorn engine used by Fusion versions 2.4.1 and earlier is the nashorn-0.1-jdk7.jar which
contains many bugs that have since been fixed in the official JDK 1.8 version. In order to use the latest version of the
Nashorn engine, you must:

• Have an up-to-date version of Java 8 installed.

• Remove the nashorn-0.1-jdk7.jar from the Fusion classpaths:

◦ cd fusion

◦ find . -name "nashorn-0.1-jdk7.jar" -print -exec rm -i {} \;

135

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/nashorn/api.html

Creating and accessing Java types

The following information is taken from Oracle’s JavaScript programming guide section 3, Using Java From Scripts.

To create script objects that access and reference Java types from Javascript use the Java.type() function:

var ArrayList = Java.type("java.util.ArrayList");
var a = new ArrayList;

136

https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/javascript.html#A1147207

Chapter 8. Signals and Aggregations
In addition to the basic search experience enabled through query pipelines, Fusion provides ways to develop an
enhanced search experience for your end users and provide useful data for your analytics team. The primary
mechanisms for doing this are signals and aggregations.

By collecting signals and aggregating them, you compile a body of data that allows you to develop a sophisticated search
experience, with rich search results for your end users, based on past user behavior.

Signals and aggregated signals are stored each in their own collection. These collections are associated with a primary
collection, so that a collection named "products" will have two related collections: "products_signals" and
"products_signals_aggr". By default, when using the UI to create a collection, a "signals" and "aggregated signals"
collection are also created.

8.1. Signals

Signals are events that are collected for analysis or to enhance the search experience for end users. Common types of
signal events include clicks, purchases, downloads, ratings, and so on.

Generally, signals are only useful after aggregation.

8.2. Aggregations

Aggregations are processed signals. An aggregator reads the raw signals and returns interesting summaries, ranging
from simple sums to sophisticated statistical functions.

137

Crucially, it must be possible to relate the documents in an aggregated signals collection to documents in the primary
collection, in order to use the aggregated signals for recommendations and/or boosting of searches over the primary
collection.

8.3. The cold start problem

The "cold start" problem means it is hard to personalize the search experience when insufficient signals have been
aggregated. For example, it is hard to offer recommendations to users who have never visited before, or for queries that
have never been issued before, or for items that have been recently introduced into the system.

Fusion provides solutions for this problem using its query pipelines. A query pipeline that includes stages for blocking,
boosting, or recommending based on signals can also include stages that provide fallbacks. In the case where there is
not enough data to provide specialized blocking, boosting, or recommendations, the pipeline can return a simpler set of
search results using Solr’s normal relevancy calculation.

A common solution to the cold start problem is to sort or boost on a certain field to provide pseudo-recommendations
when more specific recommendations are not available. For example, you can sort on the sales_rank field to
recommend the most popular products, or boost on the date_added field to recommend the newest items.

138

8.4. Signals

A signal is a recorded event related to one or more documents in a collection. Signals can record any kind of event that
is interesting to your organization. Queries and clicks are the most common types of signals, as they are useful for
tracking what users search for and what actions they take.

Signals are indexed in a secondary collection which is linked to the primary collection by the naming convention
<primarycollectionname>_signals. So, if your main collection is named products, the associated signals collection is
named products_signals. The signals collection is created automatically when signals are enabled for the primary
collection.

Signals are indexed just like ordinary documents. The signals collection can be searched like any other collection, for
example to retrieve a user’s search history or last viewed items.

Signals are most useful when they are aggregated into a set of summaries that can be used to enrich the search
experience through recommendations and boosting. Like the signals collection, a <primarycollectionname>_signals_aggr
collection is created automatically when signals are enabled for a primary collection.

8.4.1. Enabling and disabling signals

Using the Fusion UI, when you create a collection, signals are enabled and a signals collection created by default.

Using the API, the /collections/{collection}/features/{feature} endpoint enables or disables signals for any collection:

Check whether signals are enabled for a collection

curl -u user:pass http://localhost:8765/api/v1/collections/<collection-name>/features/signals

Enable signals for a collection

curl -u user:pass -X PUT -H "Content-type: application/json" -d '{"enabled" : true}'
http://localhost:8765/api/v1/collections/<collection-name>/features/signals

Disable signals for a collection

curl -u user:pass -X PUT -H "Content-type: application/json" -d '{"enabled" : false}'
http://localhost:8765/api/v1/collections/<collection-name>/features/signals

8.4.2. Signal document structure

A raw signal is stored as a Solr document with the following fields, which are derived from the raw signal as follows:

Field Description

id

Optional
The signal ID. If no ID is supplied, one will be
automatically generated.

139

Field Description

type

Required
The signal type that is being sent. This value is used during
aggregation to filter events of the same type. Types can be
mixed in aggregation jobs, if needed.

The type can consist of any string you choose. For
consistency, always send events of the same type with the
same type value.

During indexing, type values will be moved to a field
named type_s.

params

Optional
The params allow flexible definition of the fields you care
about and will use later for signal aggregation:

• docId – A unique document ID

This is stored in the Solr raw signal document as field
doc_id_s.

• userId – A unique user ID

This is stored in the Solr raw signal document as field
user_id_s.

• query – A query string; for example, a user’s search

This is copied to the Solr raw signal document as both
fields query_s and query_t. Some cleanup occurs to
convert the string to lowercase, decode URL encoding,
and replace white space with single space characters.
The original query is saved in field query_orig_s.

• filterQueries – A list of strings, such as filters on the
search query

This is copied to the Solr raw signal document as both
filters_s and filters_orig_ss.

• collection – The primary collection name

• weight – A float value representing the relative weight
of this signal

This is saved in the field weight_d.

• count – A positive integer value representing the
incremented count of signals

This is saved in the field count_i.

140

Field Description

timestamp The timestamp of the signal event.

• When using the Signals API, this property is optional;
it defaults to the current server time.

• When using the Signal Formatter index stage, one of
the following fields must be present: timestamp,
timestamp_tdt, timestamp_dt, or epoch.

Here is the JSON representation of one click signal, taken from an example dataset of synthetic clickstream data:

{ "params": {
 "docId": "2125233",
 "filterQueries": ["cat00000","abcat0100000", "abcat0101000", "abcat0101001"],
 "query": "Televisiones Panasonic 50 pulgadas" }
 "type":"click",
 "timestamp": "2011-09-01T23:44:52.533000Z",
}

8.4.3. The default signals index pipeline

When indexing signals, a default index pipeline named _signals_ingest will be used unless you specify a different index
pipeline.

The _signals_ingest pipeline has three stages:

1. Format Signals stage

2. Field Mapping stage

3. Solr Indexer stage

If you prefer different options in the signals index pipeline, you can pass a query parameter when indexing signals that
contains the name of your custom index pipeline.

If you create a custom pipeline, it must include a Field Mapping stage and a Solr Indexer stage (see Index Pipeline Stages
for more details), which sends the documents to Solr. Additionally, the Solr Indexer stage must have the enforce_schema
property set to "true".

8.4.4. Removing signals

The aggregator includes an option to delete signals after they have been processed. If, however, you have chosen not to
remove signals during aggregation, you can also run a "delete" query in Solr to delete documents from the signals
collection.

8.4.5. Video tutorial

This video tutorial explains how to boost searches using click signals and aggregations:

141

8.5. Aggregations

Signals are most useful when they are aggregated into a set of summaries that can be used to enrich the search
experience through recommendations and boosting.

When signals are enabled for a "primary" collection, a <primarycollectionname>_signals collection and a
<primarycollectionname>_signals_aggr collection are created automatically.

Note Aggregations must be configured from the collection that
contains the signals data (usually
<primarycollectionname>_signals), not the primary
(<primarycollectionname>) collection. You can find the
_signals collection by navigating to Applications >
Collections and expanding your original collection to
display its system collections.

8.5.1. Aggregation Pipelines

Aggregated events are indexed, and use a default pipeline named "aggr_rollup". This pipeline contains one stage, a Solr
Indexer stage to index the aggregated events.

You can create your own custom index pipeline to process aggregated events differently if you choose.

8.5.2. Aggregation Functions

The section Aggregator Functions documents the available set of aggregation functions.

Custom aggregation functions can be defined via a JavaScript stage. The options described in Aggregator Scripting
provide more detail on the objects available for scripts.

8.5.3. Aggregation properties

The aggregation process is specified by an aggregation type consisting of the following list of properties:

Name Description

id Aggregation ID

groupingFields List of signal field names

signalTypes List of signal types

aggregator Symbolic name of the aggregator implementation

selectQuery Query string, default :

sort Ordering of aggregated signals

timeRange String specifying time range, e.g., [* TO NOW]

outputPipeline Pipeline ID for processing aggregated events

outputCollection Output collection name

rollupPipeline Rollup pipeline ID

142

Name Description

rollupAggregator Name of the aggregator implementation used for rollups

sourceRemove Boolean, default is false

sourceCatchup Boolean, default is true

outputRollup Boolean, default is true

aggregates List of aggregation functions

params Arbitrary parameters to be used by specific aggregator
implementations

8.5.4. EventMinerAggregator

This aggregator type produces synthetic co-occurrence documents for predefined fields, based on co-occurring data in
events in the same session.

This aggregator assumes that events have the following fields:

• timestamp_tdt - event timestamp

• user_id_s - user ID

• query_s - (optional) query that is related to this event

• doc_id_s - (optional) document ID that is related to this event

A session is then defined as a series of events created by a given user_id_s with timestamps falling within a session
timeout limit (which is configurable via aggregator parameters).

Example document produced by this aggregator:

143

"id": "29d2c95e48154a4ebdc03158b0dd7875-25170",
 "entity_type_s":"doc_id_s",
 "entity_id_s": "2548405",
 "co_occurring_docIds_ss": [
 "2938114"
],
 "co_occurring_docIds_counts_is": [2],
 "in_queries_ss": [
 "tennis",
 "nicktoons kinect",
 "virtua tennis 4"
],
 "in_queries_counts_is":[3, 1 ,1],
 "in_session_ids_ss": [
 "f2de89f97e1638614795d3b03c50d5b1",
 "eae6242c6b58526d2a039d4bd95a85b6",
 "d87d264a528fd7ba162c20209bd3ca8a"
],
 "in_session_ids_counts_is":[1, 1, 1],
 "in_user_ids_ss": [
 "4c79f9ebcf7d50ba5d25a3fca0343929ff05c822",
 "2943dea5408b6f947bbd42aa28f9d8006bfb366a",
 "3fa43872d2275d5e6463ff2de1d95dca51d0003f"
],
 "in_user_ids_counts_is":[1, 1, 1]

This example illustrates the following:

• This is a synthetic co-occurrence document for an entity of type doc_id_s, with entity ID "2548405" (that is, a
document with this ID). Other similar documents are produced for sessions, queries and users as the primary entity
ID.

• The in_queries_ss field contains queries that led to this document (in this case, since events were click-throughs,
these are the queries that resulted in clicks on a link to this document).

• The related_docIds_ss field shows documents that users also clicked within the same search session (thus implicitly
indicating that they are related to this one).

• The in_user_ids_ss and in_session_ids_ss fields contains user IDs and session IDs respectively, where the click
events for this document originated from.

This document can be viewed as a row in an N x N co-occurrence matrix, with the dimensions being (in this case):
doc_id_s, user_id_s,query_s. Alternatively, it can be viewed as a vertex of a given type (e.g. doc_id_s) in a graph, with the
fields representing edges to other vertices of different types.

The EventMinerAggregator accumulates this co-occurrence data from events in sessions, per each entity type, and then
periodically outputs co-occurrence documents when its internal LRU cache becomes full. It also flushes all remaining
entries from the cache at the end of a job.

This helps the aggregator to limit the total memory budget, while keeping a reasonably long context of co-occurring
entities.

The size of this internal cache is adjustable via a configuration parameter. A side-effect of this approach is that there
may be multiple partial co-occurrence documents produced if related entities occur in a longer context than the LRU
cache is able to handle - consumers of the aggregated data should be prepared to roll-up these multiple partial

144

documents.

8.5.5. Aggregation job configuration

The groupingFields should use just user_id_s, and optionally the "sort" parameter should be set to timestamp_tdt asc -
this way the sessionization process will work most efficiently. On the other hand, sorting by timestamp requires more
work on the Solr-side, so it may be omitted, with the possible side-effect that there will be additional partial documents
created.

8.5.6. EventMinerAggregator configuration parameters

These parameters are passed in the "params" property of the aggregator configuration:

• maxSessionTime: Optional integer, default value: 300. This specifies the maximum time (in seconds) to use for the
definition of a session i.e. a series of actions by the same user in a given time period. Normally you want to keep this
value fairly small, as events that occur close together in time are more likely to be related than those further apart.

• maxElementsPerField: Optional integer, default value: 10. Configures the maximum number of elements to store in
each field of the aggregated documents.

• maxCacheSize: Optional integer, default value: 25000. This controls the maximum size of the internal LRU ("Least
recently used") cache. Depending on the volume of data being processed, smaller values will result in more partial
documents being created, while larger values will lead to a higher memory usage during the aggregation run.

8.5.7. Example Configuration

{
 "id": "event-miner-aggregation",
 "groupingFields": [
 "user_id_s"
],
 "signalTypes": [],
 "selectQuery": "*:*",
 "sort": "timestamp_tdt asc",
 "timeRange": "[* TO NOW]",
 "aggregator": "em",
 "sourceRemove": false,
 "sourceCatchup": false,
 "outputRollup": false,
 "aggregates": [],
 "params": {
 "maxSessionTime": 600,
 "maxElementsPerField": 20
 "maxCacheSize": 10000
 }
}

Notes:

• The input documents will be grouped together based on their user_id_s values.

• The selectQuery is set to :, which means match all values in all fields when returning the initial set of input records
for processing.

• The timeRange specifies all records with a timestamp up to NOW, where the latter will be set by the system to the

145

time the aggregation job starts.

• The value for aggregator is set to em, which is a short label for the "EventMinerAggregator".

• The definition of the settings in the params section is as defined earlier.

146

8.5.8. Aggregator Functions

Aggregator Functions provide many ways to customize signals aggregations. These functions execute a specified
operation on data coming from source event fields and accumulate the new value in a target field of the aggregated
result.

Functions are implemented in a aggregator job definition, as a list within the aggregates property. Each function
definition includes the function type, source fields, target fields, and additional parameters as needed for the function
type. Specifically, each function takes the following properties (unless otherwise noted); additional parameters are
noted in the function descriptions below.

• type: the function type.

• sourceFields: the list of fields from source events. Data will be retrieved from these fields as inputs to the function.

• targetField: the name of the target field where the aggregated result will be stored.

• params: any additional parameters for the specific function type, as described below.

The "sourceFields" and "targetField" field names in function specifications can be optionally prefixed with "event:" or
"result:". If there are no prefixes the sourceFields take values from the current event being aggregated, and the
targetField takes (or updates) the value in the current partial aggregated result. With these prefixes values can be
processed and e.g. the original event can be updated, or event fields can be considered taking into account the
accumulated values in the result.

Examples:

Override default input field source:

"sourceField": "result:tweet_split_ss"

Override default target field source:

"targetField": "event:tweet_split_ss"

Arithmetic Functions

Arithmetic functions operate on all valid numeric values (including string fields that are parseable into double
numbers) from source fields and compute a single result to the target field.

sum

A sum of numeric values, as a double number.

Example:

 {
 "type" : "sum",
 "sourceFields" : ["count_i"],
 "targetField" : "sum_count_d"
 }

147

sumOfLogs

A sum of natural logs of numeric value, as a double number.

Example:

 {
 "type": "sumOfLogs",
 "sourceFields": ["script_d"],
 "targetField": "script_sum_logs_d"
 }

sumOfSquares

A sum of squares of numeric value, as a double number.

Example:

 {
 "type" : "sumOfSquares",
 "sourceFields" : ["params.position_s"],
 "targetField" : "sumOfSquares_position_d"
 }

count

A count of source values, as a long number.

Example:

 {
 "type": "count",
 "sourceFields": ["id"],
 "targetField": "count_d"
 }

geoMean

A geometric mean of numeric values, as a double number.

Example:

 {
 "type" : "geoMean",
 "sourceFields" : ["params.position_s"],
 "targetField" : "geoMean_position_d"
 }

mean

An arthimetic mean of numeric values, as a double number.

148

Example:

 {
 "type" : "mean",
 "sourceFields" : ["params.position_s"],
 "targetField" : "mean_position_d"
 }

min

The minimum numeric value.

Example:

 {
 "type" : "min",
 "sourceFields" : ["params.position_s"],
 "targetField" : "min_position_d"
 }

max

The maximum numeric value.

 {
 "type" : "max",
 "sourceFields" : ["params.position_s"],
 "targetField" : "max_position_d"
 }

decay_sum

A sum of time-based exponentially decayed numeric values. The difference between the aggregationTime and the event
time will be decayed using an exponential function with a half-life equaling 30 days.

This function has some additional properties:

• halfLife: the number of seconds for the half-life decay function.

• timestampField: the name of the field that contains the source event’s timestamp. By default, this is timestamp_dt.

• defaultWeight: the weight of an event if all values from source fields are missing. The default is 0.1f, and this is
expressed as a float.

Example:

 {
 "type" : "decay_sum",
 "sourceFields" : ["weight_d"],
 "targetField" : "decay_sum_weight_d",
 "params" : { }
 }

149

String Functions

String functions operate all values from source fields treated as strings.

cat

A concatenation of string values.

This function has some additional properties:

• separator: the character to use as a delimiter between values. The default is a single space.

• maxStringLength: the maximum length of the concatenated values (including separators). When this limit is
exceeded, additional values are discarded. The default value is 10485760 characters (10 * 1024 * 1024).

• maxValueCount: the maximum number of values to concatenate. Any values collected after this limit are discarded.
The default is 100.

Example:

 {
 "type" : "cat",
 "sourceFields" : ["user_id_s"],
 "targetField" : "cat_user_id_txt",
 "params" : { }
 }

ucat

A concatenation of unique string values.

This function has some additional properties:

• separator: the character to use as a delimiter between values. The default is a single space.

• maxStringLength: the maximum length of of the concatenated values (including separators). When this limit is
exceeded, additional values are discarded. The default value is 10485760 characters (10 * 1024 * 1024).

• maxValueCount: the maximum number of values to concatenate. Any values collected after this limit are discarded.
The default is 100.

Example:

 {
 "type" : "ucat",
 "sourceFields" : ["user_id_s"],
 "targetField" : "ucat_user_id_txt",
 "params" : { }
 }

split

A simple regex-based string splitting function.

The following function params are supported:

150

• regex - (string, required) a regular expression used for splitting.

• lower - (boolean, optional, false by default) after the regex has been applied the resulting parts are optionally lower-
cased (using US locale).

Example:

 {
 "type" : "split",
 "sourceFields" : ["query_s"],
 "targetField" : "event:query_split",
 "params" : {
 "regex": "\\s+",
 "lower": true
 }
}

In the example above, the raw signal event field "query_s" is first split on whitespace and then lower-cased, and the
result is put back into the raw signal event field "query_split".

replace

A simple regex-based string replace. The java.util.regex.Pattern syntax is supported for the regex matching and
replacement.

The following function params are supported:

• regex - (string, required) a pattern to match.

• replace - (string, required) replacement.

Example:

{
 "type" : "replace",
 "sourceFields" : ["query_split"],
 "targetField" : "event:query_split_clean",
 "params" : {
 "regex": "\\P{Alpha}+",
 "replace": "_"
 }
}

In the example above, this function takes the "query_split" values and replaces all non-alphabetic characters with
underscores, and stores the result in the event’s field "query_split_clean". As an extended example, this function would
follow after the example split function and would add the field "query_split_clean" to the raw signal event. The
"query_split_clean" field could be aggregated via other aggregation functions.

Collection Functions

Collection functions simply collect values from the source fields and add them as multiple values to the target field.

discard

151

This function discards all values from source fields and the target field. This modifies the source event and any in-
progress aggregation result. This creates side-effects for subsequent functions, so should be used with care.

Example:

 {
 "type" : "discard",
 "sourceFields" : ["user_id_s"],
 "targetField" : "collect_user_id_ss",
 "params" : { }
 }

collect

Collect values from source fields.

This function has one additional property, 'maxValueCount', which defines the number of fields to collect from source
fields. Any fields collected after this limit are discarded. The default is 100.

Example:

 {
 "type" : "collect",
 "sourceFields" : ["user_id_s"],
 "targetField" : "collect_user_id_ss",
 "params" : { }
 }

ucollectCollect unique values from source fields.

This function has one additional property, 'maxValueCount', which defines the number of fields to collect from source
fields. Any fields collected after this limit are discarded. The default is 100.

Example:

 {
 "type" : "ucollect",
 "sourceFields" : ["user_id_s"],
 "targetField" : "unique_user_id_ss",
 "params" : { }
 }

Statistical Functions

Statistical functions compute scalar and matrix statistics. When the function has multiple results, such as for matrix or
vector results, the data is stored in multiple fields.

varianceThe square of standard deviation of numeric values, as a double number.

Example:

152

 {
 "type" : "covariance",
 "sourceFields" : ["params.position_s", "position_rnd_1", "position_rnd_2"],
 "targetField" : "cov_position_d",
 "params" : { }
 }

stddev

The standard deviation of numeric values, as a double number.

Example:

 {
 "type" : "stddev",
 "sourceFields" : ["params.position_s"],
 "targetField" : "stddev_position_d",
 "params" : { }
 }

cardinality

An estimate of the number of unique elements in the set of values from source fields (which are treated as strings). This
uses the HyperLogLog implementation.

This function has one additional property, 'error', which defines the acceptable probability of error from real value,
specifically the standard deviation from real results. Smaller values cause exponentially higher RAM consumption
during processing. For example, the default, 0.1, uses ~8Kb of RAM, while tests have shown 0.0001 uses ~64Mb.

Example:

 {
 "type" : "cardinality",
 "sourceFields" : ["params.position_s"],
 "targetField" : "cardinality_position_l",
 "params" : { }
 }

skewness

The measure of asymmetry of the distribution around its mean. This function is performed on numeric values and is
expressed as a double number.

Example:

 {
 "type" : "skewness",
 "sourceFields" : ["params.position_s"],
 "targetField" : "skewness_position_d",
 "params" : { }
 }

153

kurtosis

The adjusted Pearson’s kurtosis of numeric values, expressed as a double. This provides a comparison of the shape of
the distribution to that of the normal distribution.

Example:

 {
 "type" : "kurtosis",
 "sourceFields" : ["params.position_s"],
 "targetField" : "kurtosis_position_d",
 "params" : { }
 }

quantiles

The quantiles of numeric values, stored as a double number in 0-N.targetField, or as a list of values in the target field
(depending on the 'multivalued' property, described below). This implementation uses the T-Digest structure.

This function has the following additional properties:

• quantiles: the number of quantiles. The default is 10.

• multiValued: when true, all quantiles will be stored as multiple values in the target field. If false, then multiple
values will be created in the format '0.targetField' to 'N.targetField'.

Example:

 {
 "type" : "quantiles",
 "sourceFields" : ["params.position_s"],
 "targetField" : "quantiles_position_ss",
 "params" : {
 "multiValued" : true
 }
 }

topk

An estimate of the top-K elements in the source fields and their frequency. The result is stored in three multi-valued
fields, each with the same number of values. The three fields are:

• counts.targetField: integer counts (frequencies) of elements.

• values.targetField: elements.

• errors.targetField: estimation errors.

This function has one additional property, 'k', which is the number of elements to report. The default is 10.

Example:

154

 {
 "type" : "topk",
 "sourceFields" : ["params.position_s"],
 "targetField" : "topk_position_ss",
 "params" : { }
 }

covariance

A covariance matrix of numeric values from N > 1 source fields, with no smoothing. Missing or invalid values are
treated as 0.0. A row of missing values is ignored. The resulting covariance matrix is stored in N * (N - 1) fields
following the naming pattern 'sourceField1.sourceField2.targetField'.

If source fields contain multiple values, only the first value from each source field will be used.

This implementation runs in a constant and small memory budget.

Example:

 {
 "type" : "covariance",
 "sourceFields" : ["params.position_s", "position_rnd_1", "position_rnd_2"],
 "targetField" : "cov_position_d",
 "params" : { }
 }

correlation

A correlation matrix of numeric values from N > 1 source fields. This implementation is based on the covariance
function. The resulting correlation matrix is stored in N * (N - 1) fields following the naming pattern
'sourceField1.sourceField2.targetField'.

Example:

 {
 "type" : "correlation",
 "sourceFields" : ["params.position_s", "position_rnd_1", "position_rnd_2"],
 "targetField" : "corr_position_d",
 "params" : { }
 }

histogram

An approximate histogram of values and their counts in source fields, using the T-Digest algorithm. Results are stored as
corresponding multiple values in 'means.targetField' (for double values) and 'counts.targetField' (for integer values).

Example:

155

 {
 "type" : "histogram",
 "sourceFields" : ["params.position_s"],
 "targetField" : "histogram_position_ss",
 "params" : { }
 }

sigmoid

This function uses hyperbolic tangent (tanh) to limit the impact of source values according to an s-shaped curve. The
following parameters control the shape of the curve:

• weight - controls the range of values. Default weight is 1.0, which means that the sigmoid function values will range
between (-1, 1). E.g. weight = 2.0 means that values will range between (-2, 2).

• intercept - sets the constant shift of function values. Default is 0, which means that sigmoid(0) = 0 and sigmoid(Inf)
→ 1. E.g. intercept = 2.0 means that sigmoid(0) = 2.0 and sigmoid(Inf) = 3.0.

• slope - this parameter controls the slope of the function, i.e. how quickly it reaches saturation. Default value is 1.0.
E.g. slope = 2 will cause the function to saturate quickly, slope = 0.1 will cause the function to saturate for larger
values of source.

• final - boolean, default is true. This controls how the sigmoid is applied to the source value. First, all numeric values
from source fields are summed. Then, if final = false the current sum is passed to the sigmoid function and added to
the previous total. If final = true then the current sum is added to the total and the sigmoid function is applied only
at the end of the aggregation.

Example:

 {
 "type" : "sigmoid",
 "sourceFields" : ["params.position_s"],
 "targetField" : "sigmoid_position_ss",
 "params" : {
 "weight" : 2.0,
 "intercept" : 10.0,
 "slope" : 0.5,
 "final" : true
 }
 }

Logical Functions

when

A logical function where processing will continue only if this function evaluates to true.

This function takes one additional property, 'expr', which is a JavaScript expression that must evaluate to a Boolean
true/false. This property takes the same objects as the 'expr' function, described above. If this property is missing, the
function will evaluate to true when any sourceField or targetField is present.

Example:

156

 {
 "type" : "when",
 "sourceFields" : ["params.position_s"],
 "params" : {
 "expr" : "parseFloat(params_position_s) < 3"
 }
 }

unless

A logical function where processing will continue only if this function evaluates to false.

This function takes one additional property, 'expr', which is a JavaScript expression that must evaluate to a Boolean
true/false. This property takes the same objects as the 'expr' function, described above. If this property is missing, the
function will evaluate to false when any sourceField or targetField is present.

Example:

 {
 "type" : "unless",
 "sourceFields" : ["params.position_s"],
 "params" : {
 "expr" : "parseFloat(params_position_s) > 1"
 }
 }

Scripting Functions

script

A scripted function. Scripts are evaluated as snippets, not as a function, and are expected to operate directly on the
source event and the result. Their final values are discarded, since snippets in JavaScript are treated as expressions that
evaluate to a specific value.

This function ignores the sourceFields and targetFields properties. Instead, the snippets are passed the following
properties:

• startScript: the script defined is executed when the aggregation for the next unique tuple starts.

• aggregateScript: the script defined is executed for each source event.

• finishScript: the script is defined when all events for the current tuple have been processed and the result is about
to be returned.

Example:

157

 {
 "type" : "script",
 "sourceFields" : [],
 "params" : {
 "aggregateScript" : "result.addField('script_event_id_ss', event.getFieldValue('id'));"
 }
 }, {
 "type" : "script",
 "sourceFields" : [],
 "params" : {
 "aggregateScript" : "event.addField('position_rnd_1', event.getFieldValue('params.position_s') + 1.0 -
Math.random());event.addField('position_rnd_2', event.getFieldValue('params.position_s') + 5.0 - Math.random()
* 10.0);"
 }
 }

expr

A script expression. The script is evaluated as a snippet, and its final value is assigned to the targetField.

This function has only one additional propery, 'expr', which contains the script expression.

Example:

 {
 "type" : "expr",
 "sourceFields" : ["query_s", "filters_s"],
 "targetField" : "expr_s",
 "params" : {
 "expr" : "v = ''; if (value != null) v = value + ' '; v + query_s + '_' + filters_s"
 }
 }, {
 "type" : "expr",
 "sourceFields" : ["params.position_s"],
 "targetField" : "expr_d",
 "params" : {
 "expr" : "v = 0; if (value != null) v = parseFloat(value); v + parseFloat(params_position_s)"
 }
 }

Special Functions

noop

A function that does nothing (is non-operational). This is a fallback function when invalid function parameters or
execution errors are encountered.

Example:

 {
 "type" : "noop"
 }

158

8.5.9. Aggregator Scripting

The aggregation jobs that process signals can be customized with using JavaScript. There are several options for scripts,
and each option will be executed at a different point of the aggregation process. The options available at each stage of
the process will vary, as explained for each option below.

Scripts are run after the main logic of the class they are customizing. This allows overriding default behavior of the class
if needed.

The scripts are defined in the aggregation job using the Signals Aggregator API, with the 'params' property. Here is an
example of declaring a script in an aggregator definition, using the the specialFields script option:

{
 "id" : "r1",
 "signalTypes" : ["click"],
 "selectQuery" : "*:*",
 "timeRange" : "[* TO NOW]",
 "params" : {
 "specialFields" : "unless_pos_gt_1_ss,when_pos_lt_3_ss"
 }
}

Note:

In many cases, the scripts defined will be executed many times during the aggregation job (i.e., for every event). For this
reason, it’s good practice to keep the scripts as simple as possible to avoid a negative impact on system performance.
The initScript option includes a "_context" object that can be used for storing values that may require lengthy
initialization or heavy computation.

initScript

A JavaScript defined with this option is executed wen the signal aggregator instance (i.e., the specific aggregator job) is
initialized. The following objects are available to the script:

• logger: an SLF4J Logger object.

• aggregator: the aggregator instance.

• initArgs: the intiation arguments.

• _context: the current scripting context. This can be used for storing small objects between executions of other
scripted methods.

startScript

A script defined with this option is executed when a new tuple is about to be aggregated. All of the objects available to
initScript are available to startScript, plus:

• type: the aggregation type, which is a string. Currently only the 'click' type is supported.

• aggregationTime: the reference point from which the aggregation is calculated, which is expressed in epoch time, an
integer.

• currentTuple: a map of field names and values for the current tuple being aggregated.

159

aggregateScript

A script defined with this option is executed when a new event is being processed for the current tuple. All of the objects
available to initScript and startScript are available, plus:

• event: the current event for aggregation.This is a SolrDocument.

• result: the aggregated result so far. This will also contain the original tuple fields. This is a SolrDocument.

If this script is present, it overrides the default logic for processing events. This means that the script must completely
process the events as desired; it’s not possible to build on existing rules. Note also that defining an aggregateScript will
override any options defined as specialFields, described below.

It’s possible to emit more than one result of aggregation for any given group of source events. This may be invoked in
scripts, like the following snippet:

doc = $.prepareResult();
$.emit(doc);

"$" is a reference to the current instance of aggregation function. The "prepareResult" method finishes calculations of
some of the more complex functions (e.g. topK, percentiles, correlation, etc) and updates the result PipelineDocument
(note: after this function is called the current "result" document is discarded, and a new PipelineDocument will be
created to hold results of aggregating the following events, and the returned document can’t be used for incremental
calculations). An example use for this functionality would be to extract the month part of the date from a set of events
which are sorted by timestamps, in order to produce aggregated results for every month within the current tuple
defined by groupingFields.

finishScript

A script defined with this option is executed when all of the events for the current tuple have been processed and it’s
time to return the aggregated result. All of the objects available to initScript, startScript and aggregator script are
available, plus:

• result: the final aggregated result. This is a SolrDocument.

specialFields

A script defined with this option uses a comma-separated, a whitespace-separated, or a JSON list of field names that are
exempt from the default processing logic. These fields will not be processed in any way, which means they will not be
included in the aggregated result.

If an aggregatorScript has been defined, it will be used instead of this option.

The default processing logic is as follows:

• skip any fields declared in specialFields;

• skip the event ID field (id);

• if the field value is a Number, then sum up all values as a Double;

• if field name ends with '_s' or '_dt', retain only the first value and discard all other values (these dynamic fields are
single-value only);

• otherwise add all values as-is to the result.

160

halfLife

This option allows defining a time period, in milliseonds, for the half-life decay formula. This formula is used when
determining boost values for clicked documents: documents that have not been clicked in a longer period of time will
not receive as high of a boost as documents that have been clicked more recently.

The default value is equivalent to 30 days (i.e., 2,592,000,000 ms).

weightScript

A script defined with this option is used when weighting the current event. It must evaluate to a numeric value, but has
the following additional objects available:

• event: the current event for aggregation. This is a SolrDocument.

• result: the aggregated result so far. This will also contain the original tuple fields. This is a SolrDocument.

• eventFlag: the flag that indicates if the event is the result of a previous aggregation ("aggr") or is a new event
("event").

• eventTime: the timestamp of the event.

• eventWeight: the initial event weight, expressed as a float.

• defaultWeight: the default weight (if the script fails or the eventWeight is not entered properly), expressed as a float.

• position: the click position. This is 0-based, or 0 if not available. The data is retrieved from the 'params_position_s'
field of the event.

161

8.5.10. Example Aggregation with Sample Data

Located in the fusion/examples/signals directory of your installation are a set of files that can show you how signals
aggregation can work. There are three files that work together:

• signals.sh - this is a script that will load signals and run an aggregation job from start to finish.

• signals.json - a sample data set of 20,000 signal events. These are 'click' events.

• aggregation_definition.json - a sample aggregation job definition that will demonstrate some of the capabilities of
the aggregator.

You can simply start the signals.sh script and sit back and wait for it to finish. Below we’ll step through what the script
is doing.

Creating a Collection and Loading Signals

The script will create a collection in your system named 'lucidworks102'. This collection will have signals enabled,
which will create two additional system collections, 'lucidworks102_signals' and 'lucidworks102_signals_aggr'.

The script will then load the sample signal events contained in the signals.json file. This is about 20,000 click events
that reflect queries users performed and document IDs the users clicked on. These signal events will be loaded to the
'lucidworks102_signals' collection.

Defining the Aggregation Job

Once the signal events have been loaded, the script will create an aggregation job and begin processing the events. The
aggregated events will be stored in the 'lucidworks102_signals_aggr'. Below we’ll step through this sample job in detail
and note some interesting configurations. The line numbers correspond to the lines in aggregation_definition.json.
Note that many of the functions referred to here are described in full in the section Aggregator Functions.

First, we assign the ID of the aggregation job and define the signalTypes and the aggregator we will use.

{
 "id": "1",
 "signalTypes": [
 "click"
],

In this case, we are using 'click' signalTypes, but we are not limited to only those types. We could instead define any
string, as long as it exists in the type field of the events stored in the signals collection. If necessary, we could mix types,
as needed.

Note that we have not defined the fields that we will use to create tuples for aggregation. Since we have not defined
these, the defaults will be used: 'doc_id_s', 'query_s', and ' filters_s'. We have also not defined an 'aggregator' property so
by default 'click' aggregation will occur and 'weight_d' fields will be calculated and added to the aggregated records.

In the next step, we define an 'aggregates' property, which will contain all of the functions we’d like to perform with the
events data. The functions will be performed in the order they are defined here.

162

 "aggregates": [
 {
 "type": "count",
 "sourceFields": [
 "id"
],
 "targetField": "count_d"
 },

This first step counts the number of 'id' fields in the events data, and puts that number in a field named 'count_d'.

Next we define a script function.

 {
 "type": "script",
 "params": {
 "aggregateScript": "event.addField('script_d',2.0);result.setField('script_d',2.0);"
 }
 },

The aggregateScript is called for every event record in the source collection of signals. This script defines that a field
'script_d' should be added to each source record, and should also be added to the result record (i.e., the record after
aggregation).

Next we define a sumOfLogs function.

 {
 "type": "sumOfLogs",
 "sourceFields": [
 "script_d"
],
 "targetField": "script_sum_logs_d"
 },

This definition uses the 'script_d' field that the previous step just created in each record.

Next we define a collect function.

 {
 "type": "collect",
 "sourceFields": [
 "id"
],
 "targetField": "ids_ss"
 },

This function will collect all 'id' fields from the source event, and put the ids in a field named 'id_ss'.

Finally, we define an expression function.

163

 {
 "type": "expr",
 "sourceFields": [
 "query_s",
 "filters_s"
],
 "targetField": "expr_t",
 "params": {
 "expr": "v = ''; if (value != null) v = value + ' | '; v + query_s + ' & ' + filters_s"
 }
 }
],

This expression concatenates values from the 'query_s' and 'filters_s' fields and appends them to the previous value of
the target field (in this case, 'expr_t'). We have included a conditional block at the beginning of the expression because
when this expression is first invoked the result ("value") may be 'null' and JavaScript would convert it to a literal "null"
string.

This is the end of the aggregates section of the configuration, so we’ve closed the JSON tags appropriately.

The last property for this job is to set the timeRange.

 "timeRange": "[* TO NOW]"
}

This simple range will get all events for all dates and times.

Loading the Configuration and Starting the Job

If you are using the signals.sh script, you don’t need to load the configuration or start the aggregator job. However,
we’ve included the API calls below for your reference.

It’s possible to load the configuration as a file via the Signals Aggregator API, with a call such as:

curl -u user:pass -X POST -H 'Content-Type: application/json'
http://localhost:8764/api/apollo/aggregator/aggregations -d @aggregation_definition.json

If this was successful, the response will be empty. While the file name is aggregation_definition.json, the ID of the job as
defined in the file is '1', so that is the ID this job will be known as.

Once the job definition has been loaded, you can start the job when ready:

curl -u user:pass -X POST http://localhost:8764/api/apollo/aggregator/jobs/lucidworks102_signals/1

The job will likely run for a while, so you can check it periodically by doing a GET request to the same endpoint:

curl -u user:pass http://localhost:8764/api/apollo/aggregator/jobs/lucidworks102_signals/Aggr1

Once the job is finished, you are ready to work with your aggregated signals.

164

Sample Aggregated Event

Once the aggregation job has completed, we can take a look at a specific aggregated event.

{
 "id": "0886f6d2e02c47d5b11fc809dd8508bc-358",
 "attr_params.filterQueries_": [
 "cat00000",
 "abcat0200000",
 "abcat0204000",
 "pcmcat144700050004"
],
 "filters_s": "abcat0200000 $ abcat0204000 $ cat00000 $ pcmcat144700050004",
 "count_d": 5,
 "doc_id_s": "1118988",
 "script_d": 4,
 "query_t": "shure",
 "aggr_type_s": "click@doc_id_s-query_s-filters_s",
 "params.position_s": "0",
 "query_s": "shure",
 "filters_orig_ss": [
 "abcat0204000",
 "pcmcat144700050004",
 "abcat0200000",
 "cat00000"
],
 "weight_d": 1.0778248953069447e-11,
 "flag_s": "aggr",
 "expr_t": "shure & abcat0200000 $ abcat0204000 $ cat00000 $ pcmcat144700050004 | shure & abcat0200000 $
abcat0204000 $ cat00000 $ pcmcat144700050004 | shure & abcat0200000 $ abcat0204000 $ cat00000 $
pcmcat144700050004 | shure & abcat0200000 $ abcat0204000 $ cat00000 $ pcmcat144700050004 | shure &
abcat0200000 $ abcat0204000 $ cat00000 $ pcmcat144700050004",
 "ids_ss": [
 "12a3a546-95b2-4a86-8d36-88aebc89eb5f",
 "4f074782-74b5-4a05-9bdf-1f447a60735d",
 "6006eb92-6bcb-417e-828a-e0408590c76e",
 "be02f44d-4731-44f3-94ac-faede6e7d4e3",
 "f80f886c-3825-4d90-81ce-89f53a987d92"
],
 "script_sum_logs_d": 3.4657359027997265,
 "aggr_id_s": "0886f6d2e02c47d5b11fc809dd8508bc",
 "type_s": "click",
 "query_orig_s": "shure",
 "attr_query_orig_s_": [
 "shure",
 "Shure"
],
 "count_i": 5,
 "timestamp_dt": "2014-09-12T22:05:22.818Z",
 "_version_": 1479078865938677800
}

Let’s walk through the fields of this aggregated document:

• First, the id consists of the job id, a dash, then a sequential number of the aggregated document.

• The fields that made up our tuple, in this case filters_s, doc_id, and query_s since we used the default, are shown

165

verbatim from the input signals.

• The aggr_type_s field consists of the aggregator used ('click') and the tuple dimensions ('doc_id_s-query_s-filters_s').

• The weight_d field has been added to each aggregated record because we performed a 'click' aggregation. If we had
chosen a 'simple' aggregation instead, we would not have a 'weight_d' field but in other respects the aggregated
record will be very similar.

• The count_d is 5, which shows how many source events comprised this aggregated record.

• The flag_s field is set to 'aggr' to indicate that this is an aggregated event.

• The script_sum_logs_d is the calculated sumOfLogs result, which used the values from the 'script_d' field in the
original records added by the 'script' function.

• The id_ss is the result of the 'collect' function, in which we asked for all the event ids.

• The expr_t field is the output of the 'expr' function including the concatenated values from the 'query_s' and
'filters_s' fields.

• The aggr_id is the unique ID of the aggregation job. Note that this ID is one component of this aggregated event ID.

• The type_s is the type of the source event. If more than one type was chosen for the aggregation job, each type would
appear separated by a pipe ('|') delimiter (such as, 'view|click|buy').

• The count_i field is the count of source events for this aggregated result.

• The timestamp_dt field is a reference time for the aggregation. This time is either when the aggregation was
executed, or was supplied as part of the aggregation definition with the 'time' property.

Once the records have been aggregated, they can be used for Recommendations, or for other uses within your
organization.

166

8.6. DateTime Processing

8.6.1. DateUtils - Uniform API for Date Parsing and Formatting

Date and time processing is difficult due to the complexity of rules (and exceptions from rules) specific to historical
changes, calendar systems, locales, time zones, and DST rules (daylight saving time).

Fusion uses com.lucidworks.apollo.common.util.DateUtils for date / time parsing and formatting, and developers are
strongly encouraged to use this class for parsing date formats.

The DateUtils class uses the Joda Time library, which was the basis for the java.util.time API in JDK 8 but is compatible
with earlier versions of Java. It add support for parsing abbreviated time zone names (e.g. PST). Although use of
abbreviated time zone names has been deprecated because many of them are ambiguous, they are still in wide use. It
also supports parsing full time zone names in any letter case (Joda Time accepts only canonical mixed-case names, e.g.
"America/New_York"). Robust identification of time zone is helpful for reasoning about time intervals, because time
zone rules cover phenomena like DST changes with gap and overlap hours, leap seconds, administrative changes to
offsets, etc, etc, for which a simple offset from UTC is insufficient.

8.6.2. Supported Formats

Supported formats for date / time parsing can be divided into three disjoint groups:

• ISO 8601 formats ("Solr formats"), represented as yyyy-MM-dd’T’HH:mm:ss.SSS’Z'. The milliseconds part is optional,
with precision varying between 0-3 digits.

• Fusion "zoned format" - a modification of a common Internet format that specifies day of week and uses full names
for time zones, represented as EEE yyyy-MM-dd HH:mm:ss.SSS ZZZ in US locale. This format is useful for storing and
easy processing of date/time with zone, as it’s unambiguous, exact and easy to parse.

• Epoch formats - represented in Java API as objects of java.util.Date or the number of seconds, or the number of
milliseconds since epoch (either as a number or as a String). These formats by definition don’t contain any time zone
information, and if permitted they are treated as absolute instants in the default time zone (see below).

• Common global formats - i.e. formats that explicitly specify the timezone.

• Common local formats - i.e. formats that don’t specify the timezone.

The definition of formatting symbols used below can be found in the Joda Time DateTimeFormat documentation.

ISO 8601 / Solr Formats

See https://cwiki.apache.org/confluence/display/solr/Working+with+Dates

 "yyyy-MM-dd'T'HH:mm:ss'Z'", // Solr format without milliseconds
 "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'", // standard Solr format, with literal "Z" at the end
 "yyyy-MM-dd'T'HH:mm:ss.SS'Z'", // standard Solr format, with literal "Z" at the end
 "yyyy-MM-dd'T'HH:mm:ss.S'Z'" // standard Solr format, with literal "Z" at the end

Common Global Formats

167

http://www.joda.org/joda-time/
http://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
https://cwiki.apache.org/confluence/display/solr/Working+with+Dates

 "EEE yyyy-MM-dd HH:mm:ss.SSS zzz",
 "yyyy-MM-dd'T'HH:mm:ss.SSSZ", // with numeric +-HHmm timezone at the end
 "yyyy-MM-dd'T'HH:mm:ss.SSSZZ", // with numeric +-HH:mm timezone at the end
 "yyyy-MM-dd'T'HH:mm:ss.SSSz", // with symbolic XXX timezone at the end
 "yyyy-MM-dd'T'HH:mm:ssz", // with symbolic XXX timezone at the end
 "yyyy-MM-dd'T'HH:mm:ssZ", // with offset
 "EEE MMM d HH:mm:ss z yyyy",
 "EEE MMM d HH:mm:ss Z yyyy",
 "EEE MMM d HH:mm:ss z yyyy",
 "EEE MMM d HH:mm:ss.SSS z yyyy",
 "EEE, dd MMM yyyy HH:mm:ss zzz", // RFC 1123, with either short or full time zone
 "EEEE, dd-MMM-yy HH:mm:ss zzz", // RFC 1036
 "yyyy-MM-dd HH:mm:ss Z",
 "yyyy-MM-dd HH:mm:ss ZZ",
 "yyyy-MM-dd HH:mm:ss z",
 "yyyy-MM-dd HH:mm:ss.SSS Z",
 "yyyy-MM-dd HH:mm:ss.SSS ZZ",
 "yyyy-MM-dd HH:mm:ss.SSS z",
 "yyyy-MM-dd HH:mm:ss zzz", // with full time zone (e.g. America/New_York)
 "yyyy-MM-dd'T'HH:mm:ss'GMT'Z", // with literal "GMT" and offset
 "yyyy-MM-dd'T'HH:mm:ss.SSS'GMT'Z", // with literal "GMT" and offset
 "yyyy-MM-dd'T'HH:mm:ss'UTC'Z", // with literal "UTC" and offset
 "yyyy-MM-dd'T'HH:mm:ss.SSS'UTC'Z", // with literal "UTC" and offset
 "yyyy-MM-dd HH:mm:ss 'UTC'Z",
 "yyyy-MM-dd HH:mm:ss.SSS 'UTC'Z",
 "yyyy-MM-dd HH:mm:ss 'GMT'Z",
 "yyyy-MM-dd HH:mm:ss.SSS 'GMT'Z"

Note: Joda-Time cannot parse ZZZ when zone name is in incorrect case (e.g. "EUROPE/WARSAW" will fail), for this
reason we use zzz which accepts any letter case.

Common Local Formats

 "yyyy-MM-dd'T'HH:mm:ss",
 "yyyy-MM-dd",
 "yyyy-MM-dd hh:mm:ss",
 "yyyy-MM-dd HH:mm:ss",
 "yyyy-MM-dd HH:mm:ss.SSS",
 "EEE MMM d HH:mm:ss yyyy", // ANSI C
 "EEE MMM d HH:mm:ss.SSS yyyy" // ANSI C

Missing parts of the data are filled in with defaults - e.g. time zone is filled in with the default time zone
(see below), missing time data is filled with 00:00:00.000

8.6.3. DateUtils Usage

Instances of DateUtils can be created with the following arguments:

• requireTimezone - (boolean, required) when this argument is true then only patterns with timezone component are
accepted (unless custom patterns are provided). Epoch formats are not accepted. If false then any recognizable
pattern is used.

• formats - (list of strings, optional) a list of formats to use instead of the built-in ones.

168

• locale - (string, optional) locale to use for parsing, or null for the platform default locale.

• defaultTimeZone - (string, optional) time zone name to use as default (when using local formats), or null for the
platform default time zone. Time zone names can be provided in short or long form, or as a fixed offset [-
+]HH:mm.Further information is provided in the Javadoc of the class. The default instance of DateUtils uses
common global formats (with ISO8601 and epoch formats), requireTimezone == true, locale "en-US" and time zone
"UTC".

169

Chapter 9. Dashboards
Dashboards are Fusion’s built-in analytics component.

A Fusion dashboard contains one or more controls for search query inputs and one or more quantitive displays over the
results for that query. Dashboards run as a client-side application in a web browser, using JavaScript components for
HTML5. Solr facets provide the quantifications required for visualizations, which can be charts, graphs, tables, and
maps (for geospatial data). Dashboards also have tabular displays for drilling down to the individual documents in a
results set.

Client-side JavaScript provides a dynamic, responsive browsing experience. The underlying browser application is
"Banana", an open-source visualization tool based on Kibana 3. Where Kibana communicates with Elasticsearch,
Banana communicates with Solr. Banana can be downloaded from: https://github.com/LucidWorks/banana/.

Fusion Dashboards were first developed for logfile analysis. Logfile entries contain a timestamp plus some amount of
additional event information. Fusion’s date / time processing aggregates these timestamps at different levels of
granularity allowing for visualization of historical trends in system and user behaviors.

The default Fusion dashboard is a Log Analytics dashboard over the Fusion logfiles:

Fusion Dashboards are equally useful for signal analysis. Signals dashboards are similar to the Log Analytics dashboard,
because Fusion signals must always contain a timestamp field.

The Getting Started tutorial is a step-by-step guide to setting up a new dashboard for time-series data.

Fusion Dashboards are general enough so that Fusion collections over documents that don’t contain timestamp
information can still be analyzed as a non time-series dashboard.

170

http://www.elastic.co/guide/en/kibana/3.0/index.html
https://github.com/LucidWorks/banana/

9.1. Dashboard Access and Authorizations

If you are logged into Fusion and have a valid Fusion session cookie, you can launch the Dashboards application directly
from a browser via the URL:

http://host:*port*/banana/index.html#/dashboard

Configuration settings control which dashboard is displayed when the application is opened. For the initial Fusion
distribution, this is set to the Fusion Logs dashboard, a pre-configured dashboard over Fusion logs for the system
collection.

At a minimum, dashboard access requires the following Fusion user permissions:

• Read access to the collection over which the analytics are being run

• Read access to the system collection system_banana

A user who has only these minimal permissions can view and interact with the analytics dashboard, but will not be able
to use any other part of the Fusion UI.

9.2. Dashboard Components

A Dashboard is a named layout which consists of:

• input panels which compose and submit the Solr query

• display panels which provide information and visualizations of the results set.

Each time the input controls are updated, a new query is sent to Fusion which then repopulates the dashboard with the
results set, causing all displays to update automatically.

9.3. Pre-configured Dashboards

Fusion includes a set of pre-configured dashboards:

• Fusion Logs - Dashboard over Fusion system collection "logs".

• Fusion Metrics - dashboard over Fusion system collection "system_metrics".

• Lucidworks Signals Collection - dashboard for the example signals dataset included with Fusion distribution.

• Search Analytics - configured for any Fusion primary collection which has a secondary "_logs" collection.

9.4. Getting Started

See the Getting Started tutorial for a step-by-step guide to setting up a new dashboard for time-series data.

171

9.5. Get Started with Fusion Dashboards

In this tutorial we build an analytics dashboard over signal data.

The Fusion distribution includes a directory named "fusion/examples/signals", where "fusion" is the top-level directory
of the Fusion distribution, which contains:

• The data file signals.json, a synthetic dataset of 20,000 click-signal events, based on a set of Best Buy query logs
from 2011. This file contains a list of JSON objects, where each object contains information about a search query, a
set of search categories, and the item ultimately clicked on.

• The script file signals.sh, which loads the raw signal data and then runs aggregations.

First we load the raw signal data into a Fusion collection. Then we create a new time-series dashboard and populate it
with input and display panels.

9.5.1. Dashboard Controls

Here’s how to interact with the Dashboard interface.

You can launch the Dashboards tool from the Fusion UI, via the Fusion Applications menu:

When launched from the Fusion UI, the Dashboards tool appears in a new tab titled Banana 3. The title changes to the
name of the dashboard. The initial dashboard is the built-in Fusion Logs dashboard:

172

The left side of the top menu bar displays the Dashboard title. The right side of the top menu contains a set of controls:

• The home icon is the "Go to Default Dashboard" control. The initial default dashboard is the "Fusion Logs"
dashboard.

• The sheet of paper icon opens the "Create Dashboard" dialog.

• The folder icon opens the "Load Dashboard" dialog.

• The diskette icon opens the "Save Dashboard" dialog.

• The gear icon opens the "Configure Dashboard" dialog for the current dashboard, which has tabs:

◦ "General" : title and page style

◦ "Rows" : for adding, deleting and arranging the rows

◦ "Controls" : loading, save, and export options

◦ "Solr" : configure Solr server and set global query parameters.

9.5.2. Create the Raw Signals Collection

In this example, we create a Log Analytics Dashboard using a synthetic log dataset. This file contains a list of JSON
objects, where each object contains information about a search query, a set of search categories, and the item ultimately
clicked on.

The first JSON object in this dataset is:

173

 "timestamp": "2011-09-01T23:44:52.533Z",
 "params": {
 "query": "Televisiones Panasonic 50 pulgadas",
 "docId": "2125233",
 "filterQueries": [
 "cat00000",
 "abcat0100000",
 "abcat0101000",
 "abcat0101001"
]
 },
 "type": "click"

The top-level attributes of this object are:

• type - A required field for all signals. In the example dataset, all signals are of type click.

• timestamp - The time at which this click was logged.

• params - This attribute contains a set of key-value pairs for search-query event information.

In this dataset, the information captured includes the free-text search query entered by the user, the document id of the
item clicked on, and the set of Best Buy site categories that the search was restricted to. These are codes for categories
and sub-categories such as "Electronics" or "Televisions".

The example script signals.sh loads the raw signal via a POST request to the Fusion REST API endpoint:
/api/apollo/signals/<collectionName> where <collectionName> is the name of the primary collection itself.

I create the primary collection "myAnalytics" from the Fusion UI. By default, this collection has feature "signals"
enabled, therefore I can load the raw signal data into Fusion collection "myAnalytics_signals" by sending a POST request
to the endpoint: /api/apollo/signals/myAnalytics

To run this command on a local Fusion installation using all default ports, the request is:

curl -u <user>:<password> -X POST\
 -H 'Content-type:application/json'\
 http://localhost:8764/api/apollo/signals/myAnalytics?commit=true\
 --data-binary @<some-path>/signals.json

This command succeeds silently.

To verify that the collection "myAnalytics_signals" exists, view the collection details in the Fusion UI via URL:
"localhost:8764/panels/myAnalytics_signals".

174

9.5.3. Create the Dashboard

Time-series dashboards show trends over time by using the timestamp field to aggregate query results. To create a time-
series dashboard over the collection "myAnalytics_signals", from the Dashboards application, use the "New" control to
open the "Create Dashboard" dialog and choose the option "new time-series dashboard"

The next step is configuring the dashboard settings:

The newly created dashboard is called "New Time Series Dashboard". It contains 4 rows: * Row 1 contains the input
controls and a display panel showing total hits. * Row 2 displays the time range specified in the search query * Row 3
contains a visual display of hits per date-time interval * Row 4 contains a table over all documents in the result set.

In the example above, the dashboard is populated with results for the following Solr query parameters:

q=*:*&
fq=timestamp_tdt:[NOW/MINUTE-15MINUTE TO NOW/MINUTE+1MINUTE]&
wt=json&rows=0

The example signals data was collected during the months of August through October 2011. After the "Time Range"
panel is configured with this date range, the new Solr query parameters are:

q=*:*&
fq=timestamp_tdt:[2011-08-01T04:00:00.000Z TO 2011-11-01T03:59:59.000Z]&
wt=json&rows=0

175

This query returns all 20,000 raw signals and the panel is updated accordingly.

Configure the Histogram Panel

Solr facets provide the counts displayed by the Histogram. The facet parameters are derived from the TimePicker
selection and the controls on the Histogram display panel. These controls are used to select the type of count display and
the time interval over which counts are aggregated.

After this interval is set to 1-day, the dashboard shows the daily activity for the timespan:

Clicking on the "info" icon on the Histogram controls shows the Solr query parameters:

q=*:*&
wt=json&rows=0&
fq=timestamp_tdt:[2011-08-01T04:00:00.000Z TO 2011-11-01T03:59:59.000Z]&
facet=true&
facet.range=timestamp_tdt&
facet.range.start=2011-08-01T04:00:00.000Z&
facet.range.end=2011-11-01T03:59:59.000Z&
facet.range.gap=+1DAY

Configure the Table Panel

The table panel displays the documents in the results set, 1 per row. The default display shows all document fields. The
table "Fields" control is used to select the fields. The table header row column headers have arrows which allow shifting
the column position left or right.

After selecting a subset of the document fields and ordering the display accordingly, the table panel shows the essential
raw signal document fields:

176

9.5.4. Save the Dashboard

The work done to create and configure this new time series dashboard is all work that has been done client-side. In
order to save this dashboard for future sessions, it must be saved back to Fusion.

Before saving the dashboard, we rename it to "myAnalytics_signals dashboard" using the "Dashboard Settings" controls,
which are accessed by clicking the gear icon on the top menu bar.

The top menu bar diskette icon opens the Save dialog. The option "Solr" saves the configured dashboard to Fusion.

The top menu bar folder icon opens the Load dialog. From this controls you can either reload or delete a saved
dashboard configuration.

When the dashboard configuration is reloaded, the configured Solr query or queries will be rerun and the panel
displays will be populated with the results.

9.5.5. Conclusion

In this section we have demonstrated how to create, configure, and save a new dashboard. The essential principles are:

• Dashboards are client-side application.

• Input panels create and submit queries to Fusion

177

• Dashboard displays are highly configurable.

• Configurations can be saved on the server.

For more on this topic, see the Lucidworks blog:

https://lucidworks.com/blog/2015/04/20/noob-notes-log-analytics-fusion/

178

https://lucidworks.com/blog/2015/04/20/noob-notes-log-analytics-fusion/

9.6. Log Analytics Dashboards

You can build a log analytics dashboard for any Fusion collection that contains one or more logfiles. Each logfile entry
contains a timestamp plus some amount of additional event information. The time field must be a Solr trie-date field
(with field suffix "_tdt").

The more information and structure that can be extracted from the logfile and modeled in a Solr document, the more
possibilities for analytics and visualizations. At a minimum log data must include:

• a timestamp in an allowed standard date/time format

• text message(s) which be unstructured or semi-structured

9.6.1. Search query controls

• query

• timepicker

• dateRange

9.6.2. Display controls

At a minimum, a log analytics dashboard contains a histogram.

179

9.7. Signals Dashboards

Signals dashboards are a type of time-series dashboard that you can use to monitor signals collections, using the signal
timestamp as the time field.

The time field must be a Solr trie-date field (with field suffix "_tdt").

The default dashboard layout for a time-series dashboard is:

Row Title Type Description

1 Time Window Timepicker input control which selects
timestamp range, faceting
granularity

1 Search Query keyword search terms

1 Total Hits Hits number of results for Solr
query

2 - Filtering displays Solr params
corresponding to
Timepicker selections

3 Event Counts Histogram binned results as bar chart
where X-axis is timeline and
Y-axis is signals per date-
time interval

4 Table Panel Table documents in results set,
displayed 1 document per
row. Table panel has
controls over which fields to
display, order in which
fields are displayed

9.7.1. Signals Analytics Components

Search query controls

• query

• timepicker

• dateRange

Display controls

At a minimum, a signals analytics dashboard contains a histogram. If the signal contains discrete labels, additional
display panels should be added to drill down on the signal contents.

180

9.8. Non-Time Series Dashboards

Fusion provides the option of creating a non time-series dashboard over the contents of a Fusion collection. For non-
time series data, the "filtering" widget controls the faceting.

9.8.1. Search query controls

• query

• filtering

9.8.2. Display controls

If no faceting or quantitative information is present, a table can be used to drill-down on the documents in the Fusion
collection.

181

9.9. Dashboard Layouts

Dashboard layouts are controlled by the Dashboard Settings menu. The dashboard setting menu is toggeled open and
close.

Note Always remember to click "Save" to save your work.

9.9.1. Configuring Rows

A Dashboard consists of one or more rows, each of which contains one or more panels.

The Dashboard display contains a set of control icons on each row allowing you to hide/unhide, position, and delete that
row. To add a row, enter a title for the new row, the height of the row, if it is editable, and then click Create Row. After
the row is created, it will appear in the table of rows, and you can click the up or down arrows to arrange the new row
with the existing rows.

9.9.2. Configuring Panels

To add a panel to a row, click the + icon to the right of the last panel in a row; if this icon does not appear, the row is full.

You can also click the 'gear' icon to the left of the first panel. This will bring up the row configuration popup, where the
last tab is 'Add Panel'.

When adding a panel, the configuration screen varies depending on the required properties for each panel type. From
the Add Panel tab, all of the available properties of each type are displayed, allowing you to define the panel name, the
data properties, and any queries that should be used to limit the data used in the panel.

When editing a panel, however, the view is split between three tabs: General, for name and size configuration; Panel,
for the data properties; and Queries, for defining queries.

9.9.3. Nested Panel Layout using Column Panels

A column panel is a container panel for other display panels. The properties of a column panel allow you to define the
panels you would like included.

Choose the type of panel, and then define the properties according to the type chosen. When you have finished
configuring the included panel, click Create Panel.

Below the Add Panel to Column area, the configured panels will be shown as a list, in the order they will appear on the
dashboard. From this list, you can change the height of each panel, remove panels, change the display order, or
temporarily hide panels.

182

9.10. Input Panels

Input panels let you control which data output panels display. The values you specify in input panels become parts of
the Solr queries that output panels use to obtain data.

You can use these input panels:

• Query Panel – Enter a free-form query (one or more query terms) in a search bar. Add additional search bars to a
query panel to submit separate queries. Some visualization panels (for example, Rangefacet) keep the data separate
so you can compare it. This is an example of a Query panel with two search boxes. The parameters for query strings
are Primary_Specialty:Urology and Primary_Specialty:Psychiatry. Here is the Query Panel and the resulting
Rangefacet panel:

• Time Picker Panel – Apply a time range to time-series data. The time range can be:

◦ Relative – A time range starting now and reaching backward in time, for example, the last 15 minutes or one
hour

183

◦ Absolute – A specific time-and-date range, for example, from 06/01/2017 00:00:00 to 06/30/17 23:59:59

◦ Since – A time range since a specific date and time, for example, since 01/01/2017 00:00:00.

• Facet – A Facet panel can facet any data field.

• Filtering – A Filtering panel lets you apply field-based filters to the hits returned by the query. The filters apply to all
display panels.

184

Important: You must use a Filtering panel somewhere on your dashboard, so that all panels work correctly when
you interact with data.

9.10.1. Query Syntax

Enter a search term or phrase in the search box of the Query panel. Autocompletion provides a list of possibly related

prior searches. Finish typing your search query or select an autocompleted query, and then click Search .

Enter queries in a Query panel using Apache Lucene Query Parser syntax. You enter the parameter for the query string
(for example, Susan or Gender:F), not the query string (for example, q=Susan or q=Gender:F).

Rules for the Simplest Cases

Here are some syntax rules for the simplest cases:

• A single term is either field:value or value. With value, the search is over all fields.

• For an exact-case match, you must specify the field name.

• Surround a term that contains spaces in double quotation marks (" ").

• You can’t specify :value or :"value" to search over all fields; that syntax doesn’t work.

• To retrieve all records, use the search term :.

• For OR logic, enter OR between the terms, or just use spaces. For AND logic, enter AND between the terms.

Examples

These are examples of the query syntax:

Goal Syntax and example

Single term in any field; no blanks in term term (matches any case)

Single term in any field; blanks in term "term" (matches any case)

Multiple terms, each in any field; with OR logic; no blanks
in terms

term1 term2 …

Multiple terms, each in any field; with OR logic; blanks in
terms

"term1" "term2" … (matches any case)

185

https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html#the-standard-query-parser

Goal Syntax and example

Multiple terms, each in any field; with AND logic (in the
same record); no blanks in terms

term1 AND term2 …

Multiple terms, each in any field; with AND logic (in the
same record); blanks in terms

"term1" AND "term2" … (matches any case)

Single term in a specific field; no blanks in term field:term (matches any case)

Single term in a specific field; blanks in term "field:term" (matches exact case)

Multiple terms, each in a specific field; with OR logic; no
blanks in terms

field1:term1 field2:term2 …

Multiple terms, each in a specific field; with OR logic;
blanks in terms

"field1:term1" "field2:term2" … (matches exact case)

Multiple terms, each in each in a specific field; with AND
logic (in the same record); no blanks in terms

field1:term1 AND field2:term2 …

Multiple terms, each in a specific field; with AND logic (in
the same record); blanks in terms

"field1:term1" AND "field2:term2" … (matches exact case)

For more information about the query syntax, see Standard Query Parser Parameters.

Tip You can use a Text panel to advise the user regarding the syntax of search terms. Also, if you want the dashboard
user to explore subsets of the data, use a Filtering panel or a Facet panel to achieve that. Don’t expect users to enter
complex search expressions. For example, add the field gender as a facet, instead of expecting the user to add AND
gender:male to a search expression.

9.10.2. Inspect a Panel Query

You can’t inspect the panel query in the Query panel. You can inspect the panel query in other panels, for example, in a
Histogram or Heatmap panel. You can see the contributions that the different parts of the query make. In this example,
there are no global query parameters.

Query:

start_station_name:"Broadway and E 14 St" AND gender:Male

Panel query for a Histogram panel:

The part of the query from the Query panel is the first part, from q= through Male.

q=start_station_name%3A%22Broadway%20and%20E%2014%20St%22%20AND%20gender%3AMale&wt=json&rows=0&fq=start_time:[
2014-01-28T20:16:59.000Z%20TO%202014-03-
15T05:36:55.000Z]&facet=true&facet.range=start_time&facet.range.start=2014-01-
28T20:16:59.000Z&facet.range.end=2014-03-15T05:36:55.000Z&facet.range.gap=%2B12HOUR

186

https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html#the-standard-query-parser

9.10.3. Query Panel

The query panel provides a search box to allow real-time filtering of data.

It is a best practice to include one of this type of panel on your dashboard. With this panel, you can add, remove, label,
pin and color queries.

There are no specific properties for a query panel.

187

9.10.4. Timepicker Panel

The timepicker panel controls the time range filters. This control is should be included on log and signal analytics
dashboards, and any other dashboard based on time-series data.

The configuration properties are:

• Default Mode: The options are relative, which provides a series of relative timeframes (such as 30 days ago, 1 year,
etc.); absolute, where you define the start and end dates; or since, where you define only the starting date, with the
current date assumed.

• Time Field: The field to use for time-based data.

• Relative Time Options: When the mode is set to relative, you can provide a comma-separated list of relative time
options, such as "5m,1h,2d". If you use the default range, you should set the panel to span at least 6, to prevent the
time selections from overrunning the edges of the panel.

• Default Timespan: The time option that should be selected as a default.

• Auto-refresh: When the mode is set to either relative or since, you may want your dashboard to automatically
refresh with the latest data. These options allow you to configure auto-refresh:

◦ Enable: Select to enable auto-refresh.

◦ Interval: The interval, in seconds, to refresh.

◦ Minimum Interval: The minimum interval, in seconds. to refresh.

188

9.11. Display Panels

Display panels on a dashboard display information about the data in a single collection. Fusion has these types of
display panels:

• Layout – Use these display panels to organize the panels on a dashboard.

• Textual Information – Use these panels to display textual information. For example, use a Table panel to displays
the values of fields in a set of records.

• Graphical Visualization – Use these panels to help users to visualize data. For example, display category data in a
bar chart and geographical data on a map.

9.11.1. What Data is Displayed

These things determine which data Fusion displays in a display panel:

• Where the query is sent (to a Fusion query pipeline or to Solr)

• The collection that contains the data. You can specify this when you create a dashboard, or permit the user to choose
the collection.

• Global query parameters (optional)

• Input panel configuration settings (possibly including a panel query)

• A user’s selection of the collection (if permitted)

• A user’s query

• A user’s interactions with the data

9.11.2. Layout Panels

These layout panels can help you organize a dashboard:

• Column – Lay out panels in a column within a row or part of a row. (Instead of the usual left-to-right layout within
rows.)

• Text – Add text to a dashboard, for example, to instruct the user regarding how to use the dashboard, or to describe
the data.

9.11.3. Textual Information Panels

These panels display textual information:

• Doc Viewer – Display documents as single pages of information, and let the user page through documents. Paging
through documents doesn’t affect the data displayed in other panels.

• Full Text Search – Provide full text search capability.

Note: Make a Full Text Search panel wide. Start with Span = 12. Depending on the content, you might be able to
make it narrower. If you make a Full Text Search panel too narrow, content and controls can be inaccessible.

• Hits – A Hits panel displays statistical information about the hits returned by the query, including all filters that are
applied to the query. The default information is the count (number of hits). You can display the count, minimum,
mean, maximum, sum, standard deviation, the sum of squares, and/or the number of hits that lack a value for a

189

field.

• Table – Display data in a table.

Note: Make a Table panel wide. Start with Span = 12. Depending on the content, you might be able to make it
narrower. If you make a Table panel too narrow, content and controls can be inaccessible.

9.11.4. Graphical Visualization Panels

Most display panels are graphical visualization panels. They visually present the data requested in the input panel(s),
subject to configuration of the display panel and to any global filtering. Panels for visualizing information graphically
are:

• Bar – Graph data as frequencies in a bar chart.

• Better Map – Display geolocated points in clustered groups on a map. As you zoom out, points are clustered into
fewer groups. As you zoom in, points are clustered into fewer groups (and at some point are not clustered). The
Better Map panel doesn’t use the geospatial search capabilities of Solr. It transfers more data than the Map panel
and generally requires more computation, while showing less data. If you have a time filter, the panel will show the
most recent points in your search, up to your defined limit. This panel is best used after filtering the results through
other queries and filter queries, or when you want to inspect a recent sample of points.

190

• Heat Map – Display a heat map, that is, a graphical representation of data along two facet axes.

• Histogram – Display a histogram. When used in count mode, this is a bucketed chart of the current query, including
all applied time and non-time filters. When used in values mode, the histogram plots the value of a specific field
over time, and lets the user group the values based on the values of a second field.

191

• Map – Display a map of shaded regions using a field that contains a 2-letter country code or U.S. state code. Regions
with more hits are shaded darker. Instead of a count, you can choose to shade regions based on the minimum,
maximum, mean, or sum. The map panel uses facets, so it is important that you set field values to the appropriate 2-
letter codes at index time.

• Multi-series – Graph multiple fields of the same type that vary with time in the same graph. The X-axis is used for
the time series field. Values in the other fields are graphed along the Y-axis.

• Range Facet – Display a histogram of a numeric field. The Range Facet panel is similar to the time series histogram.
It lets you select ranges and zooming in/out to the desired numeric range. Range selections in the panel are reflected
across the entire dashboard. With multiple search boxes in a Query panel, the Rangefacet panel can display multiple
data sets, as shown in this example:

192

• Scatter Plot – Display a scatter plot between two variables or four variables.

• Sunburst – Display a sunburst plot based on facets.

193

• Tag Cloud – Display a tag cloud of the top N words in a field.

194

• Terms – Display the count, minimum, maximum, mean, or sum for a Solr facet as a bar chart, pie chart, or table.

195

196

9.11.5. Bettermap Panel

The bettermap panel displays geographic points in clustered groups on a map.

This panel type does not use the terms facet and it does query sequentially. This means that it transfers more data and is
generally heavier to compute, while showing less actual data

If you have a time filter, it will attempt to show to most recent points in your search, up to your defined limit.

197

9.11.6. Filtering Panel

A Filtering Panel shows the ranges applied to the query facets. It is a feedback/information panel that shows the limits
applied to the data. A Filtering Panel should always be included on an analytics dashboard as an aid to
interpreting/understanding the other visualizations on the dasboard.

198

9.11.7. Heatmap Panel

The heatmap panel provides a heat map for representing pivot facet counts.

The Panel tab defines what data is displayed in the panel and how it is displayed.

Row Field: The field from Solr that will provide data for rows.

Column Field: The field from Solr that will provide data for columns.

Rows Limit: The maximum number of rows to display.

Heatmap Color: The base color for the heatmap. The intensity of the color in any cell is proportional to the pivot facet
count for that cell.

Transposed

199

9.11.8. Histogram Panel

The histogram panel provides a binned display of queries per time interval, using Solr’s range facets for data.

Configuration Options

Mode

The value for the y-axis. The options are count or values.

When choosing values, you must select a field to use as the basis for the values. This field must have a numeric field
type. You can also select a Group By Field, which cannot be a multi-valued field, and creates multiple charts.

Time_field

The value for the x-axis. This is the field to use for display of the time information for the histogram.

Chart Settings

There are several chart settings.

• Bars: Enable to show bars on the chart.

• Lines: Enable to show lines on the chart. When enabled a few more settings will be available:

◦ Line Fill: The fill area, from 0-10.

◦ Line Width: The width of the lines, in pixels.

◦ Smooth: Enable to remove 0 values from lines.

• Points: Enable to show points on the chart.

• Stack: Enable to stack multiple series together.

• Percent: Enable to show the stack as a percentage of the total (only displayed when stack is enabled).

• Legend: Enable to show the legend.

• xAxis: Enable to display the x-axis values.

• yAxis: Enable to display the y-axis values.

• Time correction: If time correction should be applied to use the browser’s timezone. Select 'utc' to always display
times in UTC.

• Selectable:

• Zoom Links: Enable to allow users to zoom out in time.

• View Options: Enable to show an options section.

• Auto-interval: Enable to allow the chart to automatically scale the intervals.

• Resolution: When Auto-interval is enabled, a best effort will be made to show this number of bars.

Tooltip Settings

The tooltip settings control the display of data when users hover over a line or bar on the chart.

• Stacked Values: When using stacked values, this defines if the data be displayed as cumulative, or as individual
values.

200

• Display Query: If an alias is set, it will be shown in the tooltip. If no alias is set, enable this to show the entire query.

201

9.11.9. Hits Panel

The hits panel shows the total hits for the current query input to a query panel.

The properties allow providing a title for the panel, the style of results, and the font size.

202

9.11.10. Map Panel

A map panel displays a map of shaded regions using any field that contains a 2-letter country or US state code. Regions
with more hits are shaded darker.

This uses the Solr terms facet, so it is important that you set it to the correct field.

The following properties are defined for a map panel:

Field: the Solr field that has the 2-letter codes that will be used for the location data.

Max: a maximum number of countries to plot. The default is 100.

Map: the style of map to display. If your data spans the world, you can choose the world map. If your data is focused on
Europe or the US instead, you can choose the Europe or US maps respectively.

Mode: the approach to summarizing the data. You can chose count, mean, maximum, minimum or sum. In order to use
any mode other than count, the field type must be numeric.

Decimal Points: the number of digits to display after a decimal points.

203

9.11.11. Table Panel

The table panel allows you to create a table of field values from the Solr index that match the filters applied to the
dashboard. While only the fields selected are displayed, clicking on any entry expands to show all fields of the
document.

You can also export the documents, if needed, to CSV, XML or JSON by clicking the "Export" icon in the upper right of the
panel.

In the display, you can add new fields on the fly, but clicking a field name from the list in the left side of the panel.

Configuration Options

Add Column

Enter the field(s) you would like to see in the table. You can enter as many fields as you’d like, but too many columns
may require you to scroll horizontally to see all of your data.

Click the '+' button to add the field, and you should see it listed in the Columns section to the right. Click on a column to
remove it from the list.

Options

The display options allow defining how the table is displayed.

• Header: Enable to see a header row in the table.

• Sorting: Enable to be able to sort the data in the table.

• Sort: Choose the field to sort on. Also choose the sort order by selecting the up or down carat to the right of the
column name.

• Font Size: Choose the font size for the display of the data.

• Trim Factor: If the data is too long to fit in the column at your desired width, you can configure the point at which
the data will be "trimmed" from display.

Paging

The paging options allow control over how to deal with large amounts of data that may be easier to work with on
separate pages.

• Show Controls: Enable to show page forward and back options.

• Overflow: If the data expands beyond the height of the window, you can choose to scroll through the records, or
enable overflow to expand the size of the panel to fit all of the data for that page.

• Per Page: The number of items to display on each page.

• Page Limit: The number of pages to display.

• Pageable: This will automatically update based on the values of Per Page and Page Limit, to show the total number
of items that will be displayed in the table.

204

9.11.12. Terms Panel

The terms panel displays the results of a Solr facet as a pie chart, bar chart, or a table.

A statistics field can be displayed as min/max/mean/sum, faceted by the Solr facet field, also displayed either as a pie
chart, bar chart or a table.

A terms panel takes several properties, described below.

• Field: The field to use as the basis of the facets that are used for display.

• Length: The maximum number of terms to display.

• Order: The sort order of the facets.

• Style: The style of chart, either bar, pie or table.

• Legend: If you choose bar or pie as the style, you can then choose no legend, or to display it above or below the data.

• Font Size: If you choose table, you will be given the option to define the font size.

• Missing: Enable to display missing values.

• Other:

• Donut: If you choose pie chart as the style, you can choose to display the chart as a donut, with an empty circle in
the middle.

• Tilt: If you choose pie chart as the style, you can choose to tilt the chart as an added effect.

• Labels: Enable to show labels in the chart for your data.

• Mode: The mode for the data. Choose count, mean, min, max, or sum. If choosing any mode other than count, the
Stats Field selected must be a numeric field.

• Stats Field: If you choose any mode other than count, you must then specify the field to use for statistics. This field
must be a numeric field.

• Display Precision: Choose the number of digits to display after a decimal point, as appropriate.

205

9.11.13. Text Panel

A text panel displays static text, which can be either unformatted plain text or formatted using either Markdown or
HTML.

To configure a text panel, first choose the text format mode, then enter the panel contents. For plain text displays, the
font size can be specified.

206

http://en.wikipedia.org/wiki/Markdown

9.11.14. Ticker Panel

The ticker panel provides a stock-ticker style representation of how queries are moving over time.

When configuring a ticker panel, there is one primary property, "Time Ago", which defines the point in time to use as
the basis for comparison.

For example, if the time is 1:10pm, your time picker was set to "Last 10m", and the Time Ago parameter was set to '1d',
the panel would show how much the current query results have changed since 1:00 to 1:10pm yesterday.

207

Chapter 10. Dev Ops
Performance monitoring tools and reports are covered in System Metrics.

Task scheduling tools are covered in Schedules.

Fusion provides system messages and notifications via Messaging and Alerting.

208

10.1. System Metrics

Fusion continuously indexes System and Solr metrics to the system collection system_metrics.

There are around 600 different metrics available. In this topic we’ve highlighted a few that are likely to be the most
useful or interesting to you.

The /system/metrics endpoint of the System API lists all the metrics that the system is currently collecting. Metrics are
returned for the current instance only; Fusion instances do not aggregate metrics between nodes.

10.1.1. Types of Metrics Collected

There are several types of metrics:

• Gauges: These are single values, valid for the point in time at which the metrics are collected.

• Counters: These are values that are incremented or decremented over time.

• Meters: These measure the rate of events over time. They include a mean rate, as well as a 1-, 5- and 15-minute
moving average. Most of these moving averages are exponentially weighted, so that more recent values contribute
more heavily than older values; exceptions to this rule have the word "unweighted" in their name.

• Histograms: These measure the distribution of values. They will report the minimum, maximum, mean, and the
values at the 50th, 75th, 95th, 98th, 99th, and 99.9th percentiles.

• Timers: A timer is a meter combined with a histogram; it measures the length of time that a particular operation
takes (both mean duration and moving averages) as well as the distribution of those durations.

Many of the metrics are for internal use by the system. However, Fusion may ask for a dump of the metrics data (using
the System API endpoint) to help diagnose performance issues. Some metrics are also subject to change pending
performance tuning and additional testing.

10.1.2. Metrics of Particular Interest

Slow Web Service Calls

For each web service endpoint in the system, the system keeps a list of the last several requests whose request time has
been in the 99th percentile – that is, examples of the top 1% of slow requests for that endpoint. These are recorded as
com.lucidworks.apollo.resources.serviceName.methodName.weighted.slow.examples, where serviceName is the name of the
service and methodName is the name of a valid method for that service.

This information might be helpful when diagnosing performance issues. Here is an example of the 5 slowest calls to the
getCollectionMetrics method of the CollectionResource service:

209

"com.lucidworks.apollo.resources.CollectionResource.getCollectionMetrics.weighted.slow.examples" : {
 "value" : [{
 "requestUri" : "http://localhost:8765/api/v1/collections/lws5_metrics/stats",
 "queryParams" : { },
 "userPrincipal" : null,
 "method" : "GET",
 "cookies" : { }
 }, {
 "requestUri" : "http://localhost:8765/api/v1/collections/logs/stats",
 "queryParams" : { },
 "userPrincipal" : null,
 "method" : "GET",
 "cookies" : { }
 }, {
 "requestUri" : "http://localhost:8765/api/v1/collections/logs/stats",
 "queryParams" : { },
 "userPrincipal" : null,
 "method" : "GET",
 "cookies" : { }
 }, {
 "requestUri" : "http://localhost:8765/api/v1/collections/lws5_metrics/stats",
 "queryParams" : { },
 "userPrincipal" : null,
 "method" : "GET",
 "cookies" : { }
 }, {
 "requestUri" : "http://localhost:8765/api/v1/collections/lws5_metrics/stats",
 "queryParams" : { },
 "userPrincipal" : null,
 "method" : "GET",
 "cookies" : { }
 }]
 }

System Memory

There are several memory-related metrics reported:

• mem.heap.used: the current amount of heap memory, in bytes, used by the system.

• mem.heap.max: the maximum amount of heap memory, in bytes, that the system could use.

• mem.heap.usage: the percentage (0 - 1.0) of available heap memory that the system is currently using (this is equal to
mem.heap.used / mem.heap.max).

• mem.non-heap.used: the current amount of non-heap memory (also called "off-heap memory"), in bytes, used by the
system.

• mem.non-heap.max: the maximum amount of non-heap memory, in bytes, that the system could use.

• mem.non-heap.usage: the percentage (0 - 1.0) of available non-heap memory that the system is currently using (this is
equal to mem.non-heap.used / mem.non-heap.max).

• mem.total.used: the current total amount of memory (heap plus non-heap), in bytes, used by the system.

• mem.total.max: the maximum amount of total memory (heap plus non-heap), in bytes, that the system could use.

Here is an example of mem.heap.used:

210

{
 "version" : "3.0.0",
 "gauges" : {
 "mem.heap.used" : {
 "value" : 94783360
 }
 },
 "counters" : { },
 "histograms" : { },
 "meters" : { },
 "timers" : { }
}

Query and Index Pipeline Stage Metrics

For each query pipeline and index pipeline stage, Fusion collects aggregate performance metrics for successful
executions and for errors. All executions for each stage are stored in a metric named
stages.stageType.stageName.process, where stageType is the type of stage, and stageName is the name of a specific stage.

Here is an example of a request to get the performance metrics for an index pipeline stage named 'solr-default'
(stages.solr-index.solr-default.process), which is included with Fusion:

{"version" : "3.0.0",
 "gauges" : { },
 "counters" : { },
 "histograms" : { },
 "meters" : { },
 "timers" : {
 "stages.solr-index.solr-default.process" : {
 "count" : 109195,
 "max" : 0.128585,
 "mean" : 0.004011065175097276,
 "min" : 0.0022500000000000003,
 "p50" : 0.0030645000000000004,
 "p75" : 0.0033495,
 "p95" : 0.005410449999999992,
 "p98" : 0.014195759999999965,
 "p99" : 0.02462230000000001,
 "p999" : 0.12850243700000002,
 "stddev" : 0.007408363728123277,
 "m15_rate" : 11.957732876922531,
 "m1_rate" : 8.784289947811962,
 "m5_rate" : 9.037172472578138,
 "mean_rate" : 9.214233776748047,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 }
 }
}

This shows the number of uses of the stage ("count"), the maximum and minimum times, the mean, the 50th, 75th, 95th,
98th, 99th, and 99.9th percentiles (p50, p75, etc.), and the mean rates over 1-, 5- and 15-minute intervals ('m1_rate', etc.).
In this case, the pipeline has been used 109,195 times, with a mean rate of 9.214 events per second, with only .003 events
in the 50th percentile.

211

Metrics for successful completions of stages are stored in metrics named stages.index.stageType.stage.stageName.ok or
stages.query.stageType.stage.stageName.ok, depending on if the stage is part of an index pipeline or a query pipeline.
Here is an example of the mean rates for successful runs of the 'solr-default' index pipeline stage (stages.index.solr-
index.stage.solr-default.ok):

{
 "version" : "3.0.0",
 "gauges" : { },
 "counters" : { },
 "histograms" : { },
 "meters" : {
 "stages.index.solr-index.stage.solr-default.ok" : {
 "count" : 110855,
 "m15_rate" : 5.270163206842968,
 "m1_rate" : 8.485969925086419,
 "m5_rate" : 8.06785229981572,
 "mean_rate" : 9.18230056255745,
 "units" : "events/second"
 }
 },
 "timers" : { }
}

This shows the number of uses of the stage ("count") and the mean rates over 1-, 5- and 15-minute intervals ('m1_rate',
etc.). From the above, we can see that the solr-default stage has been executed 110,855 times, with a mean rate of 9.18
events per second.

If you prefer to see the metrics for the entire stage type, you can omit the stage name entirely, and simply get metrics for
the stage type. This takes the form of stages.index.stageType.ok (for an index pipeline) or stages.query.stageName.ok (for
a query pipeline). Here is an example, using the solr-index stage type:

{
 "version" : "3.0.0",
 "gauges" : { },
 "counters" : { },
 "histograms" : { },
 "meters" : {
 "stages.index.solr-index.ok" : {
 "count" : 116425,
 "m15_rate" : 6.178851947720613,
 "m1_rate" : 8.814380052133192,
 "m5_rate" : 8.585203640734829,
 "mean_rate" : 9.19499774409566,
 "units" : "events/second"
 }
 },
 "timers" : { }
}

In this example, we see that the solr-index stage has been successfully run 116,425 times, with a mean rate of 9.19 events
per second.

212

Web Service Endpoint Metrics

For each web service endpoint, Fusion keeps a timer recording the duration and rate of requests. The duration is
calculated using an exponentially-weighted moving average with a heavy bias toward measurements from the last 5
minutes.

These metrics have names in the form: com.lucidworks.apollo.resources.serviceName.methodName.weighted.timer, or for a
specific example, com.lucidworks.apollo.resources.CollectionResource.getCollectionMetrics.weighted.timer:

"com.lucidworks.apollo.resources.CollectionResource.getCollectionMetrics.weighted.timer" : {
 "count" : 2624,
 "max" : 0.134712,
 "mean" : 0.031589107976653694,
 "min" : 0.022424000000000003,
 "p50" : 0.028440000000000003,
 "p75" : 0.036908,
 "p95" : 0.044644449999999995,
 "p98" : 0.05026944,
 "p99" : 0.05444051000000004,
 "p999" : 0.134693411,
 "stddev" : 0.00936497282768644,
 "m15_rate" : 0.07113433590025664,
 "m1_rate" : 0.06387037028343223,
 "m5_rate" : 0.06218407166715861,
 "mean_rate" : 0.0663172057583814,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 }

Solr Request Metrics

The system keeps track of the performance of requests to each Solr server that it communicates with.

The metrics have names in the form solr.solrIdentifier.requestType. The solrIdentifier is the address of the Solr
instance, and the requestType can be 'get-requests', 'post-requests' or 'put-requests'.

This example shows get-requests to a Solr instance that is found on '10.0.1.8' and port 8983:

213

{
 "version" : "3.0.0",
 "gauges" : { },
 "counters" : { },
 "histograms" : { },
 "meters" : { },
 "timers" : {
 "solr.10.0.1.8-8983.get-requests" : {
 "count" : 3170,
 "max" : 0.873981,
 "mean" : 0.2451200904669261,
 "min" : 0.001678,
 "p50" : 0.318176,
 "p75" : 0.48169550000000005,
 "p95" : 0.53017705,
 "p98" : 0.5617982399999999,
 "p99" : 0.6281221800000003,
 "p999" : 0.8710894970000004,
 "stddev" : 0.2448979377578966,
 "m15_rate" : 0.02059326561557774,
 "m1_rate" : 0.03249432457272969,
 "m5_rate" : 0.030788223074952624,
 "mean_rate" : 0.033875616252208286,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 }
 }
}

From this we can see that there have been 3,170 GET requests to that Solr instance, and the mean response rate is .03
requests per second.

10.1.3. Changing Metric Collection Frequency

The default frequency to collect metrics is 60 seconds. Since the metrics are stored in a system collection (and a Solr
instance), the data can grow to be quite large over time. If you do not need metrics collection to happen as frequently
(perhaps during initial implmentation), you can change the frequency by modifying the
com.lucidworks.apollo.metrics.poll.seconds configuration parameter with the Configurations API.

For example:

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '600'
http://localhost:8764/api/apollo/configurations/com.lucidworks.apollo.metrics.poll.seconds

To disable metrics, you could set the com.lucidworks.apollo.metrics.poll.seconds parameter to '-1'.

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '-1'
http://localhost:8764/api/apollo/configurations/com.lucidworks.apollo.metrics.poll.seconds

214

10.2. Schedules

Schedules in Fusion allow you to execute any Fusion service, Solr request, or other HTTP request on a defined timetable.

For example, you could schedule a Solr query to run at a specified time every day, or you could define a datasource to be
re-crawled once a week. The schedules service does not execute any business logic; the service at the specified endpoint
must provide this.

The Fusion scheduler is fault-tolerant and distributed across the nodes of your cluster. Several instances of the
scheduler service can run on different nodes, but only one of them at a time executes and modifies schedules. This
instance is elected as the schedule "leader", which occurs in ZooKeeper in a similar way to how SolrCloud node leaders
are elected. The instances that are not the leader are on standby in case the leader goes down. The schedule job
definitions are also kept in ZooKeeper, which allows them to be restored to any node whenever needed.

10.2.1. Scheduler job definitions

When defining a job with the scheduler service, there are two main aspects to configuration:

• The time properties that define when the job will run and how often it will repeat

• The call properties defining the call that will be executed

Time properties

These properties define the start time, end time, and repeat interval, if any.

• startTime defines when the job should first run.

• endTime defines when the job should no longer run.

The endTime does not stop a running job; instead it has the same effect as setting the entire schedule to "inactive" at a
certain date.

• interval is an integer.

◦ millisecond or ms

◦ second or sec

◦ minute or min

◦ hour or hr

◦ day

◦ week

◦ month

The interval can be "0", in which case the scheduled job only runs once. When the interval is higher than "0",
then repeatUnit must also be defined.

• repeatUnit defines the unit of time to use in conjunction with the interval. The allowed values are:

These values are case-insensitive, meaning they can be entered in upper or lower case as you prefer.

215

Call properties

The call properties are where the actual task of the schedule is defined.

• uri

This can take several forms:

◦ An HTTP or HTTPS request: <protocol>://<path>

◦ A Solr request: solr://<collection>/…

For example, you could periodically issue a commit request to Solr. Or you could periodically run a query
against a specific collection

◦ A Fusion service request: service://<serviceName>/<path>

The services available are stored in ZooKeeper. You can find them in the Admin UI under the "System" tab, or
with a REST API call to the /introspect endpoint

• method is the HTTP method to use.

• header contains any additional required headers.

• queryParams contains any additional query parameters.

For Solr requests, queryParams may be any valid query parameter for the specified URI.

• entity is the request body, if any.

10.2.2. How to define a scheduler job

There are two ways to define a scheduler job:

• In the Fusion UI, at Applications > Scheduler.

See below for instructions.

• Using the Scheduler API.

API examples are provided below.

Defining a scheduler job in the Fusion UI

1. Navigate to Applications > Scheduler.

2. Click Add a Schedule.

3. Enter the parameters for the scheduler job:

◦ Schedule Name – Any arbitrary string (required)

◦ Service – The endpoint and method for the service to run (required)

Select the protocol:

▪ http:// or https://

216

▪ solr://{collection}/…

A SolrCloud request.

▪ service://{serviceName}/{path}

A load-balanced Fusion service request.

◦ Start Time – The date and time at which to begin running the first instance of this job

◦ End Time – The date and time after which this job will be disabled

◦ Run Once – To run the job at regular intervals, uncheck this option.

◦ Interval – The interval at which to repeat this job

◦ Active? – To disable the job, uncheck this option.

Now your configuration should look something like this:

In this example, the scheduler job crawls MyDataSource every hour. If you want this to happen every hour on
the hour, you can set the start time to 11:00:00 (or any other hour). In the case of a crawl job like this one, you
can check the job history by navigating to Applications > Collections > CollectionName > Datasources >
DatasourceName > Job History.

4. Click Save.

API Examples

Each of these examples shows setting a schedule for an action in the system, using the Scheduler API. To see the results
of a job, you will likely need to query the History API.

Issue a commit every 10 seconds

{"creatorType":"human", "creatorId":"me", "repeatUnit":"SECOND", "interval":10, "active":true,
"callParams":{"uri":"solr://myCollection/update", "method":"GET", "queryParams":{"stream.body":"<commit/>"}}}

In this example, we’ve defined the callParams with a URI for Solr that calls a collection named 'myCollection' and the
'update' updateHandler. The method is GET. The queryParams define the commit call for Solr. For timing, we’ve defined
the job to run every 10 seconds.

Run a datasource every 20 minutes

217

{"creatorType":"human", "creatorId":"me", "repeatUnit":"MINUTE", "interval":20, "active":true,
"callParams":{"uri":"service://connectors/jobs/TwitterSearch", "method":"POST"}}

In this example, we’ve defined the callParams with a URI for Fusion that calls the TwitterSearch datasource job. The
method is POST, which is the method to use when starting a crawl. There aren’t any other properties needed to define
the task. For timing, we’ve defined the job to run every 20 minutes.

Remove signals older than 1 month

{"creatorType":"human", "creatorId":"me", "repeatUnit":"MONTH", "interval":1, "active":true,
"callParams":{"uri":"solr://myCollection_signals/update",
"queryParams":"stream.body=<delete><query>timestamp_dt:[* TO NOW-1MONTH]</query></delete>", "method":"GET"}}

In this example, we’re again calling Solr’s 'update' updateHandler with a collection named 'myCollection_signals', which
is the default location for signals. This time we’ve also defined queryParams to delete documents that match a date
query that finds all documents older than 1 month old. For timing, we’ve set this to run once a month.

218

10.3. Messaging and Alerting

Fusion’s messaging services provide implementations to send messages and alerts to any application or device capable
of displaying the supported message types. Read a primer on Fusion’s messaging services on our blog.

10.3.1. Supported Message Types

Fusion supports these types of messages and alerts:

• logging

This service logs any message sent to it in the configured logger. You can use it in an index pipeline or a query
pipeline.

• Slack

Slack is a team messaging service with document integration and a focus on collaborative communication. See the
Slack Index Stage and the Slack Query Stage.

• SMTP

Email, via the Simple Mail Transfer Protocol. See the Email Index Stage and the Email Query Stage.

• PagerDuty

Alerting and monitoring. See the PagerDuty Index Stage and the PagerDuty Query Stage.

10.3.2. Messaging Service Configuration

The Message Services as a whole can be configured via the Configurations API with these attributes:

Attribute Description

rateLimit The time, in milliseconds, to wait between sending
messages on a per-second basis. This does not synchronize
throttling between requests.

storeAllMessages Boolean flag that indicates whether messages should be
indexed and stored. By default, only scheduled messages
are stored, as they need to be retrieved by the scheduler at
a later time. Storing all messages can be useful for auditing
the system, but it will have an impact on the system
storage requirements.

Enabling Messaging Services

The logging service is enabled by default, but Slack, email, and PagerDuty messaging services must be explicitly enabled.

You can do this through the UI at Applications > System > Messaging Services, or through the Messaging API.

To see which messaging services are currently enabled:

curl -u <user>:<pass> http://localhost:8764/api/apollo/messaging/service

219

http://lucidworks.com/blog/2015/05/19/alerts-lucidworks-fusion/
http://www.slack.com

String Templates

String templates are libraries used for structured text generation outputs. They are a powerful way of doing variable
substitution into a provided template using values contained in documents, requests, and contexts. String templates are
made available in the Messaging Service System setup, where users can fill in these portions with document or query
values from the working system.

See Messaging Services Templates for details.

10.3.3. Triggering Messages and Alerts

The messaging services can be invoked in several ways:

• Via the Scheduler API to send messages at designated intervals.

• Via the Messaging API.

• Through an index or query pipeline; see Messaging and Alerting Pipeline Stages below.

Note By default, only scheduled messages are stored. To
configure Fusion to store all messages, see Messaging
Service Configuration above. The default collection for
message storage is system_messages, which is created on
startup.

Messaging and Alerting Pipeline Stages

The Messaging Service supports these pipeline stages:

• Email Message Query Stage

• Email Message Index Stage

• PagerDuty Message Query Stage

• PagerDuty Message Index Stage

• Slack Message Query Stage

• Slack Message Index Stage

• SetPropertyIndex Stage

The pipeline stages above send messages and alerts when specific conditions are met. Conditions can be specified using
regular expressions, database lookups, and more. Any upstream stage can affect how Fusion behaves when a match
occurs, so pay special attention to the order in which stages occur.

Additionally, the Set Property Index Stage allows conditions to be specified before messages are sent.

Setting Properties Upstream

Fusion includes two index pipeline stages that are useful for setting properties on indexed documents so that you can
evaluate those properties in one of the messaging stages, either downstream in the index pipeline or in a query pipeline:

• The Set Property Index Stage can be used to set a property on a document, or a context, by evaluating one or more
simple conditions. It is an index-only, conditional stage that allows the setting of properties without the use of
JavaScript.

220

• The JavaScript Index Stage provides a more sophisticated means of setting properties upstream from the messaging
stages.

221

Chapter 11. Access Control

11.1. User Authentication and Authorization

Fusion provides application security by restricting access to known users via a two-stage process consisting of:

• Authentication - users must sign on using a username and password.

• Authorization - each username is associated with one or more permissions which specify the Fusion UI components
and REST API requests that user has access to. Permissions can be restricted to specific endpoints and path
parameters. Roles are named sets of permissions which provide access to a specific function.

The access control component runs in the same process as the Fusion UI. It referred to as the "auth proxy" because it
handles authentication and authorization for all requests to the Fusion REST API services.

All requests to Fusion must be authenticated, as described in section User Access Request Params.

11.2. User Account Admininistration

A Fusion Security Realm encapsulates a user database together with specific authentication and authorization
mechanisms. This information is stored in ZooKeeper so that is it always available to all Fusion components across the
deployment.

Fusion’s native security realm manages both authentication and authorization directly. All user information is stored in
ZooKeeper: usernames, passwords, roles, and permissions. Stored passwords are encrypted using bcrypt, the strongest
possible encryption algorithm available to all JDKs. Authentication consists of a password-hash comparison between the
login password and the encrypted password. The native realm is the home of the Fusion admin user and is the default
realm type.

Fusion can be configured to use the host domain’s security mechanism for user administration. The following
configurations are possible:

• LDAP - Fusion stores a local user record in ZooKeeper. Authentication is performed by the LDAP server. LDAP group
membership can be used to assign Fusion permissions.

• Kerberos - Fusion stores a local user record in ZooKeeper. SPNEGO is used for authentication via Kerberos.

• Kerberos authentication, LDAP authorization - Fusion stores a local user record in ZooKeeper. SPNEGO is used for
authentication via Kerberos. LDAP group membership can be used to assign Fusion permissions.

See also:

• Authentication and Authorization APIs

11.3. Video tutorial

222

http://zookeeper.apache.org/
https://en.wikipedia.org/wiki/Bcrypt
http://thekspace.com/home/component/content/article/54-kerberos-and-spnego.html
http://thekspace.com/home/component/content/article/54-kerberos-and-spnego.html

11.4. Users

All Fusion requests must come from a registered user.

11.4.1. Add Users

The first user who logs in becomes the user admin.

There are two approaches for adding users:

• Manual – Add users manually to a security realm that doesn’t auto-create users.

• Automatic – For a security realm that uses an external authentication provider, Fusion can add users automatically.
When creating the security realm, check auto-create users. Fusion creates a user the first time someone logs into
Fusion.

When you add a new user manually, you must provide a unique username and valid password. All other information is
optional. However, unless either roles or permissions are specified (or both), this user won’t be able to do anything in
Fusion.

If you specify API permissions in a user definition, those permissions override corresponding permissions defined in the
user’s roles. See Permissions for more information about how permissions supplied by multiple roles and by user
definitions combine.

11.4.2. Manage Users in the Fusion UI

Only Fusion users with administrative privileges (for example, those who are assigned the built-in role admin) can
manage users.

Manage users in the "USERS" panel of the Fusion UI "Access" component.

11.4.3. Manage Users via HTTP Requests to the Users API

See page Users API.

11.4.4. User Information

Fusion stores user information in Apache ZooKeeper.

Each User entry in ZooKeeper contains the following:

• id– A globally unique user ID (UUID), created by Fusion based on username, realm-name

• realm-name– The Fusion security realm name; the default is "native".

• username– The username string, which is unique within the specified security realm

• permissions– List of permissions that have been explicitly assigned to the user in the Fusion UI (in Devops > Access
Control)

• role-names– List of roles assigned to the user in the Fusion UI (in Devops > Access Control)

• created-at– Timestamp; created by Fusion

• updated-at– Timestamp for the last edit; created by Fusion

223

http://zookeeper.apache.org/

The following JSON shows the ZooKeeper record for the Fusion admin user:

{
 "id":"57f539d2-3f53-4011-ad6f-257a3f00fc6b",
 "username":"admin",
 "realm-name":"native"
 "password-hash":"$2a$08$3I82umlXLPSshQIW6ngj.Or06DOVgDLGohGmCB9GC0yRtvy5Nfkn6",
 "permissions":[],
 "role-names":["admin"],
 "created-at":"2016-01-28T00:00:18Z"
}

The following JSON shows the ZooKeeper record for a user entry managed by Fusion:

{
 "id":"ae9b345a-79e2-4e6d-8620-e6ed4ed2cc16",
 "username":"firstname.lastname",
 "realm-name":"lwLDAP",
 "permissions":[{"path":"collections/**","methods":["GET"]}],
 "role-names":[],
 "created-at":"2016-04-01T21:17:36Z"
 "updated-at":"2016-04-01T21:42:15Z",
}

224

11.5. Roles

Roles are named sets of permissions that encapsulate the permissions needed for different kinds of users. Permissions
grant users access to subsets of Fusion functionality. A role can specify UI permissions, API permissions, or both:

• UI permissions grant users access to parts of the Fusion UI

• API permissions grant users access to specific API commands for specific REST API endpoints.

See Permissions for information about how permissions supplied by multiple roles and by user definitions combine.

11.5.1. Where You Specify Roles

You can specify which roles to apply for a user in one or more of these places:

• Security realm (directly) – Under the heading Roles, specify the roles to always apply to all users in the security
realm.

• Security realm (from a group/role mapping) – Security realms of types ldap and trusted-http can provide a list of
groups to which the user belongs. The security realm can map the group names to role names.

• User definition – A user definition can specify roles for the user. These roles don’t override the other roles. They are
added to the other roles.

11.5.2. Default Roles

At initial startup, Fusion creates a set of default roles for common types of users.

admin

The admin role is the the equivalent to the Unix root or superuser. It allows full access to all Fusion services:

GET,POST,PUT,DELETE,PATCH,HEAD:/**

collection-admin

The collection-admin role allows a user to fully manage all Fusion collections.

GET:/query-pipelines/**
GET:/query-stages/**
GET:/connectors/**
GET:/reports/**
POST:/reports/**
GET,POST,PUT,DELETE,PATCH:/collections/**

search

The search role gives a user access to the Fusion UI Search component and allows search over all Fusion collections.

225

GET:/query-pipelines/*/collections/*/select
GET:/query-pipelines
GET:/solr/*/schema
GET:/prefs/apps/search/*
GET:/collections/**
GET:/solr/*/admin/luke

ui-user

The ui-user role allows a user to use the Fusion UI for system monitoring and reporting.

GET:/system/**
GET:/history/**
GET:/connectors/**
PUT:/usage/**
GET:/reports/**
GET:/solrAdmin/**
GET:/nodes/**
POST:/reports/**
GET:/collections/**
PATCH:/users/{id}:id=#ID
GET:/searchCluster/**

Note The permission PATCH:/users/{id}:id=#ID uses the variable
value #ID as a placeholder for the currently logged-in user
ID. It is included so the Fusion UI "change password"
feature is available to native realm users.

11.5.3. Role Information

Fusion stores role information in Apache ZooKeeper. Each role in a ZooKeeper entry contains the following:

• id– ID string, created by Fusion

• name– Role name string

• desc– Text description; optional

• permissions– A list of Fusion permission specifications

• ui-permisions– A list of names of Fusion UI components

• created-at– Timestamp; created by Fusion

• updated-at– Timestamp for last edit; created by Fusion

11.5.4. Manage Roles

Only Fusion users with admin privileges can manage roles.

Restricting access to a subset of Fusion’s functionality requires several narrowly defined permissions. Path variables
can be used to designate specific collections. As an example, it’s possible to define a role which allows read-only access
to Fusion dashboards for a specific collection:

• GET:/solr/{id}/*:id=test – Read-only access to the collection "test"

226

http://zookeeper.apache.org/

• GET:/solr/{id}/admin/luke:id=test – Also read-only access

• GET:/solr/system_banana/* – Read-only access to dashboards

• GET:/collections/system_banana – Read-only access to the collection where dashboard definitions are stored

Manage Roles in the Fusion UI

Manage roles in "ROLES" panel of the Fusion UI "Access" component.

To create a new role from the Fusion Admin UI, first you choose a unique role name, then edit the set of permissions.
Specify API permissions one per line in the Permissions input box. There is a separate list of checkboxes which allow
access to the Fusion UI components. If users who are assigned this role require access to the Fusion UI, then you must
specify UI permissions in addition to REST API permissions.

Manage Roles via HTTP Requests to the Roles API

See page Roles API.

227

11.6. Permissions

Permissions determine what a user can do in Fusion. There are two kinds of permissions:

• UI permissions – Control which parts of the Fusion UI a user can access. These parts show up in menus and the user
can view them. But the ability to use the functionality depends on API permissions. (The UI uses the API.)

• API permissions – Control which requests a user can submit to which REST API endpoints.

Fusion uses permissions for authorization as follows:

• UI permissions are positive (permission needs to be given) and additive (the user has the sum of all specified
permissions. This is true of roles specified in a user definition, roles specified in a security realm, and roles
determined dynamically based on groups in an LDAP authentication provider.

• API permissions specified in roles are positive (permission needs to be given) and additive (the user has the sum of
all specified permissions; that is, for a specific endpoint, the most permissive permissions are used). This is true of
roles specified in a user definition, roles specified in a security realm, and roles determined dynamically based on
groups in an LDAP authentication provider.

• API permissions specified in the role(s) but not in the user definition are used.

• If an API permission for a specific endpoint is specified in both one or more roles and in the user definition, then the
permissions in the user definition are used, overriding the permissions in the role(s). Use permissions in user
definitions to give specific users permissions that are less permissive than the permissions for their role(s).
Alternatively, you could define less permissive roles.

11.6.1. Specify UI Permissions

Specify UI permissions in roles.

11.6.2. Specify API Permissions

A Fusion API permission denotes an allowed request to a Fusion REST API endpoint or endpoints. A permissions
specification consists of:

• HTTP request method or methods allowed. Multiple HTTP methods are separated by commas.

• REST API services endpoint, which can contain wildcards or named variables. All calls to the REST API start with
"api/apollo", followed by the service name and any methods and parameters. The permissions specification includes
everything following "api/apollo". The endpoint can include wildcards.

Wildcards make it easy to grant broad access to Fusion services. The wildcard symbol '*' matches all possible values for
a single path segment and two wildcards match all possible values for any number of path segments. Granting access to
a subset of Fusion’s functionality requires a list of narrowly defined permissions.

A path segment can be a named variable enclosed in curly braces: {variable-name}. Variables are used when a wildcard
would be too permissive and a single path segment too restrictive.

• Optionally, the allowed values for any named variables in the endpoint. The variable specification component
specifies the restricted value or values for all named variables in the path. Each specification consists of the variable
name, followed by "=" (the equals sign), followed by one or more values which are separated by commas. If the
endpoint specification has multiple variable, the semi-colon character ";" is used as the separator between
parameter specifications.

228

Permissions specifications are coded up as a string using the colon character ":" as the separator between the
permission elements.

Here are some examples of permissions specifications:

• GET:/query-pipelines//collections//select – Search access to any Fusion collection.

• GET,PUT:/collections/Collection345/synonyms/** – Permission to edit synonyms for the collection named
"Collection345"

• GET:/collections/{id}:id=Collection345,Collection346 – Read access to collections named "Collection345" and
"Collection346"

In ZooKeeper, both User and Roles entries contain a list of Permission specifications. A Permission entry has three
attributes: "methods", "path", and "params".

11.6.3. Example Permissions Set

Wildcards make it easy to give wide access to Fusion services. The permissions for the admin user can be written in a
single line:

GET,POST,PUT,DELETE,PATCH,HEAD:/**

To restrict access to a single collection and a single Fusion facility requires a set of narrowly defined permissions. For
example, the following set of permissions allows a user to run Fusion’s analytics dashboards over a collection named
"test":

• GET:/solr/{id}/*:id=test– Read-only access to collection named "test"

• GET:/solr/{id}/admin/luke:id=test– Dashboards require read-only access to Solr utility luke to compile collection
metrics.

• GET:/solr/system_banana/*– Read-only access to dashboards

• GET:/collections/system_banana– Read-only access to the collection where dashboard definitions are stored

Read-only access to the dashboard definitions collection means that the user cannot save the configured dashboard
back to Fusion.

The following JSON shows how Fusion stores this list of permissions in ZooKeeper:

"permissions":[
 {"params": {"id":["mdb1"]},
 "path":"/solr/{id}/*",
 "methods":["GET"]},
 {"params":{"id":["mdb1"]},
 "path":"/solr/{id}/admin/luke",
 "methods":["GET"]},
 {"path":"/solr/system_banana/*",
 "methods":["GET"]},
 {"path":"/collections/system_banana",
 "methods":["GET"]}
]

229

11.7. Security Realms

Fusion uses security realms to authenticate users of the Fusion UI. Each user has an assigned security realm, which the
user must choose when logging in. Choosing a different realm results in an authentication failure.

A security realm also provides a list of roles:

• The list always includes the role(s) that are specified in the security realm.

• (Optional) The security realm can reference one or more Fusion roles and/or get groups to which the user belongs
from an external directory service that is the authentication provider. Fusion maps the group names to role names
and adds these roles to the user’s list of roles.

Note: Fusion doesn’t use permissions from the LDAP for authorization of UI access or API requests. Fusion only obtains
group names from the LDAP (optionally), which you can configure the security realm to map to role names.

Requests to the Fusion REST API must specify a security realm for per-request authentication, unless a session cookie is
used (which contains information about the security realm).

Fusion authorizes requested operations based on API permissions specified for the user and for the user’s role(s).
Fusion considers the role(s) specified in the user definition and in the security realm. Fusion creates a list of roles when
a session is created, that is, when a user logs in or when the Sessions REST API creates a session. Authorization based on
permissions is at request time.

You can define multiple security realms for a Fusion instance. This lets you give different sets of users different levels of
access to specific Fusion collections.

11.7.1. Security Realm Types

When you create a security realm, you can choose among the following security realm types:

Native

Fusion has a single preconfigured security realm named native. The admin user is in the native realm. and is the default
realm. The native realm also provides a fallback mechanism in case of LDAP server or communication failure.

This realm is required to bootstrap Fusion. Because all requests to Fusion require authentication and authorization, on
initial startup you must access the Fusion UI to set the admin password. After Fusion has a valid admin password, it
creates the admin account in the Fusion native realm.

For the native realm, Fusion manages all authentication and permissions information directly.

You can create Fusion user accounts and manage them using either the Fusion UI or the User API.

Stored passwords are encrypted using bcrypt, the strongest possible encryption algorithm available to all JDKs.

Kerberos

In the case where a host domain uses Kerberos for authentication and LDAP for authorization, Fusion can be configured
to do the same, by configuring a realm of type "LDAP" and then specifying Kerberos as the authentication mechanism.

Fusion stores a local user record in ZooKeeper and a mapping to the Kerberos principal.

SPNEGO is used for authentication via Kerberos.

230

https://en.wikipedia.org/wiki/Bcrypt
https://docs.oracle.com/cd/E21455_01/common/tutorials/kerberos_principal.html
http://thekspace.com/home/component/content/article/54-kerberos-and-spnego.html

See Configuring Fusion for Kerberos.

LDAP

You can use an LDAP as an authentication provider for Fusion. If the LDAP contains groups that make sense regarding
partitioning Fusion functionality for Fusion users (that is, giving Fusion users different UI and API permissions based on
the LDAP-group memberships of LDAP users), then you can configure an LDAP security realm to search for LDAP
groups and to map the LDAP groups to Fusion roles.

Fusion stores a local user record in ZooKeeper, and authentication is performed by the LDAP server. User accounts can
be managed by Fusion, or created automatically, in which case the Fusion user ID maps directly to the LDAP
Distinguished Name (DN). Fusion permissions can be assigned automatically based on LDAP group membership.

See Configuring Fusion for LDAP.

11.7.2. Manage Security Realms

Only Fusion users with admin privileges can manage security realms. There are two ways to manage security realms:

In the Fusion UI

Navigate to Applications > Access Control > Security Realms.

Using the Realms API

Use the http://localhost:8764/api/realm-configs/ endpoint to manage security realms. See the Realms API reference for
details. In production environments, use port 8765.

231

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure
http://localhost:8764/api/realm-configs/
http://localhost:8764/api/realm-configs/
http://localhost:8764/api/realm-configs/
http://localhost:8764/api/realm-configs/
http://localhost:8764/api/realm-configs/

11.8. Configuring Fusion for LDAP

You can create security realms that use external LDAP servers for authentication. Optionally, Fusion can search in the
LDAP for groups to which a user belongs, and then map those groups to Fusion roles. Fusion performs authorization
using permissions stored in Fusion users and Fusion roles.

Note: Fusion doesn’t use permissions from the LDAP for authorization of UI access or API requests. It only obtains group
names (optionally), which are mapped to role names. If an Active Directory Security Query Trimming Stage is used, then
directory-service permissions are used for trimming. If a connector supports security trimming, then connector
permissions are used for trimming.

To configure Fusion to use an external LDAP as an authentication provider, you’ll need to get information about the
LDAP server(s) running on your system, either from your system or your sysadmin.

11.8.1. Fusion Configuration for an LDAP Realm

To configure an LDAP security realm from the Fusion UI, you must be logged in as a user with admin-level permissions.
From the "Applications" menu, menu item "Access Control", panel "Security Realms", click on the "Add Security Realm"
button:

This opens an editor panel for a new Security Realm, containing controls and inputs for all required and optional
configuration information.

Required Configuration Step One: Name and Type

The first step in setting up an LDAP security realm is filling out the required information at the top of the realm config
panel:

232

The first three required configuration items are:

• name - must be unique, should be descriptive yet short.

• type - choose "LDAP" from the pulldown menu.

• "enabled" checkbox - default is true (i.e., the box is checked). The "enabled" setting controls whether or not Fusion
allows user logins for this security realm.

Required Configuration Step Two: Server and Port

The hostname and port of the LDAP server are required, along with whether or not the server is running over SSL.

Required Configuration Step Three: Authentication Method and DN Templates

There are three possible authentication methods:

• Bind - LDAP authentication is carried out via a single "Bind" operation.

• Search - LDAP authentication is carried out indirectly via a Search operation followed by a Bind operation.

• Kerberos - Kerberos authenticates Fusion and an LDAP Search operation is carried out to find group-level
authorizations.

The Bind authentication method is used when the Fusion login username matches a part of the LDAP DN. The rest of the
LDAP DN is specified in the "DN Template" configuration entry, which uses a single pair of curly braces ({}) as a
placeholder for the value of the Fusion username.

The Search authentication method is used when the username used for Fusion login doesn’t match a part of the LDAP

233

DN. The search request returns a valid user DN, which is used together with the user password for authentication via a
Bind request.

The Search authentication method is generally required when working with Microsoft Active Directory servers. In this
case, you need to know the username and password of some user who has sufficient privileges to query the LDAP server
for user and group memberships; this user doesn’t have to be the superuser. In addition to a privileged user DN and
password, the Search authentication method requires crafting a search request. There are two parts to the request: the
first part is the base DN of the LDAP directory tree which contains user account objects. The second part of the request
is a Search Filter object which restricts the results to a matching subset of the information.

Optional Configuration: Roles and Groups Mappings

A Fusion role is a bundle of permissions tailored to the access needs of different kinds of users. Access to services and
data for LDAP-managed users is controlled by mappings from LDAP users and groups to Fusion roles.

Roles can be assigned globally or restricted to specific LDAP groups. The security realm configuration panel contains a
list of all Fusion roles with a checkbox for each, used to assign that role to all users in that realm. LDAP group names can
be mapped directly to specific Fusion roles and LDAP group search and filter queries can also be used to map kinds of
LDAP users to specific Fusion roles.

Testing the Configured Connection

The last part of the form allows you to test the LDAP realm config using a valid username and password:

When the "Update and test settings" button is clicked, the username from the form is turned into a DN according to the
DN template, and a Bind operation request is sent to the configured LDAP server. Fusion reports whether or not
authentication was successful:

234

11.8.2. Basic LDAP Concepts and Terminology

The LDAP protocol is used to share information about users, systems, networks, and services between servers on the
internet. LDAP servers are used as a central store for usernames, passwords, and user and group permissions.
Applications and services use the LDAP protocol to send user login and password information to the LDAP server. The
server performs name lookup and password validation. LDAP servers also store Access Control Lists (ACLs) for file and
directory objects which specify the users and groups and kinds of access allowed for those objects.

LDAP is an open standard protocol and there are many commercial and open-source LDAP servers available. Microsoft
environments generally use Active Directory. Unix servers use AD or other LDAP systems such as OpenLDAP, although
many Unix systems don’t use LDAP at all. To configure Fusion for LDAP, you’ll need to get information about the LDAP
server(s) running on your system either from your sysadmin or via system utilities.

Directories and Distinguished Names

An LDAP information store is a Directory Information Tree (DIT). The tree is composed of entry nodes; each node has a
single parent and zero or more child nodes. Every node must have at least one attribute which uniquely distinguishes it
from its siblings which is used as the node’s Relative Distinguished Name (RDN). A node’s Distinguished Name (DN) is a
globally unique identifier.

The string representation of a DN is specified in RFC 4514. It consists of the node’s RDN followed by a comma, followed
by the parent node’s DN. The string representation of the RDN is the attribute-value pair name, connected by an equals
("=") sign. This recursive definition means that the DN of a node is composed by working from the node back through its
parent and ancestor nodes up to the root node.

Here is a small example of a DIT:

235

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://tools.ietf.org/html/rfc4514

The person entry in this tree has the DN: "uid=babs, ou=people, dc=example, dc=com".

Attribute names include many short strings based on English words and abbreviations, e.g.:

Name Description

cn commonName

dc domainComponent

mail email address

ou organizationalUnitName

sn surname

uid userId

LDAP entry attributes can refer to other LDAP entries by using the DN of the entry as value of that attribute. The
following example of a directory which contains user and groups information shows how this works:

236

This tree contains two organizational units: "ou=people" and "ou=groups". The children of the "group" organizational
unit are specific named groups, just as the child nodes of organization unit "people" are specific users. There are three
user entries with RDNs "uid=bob", "uid=alice", "uid=bill" and two groups with RDNs "cn=user" and "cn=admin". The
dotted lines and group labels around the person nodes indicates group membership. This relationship is declared on the
groups nodes by adding an attributes named "member" whose value is a users DN. In the LDAP data interchange format
(LDIF), this is written:

cn=user,ou=groups,dc=acme,dc=org
 member: uid=bob,ou=people,dc=acme,dc=org
 member: uid=alice,ou=people,dc=acme,dc=org
cn=admin,ou=groups,dc=acme,dc=org
 member: uid=bill,ou=people,dc=acme,dc=org

See the Wikipedia’s LDAP entry for details.

LDAP Protocol Operations

For authentication purposes, Fusion sends Bind operation requests to the LDAP server. The Bind operation
authenticates clients (and the users or applications behind them) to the directory server, establishes authorization
identity used for subsequent operations on that connection, and specifies the LDAP protocol version that the client will
use.

Depending on the way that the host system uses LDAP to store login information about users and groups, it may be
necessary to send Search operation requests to the LDAP server as well. The Search operation retrieves partial or
complete copies of entries matching a given set of criteria.

LDAP filters specify which entries should be returned. These are specified using prefix notation. Boolean operators are
"&" for logical AND, "|" for logical OR, e.g., "A AND B" is written "(&(A)(B))". To tune and test search filters for a Unix-
based LDAP system, see the ldapsearch command line utility documentation. For Active Directory systems, see AD

237

https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format
https://en.wikipedia.org/wiki/LDAP_Data_Interchange_Format
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Directory_structure
https://www.ldap.com/ldap-filters
http://docs.oracle.com/cd/E19450-01/820-6169/ldapsearch-examples.html
http://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx

Syntax Filters.

238

http://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx

11.9. Configuring Fusion for Kerberos

To configure the Fusion UI service to use Kerberos for user authentication, you must create a Kerberos security realm.

Kerberos is a system that provides authenticated access for users and services on a network. Instead of sending
passwords in plaintext over the network, encrypted passwords are used to generate time-sensitive tickets that are used
for authentication. SPNEGO provides a mechanism for extending Kerberos to Web applications through the standard
HTTP protocol.

Kerberos uses symmetric-key cryptography and a trusted third party called a Key Distribution Center (KDC) to
authenticate users to a suite of network services. (By users we mean both end users and client programs). The
computers managed by that KDC and any secondary KDCs constitute a realm. When a user authenticates to the KDC, the
KDC sends a set of credentials (a ticket) specific to that session back to the user’s machine. Kerberos-aware services use
the ticket on the user’s machine for authentication instead of requiring sign-on with a password. Because tickets are
used rather than passwords, this provides the convenience of Single Sign-On (SSO) in addition to security.

A Kerberized process is one that has been configured so it can get tickets from a KDC and negotiate with Kerberos-aware
services. When a user sends an HTTP request, Fusion tries to authenticate using the Kerberos/SPNEGO protocol. If the
request was sent from a browser, Fusion doesn’t display the initial sign-on panel; instead on login, the user sees the
main Fusion collections panel.

To Kerberize Fusion, you must:

• Configure the Kerberos client on the server that the Fusion UI service will be running on so that it can talk to the
KDC (section Configuring the Kerberos client below).

• Configure the security realm of the Fusion UI (section Configuring Fusion Authentication for Kerberos Realm
below).

• Depending on the encryption used by the KDC, you may also need to install additional Java security libraries into the
Fusion distribution. These are freely available from Oracle, see download and installation instructions below.

To do this, you need following information, which you can get from your sysadmin:

• Kerberos realm name - in most cases, this is your domain name in upper case.

• KDC name - usually "kerberos." + your domain name.

• Kerberos principal name and password. A principal is a unique identity to which Kerberos can assign tickets. When
the entity is a client program, this is called the Service Principal name.

• A keytab file which holds the encrypted credentials.

The usual scenario in an enterprise organization is to have a Kerberos admin create a service principal with a random
key password. Then, the admin generates a keytab, which is then used for Fusion service principal authentication.

The Kerberos commands needed for configuration and testing are:

• kinit - obtain and cache a ticket from the KDC (i.e., domain login)

• kdestroy - destroys credentials (i.e., domain logout)

• klist - lists cached credentials

• ktutil - create or add credentials to a keytab file

239

If your browser is not already configured to use the Kerberos/SPNEGO, you will need to do so in order to test the Fusion
configuration.

11.9.1. Configuring the Kerberos client

Step 1: Edit the Kerberos configuration file.

To configure your local Kerberos client so that it can talk to the Kerberized server, you must edit Kerberos configuration
file named krb5.conf. On most Unix systems, this file is located at /etc/krb5.conf.

This file contains Kerberos configuration information, including the locations of KDCs and admin servers for the
Kerberos realms of interest, defaults for the current realm and for Kerberos applications, and mappings of hostnames
onto Kerberos realms.

If your organization realm name is "MYORG.ORG", and your KDC server is named "kerberos.myorg.org", then you edit
two entries. The first entry is libdefaults. Set MYORG.ORG as the default realm:

[libdefaults]
 default_realm = MYORG.ORG

The second entry is realms. Add MYORG.ORG as a realm:

[realms]
 MYORG.ORG = {
 kdc = kerberos.myrealm.com
 }

For example, for realm LUCIDWORKS.IO, the krb5.conf file is just like the above example, except that instead of
"myorg.org" we specify "lucidworks.io".

Step 2: Authenticate to Kerberos

The command kinit is the Kerberos authentication command. To get started, you authenticate to Kerberos using the
Kerberos principal name and password (which you may need to obtain from your sysadmin). For this example, the
principal name is "prince".

> kinit prince

The kinit command prompts for a password. Successful authentication is silent. Unsuccessful authentication results in
an error message.

The command klist shows all cached Kerberos credentials. To check that you’ve successfully authenticated, run this
command:

> klist

Output should be in this form, but with your data:

240

Credentials cache: API:C980F9F5-415C-4A3E-9C67-883C7D5FFFBE
 Principal: prince@MYORG.ORG

 Issued Expires Principal
May 6 15:14:55 2015 May 7 01:12:47 2015 krbtgt/MYORG.ORG@MYORG.ORG

11.9.2. The Service Principal Keytab file

The usual scenario in an enterprise organization is to have a Kerberos admin create a service principal with a random
key password. Then, the admin generates a keytab, which is then used for Fusion service principal authentication. If you
are your own Kerberos admin, then you will need to create this file for yourself.

Step 3. Create a Keytab file

The command ktutil creates the service principal keytab file which holds the encrypted credentials that the Fusion UI
Proxy will use for Kerberos authentication. In order to generate the keytab file, you must have a set of cached
credentials, therefore, first run the kinit command (step 2).

From the command line, run the command ktutil. You must enter your password twice.

> ktutil -k http-myrealm.org.keytab add -p HTTP/myrealm.org@MYORG.ORG -e aes256-cts-hmac-sha1-96 -V 0

The -k argument specifies the name of the keytab file which will be created or updated. The command "add" takes the
following argument flags:

• "-p" : service principal, format <service>/<fully.qualified.domain>@REALM

• "-e" : encryption type. Depending on the encryption type, you may need to download additional Java security
libraries for strong encryption.

• "-V" : key version number (kvno). Key version numbers are used in the Kerberos V5 protocol to distinguish between
different keys in the same domain.

If successful, this command creates a keytab file called "http-myrealm.org.keytab". Note the directory you’re in - you’ll
need this full path when creating the Proxy realm-config later.

Step 4. Test the Keytab file

The location of this keytab file will be used to configure UI Proxy configuration. Before configuring the Fusion UI Proxy,
you should check that the keytab file is valid. Testing the keytab requires the following sequence of steps:

• Clear any existing credentials via command kdestroy.

• Log in using the keytab as an argument to the command kinit -kt <keytab file> <principal>, where <principal> is
the name of a principal within the keytab file.

• Examine your credentials via command klist.

• Clear credentials via command kdestroy, which removes any existing credentials, effectively logging you out of
Kerberos.

To remove cached credentials, use the kdestroy command. This command succeeds silently. To check that credentials
have been removed, re-run the klist command:

241

http://web.mit.edu/kerberos/www/krb5-latest/doc/admin/conf_files/kdc_conf.html#encryption-types

> kdestroy
> klist
klist: krb5_cc_get_principal: No credentials cache file found

Use the keytab to login as the service principal, without being prompted for a password:

> kinit -t http-myrealm.org.keytab HTTP/myrealm.org

Examine your credentials via the command klist. The output should be similar to this:

Credentials cache: API:51D488FF-5CD9-4E16-98FA-B47743F5B4ED
 Principal: HTTP/myrealm.org@MYORG.ORG

 Issued Expires Principal
Apr 1 09:15:02 2015 Apr 1 19:13:42 2015 krbtgt/MYORG.ORG@MYORG.ORG

Logout again with kdestroy.

11.9.3. Configuring Fusion Authentication for Kerberos Realm

Once you have tested both the user and service principal logins, you must create the service principal realm-config in
the Fusion Authentication Proxy. This allows the Proxy to authenticate to Kerberos as the service principal, without a
password.

Step 5. Configure the Fusion Realm

Fusion security realms can be configured either via the Fusion UI Admin tool or the Fusion REST API. The advantage of
using the Fusion UI Admin Tool is that a single panel’s worth of configuration requires a series of calls to the REST API. It
is important to understand the set of configuration properties collected by the Fusion UI and how they are used by the
REST API.

A security realm for Kerberos has the following properties:

• name : unique string identifier

• realmType : "kerberos"

• enabled : whether or not the realm is available for users to use with system authentication

• config : this property is required for the realm type "kerberos". It takes two key-value pairs:

◦ principal : the principal service name

◦ keytab : this must be the full path to the keytab file.

To configure Fusion via the Fusion UI Admin tool, you should be logged in to Fusion as "admin" or as a user who has
super-admin privileges.

From the Fusion Admin tool, choose the "Access" control from the left hand side nav bar, and go to the Access tab
"Security Realms" (URL: <server>:<port>/admin/security-realms).

Click on the "Add Security Realm" button. On the New Security Realm form, choose type "kerberos" from the pulldown
menu so that there are input boxes for the Kerberos realm properties "Service Principal" and "Keytab path". Choose a

242

realm name, check the "enabled" checkbox, and enter the service principal and the full path to the keytab file.

The New Security Realm form also controls the default roles assigned to a user the first time that they access Fusion via
this realm, using the Kerberos/SPNEGO protocol. For example, once you have defined a Kerberos realm "my-kerberos-
realm" for domain "MYORG.ORG", when user "any.user" in domain "MYORG.ORG" authenticates to Fusion for the first
time via this realm, they will be added to the set Fusion users as username "any.user@MYORG.ORG" and they will have
all default roles.

It is prudent to allow the minimum set of default roles, as all users will have these permissions. Some users will require
admin privileges and a few users will require super-admin privileges. There should always be a user with super-admin
privileges that can authenticate to Fusion using the native security realm and can then grant permissions to individual
users as needed.

11.9.4. Kerberos/SPNEGO HTTP Authentication

SPNEGO provides a mechanism for extending Kerberos to applications that use the HTTP protocol including web
browsers and the curl command-line utility.

Step 6. Configure the HTTP client

When a user sends a request to the Kerberized Fusion UI, a SPNEGO request (http[s]) is made. If the user is not already
authenticated, the Fusion authentication proxy will yield a 401 status code and a Negotiate header. This status/header
response triggers compatible clients to fetch a local ticket from their Kerberos "ticket tray". This ticket is then encoded
and sent back to the Fusion. The Fusion authentication proxy will then decode the ticket, and perform a SPN.doAs(user)
authentication request to the KDC/Authentication Service. Depending on the results, the proxy then successfully
executes the original request (along with a session cookie) or a 401 (without the Negotiate). Clients can either choose to
use the session cookie or continue authenticating on every request.

Configuring Web Browsers and curl for SPNEGO

The --negotiate option enables SPNEGO in curl.

IE and Safari require no additional configuration to use SPNEGO.

To configure Firefox, access the low level configuration page by loading the about:config page. Then go to the
network.negotiate-auth.trusted-uris preference and add the hostname or the domain of the web server that is HTTP
Kerberos SPNEGO protected (if using multiple domains and hostname use comma to separate them).

The Chrome browser must be launched from the command line with several added parameters.

To run Chrome on linux:

> google-chrome --enable-plugins --args\
 --auth-server-whitelist="*KERBEROS_DOMAIN"\
 --auth-negotiate-delegate-whitelist="*KERBEROS_DOMAIN"\
 --auth-schemes="basic,digest,ntlm,negotiate"

To run Chrome on a Mac:

243

mailto:any.user@MYORG.ORG
http://en.wikipedia.org/wiki/SPNEGO

> open 'Google Chrome.app' --args\
 --auth-server-whitelist="*ROGUECLOUD.COM"\
 --auth-negotiate-delegate-whitelist="*KERBEROS_DOMAIN"\
 --auth-schemes="basic,digest,ntlm,negotiate"

To run Chrome on Windows:

chrome.exe --auth-server-whitelist="*KERBEROS_DOMAIN"\
 --auth-negotiate-delegate-whitelist="*ROGUECLOUD.COM"\
 --auth-schemes="basic,digest,ntlm,negotiate"

For more information, see Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO and
http://www.roguelynn.com/words/apache-kerberos-for-django/.

Session cookies

A successful Kerberos/SPNEGO login will yield a session cookie, this cookie is identical to the cookie yielded by the
Fusion authentication proxy’s current POST-login-mechanism.

The expiration policy on the cookie is currently fixed at 8 hours. But has a 1 hour "idle" max, which means if you don’t
make a request for 1 hour, the cookie is invalidated. Otherwise the lifetime is pushed ahead until the 8 hour max is met.

The name of the cookie is "id" and the value is a UUID. This UUID is a key that maps to an in-memory value containing
the real user ID.

11.9.5. Testing and Troubleshooting

Once you have configured the Kerberos security realm, you can test it by logging out of Fusion and shutting down the
browser.

Check that you have a valid Kerberos authentication ticket via the klist command.

Now open a new browser session and access the Fusion installation, <domain>:<UI port>.

This should take you directly to the main Fusion panel, bypassing the the Fusion "Welcome" login panel. To view your
login profile, click on the profile icon on the top nav bar. Your user name should be your login name + "@" + your
domain name.

If instead, you see the Fusion login panel, your browser is not configured for SPNEGO.

If the Fusion display consists only of an empty top nav bar, this indicates an authentication failure. Check that the path
to your keytab file is correct. Then check the Fusion logs.

If your KDC uses "AES256 CTS mode with HMAC SHA1-96" for key encryption, the proxy will log this error when
attempting to authenticate:

GSSException: Failure unspecified at GSS-API level (Mechanism level: Encryption type AES256 CTS mode with HMAC
SHA1-96 is not supported/enabled)

To get around this, the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File will need to be
downloaded and installed. It can be downloaded from:

244

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_browser_access_kerberos_protected_url.html
http://www.roguelynn.com/words/apache-kerberos-for-django/

• http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Place the jars in your JAVA_HOME/jre/lib/security/ directory, then restart Fusion.

Clicking on the "logout" icon on the top nav bar (rightmost icon or a padlock) takes you back to the main Fusion panel. If
you destroy your Kerberos credentials cache via the "kdestroy" command, the next time you logout of Fusion, you will
be logged out and the browser will display the Fusion login panel.

11.9.6. References and Tutorials

https://en.wikipedia.org/wiki/Kerberos_%28protocol%29

http://www.roguelynn.com/words/explain-like-im-5-kerberos/

http://thekspace.com/home/component/content/article/54-kerberos-and-spnego.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/
Using_Kerberos.html#about-kerberos

http://www.oracle.com/technetwork/articles/idm/weblogic-sso-kerberos-1619890.html - section "Install Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files"

http://www.cisco.com/c/en/us/support/docs/security-vpn/kerberos/16087-1.html

245

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://www.roguelynn.com/words/explain-like-im-5-kerberos/
http://thekspace.com/home/component/content/article/54-kerberos-and-spnego.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Using_Kerberos.html#about-kerberos
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Using_Kerberos.html#about-kerberos
http://www.oracle.com/technetwork/articles/idm/weblogic-sso-kerberos-1619890.html
http://www.cisco.com/c/en/us/support/docs/security-vpn/kerberos/16087-1.html

11.10. User Access Request Params

Fusion requests must come from a known user, i.e., a user with a unique user id (UUID). Fusion’s ZooKeeper registry
tracks all users across all realms. Usernames must be unique within a realm. Fusion creates a globally unique user ID
for all users based on the combination of username and realm.

All requests to the Fusion REST API require either a username, password, and security realm name, or the session
cookie which contains the unique user ID.

11.10.1. Per-Request Authentication

To pass authentication information with each request, the realmName is specified as a query parameter on the request
itself:

curl -u joe.smith:password123 "http://www.acme.com:8764/api/apollo/collections?realmName=acmeLDAP"

The default realmName parameter is "native", so for native authentication, this parameter can be omitted.

11.10.2. Session Cookies

The Fusion UI service endpoint "api/session" can be used to generate a session cookie which contains the unique user id
via a POST request whose body consists of a JSON object which contains the username, password information. For users
belonging to a realm other than the native realm, the request parameter "realmName" must be specified. The command
to generate a session cookie for the admin user with password "password123" is:

curl \
 -c cookie -i -X POST -H "Content-type:application/json" -d @- \
 http://localhost:8764/api/session?realmName=native \
<<EOF
 { "username" : "admin" , "password" : "password123" }
EOF

The curl command takes any number of specialized arguments, followed by the URL of the request endpoint. The
arguments used here are:

• -c : filename of cookies file. If it exists, cookies are added to it. You can use -c - which writes to the terminal window
(std out).

• -i : include the HTTP-header in the output. Used here to see the cookie returned with the response.

• -X : request method, in this case POST

• -H : request header. The api/session endpoint requires Content-type:application/json.

• -d : Pass POST body as part of the command-line request. To get ready the body from a file, use the syntax -d
@<filename>. The argument -d @- reads the data from stdin.

The header output shows the cookie information:

246

HTTP/1.1 201 Created
Set-Cookie: id=996e4adf-bd04-4058-a926-8ea8ca08c05a;Secure;HttpOnly;Path=/api
Content-Length: 0
Server: Jetty(9.2.11.v20150529)

Once the session cookie file has been created, it can be sent along in all subsequent requests to the REST API. For the
curl command-line client, the -b flag is used to send the contents of the cookie file to the server along with the request.

The following command sends a GET request to the Fusion REST API Collections service to check the status of the
"system_metrics" collection. The -b flag sends in a freshly generated session cookie.

> curl -b cookie -i http://localhost:8764/api/apollo/collections/system_metrics

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Encoding: gzip
Vary: Accept-Encoding, User-Agent
Content-Length: 278
Server: Jetty(9.2.11.v20150529)

{
 "id" : "system_metrics",
 "createdAt" : "2016-03-04T23:29:47.779Z",
 "searchClusterId" : "default",
 "commitWithin" : 10000,
 "solrParams" : {
 "name" : "system_metrics",
 "numShards" : 1,
 "replicationFactor" : 1
 },
 "type" : "METRICS",
 "metadata" : { }
}

If the session cookie has expired, the system returns a 401 Unauthorized code:

> curl -b cookie -i http://localhost:8764/api/apollo/collections/system_metrics

HTTP/1.1 401 Unauthorized
Content-Type: application/json; charset=utf-8
Content-Length: 31
Server: Jetty(9.2.11.v20150529)

{"code":"session-idle-timeout"}

247

Reference Manual

248

Chapter 12. Connectors Configuration Reference

12.1. Database Connectors

Content stored in a database comes in the form of a set of rows returned in response to a query. Content is fetched via a
series of database queries. The rows returned are transformed into documents for the index. The query results set
returned by a fixed query will change over time. Database rows lack the kind of metadata information available on files,
so tracking changes to documents is not always possible.

Fusion provides the following database connectors:

• Couchbase which uses Couchbase’s XDCR feature to transfer data in real time

• JDBC - for relational databases which can be accessed by a JDBC4 database driver, such as Oracle, MySQL, or
Postgres

• MongoDb

12.2. Filesystem Connectors

A filesystem-based data store is a network of nodes to be traversed, where each node (e.g., a Unix file directory)
provides information about its child nodes (e.g., the files in that directory) or references other nodes (e.g. links in an
html document). The extent of the network of nodes to be traversed is discovered during the crawl. The crawler
captures information about the node, e.g., file name, permissions, date of creation, last modification, and last access, as
well as the contents of the nodes.

Fusion provides the following filesystem connectors:

• Box.com

• Dropbox

• FTP

• Google Drive

• HDFS This crawler doesn’t use MapReduce for document processing, but instead treats HDFS as a simple filesystem.

• Local Filesystem

• S3 (deprecated)

• S3 Hadoop FS (Hadoop over Amazon)

• SolrXML - Specific to files in SolrXML format only; it cannot be used with any other kind of XML.

• Windows Share

12.3. Hadoop Cluster Connectors

Fusion provides connectors for the following Hadoop distributions:

• Apache 2.x

• Cloudera

• Hortonworks HDP

249

• MapR

• Pivotal

See section Hadoop Connector and Datasource Configuration for connector and datasource details.

12.4. Logging Connectors

• Logstash (deprecated) - collects logging and event streams from a Logstash instance

12.5. Push Content Connectors

• Push connector- push content to Fusion for indexing into Solr via a Fusion index pipeline

12.6. Repository Connectors

• Alfresco

• Azure blob

• Azure table

• Azure

• Drupal

• GitHub

• JIRA

• Salesforce

• ServiceNow

• SharePoint

• Solr Index

• Subversion

• Zendesk

12.7. Script Connectors

• Javascript Connector - Javascript for custom retrieval of content from filesystems and websites

12.8. Social Media Connectors

• Jive

• Slack (deprecated)

• Twitter Search (deprecated)

• Twitter Stream (deprecated)

250

http://logstash.net/

12.9. Web Connectors

• Web

251

Connectors

12.10. Alfresco Connector and Datasource Configuration

The Alfresco Connector is a crawler for the Alfresco server, which adheres to the Content Management Interoperability
Services (CMIS) standard.

This connector was developed for the Alfresco Community 5.0d content repositories and hasn’t been tested on any other
versions of Alfresco or any other CMIS server.

12.10.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

252

https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
http://sourceforge.net/projects/alfresco/files/Alfresco%205.0.d%20Community/

12.11. Azure Connector and Datasource Configuration

The Azure connector is used to crawl an Azure instance. Its connector type is "lucid.azure" and its plugin type is "azure".

Note This connector is included with Fusion 2.1.3 and above.
Older versions of Fusion had separate Azure Table and
Azure Blob connectors.

12.11.1. Configuration

Property Description

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

max_bytes

Max Bytes

The maximum size of a document to crawl in bytes.

type: integer

default value: ‘10485760’

max_connections

Maximum number of connections

Maximum number of connections at the same time

type: integer

default value: ‘5000’

max_threads

Maximum number of threads

Maximum number of threads

type: integer

default value: ‘5’

service_type

Azure service type

required

Azure service type

type: string

enum: \{ Azure Table Azure Blob }

253

Property Description

storage_account

Storage Account

required

The Azure storage account name.

type: string

minLength: 1

storage_container

Storage Container

The name of the Azure container.

type: string

minLength: 1

table_filter_statement

Table Filter Statement

A filter to apply to the crawl.

type: string

tables

Tables

The Azure tables to index.

type: string

minLength: 1

token_secret

Token Secret

required

The Azure storage account token for authentication.

type: string

minLength: 1

Field Mapping

254

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

255

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

256

12.12. Box.com Connector and Datasource Configuration

The Box connector retrieves data from a Box.com cloud-based data repository. To fetch content from multiple Box users,
you must register an application in order to obtain the proper authorization tokens.

Note In Fusion 3.1, the Box connector uses an improved approach for crawling large Box data repositories. If you use
the Box connector, we recommend that you upgrade to Fusion 3.1 or later.

The startLinks defined for the datasource must include the Box numeric file and directory IDs. The root directory of any
Box account has ID 0 (zero) - if you want to crawl your entire Box repository, you should enter '0'.

During the crawl, the human-readable path (e.g., /FolderName/FileName.txt) will be added to each document as the title
field.

12.12.1. Box Authorization, Access, and Refresh Tokens

Fusion supports authentication using OAuth2.

Box.com uses a two-step process to get the correct tokens for access via the Box API. The first step uses a client_id and a
client_secret code to get an authorization token which is used to make a second request to get an access token and a
refresh token. The authorization token is only valid for a limited period. The access token is available for about 60
minutes, so the refresh token is used to make further requests for a new, valid, access token to be able to crawl your Box
files.

Here’s how to get the required tokens:

1. Open the Box Developer Console and create a new application, giving it a unique application name.

The next screen is the application editing screen which contains the client_id and client_key values used for
authorization.

2. Copy the client_id and client_secret values

3. Set the redirect_uri to http://localhost or http://0.0.0.0. This address is not used by Fusion, but cannot be left
blank.

4. Scroll to the bottom of the page and save the application.

5. Construct a GET request (directly in your browser) that looks like the following, replacing CLIENT_ID and
CLIENT_SECRET with the values Box.com provided when you registered your application:

https://app.box.com/api/oauth2/authorize?response_type=code&client_id=CLIENT_ID&state=security_token=CLIEN
T_SECRET&redirect_uri=

When you enter the GET request to your browser, you will be presented with a Box.com authentication screen to
grant access to Box.

6. Enter your Box username and password, and click "Authorize".

The response will include the authorization code (the "code" property in the response). This code is only good for 30
seconds. If you miss the window when it is still valid, you will need to start over to get a new code.

Here is a sample response:

257

https://app.box.com/developers/console
http://localhost
http://0.0.0.0

http://0.0.0.0/?state=security_token=MAgknRyPVRFUlaMHyD9h4kWCW4aytbqF&code=EQY21Goi9fv2bKxOqAN48QfxHOwysmX
d

The authorization code needs to be put into a POST request within 30 seconds, or the code will expire.

7. Use the CLIENT_ID and CLIENT_SECRET from the earlier request:

curl -X POST \-d
'grant_type=authorization_code&code=AUTH_CODE&client_id=CLIENT_ID&client_secret=CLIENT_SECRET'
https://app.box.com/api/oauth2/token

If the request is successful, the response will look like this:

{
 "access_token":"qds2amBKVuiT7P2besq5t4sEv9Y9k4CL",
 "expires_in":3652,
 "restricted_to":[],
 "refresh_token":"cHjGe3BVc7UsvKoP6V4O9sayRpJYQVMWFImopVbpZ15omkAuK7oMXC2yOywjSPAu",
 "token_type":"bearer"
 }

8. Save the refresh_token for use configuring the Box datasource in Fusion, together with the client_id and
client_secret values. Fusion uses the refresh_token to get a valid access code for crawling, because the access code
is only good for 1 hour,

The refresh_token is valid for about 60 days. After an initial crawl, if you do not crawl your Box files again within the 60
day window, you will need to repeat the process to get a new refresh_token and update the datasource with the new
token. If, however, you crawl your Box files before the 60 day expiration window, Fusion will automatically update the
refresh_token and store it in fusion/data/connectors/container/lucid.anda/datasourceID, where 'datasourceID' is the ID
of the datasource. If you regularly crawl your Box files, you should never have to repeat the process of getting the
authorization token, access token and refresh token.

Authentication Using OAuth2

In this case, Fusion uses OAuth 2.0 to authenticate to a normal Box user when accessing the Box API.

Fusion needs the inputs below to crawl your Box data.

Required options are highlighted.

258

https://developer.box.com/docs/oauth-20

UI Label,
API Name

Description

OAuth Refresh Token
f.fs.refreshToken

The refresh token requires us to authenticate using the
Box.com account you want to do the crawling to get it. To
speed the process, we created a handy downloadable
utility. Use it like this:

1. Launch the executable JAR:

java -jar /path/to/box-oauth-generator-1.0.jar

2. Enter the requested data.

3. Click Get Redirect Token.

The utility obtains the refresh_token from Box.com
using the specified credentials; it’s valid for about 60
days.

Box OAuth Refresh Token File
f.fs.refreshTokenFile

The filename in which to save the refresh token.

Tip If you crawl your Box files at intervals of less than 60 days,
Fusion will automatically update the refresh_token and
store it in
fusion/data/connectors/container/lucid.anda/<datasourceI
D>, where <datasourceID> is the ID of the datasource.

12.12.2. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

259

https://download.lucidworks.com/box-oath-generator/box-oauth-generator-1.0.jar
https://download.lucidworks.com/box-oath-generator/box-oauth-generator-1.0.jar

12.13. Couchbase Connector and Datasource Configuration

The Couchbase connector uses the Cross-Datacenter Replication (XDCR) feature of Couchbase to retrieve data stored in
Couchbase continuously in real-time.

This connector has been tested for compatibility with Couchbase Server 2.5.1 Enterprise Edition.

12.13.1. Indexing and Commits

Because this connector retrieves data continuously, two properties are available to control the frequency of commits to
Solr, which makes the documents available for user queries. The properties define the maximum number of documents
to queue for a commit (set to 50,000 by default) and the maximum amount of time to wait between commits (set to 120
seconds, or 2 minutes). Documents will be committed when one of those thresholds is reached first, meaning that if 2
minutes have passed and there are only 20,000 documents, a commit will occur. Similarly, if only 1 minute has passed
and there are 50,000 documents in the queue, a commit will occur. These properties can be adjusted for your own
requirements if needed.

Note This connector retrieves data continuously. You can limit
the number of documents it fetches during testing by
setting the maximum number of documents retrieved, or
you can manually stop the connector with the Fusion UI or
Connector Datasources API.

12.13.2. Splitting Couchbase Documents

Because Couchbase has a flexible data model, documents may have a nested JSON structure. It is possible to split nested
documents with a splitpath property, which uses an XPath-style path to the element to split on. These paths do not
accept wildcards.

For example, if you have a document that looks like this:

{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks":90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks":86}
]
}

If we want to split this document on the 'exams' element and create two documents each with a different subject, we
would define "splitpath":"/exams" in our datasource definition (if using the Fusion UI to configure the datasource, you
would enter the path without quotes).

The output from retrieving the document will look like this:

260

{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks":90
 }
]
},
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Biology",
 "test" : "term1",
 "marks":86
 }
]
}

12.13.3. Field Mapping with Couchbase

The Couchbase connector has built-in field mapping allows mapping Couchbase fields to fields in your schema. The
mapping configuration defines a field from your schema and an XPath-style path to the field in the Couchbase JSON
document.

The field mapping can accept wildcards and double-wildcards to map fields automatically. Wildcards can be used, but
only at the end of the path definition.

• field_name="" and field_path=/docs/* - maps all the fields under docs to the same name as given in JSON.

• field_name="" and field_path=/docs/** - maps all the fields under docs and their children fields to the same name as
given in JSON.

• field_name=searchField and field_path=/docs/* - maps all the fields under /docs to a single field named 'searchField'.

• field_name=searchField and field_path=/docs/** - maps all the fields under /docs and their children fields to a single
field named 'searchField'.

If mapping is not defined, a default mapping will be assigned, in the format of the second example above, i.e.,
field_name="" and field_path=/docs/**.

Example

This example some simple field mapping, using a single document such as this:

261

{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks": 90 },
 {
 "subject": "Biology",
 "test" : "term1",
 "marks": 86 }
]
}

When we configure the datasource, we can define our field mapping as follows:

"field_mapping": [
{
 "field_name":"points_i",
 "field_path":"/exams/marks"
},
{
 "field_name":"",
 "field_path":"/**"
}
]

Two mappings are defined. The first will map the '/exams/marks' field from Couchbase to the 'points_i' field in Solr. The
second maps all top-level and child fields from Couchbase to either the same field name in Solr or to a dynamic field
rule.

After retrieving the document, it will look like this:

{
 "first_s": "John",
 "last_s": "Doe",
 "grade_i": 8,
 "exams": [
 {
 "subject_s": "Maths",
 "test_s" : "term1",
 "points_i":90},
 {
 "subject_s": "Biology",
 "test_s" : "term1",
 "points_i":86}
]
}

The 'marks' field from the original document has been mapped to the 'points_i' field; most of the other fields have been
mapped to appropriate dynamic field rules.

262

Note that the representation of the document above is after it has been retrieved from Couchbase, but before it has been
processed by the index pipelines. Since the index pipelines contain several stage types that can further transform the
document, such as the Apache Tika Parser stage and the Field Mapping stage, the document that ends up indexed to Solr
may be different from the document representation above. Some small iterations of crawling are recommended to be
sure the documents are indexed as required.

12.13.4. Configuration

Property Description

client_host

Couchbase client host

Host on which Couchbase replica is running. Must be
reachable from Couchbase server.

type: string

default value: ‘127.0.0.1’

minLength: 1

client_port

Couchbase client port

Port number on which Couchbase client will be started.

type: integer

default value: ‘9876’

cluster_name

Cluster name

required

Connector’s cluster name in Couchbase server

type: string

minLength: 1

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

max_docs

Max documents

The maximum number of documents to process before
stopping. The default '-1' means no maximum and this
connector will continue processing content indefinitely.

type: integer

default value: ‘-1’

263

Property Description

num_vbuckets

Number of Couchbase VBuckets

Number of VBuckets used by Couchbase. Values should be
64 if Couchbase server is installed on Mac OS or 1024 for
other platforms. Note that the number of VBuckets must
be consistent for both Couchbase server and Couchbase
Connector. Connector will try to obtain correct value from
Couchbase server and the value specified will be used in
case of failure

type: integer

enum: \{ 64 1024 }

password

Password

required

Couchbase server’s valid password.

type: string

server_host

Couchbase server host

Host on which Couchbase server is running.

type: string

default value: ‘127.0.0.1’

minLength: 1

server_port

Couchbase server port

Port number on which Couchbase server is running.

type: integer

default value: ‘8091’

264

Property Description

source_buckets

Source buckets

required

Couchbase buckets to synchronize with

type: array of object

minimum number of items (minItems): 1

object attributes: \{
 fieldmapping : \{
 display name: Field mappings
 type: array of object
 }
 name (required) : \{
 display name: Bucket name
 type: string
 minLength : 1
 }
 splitpath : \{
 display name: Splitpath
 type: string
 default value: ‘/’
 }
 }

update_docs_num_interval

Update documents interval

Number of processed documents before commit

type: integer

default value: ‘5000’

update_time_interval

Time interval between commits

Time interval in seconds after which processed documents
will be commited

type: integer

default value: ‘120’

username

Username

required

Couchbase server’s valid username.

type: string

265

Property Description

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

266

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

267

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

268

12.14. Dropbox Connector and Datasource Configuration

The Dropbox connector retrieves data from a Dropbox cloud-based data repository.

To fetch content from Dropbox, you must have an OAuth token accessible to the crawler so it can properly authenticate.

If you want to crawl all of the files owned by the account, you can simply add '/' as the startLink.

12.14.1. Dropbox Authentication

In order to authenticate to Dropbox, you must have a access token. This is obtained by first creating an app in the
Dropbox platform as follows:

• Go to https://www.dropbox.com/developers/apps and sign in with your Dropbox account.

• Navigate to the "Your apps" page (from "App Console" in the left-hand navigation bar)

• Click "Create app". You will be taken through a short wizard-like selection process. You will be presented with the
following questions:

◦ What type of app do you want to create? Choose "Dropbox API app"

◦ What type of data does your app need to store on Dropbox? Choose "Files and datastores"

◦ Can your app be limited to its own folder? Choose "No"

◦ What type of files dose your app need access to? Choose "All file types"

◦ Provide a name for the app and click "Create App".

• After saving your app, you will see the settings screen for the new app. Scroll to the OAuth 2 section, then click the
Generate button under "Generated access token". A long string will appear on the screen. Copy or save this token so
that you can use when configuring the datasource.

Paste this access token into the "Dropbox OAuth Access Token" field in the Fusion UI. If using the REST API, this is the
value of the property 'f.fs.oAuthAccessToken'.

12.14.2. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

269

https://www.dropbox.com/developers/apps

12.15. Drupal 7.x Connector and Datasource Configuration

This connector uses Drupal’s Services 7.x3.11Module REST API.

12.15.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

270

https://www.drupal.org/node/736522

12.16. FTP Connector and Datasource Configuration

Retrieve documents using the File Transfer Protocol (FTP).

The configuration property "url" specifies the protocol (ftp), the host address, and the path to crawl. By default, all files
linked to from this URL will be processed. There are several configuration properties available to limit the crawl.

12.16.1. Configuration

Property Description

add_failed_docs

Add failed documents

Add document even if it partially failed processing.

type: boolean

default value: ‘false’

bounds

Traversal Boundaries

Traversal limits relative to the starting point. Default is
'tree'.

type: string

default value: ‘tree’

enum: \{ tree host domain none }

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

crawl_depth

Traversal Depth

Depth of traversal from the starting point. Default is -1
(unlimited).

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

271

Property Description

crawl_item_timeout

Item fetch timeout

Maximum time in [ms] to fetch any individual item.

type: integer

default value: ‘600000’

exclusiveMinimum: true

minimum: 0

exclude_paths

Exclude patterns

Resource URI-s that match one or more of the exclude
patterns will be skipped.

type: array of string

default value: []

include_extensions

File extensions

Process only files with these extensions.

type: array of string

include_paths

Include patterns

Only resource URI-s that match one or more of the include
patterns will be processed.

type: array of string

index_directories

Directories as documents

Add directory entries as separate documents.

type: boolean

default value: ‘false’

max_bytes

Maximum bytes

Maximum bytes to process for each document. Longer
documents will be truncated. -1 means unlimited, and may
lead to out of memory errors.

type: integer

default value: ‘10485760’

exclusiveMinimum: false

minimum: -1

272

Property Description

max_docs

Maximum documents

Maximum number of document to process in a job. -1
means unlimited.

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

max_threads

Maximum threads

Maximum number of threads to use for fetching
documents.

type: integer

default value: ‘1’

maximum_connections

Maximum connections

Maximum number of concurrent connections to the file
system.

type: integer

default value: ‘1000’

password

Password

Password.

type: string

splitter

Container splitter

Settings for the optional large container files splitter
(archives, CSV/TSV).

type: object

object attributes: \{
 }

url

File system URI

required

Fully-qualified URI of the file system path

type: string

minLength: 1

pattern: .:.

273

Property Description

username

Username

Username.

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

274

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

275

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

276

12.17. GitHub Connector and Datasource Configuration

The GitHub connector retrieves data from GitHub repositories using the GitHub REST API.

GitHub repository access may require authentication, in which case GitHub credentials or oAuth token Authentication
will be used to perform GitHub requests. See the GitHub Authentication page for more information.

12.17.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

277

https://developer.github.com/v3/
https://developer.github.com/v3/#authentication

12.18. Google Drive Connector and Datasource Configuration

The Google Drive connector is used to index the documents in a Google Drive account.

12.18.1. Google Drive authentication

There are two methods of Google Drive authentication for Fusion:

• authentication for access to site-wide documents

Use a Google account with admin-level access rights to configure access to all shared documents owned by the users
in your organization.

• authentication for access to per-user documents

This type of authentication gives you access to your own documents in Google Drive. Admin-level access rights are
not required.

In both cases, you’ll get a client ID, client secret, and refresh token from Google. These become part of your datasource
configuration in Fusion.

Authentication for access to site-wide documents

In order to access all the shared documents by users in your organization, you must configure the Google Drive API and
the Admin SDK. See the instructions in the knowledge base.

How to configure authentication for access to site-side documents

1. Log in to Google as a user with admin-level access rights.

2. Go to https://console.developers.google.com/.

3. Create a Google project for Fusion:

4. In the upper left, open the Project menu and select Create Project:

5. Enter a new project name, such as "fusion".

278

https://support.lucidworks.com/s/article/ka080000000PvAfAAK/How-to-configure-Google-Drive-for-security-trimming
https://console.developers.google.com/

6. Click Create.

7. In the new project, click Enable API.

8. Under "Google Apps APIs", click Drive API.

9. Click Enable.

Google may prompt you to create credentials. Do not create credentials here; we’ll do that a few steps later.

10. Click Library, then Admin SDK.

11. Click Enable.

12. Create a service account key:

13. Navigate to Credentials > Create Credentials > Service account key:

14. From the Service account list, select Compute Engine default service account.

15. Under "Key type", select P12.

16. Click Create.

279

A new private key downloads automatically to your local drive. Google prompts you to store it securely and save the
displayed password. The key and password will not be provided to you again.

17. Create a service account:

18. Click Manage service accounts:

19. Click Create Service Account.

20. Enter a service account name, such as "fusion-service-account".

21. From the Role list, select Project > Service account actor:

280

22. Select Enable G Suite Domain-wide Delegation.

23. Enter an arbitrary name under Product name for the consent screen.

24. Click Create.

Google displays the list of service accounts.

25. Next to the "fusion-service-account", click View Client ID.

You may need to scroll to the right in order to see this link.

26. Copy the client ID and service account name. Save them in a separate location.

27. Click the menu in the upper left and select IAM & Admin.

28. Next to the "fusion-service-account" project, select its permissions as shown below:

281

29. Go to https://admin.google.com.

30. Navigate to Admin Console > Security.

Remember, you must be logged in as a user with admin-level access rights.

31. Navigate to Show more > Advanced settings > Manage API client access.

32. Create a new API client:

a. In the Client Name field, enter the client ID from your service account (above).

b. In the One or More API Scopes field, enter the following:

https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/
admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://
www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://
www.googleapis.com/auth/drive.readonly

c. Click Authorize.

The new API client authorization appears in the list:

Authentication for access to per-user documents

These instructions allow you to configure Google to allow Fusion to crawl a specific user’s Google Drive, including
documents that other users have shared with them.

How to configure authentication for access to per-user documents

1. Log in to Google as a user with admin-level access rights.

2. Go to https://console.developers.google.com/.

3. Create a Google project for Fusion:

4. In the upper left, open the Project menu and select Create Project:

282

https://admin.google.com
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/admin.directory.group,https://www.googleapis.com/auth/admin.directory.group.readonly,https://www.googleapis.com/auth/admin.directory.user,https://www.googleapis.com/auth/admin.directory.user.alias.readonly,https://www.googleapis.com/auth/drive,https://www.googleapis.com/auth/drive.readonly
https://console.developers.google.com/

5. Enter a new project name, such as "fusion".

6. Click Create.

7. Create the client ID and client secret:

8. In the new project, click Enable API.

9. Under "Google Apps APIs", click Drive API.

10. Click Enable.

Google may prompt you to create credentials, if this is the first time you’ve enabled this API.

11. Click Credentials, then Create Credentials > Oauth client ID.

12. Select Web application.

13. Enter a name for this Web application, such as "Fusion search".

14. In the Authorized Javascript origins field, enter "https://developers.google.com".

15. In the Authorized redirect URIs field, enter "https://developers.google.com/oauthplayground" and press Return on
your keyboard.

16. In the Authorized redirect URIs field, enter "http://<fusion-host>:8764/oauth-redirect", specifying the hostname of
your Fusion instance.

17. Click Create.

Google displays the new client ID and client secret.

18. Copy the client ID and client secret. Save them in a separate location.

19. Click OK.

20. Go to https://developers.google.com/oauthplayground/.

21. In the upper right, click the gear icon.

The OAuth 2.0 configuration window opens.

22. Select Use your own OAuth credentials.

283

https://developers.google.com/oauthplayground/

23. Enter your client ID and client secret.

24. Click Close.

25. Add the credentials to the datasource configuration in the Fusion UI:

26. In the Google Drive datasource configuration panel, enter a string for the Datasource ID.

27. Enter the Google client ID and client secret.

28. Click Get Refresh Token.

284

A new browser window opens, and Google prompts you for permission to access the documents:

29. Click Allow.

Fusion automatically populates the Google Drive Oauth Refresh Token field.

30. In the Startlinks field, enter a starting URL to which this user has access.

See below for details about the format for this value.

31. Click Save.

12.18.2. Configuration

The StartLinks values for this connector must be one of the following:

• root to crawl the whole organization or per-user drive.

• A folder ID.

For example, if your folder’s URL is https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j then the
start link in the connector configuration should be 0B1u0p7N096R6MWgma3gwUj4j.

• A document ID.

For example, if your document’s URL is https://docs.google.com/document/d/

10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit then the start link in the connector configuration should be
10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ.

Connector-specific Properties

Property Description

285

https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://drive.google.com/drive/folders/0B1u0p7N096R6MWgma3gwUj4j
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit
https://docs.google.com/document/d/10HRr5gD0OetzgEL9fsyxryf_AfiKqDQ8cn12YXQ/edit

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

286

12.19. HDFS Connector and Datasource Configuration

Hadoop Distributed File System (HDFS). It traverses the Hadoop file system as it would a regular Unix filesystem.

This connector can only be used with the default Hadoop shipped with Solr.

See also the Hadoop connector, a connector for HDFS filesystem which uses MapReduce to distribute the crawl
processes. When there is a lot of content to process, the MapReduce-enabled connector will be significantly faster.

12.19.1. Configuration

Property Description

add_failed_docs

Add failed documents

Add document even if it partially failed processing.

type: boolean

default value: ‘false’

bounds

Traversal Boundaries

Traversal limits relative to the starting point. Default is
'tree'.

type: string

default value: ‘tree’

enum: \{ tree host domain none }

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

converter

Converter

Converter for Writable values extracted from Hadoop
sequence / map files.

type: string

287

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Property Description

crawl_depth

Traversal Depth

Depth of traversal from the starting point. Default is -1
(unlimited).

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

crawl_item_timeout

Item fetch timeout

Maximum time in [ms] to fetch any individual item.

type: integer

default value: ‘600000’

exclusiveMinimum: true

minimum: 0

exclude_paths

Exclude patterns

Resource URI-s that match one or more of the exclude
patterns will be skipped.

type: array of string

default value: []

include_extensions

File extensions

Process only files with these extensions.

type: array of string

include_paths

Include patterns

Only resource URI-s that match one or more of the include
patterns will be processed.

type: array of string

index_directories

Directories as documents

Add directory entries as separate documents.

type: boolean

default value: ‘false’

288

Property Description

max_bytes

Maximum bytes

Maximum bytes to process for each document. Longer
documents will be truncated. -1 means unlimited, and may
lead to out of memory errors.

type: integer

default value: ‘10485760’

exclusiveMinimum: false

minimum: -1

max_docs

Maximum documents

Maximum number of document to process in a job. -1
means unlimited.

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

max_threads

Maximum threads

Maximum number of threads to use for fetching
documents.

type: integer

default value: ‘1’

maximum_connections

Maximum connections

Maximum number of concurrent connections to the file
system.

type: integer

default value: ‘1000’

splitter

Container splitter

Settings for the optional large container files splitter
(archives, CSV/TSV).

type: object

object attributes: \{
 }

289

Property Description

url

File system URI

required

Fully-qualified URI of the file system path

type: string

minLength: 1

pattern: .:.

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

290

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

291

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

292

12.20. Hadoop Connector and Datasource Configuration

The Hadoop Connector is a MapReduce-enabled crawler which leverages the scaling qualities of Apache Hadoop.

A Hadoop connector creates a series of MapReduce-enabled jobs which index raw content into Fusion. The Hadoop
connector can be run using on of the following Apache Hadoop distributions:

• Apache Hadoop v2.x

• Cloudera CDH v4.x, v5.x

• Hortonworks Data Platform v2.x

• MapR v4.x, v5.x

• Pivotal HD v1.1

The Hadoop connector name is lucid.hadoop and for each Hadoop distribution has its own plugin type. All plugin types
take the same set of configuration properties.

There is a non-MapReduce enabled connector for HDFS filesystem; see page HDFS Connector and Datasource
Configuration for details.

The Hadoop crawlers take full advantage of the scaling abilities of the MapReduce architecture and will use all of the
nodes available in the cluster just like any other MapReduce job. This has significant ramifications for performance
since it is designed to move a lot of content, in parallel, as fast as possible (depending on the system’s capabilities), from
its raw state to the Fusion index. The Hadoop crawlers work in three stage:

1. Create one or more SequenceFiles from the raw content. This can be done in one of two ways:

2. If the source files are available in a shared Hadoop filesystem, prepare a list of source files and their locations as a
SequenceFile. The raw contents of each file are not processed until step 2.

3. If the source files are not available, prepare a list of source files and the raw content, stored as a
BehemothDocument. This process is currently done sequentially and can take a significant amount of time if there is
a large number of documents and/or if they are very large.

4. Run a MapReduce job to extract text and metadata from the raw content using Apache Tika. This is similar to the
Fusion approach of extracting content from crawled documents, except it is done with MapReduce.

5. Run a MapReduce job to send the extracted content from HDFS to the index pipeline for further processing.

Note:

The first step of the crawl process converts the input content into a SequenceFile. In order to do this, the entire contents
of that file must be read into memory so that it can be written out in the SequenceFile. Thus, you should be careful to
ensure that the system does not load into memory a file that is larger than the Java heap size of the process. In certain
cases, Behemoth can work with existing files such as SequenceFiles to convert them to Behemoth SequenceFiles. Contact
Lucidworks for possible alternative approaches.

The processing approach is currently "all or nothing" when it comes to ingesting the raw content and all 3 steps must be
completed each time, regardless of whether the raw content hasn’t changed. Future versions may allow the crawler to
restart from the SequenceFile conversion process. In the meantime, incremental crawling is not supported for this
connector.

293

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/products/apache-hadoop/key-cdh-components.html
http://hortonworks.com/hdp/
http://www.mapr.com/
http://gopivotal.com/big-data/pivotal-hd

12.20.1. Hadoop Installation and Configuration

The Connector services must be able to access the Hadoop client in file $HADOOP_HOME/bin/hadoop, so it must either be
installed on one of the nodes of the Hadoop cluster (such as the nameNode), or a client supported by your specific
distribution must be installed on the same server as the Connectors. The Hadoop client must be configured properly to
access the Hadoop cluster so the crawler is able to access the Hadoop cluster for content processing.

Please note, instructions for setting up any of the supported Hadoop distributions is beyond the scope of this document.
We recommend reading one of the many tutorials found online or one of the books on Hadoop.

This connector writes to the hadoop.tmp.dir and the /tmp directory in HDFS, so Fusion should be started by a user who
has read/write permissions for both.

Permission Issues

Using any flavor of Hadoop, you will need to be aware of the way Hadoop and systems based on Hadoop (such as CDH,
MapR, etc.) handle permissions for services that communicate with other nodes.

Hadoop services execute under specific user credentials: a quadruplet consisting of user name, group name, numeric
user id, numeric group id. Installations that follow the manual usually use user 'mapr' and group 'mapr' (or similar),
with numeric ids assigned by the operating system (e.g., uid=1000, gid=20). When the system is configured to enforce
user permissions (which is the default in some systems), any client that connects to Hadoop services has to use a
quadruplet that exists on the server. This means that ALL values in this quadruplet must be equal between the client
and the server, i.e., an account with the same user, group, uid, and gid must exist on both client and server machines.

When a client attempts to access a resource on Hadoop filesystems (or the JobTracker, which also uses this
authentication method) it sends its credentials, which are looked up on the server, and if an exactly matching record is
found then those local permissions will be used to determine read/write access. If no such account is found then the
user is treated as "other" in the sense of the permission model.

This means that the crawlers for the HDFS data source should be able to crawl Hadoop or MapR filesystems without any
authentication, as long as there is a read (and execute for directories) access for "other" users granted on the target
resources. Authenticated users will be able to access resources owned by their equivalent account.

However, the Hadoop crawling described on this page require write access to a /tmp directory to use as a working
directory. In many cases, this directory does not exist, or if it does, it doesn’t have write access to "other" (not
authenticated) users. Therefore users of these data sources should make sure that there is a /tmp directory on the target
filesystem that is writable using their local user credentials, be it a recognized user, group, or "other". If a local user is
recognized by the server then it’s enough to create a /tmp directory that is owned by that user. If there is no such user,
then the /tmp directory must be modified to have write permissions for "other" users. The working directory can be
modified to be another directory that can be used for temporary working storage that has the correct permissions.

Configuration for a Kerberos Hadoop Cluster

Kerberos is a system that provides authenticated access for users and services on a network. Instead of sending
passwords in plaintext over the network, encrypted passwords are used to generate time-sensitive tickets which are
used for authentication. Kerberos uses symmetric-key cryptography and a trusted third party called a Key Distribution
Center (KDC) to authenticate users to a suite of network services. When a user authenticates to the KDC, the KDC sends a
set of credentials (a ticket) specific to that session back to the user’s machine.

To work with a Kerberized Hadoop cluster you must have a set of credentials. These are generated by running the
"kinit" program. The datasource can be configured to run this program, in which case, the following information must

294

be specified: the full path to the program, the Kerberos principal name, the location of a keytab file and the name of the
file in which to store the ticket.

For more information on Kerberized Hadoop Clusters, see
http://www.cloudera.com/content/cloudera/en/documentation/archives/cloudera-manager-4/v4-5-2/Configuring-Hadoop-
Security-with-Cloudera-Manager/cmeechs_topic_4_5.html.

12.20.2. Configuration

Property Description

collection

Collection

Collection Name

type: string

hadoop_home

Hadoop home

required

Hadoop home directory

type: string

minLength: 1

job_jar

Job JAR

required

Hadoop job JAR

type: string

default value: ‘lucidworks-hadoop-job-2.1.4.jar’

minLength: 1

job_jar_args

Job JAR args

required

Job JAR arguments line

type: string

minLength: 1

kinit_cache

'kerberos' cache

Full path of 'kerberos' cache. (if not exists it will be
created)

type: string

default value: '`’

kinit_cmd

'kinit' command

Full path of the 'kinit' binary

type: string

default value: ‘kinit’

295

http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-5-2/Configuring-Hadoop-Security-with-Cloudera-Manager/cmeechs_topic_4.html
http://www.cloudera.com/content/www/en-us/documentation/archive/manager/4-x/4-5-2/Configuring-Hadoop-Security-with-Cloudera-Manager/cmeechs_topic_4.html

Property Description

kinit_keytab

'kerberos' keytab

Full path of 'kerberos' keytab.

type: string

default value: '`’

kinit_user

'kerberos' principal

ie. username@YOUR-REALM.COM

type: string

default value: '`’

run_kinit

Run 'kinit'

Run 'kinit' to use Kerberos for authenticating this job

type: boolean

default value: ‘false’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

296

mailto:username@YOUR-REALM.COM

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

297

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

298

12.21. JDBC Connector and Datasource Configuration

The JDBC connector fetches documents from a relational database via SQL queries. Under the hood, this connector
implements the Solr DataImportHandler (DIH) plugin.

12.21.1. SQL queries for document retrieval

The JDBC connector is configured with the SQL statement used to retrieve a resultset from the database. Each row in the
result set is treated as a Solr document. This statement is specified as the value of the required property
sql_select_statement.

The column names will be used as Solr document field names; use the SQL "AS" keyword to rename column names as
needed. Column and table names should be treated as if they are case-insentive, even though some databases allow use
of mixed case names. All Solr documents must have a unique key, which is the Fusion "id" field. Therefore, the results
set must contain a column "id" which can be used as a unique key for the resulting document.

SELECT customer_id AS id, * from customers

Delta queries

Delta queries provide incremental updates to the contents of a collection by indexing only those records in the database
which have been changed since the database was last indexed by this connector. The SQL statement is specified as the
value of the property delta_sql_query.

Delta queries select only primary key values, therefore, the query must use the primary key and it must also have a
"WHERE" clause which specifies a "last_modified" condition as follows:

SELECT customer_id AS id from customers WHERE last_modified > $

The dollar-sign character '$' is required; it holds the last successful import time from the database.

Nested queries

Nested queries are used to index information which is stored in the database across a series of tables where the is a one-
to-many or many-to-many reletionship between them. This statement is specified as the value of the property
nested_queries.

A nested query is used in conjunction with the SQL query specified by the sql_select_statement statement. The dollar-
sign character '$' specifies the primary key in the resultset retrieved by the sql_select_statement statement.

The following example shows the pair of query, nested query statements used to index list of tags assigned to
documents:

SELECT id FROM document
SELECT tag FROM tag INNER JOIN document_tag ON document_tag.tag_id=tag.id WHERE document_tag.doc_id=$

12.21.2. Uploading a JDBC driver

The Connector JDBC API allows you to upload JDBC drivers. It can also be used to find the driver class name needed for

299

https://wiki.apache.org/solr/DataImportHandler

JDBC datasource configuration.

The URL used to upload a .jar file containing a JDBC driver via a POST request is:

/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=<collectionName>

where <collectionName> is the collection for which the driver will be used.

Here is an example of using the REST API to upload a Postgres driver:

curl -u user:pass -X POST --form file=@/path/postgresql-9.3-1101.jdbc4.jar
http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=docs

Drivers are uploaded to a directory named fusion/data/connectors/lucid.jdbc/jdbc/<collection>, where <collection> is
the collection name used during the upload.

You can then use GET requests with the same endpoint to validate that the driver has been properly loaded and is
available to Fusion.

$curl -u user:pass http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources?collection=docs

[{
 "name" : "postgresql-9.3-1101.jdbc4.jar",
 "properties" : {
 "type" : "jar"
 }
}, {
 "name" : "org.postgresql.Driver",
 "properties" : {
 "type" : "class"
 }
}]

Your database driver version should be the the most recent one that is compatible with your database and the Java
version used to run Fusion.

12.21.3. Indexing binary data

The JDBC connector in Fusion does not automatically discover and index binary data you may have stored in your
database (such as PDF files). However, you can configure Fusion to recognize and extract binary data correctly by
modifying the datasource configuration file. This file is created when the datasource is first run, and then it is created in
fusion/data/connectors/lucid.jdbc/datasources/ datasourceID/conf. The name of the file will include the name of the
datasource, as in dataconfig_datasourceName.xml. If you are familiar with Solr’s DIH, you will recognize this as a
standard dataconfig.xml file.

Follow these steps to modify the configuration file:

1. Add a name attribute for the database containing your binary data to the dataSource entry.

2. Set the convertType attribute for the dataSource to false. This prevents Fusion from treating binary data as strings.

3. Add a FieldStreamDataSource to stream the binary data to the Tika entity processor.

300

4. Specify the dataSource name in the root entity.

5. Add an entity for your FieldStreamDataSource using the TikaEntityProcessor to take the binary data from the
FieldStreamDataSource, parse it, and specify a field for storing the processed data.

6. Reload the Solr core to apply your configuration changes.

12.21.4. Troubleshooting

When using the JDBC connector, it is recommended that you work closely with your database administrator to
formulate efficient and robust queries.

One source of possible problems is the driver being used. In some cases, indexing may fail due to problems with the
driver, in particular older versions of Oracle’s JDBC driver. If you have checked that your connection information is
correct and your database is allowing the connection, you may want to research if there are any known bugs with the
driver you are using.

With Oracle databases, note that column names not enclosed in double-quotes are converted to upper-case, but Solr
field names are case sensitive. If your column-to-field mapping is not happening properly, check your SQL statement for
any lower-case names not enclosed in double-quotes.

Dates can also be problematic. Solr has a different date format than many relational databases. If you want date and
time fields to be indexed properly, you may need to convert database dates into the proper format using date/string
convert functions. In Oracle this is the TO_CHAR function; in Microsoft SQL, this is the DATEPART function.

In MySQL databases, dates are allowed to be 0-strings, such as 0000-00-00, which is not acceptable to JDBC. If you have
legacy date data you may need to add the query parameter "zeroDateTimeBehavior=convertToNull" to your JDBC
request string, as in ` jdbc:mysql://localhost/myDatabase?zeroDateTimeBehavior=convertToNull `. This will convert the
zero-string dates to null values that can be added to the index.

Finally, database timeouts are another problematic area. There are several possible solutions to this, from increasing
the timeout in the JDBC request (with "netTimeoutForStreamingResults"), altering the SQL statement to page the results,
or dumping the records to CSV and indexing them with another connector.

12.21.5. Configuration

Property Description

clean_in_full_import_mode

Clean in full import mode

Clean old records when doing full import

type: boolean

default value: ‘true’

collection

Collection

Collection Name

type: string

301

Property Description

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

delta_import_query

Delta Import SQL Query

Delta Import SQL Query.

type: string

delta_sql_query

Delta SQL Query

Delta SQL Query.

type: string

driver

Driver

required

Driver

type: string

minLength: 1

fetch_size

JDBC fetch size

JDBC fetch size

type: integer

max_docs

Max Documents

The maximum number of documents to crawl. Use -1 to
index all documents found.

type: integer

default value: ‘-1’

nested_queries

Nested queries

type: array of string

password

Password

required

The password of the account used for authentication and
data access.

type: string

primary_key

Primary Key

The column name of the primary key.

type: string

302

Property Description

sql_select_statement

SQL Select Statement

required

SQL Select Statement.

type: string

url

URL

required

A URL to the database, e.g. 'jdbc:mysql://localhost/test'

type: string

minLength: 1

username

Username

required

The username of a database account used for
authentication and data access.

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

303

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

304

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

305

12.22. JIRA Connector and Datasource Configuration

The JIRA connector retrieves data from a instance of Atlassian’s JIRA issue tracking system.

It uses the JIRA REST API to retrieve the following JIRA elements:

• Projects

• Issues

• Comments

• Worklogs

• Attachments

JIRA access to projects and issues may be restricted to certain users. Access of restricted information requires a JIRA
username and password.

The JIRA connector first requests a list of all projects, and for each project, if finds all issues. For each issue, the
information on summary, priority, assignee, etc. is retrieved. Worklogs, comments, and attachments are treated as new
entries (issue links) and thus are indexed as a new document, not as a component of the issue itself.

12.22.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

306

https://www.atlassian.com/software/jira

12.23. Javascript Connector and Datasource Configuration

The Javascript connector allows users to write ad-hoc document retrieval routines to fetch content from filesystems and
websites.

It provides a property f.script which is a JavaScript program that is compiled by the JDK. This program returns a
content item which is handed off to the fetcher.

The script engine works exactly the same as the JavaScript Index and JavaScript Query Pipeline stages. The JavaScript
program must be standard ECMAScript.

You can use any Java class available to the connectors JDK classloader to manipulate that object within a function. As in
Java, to access Java classes by their simple names instead of their fully specified class names, e.g. to be able to write
String instead of java.lang.String, these classes must be imported. The java.lang package is not imported by default,
because its classes would conflict with Object, Boolean, Math, and other built-in JavaScript objects. To import a Java
class, use the JavaImporter object and the with statement, which limits the scope of the imported Java packages and
classes.

var imports = new JavaImporter(java.lang.String);
...
with (imports) {
 var name = new String("foo"); ...
}

For global variables, you can reference these objects using the Java.type API extension. See this tutorial for details:
http://winterbe.com/posts/2014/04/05/java8-nashorn-tutorial/

12.23.1. The JavaScript Program

The Javascript context provides the following variables:

• id, type java.lang.String - the id of the object to fetch. This is almost always the URI of the datasource to connect to
and fetch content.

• lastModified, type long - the time since the epoch from which the item was last touched.

• signature, type java.lang.String - an optional string meant to be used to compare versions of the ID being fetched,
e.g. an ETag in a web-crawl.

• content, type crawler.common.MutableObject - a Content object that can be modified and returned, for fine grained
control over the return. See the section on return types below.

• _fetcher, type Fetcher - the current Fetcher instance (usually type JavascriptFetcher), used to interact with the
Fetcher, including getting a WebFetcher instance using`_fetcher.getWebFetcher()`

• _context, type java.util.Map - a map used to store data to persist across calls to fetch(), e.g. an instance of
WebFetcher obtained using`_fetcher.getWebFetcher().`

The program must return one of the following kinds of objects:

• String — A string object. This will be converted to UTF-8 bytes and added as the raw content on a
common.crawler.Content object and returned from the fetch() method

• byte [] — A byte array. This array will be set on a common.crawler.Content object and returned from the fetch()

307

http://en.wikipedia.org/wiki/ECMAScript
http://winterbe.com/posts/2014/04/05/java8-nashorn-tutorial/

method

• common.crawler.MutableContent: If you wish to have complete control over the return from fetch(), make changes
to the content object provided in the Context and return it. DO NOT CREATE A NEW OBJECT.

• An array of Objects. These will be converted to Embedded Content (the Fetcher will return a parent Content object
that has a "Container" discardMessage. The Embedded Content on that container will consist of calling toString() on
the objects in the array. Thus, it is best if the array is simply

• A JavaScript Map. The map will be converted to fields on the Content item returned

If the JavaScript script is implemented as a function, the return statement must return one of the above types. If the
script is not function-based, than the last line in the script must evaluate to one of these object types.

12.23.2. Examples

Return content as a java.lang.String

var str = new java.lang.String("Java");
str;

Return content as a byte array

var bytes = new java.lang.String("Java");
bytes.getBytes('UTF-8');

Return content as a MutableContent object

var bytes = new java.lang.String("Java");
content.setRawContent(bytes.getBytes('UTF-8'));
content

Return content as a JavaScript array

var strings = ["hi", "bye"];
strings;

Return content as a JavaScript map

var map = {"hi": "bye", "bye": "hi", "number":1};
map;

Leverage the Fetcher

308

var webFetcher = _context.get("webFetcher");
if (null == webFetcher) {
 webFetcher = _fetcher.getWebFetcher();
 // it's possible to pass config options to getWebFetcher() as a map as well, e.g.:
 // _fetcher.getWebFetcher({"f.discardLinkURLQueries" : false });
 _context.put("webFetcher", webFetcher);
}
var webContent = webFetcher.fetch(id, lastModified, signature);
var jsoupDoc = webContent.getDocument();
if (null !== jsoupDoc) {
 // modify the Jsoup document or web-content as-needed here, adding new links, removing sections etc.
 // ...
 // ...
 webContent.setRawContent(jsoupDoc.toString().getBytes("UTF-8"));
}
webContent;

12.23.3. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

309

12.24. Jive Connector and Datasource Configuration

Retrieve content from a Jive instance.

Important If you are upgrading from Fusion 2.0 or earlier, you must
remove the old connector, add the new one, and then
install the Lucidworks add-on for Jive. See the instructions
below.

12.24.1. Updating the Jive connector

Perform all of the steps below as the user that owns the Fusion installation files and processes.

Removing the Old Jive Connector

1. Remove all existing Jive datasources, using either the UI or the REST API. Any datasource that is not a Jive type of
datasource can be retained.

a. In the UI, go to the Datasources screen for each collection that includes a Jive datasource, and select the X icon
on the right side of the row. Confirm the delete action to remove the datasource.

b. Using the Connector Datasources API, you can perform a call similar to this one:

curl -u user:password -X DELETE http://localhost:8764/api/apollo/connectors/datasources/<id>

Be sure to use the correct username and password, and also replace the hostname, port and datasource ID as
appropriate.

2. Stop Fusion.

3. On the filesystem, find the file fusion/apps/connectors/plugins/luicid.anda/connectors.json. From this file, remove
the following line:

"jive": "com.lucidworks.connectors.anda.type.JiveAndaType",

Be sure to save your changes.

4. In the directory fusion/apps/connectors/plugins/lucid.anda/lib/, remove the file lucid.jive.jar by deleting it or
saving it outside of your Fusion installation directory tree (i.e., to a /tmp directory or similar).

Adding the New Jive Connector

1. In the directory fusion/apps/connectors/plugins, make a new directory named lucid.jive.

2. Copy the files connectors.json and lucid.jive.jar to the directory created in the previous step,
fusion/apps/connectors/plugins/lucid.jive.

3. In order for the UI to display the correct name for the new connector, we must update a datasource mapping file.

In fusion/apps/jetty/ui/webapps/root/WEB-INF/classes/public/data/datsource-name-map.json, remove the following
line:

310

https://www.jivesoftware.com/

 "lucid.anda.jive" : "Jive",

And add the following line (anywhere, as long as it is a new line):

 "lucid.jive.jive" : "Jive",

When adding the new line, be sure to add a comma to the previous line in order to preserve correct JSON. If this file
cannot be parsed, you will see odd-looking datasource names in the UI.

4. Start Fusion.

Installing the Jive Add-on

The add-on allows using OAuth for authenticating the crawler to the Jive API. This is a recommended way for Jive users
to use the API, as documented by Jive at https://community.jivesoftware.com/docs/DOC-157031. The add-on is used to get
a client ID and secret that are supplied to the connector.

If the client ID and secret cannot be retrieved or used, then Basic authentication is used as a fallback.

How to install the Jive Add-on

Following the instructions at https://community.jivesoftware.com/docs/DOC-141123, use the Jive UI to upload the add-on
located in your Fusion distribution: fusion/apps/connectors/resources/lucid.jive/lucidworks-jive-addon.zip

12.24.2. Security Trimming of Results

If "Enable Security Trimming" is enabled, the Jive connector will use the visibility field while indexing permission
metadata on content. This data is stored in the acl_ss field for each document.

The value of the visibility field impacts the permissions assigned to a document. The following list describes how the
types of permissions found in the visibility field of a document are used.

All The value stored in the acl_ss field will be "all".

People The document will include a list of users who are
authorized to view the content. This list will be stored in
the acl_ss field as user email addresses.

Place A request will be made to determine the type of group.
The group type will determine the permissions stored.

Open or Members Only The value stored in the acl_ss field will be "all".

Private or Secret The value stored in the acl_ss field will be the name of the
group.

311

https://community.jivesoftware.com/docs/DOC-157031
https://community.jivesoftware.com/docs/DOC-141123

12.24.3. Configuration

Property Description

batch_size

Batch Size

type: integer

default value: ‘95’

collection

Collection

Collection Name

type: string

contents_to_crawl

Contents to crawl

required

List of contents to crawl, separated by commas and no
spaces

type: string

default value: ‘All’

minLength: 1

diagnostic_mode

Diagnostic Mode

type: boolean

default value: ‘false’

enable_security_trimming

Enable Security Triming

type: boolean

default value: ‘false’

312

Property Description

excluded_content_types

Excluded content types

Files with a content type contained in this list will not be
downloaded but its metadata added

type: array of string

default value: [video/x-ms-wm, text/csv,
application/postscript, video/x-ms-wmv, image/vnd.dwg,
image/tiff, audio/x-aiff, audio/x-ms-wma, application/mac-
binhex40, application/winhlp, application/x-font-ttf,
video/x-ms-asf, application/illustrator, chemical/x-pdb,
application/x-iso9660-image, application/x-msdownload,
audio/x-pn-realaudio, application/x-ms-installer,
image/gif, video/x-msvideo, application/vnd.visio,
audio/mpeg, application/x-emf, image/vnd.dxf,
application/x-dosexec, application/x-shockwave-flash,
audio/midi, image/vnd.adobe.photoshop, application/octet-
stream, application/x-java-jnilib, image/x-ms-bmp,
image/jpeg, application/x-msaccess, video/mp4, text/plain,
video/quicktime, application/x-dtbresource+xml, text/x-

expect, application/vnd.ms-htmlhelp, audio/basic,
video/mpeg, application/x-quattro-pro,
application/vnd.rn-realmedia, audio/x-wav,
application/vnd.ms-cab-compressed, audio/ogg, video/ogg,
application/ogg, audio/vorbis, audio/x-oggflac, audio/x-

oggpcm, audio/opus, audio/speex, video/daala, video/theora,
video/x-dirac, video/x-ogm, video/x-ogguvs, video/x-oggyuv,
video/x-oggrgb, audio/x-flac, application/x-msmetafile,
application/x-roxio-toast, application/mp4, audio/mp4,
audio/mp4a-latm, video/mp4v-es, video/x-m4v, audio/mpeg4-
generic, audio/vnd.sealedmedia.softseal.mpeg, audio/x-

mpegurl, video/bmpeg, video/mpeg4-generic, application/x-
msdownload;format=pe, application/x-dosexec,
application/x-msdownload;format=pe32, application/x-

msdownload;format=pe64, application/x-

msdownload;format=pe-itanium, application/x-

msdownload;format=pe-armLE, application/x-

msdownload;format=pe-arm7, application/x-tika-msoffice,]

jive_client_id

Jive Add-on Client Id

type: string

jive_client_secret

Jive Add-on Client Secret

type: string

313

Property Description

jive_instance_url

Jive instance URL

required

type: string

minLength: 1

jive_password

Jive password

required

type: string

minLength: 1

jive_username

Jive username

required

type: string

minLength: 1

max_file_size

Max file size(bytes)

Files body with size greater than this value will not be
downloaded but its metadata added. The default value is
for 10MB (10485760l bytes)

type: integer

default value: ‘10485760’

requests_timeout

Timeout for requests

type: integer

default value: ‘60000’

Field Mapping

314

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

315

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

316

12.25. Local Filesystem Connector and Datasource Configuration

A filesystem-based data store is a network of nodes to be traversed, where each node (such as a Unix file directory)
provides information about its child nodes (such as the files in that directory) or references other nodes (such as links in
an HTML document).

The crawler captures information about the node, e.g., filename, permissions, date of creation, last modification, and
last access, as well as the contents of the nodes. The extent of the network of nodes to be traversed is discovered during
the crawl.

The connector provides rules to limit the crawl and re-crawling. These rules use datasource configuration properties to
limit the extent of the network (depth of nodes to explore) as well as limiting processing to a subset of files based on file
names and file size. An overall limit can be set on number of files retrieved during a crawl.

12.25.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

317

12.26. Logstash Connector and Datasource Configuration

Note This connector is deprecated in Fusion 2.4, and removed in
Fusion 3.0. See the new LogStash Output Plugin in
Lucidworks Labs.

Logstash is an open-source log management tool which takes inputs from one or more logfiles and parses and filters
them according to a set of configurations and produces as output a stream of JSON objects. The Logstash connector uses
Logstash 1.4.2 to send documents to a Fusion pipeline.

The Fusion archive includes a Logstash deployment, located in the directory
fusion/apps/connectors/resources/lucid.logstash/logstash1.4.2. This deployment includes a custom ruby class
lucidworks_pipeline_output.rb which collects Logstash outputs and sends them to a Fusion pipeline.

12.26.1. Configuration

The connector is "lucid.logstash" and the plugin type is "logstash".

The connector takes a required property "Logstash Configuration" which is the Logstash configuration in JavaScript. The
Fusion UI Admin Tool provides a JavaScript-aware input box which so that you can create and edit your Logstash
configuration directly from Fusion.

The Logstash configuration script has three clauses:

• input

• filter

• output

The connector takes an optional property "buffer_size" which is the number of documents to buffer. When the buffer
limit is reached, all documents in the buffer are sent to Solr for batch indexing. The default buffer size is 10. In the
Fusion UI Admin Tool, choosing the "Advanced" option on the Datasource configuration panel exposes an input box
labeled "Buffer size".

12.26.2. Running a Datasource Job

Once started, a Logstash connector will continue to run indefinitely. The Fusion UI Admin Tool Datasource panel
provides controls to start, stop, abort, and clear the datasource. For file-based inputs, Logstash tracks last line read in a
file in a "since_db" file. Clearing the datasource requires removing these files.

12.26.3. Examples

The Logstash configuration is specified in JavaScript. The specification consists of the following three clauses:

• input - specifies how to listen for incoming data

• filter - data-specific Logstash filter definitions.

• output - additional outputs, as needed.

All three clauses must be present, but the filter and output clauses can be empty.

Simple Logstash Configuration for reading an input file:

318

https://lucidworks.com/labs/connectors/logstash-output-plugin/
http://logstash.net/

input {
 file {
 path => "/var/log/mylogfile.log"
 }
}
filter {
}
output {
}

Simple Logstash Configuration for listening for incoming data on a specific port:

input {
 tcp {
 port => 10234
 }
}
filter {
}
output {
}

Filter clause for pure JSON data:

filter {
 json {source => "message" }
}

12.26.4. Tutorial

The Lucidworks blog post Data Analytics Using Fusion and Logstash walks through the process of developing a Logstash
script and configuring and running a datasource.

319

http://lucidworks.com/blog/data-analytics-using-fusion-logstash/

12.27. MongoDB Datasource and Connector Configuration

<img src="/project/pdfs/assets/images/common/icons/Icon-Download-
128x128.png" format="png" alt="[Download" width="45.0" tmp="false">] Connector download

Retrieve data from a MongoDB instance.

For the initial data ingest from a MongoDB database, select the option to do a full synchronization of the content in
MongoDB. Subsequent ingest runs can use the oplog in MongoDB to discover new content and updates to existing
content (updated or removed documents). A full synchronization can be done by selecting the full synchronization
option and re-running the data ingest job.

12.27.1. Configuration

Property Description

collection

Collection

Collection Name

type: string

collections

Collections

The MongoDB collections to index, in the format
'databaseName.collection'. Default '.' means that all
databases and all collections of each database will be
crawled.

type: string

default value: ‘.’

minLength: 1

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

host

Host

required

The hostname of the MongoDB instance. Default 'localhost'

type: string

default value: ‘localhost’

minLength: 1

320

Property Description

password

Password

The password to use if the MongoDB instance requires a
username and password.

type: string

minLength: 1

perform_initial_sync

Perform Initial Sync

required

type: boolean

default value: ‘true’

port

Port

required

The port of the MongoDB instance. Default '27017'

type: integer

default value: ‘27017’

process_oplog

Process OPLog

required

type: boolean

default value: ‘true’

username

Username

The username to use if the MongoDB instance requires a
username and password.

type: string

minLength: 1

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

321

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

322

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

323

12.28. Solr Push Endpoint Datasource and Configuration

The Solr Push Endpoint accepts documents and pushes them to Solr using the Fusion index pipelines.

In Fusion 3.0 and earlier, this is called the Push connector.

It uses the embedded JettySolrRunner to push the documents. This requires defining a port for the JettySolrRunner that
is not already in use by any other process. The documents can then be sent to Fusion at that port, and they will be
consumed by Fusion.

12.28.1. Configuration

Property Description

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

port

Port

required

The port that will be used to push content to Solr.

type: integer

url

URL

shows the endpoint where the external application will
send documents to.

type: string

Field Mapping

324

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

325

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

326

12.29. S3 Connector and Datasource Configuration

The S3 connector can access AWS S3 buckets in native format.

12.29.1. Bucket Permissions

The connector uses the S3 API to request data from S3. It calls the listBucket service, which lists all buckets owned by
the user account supplied to the connector.

When creating an S3 datasource using the UI, Fusion automatically verifies that the user information supplied has
access to the bucket defined in the URL property. If the bucket is not in the list returned by S3, datasource creation may
fail. At crawl time, if the bucket is not in the list returned by S3, the crawl will fail.

Permission errors when trying to create or crawl the datasource may be caused by incorrect username or password, or
they may be due to user account permissions. The user account must have List Bucket permissions for the account
which owns the bucket that the crawler is trying to access.

12.29.2. Configuration

Property Description

add_failed_docs

Add failed documents

Add document even if it partially failed processing.

type: boolean

default value: ‘false’

bounds

Traversal Boundaries

Traversal limits relative to the starting point. Default is
'tree'.

type: string

default value: ‘tree’

enum: \{ tree host domain none }

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

327

Property Description

crawl_depth

Traversal Depth

Depth of traversal from the starting point. Default is -1
(unlimited).

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

crawl_item_timeout

Item fetch timeout

Maximum time in [ms] to fetch any individual item.

type: integer

default value: ‘600000’

exclusiveMinimum: true

minimum: 0

exclude_paths

Exclude patterns

Resource URI-s that match one or more of the exclude
patterns will be skipped.

type: array of string

default value: []

include_extensions

File extensions

Process only files with these extensions.

type: array of string

include_paths

Include patterns

Only resource URI-s that match one or more of the include
patterns will be processed.

type: array of string

index_directories

Directories as documents

Add directory entries as separate documents.

type: boolean

default value: ‘false’

328

Property Description

max_bytes

Maximum bytes

Maximum bytes to process for each document. Longer
documents will be truncated. -1 means unlimited, and may
lead to out of memory errors.

type: integer

default value: ‘10485760’

exclusiveMinimum: false

minimum: -1

max_docs

Maximum documents

Maximum number of document to process in a job. -1
means unlimited.

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

max_threads

Maximum threads

Maximum number of threads to use for fetching
documents.

type: integer

default value: ‘1’

maximum_connections

Maximum connections

Maximum number of concurrent connections to the file
system.

type: integer

default value: ‘1000’

password

AWS Secret Key

required

AWS Secret Key

type: string

329

Property Description

splitter

Container splitter

Settings for the optional large container files splitter
(archives, CSV/TSV).

type: object

object attributes: \{
 }

url

S3 URL

required

S3 URL, format: s3://{bucketName}/{path} .

type: string

minLength: 1

pattern: .:.

username

AWS Key

required

AWS Key

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

330

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

331

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

332

12.30. S3H Connector and Datasource Configuration

The S3H connector can access AWS S3 buckets that are stored as blocks, as they are in HDFS ("Hadoop over Amazon").
More information on the S3 Block approach is available from the Hadoop wiki.

12.30.1. Bucket Permissions

The connector uses the S3 API to request data from S3. It calls the listBucket service, which lists all buckets owned by
the user account supplied to the connector.

When creating an S3 datasource with the UI, Fusion automatically verifies that the user information supplied has access
to the bucket defined in the URL property. If the bucket is not in the list returned by S3, datasource creation may fail. At
crawl time, if the bucket is not in the list returned by S3, the crawl will fail.

Permission errors when trying to create or crawl the datasource may be caused by incorrect username or password, or
they may be due to user account permissions. The user account must have List Bucket permissions for the account
which owns the bucket that the crawler is trying to access.

12.30.2. Configuration

Property Description

add_failed_docs

Add failed documents

Add document even if it partially failed processing.

type: boolean

default value: ‘false’

bounds

Traversal Boundaries

Traversal limits relative to the starting point. Default is
'tree'.

type: string

default value: ‘tree’

enum: \{ tree host domain none }

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

333

https://wiki.apache.org/hadoop/AmazonS3

Property Description

crawl_depth

Traversal Depth

Depth of traversal from the starting point. Default is -1
(unlimited).

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

crawl_item_timeout

Item fetch timeout

Maximum time in [ms] to fetch any individual item.

type: integer

default value: ‘600000’

exclusiveMinimum: true

minimum: 0

exclude_paths

Exclude patterns

Resource URI-s that match one or more of the exclude
patterns will be skipped.

type: array of string

default value: []

include_extensions

File extensions

Process only files with these extensions.

type: array of string

include_paths

Include patterns

Only resource URI-s that match one or more of the include
patterns will be processed.

type: array of string

index_directories

Directories as documents

Add directory entries as separate documents.

type: boolean

default value: ‘false’

334

Property Description

max_bytes

Maximum bytes

Maximum bytes to process for each document. Longer
documents will be truncated. -1 means unlimited, and may
lead to out of memory errors.

type: integer

default value: ‘10485760’

exclusiveMinimum: false

minimum: -1

max_docs

Maximum documents

Maximum number of document to process in a job. -1
means unlimited.

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

max_threads

Maximum threads

Maximum number of threads to use for fetching
documents.

type: integer

default value: ‘1’

maximum_connections

Maximum connections

Maximum number of concurrent connections to the file
system.

type: integer

default value: ‘1000’

password

AWS Secret Key

required

AWS Secret Key

type: string

335

Property Description

splitter

Container splitter

Settings for the optional large container files splitter
(archives, CSV/TSV).

type: object

object attributes: \{
 }

url

S3 Hadoop URL

required

S3H URL, format: s3://{bucketName}/{path} .

type: string

minLength: 1

pattern: .:.

username

AWS Key

required

AWS Key

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

336

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

337

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

338

12.31. Salesforce Connector and Datasource Configuration

Salesforce REST API to extract data from a Salesforce repository via a Salesforce Connected App.

This service has an authentication procedure and API usage limits.

Note You need to have the Consumer Key and Consumer Secret
of the Salesforce Connected App, which must be created by
a Salesforce administrator for the account. Instructions on
how to do this follow the datasource configuration details.

Note Salesforce authentication requires a security token as well
as a user password. A security token is an automatically-
generated key from Salesforce For more information on
security tokens see Reset Your Security Token in the online
help.

12.31.1. Security Trimming

When you enable security trimming for a Salesforce connector, the system uses the Fusion username and tries finding
the identical ID in Salesforce. If it finds this ID, then it uses the permissions given to that ID in Salesforce and applies a
filter to the search query. If the ID is not found then it applies a filter to block all documents from being shown.

The security trimming feature assumes that the Fusion username is the same as Salesforce alias. When retrieving data
from Salesforce, the connector retrieves the user Id based on the Fusion username (Salesforce alias) via the query:

 Select Id from User WHERE alias={username}

If it isn’t found, then the connector will create a security filter to deny access to all documents.

If you are logged into the Fusion UI or send a request to the REST API with username "admin", the Salesforce connector
uses that as the value of property "salesforce_username". Therefore, in Fusion, you must have accounts which reflect
the Salesforce accounts.

12.31.2. Creating a Salesforce Connected App

Before creating the datasource, a Salesforce administrator for the account must create a Salesforce Connected App in
Salesforce:

• Go to Setup > Create > Apps and in the Connected Apps section and click the new button

• Add values to the following properties:

◦ Connected App Name

◦ API Name

◦ Contact Email

◦ Check the property Enable OAuth Settings

• More properties should be displayed:

◦ Callback URL: You can use a dumb HTTPS URL e.g. https://mydomain.com/auth

339

https://developer.salesforce.com/page/REST_API
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/intro_understanding_web_server_oauth_flow.htm
https://help.salesforce.com/HTViewSolution?id=000003706
https://help.salesforce.com/apex/HTViewHelpDoc?id=user_security_token.htm&language=en
https://mydomain.com/auth

◦ Selected OAuth Scopes: Select Full Access(full) scope

• Save the new Connected App

• After this step a message will be displayed, click the continue button.

• In the section API (Enable OAuth Settings) the consumer key and consumer secret should be displayed, which will be
used on the datasource

For the Salesforce credentials the user must be a System Administrator or one with no restrictions (able to access all the
objects and fields)

12.31.3. Configuration

Property Description

collection

Collection

Collection Name

type: string

connected_app_client_id

Salesforce Client Id

required

Salesforce connected app Consumer Key

type: string

minLength: 1

connected_app_client_secret

Salesforce Client secret

required

Salesforce connected app Consumer Secret

type: string

minLength: 1

diagnostic_mode

Diagnostic Mode

type: boolean

default value: ‘false’

enable_security_trimming

Enable Security Triming

type: boolean

default value: ‘false’

is_production_environment

Is production environment

True for production instances and false for sandboxes

type: boolean

default value: ‘true’

340

Property Description

objects_to_crawl

Objects to crawl

List of objects to craw, separated by commas and no
spaces

type: string

default value:
‘Case,CaseComment,CaseHistory,CaseFeed,FeedComment,
Asset,Account,Contact,Opportunity,Product2,Lead’

salesforce_password

Salesforce password

required

type: string

minLength: 1

salesforce_username

Salesforce username

required

type: string

minLength: 1

soql_query

Custom SOQL query

Valid SOQL query

type: string

default value: '`’

maxLength: 15000

Field Mapping

341

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

342

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

343

12.32. ServiceNow Connector and Datasource Configuration

The ServiceNow Datasource retrieves data from ServiceNow repository via the ServiceNow REST API. ServiceNow
records are stored in named tables.

The ServiceNow connector fetches records from these tables and transforms them into Fusion documents according to
the datasource configuration. Access to the ServiceNow requires both a ServiceNow username and password, as well as
an OAuth client password and token.

12.32.1. Configuration

Property Description

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

344

http://wiki.servicenow.com/index.php?title=REST_API
https://en.wikipedia.org/wiki/OAuth

12.33. SharePoint Connector and Datasource Configuration

The SharePoint connector retrieves content and metadata from an on-premises SharePoint repository.

To retrieve content from cloud-based SharePoint repositories, see the SharePoint Online connector.

This connector can access a SharePoint repository running on the following platforms:

• Microsoft SharePoint 2010

• Microsoft SharePoint 2013

See this tutorial about configuring a SharePoint datasource and enabling security trimming:

When crawling, the connector discovers SharePoint contents in the following order: sites, then sub-sites (children). A
site may contain:

• Sub-sites

• Generic Lists

◦ List Items

▪ Attachments

• Document Libraries

◦ Folders

◦ Documents

When the connector re-crawls a SharePoint repository, each previously crawled URL is accessed before any newly
discovered objects, but no order is guaranteed. The connector uses a cache to store retrieved parent objects to avoid
unnecessary requests. The last modified date of each object is retrieved to determine if it has changed since the last
crawl. If it has changed, a new request is made to retrieve the changes. If it has not changed, the object is skipped and no
additional request is made.

The connector uses SOAP to connect to and retrieve documents, lists, and other objects for indexing. It does not access a
SharePoint site in the same way that a regular user does, and it needs additional privileges to use the SOAP interface to
SharePoint.

The connector can be configured to work with Active Directory (AD) or LDAP to retrieve the ACLs for each object, which
can then be used for security trimming at query time. In order to use security trimming to restrict user access to
SharePoint objects, the the authenticated user must have sufficient privileges to read every document in the system and
determine which users can access them. The permissions requirements are explained below.

12.33.1. SharePoint Permissions

SharePoint security trimming restricts access to documents based on user permissions. There are two types of
permissions in SharePoint:

• Site permissions, which are:

◦ managed by SharePoint

◦ customizable for each site or subsite

◦ inherited by subsites as the default permissions

345

https://support.office.com/en-gb/article/Understanding-permission-levels-0082443b-7be7-481a-b69c-6bb9d077c029

◦ grantable to users and groups

• User permissions, which are:

◦ assigned by group membership, when groups have been configured and provided permissions

◦ assigned directly to the user

These permissions are stored as ACLs. When the SharePoint server is configured with security trimming set to "true",
then documents retrieved from SharePoint have the set of all ACLs stored in a acl_ss field on each document.

At search time, the ACLs are used to verify if a user has access to a document. This is configured in a query pipeline with
a Security Trimming Query Stage.

To crawl all the sites and subsites, the authenticated user must belong the site administrators group. If not, Fusion can
still crawl and complete the job, but the crawled data will be limited by the user’s privileges. In addition, a WARNING
message will appear in the connector.log indicating that the user is not site administrator and therefore unable to get
sites from site collections. The message starts with Authorization Error (401).

Required Permissions

The SharePoint datasource must be configured with the name of a user who has sufficient permissions to crawl the
entire site. These permissions require use of a custom Permission Policy. The required permissions correspond to the
concept of Site Collection Auditor, a permission type which is not the same as a Site Administrator, but requires almost
all of the Site Administrator privileges.

You will need to work with your SharePoint administrator to ensure that the account used by Fusion has all of the
permissions listed in the following table:

Permission Type Permission Description

Site Collection Auditor Full Read access for the entire site
collection, including reading
permissions and configuration data.

List View Items View items in lists and documents in
document libraries.

List Open Items View the source of documents with
server-side file handlers.

List View Versions View past versions of a list item or
document.

Site Browse Directories Enumerate files and folders in a Web
site using SharePoint Designer and
WebDAV interfaces.

Site View Pages View pages in a Web site.

Site Enumerate Permissions Enumerate permissions on the Web
site, list, folder, document, or list item.

Site Browse User Information View information about users of the
Web site.

346

Permission Type Permission Description

Site Use Remote Interfaces Use SOAP, WebDAV, Client Object
Model, or SharePoint Designer
interfaces to access the Web site.

Site Open Open a Web site, list or folder in order
to access items inside that container.

Troubleshooting Permission Issues

When the connector is configured using a SharePoint username without sufficient privileges, the Fusion connectors log
file fusion/var/log/connectors/connectors.log contains an error like the following:

crawler.common.sharepoint.exception.SharePointException: Server was unable to process request. ---> Attempted
to perform an unauthorized operation. at
crawler.common.sharepoint.service.BaseService.analyzeResponse(BaseService.java:194) ~[classes/:?] at
crawler.common.sharepoint.service.SiteDataService.getContentBySiteOrList(SiteDataService.java:169)
~[classes/:?] at com.lucidworks.permissions.Main.test1(Main.java:50) [classes/:?] at
com.lucidworks.permissions.Main.main(Main.java:32) [classes/:?]

This user’s permissions may be sufficient to connect via SOAP and read the documents, but not sufficient to get the ACLs
and other associated metadata. This may result in complete lack of access to documents, or access to unauthorized
documents. Confirm that the configured SharePoint user has the required privileges.

12.33.2. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

347

12.34. Slack Connector and Datasource Configuration

The Slack connector is used to retrieve data from a Slack service. The connector sends requests to the Slack REST API.

Note This connector is deprecated in Fusion 2.4.

12.34.1. Configuration

Property Description

collection

Collection

Collection Name

type: string

enable_security_trimming

Enable Security Trimming

Add permissions to each document to control access

type: boolean

default value: ‘false’

im_messages

IM Messages

Index IM / Direct Messages

type: boolean

default value: ‘false’

politeness

Throttle

Throttle Rate Of API Calls

type: boolean

default value: ‘true’

private_groups

Private Groups

Index Private Groups

type: boolean

default value: ‘false’

public_channels

Public Channels

Index Public Channels

type: boolean

default value: ‘true’

348

Property Description

throttle_interval

Throttle Rate

Throttle Rate Of API Calls To One Request Per N
milliseconds

type: integer

default value: ‘1000’

token

API authentication token

required

type: string

minLength: 1

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

349

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

350

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

351

12.35. Solr Connector and Datasource Configuration

A Solr connector pulls documents from an external standalone Solr instance or SolrCloud cluster using Solr’s javabin
response type and streaming response parser.

For Solr v4.7 and greater, cursorMark deep-paging is used. For earlier versions of Solr, standard paging (start+rows) is
used.

The following Solr components and parameters can be configured:

• collection/core (also allows default/empty core)

• query (: by default)

• filter queries

• query parser

• request handler (defaults to /select)

• stored fields to retrieve

Also, since cursorMark deep paging should be used when possible:

• sort spec (default: id asc)

This connector can be configured to store information about datasources and the data ingested in a ConnectorDB
crawldb instance.

12.35.1. Limitations

1. Cannot do incremental crawls. (May be possible to do so in the future using source Solr docs' version field.)

2. Cannot do manual filtered deep paging.

3. Doesn’t check that both sort spec and field list contain uniqueKey field.

4. Cannot handle encrypted connection to Solr

12.35.2. Configuration

Property Description

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

352

http://wiki.apache.org/solr/javabin

Property Description

solr_base_url

Standalone Solr server base URL

e.g. http://solrhost.example.com:8983/solr/

type: string

solr_field_list

Stored fields to retrieve

separate multiple values with commas

type: string

default value: ‘*’

minLength: 1

solr_filter_queries

Filter queries to execute

separate multiple values with commas

type: string

solr_page_size

Page size

type: integer

default value: ‘100’

solr_query

The query to execute

type: string

default value: ‘:’

minLength: 1

solr_query_parser

Query parser

type: string

solr_request_handler

Request handler

type: string

default value: ‘/select’

minLength: 1

solr_sort_spec

Sort specification

uniqueKey field must be included

type: string

default value: ‘id asc’

minLength: 1

353

http://solrhost.example.com:8983/solr/

Property Description

source_collection

Source collection

(core in standalone mode - leave blank to use the default
core)

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

zk_host_string

SolrCloud ZooKeeper host string

e.g. zkServerA:2181,zkServerB:2181,zkServerC:2181/solr

type: string

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

354

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

355

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

356

12.36. SolrXML Connector and Datasource Configuration

The SolrXML connector indexes XML files formatted according to Solr’s XML structure. It is not a generic XML file
crawler; it can only index SolrXML-formatted documents.

Per the Solr standard, all XML files must include the <add> tag in order for the documents to be added to the Fusion
index.

12.36.1. The SolrXML Format

As described in the Solr Reference Guide section on using Solr’s updateHandlers, an XML document formatted for Solr
must conform to a very specific structure. There are three general elements that are used:

• <add> introduces one or more documents to be added to the index.

• <doc> introduces the fields that make up a single document.

• <field> defines the content for each field of the document.

For example, this is very simple XML including only one document:

<add>
 <doc>
 <field name="id">doc1</field>
 <field name="title">My Solr Document</field>
 <field name="body">This is the body of my document.</field>
 </doc>
</add>

The fields can be any field that is defined in your schema, or you can use dynamic field rules to create fields during
indexing.

The elements can take some attributes to define document overwrites, commit rules and field or document boosts. See
the Solr Reference Guide section on XML-formatted updates for more details.

12.36.2. Configuration

Property Description

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

357

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-XMLFormattedIndexUpdates
https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-XMLFormattedIndexUpdates

Property Description

exclude_paths

Exclude paths

An array of regular expression patterns that indicate
documents to be excluded from the index

type: array of string

default value: []

generate_unique_key

Generate unique key?

Set True to add a unique identifier to each document

type: boolean

default value: ‘true’

include_datasource_metadata

Include datasource metadata?

Set True to add data_source and data_source_type fields to
each document in addition to fields found in the file

type: boolean

default value: ‘true’

include_paths

Include paths

An array of regular expression patterns that indicate
documents to be included in the index

type: array of string

default value: [.*\.xml,]

max_docs

Max documents

The maximum number of documents to crawl. Use -1 to
index all documents found

type: integer

default value: ‘-1’

path

Path

required

The name of the file to read, or directory containing files
to read

type: string

minLength: 1

url

URL

Read-only value that shows the absolute path

type: string

minLength: 1

358

Property Description

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

359

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

360

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

361

12.37. Subversion Connector and Datasource Configuration

This connector requires a Subversion client that is compatible which javahl.

Fusion ships with binaries for Windows and Linux which can be used if a javahl-compatible client is not already
installed. These are found in subdirectories of the fusion/connectors/subversion directory.

12.37.1. Configuration

Connector-specific Properties

Property Description

General Configuration

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

362

12.38. Twitter Search Connector and Datasource Configuration

The Twitter Search connector Twitter Search, uses Twitter’s search API to query Twitter for tweets that match specific
parameters. It allows querying for any keyword, location or other query terms.

12.38.1. Registering for Twitter Credentials

In order to successfully configure either Twitter connector, you must first register your application with Twitter and
accept their terms of service. The registration process will provide you with the required OAuth tokens you need to
access either API. To get the tokens, follow these steps:

1. Make sure you have a Twitter account, and go to https://dev.twitter.com/ and sign in.

2. After signing in, choose 'My Applications' from the pull down menu at the upper right that shows a thumbnail of
your Twitter profile picture (if you have one). Then choose "Create New App" and fill out the required details. The
callback field can be skipped, but you must accept the Terms of Service. To save your information, choose "Create
Your Twitter Application" to register your application.

3. The next page will contain the Consumer Key and Consumer Secret, which you will need to configure the data
source in Fusion.

4. At the bottom of the same page, choose "Create My Access Token".

5. The next page will contain the Access Token and Token Secret, which you will also need to configure the data source
in Fusion.

While you need a Twitter account to register an application, you do not use your Twitter username and password to
configure this data source. The APIs will only use the Consumer Key, Consumer Secret, Access Token, and Token Secret
information as authentication, so store it where you can access it while configuring the data source.

12.38.2. Configuration

Property Description

access_token

Access Token

required

The OAuth Access Token is provided by Twitter when
registering the application.

type: string

minLength: 1

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

363

https://dev.twitter.com/docs/api/1.1/get/search/tweets
https://dev.twitter.com/

Property Description

consumer_key

Consumer Key

required

The OAuth Consumer Key is provided by Twitter when
registering the application.

type: string

minLength: 1

consumer_secret

Consumer Secret

required

The OAuth Consumer Secret is provided by Twitter when
registering the application.

type: string

minLength: 1

lang

Language

Restrict Tweets to the given language

type: string

default value: ‘en’

enum: \{ aa ab ae af ak am an ar as av ay az ba be bg bh bi
bm bn bo br bs ca ce ch co cr cs cu cv cy da de dv dz ee el
en eo es et eu fa ff fi fj fo fr fy ga gd gl gn gu gv ha he hi ho
hr ht hu hy hz ia id ie ig ii ik in io is it iu iw ja ji jv ka kg ki
kj kk kl km kn ko kr ks ku kv kw ky la lb lg li ln lo lt lu lv
mg mh mi mk ml mn mo mr ms mt my na nb nd ne ng nl
nn no nr nv ny oc oj om or os pa pi pl ps pt qu rm rn ro ru
rw sa sc sd se sg si sk sl sm sn so sq sr ss st su sv sw ta te tg
th ti tk tl tn to tr ts tt tw ty ug uk ur uz ve vi vo wa wo xh yi
yo za zh zu }

max_docs

Max Documents

The maximum number of documents to pull down, as a
long. -1 for no limit

type: integer

default value: ‘-1’

queries

Queries

required

A list of queries to perform

type: array of string

364

Property Description

sleep

Sleep

The amount of time, in milliseconds, to sleep when
listening so as to not get throttled

type: integer

default value: ‘10000’

token_secret

Token Secret

required

The OAuth Token Secret is provided by Twitter when
registering the application.

type: string

minLength: 1

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

365

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

366

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

367

12.39. Twitter Stream Connector and Datasource Configuration

The Twitter Stream connector uses Twitter’s streaming API to continually index Twitter. The datasource can be
configured to limit tweets or it can be run indefinitely, until Twitter cuts off your access or you stop the datasource. This
connector will only retrieve tweets created after the datasource has been started.

This connector type is "lucid.twitter.search" and the plugin type is "twitter_search".

12.39.1. Registering for Twitter Credentials

In order to successfully configure either Twitter connector, you must first register your application with Twitter and
accept their terms of service. The registration process will provide you with the required OAuth tokens you need to
access either API. To get the tokens, follow these steps:

1. Make sure you have a Twitter account, and go to https://dev.twitter.com/ and sign in.

2. After signing in, choose 'My Applications' from the pull down menu at the upper right that shows a thumbnail of
your Twitter profile picture (if you have one). Then choose "Create New App" and fill out the required details. The
callback field can be skipped, but you must accept the Terms of Service. To save your information, choose "Create
Your Twitter Application" to register your application.

3. The next page will contain the Consumer Key and Consumer Secret, which you will need to configure the data
source in Fusion.

4. At the bottom of the same page, choose "Create My Access Token".

5. The next page will contain the Access Token and Token Secret, which you will also need to configure the data source
in Fusion.

While you need a Twitter account to register an application, you do not use your Twitter username and password to
configure this data source. The APIs will only use the Consumer Key, Consumer Secret, Access Token, and Token Secret
information as authentication, so store it where you can access it while configuring the data source.

12.39.2. Configuration

Property Description

access_token

Access Token

required

The OAuth Access Token is provided by Twitter when
registering the application.

type: string

minLength: 1

collection

Collection

Collection Name

type: string

368

https://dev.twitter.com/streaming/overview
https://dev.twitter.com/

Property Description

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

consumer_key

Consumer Key

required

The OAuth Consumer Key is provided by Twitter when
registering the application.

type: string

minLength: 1

consumer_secret

Consumer Secret

required

The OAuth Consumer Secret is provided by Twitter when
registering the application.

type: string

minLength: 1

filter_follow

Filter Follow

Set of users (user ids) to track

type: array of string

filter_locations

Filter Locations

Set of bounding boxes (e.g. 'left,bottom,right,top' lat/long
coordinates)

type: array of string

filter_track

Filter Track

Keywords or phrases to track

type: array of string

max_docs

Max Documents

The maximum number of documents to pull down, as a
long. -1 for no limit

type: integer

default value: ‘-1’

369

Property Description

sleep

Sleep

The amount of time, in milliseconds, to sleep when
listening so as to not get throttled

type: integer

default value: ‘10000’

token_secret

Token Secret

required

The OAuth Token Secret is provided by Twitter when
registering the application.

type: string

minLength: 1

url

URL

The URL used by the Twitter Stream

type: string

default value: ‘https://stream.twitter.com’

Field Mapping

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

370

Initial Mappings Description

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

371

Property Description

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

372

12.40. Web Connector and Datasource Configuration

The Web connector is used to retrieve data from a Web site using HTTP and starting from a specified URL.

12.40.1. Limiting Crawl Scope

The connector works by going to the seed page (the "startURIs" specified in the configuration form), collecting the
content for indexing, and extracting any links to other pages. It then follows those links to collect content on other
pages, extracting links to those pages, etc.

When creating a Web data source, pay attention to the "Max depth" and "Restrict To Tree" parameters (also known as
"c.depth" and "c.restrictToTree" in the REST API). These properties will help limit the scope of your crawl to prevent an
"unbounded" crawl that could continue for a long time, particularly if you are crawling a site with links to many pages
outside the main site. An unbounded crawl may also cause memory errors in your system.

The connector keeps track of URIs it has seen, and many of the properties relate to managing the resulting database of
entries. If the connector finds a standard redirect, it will track that the redirected URI has an alias, and will not re-
evaluate the URI on its next runs until the alias expiration has passed. Documents that were found to be duplicates, if
de-duplication is enabled, are also added to the alias list and are not re-evaluated until the alias expiration has passed.

Regular expressions can be used to restrict the crawl either by defining URI patterns that should be followed or URI
patterns that should not be followed.

Additionally, specific patterns of the URI can also be defined to define URIs that should not be followed.

12.40.2. Extracting Content from Pages

The connector supports several approaches to extracting and filtering content from pages. When analyzing the HTML of
a page, the connector can specifically include or exclude elements based on the HTML tag, the tag ID, or the tag class
(such as a 'div' tag, or the '#content' tag ID).

Specific tags can be selected to become fields of the document if needed. For example, all content from <h1> tags can be
pulled into a 'h1' field, and with field mapping be transformed into document titles.

For even more advanced capabilities, you can use jsoup selectors to find elements in the content to include or exclude
from the content.

While field mapping is generally a function of the index pipeline, you can define some initial mapping to occur during
the crawl. The 'initial mappings' property for each web datasource is pre-defined with three mappings, to move
'fetchedDates' to a 'fetchedDates_dts' field, to move 'lastModified' to a 'lastModified_dt' field and to move 'length' to a
'length_l' field.

Finally, the crawler is able to do de-duplication of crawled content. You can define a specific field to use for this de-
duplication (such as title, or another field), or you can use the full raw content as the default.

12.40.3. Sitemap Processing

As of Fusion 1.1.2, crawling sitemaps is supported. Simply add the URL(s) of the sitemap to the f.sitemapURLs property
("Sitemap URLs" in the UI) and all of the URLs found in a sitemap will be added to the list of URLs to crawl. If your site
has a sitemap index, i.e., a sitemap that points to other sitemaps, that is also supported and the URLs found through each
sitemap will be added to the list of URLs to crawl.

373

If you want to configure your datasource to only crawl the sitemap file, you must add the sitemap URL to both the
startLinks property (because that is a required property for a datasource) and also to the f.sitemapsURL property so it is
properly treated as a sitemap by the connector when it starts.

12.40.4. Website Authentication

The Web connector supports Basic, Digest, Form and NTLM authentication to websites.

The credentials for a crawl are stored in a credentials file that should be placed in
`fusion/data/connectors/container/lucid.anda/datasourceName ` where the "datasourceName" corresponds to the name
given to the datasource. After creating a datasource, this directory should be created for you. The file should be a JSON
formatted file, ending with the '.json' file extension. When defining the datasource, you would pass the name of the file
with the 'Authentication file' property in the UI (or 'f.credentialsFile' property if using the REST API).

All types of authentication require the credentials file to include a property called "type" which defines the type of
authentication to use. After that, the required properties will vary depending on the type of authentication chosen.

Form-based Authentication

To use basic form-based authentication, use "form" for the type. The other properties are:

• ttl - The "time to live" for the session that will be created after authentication. This will have the crawler log in again
after the specified time so the crawl activity doesn’t fail due to an expired session. This value is defined in seconds.

• action - The action to take to log in, i.e., the URL for the login form.

• params - The parameters for the form, likely the username and password, but any other required properties. In the
example below, we are passing two parameters, the 'os_username' and the 'os_password' that are the properties
expected by the system we would like to crawl.

Here is an example using form-based authentication:

[{
 "credential" : {
 "type" : "form",
 "ttl" : 300000,
 "action" :
"http://some.server.com/login.action?os_destination=%2Fpages%2Fviewpage.action%3Ftitle%3DAcme%2B5%2BDocumentat
ion%26spaceKey%3DAcme5",
 "params" : {
 "os_username" : "username",
 "os_password" : "password"
 }
 }
 }]

Complex Form-based Authentication

Some websites do not manage their own authentication, but rather trust a third-party authority to authenticate the user.
An example of this would be websites that use SAML to log in a user via a central single-signon authority. In order to
configure fusion to log in to a website like this, use "smartForm" for the type. The other properties are:

• ttl - the "time to live" for the session that will be created after authentication. This will have the crawler re-login
after the specified time so the crawl activity doesn’t fail due to an expired session. This value is defined in seconds.

374

• loginUrl - the URL on which the first page that initializes the login chain is located

• params - a list of parameters to use for the form logins, likely the username and password, but could be other
required properties. In the example below, we are passing two parameters, the 'os_username' and the 'os_password'
that are the properties expected by the system we would like to crawl. Additionally we expect that once that login
has happened, that a new form will be presented to the user which then posts back to where we came from. No data
need to be entered in this form, which is why we include an empty { } in the params list.

Here is an example using form-based authentication:

[{
 "credential" : {
 "type" : "smartForm",
 "ttl" : 300000,
 "loginUrl" : "http://some.example.com/login",
 "params" : [{
 "os_username" : "username",
 "os_password" : "password"
 }, {

 }]
 }
 }]

In order to figure out what params you need to specify, turn off JavaScript in your browser and walk through the login
chain. Though you normally only see a single login form on your screen, you may be surprised to find many more forms
you need to submit before you get logged in when JavaScript is not available to perform those form submissions
automatically. Each form in that chain needs to be represented in list of params. If no user input is required, simply
include an empty { }.

Basic and Digest Authentication

Basic and Digest authentication are simple HTTP authentication methods still in use in some places. To use either of
these types use "basic" or "digest" in the credentials file for the 'type' property. Other properties are:

• host - the host of the site.

• port - the port, if any.

• userName - the username to use for authentication.

• password - the password for the userName.

• realm - the realm for the site, if any.

Example basic auth configuration:

375

[{
 "credential" : {
 "type" : "basic",
 "ttl" : 300000,
 "userName" : "usr",
 "password" : "pswd",
 "host":"hostname.exampledomain.com”
 "port": 443
 }
 }
]

NTLM Authentication

To use NTLM authentication, use "ntlm" in the credentials file for the 'type' property. The other properties available are:

• host - the host of the site.

• port - the port, if any.

• userName - the username to use for authentication.

• password - the password for the userName.

• realm - the realm for the site, if any.

• domain - the domain.

• workstation - the workstation, as needed.

Example NTLM credential configuration:

[{"credential" :
 { "type" : "ntlm",
 "ttl" : 300000,
 "port" : 80,
 "host" : "someHost",
 "domain" : "someDomain",
 "userName" : "someUser",
 "password" : "XXXXXXXX"
 }
}]

12.40.5. Configuration

Connector-specific Properties

Property Description

General Configuration

376

Property Description

pipeline

Pipeline ID

The index pipeline used to process documents.

377

12.41. Websphere Connector and Datasource Configuration

WebSphere Commerce Suite, a.k.a IBM WebSphere is an IBM product that offers full stack software for companies that
do eCommerce business. User interactions with the IBM storefront eCommerce website can be captured as Fusion
signals and can be used for product recommendations on the storefront.

WebSphere search is powered by Solr and the product is distributed with Solr jar files and deployment scripts for
different development and production configurations. In order to use the WebSphere-deployed Solr with Fusion index
and query pipelines, is it necessary to install and configure an additional set of Solr plugins. The plugins, installation
and configuration information are publically available from:

• https://github.com/LucidWorks/fusion-solr-plugins

378

https://github.com/LucidWorks/fusion-solr-plugins

12.42. Windows Share Connector and Datasource Configuration

The Windows Share connector can access content in a Windows Share or Server Message Block (SMB)/Common Internet
File System (CIFS) filesystem.

See this tutorial about configuring a Windows Share datasource and enabling security trimming:

12.42.1. Access Control Lists (ACLs)

The connector is able to retrieve and store ACL details when crawling with the 'smb' type. There are several properties
available to define how the datasource should read the user and group information found in Active Directory, and when
security trimming is enabled, document results will take user authorizations into consideration.

For each document, the acl field is populated with data that can be used at search time to filter the results so that only
people that have been granted access at the user level or through group membership can see them. Two kinds of tokens
are stored: Allow and Deny. The format used is as follows:

Allow:`WINA<SID>`

Deny:`WIND<SID>`

Where SID is the security identifier commonly used in Microsoft Windows systems. There are some well known SIDs
that can be used in the acl field to make documents that are crawled through some other mechanism than by using SMB
data source behave, from the acl pow, the same way as the crawled SMB content:

SID Description

S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system administrator. By default, it
is the only user account that is given full control over the
system.

S-1-5-domain-512 Domain Admins: a global group whose members are
authorized to administer the domain. By default, the
Domain Admins group is a member of the Administrators
group on all computers that have joined a domain.

S-1-5-domain-513 Domain Users.

Note that some of the listed SIDs contain a domain token. This means that the actual SIDs differ from system to system. To
find out the SIDs for particular user in particular system you can use the information provided by the Windows
command line tool whoami by executing command whoami /all.

You can populate the acl field in your documents with these Windows SIDs to make them searchable in Fusion. For
example, if you wanted to make some documents available to "Everyone" you would populate the acl field with the
WINAS-1-1-0 token. If you wanted to make all docs from one data source available to everybody you can use the literal
definitions in the data source configuration.

12.42.2. Configuration

379

Property Description

ad_cache_groups

AD cache groups

Cache Active Directory groups.

type: boolean

default value: ‘false’

ad_connect_timeout

AD connect timeout

Active Directory connect timeout in [ms].

type: integer

default value: ‘5000’

exclusiveMinimum: false

minimum: 0

ad_context_factory

AD context factory

Active Directory initial context factory.

type: string

default value: ‘com.sun.jndi.ldap.LdapCtxFactory’

ad_credentials

AD credentials

Active Directory credentials / password.

type: string

ad_group_base_dn

AD group base DN

Active Directory group base DN.

type: string

ad_group_filter

AD group filter

Active Directory group filter. Example:
'(&(objectclass=group))'

type: string

ad_read_timeout

AD read timeout

Active Directory read timeout in [ms].

type: integer

default value: ‘5000’

exclusiveMinimum: false

minimum: 0

380

Property Description

ad_read_token_groups

AD read token groups

Active Directory read token groups.

type: boolean

default value: ‘true’

ad_referral

AD referral

Active Directory referral type.

type: string

default value: ‘follow’

ad_security_authentication

AD security auth

Active Directory security authentication type.

type: string

default value: ‘simple’

ad_url

AD URL

Active Directory URL. Format: ldap://hostname:389 or
ldaps://hostname:636 .

type: string

pattern: ldaps?://.+

ad_user_base_dn

AD user base DN

Active Directory user base DN.

type: string

ad_user_filter

AD user filter

Active Directory user filter. Example:
'(&(objectclass=user)(sAMAccountName={0}))'

type: string

ad_user_principal_name

AD Principal

Active Directory Principal. Format: user@domain .

type: string

pattern: .@.

add_failed_docs

Add failed documents

Add document even if it partially failed processing.

type: boolean

default value: ‘false’

381

Property Description

bounds

Traversal Boundaries

Traversal limits relative to the starting point. Default is
'tree'.

type: string

default value: ‘tree’

enum: \{ tree host domain none }

cache_element_expiration_time

Cache expiration

Cache expiration time in [s].

type: integer

default value: ‘7200’

exclusiveMinimum: false

minimum: 0

collection

Collection

Collection Name

type: string

commit_on_finish

Commit on Finish?

Issue a commit command when job is finished. Default is
true.

type: boolean

default value: ‘true’

crawl_depth

Traversal Depth

Depth of traversal from the starting point. Default is -1
(unlimited).

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

382

Property Description

crawl_item_timeout

Item fetch timeout

Maximum time in [ms] to fetch any individual item.

type: integer

default value: ‘600000’

exclusiveMinimum: true

minimum: 0

enable_SIDs_cache

SIDs cache

Enable SIDs caching.

type: boolean

default value: ‘true’

enable_security_trimming

Security trimming

Enable security trimming.

type: boolean

default value: ‘false’

exclude_paths

Exclude patterns

Resource URI-s that match one or more of the exclude
patterns will be skipped.

type: array of string

default value: []

include_extensions

File extensions

Process only files with these extensions.

type: array of string

include_paths

Include patterns

Only resource URI-s that match one or more of the include
patterns will be processed.

type: array of string

index_directories

Directories as documents

Add directory entries as separate documents.

type: boolean

default value: ‘false’

383

Property Description

max_bytes

Maximum bytes

Maximum bytes to process for each document. Longer
documents will be truncated. -1 means unlimited, and may
lead to out of memory errors.

type: integer

default value: ‘10485760’

exclusiveMinimum: false

minimum: -1

max_cache_size

Max. cache size

Maximum cache size.

type: integer

default value: ‘1000’

exclusiveMinimum: false

minimum: 0

max_docs

Maximum documents

Maximum number of document to process in a job. -1
means unlimited.

type: integer

default value: ‘-1’

exclusiveMinimum: false

minimum: -1

max_threads

Maximum threads

Maximum number of threads to use for fetching
documents.

type: integer

default value: ‘1’

maximum_connections

Maximum connections

Maximum number of concurrent connections to the file
system.

type: integer

default value: ‘10000’

384

Property Description

password

Password

required

Password.

type: string

splitter

Container splitter

Settings for the optional large container files splitter
(archives, CSV/TSV).

type: object

object attributes: \{
 }

url

File system URI

required

Fully-qualified URI of the file system path

type: string

minLength: 1

pattern: .:.

username

Username

required

Username.

type: string

verify_access

Verify Access?

Verify that the target system is accessible using this data
source configuration.

type: boolean

default value: ‘true’

windows_domain

Windows Domain

type: string

Field Mapping

385

Initial Mappings Description

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

ConnectorDb Configuration

386

Property Description

aliases

Process Aliases?

Keep track of original URI-s that resolved to the current
URI. This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

inlinks

Process Inlinks?

Keep track of incoming links. This negatively impacts
performance and size of DB.

type: boolean

default value: ‘false’

inv_aliases

Process Inverted Aliases?

Keep track of target URI-s that the current URI resolves to.
This negatively impacts performance and size of DB.

type: boolean

default value: ‘false’

type

Implementation Class Name

Fully qualified class name of ConnectorDb
implementation.

type: string

default value:
‘com.lucidworks.connectors.db.impl.MapDbConnectorDb’

minLength: 1

General Configuration

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

387

12.43. Zendesk Connector and Datasource Configuration

The Zendesk connector uses the Zendesk REST API to retrieve tickets and their associated comments and attachments
from a Zendesk repository.

It retrieves all tickets with all fields (e.g., customer, assignee, priority, status) as well as access restrictions for users and
groups. ACLs can be used for security trimming at query time. The types of items retrieved are:

• tickets and their associated metrics: e.g., time elapsed until first response, time to close.

• ticket comment counts, comment ids

• ticket comment attachment URLs

Items retrieved are returned as individual Solr documents, therefore, for a given Zendesk ticket, there will be multiple
documents:

• the Zendesk ticket itself

• one document per comment

• one document per comment attachment

Documents have fields for Zendesk type and reference field to parent documents, e.g., a comment document will have
field "ticket_id" pointing back to the Zendesk ticket.

Incremental recrawls allow updates to the Fusion collection to add new tickets and record further changes to existing
tickets without having to retrieve the entire Zendesk repository contents.

12.43.1. Authorization

The Zendesk user must have administrator privileges in order to retrieve all tickets and associated information. All
communication with the Zendesk API is encrypted with SSL.

12.43.2. Required Configuration Properties

A Zendesk datasource must be configured with the following properties:

• Authentication Key - username or email

• Authentication Value - the password or API token

• Token Auth - a flag to indicate whether the auth key/value should be treated as username/password or email/token

• Base URL - the API url to an instance of the Zendesk API

• Organization ID - set to restrict indexing to only tickets that belong to the Organization

12.43.3. Configuration Properties

Property Description

General Configuration

388

https://developer.zendesk.com/rest_api/docs/core/introduction

Property Description

description

Description

Optional description for datasource instance.

id

Datasource ID

Unique name for datasource instance.

pipeline

Pipeline ID

The index pipeline used to process documents.

389

Chapter 13. Pipeline Stages Reference
Index Pipeline stages are used to create and modify PipelineDocument objects to control how incoming data is indexed
in Fusion’s Solr core.

Query Pipeline stages are used to modify Request objects and Response objects to control how query results are
returned to the end user.

13.1. Pipeline Stage Properties

Fusion associates a pipeline stage definition with a unique ID and stores the definition so that stages can be reused
across pipelines and applications. In addition to an ID, all stages have the following properties:

• type (required): an enumeration, one of the defined Fusion pipeline stage types, e.g., "index-logging". If the Fusion
UI is used to define the stage, this property is filled in automatically.

• label (optional) : a string field with a maximum length of 255 characters. The label is displayed on the Fusion UI.

• skip (optional): a boolean value, If true, pipeline processing bypasses this stage altogether. The default is false.

• condition (optional): a JavaScript expression that evaluates to true (1) or false (0). If this condition evaluates to false,
this stage is skipped. The default is true.

13.2. Conditional Processing

Each Fusion pipeline stage contains a "Condition" field at the beginning of the stage configuration found in the Fusion
UI. A conditional script can be used to dynamically turn a stage on/off. For example, in the index pipeline you can create
a field mapping stage and create a condition to only execute the stage if a document contains the field 'sample_field',
and to skip the stage otherwise.

doc.hasField("sample_field");

For the example above, if the pipeline document has the field 'sample_field', then the conditional script returns 'true'
and the pipeline stage is executed. If the pipeline document does not have the 'sample_field', the condition returns 'false'
and the pipeline stage is skipped.

The JavaScript expression specified in the condition property of a pipeline stage has access to the pipeline objects. For
example, query processing can be conditional on information in the query Request object:

request.hasParam("fusion-user-name") && request.getFirstParam("fusion-user-name").equals("SuperUser");

The above condition first checks that the property "fusion-user-name" is specified, then checks for a particular value.

390

13.3. Index Pipeline Stages

Index Pipeline stages are used to create and modify PipelineDocument objects. Use the Index Workbench to configure
stages in a pipeline and preview the results.

See these reference topics for details about each index pipeline stage:

• Apache Camel Pipeline

• Apache Tika Parser

• CSV Parser

• Date Parsing

• Detect Language

• Exclusion Filter

• Field Mapper

• Find Replace

• Fusion Pipeline

• Gazetteer Lookup Extractor

• HTML Transform

• Indexing RPC

• JDBC

• JSON Parser

• Javascript

• Language Detection

• Logging

• Logging Message

• Multi-value Resolver

• OpenNLP NER Extractor

• Part of Speech

• Regular Expression Extractor

• Regular Expression Filter

• Regular Expression Replacement

• Sentence Detection

• Set Property

• Short Field Filter

• Signal Formatter

• Solr Indexer

• Solr Partial Update Indexer

• XML Transform

391

13.3.1. Apache Tika Parser Index Stage

The Apache Tika Parser index stage type includes rules for parsing documents with Apache Tika. Fusion uses Tika v1.7.
(Note that components of the Solr distribution included with Fusion contian their own Tika jar files; these are not used
by Fusion.)

To parse a CSV document, you should use a CSV Parsing Index Stage instead of an Apache Tika Parser stage.

Configuration

When using Fusion’s REST-API, the ID of this stage is: tika-parser.

Configuration Properties

Property Description, Type

addFailedDocs

Add failed documents

type: boolean

default value: ‘false’

addOriginalContent

Add original document content (raw bytes)

type: boolean

default value: ‘true’

contentEncoding

Content transport encoding of the content (per RFC1341)

type: string

default value: ‘binary’

enum: \{ binary base64 }

contentField

Field name where content is expected

type: string

default value: ‘raw_content’

392

http://tika.apache.org/

Property Description, Type

csvConfig

Configuration for the CSV files parser

type: object

object attributes: \{
 comment : \{
 display name: Comment character
 type: string
 default value: ‘#’
 maxLength : 1
 }
 condition : \{
 display name: Conditional Script
 type: string
 }
 delimiter : \{
 display name: Delimiter
 type: string
 default value: ‘,’
 minLength : 1
 }
 emptyValue : \{
 display name: Empty value
 type: string
 default value: ‘'
 }

 `headers : \{
 display name: Set Headers
 type: array of string
 }
 headersHandling : \{
 display name: Headers Handling
 type: string
 default value: '`parse’
 enum: \{ dynamic ignore parse }

 } +
 `ignoreLeadingWhitespaces` : \{ +
 display name: Ignore leading whitespaces +
 type: `boolean` +
 default value: '`false`' +
 } +
 `ignoreTrailingWhitespaces` : \{ +
 display name: Ignore trailing whitespace +
 type: `boolean` +
 default value: '`false`' +
 } +
 `inheritFields` : \{ +
 display name: Inherit fields +
 type: `boolean` +
 default value: '`false`' +
 description : Should generated documents
include the original document's fields +
 } +

393

 `label` : \{ +
 display name: Label +
 type: `string` +
 maxLength : 255 +
 } +
 `lineSeparator` : \{ +
 display name: Line Separator +
 type: `string` +
 default value: '`\n`' +
 minLength : 1 +
 } +
 `nullValue` : \{ +
 display name: Null value +
 type: `string` +
 default value: '``' +
 } +
 `quote` : \{ +
 display name: Quote character +
 type: `string` +
 default value: '`"`' +
 maxLength : 1 +
 } +
 `quoteEscape` : \{ +
 display name: Quote escape +
 type: `string` +
 default value: '`"`' +
 maxLength : 1 +
 } +
 `skip` : \{ +
 display name: Skip This Stage +
 type: `boolean` +
 default value: '`false`' +
 } +
 `skipEmptyLines` : \{ +
 display name: Skip empty lines +
 type: `boolean` +
 default value: '`true`' +
 } +
 `sourceEncoding` : \{ +
 display name: Source field encoding +
 type: `string` +
 default value: '`binary`' +
 description : The content transport encoding of
the data stored in the source field (per RFC1341) +
 enum: \{ binary base64 }

 } +
 `sourceField` : \{ +
 display name: Source field +
 type: `string` +
 default value: '`_raw_content_`' +
 description : The document field where the CSV
content should be read from +
 } +
 }

Property Description, Type

csvParsing

Do CSV parsing

type: boolean

default value: ‘true’

extractHtmlLinks

Extract XHTML links

Collect links explicitly declared in document structure (e.g.
using HTML tags, bookmarks, etc)

type: boolean

default value: ‘true’

extractOtherLinks

Extract other links

Use regex-based heuristic extractor to collect likely links
from plain text content in all fields.

type: boolean

default value: ‘false’

flattenCompound

Flatten compound documents

type: boolean

default value: ‘false’

includeImages

Include images

type: boolean

default value: ‘false’

keepOriginalStructure

Return original XML and HTML instead of Tika XML
output

type: boolean

default value: ‘false’

returnXml

Return parsed content as XML or HTML

type: boolean

default value: ‘false’

394

13.3.2. Call Pipeline Index Stage

The Call Pipeline index stage (called the Fusion Pipeline stage in versions earlier than 3.0) provides a means of
composing index pipelines.

Configuration

When using Fusion’s REST-API, the ID of this stage is: apollo.

Configuration Properties

Property Description, Type

collection

Collection

type: string

pipeline

Pipeline ID

required

type: string

395

13.3.3. CSV Parsing Index Stage

The CSV Parsing Index stage (previously called the CSV Parser stage) parses CSV content from a document field into new
documents. It will produce as many documents are there are rows in the CSV input, excluding comment and header
rows.

The following CSV snippet consists of a row of column headers and 5 rows of data, (6 lines total):

Name,Description
Arnold_Schwarzenegger,"Austrian-American bodybuilder, actor, politician"
Anthony_Hopkins,"Actor"
Albert_Brooks,"Actor, voice actor, writer, comedian and director"
Britney_Spears,"American musician, singer, songwriter, actress, author"
Brigitte_Bardot,"French actress and animal welfare activist"

Running this input through a CSV parsing stage which has been configured to use the column headers as field names
produces 5 documents:

(document) field "Name" field "Description"

(1) Arnold_Schwarzenegger Austrian-American bodybuilder, actor,
politician

(2) Anthony_Hopkins Actor

(3) Albert_Brooks Actor, voice actor, writer, comedian
and director

(4) Britney_Spears American musician, singer,
songwriter, actress, author

(5) Brigitte_Bardot French actress and animal welfare
activist

There are two configuration properties for proper handling of the CSV header columns:

• headers configuration property can be used to define the mapping from CSV columns to document fields using a list
of field names which are applied to the columns in the order in which they are specified.

• headersHandling configuration property specifies how to handle the first row of CSV data. It takes one of three
possible values:

◦ parse - Assumes the input document contains headers in the first row. The column headers are used as the field
name. This is the default option.

◦ dynamic - Assumes the input does not contain headers. Treats the first line of the CSV file as data. If field names
have been specified they will be used, else dynamic field names will be created for the parsed values.

◦ ignore - Assumes the input document contains headers and ignores them. If field names have been specified
they will be used, else dynamic field names will be created for the parsed values.

Configuration

When using Fusion’s REST-API, the ID of this stage is: csv-parser.

396

Configuration Properties

Property Description, Type

comment

Comment character

type: string

default value: ‘#’

maxLength: 1

delimiter

Delimiter

type: string

default value: ‘,’

minLength: 1

emptyValue

Empty value

type: string

default value: '`’

headers

Set Headers

type: array of string

headersHandling

Headers Handling

type: string

default value: ‘parse’

enum: \{ dynamic ignore parse }

ignoreLeadingWhitespaces

Ignore leading whitespaces

type: boolean

default value: ‘false’

ignoreTrailingWhitespaces

Ignore trailing whitespace

type: boolean

default value: ‘false’

inheritFields

Inherit fields

Should generated documents include the original
document’s fields

type: boolean

default value: ‘false’

397

Property Description, Type

lineSeparator

Line Separator

type: string

default value: ‘\n’

minLength: 1

nullValue

Null value

type: string

default value: '`’

quote

Quote character

type: string

default value: ‘"’

maxLength: 1

quoteEscape

Quote escape

type: string

default value: ‘"’

maxLength: 1

skipEmptyLines

Skip empty lines

type: boolean

default value: ‘true’

sourceEncoding

Source field encoding

The content transport encoding of the data stored in the
source field (per RFC1341)

type: string

default value: ‘binary’

enum: \{ binary base64 }

sourceField

Source field

The document field where the CSV content should be read
from

type: string

default value: ‘raw_content’

398

13.3.4. Date Parsing Index Stage

The Date Parsing Stage (previously called the Date Parser stage) is an index pipeline stage that performs parsing and
normalization of date/time data in document fields which uses the Fusion DateUtils library. The resulting date/time
information is available both as an timestamp in UTC time zone as well as a local date/time in the original local time
zone.

The time zone name, offset and the epoch time are stored in separate fields, too. Additionally the formatted dates can be
split into their components, and each component added to separate document fields.

Note that this stage works only with data that consists solely of the date/time information, i.e. it will not work correctly
if dates are a part of a larger piece of text.

Timestamp splitting options

Splitting options help in processing timestamp information without resorting to scripting - e.g. in order to index day of
week information it’s more convenient and faster to split the timestamp in this stage, and then just discard other
components that are not needed (using a field mapping stage), rather than using a JavaScript stage to parse and split the
timestamp manually.

Please note that time zone name and time zone offset, as well as epoch time, are always added as separate fields
regardless of the splitting options. E.g. for a field named test these values will be added as fields tz.test, tz_offset.test,
and epoch.test.

The option splitLocal splits the timestamp in its original timezone, while the option splitUTC first converts the
timestamp to UTC and then splits it. The resulting date and time components are stored in fields that follow patterns
<part>.local.<fieldName> and <part>.utc.<fieldName> respectively.

The following parts are extracted and added to the document:

• year - year component

• month - month in year, from 1 to 12

• day - day in month, from 1 to 31

• yday - day in year, from 1 to 356

• weekday - day of week, 1 being Monday and 7 being Sunday

• week - week in year, from 1 to 52. Note: in the standard ISO8601 week algorithm, the first week of the year is that in
which at least 4 days are in the year. As a result of this definition, day 1 of the first week may be in the previous
year, which will be indicated by weekyear. The opposite is also true - last day of the last week may be in the next
year, and weekyear will show the next year.

• weekyear - year corresponding to the week value. This can be either the current year or previous one, or the next
one.

• hour - hour in day, from 0 to 23

• min - minute in hour, from 0 to 59

• sec - second in minute, from 0 to 59

• ms - millisecond in second, from 0 to 999

Example: given this normalized timestamp in the original timezone 2015-01-01 00:00:00.000 Europe/Warsaw in a field
test, the corresponding normalized UTC timestamp will be 2014-12-31T23:00:00.00Z.

399

Example: splitLocal parsing

The following table shows the additional fields added to a document as the result of applying splitLocal parsing to the
contents a field named test which contains the value 2015-01-01 00:00:00.000 Europe/Warsaw:

Field name value

tz.test Europe/Warsaw

tz_offset.test +01:00

epoch.test 1420066800000

Example: splitUTC parsing

The following table shows the additional fields added to a document as the result of applying splitUTC parsing to the
contents a field named test which contains the value 2015-01-01 00:00:00.000 Europe/Warsaw:

Field name value

tz.test Europe/Warsaw

tz_offset.test +01:00

epoch.test 1420066800000

year.utc.test 2014

year.local.test 2015

month.utc.test 12

month.local.test 1

day.utc.test 31

day.local.test 1

yday.utc.test 365

yday.local.test 1

weekday.utc.test 3

weekday.local.test 4

week.utc.test 1

week.local.test 1

weekyear.utc.test 2015

weekyear.local.test 2015

hour.utc.test 23

hour.local.test 0

min.utc.test 0

min.local.test 0

400

Field name value

sec.utc.test 0

sec.local.test 0

ms.utc.test 0

ms.local.test 0

Note: The following:

• weekday is different - UTC day of week is Wednesday, and local day of week is already Thursday.

• yday in UTC points to the last day of the year, while it’s the first day of the year in local time zone, similarly with day.

• week and weekyear are the same in both cases - because according to the ISO 8601 definition all days of this week
belong to year 2015 so it doesn’t matter whether it’s Wednesday or Thursday.

Configuration

When using Fusion’s REST-API, the ID of this stage is: date-parsing.

Configuration Properties

Property Description, Type

dateFormats

Date Formats

Custom date formats, or empty for default formats

type: array of string

defaultLocale

Default locale

Locale to assume if different from Locale.ENGLISH. This
uses IETF BCP 47 codes.

type: string

defaultTimezone

Default timezone

Timezone to assume if one is not present in the incoming
date

type: string

ignoreInvalid

Ignore invalid

When false invalid date strings will cause the whole
document to be rejected. When true invalid values are
silently discarded

type: boolean

default value: ‘false’

401

Property Description, Type

requireTimezone

Require timezone

Accept only formats that explicitly specify the timezone

type: boolean

default value: ‘false’

sourceFields

Source Fields

type: array of string

splitLocal

Split local date into parts

Split local date (in the local timezone) into parts and store
in .local. fields

type: boolean

default value: ‘false’

splitUTC

Split UTC date into parts

Split UTC date (in the UTC timezone) into parts and store
in .utc. fields

type: boolean

default value: ‘false’

402

13.3.5. Exclusion Filter Index Stage

The Exclusion Filter index stage is used to remove fields or documents that match items in a pre-defined exclusion list.

There are two ways to supply an exclusion list:

• Upload a file containing a newline-separated list, using the Blob Store. When configuring the index stage, reference
the list by its blob name in the location property (Exclusion List URI in the Fusion UI).

• When configuring the index stage, enter an array of values for exclusion in the excludeValues property (Exclusion
List in the Fusion UI).

The Exclusion Filter stage can be configured using one or both of these methods; Fusion combines them into one list. If
regexPattern is configured, the pattern is applied to the field before the result is compared to the combined list.

By default, any matching field is excluded from indexing. To exclude the whole document, set skipDocument to "true"
(Skip Document in the Fusion UI).

Uploading an exclusion list

Before you can configure the location property, you must upload one or more exclusion lists to Fusion using the Blob
Store API.

Fusion comes with an example exclusion list at fusion/data/nlp/excludes/excludes.txt. Here is an example of how to
upload this file using curl, where admin:pass are the credentials for an admin-level user:

curl -u admin:pass -X PUT --data-binary @data/nlp/excludes/excludes.txt -H 'Content-type: text/plain'
http://localhost:8764/api/apollo/blobs/excludes.txt

Example

Use an exclusion list for entities found in the author field:

{
 "type" : "exclusion-filter",
 "id" : "iw",
 "filters" : [{
 "sourceField" : "author_s",
 "location" : "excludes.txt",
 "caseSensitive" : false
 }],
 "skip" : false
 }]
}

Configuration

403

13.3.6. Field Mapping Index Stage

The Field Mapping stage was renamed for Fusion 3.0; it was called the Field Mapper stage in previous versions.

A Field Mapping stage is used to do customized mapping of the fields in an Index Pipeline document to fields in a the
Solr schema.

Field Mapping Stage Properties

A Field Mapping stage specification consists of three things:

• a unique ID

• a set of mapping rules that specify operations applied to named fields as a triple: { source, target, operation }.

• a set of rules called "unmapped" rules which specify operations applied to fields whose name doesn’t match any of
the mapping rules, also a triple { source, target, operation }.

Mapping Rules and Unmapped Rules

Each rule has the following properties:

Property Description

source The name of the source field. This will be the name of the
field in the Pipeline document that should be mapped to
another field. Java regular expressions can be used in the
source field by surrounding the regular expression with
forward slashes ('/'). For example, /(.)text(.\)/ is a valid
expression that will find field names in the incoming
document that contain the string 'text' between any
number of preceding or succeeding characters. If a regular
expression is not used, the value supplied for the source
will be treated as a literal field name and will be matched
ignoring the case (for example, "text" will match "tExt" or
"Text", etc.).

target The name of the target field. If the value for the source was
a regular expression, then this can also be a regular
expression. It can also contain substitutions using
references to capture groups (using Java’s
Matcher.replaceAll). Otherwise, the source field name will
be simply substituted by the value of target according to
the operation rules described below.

404

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceAll-java.lang.String-
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceAll-java.lang.String-

Property Description

operation What to do with the field during mapping. Several options
are available:

• copy: Content contained in fields matching source will
be copied to target.

• move: Content contained in fields matching source
will be moved to target (it may also help to think of
this as the field name being replaced by the value of
target).

• delete: Content contained in fields matching source
will be dropped from the document and not indexed.
In this case, the target can be null or not defined at all.

• add: The literal value of target will be added to the
source if source is a regular expression. If source is not
a regular expression, target will be added as a new
field.

• set: The literal value of target will be set as the new
value of source if source is a regular expression. If
source is not a regular expression, target will be set as
a new field.

• keep: Content contained in fields matching source will
be retained and unchanged, and the fields will be
added to a list of known fields and they will not be
affected by however the renameUnknown rule has been
set.

Note that the mapping rules are applied in the order in which they are defined, which may have an impact on the final
effects of the mapping process.

Field Mapping Behavior

The field mapping rules are applied in a specific order.

1. A copy of the Pipeline document is prepared. All further operations are applied to this copy.

2. The rules are traversed only once, in the order of their declaration in the mapping property. This means it is possible
to do multiple operations on a field. However, note that if fields are moved (renamed), further operations should
reference the new field name.

3. Before each rule is evaluated, the current list of field names is prepared and sorted in alphabetic ascending order.

4. The current rule is applied to field values for each matching name from the list of names prepared in step 3. New
field names resulting from the current rule do not effect the snapshot list of field names; in order for a rule to be
applied to a new field name, it will be included in a later round of the evaluation cycle.

5. The process is repeated for each rule, and a list of matching source fields is noted.

6. If the document contains any fields that were not affected by any mapping rule, the renameUnknown option is applied
if it has been set to true.

405

7. Finally, the resulting transformed document is returned to the next stage of the index pipeline.

Examples

Map several fields:

{
 "id": "mapping-text",
 "type": "field-mapping",
 "mappings": [
 {
 "operation": "move",
 "source": "plaintextcontent",
 "target": "body"
 },
 {
 "operation": "add",
 "source": "content-length",
 "target": "fileSize"
 },
 {
 "operation": "move",
 "source": "/file(.*)/",
 "target": "lastModified"
 },
 {
 "operation": "delete",
 "source": "last-printed"
 },
 {
 "operation": "copy",
 "source": "mimetype",
 "target": "content_type"
 }
],
 "unmapped": {
 "source": "/(.*)/",
 "target": "$1_ss",
 "operation": "move"
 },
 "skip" : false
}

Set the urlX field based on the value of the employee_id field:

406

{
 "id": "set-field",
 "type": "field-mapping",
 "mappings": [
 {
 "operation": "set",
 "source": "urlX",
 "target": "https://mydomain.com/<employee_id>"
 }
],
 "skip" : false
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: field-mapping.

Configuration Properties

Property Description, Type

mappings

Field Mappings

type: array of object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` _ (required)_ : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

407

Property Description, Type

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

408

13.3.7. Find and Replace Index Stage

The Find and Replace stage is used to standardize or remove a set of specific passages, phrases, or words from a
document field using exact string matching. This stage is configured with one or more rules. Each rule specifies one or
more texts to match against and a single text string that is the replacement value. When the replacement string is the
empty string, this will delete the matched text from the document field.

There are two different ways of setting up a Find and Replace stage:

• Using Fusion’s blob store to store the list of texts to be standardized. This is known as "Find List Replace" For each
standardization, there is a file which contains the set of texts to be standardized, one per line, with file suffix .lst.
The .lst file is uploaded into Fusion’s ../../REST_API_Reference/Blob-Store-API.html[Blob Store]. The required
properties for each rule are: the document field to scan; the name of the list file uploaded to the blob store, inclusive
of suffix .lst; and the replace text value.

• Specifying a set of find/replace pairs directly using the Fusion UI or REST API. This is known as "Find Replace". The
requires properties for each rule are: the document field to scan; a list of find/replace pairs.

Configuration

When using Fusion’s REST-API, the ID of this stage is: find-replace.

Configuration Properties

Property Description, Type

findListReplaceRules

Find List Replace rules

type: array of object

object attributes: \{
 caseSensitive : \{
 display name: Case sensitive
 type: boolean
 default value: ‘true’
 }
 listLocation (required) : \{
 display name: Blob name of the list
 type: string
 }
 replacementValue : \{
 display name: Replacement Value
 type: string
 }
 sourceField (required) : \{
 display name: Source Field
 type: string
 }
 }

409

Property Description, Type

findReplaceRules

Find replace rules

type: array of object

object attributes: \{
 caseSensitive : \{
 display name: Case sensitive
 type: boolean
 default value: ‘true’
 }
 keyValues (required) : \{
 display name: find and replace strings list
 type: array of object
 }
 sourceField (required) : \{
 display name: Source Field
 type: string
 }
 }

410

13.3.8. Gazetteer Lookup Extraction Index Stage

The Gazetteer Lookup Extraction index stage (called the Gazetteer Lookup Extractor stage in versions earlier than 3.0)
uses predefined lists of words and phrases to process specified text fields in a document. A gazetteer is a set of lookup
lists over names of people, places, or things. These lookup lists are used to find occurrences of these names in text. The
matched items are saved into separate fields on the document for downstream processing.

Gazetteers and OpenNLP Tools

The following video shows how to configure a Gazetteer Lookup Extraction stage in combination with OpenNLP:

Uploading Lookup Lists to Fusion Blob Store

Fusion includes a number of lookup lists in the directory fusion/data/nlp/gazetteer. To use the supplied lists or a list of
your own data, each must list be uploaded to Fusion using the Blob Store API in order to make the list contents available
to the Gazetteer Lookup Extraction stage.

For example, to identify color names, you would first compile a list of color terms, one entry per line in a text file with
suffix .lst and then upload that file using the Fusion REST API endpoint api/apollo/blobs/<listfilename>, as per the
following example which uses the \`curl command-line utility, where 'admin' is the name of a user with admin
privileges, and 'pass' is that user’s password:

curl -u admin:pass -X PUT --data-binary @data/nlp/gazetteer/colours.lst -H 'Content-type: text/plain'
http://localhost:8764/api/apollo/blobs/colours.lst

Name Lookup Example

Define a lookup-extractor to identify mentions of certain celebrities in text field description_t:

{
 "type" : "lookup-extractor",
 "id" : "peopleLookup",
 "rules" : [{
 "source" : ["description_t"],
 "target" : "celebrities_ss",
 "entityTypes" : [{
 "name" : "person_female",
 "definitions" : ["person_female.lst"]
 }],
 "additionalEntities" : [{
 "name" : "players",
 "definitions" : ["sharapova", "murray"]
 }, {
 "name" : "actors",
 "definitions" : ["pitt", "jolie"]
 }],
 "caseSensitive" : false
 }],
 "skip" : false
}

411

Configuration

When using Fusion’s REST-API, the ID of this stage is: lookup-extractor.

Configuration Properties

Property Description, Type

rules

Extraction Rules

type: array of object

object attributes: \{
 additionalEntities : \{
 display name: Additional Entities
 type: array of object
 }
 caseSensitive : \{
 display name: Case Sensitive
 type: boolean
 default value: ‘false’
 }
 entityTypes (required) : \{
 display name: Entity Types
 type: array of object
 }
 source (required) : \{
 display name: Source Fields
 type: array of string
 minItems : 1
 }
 target (required) : \{
 display name: Target Field
 type: string
 }
 }

412

13.3.9. HTML Transformation Index Stage

The HTML Transformation stage (called the HTML Transform stage in versions earlier than 3.0) is used to process HTML
by means of a set of explicit mapping rules. This stage is usually used in tandem with an Apache Tika Parser stage; it
provides custom processing of HTML content, instead of the Tika defaults. It uses the JSoup library which has a rich
syntax for selecting HTML and CSS tags and elements. The JSoup selector patterns are used to map HTML elements to
PipelineDocument fields. For example, you could process navigational div elements one way, and contentful div
elements another way.

The HTML Transformation stage can be used to create multiple child records from HTML document fragments and
relate them back to the parent record via a parent ID field. The Additional Metadata property provides the ability to add
additional fields.

Required Pipeline Stages and Configuration

The pipeline must have a Tika Parser stage before the HTML Transformation stage. The Tika Parser must be configured
as follows:

• UI checkbox "Add original document content" / REST API property "addOriginalContent" set to false

• UI checkbox "Return parsed content as XML or HTML" / REST API property "keepOriginalStructure" set to true

• UI checkbox "Return original XML and HTML instead of Tika XML output" / REST API property "returnXml" set to
true

For some versions of Fusion you may need to add a Field Mapping stage after the HTML Transformation stage to remove
the following fields from the document:

• raw-content

• Content-Type

• Content-Length

• parsing

• parsing_time

HTML Stage Configuration Example

Definition of an HTML Transformation stage to extract image links and text:

413

http://jsoup.org

{
 "type": "html-transform",
 "recordSelector": "#main-content",
 "parentIdField": "page_s",
 "bodyField": "body",
 "mappings": [
 { "selectRule": "div",
 "attribute": "",
 "field": "main-content_txt",
 "multivalue": true
 },
 { "selectRule": "a",
 "attribute": "text",
 "field": "links_txt",
 "multivalue": true
 }],
 "keepParent": false,
 "skip": false,
 "label": "html-main-content"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: html-transform.

Configuration Properties

Property Description, Type

bodyField

Body Field Name

type: string

default value: ‘body’

keepParent

Should keep parent document?

type: boolean

default value: ‘false’

414

Property Description, Type

mappings

HTML Mappings

type: array of object

object attributes: \{
 attribute : \{
 display name: Attribute
 type: string
 }
 field (required) : \{
 display name: Field
 type: string
 }
 multivalue : \{
 display name: Multi Value
 type: boolean
 default value: ‘false’
 }
 selectRule (required) : \{
 display name: Select Rule
 type: string
 }
 }

metadata

Additional Metadata

type: array of object

object attributes: \{
 field (required) : \{
 display name: Field
 type: string
 }
 value (required) : \{
 display name: Value
 type: string
 }
 }

parentIdField

Parent ID Field Name

type: string

recordSelector

Record Selector

type: string

415

13.3.10. REST Query Index Stage

The REST Query index stage (called the Query REST (RPC) Client stage in versions earlier than 3.0) performs Remote
Procedure Calls to external services. It merges the response from that service with a document being processed by the
pipeline. Calls to the external system are made for each document.

This stage can call external systems in any of the following ways:

• any HTTP or HTTPS request: <http-protocol>://<path>

• a Solr request: solr://<collection>/…

• a Fusion service request: service://<serviceName>/<path>

The call syntax allows the use of document field variables. For example, variable ${docField} will be replaced with the
value of the field named docField for the document being processed.

Several types of responses are also supported:

• POJOs

• JSON

• XML

Call Parameters

In the Fusion UI, select include to display the fields for the call parameters (params in the REST API). Parameters are
specified as key-value pairs:

Endpoint URI / uri A fully-qualified service URI. This can be an HTTP call, a
Solr request, or a Fusion service call

• any HTTP or HTTPS request: <http-protocol>://<path>

• a Solr request: solr://<collection>/…

• a Fusion service request:
service://<serviceName>/<path>

Call Method / method The method to use for the RPC call. Supported methods are
GET, POST, PUT, and DELETE.

Query parameters / queryParams Query parameters to be passed with the request.

Request protocol headers / headers Request protocol headers, such as "Content-Type" :
"application/json".

Request entity (as string) / entity The request body. This parameter can only be configured
via the REST API; see the example below. In the Fusion UI,
a known issue prevents configuring the request entity.

The params can also take variable substitution expressions. Variables are expressed as ${fieldName}, where fieldName is a
name of the current document’s field (or id for the document’s id). Only the first value of a multi-valued field is used for
substitution, and this value is treated as a string.

For example, a queryParams could be constructed as follows:

416

"params" : {
 "uri" : "solr://collection1/select",
 "method" : "GET",
 "queryParams" : {
 "q" : "{!field f=a_txt v=$prodName}",
 "prodName" : "${prodName}"
}

In this example, the variable ${prodName} will be replaced with the string value of the 'prodName' field in the current
document being processed. If the current document contains "iPhone 6" as the value of 'prodName', the resulting query
in this example will be a fielded search q=a_txt:iPhone 6.

Mapping Rules

The mappingRules property takes the following, specified as key-value pairs:

• path - an XPath expression. It’s assumed that this expression always returns a node list, and each returned node is
processed separately and its converted value is added to a multi-valued field.

• target - the name of the target field in the current document where the value(s) will be stored.

• append - if true, values extracted from the RPC response will be appended to the target multi-valued field. When this
is false, the default, existing values in the target field will be discarded and replaced with the values from the RPC
response.

• xml - if true, the extracted DOM nodes will be separately serialized to XML and the resulting XML-formatted text will
be added to the target field. When this is false, the default, the extracted DOM nodes will be flattened and converted
to a list of fields. Field names in this case will correspond to XML element names, dot-separated, and element
attributes will be represented as fields with @attributeName suffix.

Examples

Create a REST Query stage to merge results from another Solr system:

417

http://www.w3schools.com/xml/xpath_syntax.asp

{
 "type" : "indexing-rpc",
 "id" : "BasicSolrCall",
 "mappingRules" : [{
 "path" : "//result/doc[1]/str[@name='foo_s']/text()",
 "target" : "foo_s",
 "append" : true,
 "xml" : false
 }, {
 "path" : "//result/doc/arr[@name='a_txt']/*",
 "target" : "doc_txt",
 "append" : true,
 "xml" : false
 }],
 "debug" : true,
 "params" : {
 "uri" : "solr://collection1/select",
 "method" : "GET",
 "queryParams" : {
 "q" : "a_txt:${doc_value}"
 },
 "headers" : { }
 },
 "skip" : false,
 "label" : "indexing-rpc"
}

Upload a stopword list:

{
 "type" : "indexing-rpc",
 "id" : "demo",
 "debug" : true,
 "params" : {
 "uri" : "http://localhost:8765/api/v1/stopwords/movies",
 "method" : "PUT",
 "headers" : { "Content-Type" : "application/json" },
 "entity" : "New stopword list"
 },
 "skip" : false,
 "label" : "Indexing RPC Demo",
 "type" : "indexing-rpc"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: indexing-rpc.

Configuration Properties

418

Property Description, Type

debug

Add debugging information

type: boolean

mappingRules

Mapping of returned values (as XPath expressions) to
document fields

type: array of object

object attributes: \{
 append : \{
 display name: Append to existing values in target field
 type: boolean
 default value: ‘false’
 }
 path (required) : \{
 display name: XPath expression
 type: string
 }
 target (required) : \{
 display name: Target field
 type: string
 }
 xml : \{
 display name: Add as an XML fragment
 type: boolean
 default value: ‘false’
 }
 }

419

Property Description, Type

params

Call parameters

type: object

object attributes: \{
 entity : \{
 display name: Request entity (as string)
 type: object
 }
 headers : \{
 display name: Request protocol headers
 type: object
 }
 method : \{
 display name: Call method
 type: string
 description : One of GET, POST, PUT, or DELETE
 enum: \{ get put post delete }

 } +
 `queryParams` : \{ +
 display name: Query parameters +
 type: `object` +
 } +
 `uri` : \{ +
 display name: Endpoint URI +
 type: `string` +
 } +
 }

420

13.3.11. JavaScript Index Stage

For a complete description of the JavaScript Index stage and additional examples, see: Custom JavaScript Stages For
Index Pipelines.

Examples

Drop a document by ID

function(doc) {
 var id = doc.getId();
 if (id !== null) {
 var pattern = "https://www.mydomain.com/links/contact/?";

 // 0 means the pattern was found so drop the doc
 return (id.indexOf(pattern) == 0) ? null : doc;
 }

 return doc;
}

Format Date to Solr Date

// For example:
// From: 26/Mar/2015:14:38:48 -0700
// To: 2015-03-26T14:38:48Z (Solr format)
function(doc) {
 if (doc.getId() !== null) {
 var inboundPattern = "dd/MMM/yyyy':'HH:mm:ss Z"; // modify this to match the format of the inbound date
 var solrDatePattern = "yyyy-MM-dd'T'HH:mm:ss'Z'"; // leave this alone
 var dateFieldName = "apachelogtime"; // change this to your date field name

 var solrFormatter = new java.text.SimpleDateFormat(solrDatePattern);
 var apacheParser = new java.text.SimpleDateFormat(inboundPattern);

 var dateString = doc.getFirstFieldValue(dateFieldName);
 logger.info("**** dateString: " + dateString);
 var inboundDate = apacheParser.parse(dateString);
 logger.info("**** inboundDate: " + inboundDate.toString());
 var solrDate = solrFormatter.format(inboundDate);
 logger.info("**** solrDate: " + solrDate.toString());

 doc.setField(dateFieldName, solrDate.toString());
 }

 return doc;
}

Replace whitespace and newlines

421

function(doc) {
 if (doc.getId() !== null) {
 var fields = ["col1", "col2", "col3"];

 for (i = 0; i < fields.length; i++) {
 var field = fields[i];
 var value = doc.getFirstFieldValue(field);
 logger.info("BEFORE: Field " + field + ": *" + value + "*");

 if (value != null) {
 value = value.replace(/^\s+/, ""); // remove leading whitespace
 logger.info("AFTER: Field " + field + ": *" + value + "*");
 value = value.replace(/\s+$/, ""); // remove trailing whitespace
 logger.info("AFTER: Field " + field + ": *" + value + "*");
 value = value.replace(/\s+/g, " "); // multiple whitespace to one space
 logger.info("AFTER: Field " + field + ": *" + value + "*");

 doc.setField(field, value);
 }
 }
 }

 return doc;
}

Split the values in a field

//Split On a delimiter. In this case, a newline
function(doc){
 if (doc.getId() !== null) {
 var fromField = "company2_ss";
 var toField = "company2_ss";
 var delimiter = "\n";

 var oldList = doc.getFieldValues(fromField);

 var values = [];

 // parse the entries one at a time
 doc.removeFields(toField); // clear out the target field
 for (i = 0; i < oldList.size(); i++) {
 values[i] = oldList.get(i);

 // get the list of strings split by the delimiter
 newList = values[i].split(delimiter);
 for(j = 0; j < newList.length; j++){
 doc.addField(toField, newList[j]);
 }
 }
 }
 return doc;
}

422

Configuration

When using Fusion’s REST-API, the ID of this stage is: javascript-index.

Configuration Properties

Property Description, Type

script

Script Body

required

type: string

423

13.3.12. JDBC Index Stage

The JDBC Index Stage is used to connect to a database, lookup one or more values, and then inject them into the context.
The properties for setting stage are identical to the JDBC Query Stage, except for the "rows" property, which defaults to
-1 for the index stage (which returns all rows in the database), and defaults to 10 returned rows for the query stage.

Note You must first upload the JDBC driver to Fusion, see the
Connector JDBC API page.

Example

An example of a JDBC Index Stage setup

Upload stage config via POST to Fusion REST API endpoint `api/apollo/index-stages/instances`

curl -u user:password -X POST -H "Content-Type: application/json" -d '{"id": "jdbc-index-test","type":"jdbc-
index-lookup","driver":"postgresql-9.3-1101-
jdbc4.jar","connection":"jdbc:postgresql:database","username":"user","password":"password1","preparedStatement
":"select ID as id from DATABASE;"}' http://localhost:8764/api/apollo/index-stages/instances

Response

{
 "type" : "jdbc-index-lookup",
 "id" : "jdbc-index-test",
 "driver" : "postgresql-9.3-1101-jdbc4.jar",
 "connection" : "jdbc:postgresql:database",
 "username" : "user",
 "password" : "password1",
 "preparedStatement" : "select ID as id from DATABASE;",
 "fetchSize" : -1,
 "join" : true,
 "rows" : -1,
 "skip" : false,
 "label" : "jdbc-index-lookup",
 "type" : "jdbc-index-lookup"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: jdbc-index-lookup.

Configuration Properties

Property Description, Type

connection

Connection URI

required

The connection string for the database

type: string

424

Property Description, Type

driver

JDBC Driver

required

The fully qualified class name of the JDBC Driver to use.

type: string

fetchSize

Fetch Size

The JDBC Fetch Size to use. If -1, use the driver default.

type: integer

default value: ‘-1’

join

Join with Document

If true, the results will be added on to the document using
the prefix key and the row id, else the results will be put in
the pipeline context using

type: boolean

default value: ‘true’

password

Password

required

The password to connect to the database.

type: string

prefix

Result Prefix Key

The string to use as a prefix for all values

type: string

preparedStatement

SQL Prepared Statement

required

The SQL Prepared Statement to execute when bound with
values.

type: string

preparedStatementKeys

Prepared Statement Keys

The keys in the Pipeline Context to use to map request
attributes into the prepared statement. These must map to
the '?'s in your prepared statement. They must also be able
to be resolved as the first parameter of that name in a
request.

type: array of string

425

Property Description, Type

rows

Rows

The number of rows to return. -1 for all rows (be wary of
memory usage for this)

type: integer

default value: ‘-1’

username

Username

required

The username to connect to the database.

type: string

426

13.3.13. JSON Parsing Index Stage

A JSON Parsing Index stage (previously called the JSON Parser stage) parses JSON content from a document field into
one or more new documents.

This stage uses Solr’s JsonRecordReader to create an index stage capable of splitting JSON into sub-documents. For
details on the use of this stage in Solr, see this Lucidworks blog post: Indexing Custom JSON Data.

Example Specification, Data, Results

Stage Specification

{ "type": "json-parsing",
 "skip": false,
 "id": "json-parsing",
 "sourceField": "data",
 "splitPath": "/exams",
 "mappingRules": [
 {"path": "/first", "field": "first"},
 {"path": "/last", "field": "last"},
 {"path": "/grade", "field": "grade"},
 {"path": "/exams/subject", "field": "subject"},
 {"path": "/exams/test", "field": "test"},
 {"path": "/exams/marks", "field": "marks"}
]
}

Data

{
 "first": "John3",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks":90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks":86}
]
}

Results

Parsing this data, using the splitPath "/exams" and the six mapping rules above, produces two documents, one for each
object in the list of exams.

The first document has the following field, value pairs:

427

http://lucidworks.com/blog/indexing-custom-json-data/

* first : John
* last : Doe
* grade : 8
* test : term1
* subject: Maths
* marks : 90

The second has the following field, value pairs:

* first : John
* last : Doe
* grade : 8
* test : term1
* subject: Biology
* marks : 86

Configuration

When using Fusion’s REST-API, the ID of this stage is: json-parser.

Configuration Properties

Property Description, Type

inheritFields

Inherit fields

Should generated documents include the original
document’s fields

type: boolean

default value: ‘false’

mappingRules

JSON mapping rules

type: array of object

object attributes: \{
 field : \{
 display name: Destination field name
 type: string
 description : If omitted, will default to the extracted
JSON property
 }
 path (required) : \{
 display name: JSON path to extract
 type: string
 }
 }

428

Property Description, Type

sourceEncoding

Source field encoding

The content transport encoding of the data stored in the
source field (per RFC1341)

type: string

default value: ‘binary’

enum: \{ binary base64 }

sourceField

Source Field

The document field where the JSON content should be
read from

type: string

default value: ‘raw_content’

splitPath

JSON split point

required

type: string

default value: ‘/’

429

13.3.14. Detect Language Index Stage

The Detect Language index stage (called the Language Detection stage in versions earlier than 3.0) operates over one of
more fields in the Pipeline Document. The contents of each field are analyzed using the Language Detection Library for
Java, which is an open-source project hosted on GitHub. The analyzer returns the id of the language which best matches
the contents of that field, if any. These ids can be returned as an annotation on the Pipeline Document context, or as
annotation on each field analyzed.

The language identification algorithm breaks the text in each source field into ngrams and compares them to sets of
ngrams compiled from all the different language versions of the Wikipedia. This library will only produce reasonable
results for document fields which are comparable in length, vocabulary, and style to the known texts compiled from the
Wikipedia. Caveats are discussed below.

If a positive language identification is made, that information is added to the Pipeline Document according to the choice
of configuration property "Output Type". If the language annotation is added to the PipelineDocument context object,
the name of the context key string is specified by configuration property "Output Key". For Output Type configuration
property "Document", per-field language annotations are added to the document using a parallel naming convention
where the name of the language identification field starts with the name of the analyzed field and has an additional
suffix string, default value "_lang". For example, if a document contains fields named "plot_summary_txt" and
"user_reviews_txt" to be analyzed, if the software can detect the language, it will add fields "plot_summary_txt_lang"
and "user_reviews_txt_lang".

Languages

The Language Detection Library for Java has build-in profiles for many languages. If there is a set of Wikipedia entries
written in a language, it is likely that the Language Detection Library can identify texts written in this language.

Caveats

This library should produce reasonable results on document fields which are comparable in length, vocabulary, and
style to the known texts compiled from the Wikipedia.

The documentation lists the following challenges:

• This software does not work as well when the input text to analyze is short, or unclean. For example tweets.

• When a text is written in multiple languages, the default algorithm of this software is not appropriate. You can try to
split the text (by sentence or paragraph) and detect the individual parts. Running the language guesser on the whole
text will just tell you the language that is most dominant, in the best case.

• This software cannot handle it well when the input text is in none of the expected (and supported) languages.

Configuration

When using Fusion’s REST-API, the ID of this stage is: lang-detect.

Configuration Properties

430

https://github.com/optimaize/language-detector
https://github.com/optimaize/language-detector
https://github.com/optimaize/language-detector/blob/master/README.md#70-built-in-language-profiles
https://github.com/optimaize/language-detector/blob/master/README.md#challenges

Property Description, Type

documentPostfix

Document Postfix

The postfix to add to the source name when storing the
results on the document (via the output type)

type: string

default value: ‘_lang’

outputKey

Output Key

The name of the key to insert into the context if the output
type is 'context'. The value is a map of source name to
language. May be a String Template. See
https://theantlrguy.atlassian.net/wiki/display/ST4/
StringTemplate+4+Documentation

type: string

default value: ‘languages’

outputType

Output Type

Should we set the flag on the document or in the Pipeline
Context?

type: string

enum: \{ document context }

source

Source

required

The fields/context keys to detect on. May be a String
Template. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation

type: array of string
minimum number of items (minItems): 1

431

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.3.15. Logging Index Stage

The Logging Index stage prints messages to the Connectors log file, default location
fusion/var/log/connectors/connectors.log.

The verbosity of this message is controlled by the property detailed. When detailed logging is true the current
PipelineDocument object is pretty-printed to the Connectors log file.

In a production environment logging stages should be configured with property skip set to true, if possible. Use of
detailed logging may impact performance.

Configuration

When using Fusion’s REST-API, the ID of this stage is: index-logging.

Configuration Properties

Property Description, Type

detailed

Detailed Logging

type: boolean

default value: ‘false’

432

13.3.16. Write Log Message Index Stage

The Write Log Message Index stage (called the Log a Message stage in versions earlier than 3.0) is an extension of
Fusion’s Logging Index Stage, which logs any message sent to the configured logging system using the Messaging
Services.

Configuration

When using Fusion’s REST-API, the ID of this stage is: logging-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

logLevel

Log Level

The Log Level. May be: debug, info, warn, error

type: string

enum: \{ debug info warn error }

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

433

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

Property Description, Type

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

434

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.3.17. Resolve Multivalued Fields Index Stage

The Resolve Multivalued Fields stage (previously called the Multi-Value Resolver stage) allows you to choose one value
from a set of one or more field values using a set of pre-defined rules, based on either field name or field type. For each
field name or field type rule, a strategy is defined. There are 6 available strategies:

• DEFAULT: leave all values intact. This may cause problems if a field or dynamic field rule is not defined as multi-
valued in the schema.

• PICK_FIRST: choose the first value and discard all others.

• PICK_LAST: choose the last value and discard all others.

• PICK_BY_CREATOR: based on the name of the "creator" metatdata, choose the name of 'creator' as defined in the
creatorStrategy property for the field name. Only the last matching value will be retained.

• PICK_MAX: choose the maximum value and discard all others. If the values are non-numeric, then all non-numeric
values will be discarded.

• PICK_MIN: choose the minimum value and discard all others. If the values are non-numeric, then all non-numeric
values will be discarded.

Configuration

When using Fusion’s REST-API, the ID of this stage is: multivalue-resolver.

Configuration Properties

Property Description, Type

creatorStrategy

Creator Strategies

Mapping of fields to a 'creator' name

type: array of object

object attributes: \{
 creatorName (required) : \{
 display name: Creator Name
 type: string
 }
 fieldName (required) : \{
 display name: Field Name
 type: string
 }
 }

435

Property Description, Type

fieldStrategy

Field Strategies

Mapping of fields to a strategy

type: array of object

object attributes: \{
 fieldName (required) : \{
 display name: Field Name
 type: string
 }
 resolverStrategy (required) : \{
 display name: Resolver Strategy
 type: string
 default value: ‘pick_first’
 enum: \{ pick_first pick_last pick_by_creator
concatenate_unique pick_min pick_max default }

 } +
 }

typeStrategy

Type Strategies

Mapping of types to a strategy. These supersede field
strategies.

type: array of object

object attributes: \{
 fieldName (required) : \{
 display name: Field Name
 type: string
 }
 resolverStrategy (required) : \{
 display name: Resolver Strategy
 type: string
 default value: ‘pick_first’
 enum: \{ pick_first pick_last pick_by_creator
concatenate_unique pick_min pick_max default }

 } +
 }

436

Property Description, Type

typeStrategy2

Type Strategies

Mapping of types to a strategy. These supersede field
strategies.

type: array of object

object attributes: \{
 fieldName (required) : \{
 display name: Field Name
 type: string
 }
 resolverStrategy (required) : \{
 display name: Resolver Strategy
 type: string
 default value: ‘pick_first’
 enum: \{ pick_first pick_last pick_by_creator
concatenate_unique pick_min pick_max default }

 } +
 }

437

13.3.18. OpenNLP NER Extraction Index Stage

Named Entity Recognition (NER) is the task of finding the names of persons, organizations, locations, and/or things in a
passage of free text. The OpenNLP NER Extraction index stage (previously called the OpenNLP NER Extractor stage) uses
a set of rules to find named entities in a field in the Pipeline Document (the "source") and populates a new fields (the
"target") with these entities.

This stage uses Apache OpenNLP project’s Named Entity Recognition tool (the Name Finder tool). The OpenNLP
documentation states

The Name Finder tool can detect named entities and numbers in text. To be able to detect entities the Name Finder
needs a model. The model is dependent on the language and entity type it was trained for. The OpenNLP projects
offers a number of pre-trained name finder models which are trained on various freely available corpora. They can
be downloaded at our model download page. To find names in raw text the text must be segmented into tokens and
sentences.

See this video tutorial for a demonstration of how to configure this stage:

Models are available from the OpenNLP models SourceForge repository.

The Fusion directory fusion/data/nlp contains a set of NER models for English, as well as sentence, token, and part-of-
speech models.

Before they can be used, model files must be uploaded to Fusion using the Fusion Blob Store service via the REST API.
Here is an example of how to upload the sentence model file from the fusion using the curl command-line utility, where
admin is the name of a user with admin privileges, and pass is the password:

curl -u admin:pass -X PUT --data-binary @data/nlp/models/en-sent.bin -H 'Content-type: application/octet-
stream' http://localhost:8764/api/apollo/blobs/en-sent.bin

Example Specification

Specification of a stage which extracts names of people and places from field named 'body':

{
 "type" : "nlp-extraction",
 "id" : "nd",
 "rules" : [{
 "source" : ["body_s"],
 "target" : "content",
 "sentenceModel" : "en-sent.bin",
 "tokenizerModel" : "en-token-1.bin",
 "entityTypes" : [{
 "name" : "organization",
 "definition" : "en-ner-organization-1.bin"
 }, {
 "name" : "person",
 "definition" : "en-ner-person-1.bin"
 }]
 }],
 "skip" : false
 }]
}

438

http://opennlp.apache.org/
http://opennlp.apache.org/documentation/manual/opennlp.html#tools.namefind.recognition
http://opennlp.sourceforge.net/models-1.5/

Configuration

When using Fusion’s REST-API, the ID of this stage is: nlp-extractor.

Configuration Properties

Property Description, Type

rules

Extractor Rules

required

type: array of object
minimum number of items (minItems): 1

object attributes: \{
 entityTypes : \{
 display name: Entity Types
 type: array of object
 }
 sentenceModel (required) : \{
 display name: Sentence Model
 type: string
 }
 source (required) : \{
 display name: Source Fields
 type: array of string
 minItems : 1
 }
 target (required) : \{
 display name: Target Field
 type: string
 }
 tokenizerModel (required) : \{
 display name: Tokenizer Model
 type: string
 }
 }

439

13.3.19. Tag Part-of-Speech Index Stage

The Tag Part-of-Speech Index stage (previously called the Part of Speech stage) operates over one of more fields in the
Pipeline Document. It marks sentences with part of speech information as annotations which can be used by
downstream indexing stages. Therefore this stage requires a Detect Sentences stage defined over these fields earlier in
the pipeline.

This stage uses Apache OpenNLP project’s Part of Speech Tagger to mark tokens with their corresponding word type
based on the token itself and the context of the token. The OpenNLP documentation states:

"A token might have multiple pos tags depending on the token and the context. The OpenNLP POS Tagger uses a
probability model to predict the correct pos tag out of the tag set. To limit the possible tags for a token a tag dictionary
can be used which increases the tagging and runtime performance of the tagger."

Fusion comes with a set of OpenNLP language models for english. These data files are found in the directory:
fusion/data/nlp/models.

More models are available from the OpenNLP models SourceForge repository. Model files must be uploaded to Fusion
using the Fusion Blob Store service via the REST API.

Part-of-speech Tagging in a NLP Pipeline

The following video shows how to use a Part-of-speech indexing stage as part of an NLP pipeline:

Stage Setup

Here is an example of how to upload a part-of-speech model file to the Fusion blob store:

INPUT

curl -u user:pass -X PUT --data-binary @en-pos-maxent.bin -H 'Content-type: text/plain'
http://localhost:8764/api/apollo/blobs/en-pos-maxent.bin

OUTPUT

{
 "name" : "en-pos-maxent.bin",
 "contentType" : "text/plain",
 "size" : 5696197,
 "modifiedTime" : "2015-07-15T06:57:48.636Z",
 "version" : 0,
 "md5" : "db2cd70395b9e2e4c6b9957015a10607"
}

This is an example setup of this stage using the previously loaded .bin file:

INPUT

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"TagPartofSpeech1", "type": "tag-part-
of-speech","tokenizerModel":"en-pos-maxent.bin","posModel":"en-pos-perceptron.bin","source":
["sample","text","for","NLP"]}' http://localhost:8764/api/apollo/index-stages/instances

440

http://opennlp.apache.org/
http://opennlp.apache.org/documentation/manual/opennlp.html#tools.postagger
http://opennlp.sourceforge.net/models-1.5/

OUTPUT

{
 "type" : "tag-part-of-speech",
 "id" : "TagPartofSpeech1",
 "posModel" : "en-pos-perceptron.bin",
 "tokenizerModel" : "en-sent.bin",
 "source" : ["sample", "text", "for", "NLP"],
 "skip" : false,
 "label" : "tag-part-of-speech",
 "type" : "tag-part-of-speech"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: part-of-speech.

Configuration Properties

Property Description, Type

posModel

Part of Speech Model

required

type: string

source

Source Fields

required

type: array of string
minimum number of items (minItems): 1

tokenizerModel

Tokenizer Model

required

type: string

441

13.3.20. Regex Field Extraction Index Stage

The Regex Field Extraction stage (called the Regular Expression Extractor stage in versions earlier than 3.0) is used to
extract entities from documents based on matching regular expressions. The resulting regex matches over the contents
of the source field are copied to the target field. The regular expression, source, and target fields are defined properties
of this stage.

If using the REST API, this stage type is named "regex-extractor".

Example Stage Specification

Define a regex-field-extraction stage to apply a regular expression that looks for storage capabilities of products when it
appears in the product 'name' field, and store it in a special field:

{
 "type" : "regex-field-extraction",
 "id" : "storagesize-regex-extraction",
 "rules" : [{
 "source" : ["name"],
 "target" : "storage_size_ss",
 "pattern" : "(\\d{1,20}\\s{0,3}(GB|MB|TB|KB|mb|gb|tb|kb))",
 "annotateAs" : "storage_size"
 }],
 "skip" : false
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: regex-extractor.

Configuration Properties

442

Property Description, Type

rules

Regex Rules

type: array of object

object attributes: \{
 annotateAs : \{
 display name: Annotation Name
 type: string
 }
 group : \{
 display name: Regex Capture Group
 type: integer
 default value: ‘0’
 exclusiveMinimum : false
 minimum : 0
 }
 pattern (required) : \{
 display name: Regex Pattern
 type: string
 format : regex
 }
 source (required) : \{
 display name: Source Fields
 type: array of string
 minItems : 1
 }
 target (required) : \{
 display name: Target Field
 type: string
 }
 }

443

13.3.21. Regex Field Filter Index Stage

The Regex Field Filter Index Stage (called the Regular Expression Filter stage in versions earlier than 3.0) removes a
field or fields from a PipelineDocument according to a set of filters where each filter specifies a field name and a regular
expression. If a field value matches the regular expression, the field is deleted from the document. The regex patterns
follow Java regular expression pattern rules.

Example Stage Specification

Create a regex-filter to find Social Security Numbers and drop them from documents:

{
 "type" : "regex-field-replacement",
 "id" : "ssnFilter",
 "skip" : false,
 "filters" : [{
 "sourceField" : "notes_t",
 "pattern" : "^\\d{3}-\\d{2}-\\d{4}$"
 }]
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: regex-filter.

Configuration Properties

Property Description, Type

filters

Filters

type: array of object

object attributes: \{
 pattern (required) : \{
 display name: Filter Pattern
 type: string
 format : regex
 }
 sourceField (required) : \{
 display name: Source Field
 type: string
 }
 }

444

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

13.3.22. Send SMTP Email Index Stage

The Send SMTP Email index stage was renamed for Fusion 3.0; it was called the Send email (via SMTP) stage in previous
versions.

This stage sends an SMTP message from Fusion, for alerting, reporting, and more, using Fusion’s Messaging Services.

Enabling Email Messaging

Before you can use the Email pipeline stage, you must enable Email messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select SMTP Message Service from the drop-down menu.

3. Verify that the default settings are sufficient.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: smtp-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

445

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

Property Description, Type

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

smtpPassword

SMTP Password

required

The SMTP password for the user credentials

type: string

smtpUser

SMTP Username

required

The SMTP user to send the message from

type: string

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

446

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.3.23. Send PagerDuty Message Index Stage

This stage sends a PagerDuty Message from Fusion, for alerting, monitoring, and more, using Fusion’s Messaging
Services.

Read more about PagerDuty integration in Fusion on our blog.

Enabling PagerDuty Messaging

Before you can use the PagerDuty pipeline stage, you must enable PagerDuty messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select PagerDuty Message Service from the drop-down menu.

3. Enter the following information:

◦ PagerDuty service key

◦ PagerDuty Service API URL; this should be https://events.pagerduty.com/generic/2010-04-15/create_event.json.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: pagerduty-message.

Configuration Properties

Property Description, Type

client

Client

The name of the monitoring client that is triggering this
event.

type: string

default value: ‘Fusion’

minLength: 1

clientURL

Client URL

The URL of the monitoring client that is triggering this
event.

type: string

default value: ‘fusion-monitoring.yourdomain.com’

minLength: 1

447

https://www.pagerduty.com/
https://lucidworks.com/blog/2015/11/20/pagerduty-integration-in-lucidworks-fusion/
https://developer.pagerduty.com/documentation/integration/events/
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

eventType

Event Type

required

The Pager Duty Event Type. One of: trigger, acknowledge,
resolve

type: string

default value: ‘trigger’

enum: \{ trigger acknowledge resolve }

incidentContextImages

Incident Context Images

type: array of object

object attributes: \{
 alt : \{
 display name: Alternate Text
 type: string
 description : HTM 'alt' tag for the image
 }
 href (required) : \{
 display name: Target Link
 type: string
 description : URL to open when clicked on the image
 }
 src (required) : \{
 display name: Source
 type: string
 description : HTML 'src' tag for the image. Should be
always secure connection (https://)
 }
 }

448

https://

Property Description, Type

incidentContextLinks

Incident Context Links

type: array of object

object attributes: \{
 href (required) : \{
 display name: Target Link
 type: string
 description : URL to open when clicked on the link
 }
 text : \{
 display name: Text
 type: string
 description : Arbitrary text explaining the URL
 }
 }

incidentDescription

Description

required

A short description of the problem that led to this trigger.
This field (or a truncated version) will be used when
generating phone calls, SMS messages and alert emails. It
will also appear on the incidents tables in the PagerDuty
UI. The maximum length is 1024 characters.

type: string

default value: ‘Sample Description’

maxLength: 1024

minLength: 1

incidentDetails

Incident Details

type: array of object

object attributes: \{
 name (required) : \{
 display name: Name
 type: string
 }
 value (required) : \{
 display name: Value
 type: string
 }
 }

449

Property Description, Type

incidentKey

Incident Key

Identifies the incident to which this trigger event should
be applied. If there’s no open (i.e. unresolved) incident
with this key, a new one will be created. If there’s already
an open incident with a matching key, this event will be
appended to that incident’s log.

type: string

default value: '`Incident ’

minLength: 1

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

450

13.3.24. Send Slack Message Index Stage

This stage sends a Slack message from Fusion, for alerting, reporting, and more, using Fusion’s Messaging Services.

Enabling Slack Messaging

Before you can use the Slack pipeline stage, you must enable Slack messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select Slack Message Service from the drop-down menu.

3. Enter the following information:

◦ Slack auth token

◦ Message template

The default is <subject> : <body>, which are configured with messageSubjectTemplate and messageBodyTemplate
below. See Messaging Services Templates for details on the template language.

◦ Optionally, you can configure a proxy or the error reporting channel name.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: slack-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

451

https://slack.com/
https://api.slack.com/docs/oauth

Property Description, Type

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

452

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.3.25. Detect Sentences Index Stage

The Detect Sentences index stage (called the Sentence Detection stage in versions earlier than 3.0) operates over one of
more fields in the Pipeline Document and annotates each field with sentence boundary information. These annotations
can be used by downstream indexing stages. A Detect Sentences stage can be used in tandem with a Tag Part-of-Speech
Index Stage to provide part-of-speech annotations for the individual tokens in the field.

This stage uses Apache OpenNLP project’s Sentence Detection tool. The OpenNLP documentation states:

The OpenNLP Sentence Detector can detect that a punctuation character marks the end of a sentence or not. In this
sense a sentence is defined as the longest white space trimmed character sequence between two punctuation marks.
The first and last sentence make an exception to this rule. The first non whitespace character is assumed to be the begin
of a sentence, and the last non whitespace character is assumed to be a sentence end. _

Fusion comes with a set of OpenNLP language models for english. These data files are found in the directory:
fusion/data/nlp/models. The included sentence model is en-sent.bin. More models are available from the OpenNLP
models SourceForge repository.

Model files must be uploaded to Fusion using the Fusion Blob Store service via the REST API (see examples below).

Sentence Detection in a NLP Pipeline

The following video shows how to use a Sentence Detection index stage as part of an NLP pipeline:

Stage Setup

This is an example of how to upload a sentence model file to the Fusion blob:

INPUT

curl -u user:pass -X PUT --data-binary @en-pos-maxent.bin -H 'Content-type: text/plain'
http://localhost:8764/api/apollo/blobs/en-pos-maxent.bin

OUTPUT

{
 "name" : "en-sent.bin",
 "contentType" : "text/plain",
 "size" : 5696197,
 "modifiedTime" : "2015-07-15T06:57:48.636Z",
 "version" : 0,
 "md5" : "db2cd70395b9e2e4c6b9957015a10607"
}

This is an example setup of this stage using the previously loaded .bin file:

INPUT

453

http://opennlp.apache.org/
http://opennlp.apache.org/documentation/manual/opennlp.html#tools.sentdetect
http://opennlp.sourceforge.net/models-1.5/

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"DetectSentences1", "type": "detect-
sentences","sentenceModel":"en-sent.bin","source": ["A test sentence"]}'
http://localhost:8764/api/apollo/index-stages/instances

OUTPUT

{
 "type" : "detect-sentences",
 "id" : "DetectSentences1",
 "sentenceModel" : "en-sent.bin",
 "source" : ["A test sentence"],
 "skip" : false,
 "label" : "detect-sentences",
 "type" : "detect-sentences"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: part-of-speech.

Configuration Properties

Property Description, Type

posModel

Part of Speech Model

required

type: string

source

Source Fields

required

type: array of string
minimum number of items (minItems): 1

tokenizerModel

Tokenizer Model

required

type: string

454

13.3.26. Set Property Index Stage

The Set Property Index Stage is used to set a value on a document, or into the Pipeline Context for downstream
consumption by specifying a series of simple matching conditions. These conditions match against whether a field
exists, and simple substring matches on the field contents. For more complex logic, use a JavaScript Index Stage.

Configuration

When using Fusion’s REST-API, the ID of this stage is: index-set-property.

Configuration Properties

Property Description, Type

ifEquals

If Value Equals

Check whether a value equals another value. Valid entries
for this are: another field/context key, the word 'null' or
'not null' (without the quotes) or a literal string (e.g.
"match") in quotes (single or double). The value may be a
String Template.

type: string

outputKey

Output Key

The name of the key to insert into the output location
(document or context). May be a String Template. See
https://theantlrguy.atlassian.net/wiki/display/ST4/
StringTemplate+4+Documentation

type: string

default value: ‘setPropertyKey’

outputType

Output Type

Should we set the flag on the document or in the Pipeline
Context?

type: string

enum: \{ document context }

outputValue

Output Value

The value to set. May be a String Template. See
https://theantlrguy.atlassian.net/wiki/display/ST4/
StringTemplate+4+Documentation

type: string

default value: ‘true’

455

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

Property Description, Type

regularExpression

Regular Expression Match

Apply the regular expression to the source fields and or
context keys. If any of them match, than set the property.
The implementation returns true if the regular expression
matches anywhere in the string.

type: string

source

Source

The source fields and context keys to check conditions
against. If just the source fields are set and nothing else,
than only set the property if all fields are present and non-
null on the document. May be a String Template.

type: array of string

whatMatchedKey

What Matched Key

The name of the context key to use to store a space
separated list of what conditionals matched.

type: string

default value: ‘whatMatched’

456

13.3.27. Filter Short Fields Index Stage

The Filter Short Fields Index Stage was renamed for Fusion 3.0; it was called the Short Field Filter stage in previous
versions.

A Filter Short Fields index stage removes short field values from a pipeline document according to a set of filters where
each filter specifies a field name and a minimum length. All field values less than the specified length will be removed
from the document.

For the REST API, this stage type is "filter-short-fields".

Example Stage Specification

Remove entities in the author_s field that are less than 3 characters:

{
 "type" : "filter-short-fields",
 "id" : "short-stage",
 "filters" : [{
 "sourceField" : "author_s",
 "length" : 3
 }],
 "skip" : false
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: short-filter.

Configuration Properties

Property Description, Type

filters

Filters

type: array of object

object attributes: \{
 length (required) : \{
 display name: Minimum Length
 type: integer
 default value: ‘3’
 description : Minimum length of permissible entities
 exclusiveMinimum : false
 minimum : 1
 }
 sourceField (required) : \{
 display name: Source Field
 type: string
 }
 }

457

13.3.28. Format Signals Index Stage

The Format Signals stage (called the Signal Formatter stage in versions earlier than 3.0) normalizes both the fields and
field contents of a PipelineDocument to ensure that certain pre-defined fields for signals are populated.

Date/time parsing and formatting

Timestamp data can be obtained from the following fields, in this order of precedence:

• timestamp

• timestamp_tdt

• timestamp_dt

• epoch - value in this field is treated as a number of milliseconds since epoch, and UTC zone is assumed.

It’s now possible to specify the locale to be used for parsing timestamps by setting the "timestampLocale" property in the
stage configuration. If this property is null then the default platform locale will be used.

Output document will carry the following two fields:

• "timestamp" - containing the ISO8601 timestamp

• "tz_timestamp_txt" - containing the "zoned format" of the timestamp with normalized components.

Example Stage Specification

_The Format Signals stage defined as part of the default 'signals_ingest' pipeline included with Fusion.
Note that this stage does not define a list of allowed types. _

{
 "type" : "format-signals",
 "id" : "ingest-signals",
 "flatten" : true,
 "undefinedType" : "general",
 "skip" : false,
 "label" : "format-signals",
 "type" : "format-signals"
 }

Configuration

When using Fusion’s REST-API, the ID of this stage is: signal-formatter.

Configuration Properties

Property Description, Type

allowedTypes

Allowed Types

List of allowed signal types.

type: array of string

458

Property Description, Type

flatten

Flatten

Flatten nested values.

type: boolean

default value: ‘true’

timestampLocale

Timestamp locale

Use this locale when parsing timestamp information. Null
uses platform default locale.

type: string

undefinedType

Undefined Type

Signal type when undefined. Null discards events with
undefined type.

type: string

459

13.3.29. Solr Indexer Stage

A Solr Indexer stage transforms a Fusion PipelineDocument object into a Solr document and sends it to Solr for indexing
into a collection.

A PipelineDocument object contains fields which take as their values either a string or list of strings. Solr fields have a
rich variety of types. The Solr Indexer stage transforms PipelineDocument field values into Solr document fields. The
Solr Indexer stage can be configured so that it will try to ensure that all document fields are valid Solr fields. This
feature is convenient, but offers very little control over how fields and field values are transformed, especially with
respect to dates. A Date Parsing stage offers greater control over date values.

Configuration

When using Fusion’s REST-API, the ID of this stage is: solr-index.

Configuration Properties

Property Description, Type

bufferDocsForSolr

Buffer documents and send them to Solr in batches

type: boolean

default value: ‘false’

dateFormats

Additional date formats

type: array of string

enforceSchema

Map to Solr schema

type: boolean

default value: ‘false’

params

Additional update request parameters

type: array of object

object attributes: \{
 key (required) : \{
 display name: Parameter Name
 type: string
 }
 value : \{
 display name: Parameter Value
 type: string
 }
 }

460

Property Description, Type

unmapped

Unmapped fields mapping

type: object

object attributes: \{
 operation : \{
 display name: Mapping Type
 type: string
 default value: ‘copy’
 enum: \{ copy move delete set add keep }

 } +
 `source` : \{ +
 display name: Source Field +
 type: `string` +
 description : The source field to map from. +
 } +
 `target` : \{ +
 display name: Target Field +
 type: `string` +
 description : The field name, literal or String
Template to use in the operation. +
 } +
 }

461

13.3.30. Solr Partial Update Indexer Stage

The Solr Partial Update Indexer Stage updates of one or more fields of an existing Solr document in a collection
managed by Fusion. It provides an alternative to the Solr Indexer stage. The Solr Partial Update Indexer stage was
introduced in Fusion 2.1.

When a data feed consists of an ongoing flow of messages about known documents in a collection, such as item price,
inventory counts, or weather conditions at a location, this stage provides fast indexing throughput and can be
configured to enforce data atomicity to guarantee that the index always reflects the most recent update.

This stage is configured with a set of update directives based on Solr’s atomic updates. At run time, it creates a Solr
update by applying these directive to the data from a Fusion PipelineDocument object and then submits this update to
Solr’s update handler.

Note Solr’s atomic update functionality requires that the
schema for a collection is configured so that all fields have
the attribute stored="true", excepting fields which are
<copyField/> destinations which must be configured as
stored="false".

Example Stage Specification

Configuration for a Partial Updater Stage in JSON:

{ "type" : "solr-partial-update-index",
 "enforceSchema" : false,
 "solrDocIdFieldName" : "id",
 "solrDocIdFieldValue" : "<doc.id>",
 "updatedFields" : [
 { "updateType" : "set", "fieldName" : "statusValue", "values" : "<doc.statusValue>" },
 { "updateType" : "set", "fieldName" : "lastCommunicationTime", "values" : "<doc.lastCommunicationTime>" }
],
 "concurrencyControlEnabled" : true,
 "skip" : false,
 "label" : "solr-partial-update-index",
 }

The expression <doc.X> will evaluate to the contents of the current PipelineDocument’s field named "X".

Types of Update Operations

The set of update operations are based on operations supported by Solr. They are:

• 'add' - add a new value or values to an existing Solr document field, or add a new field and value(s).

• 'set' - change the value or values in an existing Solr document field.

• 'remove' - remove all occurrences of the value or values from an existing Solr document field.

• 'removeregex' - remove all occurrences of the values which match the regex or list of regexes from an existing Solr
document field.

• 'increment' - increment the the numeric value of existing Solr document field by a specific amount.

• 'decrement' - decrement the the numeric value of existing Solr document field by a specific amount.

462

http://doc.lucidworks.com/fusion/2.1/index.html
https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents

In addition, this stage introduces experimental "Positional" operations which can be used to add, set or remove exactly
one element of a field which takes a list of values (i.e, a multi-valued field).

• 'positionalUpdates' - used to add or set the value at specific position.

• 'positionalRemoves' - used to delete an element at a specific position.

When a collection contains two or more multi-value fields which are maintained in parallel so that taken together, they
act like a table stored column by column, a positional update operation updates several data cells across one row of the
table. To maintain this kind of column-oriented table, the positional delete directive must specify all the fields in the
document which logically comprise the table.

Document Identifier Field

A Fusion collection is a Solr collection managed by Fusion. Underlyingly, a Solr document is a list of named, typed fields.
The Solr unique key field stores a string which is the unique identifier for that document. There is at most one
UniqueKey field per document, which is defined in the Solr schema. The UniqueKey field value is required. For
collections created via Fusion, the UniqueKey field is named "id". Other document fields may also store string values
which can be used as a unique identifier.

Solr uses the UniqueKey field to find the document to be updated. If the data feed information contains a document
identifier which is different than the identifier value stored in the UniqueKey field, then this stage must do a Solr lookup
to find the UniqueKey value.

Optimistic Concurrency

Solr’s Optimistic Concurrency is a mechanism which checks whether or not a document has changed between the point
at which an update request was submitted and the point at which the request is processed. Solr documents have an
internal field named "version" which is updated whenever there is any change made to any of the other fields in that
document. When optimistic concurrency control is on, update requests will be discarded if the current version of the
document has changed since that request was made. This guarantees that the document will always reflect the most
recent update. However, this require an additional Solr lookup to get the current document version number, which is
submitted as part of the update request.

Performance Considerations

In order to send a single update request to Solr, without preliminary lookup requests:

• The document identifier field should match the Solr collection’s UniqueKey identifier field.

• Optimistic Concurrency should be turned off.

• Positional updates are experimental and potentially expensive, since all the values for all fields being updated must
be fetched into memory in order to perform positional operations.

Solr Date Formats

"yyyy-MM-dd'T'HH:mm:ss'Z'", // Solr format without milliseconds
"yyyy-MM-dd'T'HH:mm:ss.SSS'Z'", // standard Solr format, with literal "Z" at the end
"yyyy-MM-dd'T'HH:mm:ss.SS'Z'", // standard Solr format, with literal "Z" at the end
"yyyy-MM-dd'T'HH:mm:ss.S'Z'" // standard Solr format, with literal "Z" at the end

See https://cwiki.apache.org/confluence/display/solr/Working+with+Dates

463

https://wiki.apache.org/solr/UniqueKey
http://yonik.com/solr/optimistic-concurrency/
https://cwiki.apache.org/confluence/display/solr/Working+with+Dates

Configuration

When using Fusion’s REST-API, the ID of this stage is: solr-partial-update-index.

Configuration Properties

Property Description, Type

concurrencyControlEnabled

Enable Concurrency Control

Whether to use Optimistic Concurrency Control in Solr
that guarantees that the document update will not be
overridden by another Partial Update to the same
document. If disabled, in case of edit collision, the last
committed update to document will win.

type: boolean

default value: ‘true’

dateFormats

Additional date formats

type: array of string

deletedFields

Deletions

Fields to Delete from Solr Document

type: array of object

object attributes: \{
 fields (required) : \{
 display name: Field
 type: string
 }
 }

enforceSchema

Map to Solr schema

type: boolean

default value: ‘false’

params

Additional update request parameters

type: array of object

object attributes: \{
 key (required) : \{
 display name: Parameter Name
 type: string
 }
 value : \{
 display name: Parameter Value
 type: string
 }
 }

464

Property Description, Type

positionalRemovals

Positional Removals

Update Field or Group of Fields to remove value at a
specific position. See documentation for additional
information.

type: array of object

object attributes: \{
 fields (required) : \{
 display name: Fields List
 type: string
 description : The field [,field …] list of fields (Solr field
names) where removal of a value at specified position
should happen.
 }
 position (required) : \{
 display name: Position
 type: string
 description : The position at which the field value will
be removed. Could be 'first', 'last' or numeric value
(position index)
 }
 }

465

Property Description, Type

positionalUpdates

Positional Updates

Update Field or Group of Fields to update (add or set)
value at a specific position. See documentation for
additional information.

type: array of object

object attributes: \{
 fieldsAndValues (required) : \{
 display name: Fields and Values
 type: string
 description : The field:value [,field:value …] list. The
values will be changed for specified fields at specified
position. The list separator is comma (,) if the comma
present in the field value, escape it with a backslash (\).
Quotation marks("") can be used to enclose Field value to
preserve the white spaces, if needed.
 }
 position (required) : \{
 display name: Position
 type: string
 description : The position at which the new value(s) will
be changed. Could be 'first', 'last' or numeric value
(position index)
 }
 positionalUpdateType : \{
 display name: Update Type
 type: string
 default value: ‘set’
 description : The Update Type
 enum: \{ set add }

 } +
 }

solrDocIdFieldName

Solr Document Id Field Name

required

type: string

default value: ‘id’

solrDocIdFieldValue

Solr Document Id Field Value

required

type: string

default value: '`’

466

Property Description, Type

updatedFields

Updates

Fields to update (set, add or remove field values) in the
Solr Document

type: array of object

object attributes: \{
 fieldName (required) : \{
 display name: Field Name
 type: string
 description : The Solr Document Field to update.
 }
 updateType : \{
 display name: Update Type
 type: string
 default value: ‘set’
 description : The Update Type
 enum: \{ set add remove remove_regex increment
decrement }

 } +
 `values` _ (required)_ : \{ +
 display name: Value +
 type: `string` +
 description : For increment operation only one
value (positive or negative int) is allowed. For
add, set, remove or remove_regex a single value or
list of values can be specified. The list separator
is a comma (,) if the comma should be present in
the field value, escape it with a backslash (\).
Quotation marks("") can be used to enclose Field
value to preserve the white spaces, if needed. +
 } +
 }

467

13.3.31. XML Transformation Index Stage

The XML Transformation stage (previously called the XML Transform Stage) allows you to process an XML document
into one or more Solr documents and to specify mappings between elements and document fields. A common use case
for an XML Transformation stage in a pipeline is when the XML document is a container-like document which contains
a set of inner elements, each of which should be treated as a separate document. A parent ID field can be used to relate
these multiple documents back to the containing document.

Pipeline Configuration

The default XML processing provided by the Apache Tika Parser index stage extracts all text from an XML into a single
document field called content. This not only flattens the document contents, it loses all information about the containing
elements in the document. To process XML documents using an XML Transformation stage, the index pipeline must
have as its initial processing stage an Apache Tika Parser index stage which is configured to pass the document through
to the XML Transformation stage as raw XML, via the following configuration:

• UI checkbox "Add original document content" unchecked / REST API property "addOriginalContent" set to false

• UI checkbox "Return parsed content as XML or HTML" checked / REST API property "keepOriginalStructure" set to
true

• UI checkbox "Return original XML and HTML instead of Tika XML output" checked / REST API property "returnXml"
set to true

With this configuration, the Tika parser stage decodes the raw input stream of bytes into a string containing the entire
XML document which is returned in the PipelineDocument field body.

The pipeline must have a Field Mapping stage after the XML Transformation stage, before the Solr Indexer stage. The
Field Mapping stage is used to remove the following fields from the document:

• raw-content

• Content-Type

• Content-Length

• parsing

• parsing_time

XML Transforms

The XML Transformation stage uses a Solr XPathRecordReader which is a streaming XML parser that supports only a
limited subset of XPath selectors. It provides exact matching on element attributes and it can only extract the element
text, not attribute values.

Examples of allowed XPath specifications where "a", "b", "c" are any element tags, likewise "attrName" is any attribute
name:

/a/b/c
/a/b/c[@attrName='someValue']
/a/b/c[@attrName=]/d
/a/b/c/@attrName
//b//...

468

http://lucene.apache.org/solr/6_1_0/solr-dataimporthandler/org/apache/solr/handler/dataimport/XPathRecordReader.html

Note When specifying the list of mappings, for each mapping, the
specification for the xpath attribute must include the full
path, i.e., the xpath attribute will include the rootXPath. See
the example configuration below.

Example Stage Specification

Definition of an XML-Transformation stage that extracts elements from a MEDLINE/Pubmed article abstract:

{ "type" : "xml-transform",
 "id" : "n0j2a9k9",
 "rootXPath" : "/MedlineCitationSet/MedlineCitation",
 "bodyField" : "body",
 "mappings" : [{
 "xpath" : "/MedlineCitationSet/MedlineCitation/Article/ArticleTitle",
 "field" : "article-title_txt",
 "multivalue" : false
 }, {
 "xpath" : "/MedlineCitationSet/MedlineCitation/Article/Abstract/AbstractText",
 "field" : "article-abstract_txt",
 "multivalue" : true
 }, {
 "xpath" : "/MedlineCitationSet/MedlineCitation/MeshHeadingList/MeshHeading/DescriptorName",
 "field" : "mesh-heading_txt",
 "multivalue" : true
 }, {
 "xpath" : "/MedlineCitationSet/MedlineCitation/PMID",
 "field" : "pmid_txt",
 "multivalue" : false
 }],
 "keepParent" : false,
 "skip" : false,
 "label" : "medline_xml_transform",
}

Template for a minimal index pipeline that includes an XML-Transformation stage. Replace the XPath and field names in
the XML-Transformation stage according to your data.

469

{
 "id" : "xml-pipeline-default",
 "stages" : [{
 "type" : "tika-parser",
 "includeImages" : false,
 "flattenCompound" : false,
 "addFailedDocs" : false,
 "addOriginalContent" : false,
 "contentField" : "_raw_content_",
 "returnXml" : true,
 "keepOriginalStructure" : true,
 "extractHtmlLinks" : false,
 "extractOtherLinks" : false,
 "csvParsing" : false,
 "skip" : false,
 "label" : "tika",
 "sourceField" : "_raw_content_"
 }, {
 "type" : "xml-transformation",
 "rootXPath" : "/ROOTS/ROOT",
 "bodyField" : "body",
 "mappings" : [{
 "xpath" : "/ROOTS/ROOT/element",
 "field" : "element-field_t",
 "multivalue" : false
 }],
 "keepParent" : false,
 "skip" : false,
 "label" : "xml"
 }, {
 "type" : "field-mapping",
 "mappings" : [{
 "source" : "parsing",
 "operation" : "delete"
 }, {
 "source" : "parsing_time",
 "operation" : "delete"
 }, {
 "source" : "Content-Type",
 "operation" : "delete"
 }, {
 "source" : "Content-Length",
 "operation" : "delete"
 }],
 "skip" : false,
 "label" : "field mapping"
 }, {
 "type" : "solr-index",
 "enforceSchema" : true,
 "bufferDocsForSolr" : false,
 "skip" : false,
 "label" : "solr-index"
 }]
}

470

Configuration

When using Fusion’s REST-API, the ID of this stage is: xml-transform.

Configuration Properties

Property Description, Type

bodyField

Body Field Name

type: string

default value: ‘body’

keepParent

Keep parent document

type: boolean

default value: ‘false’

mappings

XPath Mappings

type: array of object

object attributes: \{
 field (required) : \{
 display name: Field
 type: string
 }
 multivalue : \{
 display name: Multi Value
 type: boolean
 default value: ‘false’
 }
 xpath (required) : \{
 display name: XPath Expression
 type: string
 }
 }

metadata

Additional Metadata

type: array of object

object attributes: \{
 field (required) : \{
 display name: Field
 type: string
 }
 value (required) : \{
 display name: Value
 type: string
 }
 }

471

Property Description, Type

parentIdField

Parent ID Field Name

type: string

rootXPath

Root XPath

required

type: string

472

13.4. Query Pipeline Stages

A query pipeline is made up of a series of query stages that process incoming search queries.

A pipeline stage definition associates a unique ID with a set of properties. These definitions are registered with the
Fusion API service and stored in ZooKeeper for re-use across pipelines and search applications.

Fusion includes a number of specialized query stages as well as a JavaScript stage that allows advanced processing via a
JavaScript program.

Use the The Query Workbench to configure stages in a query pipeline.

See these reference topics for details about each query pipeline stage:

• Active Directory Security Trimming

• Advanced Boosting

• Block Documents

• Boost Documents

• Email

• Facet

• Javascript

• JDBC

• Landing Pages

• Logging

• Logging Message

• PagerDuty

• Recommendation Boosting

• Return QueryParams

• Rollup Aggregator

• Search Fields

• Security Trimming

• Set Query Params Stage

• Slack

• Solr Query

• Stored Parameters

• SubQuery

• User Recommendation Boosting

473

13.4.1. Active Directory Security Trimming Stage

An Active Directory Security Trimming query-pipeline stage retrieves an Active Directory user’s security identifiers to
build a security filter. This restricts the documents in the query result to only those documents for which a user has
access permissions. Security trimming is commonly used in business to authenticate between administrative users and
normal users, or to limit the site access of website users according to a login/password.

Example Stage Setup

Active Directory Security Trimming query stage setup:

Input

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"ADSecurity", "type": "active-
directory-security-trimming",
"server":"ldap://hostname:port","bindName":"ADuser@example.com","bindPassword":"login1"}'
http://localhost:8764/api/apollo/query-stages/instances

Output

{
 "type" : "active-directory-security-trimming",
 "id" : "ADSecurity",
 "server" : "ldap://hostname:port",
 "bindName" : "ADuser@example.com",
 "bindPassword" : "login1",
 "enableCache" : true,
 "cacheSize" : 1000,
 "expirationTime" : 3600,
 "skip" : false,
 "label" : "active-directory-security-trimming",
 "type" : "active-directory-security-trimming"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: active-directory-security-trimming.

Configuration Properties

Property Description, Type

bindName

Bind Name

required

username in userPrincipalName format (e.g.
user@example.com)

type: string

format: @.

474

mailto:user@example.com

Property Description, Type

bindPassword

Bind Password

required

type: string

cacheSize

Cache Size

type: integer

default value: ‘1000’

enableCache

Enable Cache

type: boolean

default value: ‘true’

expirationTime

Cache Expiration Time

(in seconds)

type: integer

default value: ‘3600’

overrideUserIdentityHandling

Override default user identity handling?

Default handling first attempts to take the user identity
from a 'fusion-user-id' http-header, which is the logged-in
user ID from the Fusion proxy service. If that value is
empty, a 'username' query parameter is tried instead.
When this DataSource property is enabled, the specified
source and key properties are used explicitly, without any
fallback behavior.

type: boolean

default value: ‘false’

server

Active Directory Url

required

E.g. ldap://hostname:port

type: string

format: ldap://(:\d)?

userIdentityKey

User ID key

eg. username or userID etc..

type: string

default value: ‘username’

475

Property Description, Type

userIdentitySource

User ID source

Specify whether the value comes from an http header or
query parameter.

type: string

default value: ‘query_param’

enum: \{ query_param header }

476

13.4.2. Parameterized Boosting Stage

The Advanced Boosting query-pipeline stage reads the boostValues (in List<DocumentResult> format) from the context
variable (added by a Rollup Aggregation stage or a JavaScript stage), and adds boosts to the main query using 'bq' or
'boost' based on the stage configuration. The weights for the boost values can also be scaled.

Configuration

When using Fusion’s REST-API, the ID of this stage is: adv-boost.

Configuration Properties

Property Description, Type

boostFieldName

Boost Field

required

The field name to boost the values on

type: string

boostingMethod

Boost Method

required

The boost method to use. query-parser should be chosen if
defType!=edismax for main query

type: string

default value: ‘query-param’

enum: \{ query-param query-parser }

boostingParam

Boost Param

required

'boost' multiplies scores by the boost values whereas 'bq'
adds optional clauses to main query

type: string

default value: ‘boost’

enum: \{ boost bq }

key

Context Key

required

The key name to read from context for boost id and values

type: string

477

Property Description, Type

scaleRange

Scale Boosts

Scale the boost values to a [min,max] range

type: object

object attributes: \{
 scaleMax : \{
 display name: Maximum value of the scale range
 type: number
 }
 scaleMin : \{
 display name: Minimum value of the scale range
 type: number
 }
 }

478

13.4.3. Parameterized Faceting Stage

This stage was introduced in Fusion 2.4 as the Auto Facet stage. In Fusion 3.0, it was renamed to the Parameterized
Faceting stage.

The Auto Facet query-pipeline stage facets documents in the query pipeline. The stage queries Solr to determine the
most frequent value for a given field, and then uses that value to look up stored parameters to automatically select the
most appropriate facet for a query.

Configuration

479

13.4.4. Block Documents Stage

The Block Documents query-pipeline stage removes documents from the result based on a Block Documents rule which
consists of the following elements:

• field - the document field to filter on.

• keywords - the words, phrases, or regex used as the filter.

• mode - filtering logic applied to keywords, one of:

◦ exact - exact matching on any item in the keywords list.

◦ phrase - phrase matching on the items in the keywords list.

◦ regex - treat items in the keywords list as a regex.

◦ match - requires a match for every item in the keyword list, but doesn’t require phrase matching.

• blocks - a list of document IDs for documents which are always removed from the query result.

The block documents rule is used to craft a Solr query. The keywords are added to the q Solr query parameter, by default.
The configuration property queryParam can be used to specify a different Solr query parameter to use as the keywords
filter. The rest of the rule is processed into the fq Solr query parameter.

Configuration

When using Fusion’s REST-API, the ID of this stage is: blocks.

Configuration Properties

Property Description, Type

queryParam

Query param for matching

type: string

default value: ‘q’

480

Property Description, Type

rules

Block rules

type: array of object

object attributes: \{
 blocks : \{
 display name: Blocks
 type: array of string
 description : The documents to block
 }
 field (required) : \{
 display name: Field
 type: string
 default value: ‘id’
 description : The name of the Solr Field to use for blocks
 }
 keyword (required) : \{
 display name: Keyword
 type: string
 description : Search keywords to match on
 }
 mode (required) : \{
 display name: Match Strategy
 type: string
 default value: ‘exact’
 description : How to match the keywords
 enum: \{ exact phrase regex match }

 } +
 }

481

13.4.5. Boost Documents Stage

The Boost Documents query-pipeline stage adds boosting parameters to matched documents based on specific search
terms. Boosts are defined with a term value to boost and the boost factor to add. The boosting parameters are added to
the bq Solr query parameter.

The Boost Documents rule consists of the following elements:

• field - the document field to filter on

• keywords - the words, phrases, or regex used as the filter

• mode - filtering logic applied to keywords, one of:

◦ exact - the keyword and the query must match exactly. This is case-sensitive.

◦ phrase phrase matching on the items in the keywords list

◦ regex treat items in the keywords list as a regex

◦ match must match every item in the keyword list, but doesn’t require phrase matchin

• boosts - consists of a list of pairs

◦ value - one or more terms used for boosting

◦ boost - the numeric boost value. Default 100.

Configuration

When using Fusion’s REST-API, the ID of this stage is: boosts.

Configuration Properties

Property Description, Type

queryParam

Query param for matching

type: string

default value: ‘q’

482

Property Description, Type

rules

Boost rules

type: array of object

object attributes: \{
 boosts : \{
 display name: Boosts
 type: array of object
 }
 field (required) : \{
 display name: Field
 type: string
 default value: ‘id’
 description : The name of the Solr Field to use for
boosting
 }
 keyword (required) : \{
 display name: Keyword
 type: string
 description : Search keywords to match on
 }
 mode (required) : \{
 display name: Match Strategy
 type: string
 default value: ‘exact’
 description : How to match the keywords
 enum: \{ exact phrase regex match }

 } +
 }

483

13.4.6. Facets Stage

The Facets query-pipeline stage (previously called the Facet stage) is used to add a Solr Field Facet query to the search
query pipeline. A Field facet query computes the top values for a field and returns the list of those values along with a
count of the subset of documents in the search results which match that term. Field faceting works best over fields
which contain a single label or set of labels from a finite, controlled lexicon such as product category. Facet field
parameters can be tuned for performance, see: Facet Field Configuration.

It’s possible to specify more than one field facets. For each field facet you must specify the field name plus the following
additional parameters:

• Limit – the maximum number of terms to be returned. Default 100.

• Offset – the number of top facet values to skip in the response. Default 0.

• Sort - the order in which to list facet values: count ordering is by documents per term, descending, and index
ordering is sorted on term values themselves.

• Missing - the number of documents in the results set which have no value for the facet field.

• Choice of facet method (advanced) - specify Solr algorithm used to calculate facet counts. (See Facet Method
Configuration for details). One of:

◦ enum - small number of distinct categories

◦ fc ("field cache") - many different values in the field, each document has low number of values, multi-valued
field

◦ fcs ("single value string fields") - good for rapidly changing indexes

For further details see: Solr Wiki Faceting Overview.

Configuration

When using Fusion’s REST-API, the ID of this stage is: facet.

Configuration Properties

484

https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Field-ValueFacetingParameters
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Field-ValueFacetingParameters
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Thefacet.methodParameter
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Thefacet.methodParameter
https://wiki.apache.org/solr/SolrFacetingOverview

485

Property Description, Type

fieldFacets

Facet Fields

type: array of object

object attributes: \{
 enumCacheMinDf : \{
 display name: Enum Cache Minimum DF
 type: integer
 exclusiveMinimum : false
 minimum : 0
 }
 field (required) : \{
 display name: Field
 type: string
 description : The field whose values you want to facet
on
 }
 limit : \{
 display name: Limit
 type: integer
 description : Maximum number of facets to return
 }
 method : \{
 display name: Method
 type: string
 enum: \{ enum fc fcs }

 } +
 `minCount` : \{ +
 display name: Minimum Count +
 type: `integer` +
 default value: '`1`' +
 description : Lower threshold of term counts to
be included +
 } +
 `missing` : \{ +
 display name: Count Missing +
 type: `boolean` +
 default value: '`false`' +
 description : Optionally include a 'missing'
facet bucket for documents without the selected
field +
 } +
 `offset` : \{ +
 display name: Offset +
 type: `integer` +
 description : Offset into list of resulting
facets +
 } +
 `prefix` : \{ +
 display name: Prefix +
 type: `string` +
 description : Prefix of terms to facet on +
 } +
 `sort` : \{ +
 display name: Sort +

486

 type: `string` +
 description : Ordering of the faceting results
+
 enum: \{ count index }

 } +
 `threads` : \{ +
 display name: Number of Threads +
 type: `integer` +
 exclusiveMinimum : false +
 minimum : 0 +
 } +
 }

13.4.7. JavaScript Stage

For a complete description of the JavaScript query-pipeline stage, see: Custom JavaScript Stages For Query Pipelines.

Configuration

When using Fusion’s REST-API, the ID of this stage is: javascript-query.

Configuration Properties

Property Description, Type

script

Script Body

required

One context variable 'request' is visible to the script

type: string

487

13.4.8. JDBC Lookup Stage

The JDBC Query Lookup query-pipeline stage is used to call out to a database as part of a pipeline stage, to inject results
into either the context/request or the pipeline document. For example, if you needed to look up a user from a DB and
add their profile information onto a request for downstream use in a pipeline, the JDBC Lookup Stage would facilitate
this.

Note You must first upload the JDBC driver to Fusion, see the
Connector JDBC API page.

Example

An example of setup for a JDBC Query Lookup query-pipeline stage

Upload stage config via POST to Fusion REST API endpoint `api/apollo/query-stages/instances`

curl -u user:pass -X POST -H "Content-Type: application/json" -d '{"id": "jdbc-quer","type":"jdbc-query-
lookup","driver":"postgresql-9.3-1101-
jdbc4.jar","connection":"jdbc:postgresql:database","username":"user","password":"password1","preparedStatement
":"select ID as id from DATABASE;"}' http://localhost:8764/api/apollo/query-stages/instances

Response

{
 "type" : "jdbc-query-lookup",
 "id" : "jdbc-quer",
 "driver" : "postgresql-9.3-1101-jdbc4.jar",
 "connection" : "jdbc:postgresql:database",
 "username" : "user",
 "password" : "password1",
 "preparedStatement" : "select ID as id from DATABASE;",
 "fetchSize" : -1,
 "join" : true,
 "rows" : 10,
 "skip" : false,
 "label" : "jdbc-query-lookup",
 "type" : "jdbc-query-lookup"
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: jdbc-query-lookup.

Configuration Properties

Property Description, Type

connection

Connection URI

required

The connection string for the database

type: string

488

Property Description, Type

driver

JDBC Driver

required

The fully qualified class name of the JDBC Driver to use.

type: string

fetchSize

Fetch Size

The JDBC Fetch Size to use. If -1, use the driver default.

type: integer

default value: ‘-1’

join

Join with Request

If true, the results will be added on to the request using
the prefix key and the row id, else the results will be put in
the pipeline context using

type: boolean

default value: ‘true’

password

Password

required

The password to connect to the database.

type: string

prefix

Result Prefix Key

The string to use as a prefix for all values

type: string

preparedStatement

SQL Prepared Statement

required

The SQL Prepared Statement to execute when bound with
values.

type: string

preparedStatementKeys

Prepared Statement Keys

The keys in the Request/Header/Context to use to map
request attributes into the prepared statement. These
must map to the '?'s in your prepared statement. They
must also be able to be resolved as the first parameter of
that name in a request.

type: array of string

489

Property Description, Type

rows

Rows

The number of rows to return

type: integer

default value: ‘10’

username

Username

required

The username to connect to the database.

type: string

490

13.4.9. Landing Pages Stage

The Landing Pages query-pipeline stage provides the mechanism by which specific search queries will be pinned to
certain URLs. This stage returns one or more URLs which can be used for redirection. It doesn’t preform a redirection;
this must be done by the calling application. The redirection URLs are returned in a separate section of the Fusion
response object, with attribute name fusion.

This stage is configured using Landing Page Rules, which consist of the following:

• keyword - words, phrases, or a regex

• mode - filtering logic applied to the query, one of:

◦ exact - the keyword and the query must match exactly. This is case-sensitive.

◦ phrase phrase matching on the items in the keywords list

◦ regex treat items in the keywords list as a regex

◦ match must match every item in the keyword list, but doesn’t require phrase matchin

• url - a list of URLs

Configuration

When using Fusion’s REST-API, the ID of this stage is: landing-pages.

Configuration Properties

Property Description, Type

matchCount

Maximum matches

type: integer

default value: ‘1’

exclusiveMinimum: false

minimum: 1

queryParam

Query param for matching

type: string

default value: ‘q’

491

Property Description, Type

rules

Landing page rules

type: array of object

object attributes: \{
 keyword (required) : \{
 display name: Keyword
 type: string
 description : Search keywords to match on
 }
 mode (required) : \{
 display name: Match Strategy
 type: string
 default value: ‘exact’
 description : How to match the keywords
 enum: \{ exact phrase regex match }

 } +
 `url` _ (required)_ : \{ +
 display name: Redirect URL +
 type: `string` +
 description : The URL to return for the
redirect. For 'regex' match types, the URL can
contain %s characters which will get populated by
the regex capture groups +
 } +
 }

492

13.4.10. Logging Stage

The Logging query-pipeline stage prints messages to the API log file; the default location is fusion/var/log/api/api.log.

The verbosity of this message is controlled by the property detailed. If true, then the current Request object will be
pretty-printed to the log file. If false, only the basic information about this stage will be logged.

In a production environment logging stages should be configured with property skip set to true, if possible. Use of
detailed logging may impact performance.

Configuration

When using Fusion’s REST-API, the ID of this stage is: query-logging.

Configuration Properties

Property Description, Type

detailed

Detailed Logging

type: boolean

default value: ‘false’

493

13.4.11. Write Log Message Stage

This stage was renamed to Write Log Message in Fusion 3.0. In prior Fusion version, it was called the Log a Message
stage.

The Write Log Message query-pipeline stage is an extension of Fusion’s Logging Query Stage, which logs any message
sent to the configured logging system using the Messaging Services.

Configuration

When using Fusion’s REST-API, the ID of this stage is: logging-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

logLevel

Log Level

The Log Level. May be: debug, info, warn, error

type: string

enum: \{ debug info warn error }

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

494

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

Property Description, Type

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

495

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.4.12. Boost with Signals Stage

The Recommendation Boosting query-pipeline stage uses aggregated signals to selectively boost items in the set of
search results. Recommendation boosting implements collaborative filtering. Signals contain relevance feedback, that is,
information about what users do. For example, they might contain information about clicks or page views. Boosting
occurs when the same query comes in again.

See Recommendations for more information.

Tip This stage accesses the signals_aggr collection. Before
using it, verify that the following permission is set:
GET:/solr/<collection-name>_signals_aggr/select

Configuration

When using Fusion’s REST-API, the ID of this stage is: recommendation.

Configuration Properties

Property Description, Type

aggrType

Aggregation Type

type: string

default value: ‘*’

boostId

Solr field to boost on

Which Solr field to use when applying recommendation
boosts

type: string

default value: ‘id’

numRecommendations

Number of Recommendations

type: integer

default value: ‘10’

numSignals

Number of signals

Number of signals to process when getting recommended
items

type: integer

default value: ‘100’

496

13.4.13. Return Query Parameters Stage

This stage was renamed to Return Query Parameters in Fusion 3.0. In prior Fusion versions, it was called the Return
Query Params stage.

The Return Query Parameters query-pipeline stage is used to return query parameters as a pipeline response. The stage
takes no additional properties beyond id, type, label, skip, and condition.

Configuration

When using Fusion’s REST-API, the ID of this stage is: return-queryparams.

Configuration Properties

Property Description, Type

497

13.4.14. Rollup Aggregation Stage

The Rollup Aggregation query-pipeline stage (previously called the Rollup Aggregator stage) is used to rollup Solr results
from a context variable. If using the REST API, this stage type is named "rollup-rec-aggr".

This stage reads the Solr results (SolrResponse.class) from the context and rolls up over a single field product a list of
unique IDs and also aggregates the weights (any numeric filed in Solr) for those IDs using any of the statistical
aggregation functions available. The result from aggregation is saved back in the context and can later be used in the
Parameterized Boosting stage.

Configuration

When using Fusion’s REST-API, the ID of this stage is: rollup-rec-aggr.

Configuration Properties

Property Description, Type

excludeResultsKey

Results to Exclude

The key containing a set of results to exclude from this
rollup

type: string

key

Key

required

The key name to use from context to read Solr results.

type: string

maxRows

Max rows

The maximum number of results to return

type: integer

default value: ‘10’

resultKey

Result Key

required

The key name to which the results should be saved

type: string

rollupField

Rollup Field

required

The field to rollup on

type: string

498

Property Description, Type

sort

Sort results

If enabled, the output is sorted based on weight field if it is
not null

type: boolean

default value: ‘true’

weightField

Weight Field

The numerical field to consider as weight

type: string

weightFunction

Weight Arithmetic Function

The arithmetic function to use for weight fields on
documents with same rollup field

type: string

default value: ‘sum’

enum: \{ sum mean max min stddev variance geoMean
sumOfSquares sumOfLogs }

499

13.4.15. Query Fields Stage

This stage was renamed to Query Fields in Fusion 3.0. It was called the Search Fields stage in previous Fusion versions.

The Query Fields query-pipeline stage defines common Solr query parameters for the edismax query parser. An
alternative to this stage is the Set Query Params stage.

Configuration

When using Fusion’s REST-API, the ID of this stage is: search-fields.

Configuration Properties

Property Description, Type

minimumMatch

Minimum Should Match

type: string

queryFields

Search Fields

type: array of object

object attributes: \{
 boost : \{
 display name: Field Boost
 type: number
 }
 field : \{
 display name: Field Name
 type: string
 }
 }

returnFields

Return Fields

type: array of string

rows

Number of Results

type: integer

default value: ‘10’

sort

Results Sort Order

type: string

start

Result Offset

type: integer

default value: ‘0’

500

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser

13.4.16. Security Trimming Stage

The Security Trimming query-pipeline stage restricts query results according to the user ID. While indexing the content,
the Fusion connectors service stores security ACL metadata associated with the crawled items and indexes them as
fields. The Security Trimming stage matches this information against the ID of the user running the search query.

Configuration

When using Fusion’s REST-API, the ID of this stage is: security-trimming.

Configuration Properties

Property Description, Type

overrideUserIdentityHandling

Override default user identity handling?

Default handling first attempts to take the user identity
from a 'fusion-user-id' http-header, which is the logged-in
user ID from the Fusion proxy service. If that value is
empty, a 'username' query parameter is tried instead.
When this DataSource property is enabled, the specified
source and key properties are used explicitly, without any
fallback behavior.

type: boolean

default value: ‘false’

userIdentityKey

User ID key

eg. username or userID etc..

type: string

default value: ‘username’

userIdentitySource

User ID source

Specify whether the value comes from an http header or
query parameter.

type: string

default value: ‘query_param’

enum: \{ query_param header }

501

13.4.17. Send SMTP Email Stage

This stage was renamed to Send SMTP Email in Fusion 3.0; it was called the Send email (via SMTP) stage in previous
Fusion versions.

This stage sends an SMTP message from Fusion, for alerting, reporting, and more, using Fusion’s Messaging Services.

Enabling Email Messaging

Before you can use the Email pipeline stage, you must enable Email messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select SMTP Message Service from the drop-down menu.

3. Verify that the default settings are sufficient.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: smtp-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

502

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

Property Description, Type

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

smtpPassword

SMTP Password

required

The SMTP password for the user credentials

type: string

smtpUser

SMTP Username

required

The SMTP user to send the message from

type: string

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

503

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.4.18. Send PagerDuty Message Stage

This stage sends a PagerDuty Message from Fusion, for alerting, monitoring, and more, using Fusion’s Messaging
Services.

Read more about PagerDuty integration in Fusion on our blog.

Enabling PagerDuty Messaging

Before you can use the PagerDuty pipeline stage, you must enable PagerDuty messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select PagerDuty Message Service from the drop-down menu.

3. Enter the following information:

◦ PagerDuty service key

◦ PagerDuty Service API URL; this should be https://events.pagerduty.com/generic/2010-04-15/create_event.json.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: pagerduty-message.

Configuration Properties

Property Description, Type

client

Client

The name of the monitoring client that is triggering this
event.

type: string

default value: ‘Fusion’

minLength: 1

clientURL

Client URL

The URL of the monitoring client that is triggering this
event.

type: string

default value: ‘fusion-monitoring.yourdomain.com’

minLength: 1

504

https://www.pagerduty.com/
https://lucidworks.com/blog/2015/11/20/pagerduty-integration-in-lucidworks-fusion/
https://developer.pagerduty.com/documentation/integration/events/
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json
https://events.pagerduty.com/generic/2010-04-15/create_event.json

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

eventType

Event Type

required

The Pager Duty Event Type. One of: trigger, acknowledge,
resolve

type: string

default value: ‘trigger’

enum: \{ trigger acknowledge resolve }

incidentContextImages

Incident Context Images

type: array of object

object attributes: \{
 alt : \{
 display name: Alternate Text
 type: string
 description : HTM 'alt' tag for the image
 }
 href (required) : \{
 display name: Target Link
 type: string
 description : URL to open when clicked on the image
 }
 src (required) : \{
 display name: Source
 type: string
 description : HTML 'src' tag for the image. Should be
always secure connection (https://)
 }
 }

505

https://

Property Description, Type

incidentContextLinks

Incident Context Links

type: array of object

object attributes: \{
 href (required) : \{
 display name: Target Link
 type: string
 description : URL to open when clicked on the link
 }
 text : \{
 display name: Text
 type: string
 description : Arbitrary text explaining the URL
 }
 }

incidentDescription

Description

required

A short description of the problem that led to this trigger.
This field (or a truncated version) will be used when
generating phone calls, SMS messages and alert emails. It
will also appear on the incidents tables in the PagerDuty
UI. The maximum length is 1024 characters.

type: string

default value: ‘Sample Description’

maxLength: 1024

minLength: 1

incidentDetails

Incident Details

type: array of object

object attributes: \{
 name (required) : \{
 display name: Name
 type: string
 }
 value (required) : \{
 display name: Value
 type: string
 }
 }

506

Property Description, Type

incidentKey

Incident Key

Identifies the incident to which this trigger event should
be applied. If there’s no open (i.e. unresolved) incident
with this key, a new one will be created. If there’s already
an open incident with a matching key, this event will be
appended to that incident’s log.

type: string

default value: '`Incident ’

minLength: 1

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

507

13.4.19. Send Slack Message Stage

This stage sends a Slack message from Fusion, for alerting, reporting, and more, using Fusion’s Messaging Services.

Enabling Slack Messaging

Before you can use the Slack pipeline stage, you must enable Slack messaging in Fusion:

1. Click Applications > System > Messaging Services.

2. Select Slack Message Service from the drop-down menu.

3. Enter the following information:

◦ Slack auth token

◦ Message template

The default is <subject> : <body>, which are configured with messageSubjectTemplate and messageBodyTemplate
below. See Messaging Services Templates for details on the template language.

◦ Optionally, you can configure a proxy or the error reporting channel name.

4. Click Save message service.

Configuration

When using Fusion’s REST-API, the ID of this stage is: slack-message.

Configuration Properties

Property Description, Type

errorKey

Message Response Failure Key

The name of the key to store a boolean if sending a
message failed. If set, you can check the MessageResponse
errorCode and other attributes for the reason.

type: string

default value: ‘messageResponseFailure’

from

From

required

Who the message is from. May be a string template similar
to the body and subject.

type: string

508

https://slack.com/
https://api.slack.com/docs/oauth

Property Description, Type

messageBodyTemplate

Message Body Template

required

A Message Template that is used to create the message
body to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: '`Processing Document ’

messageSubjectTemplate

Message Subject Template

required

A Message Template that is used to create the message
subject to send. See https://theantlrguy.atlassian.net/wiki/
display/ST4/StringTemplate+4+Documentation for details
on the template language

type: string

default value: ‘Hello’

responseKey

Message Response Context Key

The name of the key to store the MessageResponse under
in the Pipeline Context.

type: string

default value: ‘messageResponse’

storeInContext

Add to Pipeline Context

Put the generated Message later in the pipeline.

type: boolean

default value: ‘false’

to

To

required

Who to send the message to. May be a string template
similar to the body and subject.

type: array of string

509

https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation
https://theantlrguy.atlassian.net/wiki/display/ST4/StringTemplate+4+Documentation

13.4.20. Additional Query Parameters Stage

This stage was renamed to Additional Query Parameters in Fusion 3.0. It was called the Set Query Params stage in
previous versions.

The Additional Query Parameters query-pipeline stage is used to set, append, and remove Solr query parameters. This
stage takes a list of query parameters. Each parameter is specified as a triple consisting of parameter name, parameter
value, and update policy.

Available update policies are: replace, append, remove and default. The policy 'default' means that this parameter will be
added only if it has not yet been set via the request or by a default specification in the Solr config file solrconfig.xml.

Example Stage Specification

Set the response format to JSON:

{ "type":"set-params",
 "id":"default-params",
 "params": [
 {"key":"wt", "value":"json", "policy":"default"}
],
 "skip":false
}

Return a field named "id", and 10 rows of results:

{ "type":"set-params",
 "id":"default-params",
 "params": [
 {"key":"fl", "value":"id", "policy":"append"},
 {"key":"rows", "value":"10", "policy":"replace"}
],
 "skip":false
}

Configuration

When using Fusion’s REST-API, the ID of this stage is: set-params.

Configuration Properties

510

https://wiki.apache.org/solr/QueryParametersIndex

Property Description, Type

params

Parameters and Values

type: array of object

object attributes: \{
 key (required) : \{
 display name: Parameter Name
 type: string
 }
 policy : \{
 display name: Update Policy
 type: string
 default value: ‘append’
 enum: \{ replace append remove default }

 } +
 `value` : \{ +
 display name: Parameter Value +
 type: `string` +
 } +
 }

511

13.4.21. Solr Query Stage

This stage was renamed to Solr Query in Fusion 3.1. It was called the Query Solr stage in prior Fusion versions.

The Solr Query query-pipeline stage transforms the Fusion query pipeline Request object into a Solr query and sends it
to Solr.

Configuration

When using Fusion’s REST-API, the ID of this stage is: solr-query.

Configuration Properties

Property Description, Type

allowedRequestHandlers

Configure request handlers allowed for queries

type: array of string
minimum number of items (minItems): 0

httpMethod

HTTP Method

HTTP method for querying Solr

type: string

default value: ‘POST’

enum: \{ POST GET }

512

13.4.22. Retrieve Stored Parameters Stage

This stage was renamed to Retrieve Stored Parameters in Fusion 3.0. It was called the Stored Parameters stage in prior
Fusion versions.

The Retrieve Stored Parameters stage is used to add parameters to the downstream Solr query stage in the pipeline. The
primary use case for this query stage is in eCommerce applications to organize and enhance search query results,
where the parameters added to the Solr query are used for faceting. This stage is used in query pipelines for
applications where the documents in the collection are to be classified according to a known category hierarchy that is
stored in Fusion as an auxiliary "stored parameters" collection.

The information in a taxonomy is meta-information about the categories used to classify a set of things. For an
eCommerce site, the set of things are items in the product catalog, which are stored in a Fusion collection, referred to as
the primary collection. The taxonomy itself is specified as a set of categories which are stored in an auxiliary collection
and naming conventions relate the primary and auxiliary collections so that for a primary collection named "COLL", the
auxiliary taxonomy is stored in a collection named "COLL_stored_parameters".

Configuration

When using Fusion’s REST-API, the ID of this stage is: stored-parameters.

Configuration Properties

Property Description, Type

key

Key

The parameter name from the context/query whose value
will be used to query the stored parameters collection.

type: string

513

13.4.23. Solr SubQuery Stage

This stage was renamed to Solr SubQuery in Fusion 3.0. It was called the Sub Query stage in prior Fusion versions.

The Solr SubQuery query-pipeline stage is used to query external collections. The Solr SubQuery stage runs a query and
adds the results to the pipeline Request object. The query must return results in JSON format, so that they can be added
to the query pipeline.

Configuration

When using Fusion’s REST-API, the ID of this stage is: sub-query.

Configuration Properties

Property Description, Type

collection

Collection

required

type: string

handler

Request handler

required

type: string

default value: ‘select’

headers

Headers

type: array of object

object attributes: \{
 key (required) : \{
 display name: Parameter Name
 type: string
 }
 value : \{
 display name: Parameter Value
 type: string
 }
 }

key

Key

required

The key used to join these results onto the pipeline context

type: string

default value: ‘subquery-results’

514

Property Description, Type

method

HTTP method

required

type: string

default value: ‘GET’

enum: \{ GET POST }

params

Query params

required

type: array of object

object attributes: \{
 key (required) : \{
 display name: Parameter Name
 type: string
 }
 value : \{
 display name: Parameter Value
 type: string
 }
 }

parentParams

Query parameters from the parent query

type: array of string

rollupKeys

Rollup results to include

type: array of string

515

13.4.24. User Recommendation Boosting Stage

This stage was removed in the 3.0.1 release.

The User Recommendation Boosting query-pipeline stage allows user recommendations to boost specified results
according to weighted criteria at query time. See Recommendations for more information.

Tip This stage accesses the signals_aggr collection. Before
using it, verify that the following permission is set:

GET:/solr/COLL_signals_aggr/select

Configuration

When using Fusion’s REST-API, the ID of this stage is: user-recommendation.

Configuration Properties

Property Description, Type

aggrType

Aggregation Type

type: string

default value: ‘*’

collection

Aggregation Collection

if left blank, we will use the default aggregation collection
for the collection being queried.

type: string

maxPositionalWeight

Maximum weight

The weight of the first item in the recommended item list.
Subsequent items will have decreasing weight.

type: number

default value: ‘10.0’

minPositionalWeight

Minimum weight

The weight of the last item in the recommended item list.

type: number

default value: ‘1.0’

numRecommendations

Number of Recommendations

type: integer

default value: ‘10’

516

Property Description, Type

resultKey

Result Key

The key name to use to save the raw recommendation
results. This should correspond to the 'key' value of a
Rollup Aggregator.

type: string

default value: ‘results’

517

Chapter 14. REST API Reference
Fusion API service are designed to be accessed via Fusion’s authentication proxy module which is part of the Fusion UI
service (default port 8764). All applications should use this method to access the API service. However, for development
purposes it is possible to access the API service directly:

Development Production

<code><a href="http://<fusion-
host>:8765/api/v1/<endpoint>"
class="bare">http://<fusion-host>:8765/api/v1/
<endpoint>;</code>

Direct access to the API service, bypassing the
authentication proxy. Access to this port should be
restricted.

<code><a href="http://<fusion-
host>:8764/api/apollo/<endpoint>"
class="bare">http://<fusion-host>:8764/api/apollo/
<endpoint>;</code>

Access via the authentication proxy, using either a
username/password pair or a session cookie with the user
ID.

Important In a production environment, do not expose port 8765 to
users. Using your firewall software or the Jetty
configuration of the API server, make it accessible only to
the auth proxy service and the connectors service.

14.1. Listing all Fusion component services

The Fusion introspect endpoint lists basic information about endpoints and parameters for all Fusion endpoints,
including the Connectors services endpoints:

curl -u user:pass http://localhost:8764/api/apollo/introspect

14.2. Fusion Components REST API Reference Pages

• Blob Store API

• Collection Features API

• Collections API

• Configurations API

• Connectors APIs

• History API

• Index Pipelines API

• Index Profiles API

• Index Stages API

• Messaging API

• Nodes API

• Parsers API

518

• Query Pipelines API

• Query Profiles API

• Query Stages API

• Realms API

• Recommendations API

• Reporting API

• Roles API

• Scheduler API

• Search Cluster API

• Sessions API

• Signals API

• Signals Aggregator API

• Solr API

• SolrAdmin API

• Stopwords API

• Synonyms API

• System API

• Usage API

• User API

519

14.3. Fusion Services

Fusion services are registered with the Apache ZooKeeper.

14.3.1. Summary of Services

Aggregator

The aggregator service handles signal aggregation. Aggregated signal events are indexed into one of two system-level
collections: collection_signals-aggr and collection_signals. The primary function of this service is to provide faster
querying for recommendations.

More information about this service is in the Signals section.

Configurations

The configurations service handles system configuration settings, which can be accessed via the UI or a REST API. Some
of the information provided by this service comes from Fusion configuration files, and some is read from the operating
system.

More information about this service is in the section Configurations API.

Connectors

The connectors service handles crawling of various types of content repositories. Connectors are general-purpose
programs used to fetch data, and the connector service contains these programs.

More information about this service is in the section Connectors.

dynamicSchema

The dynamicSchema service enables Solr’s managed schema functionality, which allows programmatic access to Solr’s
schema.xml file, and also enables schemaless mode.

More information about this service is in the section Collection Features.

Features

The features service handles each of the collection features currently supported in Fusion, including dynamicSchema,
searchLogs, and signals.

More information about this service is in the section Collection Features.

History

The history services handles history data for each service. Most commonly, it logs when each service stops and starts,
but in some cases it records more information. The scheduler history, for example, records the result of each job the
scheduler runs.

More information about this service is in the section History API.

Index-pipelines

The index-pipelines service handles the definition and execution of the index pipelines, which is an extract-transform-

520

load system to prepare and process documents into the index.

More information about this service is in the section Index Pipelines.

Index-profiles

The index-profiles stage handles the creation of search profiles to associate index pipelines with specific collections, and
it allows a single index pipeline to be shared among multiple collections.

More information about this service is in the section Index Profiles.

Index-stages

The index-stages service handles the definition of the index stages that form index pipelines.

More information about this service is in the section Index Pipelines.

Introspect

The introspect service provides schema-like investigation into the REST API endpoints supported by each service. It
shows supported methods, as well as any applicable paths and query parameters.

More information about this service is in the section REST API Reference.

Nodes

The nodes service reports information about cluster nodes configured with Fusion.

More information about this service is in the section Nodes API.

Query-pipelines

The query-pipelines service handles the definition and execution of query pipelines, which transform user queries and
processes the responses from Solr.

More information about this service is in the section Query Pipelines.

Query-profiles

The query-profiles stage handles creating search profiles to associate query pipelines with specific collections.

More information about this service is in the section Query Profiles.

Query-stages

The query-stages service handles the definition of the query stages that form query pipelines.

More information about this service is in the section Query Pipelines.

Realm-configs

The realm-configs service handles the definition of authentication realms, or the repositories that contain data about
users who authenticate to the system.

More information about this service is in the section Security Realms.

521

Recommend

The recommend service handles the recommendations provided by Fusion. Recommendations are search results that
are derived from previous user behavior, much of which was captured by the aggregator service and stored as signals.

More information about this service is in the section Recommendations.

Reports

The reports service handles analytic reports provided by Fusion, which includes: lessThanN, topQueries, topN, histo,
and dateHisto.

More information about this service is in the section Search Query Reporting.

Resources

The resources service provides information to the UI on available and enabled services.

Roles

The roles service handles role definition, which provides a framework to control user access to any Fusion service. This
includes access to the services via the UI or with the REST API.

More information about this service is in the section Roles.

Scheduler

The scheduler service handles recurring events in the Fusion system. These events are designated by the user to occur
at specific start times and to repeat for defined intervals, and multiple instances of the scheduler service can run
accross different nodes.

More information about this service is in the section Schedules.

Schema

The schema service allows editing fields and dynamic fields defined in Solr’s schema.xml file.

searchCluster

The searchCluster service handles information about Solr clusters that are accessible to the Fusion system. This may
include an existing SolrCloud implementation or standalone Solr instance.

More information about this service is in the section Search Clusters.

searchLogs

The searchLogs service allows search logs to be indexed for later use by the reporting service.

More information about this service is in Collection Features.

Signals

The signals service handles search events that can later be used for recommendations.

More information about this service is in the section Signals.

522

Solr

The solr service handles collection-level requests to Solr, providing a way to allow only authorized users direct access to
your Solr installations.

More information about this service is in Solr API.

solrAdmin

The solr service handles admin-level requests to Solr, providing a way to allow only authorized users direct access to
your Solr installations.

More information about this service is in SolrAdmin API.

Stopwords

The stopwords service allows managing a stop word list for a collection.

More information about this service is in the section Stopwords API.

Synonyms

The synonyms service allows managing a synonym list for a collection.

More information about this service is in the section Synonyms API.

System

The system service provides analytics on the performance of your Solr installation, including threads in use, buffers,
and other metrics.

More information about this service is in the section System API.

Usage

The usage service provides data for the System Usage Monitor, a voluntary program to send anonymous data about your
system to Fusion.

More information about this service is in the section System Usage Monitor.

Users

The users service handles user records, passwords, and authentication.

More information about this service is in the section Users.

523

14.4. Authentication and Authorization APIs

The Fusion access control component handles user authentication and authorization. It runs in the same process as the
Fusion UI and provides the following sets of endpoints:

• User API: create, update, delete and list user records in Fusion.

• Roles API: create, update, delete and list roles which grant users different levels of permissions in the system.

• Realms API: create, update, delete and list realms.

• Sessions API: create an authenticated session and session cookie.

524

14.5. Blob Store API

The Blob Store REST API allows storing binary objects in Solr. The primary use case for this is to store entity extraction
models, lookup lists or exclusion lists for use in index pipelines. This may include the entity extraction models and
lookup lists included with Fusion in the fusion/data/nlp directory, or files that you have created on your own.

Blobs uploaded to Solr with this REST API are stored in the 'system_blobs' collection.

14.5.1. Get, Upload, Update or Delete a Blob

The path for this request is:

/api/apollo/blobs

• GET - list all blobs.

• PUT - upload a new blob with your defined ID, or update an existing blob. A PUT request will allow you to define the
name of the blob while uploading it to Solr, so this is the preferred method for adding blobs.

• POST - uploaded a new blob, defined ID is included in request body.

• DELETE request will remove this blob.

14.5.2. List a Blob Manifest

The path for this request is:

/api/apollo/blobs/<id>/manifest

where <id> is the name of a specific blob.

• GET - returns the manifest this item in the blob store. Output list the blog name (which is the blob ID), the content-
type, size, when it was last modified, the document version in Solr, and an md5 hash for the document.

14.5.3. Examples

Upload a file to the blob store:

REQUEST

curl -u user:pass -X PUT --data-binary @airports.lst -H 'Content-type: text/plain'
http://localhost:8764/api/apollo/blobs/airports.lst

RESPONSE

{
 "name" : "airports.lst",
 "contentType" : "text/plain",
 "size" : 66,
 "modifiedTime" : "2014-12-03T22:26:16.436Z",
 "version" : 0,
 "md5" : "fbe581898cb426f6bdcabc3f52253594"
}

525

Upload an OpenNLP sentence model binary file to the blob store:

REQUEST

curl -u user:pass -X PUT --data-binary @data/nlp/models/en-sent.bin -H 'Content-type: application/octet-
stream' http://localhost:8764/api/apollo/blobs/sentenceModel.bin

Note In this example that we have changed the name of the
blob during upload by giving it a different ID. The file is
named 'en-sent.bin' but we have defined the ID of this to
'sentenceModel.bin'. When we use this blob in an index
pipeline, we would refer to it by the ID we have given it.

Get the manifest for a sentence OpenNLP model we’ve previously saved in the blob store:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/blobs/sentenceModel.bin/manifest

RESPONSE

{
 "name" : "sentenceModel.bin",
 "contentType" : "application/octet-stream",
 "size" : 98533,
 "modifiedTime" : "2014-09-08T18:50:07.559Z",
 "version" : 1478704189996531712,
 "md5" : "3822c5f82cb4ba139284631d2f6b7fde"
}

Upload a JDBC driver, using slashes in the blob name:

REQUEST

curl -u user:pass -X PUT --data-binary @mysql-connector-java-5.1.42-bin.jar -H 'Content-length: 996444' -H
'Content-Type: application/zip' http://localhost:8764/api/apollo/blobs/good/to/go/mysql-connector-java-5.1.42-
bin.jar?resourceType=driver:jdbc

RESPONSE

526

{
 "name" : "good/to/go/mysql-connector-java-5.1.42-bin.jar",
 "contentType" : "application/zip",
 "size" : 996444,
 "modifiedTime" : "2017-04-04T15:58:32.856Z",
 "version" : 0,
 "md5" : "b1946ac92492d2347c6235b4d2611184",
 "metadata" : {
 "subtype" : "driver:jdbc",
 "resourceType" : "driver:jdbc"
 }
}

Get the JDBC driver that was uploaded:

REQUEST

curl -u user:pass -H "Accept: application/zip" http://localhost:8764/api/apollo/blobs/jtds-1.3.1-
src.zip?resourceType=driver:jdbc -o jtds-1.3.1-src.zip

RESPONSE

[{
 "name" : "good/to/go/sentenceModel.bin",
 "contentType" : "application/octet-stream",
 "size" : 6,
 "modifiedTime" : "2017-04-04T06:21:53.465Z",
 "version" : 1563727666574524416,
 "md5" : "b1946ac92492d2347c6235b4d2611184",
 "metadata" : {
 "subtype" : "driver:jdbc",
 "resourceType" : "driver:jdbc"
 }
}]

527

14.6. Collections API

The Collections API manages Fusion collections. It provides endpoints for creating, updating, and deleting collection, as
well as endpoints for getting a collection’s status and usage statistics.

Fusion maintains internal system collections for logs, blobs, and metrics data which operate in conjunction with
collections created by users. The Collections API is used to manage all Fusion collections.

14.6.1. Create, List, Update or Delete Collections

The path for this request is:

/api/apollo/collections/<name>

where <name> is the name of an specific collection.

• GET - returns properties for the specified collection or properties for all collections if no collection name is specified.

• PUT - create or update a collection

• DELETE - remove a collection. A DELETE request takes two parameters:

◦ solr - if true, the collection will be deleted from Solr while it is deleted from Fusion. The default is false.

◦ purge - if true, then associated signals and/or searchLogs collections will also be deleted. The default is false.

Collections properties

The body of a PUT request contains the following properties, specified in JSON:

Property Description

searchClusterId
Optional

The name of the search cluster to associate the collection
with. If this is not defined, "default" will be used, which is
the name of the LucidWorks cluster at installation. See also
the section on Search Clusters for more information.

solrParams A set of name:value pairs corresponding to the properties
avaliable on a Solr collection. See Solr’s collection API
documentation for a list of valid parameters.

type
Optional

The type of collection. The type must be one of the
following:

• DATA

• LOGS

• METRICS

• SIGNALS

• SEARCHLOGS

If not defined, the type will default to "DATA", which is fine
for most cases.

528

https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-api1
https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-api1

Property Description

metadata This is an internal property, and will be removed in the
future.

14.6.2. Get Collection Status or Statistics

A GET request to endpoint:

/api/apollo/collections/<name>/status

returns a listing of state of each shard and all of its replicas, including the core name, its status as leader, the base URL
and the node name.

A GET request to endpoint:

/api/apollo/collections/<name>/stats

returns a more detailed listing, including the number of documents in the index, how many requests have been made of
the collection, the queries-per-second (qps) and the index size in bytes.

14.6.3. Examples

Create a new collection called 'newCollection', with appropriate SolrCloud environment settings:

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d
'{"solrParams":{"replicationFactor":1,"numShards":1}}'
http://localhost:8764/api/apollo/collections/newCollection

RESPONSE

{
 "id" : "newCollection",
 "createdAt" : "2014-09-19T18:46:52.954Z",
 "searchClusterId" : "default",
 "solrParams" : {
 "name" : "newCollection",
 "numShards" : 1,
 "replicationFactor" : 1
 },
 "type" : "DATA",
 "metadata" : { }
}

Create a collection named 'local-collection1' that refers to 'collection1' in a pre-existing SolrCloud cluster named 'Solr4.10'
(see also the section Search Clusters):

REQUEST

529

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"local-collection1",
"searchClusterId":"Solr4.10", "solrParams":{"name":"collection1"}}'
http://localhost:8764/api/apollo/collections

RESPONSE

{
 "id" : "local-collection1",
 "createdAt" : "2014-09-19T18:48:45.396Z",
 "searchClusterId" : "Solr4.10",
 "solrParams" : {
 "name" : "collection1"
 },
 "type" : "DATA",
 "metadata" : { }
}

Delete a collection, but keep the associated signals and searchLogs collections:

REQUEST

curl -u user:pass -X DELETE http://localhost:8764/api/apollo/collections/newCollection?purge=false

Get the status of the 'demo' collection:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/collections/demo/status

RESPONSE

{
 "maxShardsPerNode" : 1,
 "replicationFactor" : 1,
 "shards" : {
 "shard1" : {
 "range" : "80000000-7fffffff",
 "state" : "active",
 "replicas" : {
 "core_node1" : {
 "state" : "active",
 "core" : "demo_shard1_replica1",
 "leader" : true,
 "base_url" : "http://localhost:8983/solr",
 "node_name" : "localhost:8983_solr"
 }
 }
 }
 }
}

530

Get stats for the 'demo' collection:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/collections/demo/stats

RESPONSE

{
 "collectionId" : "demo",
 "documentCount" : 536,
 "requestCount" : 6,
 "qps" : 28.34716542561849,
 "sizeInBytes" : 7646045,
 "lastModified" : "2014-05-19T19:58:33.545Z"
}

531

14.7. Collection Features API

The Collection Features API allows the following settings to be specified for a collection:

Property Description

dynamicSchema Modifies the Solr schema to be "managed", which means
it’s possible for Fusion to use Solr’s schema API to manage
the schema. It also sets Solr to operate in 'schemaless'
mode, which means fields do not need to be pre-defined in
the schema for them to be added to Solr’s index. Note that
this applies to the Solr included with Fusion, and does not
modify an existing Solr cluster, if you have one already.

searchLogs Creates a parallel collection for the storage of log data
which is used to generate search query reports.

signals Creates a parallel collection for the storage of signals data
(such as user clicks, or ratings). Signals will need to be
indexed and aggregated in order to be used. See the
section on Signals for more information.

14.7.1. Get a List of Collection Feature Properties

The path for this request is:

/api/apollo/collections/<collection>/features/<featureName>

where <collection> is the name of an existing collection and <featureName> is the name of a specific feature from the
table above.

A GET request will return the current properties for that feature. If no feature name is specified, a GET request will
return all features for that collection.

Collection Feature Properties

Property Description

featureName The name of the feature, from the table above.

collectionId The collection name.

params Parameters of the feature.

enabled Whether the feature is enabled or disabled. In a new
collection, all features are disabled.

14.7.2. Update a Specified Feature

A PUT request to endpoint:

/api/apollo/collections/<collection>/features/<featureName>

updates the setting for the specified collection feature. The PUT request body consists of either { "enabled": true } or {
"enabled" : false }. A PUT request with no body is equivalent to { "enabled" : false }.

532

14.7.3. Examples

List the status of the features for the "demo" collection:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/collections/demo/features

RESPONSE

 [{
 "name" : "dynamicSchema",
 "collectionId" : "demo",
 "params" : { },
 "enabled" : false
}, {
 "name" : "searchLogs",
 "collectionId" : "demo",
 "params" : { },
 "enabled" : false
}, {
 "name" : "signals",
 "collectionId" : "demo",
 "params" : { },
 "enabled" : false
}]

Enable signals for a collection named 'demo':

REQUEST

curl -u user:pass -X PUT -H Content-type:application/json -d '{"enabled":true}'
http://localhost:8764/api/apollo/collections/demo/features/signals

533

14.8. Configurations API

The Configurations API allows setting global properties for Fusion. Some settings are not set by any configuration file
but are reported as settings from the operating system. Those settings cannot be changed with this API.

14.8.1. Get, Create or Update Configuration Items

The path for this request is:

/api/apollo/configurations/<key>

where <key> is the name of a configuration item.

A POST will create a new configuration item, and a PUT will update an existing configuration item.

A GET request will list matching configuration items or all configuration items if no key is specified. When no key is
specified, a GET request takes the following query parameters:

Parameter Description

pattern The pattern allows finding all configuration items that
contain the specified string.

prefix The prefix allows finding all configuration items that start
with the specified string.

verbose If true, the response will include what part of the Fusion
system (or the server’s operating system) has set the
configuration item. The default is false, which means the
output will include only the name of the configuration
item and its value.

When adding new configuration items or updating existing items, pass them in a JSON object, meaning they should be
enclosed in curly braces ({}). The output includes the configuration items that match the query parameters and their
values. If verbose is enabled, the "location" property will also be returned.

14.8.2. Examples

Show the configuration items that include the pattern 'zk-connect', with verbose enabled:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/configurations?verbose=true&pattern=zk-connect

RESPONSE

{
 "com.lucidworks.apollo-admin.config/zk-connect" : [{
 "value" : "localhost:9983",
 "location" : "system properties"
 }]
}

534

Get the configuration items from the Connectors JVM that include the term 'connect':

REQUEST

curl -u user:pass http://localhost:8984/connectors/api/v1/configurations?pattern=connect

Get the configuration items from the Fusion JVM that start with 'com.lucidworks':

REQUEST

http://localhost:8764/api/apollo/configurations?prefix=com.lucidworks

Change the default allowed recommendation types to include 'itemsForItem":

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '{"itemsForQuery", "termsForDocument",
"itemsforItem"}'
http://localhost:8764/api/apollo/configurations/com.lucidworks.apollo.service.recommend.allowed.types

RESPONSE

None. Check the setting again to confirm the changes.

535

14.9. Connector APIs

Connectors run as a standalone module. Requests for connector services are routed through the Lucidworks proxy
layer, which manages the authorizations for users. This means that all connector requests must contain authentication
credentials, and access to the connector REST APIs can be limited to certain users.

There are several REST APIs for Connectors, listed here:

• Connector Datasources API

• Connector History API

• Connector JDBC API

• Connector Jobs API

• Connector Plugins API

• Connectors Crawl Database API

• Connector Status API

536

14.10. Connector Datasources API

The connector datasources API is used to create and configure datasources. See Connectors and Datasources for general
information, Connectors and Datasource Reference for details on configuring specific datasources.

14.10.1. List a Datasource or All Datasources

The path for this request is:

/api/apollo/connectors/datasources?collection=<collectionName>

A GET request will return the definitions for all datasources for that collection. If the collection parameter is omitted, all
datasource definitions will be returned.

Input

None.

Output

The output will include all datasources that match the request, with all properties.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Get datasources assigned to the "demo" collection:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/datasources?collection=demo

RESPONSE

537

[{
 "id" : "database",
 "created" : "2014-05-04T19:47:22.867Z",
 "modified" : "2014-05-04T19:47:22.867Z",
 "connector" : "lucid.jdbc",
 "type" : "jdbc",
 "description" : null,
 "pipeline" : "conn_solr",
 "properties" : {
 "db" : null,
 "commit_on_finish" : true,
 "verify_access" : true,
 "sql_select_statement" : "select CONTENTID as id from CONTENT;",
 "debug" : false,
 "collection" : "demo",
 "password" : "password",
 "url" : "jdbc:postgresql://localhost:5432/db",
 "nested_queries" : null,
 "clean_in_full_import_mode" : true,
 "username" : "user",
 "delta_sql_query" : null,
 "commit_within" : 900000,
 "primary_key" : null,
 "driver" : "org.postgresql.Driver",
 "max_docs" : -1
 }
}]

14.10.2. Create or Update a Datasource

A POST request will create a new datasource. The path for this request is:

/api/apollo/connectors/datasources

A PUT request will update an existing datasource. The path for this request is:

/api/apollo/connectors/datasources/<id>

where <id> is the name of the datasource to be updated.

Input

Property Description

id
Required

A unique identifier for this datasource. When creating a
datasource, this property is required.

connector
Required

The connector that will be used for this datasource.

type
Required

The type of datasource, which must be supported by the
defined connector.

description
Optional

A description of the datasource.

538

Property Description

pipeline
Optional

The index pipeline that should be used for this datasource.

properties
Required

The properties for the datasource. The available
properties will depend on the connector and type chosen.

Not all available properties are required, but all
datasources have at least one property that must be set to
create the datasource.

Output

A successful request returns the datasource definition. A failed request returns a JSON-formatted error message.

Examples

Create a datasource to index Solr-formatted XML files:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"SolrXML",
"connector":"lucid.solrxml", "type":"solrxml", "properties":{"path":"/Applications/solr-
4.10.2/example/exampledocs", "generate_unique_key":false, "collection":"MyCollection"}}'
http://localhost:8764/api/apollo/connectors/datasources

RESPONSE

539

{
 "id" : "SolrXML",
 "created" : "2015-05-18T15:47:51.199Z",
 "modified" : "2015-05-18T15:47:51.199Z",
 "connector" : "lucid.solrxml",
 "type" : "solrxml",
 "properties" : {
 "commit_on_finish" : true,
 "verify_access" : true,
 "generate_unique_key" : false,
 "collection" : "MyCollection",
 "include_datasource_metadata" : true,
 "include_paths" : [".*\\.xml"],
 "initial_mapping" : {
 "id" : "a35c9ff3-dbb6-434b-af40-597722c2986a",
 "skip" : false,
 "label" : "field-mapping",
 "type" : "field-mapping"
 },
 "path" : "/Applications/apache-repos/solr-4.10.2/example/exampledocs",
 "exclude_paths" : [],
 "url" : "file:/Applications/apache-repos/solr-4.10.2/example/exampledocs/",
 "max_docs" : -1
 }
}

Change the max_docs value for the above datasource:

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '{"id":"SolrXML", "connector":"lucid.solrxml",
"type":"solrxml", "properties":{"path":"/Applications/solr-4.10.2/example/exampledocs", "max_docs":10}}'
http://localhost:8764/api/apollo/connectors/datasources/SolrXML

RESPONSE

true

14.10.3. Delete a Datasource or All Datasources

The path for a DELETE request is:

/api/apollo/connectors/datasources/<id>

where <id> is the name of the datasource to be deleted. If the id is omitted, all datasources will be deleted. The delete
request takes one parameter:

Parameter Description

force If false, the default, the delete will wait for any running
datasource jobs to complete before deleting the
datasource. If you want to abort jobs before deleting, you
can change this to true.

540

Input

None.

Output

The request succeeds silently. A failed request returns a JSON-formatted error message.

Examples

Delete the datasource named 'database':

REQUEST

curl -u user:pass -X DELETE http://localhost:8764/api/apollo/connectors/datasources/database

RESPONSE

If successful, no response.

541

14.11. Connector History API

The connector history REST API provides details of the last 50 runs of a named datasource. It also provides a way to
clear the history.

14.11.1. Get or Delete the History for a Datasource

To GET or DELETE the history, the request path is:

/api/apollo/connectors/history/<id>

where <id> is the name of a datasource.

A GET request takes an optional parameter:

Parameter Description

cumulative If false, the default, details of each datasource run will be
returned. Set to true if you would like to see a cumulative
summary of the datasource runs.

Input

None.

Output

When the cumulative query parameter is set to true, the output will include the total number of documents processed as
input to the pipeline, skipped, or failed as well as the total number of documents processed as output. Also shown will
be the total number of runs of the datasource.

When the cumulative query parameter is set to false, details of each datasource job run will be shown for up to 50 past
runs. The details shown will include any messages returned by the job (such as errors), the start and stop times of the
job, the number of documents processed as input and output (including skipped or failed), and data for each stage of the
index pipeline.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Show the cumulative history for a datasource named "Lucid5Docs":

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/history/Lucid5Docs?cumulative=true

RESPONSE

542

{
 "total_time" : 160000,
 "input" : 378,
 "skipped" : 5,
 "failed" : 7,
 "total_runs" : 7,
 "output" : 366
}

Show the detailed history for a datasource named "Lucid5Docs":

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/history/Lucid5Docs

RESPONSE

This output has been truncated to only show one successful run.

543

{
 "message" : null,
 "id" : "Lucid5Docs",
 "crawl_stopped" : "2014-06-05T15:16:08+0000",
 "pipeline" : {
 "stats" : {
 "counters" : {
 "stage.field-mapping::myMapping" : {
 "processed" : 58
 },
 "stage.logging::conn_logging" : {
 "info" : 116,
 "processed" : 116
 },
 "stage.solr-index::solr-default" : {
 "processed" : 58
 },
 "stage.tika-parser::tika" : {
 "input" : 58,
 "processed" : 58
 }
 },
 "gauges" : { },
 "histograms" : { },
 "meters" : { },
 "timers" : { }
 },
 "history" : {
 "events" : []
 }
 },
 "crawl_started" : "2014-06-05T15:15:45+0000",
 "crawl_state" : "FINISHED",
 "counters" : {
 "input" : 60,
 "skipped" : 1,
 "failed" : 1,
 "output" : 58
 },
 "job_id" : "Lucid5Docs"
}

544

14.12. Connector JDBC API

This REST API allows you to upload JDBC drivers for use with a JDBC datasource. It can also be used to find the driver
class name needed for JDBC datasource configuration.

Drivers are uploaded to a directory named fusion/data/connectors/lucid.jdbc/jdbc/<collection>, where <collection> is
the collection name used during the upload.

Note When choosing a driver, be sure to use the latest version
available that is compatible with your database and the
Java version you are using with Fusion.

14.12.1. Upload a Driver

The path to upload a .jar file containing a JDBC driver via a POST request is:

/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=<collectionName>

where <collectionName> is the collection for which the driver will be used.

Input

The .jar file is a binary file. If using curl, use the --form option, or if using another client, use the supported method for
calling binary files.

Output Content

No output will be returned.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Upload a Postgres driver to be used by a collection named 'docs':

REQUEST

curl -u user:pass -X POST --form file=@/path/postgresql-9.3-1101.jdbc4.jar
http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=docs

RESPONSE

None.

14.12.2. List Available Drivers

A GET request will return all of the loaded drivers for a collection. The request path is:

545

/api/apollo/connectors/plugins/lucid.jdbc/resources/jdbc?collection=<collectionName>

where <collectionName> is the name of the collection.

Input

None.

Output

The response will include the name of the .jar file loaded and the available driver class names. The driver class name is
the value that should be used when configuring a Database datasource.

Examples

Return drivers for a collection named 'docs':

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/plugins/lucid.jdbc/resources?collection=docs

RESPONSE

[{
 "name" : "postgresql-9.3-1101.jdbc4.jar",
 "properties" : {
 "type" : "jar"
 }
}, {
 "name" : "org.postgresql.Driver",
 "properties" : {
 "type" : "class"
 }
}]

14.12.3. Delete a Driver

The path to remove the .jar file of a JDBC driver from a specific collection via a DELETE request is:

/connectors/v1/connectors/plugins/lucid.jdbc/resources/<driver>?collection=<collection>

where <driver> is the name of the driver being removed, and <collection> is the name of the collection to which it is
attached.

Input

None.

546

Output

No output will be returned. The removal of the JDBC driver can be confirmed by sending the above request to list
available drivers and verifying its absence.

Example

Delete the Postgres driver from the collection named 'docs':

REQUEST:

curl -u admin:password -X DELETE http://localhost:8984/con
nectors/v1/connectors/plugins/lucid.jdbc/resources/postgresql-9.3-1101-jdbc4.jar
?collection=docs

RESPONSE:

None.

Note that the DELETE request is sent to the connector port (default: 8984), rather than the Fusion UI port (default: 8764).

547

14.13. Connector Jobs API

The Connector Jobs API provides methods to start, monitor, and stop a datasource. A datasource is specific connector
instance that connects to a defined repository, collects content, and sends it through an index pipeline.

The Connector Jobs API can also provide detailed information about the indexing job and each stage of the index
pipeline.

To define and launch a job, simply use the datasource id with a POST request to start crawling.

14.13.1. Start, Stop or Check Status of a Job

The request path is:

/api/apollo/connectors/jobs/<id>

where <id> is the name of the datasource. A GET request will return the status of a job. A POST will create and start a
job. PUT will start an existing job. DELETE will stop the job.

DELETE requests have the following parameters which control how running jobs are stopped:

Parameter Description

abort When false, the default, the job will be allowed to finish
processing before stopping. Use true, if you need the job to
stop immediately.

wait_time The wait_time allows you to configure the number of
milliseconds to wait while stopping a job before the job is
aborted.

If the job id is not specified, the DELETE request has the following parameters:

Parameter Description

connector The name of a connector. This would allow you to stop all
jobs using the 'lucid.dih' connector, for example, to stop all
database crawls.

collection The name of a collection, to stop all jobs for a single named
collection.

Input

None.

Output

The output will include the state of the job (RUNNING, FINISHED, etc.), the start time, and documents retrieved so far (in
counters).

Examples

548

Note Use port 8765 in local development environments only. In
production, use port 8764.

Start crawling a datasource named "MyDocs":

REQUEST

curl -u user:pass -X POST http://localhost:8764/api/apollo/connectors/jobs/MyDocs

RESPONSE

{
 "id" : "MyDocs",
 "dataSourceId" : "MyDocs",
 "state" : "RUNNING",
 "message" : null,
 "startTime" : 1397840639000,
 "endTime" : -1,
 "finished" : false,
 "counters" : { },
 "exception" : null,
 "running" : true
}

14.13.2. Get Detailed Job Statistics

To GET detailed job statistics, the request path is:

`/api/apollo/connectors/jobs/<id>/pipeline`

where <id> is the name of the datasource.

Input

None.

Output

The output will show the results of each stage of the index pipeline, including the number of documents processed at
each stage.

For example, the field-mapping stage would just show the number of documents that passed through the stage. The tika-
parser stage, however, will show the number of documents input from the connector and the number output to the next
stage. In a solr-index stage, the number of documents processed would indicate the number of documents that were
added to the index.

If a stage encountered errors for any or all documents, the error would be shown for each document. If all documents
failed due to a badly formed index pipeline, the output of this REST API may be quite lengthy.

549

Examples

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/jobs/TwitterSearch/pipeline

RESPONSE

{
 "stats" : {
 "counters" : {
 "stage.field-mapping::twitter-mapping" : {
 "processed" : 101
 },
 "stage.logging::conn_logging" : {
 "info" : 202,
 "processed" : 202
 },
 "stage.solr-index::solr-default" : {
 "command.ok.commit" : 1,
 "processed" : 201
 },
 "stage.tika-parser::tika" : {
 "input" : 101,
 "processed" : 202
 }
 },
 "gauges" : { },
 "histograms" : { },
 "meters" : { },
 "timers" : { }
 },
 "history" : {
 "events" : []
 }
}

550

14.14. Connector Plugins API

The Connector Plugins API allows you to identify the available connectors and plugins as well as listing the datasource
configuration properties for a specific connector plugin type. See Connectors and Datasources for discussion of the
relationship between the two.

14.14.1. List Connectors

A GET request lists all available connectors. The path for this request is one of:

/api/apollo/connectors

/api/apollo/connectors/plugins

Both endpoints have the same behavior, so either can be used.

Input

None.

Output

A JSON list of connector names.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Get all available connectors:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/plugins

RESPONSE

["lucid.twitter.search", "lucid.push", "lucid.hadoop.mapr", "lucid.azure.table", "lucid.anda",
"lucid.hadoop.cloudera", "lucid.azure.blob", "lucid.hortonworks", "lucid.mongodb", "lucid.hadoop",
"lucid.hadoop.apache2", "lucid.fs", "lucid.hadoop.apache1", "lucid.jdbc", "lucid.hadoop.intel",
"lucid.twitter.stream", "lucid.solrxml"]

14.14.2. List Connector Types

A GET request lists all supported plugin types for a specific connector. The path for this request is one of:

/api/apollo/connectors/plugins/<name>

/api/apollo/connectors/plugins/<name>/types

where <name> is a specific connector. These endpoints act the same, so either can be used.

551

To see the complete datasource specification for this connector plugin type, the GET request path is:

/api/apollo/connectors/plugins/<name>/types/<type>

where <name> is a specific connector and <type> is a supported plugin type for this connector.

Input

None.

Output

The output is a JSON schema that details each available property of each supported type for each connector requested.

The schema will include default values for any property, the data type for the property, if the property is editable, if it
has a list of allowed values, and if it is required when creating a datasource for that type.

Examples

List the property specifications for the "file" type of the "lucid.fs" connector (the output has been truncated for space):

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/plugins/lucid.fs/types/file

RESPONSE

{
 "props" : [{
 "description" : "general",
 "name" : "---"
 }, {
 "read_only" : false,
 "default_value" : null,
 "description" : "datasource.collection",
 "hints" : ["summary"],
 "allowed_values" : null,
 "name" : "collection",
 "type" : "string",
 "required" : false
 }, {
 "read_only" : false,
 "default_value" : false,
 "description" : "datasource.debug",
 "hints" : ["advanced"],
 "allowed_values" : null,
 "name" : "debug",
 "type" : "boolean",
 "required" : false
 }, {
 "read_only" : false,
 "default_value" : null,
 "description" : "datasource.initial_mapping",
 "hints" : ["advanced"],

552

 "allowed_values" : null,
 "name" : "initial_mapping",
 "type" : "map",
 "required" : false
 }, {
 "read_only" : false,
 "default_value" : null,
 "description" : "datasource.db",
 "hints" : ["advanced"],
 "allowed_values" : null,
 "name" : "db",
 "type" : "map",
 "required" : false
 }, {
 "description" : "root path",
 "name" : "---"
 }, {
 "read_only" : false,
 "default_value" : null,
 "description" : "datasource.path",
 "hints" : ["summary"],
 "allowed_values" : null,
 "name" : "path",
 "type" : "string",
 "required" : true
 }, {
 "description" : "Filesystem URL",
 "name" : "---"
 }, {
 "read_only" : true,
 "default_value" : null,
 "description" : "datasource.url",
 "hints" : ["summary"],
 "allowed_values" : null,
 "name" : "url",
 "type" : "string",
 "required" : false
 },
...
] }

14.14.3. Drop ConnectorDB State

A DELETE request will drop the tables in the connector database for the named plugin. The request path is:

DELETE /api/apollo/connectors/plugins/<name>/state?collection=<collectionId>

where <name> is the name of the connector plugin for which to drop the state and <collectionId> is the name of a
collection associated with this plugin. The collection parameter is optional.

Input

None.

Output Content

None.

553

Examples

Delete the crawl database for the SolrXML plugin:

REQUEST

curl -u user:pass -X DELETE http://localhost:8764/api/apollo/plugins/lucid.solrxml/state

RESPONSE

None.

554

14.15. Connector Status API

The connector registry loads all of the plugin classes and their dependencies. The Connector Status API reports the
status of this registry. It can also reload or shut down the registry.

14.15.1. Reload, Quit or Get Status of Connector Registry

The path for the request is:

/api/apollo/connectors/status

A GET request will return the connector registry status. A DELETE request will shut down the registry. A PUT will reload
the registry. The PUT request takes an optional parameter:

Parameter Description

initRegistry If true, reinitialize the connectors registry.

Input

None.

Output Content

The output of a GET request will include the status of the registry and any messages reported.

The output of a PUT or a DELETE request will be empty.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Get the status of the connectors registry:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/status

RESPONSE

{
 "status" : "OK",
 "node" : "localhost",
 "messages" : [{
 "message" : "2 data sources loaded, 2 data sources verified.",
 "time" : "2014-06-10T17:44:10.023Z"
 }],
 "type" : "Local ConnectorManager"
}

555

14.16. Connectors Crawl Database API

Some of the connectors use a crawl database to track documents that have been seen by prior crawls and are able to use
this information to understand which documents are new or have been updated or removed and take appropriate
action in the index. The connectors that support this are currently lucid.fs and lucid.solrxml.

This API allows looking into the crawl database and dropping tables or clearing the database.

Note:

This API can be used only with connectors which support it, which at the current time are the 'lucid.fs' and
'lucid.solrxml' connectors.

The 'lucid.anda' connector also uses a crawl database, but it is not the same database, and does not have a REST API or
other interface to access it.

14.16.1. Get Statistics for a Datasource Database or Drop Database

The path for this request is:

/api/apollo/connectors/datasources/<id>/db

where <id> is the name of the datasource.

A GET request will return statistics from the crawl database associated with a specific datasource. DELETE will drop the
tables, meaning that the history of any crawl will be removed and all documents found on the next crawl will be treated
as brand new documents and will be submitted to the index pipeline.

Input

None.

Output

The output from a GET request will include several sections detailing the database structure:

• counters: the counters section reports the document counts of database activities, such as table inserts.

• ops: the ops section reports on database operations that have occurred, such as initiating tables, retrieving items,
processing items and table drops.

• tables: the tables section lists the tables in the database with a count of the number of items in each table. Inspecting
the items is described in the next section.

The output from a DELETE request will be empty. When dropping the database, note that no documents will be removed
from the index. However, the crawl database will be empty, so on the next datasource run, all documents will be treated
as though they were never seen by the connectors.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Get the crawl database statistics for the datasource named "SolrXML":

556

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/datasources/SolrXML/db

RESPONSE

{
 "counters" : {
 "new" : 14,
 "processed.insert" : 14
 },
 "ops" : {
 "initTable" : 4,
 "dropTable" : 7,
 "flush" : 1,
 "getItem" : 28,
 "renameTable" : 2,
 "commitUpdates" : 1,
 "listTables" : 2,
 "finishProcessing" : 14,
 "beginUpdates" : 1,
 "insertItem" : 14
 },
 "tables" : {
 "deleted" : {
 "count" : 0
 },
 "discarded" : {
 "count" : 0
 },
 "errors" : {
 "count" : 0
 },
 "items" : {
 "count" : 14
 }
 }
}

14.16.2. Get Table Statistics or Drop the Table

The path for this request is:

/api/apollo/connectors/datasources/<id>/db/<table>

where <id> is the name of the datasource and <table> is the name of a database table.

A GET request will return the table statistics. A DELETE request will drop the table and clear its data.

Input

None.

557

Output

The output from a GET request will be the statistics for the named table. This is usually the item count.

The output from a DELETE request will be empty.

When dropping tables, be aware that the 'items' table does not delete documents from the index, but instead changes
the database so database considers them new documents. When dropping other tables, such as the 'errors' table, it will
merely clear out old error messages.

Examples

Get the statistics for the 'items' table in the 'SolrXML' datasource’s connector database:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/datasources/SolrXML/db/items

RESPONSE

{
 "count" : 14
}

Back to Top

14.16.3. Get or Delete Table Items

The path for this request is:

/api/apollo/connectors/datasources/<id>/db/items/<item>

where <id> is the name of the datasource and <item> is the name of a specific item in the table. If no item name is
specified, the request will get all items.

A GET request retrieves information about an item or items.

A DELETE request removes the information from the Crawl Database only. Note that this doesn’t affect the Solr Index.

A request takes two optional parameters:

Parameter Description

start The starting key, which is the document ID. If empty,
response will start at the first row of the table. Used with a
GET request only.

rows The number of rows to return. The default is to return all
records. Used with a GET request only.

Input

558

None.

Output

The output of a GET request will include information on when the document was fetched, if it contained any links to
other documents, and the size of the document.

The output of a DELETE request will be empty. Note that this does not delete a document from the index, it only changes
the database so if or when the document is crawled again, the database considers it a new document.

Examples

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/connectors/datasources/SolrXML/db/items/items?rows=5

RESPONSE

{
 "/Applications/solr-4.8.0/example/exampledocs/gb18030-example.xml" : {
 "timestamp" : "1398117855000",
 "fetchedUri" : null,
 "fetchTime" : 1402503143632,
 "docsCount" : 1,
 "outlinks" : null,
 "discarded" : false,
 "discardMessage" : null,
 "byteSize" : 1331,
 "exception" : null,
 "fetched" : true
 },
 "/Applications/solr-4.8.0/example/exampledocs/hd.xml" : {
 "timestamp" : "1398117855000",
 "fetchedUri" : null,
 "fetchTime" : 1402503143691,
 "docsCount" : 1,
 "outlinks" : null,
 "discarded" : false,
 "discardMessage" : null,
 "byteSize" : 2241,
 "exception" : null,
 "fetched" : true
 }
}

559

14.17. History API

Fusion stores history for each running service within the system. Usually this is used to log start and stop events for a
service. However, the scheduler uses the history to store the results of scheduled tasks. For more information on
schedule history, see the section on Schedules.

The History API provides information about the services that are running. The list of these services is provided by
Introspect API, which is described in the REST API Reference.

14.17.1. List History and History Items

The path for this request is one of:

/api/apollo/history

/api/apollo/history/<service>

/api/apollo/history/<service>/items

/api/apollo/history/<service>/items/<item>

where <service> is one of the Fusion services and <item> is the name of a specific item.

A GET request returns history information at different levels of granularity, depending on the path.

The output will include details of each event stored in the history. These details include the start and end time, the
source of the event, the type, and any additional status, details or errors.

14.17.2. Examples

View the history of the index-pipelines service:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/history/index-pipelines::v1

RESPONSE

560

{
 "events" : [{
 "start" : "2014-05-16T14:11:48.849Z",
 "end" : "2014-05-16T14:11:48.849Z",
 "source" : "index-pipelines::v1",
 "type" : "start",
 "status" : "ok",
 "details" : null,
 "error" : null
 }, {
 "start" : "2014-05-16T14:12:48.845Z",
 "end" : "2014-05-16T14:12:48.845Z",
 "source" : "index-pipelines::v1",
 "type" : "start",
 "status" : "ok",
 "details" : null,
 "error" : null
 }
}

View items in the scheduler history:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/history/scheduler/items/1

RESPONSE

561

{
 "events" : [{
 "start" : "2014-05-16T15:34:49.008Z",
 "end" : "2014-05-16T15:34:49.435Z",
 "source" : "scheduler",
 "type" : "execute",
 "status" : "ok",
 "details" : {
 "status" : 200,
 "entity" : "{\n \"id\" : \"TwitterSearch\",\n \"dataSourceId\" : \"TwitterSearch\",\n \"state\" :
\"RUNNING\",\n \"message\" : null,\n \"startTime\" : 1400254489000,\n \"endTime\" : -1,\n \"finished\" :
false,\n \"counters\" : { },\n \"exception\" : null,\n \"running\" : true\n}"
 },
 "error" : null
 }, {
 "start" : "2014-05-16T15:38:32.536Z",
 "end" : "2014-05-16T15:38:32.559Z",
 "source" : "scheduler",
 "type" : "execute",
 "status" : "ok",
 "details" : {
 "status" : 200,
 "entity" : "{\n \"id\" : \"TwitterSearch\",\n \"dataSourceId\" : \"TwitterSearch\",\n \"state\" :
\"RUNNING\",\n \"message\" : null,\n \"startTime\" : 1400254712000,\n \"endTime\" : -1,\n \"finished\" :
false,\n \"counters\" : { },\n \"exception\" : null,\n \"running\" : true\n}"
 },
 "error" : null
 }
}

562

14.18. Index Pipelines API

The Index Pipelines API provides methods for managing a set of named index pipelines. Every pipeline is made up of
one or more stages. Stages can be defined during the creation of a pipeline, or stages can be defined separately and
included into one or more pipelines. For details of the REST API for index stages, see Index Stages API.

Document processing proceeds stage by stage in a linear fashion. The order of the stages in a pipeline is the order in
which they were defined. At installation, Fusion includes several pre-configured pipelines. See Index Pipelines for
details on these default pipelines.

For more information about structuring documents for indexing, see Pushing Documents to a Pipeline.

14.18.1. Manage Index Pipelines: List, Create, Update, Delete

The path for this request is:

/api/apollo/index-pipelines/<id>

where <id> is the name of an specific pipeline.

• GET - returns the definition of a specific index pipeline, or all defined pipelines, if the pipeline name is omitted.

• POST - creates a new pipeline. The pipeline name is included in the definition in the request body.

• PUT - modifies an existing pipeline. Used to reorder pipeline stages.

• DELETE - removes the pipeline.

Index Pipeline Definition Properties

Property Description

id
Required

A unique ID for the pipeline.

stages
Optional

A JSON map that lists the index pipeline stages that make
up this pipeline. Each identified stage should include:

• id: the ID of the stage to include.

• type: The stage type. You can define a stage directly on
a pipeline, or you can use a pre-existing stage. If you
use a pre-existing stage, you must use "ref", as a
reference to an existing stage.

• skip: If the stage should be skipped during pipeline
processing. By default, this is 'false'.

• Finally, if a stage has not already been defined, the
appropriate stage properties should be included. See
Index Pipeline Stages for details of the properties for
each stage type.

563

14.18.2. Refresh an Index Pipeline

When changes are made to a pipeline, the pipeline needs to be refreshed (reloaded), via a PUT request to endpoint:

/api/apollo/index-pipelines/<id>/refresh

A Fusion restart refreshes all pipelines. If the refresh was successful, there will be no response.

14.18.3. Submit a Set of Documents to an Index Pipeline

The path for this request is:

/api/apollo/index-pipelines/<id>/collections/<collectionName>/index

where <id> is the name of an specific pipeline and <collectionName> is the name of an specific collection.

Documents are indexed through a POST request. The documents to be indexed are sent in the request body.

This request takes the following optional query parameters:

Parameter Description

simulate If true, documents won’t be sent to solr for indexing, i.e.,
the solr-index stage is skipped. The default is false.

echo If true, the default, the list of documents indexed will be
returned. If this is false, no output will be returned when
the pipeline has finished.

bufferDocsForSolr If true, documents will be buffered before sending to Solr.
This is an asynchronous mode and may give faster
performance when indexing a large number of
documents. The default is false.

eventsCollection Required for event processing: a string containing the
name of the target collection that is the index over link
events.

eventsPipeline Required for event processing: a string containing the
name of the index pipeline that processes the link events.

eventTypes Optional: comma-separated list of eventTypes to be
processed by the index pipeline specified by
eventsPipeline parameter. Currently, only event type is
"links".

Input

The index pipelines can take any document format that is supported by Tika (assuming the pipeline contains a tika-
parser stage). The document format is indicated by a content type declaration in the header of the REST call.

Documents can be submitted using the PipelineDocument JSON notation. The content type header to use for this format
is:

application/vnd.lucidworks-document

564

Parameter Description

id
Optional

The id of the document.

If the document does not have an ID, one will be
automatically generated during processing.

fields
Optional

The content of the document arranged into fields. The
fields are expressed in a JSON array with strings for each
field that contain the field "name" property and the field
"value" property, as in:

"fields":[{"name":"fieldName","value":"fieldValue"}]

For multiple values of a field, you would repeat the
"name" and "value" string, as in:

"fields":[{"name":"fieldName","value":"fieldValue1"},{"
name":"fieldName","value":"fieldValue2"}]

commands
Optional

Commands can be added to documents to tell the index
what to do with the document.

Documents can consist entirely of a command in order to
issue a commit, or delete documents based on a query.

The valid commands are:

• add: add a document to the index. If the document
already exists, it will be removed and the new
document added.

• delete: remove a document from the index.

• commit: issue a commit to the index. This command
would be used as the last document in a set of
documents to commit them all to the index.

• query:

• delete_by:

metadata
Optional

This property is used by stages to add how field data was
retrieved from a document, and for other purposes.

Output

The output by default will be a JSON representation of the document, including all fields of the document after the
pipeline has completed processing. This may be the original fields of the document and will also include any fields
added by the pipeline stages.

If the query parameter 'echo' has been set to false, no output will be returned.

565

14.18.4. Debug a Pipeline

The path for this request is:

/api/apollo/index-pipelines/<id>/collections/<collectionName>/debug

where <id> is the name of an specific pipeline and <collectionName> is the name of an specific collection.

Debugging is done via a POST request. The documents to be debugged are sent in the request body. The output shows
the state of the document after each indexing stage. A debug request will index documents to the system, but you can
prevent it from doing so by setting the query parameter simulate to false.

The request takes to optional query parameters:

Parameter Description

simulate If true, documents won’t be sent to solr for indexing, i.e.,
the solr-index stage is skipped.The default is false.

bufferDocsForSolr If true, documents will be buffered before sending to Solr.
This is an asynchronous mode and may give faster
performance when indexing a large number of
documents.

The output will include details of each stage of the pipeline and a JSON representation of each document as it passed
through each stage, including all fields of the document (original fields of the document and any fields added by the
pipeline stages).

14.18.5. Examples

List the 'default' pipeline: REQUEST

curl -u user:pass http://localhost:8764/api/apollo/index-pipelines/default

RESPONSE

{
 "id" : "default",
 "stages" : [{
 "type" : "solr-index",
 "id" : "solr-default",
 "skip" : false
 }]
}

Create an index pipeline named 'my-index-pipeline' with three stages, one of which does not yet exist:

REQUEST

566

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"my-index-
pipeline","stages":[{"id":"tika","type":"tika-
parser","includeImages":true},{"id":"conn_mapping","type":"ref"},{"id":"solr-default","type":"ref"}]}'
http://localhost:8764/api/apollo/index-pipelines

RESPONSE

{
 "id" : "my-index-pipeline",
 "stages" : [{
 "type" : "tika-parser",
 "id" : "tika",
 "includeImages" : true,
 "flattenCompound" : false,
 "addFailedDocs" : false,
 "addOriginalContent" : true,
 "contentField" : "_raw_content_",
 "skip" : false,
 "label" : "tika-parser"
 }, {
 "type" : "ref",
 "id" : "conn_mapping",
 "skip" : false,
 "label" : "ref"
 }, {
 "type" : "ref",
 "id" : "solr-default",
 "skip" : false,
 "label" : "ref"
 }]
}

Reload the 'my-index-pipeline' pipeline:

INPUT

curl -u user:pass -X PUT http://localhost:8764/api/apollo/index-pipelines/my-index-pipeline/refresh

Index two JSON documents through a pipeline named 'conn_solr' and a collection named 'my-docs':

INPUT

curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-document" -d '[{"id":
"myDoc1","fields": [{"name":"title", "value": "My first document"},{"name":"body", "value": "This is a simple
document."}]}, {"id": "myDoc2","fields": [{"name":"title","value": "My second document"},{"name":"body",
"value": "This is another simple document."}]}]' http://localhost:8764/api/apollo/index-
pipelines/conn_solr/collections/my-docs/index

OUTPUT

567

[{
 "id" : "myDoc1",
 "fields" : [{
 "name" : "content",
 "value" : "This is a simple document.",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "title",
 "value" : "My first document",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 7],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}, {
 "id" : "myDoc2",
 "fields" : [{
 "name" : "content",
 "value" : "This is another simple document.",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "title",
 "value" : "My second document",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}]

Index a PDF document with the 'conn_solr' pipeline:

568

INPUT

curl -u user:pass -X POST -H "Content-Type: application/pdf" --data-binary @/solr/core/src/test-
files/mailing_lists.pdf http://localhost:8764/api/apollo/index-pipelines/conn_solr/collections/my-docs/index

OUTPUT

[{
 "id" : "d6c7757e-33d9-4fbb-aa38-eef84d679ca9",
 "fields" : [{
 "name" : "fileSize_l",
 "value" : "8582",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "pageCount_i",
 "value" : "2",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 1171],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_pdf:encrypted_",
 "value" : "false",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "attr_X-Parsed-By_",
 "value" : "org.apache.tika.parser.pdf.PDFParser",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "attr_pdf:PDFVersion_",
 "value" : "1.3",
 "metadata" : {

569

 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "attr_producer_",
 "value" : "FOP 0.20.5",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "content",
 "value" : "\nSolr Mailing Lists\n\nTable of contents\n1 ",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_dc:format_",
 "value" : "application/pdf; version=1.3",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "mimeType_s",
 "value" : "application/pdf",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}]

Index a JSON document though the 'conn_solr' pipeline into a collection called 'docs', using the "command" option:

INPUT

curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-document" -d '[{"id":
"myDoc2","commands": [{"name":"delete","value": "myDoc2"}]},{"id": "myDoc1","commands":
[{"name":"delete","value": "myDoc1"},{"name":"commit","value": "true"}]}]'
http://localhost:8764/api/apollo/index-pipelines/conn_solr/collections/docs/index

OUTPUT

570

[{
 "id" : "myDoc2",
 "fields" : [],
 "commands" : [{
 "name" : "delete",
 "params" : { }
 }]
}, {
 "id" : "myDoc1",
 "fields" : [],
 "commands" : [{
 "name" : "delete",
 "params" : { }
 }, {
 "name" : "commit",
 "params" : { }
 }]
}]

Index two simple documents through a pipeline named 'conn_solr' and a collection named 'my-docs' and get a detailed
output of the pipeline process:

INPUT

curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-document" -d '[{"id":
"myDoc1","fields": [{"name":"title", "value": "My first document"},{"name":"body", "value": "This is a simple
document."}]}, {"id": "myDoc2","fields": [{"name":"title","value": "My second document"},{"name":"body",
"value": "This is another simple document."}]}]' http://localhost:8764/api/apollo/index-
pipelines/conn_solr/collections/my-docs/debug

OUTPUT

The output will include how each document passed through each stage. (In the example output below, we have
truncated the 'field-mapping' stage for space.)

 {
 "stages" : [{
 "type" : "tika-parser",
 "id" : "conn_tika",
 "includeImages" : true,
 "flattenCompound" : false,
 "addFailedDocs" : true,
 "addOriginalContent" : true,
 "contentField" : "_raw_content_",
 "skip" : false
 }, {
 "type" : "field-mapping",
 "id" : "conn_mapping",
 "mappings" : [
...
],
 "unmapped" : {
 "source" : "/(.*)/",
 "target" : "attr_$1_",

571

 "operation" : "move"
 },
 "skip" : false
 }, {
 "type" : "multivalue-resolver",
 "id" : "conn_multivalue_resolver",
 "typeStrategy" : [{
 "fieldName" : "string",
 "resolverStrategy" : "pick_last"
 }],
 "skip" : false
 }, {
 "type" : "solr-index",
 "id" : "conn_solr",
 "enforceSchema" : true,
 "skip" : false
 }],
 "output" : [{
 "stageType" : "tika-parser",
 "stageId" : "conn_tika",
 "context" : {
 "simulate" : false,
 "stageIndex" : 0,
 "collection" : "docs",
 "async" : false
 },
 "docs" : [{
 "id" : "6b5c10f1-d941-41a6-957f-f677f5ad0fd5",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc1",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My first document"
 }, {
 "name" : "body",
 "value" : "This is a simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },

572

 "commands" : []
 }, {
 "id" : "4dac3c4e-d7f5-4cbd-96dc-e2eae69711e3",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc2",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My second document"
 }, {
 "name" : "body",
 "value" : "This is another simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }]
 }, {
 "stageType" : "field-mapping",
 "stageId" : "conn_mapping",
 "context" : {
 "simulate" : false,
 "stageIndex" : 1,
 "collection" : "docs",
 "async" : false
 },
 "docs" : [{
 "id" : "6b5c10f1-d941-41a6-957f-f677f5ad0fd5",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc1",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []

573

 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My first document"
 }, {
 "name" : "body",
 "value" : "This is a simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }, {
 "id" : "4dac3c4e-d7f5-4cbd-96dc-e2eae69711e3",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc2",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My second document"
 }, {
 "name" : "body",
 "value" : "This is another simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }]
 }, {
 "stageType" : "multivalue-resolver",
 "stageId" : "conn_multivalue_resolver",
 "context" : {
 "simulate" : false,

574

 "stageIndex" : 2,
 "collection" : "docs",
 "async" : false
 },
 "docs" : [{
 "id" : "6b5c10f1-d941-41a6-957f-f677f5ad0fd5",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc1",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My first document"
 }, {
 "name" : "body",
 "value" : "This is a simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }, {
 "id" : "4dac3c4e-d7f5-4cbd-96dc-e2eae69711e3",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc2",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",

575

 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My second document"
 }, {
 "name" : "body",
 "value" : "This is another simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }]
 }, {
 "stageType" : "solr-index",
 "stageId" : "conn_solr",
 "context" : {
 "simulate" : false,
 "stageIndex" : 3,
 "collection" : "docs",
 "async" : false
 },
 "docs" : [{
 "id" : "6b5c10f1-d941-41a6-957f-f677f5ad0fd5",
 "fields" : [{
 "name" : "attr_id_",
 "value" : "myDoc1",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My first document"
 }, {
 "name" : "body",
 "value" : "This is a simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }, {
 "id" : "4dac3c4e-d7f5-4cbd-96dc-e2eae69711e3",
 "fields" : [{

576

 "name" : "attr_id_",
 "value" : "myDoc2",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "attr_fields_",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "My second document"
 }, {
 "name" : "body",
 "value" : "This is another simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
 }]
 }]
}

577

14.19. Index Stages API

The Index Stages API provides endpoints to: * manage query stage instances. * list query stage configuration properties
* test processing on a set of queries

An index pipeline is comprised of index stages. Each index stage has a name and a type. The name identifies the stage
instance, and the type identifies its class. Every stage type has a number of properties, which can be configured for a
particular index stage instance. See the section Index Pipeline Stages for a taxonomy of index stage types.

14.19.1. List Index Stages or Properties of an Index Stage Type

The path for this request is one of:

api/apollo/index-stages/schema

api/apollo/index-stages/schema/<type>

When no type name is specified, a GET request returns a listing of all configuration properties for all index pipeline
stages. When a type name is specified, a GET request returns the properties for that type.

This provides a type template, listing the name and type information of all properties, if they are required, and what the
default value is (if any).

14.19.2. List an Index Stage

A GET request to endpoints:

api/apollo/index-stages/instances/ api/apollo/index-stages/instances/<stageId>

If the pipeline stage instance is specified, it returns the properties for that stage, else it returns the currently configured
properties for all index pipeline stage instances.

If no index stage instances have been created, this request returns the empty list "[]".

14.19.3. Create, Update or Delete an Index Stage

The path for this request is:

api/apollo/index-stages/instances/<stageId>

where <stageId> is the name of an index stage instance.

• POST - create a new stage. Returns a listing of the specified properties. No <stageId> path parameter is necessary; the
information in the POST body to determine the stageId.

• PUT - update an existing stage. Returns a listing of the specified properties.

• DELETE - remove an index pipeline stage.

14.19.4. Send a Test Document through an Index Stage

A POST request with a payload containing a list of PipelineDocument objects to the endpoint:

api/apollo/index-stages/instances/<stageId>/<collectionName>/test

578

will send all documents through the index stage and returns a list of the resulting PipelineDocuments after processing.

14.19.5. Examples

View the configuration properties for index stage type "regex-extractor":

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/index-stages/schema/regex-extractor

RESPONSE

{
 "type" : "object",
 "title" : "Regex Field Extraction",
 "description" : "This stage allows you to extract entities using regular expressions",
 "properties" : {
 "rules" : {
 "type" : "array",
 "title" : "Regex Rules",
 "items" : {
 "type" : "object",
 "required" : ["pattern"],
 "properties" : {
 "source" : {
 "type" : "array",
 "title" : "Source Fields",
 "items" : {
 "type" : "string"
 }
 },
 "target" : {
 "type" : "string",
 "title" : "Target Field"
 },
 "pattern" : {
 "type" : "string",
 "title" : "Regex Pattern",
 "format" : "regex"
 },
 "annotateAs" : {
 "type" : "string",
 "title" : "Annotation Name"
 }
 }
 }
 }
 }
}

See all defined index pipeline stages, regardless of type:

REQUEST

579

curl -u user:pass http://localhost:8764/api/apollo/index-stages/instances

RESPONSE

[{
 "type" : "tika-parser",
 "id" : "conn_tika",
 "includeImages" : true,
 "flattenCompound" : false,
 "addFailedDocs" : true,
 "addOriginalContent" : true,
 "skip" : false
},
{
 "type" : "index-logging",
 "id" : "detailed-logging",
 "detailed" : true,
 "skip" : false,
 "label" : "detailed-index-logging",
}]

See details of an index-stage named 'conn_tika':

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/index-stages/instances/conn_tika

RESPONSE

{
 "type" : "tika-parser",
 "id" : "conn_tika",
 "includeImages" : true,
 "flattenCompound" : false,
 "addFailedDocs" : true,
 "addOriginalContent" : true,
 "skip" : false
}

Create a an index stage:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id": "storagesize-regex-extractor",
"type":"regex-extractor", "rules": [{"source":["name"], "target":"storage_size_ss",
"pattern":"(\\d{1,20}\\s{0,3}(GB|MB|TB|KB|mb|gb|tb|kb))", "annotateAs":"storage_size"}]}'
http://localhost:8764/api/apollo/index-stages/instances

RESPONSE

580

{
 "type" : "regex-extractor",
 "id" : "storagesize-regex-extractor",
 "rules" : [{
 "source" : ["name"],
 "target" : "storage_size_ss",
 "pattern" : "(\\d{1,20}\\s{0,3}(GB|MB|TB|KB|mb|gb|tb|kb))",
 "annotateAs" : "storage_size"
 }],
 "skip" : false
}

Delete an index stage:

REQUEST

curl -u user:pass -X DELETE http://localhost:8764/api/apollo/index-stages/instances/storagesize-regex-
extractor

No response is returned. To check that the stage is no longer defined, list all index stage instances.

Send a document through the index stage named 'conn_tika':

REQUEST

curl -u user:pass -X POST -H "Content-Type: application/json" -d '[{"id": "myDoc4","fields": [{"name":"title",
"value": "Another little document document"},{"name":"body", "value": "This is a simple document."}]}]'
http://localhost:8764/api/apollo/index-stages/instances/conn_tika/docs/test

RESPONSE

581

[{
 "id" : "7b8a1d5b-9e42-40eb-8059-5804c4b4fc6b",
 "fields" : [{
 "name" : "id",
 "value" : "myDoc4",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_time",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "fields",
 "value" : ["java.util.ArrayList", [{
 "name" : "title",
 "value" : "Another little document document"
 }, {
 "name" : "body",
 "value" : "This is a simple document."
 }]],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}]

582

14.20. Index Profiles API

Index profiles are used to send documents to consistent endpoints, and to share pipelines among different collections.
For information on using this service through the UI, see Index Profiles.

14.20.1. Create, List, Update or Delete an Index Profile

The path for this request is:

/api/apollo/collections/<collectionName>/index-profiles/<profileName>

where <collectionName> is the name of an specific collection and <profileName> is the name of a new or existing profile.

• GET - returns the details of the profile, or all profiles for the collection is profile name is not specified.

• PUT - create a new profile or update an existing one. No response returned.

• DELETE - remove the profile. No response returned.

14.20.2. Use a Profile to Index Documents

A set of Fusion PipelineDocument objects in JSON can be indexed directly via a POST to endpoints:

/api/apollo/collections/<collectionName>/index-profiles/<profileName>/index

/api/apollo/collections/<collectionName>/index-profiles/<profileName>/debug

where <collectionName> is the name of an specific collection and <profileName> is the name of a new or existing profile.

A POST to the index endpoint indexes the document. A POST to the debug endpoint indexes the document and outputs
information about the state of the pipeline document after each stage. See also the Index Pipelines API.

Both endpoints allow the following query parameters:

Parameter Description

simulate If true, documents will not be sent to solr for indexing, i.e.,
the solr-index stage will be skipped. The default is false.

echo This parameter is only available with the the index

endpoint.

If true, the default, the list of documents indexed will be
returned. If this is set to false, no output will be returned
when the pipeline has finished.

bufferDocsForSolr If true, documents will be buffered before sending to Solr.
This is an asynchronous mode and may give faster
performance when indexing a large number of
documents. The default is false.

The output will include a JSON representation of the documents after they have passed through the pipeline, unless the
echo query parameter has been set to 'false'.

583

Examples

Create a profile named 'testProfile' for the 'docs' collection and associate it with the pipeline named 'docs-default':

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '"docs-default"'
http://localhost:8764/api/apollo/collections/docs/index-profiles/testProfile

RESPONSE

None.

Index two simple documents with the profile named 'testProfile':

REQUEST

curl -u user:pass -X POST -H "Content-Type: application/vnd.lucidworks-document" -d '[{"id":
"myDoc1","fields": [{"name":"title", "value":"My first document"},{"name":"body", "value": "This is a simple
document."}]},{"id": "myDoc2","fields": [{"name":"title","value": "My second document"},{"name":"body",
"value": "This is another simple document."}]}]' http://localhost:8764/api/apollo/collections/docs/index-
profiles/testProfile/index

RESPONSE

584

[{
 "id" : "myDoc1",
 "fields" : [{
 "name" : "content",
 "value" : "This is a simple document.",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "title",
 "value" : "My first document",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 6],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}, {
 "id" : "myDoc2",
 "fields" : [{
 "name" : "content",
 "value" : "This is another simple document.",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "title",
 "value" : "My second document",
 "metadata" : { },
 "annotations" : []
 }, {
 "name" : "parsing_s",
 "value" : "no_raw_data",
 "metadata" : {
 "creator" : "tika-parser"
 },
 "annotations" : []
 }, {
 "name" : "parsing_time_l",
 "value" : ["java.lang.Long", 0],
 "metadata" : { },
 "annotations" : []
 }],
 "metadata" : { },
 "commands" : []
}]

585

14.21. Messaging API

The Messaging Service provides implementations to support sending messages and alerts under a coherent REST API.
Service instances can be added and removed via REST API. Messages can be scheduled or sent immediately.

14.21.1. Attributes

The Messaging API supports the generic concept of a message, and each implementation interprets attributes in context.
For example, "to:" in the context of a Slack message references the intended channnel, whereas "to:" in the context of an
email(SMTP) references the intended email address of its recipient.

Message Attribute Description

id An application specific id for tracking the message. Must
be unique.

type The type of message to send, one of the following: * log *
smtp * slack * pagerduty

to One or more destinations for the message, as a list

from Who/what the message is from

subject The subject of the message

body The main body of the message

schedule Used to pass messages at a later time, or at a recurring
basis.

messageServiceParams Passes a map of any service-specific parameters, such as
the user name and password

14.21.2. Add or Display a list of messaging service instances

The path for this request is:

api/apollo/messaging/service

• GET - lists all active instances.

• POST - adds a new MessageService instance.

14.21.3. Send a message

The path for this request is one of:

586

api/apollo/messaging/send
api/apollo/messaging/send/<type>/<id>

• POST - sends the message, where type specifies the type of message, and id specifies which message if there is more
than one

• PUT - sends scheduled message.

14.21.4. Schedule messaging

Fusion will automatically fill in the Schedule Call Params. The path for this request is:

apollo/messaging/schedule
apollo/messaging/schedule/<id>

POST schedule one or more messages. Each Message has an associated Schedule object that is used to schedule that
item.
PUT: Update a Message that has been scheduled. This only works for unsent or repeating Messages that have been
scheduled.
DELETE: Deletes a Message that has been scheduled. This only works for unsent or repeating Messages that have been
scheduled.

14.21.5. Check message status

To GET message services status, the path is:

api/apollo/messaging/status

14.21.6. Examples

Display current messaging services:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/messaging/service

RESPONSE

[{
"type": "logging-message-service-config",
"defaultLogLevel" : "info",
"template": "<to>:<from>:<subject>:<body>",
"serviceType": "log"
}]

Send a message using Slack

REQUEST

587

curl -u user:pass -X POST -H 'Content-Type: application/json' -d '{"id": "myID", "type": "slack", "subject":
"test", "body": "@recipient: this is a test", "to": ["recipient"], "from": "sender"}'
http://localhost:8764/api/apollo/messaging/send

RESPONSE

[{ "id": "myID",
 "type": "slack",
 "subject": "test",
 "body": "@recipient: this is a test",
 "to": "recipient",
 "from": "sender"
}]

Get all scheduled messages

curl -u user:pass http://localhost:8764/api/apollo/messaging/scheduled

RESPONSE

[
 {
 "id": "myID",
 "type": "slack",
 "subject": "Updates",
 "body": "@recipient:here is the latest version",
 "to": ["updatechannel"],
 "from": "sender",
 "schedule":{"id":"slack", "creatorType":"human", "creatorId":"admin", "repeatUnit":"DAY", "interval":1,
"startTime":"2015-05-21T06:44:00.000Z", "active":true}
 }

Show the current status of messaging services:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/messaging/status

RESPONSE

[{
 "status" : "ok",
 "node" : "http://xxx.xx.xx.x:8764/api/apollo/messaging",
 "messages" : []
}]

588

14.22. Nodes API

The Nodes API allows users to check active services according to their hosts.

14.22.1. Get Hosts, Node Status by Service or Node Status by Host

The path for this request is one of:

/api/apollo/nodes/up

/api/apollo/nodes/upByHost

/api/apollo/nodes/hosts

A GET request to the 'up' endpoint, shows each service that is 'up' and which hosts are serving the service.

A GET request to the 'upByHost' endpoint shows each host and the services served by that host.

A GET to the 'hosts' endpoint shows the active hosts.

The output will vary by endpoint.

When using the 'up' endpoint, the output will list each service active in the system and then the hosts serving the
service.

When using the 'upByHost' endpoint, the output will list each host, and then the services active on each host.

When using the 'hosts' endpoint, the output will list the hosts only.

14.22.2. Examples

Show each service:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/nodes/up

RESPONSE

589

{
 "dynamicSchema::v1" : ["http://localhost:8764/api/apollo/dynamicSchema"],
 "history::v1" : ["http://localhost:8984/connectors/v1/history", "http://localhost:8764/api/apollo/history"
],
 "query-pipelines::v1" : ["http://localhost:8764/api/apollo/query-pipelines",
"http://localhost:8764/api/apollo/query-pipelines"],
 "solrconfig::v1" : ["http://localhost:8764/api/apollo/collections//solr-config"],
 "solrAdmin::v1" : ["http://localhost:8764/api/apollo/solrAdmin",
"http://localhost:8984/connectors/v1/solrAdmin"],
 "stopwords::v1" : ["http://localhost:8764/api/apollo/stopwords"],
 "collections::v1" : ["http://localhost:8764/api/apollo/collections"],
 "index-stages::v1" : ["http://localhost:8984/connectors/v1/index-stages",
"http://localhost:8764/api/apollo/index-stages"],
 "nodes::v1" : ["http://localhost:8984/connectors/v1/nodes", "http://localhost:8764/api/apollo/nodes"],
 "index-profiles::v1" : ["http://localhost:8764/api/apollo/collections//index-profiles",
"http://localhost:8984/connectors/v1/collections//index-profiles"],
 "schema::v1" : ["http://localhost:8764/api/apollo/collections//schema"],
 "solr::v1" : ["http://localhost:8984/connectors/v1/solr", "http://localhost:8764/api/apollo/solr"],
 "query-stages::v1" : ["http://localhost:8764/api/apollo/query-stages"],
 "blobs::v1" : ["http://localhost:8764/api/apollo/blobs"],
 "connectors::v1" : ["http://localhost:8984/connectors/v1/connectors"],
 "recommend::v1" : ["http://localhost:8764/api/apollo/recommend"],
 "configurations::v1" : ["http://localhost:8764/api/apollo/configurations",
"http://localhost:8984/connectors/v1/configurations"],
 "system::v1" : ["http://localhost:8764/api/apollo/system", "http://localhost:8984/connectors/v1/system"],
 "index-pipelines::v1" : ["http://localhost:8764/api/apollo/index-pipelines",
"http://localhost:8764/api/apollo/index-pipelines", "http://localhost:8764/api/apollo/index-pipelines",
"http://localhost:8764/api/apollo/index-pipelines", "http://localhost:8764/api/apollo/index-pipelines",
"http://localhost:8764/api/apollo/index-pipelines", "http://localhost:8764/api/apollo/index-pipelines",
"http://localhost:8984/connectors/v1/index-pipelines", "http://localhost:8984/connectors/v1/index-pipelines",
"http://localhost:8764/api/apollo/index-pipelines", "http://localhost:8764/api/apollo/index-pipelines"],
 "query-pipeline-templates::v1" : ["http://localhost:8764/api/apollo/pipeline-templates/query"],
 "registration::v1" : ["http://localhost:8984/connectors/v1/registration",
"http://localhost:8764/api/apollo/registration"],
 "searchLogs::v1" : ["http://localhost:8764/api/apollo/searchLogs"],
 "scheduler::v1" : ["http://localhost:8764/api/apollo/scheduler"],
 "aggregator::v1" : ["http://localhost:8764/api/apollo/aggregator"],
 "query-profiles::v1" : ["http://localhost:8764/api/apollo/collections//query-profiles"],
 "usage::v1" : ["http://localhost:8764/api/apollo/usage", "http://localhost:8984/connectors/v1/usage"],
 "introspect::v1" : ["http://localhost:8764/api/apollo/introspect",
"http://localhost:8984/connectors/v1/introspect"],
 "searchCluster::v1" : ["http://localhost:8764/api/apollo/searchCluster",
"http://localhost:8984/connectors/v1/searchCluster"],
 "features::v1" : ["http://localhost:8764/api/apollo/features"],
 "index-pipeline-templates::v1" : ["http://localhost:8984/connectors/v1/pipeline-templates/index",
"http://localhost:8764/api/apollo/pipeline-templates/index"],
 "synonyms::v1" : ["http://localhost:8764/api/apollo/synonyms"],
 "reports::v1" : ["http://localhost:8764/api/apollo/reports"],
 "signals::v1" : ["http://localhost:8764/api/apollo/signals"]
}

590

14.23. Query Pipelines API

The Query Pipelines API allows you to define parameters that should be applied to all queries processed by the system.
A query pipeline consists of one or more stages. Query pipeline stages can be defined with the Query Stages API. See the
Query Language Cheat Sheet for help constructing queries to send through a query pipeline.

14.23.1. Manage Query Pipelines: List, Create, Delete

The path for this request is:

/api/apollo/query-pipelines/<id>

where <id> is the name of an specific pipeline.

• GET - returns the definition of a specific index pipeline, or all defined pipelines, if the pipeline name is omitted.

• POST - creates a new pipeline. The pipeline name is included in the definition in the request body.

• DELETE - removes the pipeline.

14.23.2. Manage Query Pipelines: Update

A PUT request to endpoint:

/api/apollo/query-pipelines/<id>

will update an existing query pipeline. A followup PUT request to endpoint:

/api/apollo/query-pipelines/<id>/refresh

is required to make this change take effect.

14.23.3. List a Query Pipeline

The path for this request is:

/api/apollo/query-pipelines/<id>

where <id> is the name of an specific pipeline.

A GET request returns the definition of a specific query pipeline, or all defined pipelines, if the pipeline name is omitted.

The output is a representation of each pipeline requested, created, or modified, including all properties of each stage.

Output

The output is a JSON object or list of JSON objects for each pipeline.

In the case of DELETE, no output is returned.

Note:

If you update a stage with a PUT request, you must reload the stage to the system with a second PUT request:

curl -u user:password-X PUT http://localhost:8764/api/apollo/query-pipelines/id/refresh

591

http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh
http://localhost:8764/api/apollo/query-pipelines/id/refresh

14.23.4. Send a Query through a Pipeline

The path for this request is:

/api/apollo/query-pipelines/<id>/collections/<collectionName>/<handler>?<solrQuery>

where <id> is the name of an specific pipeline, <collectionName> is the name of an specific collection, and <handler> is a
Solr request handler, e.g. "select" and <solrQuery> is any valid Solr query.

Either a GET or POST method can be used to submit this request. Use the POST method if the length of your query
exceeds normal GET limitations.

The output will be very similar to a standard Solr JSON response to a query. The response header will include the query
parameters, and the response will include the documents and any other requested features such as facets, highlighting,
etc.

14.23.5. Query Pipeline Definition Properties

Property Description

id
Required

Required only when creating a new pipeline.

stages
Required

A JSON map of the stages to include with the pipeline. The
stages can exist already or they can be defined while
defining the pipeline.

The stage must include the stage definitions:

• id: the ID of the stage to include.

• stageParams: Any parameters for the stage. These are
only required for a stage that has been pre-defined
and you wish to modify the properties.

• type: The stage type. You can define a stage directly on
a pipeline, or you can use a pre-existing stage. If you
use a pre-existing stage, you must use "ref", as a
reference to an existing stage.

• skip: If the stage should be skipped during pipeline
processing. By default, this is 'false', and does not need
to be defined unless you would like to skip a stage in
the future.

If the stage supports setting other properties, as defined in
the section Query Pipeline Stages, then those can be
defined while defining the stage within the pipeline.

14.23.6. Examples

Get the definition for the default query pipeline:

REQUEST

592

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-RequestHandlers

curl -u user:pass http://localhost:8764/api/apollo/query-pipelines/default

RESPONSE

{
 "id" : "default",
 "stages" : [{
 "type" : "recommendation",
 "id" : "recommendation",
 "numRecommendations" : 10,
 "useFq" : true,
 "numSignals" : 100,
 "aggrType" : "click@doc_id_s-query_s-filters_s",
 "skip" : false
 }, {
 "type" : "solr-query",
 "id" : "solr",
 "skip" : false
 }]
}

Create a new query pipeline, specifying a facet stage that is new and a solr-query stage that was previously defined:

REQUEST

curl -u user:pass -X POST -H 'Content-Type: application/json' -d '{"id":"my-pipeline",
"stages":[{"type":"facet", "id":"myFacets", "fieldFacets":[{"field":"data_source_s"},{"field":"author_s",
"minCount":5, "missing":true},{"field":"isRetweet_b"}], "skip":false}, {"id":"mySolr", "type":"ref",
"skip":false}]}' http://localhost:8764/api/apollo/query-pipelines

RESPONSE

593

{
 "id" : "my-pipeline",
 "stages" : [{
 "type" : "facet",
 "id" : null,
 "fieldFacets" : [{
 "field" : "data_source_s",
 "prefix" : null,
 "sort" : null,
 "limit" : null,
 "offset" : null,
 "missing" : null,
 "method" : null,
 "threads" : null,
 "minCount" : null,
 "enumCacheMinDf" : null
 }, {
 "field" : "author_s",
 "prefix" : null,
 "sort" : null,
 "limit" : null,
 "offset" : null,
 "missing" : true,
 "method" : null,
 "threads" : null,
 "minCount" : 5,
 "enumCacheMinDf" : null
 }, {
 "field" : "isRetweet_b",
 "prefix" : null,
 "sort" : null,
 "limit" : null,
 "offset" : null,
 "missing" : null,
 "method" : null,
 "threads" : null,
 "minCount" : null,
 "enumCacheMinDf" : null
 }],
 "skip" : false
 }, {
 "type" : "solr-query",
 "id" : null,
 "skip" : false
 }]
}

Query a pipeline named 'default' and a collection named "docs" for the term "solr". Also limit the response to only document
'titles' and return it in JSON format:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/query-
pipelines/default/collections/docs/select?q=solr&fl=title&wt=json

594

RESPONSE

{
 "response": {
 "numFound": 106,
 "start": 0,
 "docs": [
 {
 "title": [
 "Solr and SolrAdmin APIs - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Solr and SolrAdmin APIs - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Search Clusters - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Search Clusters - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Searching - Fusion Documentation - Lucidworks"
]
 }
]
 },
 "responseHeader": {
 "status": 0,
 "QTime": 1,
 "params": {
 "fl": "title",
 "lw.pipelineId": "default",
 "q": "solr",
 "wt": "json",
 "rows": "5",
 "defType": "edismax"
 }
 }
}

595

14.24. Query Profiles API

The Query Profiles API allows users to manage query profiles. Query profiles allow users to change query pipelines
during search time while pointing the search toward a static endpoint. This gives flexibility to test different stage
combinations without reconfiguration. For information, see Query Profiles.

14.24.1. Create, List, Update or Delete a Query Profile

The path for this request is:

/api/apollo/collections/<collectionName>/query-profiles/<profileName>

where <collectionName> is the name of an specific collection and<profileName> is the name of a new or existing profile.

• GET - returns the details of the profile, or all profiles for the collection is profile name is not specified.

• PUT - create a new profile or update an existing one. No response returned.

• DELETE - remove the profile. No response returned.

14.24.2. Use a Profile to Run a Query

`GET /api/apollo/collections/collection/query-profiles/alias/handler?key=value `

`POST /api/apollo/collections/collection/query-profiles/alias/handler?key=value `

where <collectionName> is the name of an specific collection, <profileName> is the name of a query profile, and
<handler> is a Solr request handler, e.g. "select" and<solrQuery> is any valid Solr query.

If the length of your query exceeds normal GET limitations, then the query can be sent as the body of the POST request.

This returns a standard Solr response containing the documents requested in the format requested. The output will vary
depending on how the query pipeline has been configured. For example, if a Facets stage has been added to the query
pipeline, the response will include facet information.

14.24.3. Examples

Create a profile named 'testProfile' for the 'docs' collection and associate it with the pipeline named 'docs-default':

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '"docs-default"'
http://localhost:8764/api/apollo/collections/docs/query-profiles/testProfile

RESPONSE

None.

Query for the term 'title:fusion' in the 'docs' collection, using the profile named 'newProfile':

INPUT

596

curl -u user:pass http://localhost:8764/api/apollo/collections/docs/query-
profiles/newProfile/select?q=title:fusion&wt=json&fl=title

Note that we have also added a few other query parameters, such as 'wt=json' to get the results in JSON format, and
'fl=title' to only retrieve document titles.

OUTPUT

{
 "response": {
 "numFound": 85,
 "start": 0,
 "docs": [
 {
 "title": [
 "Fusion Services - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Lucidworks Fusion Documentation - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Installation - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Searching - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Collections - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Recommendations - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Connectors - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Reporting - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Schedules - Fusion Documentation - Lucidworks"

597

]
 },
 {
 "title": [
 "Profiles - Fusion Documentation - Lucidworks"
]
 }
]
 },
 "responseHeader": {
 "status": 0,
 "QTime": 1,
 "params": {
 "facet": "true",
 "fl": "title",
 "lw.pipelineId": "docs-default",
 "q": "title:fusion",
 "wt": "json",
 "defType": "edismax",
 "rows": "10"
 }
 }
}

598

14.25. Query Stages API

The Query Stages API provides endpoints to: * manage query stage instances. * list query stage configuration properties
* test processing on a set of queries

14.25.1. List Query Stages or Properties of an Query Stage Type

The path for this request is one of:

api/apollo/query-stages/schema

api/apollo/query-stages/schema/<type>

When no type name is specified, a GET request returns a listing of all configuration properties for all query pipeline
stages. When a type name is specified, a GET request returns the properties for that type.

This provides a type template, listing the name and type information of all properties, if they are required, and what the
default value is (if any).

14.25.2. List a Query Stage

The path for this request is:

api/apollo/query-stages/instances/<stageId>

where <stageId> is the name of an query stage instance.

If the pipeline stage instance is specified, it returns the properties for that stage, else it returns the currently configured
properties for all query pipeline stage instances.

If no query stage instances have been created, this request returns the empty list "[]".

14.25.3. Create, Update, or Delete a Query Stage

The path for this request is:

api/apollo/query-stages/instances/<stageId>

where <stageId> is the name of a query stage instance.

• POST - create a new stage. Returns a listing of the specified properties. No <stageId> path parameter is necessary; the
information in the POST body to determine the stageId.

• PUT - update an existing stage. Returns a listing of the specified properties.

• DELETE - remove an query pipeline stage.

14.25.4. Send a Test Query through a Query Stage

`GET /api/apollo/query-stages/instances/stageId/test/?key=value `

POST /api/apollo/query-stages/test? `key=value`

The path for this request is:

api/apollo/query-stages/instances/<stageId>/test?<key=value>

599

where <stageId> is the name of a query stage instance and <collectionName> is the name of an existing collection and
<key=value> is a valid Solr query.

A GET request will send the defined key=value pair through the defined stage.

A POST request allows you to define a stage and test it on a query to see the possible response.

Input

A POST request takes a query stage specification as a JSON object.

Note that when using the POST request to test a stage that does not yet exist, the stage is not created, even if the
response is successful.

Output

The output will be a query response in JSON format, or an error if the stage was not defined correctly.

14.25.5. Examples

Get the properties for the "apply-defaults" type:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/query-stages/schema/set-params

RESPONSE

600

{
 "type" : "object",
 "title" : "Set Query Params",
 "description" : "This stage allows you to set, append, and remove query params",
 "properties" : {
 "params" : {
 "type" : "array",
 "title" : "Parameters and Values",
 "items" : {
 "type" : "object",
 "required" : ["key"],
 "properties" : {
 "key" : {
 "type" : "string",
 "title" : "Parameter Name"
 },
 "value" : {
 "type" : "string",
 "title" : "Parameter Value"
 },
 "policy" : {
 "type" : "string",
 "title" : "Update Policy",
 "enum" : ["replace", "append", "remove"],
 "default" : "append"
 }
 }
 }
 }
 }
}

See all defined query pipeline stages, regardless of type:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/query-stages/instances

RESPONSE

[{
 "type" : "query-logging",
 "id" : "detailed-logging",
 "detailed" : true,
 "skip" : false,
 "label" : "detailed-query-logging",
}]

Add a new query stage:

REQUEST

601

curl -u user:pass -X POST -H 'Content-type: application/json' -d'{ "type" : "query-logging", "id" : "detailed-
logging", "detailed" : true }' http://localhost:8764/api/apollo/query-stages/instances

RESPONSE

 {
 "type" : "query-logging",
 "id" : "detailed-logging",
 "detailed" : true,
 "skip" : false,
 "label" : "query-logging"
}

Update a query stage:

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d'{ "type" : "query-logging", "id" : "detailed-
logging", "detailed" : true, "label" : "detailed-query-logging" }' http://localhost:8764/api/apollo/query-
stages/instances/detailed-logging

RESPONSE

{
 "type" : "query-logging",
 "id" : "detailed-logging",
 "detailed" : true,
 "skip" : false,
 "label" : "detailed-query-logging",
}

Note that all required elements must be included in the update.

Delete a query stage:

REQUEST

curl -u user:pass -X DELETE http://localhost:8764/api/apollo/query-stages/instances/detailed-logging

No response is returned. To check that the stage is no longer defined, list all query stage instances.

Test that a set-params stage defines properties correctly:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"type":"set-params",
"params":[{"key":"rows", "value":"2", "policy":"append"}]}' http://localhost:8764/api/apollo/query-
stages/solr/test?q=*:*

602

RESPONSE

{
 "request" : {
 "headers" : {
 "User-Agent" : ["curl/7.30.0"],
 "Content-Type" : ["application/json"],
 "Accept" : ["*/*"],
 "Host" : ["localhost:8764"],
 "Content-Length" : ["80"]
 },
 "params" : {
 "q" : ["*:*"],
 "rows" : ["2"]
 }
 },
 "response" : null,
 "totalTime" : 0
}

603

14.26. Realms API

Realms are used to authenticate users across several different user access control systems.

Fusion supports these types of security realms.

14.26.1. Create, Update, Delete or List Realms

The path for this request is:

/api/realm-configs/<id>

where <id> is the ID of a realm. The ID is optional for a GET request and omitted from a POST request.

A GET request returns the configured realms. If ID is omitted, all realms will be returned.

A POST request creates a new realm. If the request is successful, a new ID will be generated.

A PUT request updates a realm.

A DELETE request removes the realm.

Input

Parameter Description

name
Required

The name of the realm. This name will appear on the login
screen of the UI, and will appear in user records to identify
the realm they belong to.

enabled
Required

If true, the realm is available for users to use with system
authentication.

realmType
Required

String value for realm type. Supported realm types are
native, ldap, 'kerberos'.

Native realms have users whose usernames and passwords are stored in the Fusion database. Authenticating users with
an LDAP system creates a user record in Fusion, which includes a property for the realm the user belongs to. This
Fusion user record is used by administrators to grant users access permissions for the UI or REST API services. LDAP
realms connect to an LDAP server to verify the user’s ID and password.

Configuration for an LDAP security realm requires the following additional properties:

Parameter Description

host The hostname of the LDAP server.

port The port to use when connecting to the LDAP server.

ssl If true, SSL will be used when connecting to the LDAP
server.

bindDN A string consisting of the LDAP server DN (Distinguished
Name) and a single pair of curly braces ({}) which is a
placeholder for the username.

604

Output

When creating a new realm, the output will include the properties for the realm just created, or an error to indicate a
problem with the entry.

For a GET request, the output will include all defined properties of the realm.

For a DELETE or a PUT request, no output will be returned.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Get details of the default 'native' realm:

REQUEST

curl -u user:pass http://localhost:8764/api/realm-configs/86df9b5b-4a1c-4b0b-bc10-25aee55fef63

RESPONSE

{
 "enabled": true,
 "id": "86df9b5b-4a1c-4b0b-bc10-25aee55fef63",
 "name": "native",
 "realmType": "native"
}

Create a realm to support LDAP authentication:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"realmType":"ldap", "name":"dev-ldap",
"enabled":true, "config":{"host":"localhost", "port":10636 , "ssl":true,
"bindDn":"uid={},ou=users,dc=security,dc=example,dc=com"} }' http://localhost:8764/api/realm-configs

RESPONSE

{
 "realmType":"ldap",
 "name":"dev-ldap",
 "enabled":true,
 "config":{
 "bindDn":"uid={},ou=users,dc=security,dc=example,dc=com",
 "ssl":true,
 "port":10636,
 "host":"localhost"
 }
}

605

14.27. Recommendations API

The Recommendations REST API uses signals and aggregated signals to return a list of items that can be used for
recommendations.

To use the REST API Recommendations service to get recommendations for items in some collection, that collection must
have associated signals and aggregated-signals system collections. How good the recommendations are depends on how
well the information in the signals and aggregated signals collections, which is derived from observed user behavior,
matches user behavior going forward.

In addition to these endpoints, is also possible to get recommendations as part of a query request.

See Recommendations for a discussion of when to use the API and when to use recommender query stages.

14.27.1. Recommendation types

The API includes separate endpoints for retrieving different types of recommendations:

itemsForQuery Get items for a defined query.

The response is a list of document IDs and their weights.

queriesForItem Get queries for a defined item (a document ID). This finds
the top queries that led users to the defined item.

The response is a list of query terms and their weights.

itemsForItems This type retrieves items that are related to a defined item
(a document ID). This can be thought of as "People also
viewed…".

The response is a list of document IDs and their weights.

This type combines itemsForQuery and queriesForItem. It
gets the top items using queriesForItems, creates shingles
using the queries, then joins the shingles with an OR
clause to use itemsForQuery to get the top items.

14.27.2. Request Parameters

itemsForQuery parameters

Parameter Description

q
Required

The query terms to search for.

rows
Optional

The number of items to return. The default is 10.

606

Parameter Description

fq
Optional

A filter query to limit results. If used, the field name must
be included along with the value.

aggrRows
Optional

The amount of rows per aggregation. The default is 100.

aggrType
Optional

The type of aggregation. The default is aggregated click.

debug
Optional

If true, debug information will be returned with the
results. The default is false.

There are also several parameters used to boost possible matches, which can be modified with the Configurations API.
By default the following boosts and defaults are applied:

• A query filter limiting the query to the 'query_t' field (qf=query_t). This is defined with the configuration property
com.lucidworks.apollo.service.recommend.solr.query.qf

• Three phrase field boost on the 'query_t' field (pf=query_t3,query_t27,query_t0^1). This boosts the 'query_t' field by 3
when terms are next to each other, a boost of 7 when they are within 2 terms of each other, and an additional boost
of 1. This is defined with the configuration property`com.lucidworks.apollo.service.recommend.solr.query.pf`.

• A minimum match of 50% (mm=50%), which means at least 50% of the terms used must be present. This is defined with
the configuration property com.lucidworks.apollo.service.recommend.solr.query.mm.

• The query parser is 'edismax (defType=edismax). This is defined with the configuration property
com.lucidworks.apollo.service.recommend.solr.query.defType.

• The sort is by descending score, then descending weight (score desc, weight_d desc). This is defined with the
configuration property com.lucidworks.apollo.service.recommend.solr.query.sort.

queriesForItem parameters

Parameter Description

docId
Required

The document ID to search for.

rows
Optional

The number of items to return. The default is 10.

aggrType
Optional

The type of aggregation. The default is aggregated click.

itemsForItems parameters

Parameter Description

docId
Required

The document ID that is the basis for the itemForItem
query.

rows
Optional

The number of items to return. The default is 10.

607

Parameter Description

shinglesLimit
Optional

The maximum number of shingles (nGrams) to use. The
shingles will be joined with a boolean OR statement to find
the related documents for the named item. The default is
20.

aggrRows
Optional

The amount of rows per aggregation. The default is 100.

aggrType
Optional

The type of aggregation. The default is click.

termsLimit
Optional

A limit to the number of terms from queries to use in the
itemForItems calculation. The default is 30.

14.27.3. Output

The output includes the following sections:

header The query parameters (in a section named queryParams)
and the total time it took to process the query.

items Depending on the recommendation type:

• itemsForQuery

The document IDs and the weights of aggregated
events that match the query. This type supports a debug
option that adds a debug section to the output.

• queriesForItem

The queries and the weights of aggregated events that
match the document ID.

• itemsForItems

The document IDs and the weights of aggregated
events that match the query.

14.27.4. Examples

Below are examples for each recommendation type.

itemsForQuery

Get the top items for the query 'ipod':

INPUT

608

curl -u user:pass
http://localhost:8764/api/apollo/recommend/lucidworks102/itemsForQuery?q=ipod&fq=count_d:4&debug=true

OUTPUT

{
 "header" : {
 "queryParams" : {
 "aggrType" : "*",
 "rows" : 10,
 "collection" : "lucidworks102",
 "aggrRows" : 100,
 "debug" : true,
 "q" : "ipod",
 "fq" : ["count_d:4"]
 },
 "totalTime" : 5
 },
 "items" : [{
 "weight" : 1.0726584E-11,
 "docId" : "8771929"
 }, {
 "weight" : 3.865899E-12,
 "docId" : "9225439"
 }, {
 "weight" : 9.230597E-12,
 "docId" : "3109302"
 }],
 "debugInfo" : {
 "aggrTime" : 1,
 "queryTime" : 4,
 "solrParams" : {
 "mm" : ["50%"],
 "pf" : ["query_t^3", "query_t~2^7", "query_t~0^1"],
 "fl" : ["id", "doc_id_s", "weight_d"],
 "sort" : ["score desc,weight_d desc"],
 "q" : ["ipod"],
 "qf" : ["query_t"],
 "collection" : ["lucidworks102_signals_aggr"],
 "fq" : ["aggr_type_s:*", "count_d:4"],
 "rows" : ["100"],
 "defType" : ["edismax"]
 }
 }
}

queriesForItem

INPUT

curl -u user:pass http://localhost:8764/api/apollo/recommend/lucidworks102/queriesForItem?docId=9225439

OUTPUT

609

{
 "header" : {
 "queryParams" : {
 "aggrType" : "*",
 "rows" : 10,
 "collection" : "lucidworks102",
 "docId" : "9225439"
 },
 "totalTime" : 8
 },
 "items" : [{
 "query" : "ipod",
 "weight" : 3.865899E-12
 }, {
 "query" : "columbusday ipod mp3 20111009",
 "weight" : 3.5141304E-12
 }, {
 "query" : "apple itouch",
 "weight" : 2.3619889E-12
 }, {
 "query" : "ipod 4th generation",
 "weight" : 1.6436526E-12
 }, {
 "query" : "ipod touch 4th generation",
 "weight" : 9.674966E-13
 }, {
 "query" : "onlinemidnightsale ipod mp3players",
 "weight" : 9.568035E-13
 }, {
 "query" : "ipod touch",
 "weight" : 7.774231E-13
 }, {
 "query" : "itouch",
 "weight" : 7.707221E-13
 }]
}

itemsForItems

INPUT

curl -u user:pass http://localhost:8764/api/apollo/recommend/demo/itemsForItem?docId=9225439

OUTPUT

610

{
 "header" : {
 "queryParams" : {
 "aggrType" : "*",
 "rows" : 10,
 "collection" : "lucidworks102",
 "aggrRows" : 100,
 "docId" : "9225439",
 "shinglesLimit" : 20,
 "termsLimit" : 30,
 "q" : "ipod OR columbusday ipod mp3 OR ipod mp3 20111009 OR columbusday ipod OR ipod mp3 OR mp3 20111009
OR 4th generation OR apple itouch OR itouch OR ipod touch OR ipod 4th OR ipod 4th generation OR ipod touch 4th
OR touch 4th generation OR touch 4th OR onlinemidnightsale ipod mp3players OR onlinemidnightsale ipod OR ipod
mp3players"
 },
 "totalTime" : 63
 },
 "items" : [{
 "weight" : 1.02983795E-10,
 "docId" : "9225377"
 }, {
 "weight" : 1.1725405E-11,
 "docId" : "9225439"
 }, {
 "weight" : 7.803512E-13,
 "docId" : "1207345"
 }, {
 "weight" : 7.803291E-13,
 "docId" : "2193848"
 }, {
 "weight" : 7.803053E-13,
 "docId" : "2128719"
 }, {
 "weight" : 1.4804163E-12,
 "docId" : "1237142"
 }, {
 "weight" : 1.480315E-12,
 "docId" : "2136062"
 }, {
 "weight" : 3.4738492E-12,
 "docId" : "1207414"
 }, {
 "weight" : 3.4676099E-12,
 "docId" : "2382259"
 }, {
 "weight" : 1.7393786E-12,
 "docId" : "1200933"
 }]
}

611

14.28. Reporting API

The reporting API provides a set of reports for key metrics about user searches over a primary Fusion collection by
running reports against the auxiliary searchLog and signals collections. Reports include:

• 'topClicked' - documents which have received the most clicks.

• 'topQueries' - queries ordered by frequency.

• 'lessThanN' - queries which return less than N documents.

• 'topN' - query terms ordered by frequency.

• 'histo' - a histogram over all queries binned by length of query execution time.

• 'dateHisto' - shows relative rate of queries over time.

The reports available for a particular collection depends on whether or not the auxiliary searchLogs and signals
collection have been created. Collections created with the Fusion UI will have both searchLogs and signals by default.
The 'topClicked' report requires both searchLogs and signals auxiliary collections. All other reports require searchLogs
auxiliary collections.

14.28.1. Report Configuration Information

POST requests should always send a JSON object containing the Report configuration. If no special configuration is
required, this is the empty object "\{}".

The report configuration object contains the following attributes, depending on the report:

• "n" value is a positive integer, used for both "topN" and "lessThanN" reports. E.g.: "n" : 1

• "num" value is a positive integer, used for both "topClicked" report. E.g.: "num" : 5

• "field" : required for report "topN", specifies the field where the search terms are stored. Default field is "q_txt". E.g.:
"field" : "q_txt" See Search Query Reporting for details.

• "rangeStart", "rangeEnd", "interval" : attributes used to restrict histogram report range and set bin size accordingly.
E.g.: "rangeStart": 0, "rangeEnd": 1000, "interval" : 1000

• "dateRangeStart", "dateRangeEnd", "timeInterval" : attributes required for date range histogram report. E.g.:
"dateRangeStart": "NOW/DAY-1DAY", "dateRangeEnd": "NOW/DAY+1DAY", "timeInterval": "+1DAY"

14.28.2. Reports request syntax

Allowed requests are of the following form:

• GET /api/apollo/reports/<collection_name>/ - lists reports availabe a Fusion primary collection specified by path
parameter <collection_name>.

• POST /api/apollo/reports/<collection_name>/<report_name>/ - runs a report for collection specified by path
parameter <collection_name>. Report configuration is sent in the body of the POST request as JSON.

• GET /api/apollo/reports/<collection_name>/<report_name>/<item_ID> - gets a detailed information for a specific item
returned in a report. Used to drill down on specific queries or query terms.

14.28.3. Format of Report Results

All reports return a JSON list of objects or the empty list.

612

Contents of the object vary according to the report. The following attribute names are used across all reports:

• "key" : matching query terms

• "count" : raw count for this object

• "percentage" : normalized count expressed as the proportion of the total items in the current report represented by
this item, a real number between 0.0 and 1.0.

• "token" or "item" : ID of token or item.

14.28.4. Examples

See reports available for collection "bb_catalog" which has searchLogs and signals enabled:

> curl -u user:pass http://localhost:8764/api/apollo/reports/bb_catalog

["histo", "topClicked", "topQueries", "lessThanN", "dateHisto", "topN"]

See reports available for system collection "system_blobs" which doesn’t have any auxiliary collections:

> curl -u user:pass http://localhost:8764/api/apollo/reports/system_blobs

[]

Identify queries over collection "bb_catalog" for which no matching documents are found, i.e., queries which return less
than 1 result:

613

> curl -u user:pass -X POST -H 'Content-type: application/json' -d @- \
> http://localhost:8764/api/apollo/reports/bb_catalog/lessThanN \
> <<EOF
> {"n":1}
> EOF

[{
 "key" : "ipad",
 "count" : 3,
 "percentage" : 0.375,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFfczppcGFkIl19"
}, {
 "key" : "id:2125233",
 "count" : 2,
 "percentage" : 0.25,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFfczppZFxcOjIxMjUyMzMiXX0="
}, {
 "key" : "ipod",
 "count" : 1,
 "percentage" : 0.125,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFfczppcG9kIl19"
}, {
 "key" : "typewriter",
 "count" : 1,
 "percentage" : 0.125,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFfczp0eXBld3JpdGVyIl19"
}, {
 "key" : "unicorn",
 "count" : 1,
 "percentage" : 0.125,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFfczp1bmljb3JuIl19"
}]

Drill down on "lessThanN" report to examine information for "key" : "ipad" by token ID:

> curl -u user:pass \
>
http://localhost:8764/api/apollo/reports/bb_catalog/lessThanN/eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbKiBUTyAxXSIsInFf
czppcGFkIl19

{
 "numFound" : 3,
 "start" : 0,
 "maxScore" : 0.0,
 "docs" : [{
 "id" : "cdcdd42c-66f2-499e-a940-33d980596d36",
 "collection_s" : "bb_catalog",
 "q_txt" : ["ipad"],
 "q_s" : "ipad",
 "qtime_l" : 1,
 "totaltime_l" : 2,
 "numdocs_l" : 0,
 "timestamp_dt" : "2015-08-31T20:40:48.096Z",
 "httpmethod_s" : "POST",
 "req_q_ss" : ["ipad"],
 "req_debug_ss" : ["true"],

614

 "req_json.nl_ss" : ["arrarr"],
 "req_echoParams_ss" : ["all"],
 "req_lw.pipelineId_ss" : ["bb_catalog-default"],
 "req_fl_ss" : ["*,score"],
 "req_start_ss" : ["0"],
 "req_isFusionQuery_ss" : ["true"],
 "req_sort_ss" : ["score desc"],
 "req_rows_ss" : ["10"],
 "req_wt_ss" : ["json"],
 "_version_" : 1511054270105911296
 }, {
 "id" : "d4e22f4e-ae27-4662-82ed-17c68111f0d5",
 "collection_s" : "bb_catalog",
 "q_txt" : ["ipad"],
 "q_s" : "ipad",
 "qtime_l" : 3,
 "totaltime_l" : 4,
 "numdocs_l" : 0,
 "timestamp_dt" : "2015-09-01T13:45:28.008Z",
 "httpmethod_s" : "POST",
 "req_debug_ss" : ["true"],
 "req_json.nl_ss" : ["arrarr"],
 "req_echoParams_ss" : ["all"],
 "req_lw.pipelineId_ss" : ["bb_catalog-default"],
 "req_fl_ss" : ["*,score"],
 "req_start_ss" : ["0"],
 "req_isFusionQuery_ss" : ["true"],
 "req_rows_ss" : ["10"],
 "req_bq_ss" : ["id:1945531^4.090439397841692", "id:2339322^1.5108471289277077",
"id:1945595^1.0636971555650234", "id:1945674^0.40656840801239014", "id:2842056^0.33429211378097534",
"id:2408224^0.43880610167980194", "id:2339386^0.39254774153232574", "id:2319133^0.32736557722091675",
"id:9924603^0.19560790061950684", "id:1432551^0.18906432390213013"],
 "req_q_ss" : ["ipad"],
 "req_defType_ss" : ["edismax"],
 "req_wt_ss" : ["json"],
 "req_facet_ss" : ["true"],
 "_version_" : 1511118736467165184
 }, {
 "id" : "a249d93c-9232-4ea7-a99a-fcf01b6c2c2f",
 "collection_s" : "bb_catalog",
 "q_txt" : ["ipad"],
 "q_s" : "ipad",
 "qtime_l" : 0,
 "totaltime_l" : 2,
 "numdocs_l" : 0,
 "timestamp_dt" : "2015-09-01T13:46:41.309Z",
 "httpmethod_s" : "POST",
 "req_q_ss" : ["ipad"],
 "req_debug_ss" : ["true"],
 "req_json.nl_ss" : ["arrarr"],
 "req_echoParams_ss" : ["all"],
 "req_lw.pipelineId_ss" : ["bb_catalog-default"],
 "req_fl_ss" : ["*,score"],
 "req_start_ss" : ["0"],
 "req_isFusionQuery_ss" : ["true"],
 "req_rows_ss" : ["10"],
 "req_wt_ss" : ["json"],
 "req_facet_ss" : ["true"],

615

 "req_bq_ss" : ["id:1945531^4.090439397841692", "id:2339322^1.5108471289277077",
"id:1945595^1.0636971555650234", "id:1945674^0.40656840801239014", "id:2842056^0.33429211378097534",
"id:2408224^0.43880610167980194", "id:2339386^0.39254774153232574", "id:2319133^0.32736557722091675",
"id:9924603^0.19560790061950684", "id:1432551^0.18906432390213013"],
 "_version_" : 1511118813327785984
 }]
}

Get all of the top queries, regardless of date, pass in empty date range specification:

> curl -u user:pass -X POST -H 'Content-type: application/json' -d '{}' \
> http://localhost:8764/api/apollo/reports/bb_catalog/topQueries

[{
 "key" : "ipad",
 "count" : 42,
 "percentage" : 0.7118644,
 "token" : "eyJmaWx0ZXJzIjpbInFfczppcGFkIl19"
}, {
 "key" : "*:*",
 "count" : 10,
 "percentage" : 0.16949153,
 "token" : "eyJmaWx0ZXJzIjpbInFfczpcXCpcXDpcXCoiXX0="
}, {
 "key" : "id:2125233",
 "count" : 2,
 "percentage" : 0.033898305,
 "token" : "eyJmaWx0ZXJzIjpbInFfczppZFxcOjIxMjUyMzMiXX0="
}, {
 "key" : "typewriter",
 "count" : 2,
 "percentage" : 0.033898305,
 "token" : "eyJmaWx0ZXJzIjpbInFfczp0eXBld3JpdGVyIl19"
}, {
 "key" : "unicorn",
 "count" : 2,
 "percentage" : 0.033898305,
 "token" : "eyJmaWx0ZXJzIjpbInFfczp1bmljb3JuIl19"
}, {
 "key" : "ipod",
 "count" : 1,
 "percentage" : 0.016949153,
 "token" : "eyJmaWx0ZXJzIjpbInFfczppcG9kIl19"
}]

_Drill down on topQueries report for item with "key" : "ipod", "token": "eyJmaWx0ZXJzIjpbInFfczppcG9kIl19"

616

> curl -u user:pass \
> http://localhost:8764/api/apollo/reports/bb_catalog/topQueries/eyJmaWx0ZXJzIjpbInFfczppcG9kIl19

{
 "numFound" : 1,
 "start" : 0,
 "maxScore" : 0.0,
 "docs" : [{
 "id" : "4a6f7f5e-3d13-4f20-b59e-6188ce4c5783",
 "collection_s" : "bb_catalog",
 "q_txt" : ["ipod"],
 "q_s" : "ipod",
 "qtime_l" : 1,
 "totaltime_l" : 2,
 "numdocs_l" : 0,
 "timestamp_dt" : "2016-04-05T17:51:56.197Z",
 "httpmethod_s" : "POST",
 "req_debug_ss" : ["true"],
 "req_json.nl_ss" : ["arrarr"],
 "req_echoParams_ss" : ["all"],
 "req_lw.pipelineId_ss" : ["default"],
 "req_fl_ss" : ["*,score"],
 "req_start_ss" : ["0"],
 "req_isFusionQuery_ss" : ["true"],
 "req_rows_ss" : ["10"],
 "req_q_ss" : ["ipod"],
 "req_defType_ss" : ["edismax"],
 "req_qf_ss" : ["doc_id_s"],
 "req_wt_ss" : ["json"],
 "req_facet_ss" : ["true"],
 "_version_" : 1530793784714985472
 }]
}

Run "topN" report over collection "bb_catalog", return top-ranking query, search field "q_txt":

> curl -u user:pass -X POST -H 'Content-type: application/json' -d @- \
> http://localhost:8764/api/apollo/reports/bb_catalog/topN \
> <<EOF
> { "num" : 1, "field" : "q_txt" }
> EOF

[{
 "key" : "ipad",
 "count" : 42,
 "percentage" : 0.7118644,
 "token" : "eyJmaWx0ZXJzIjpbInFfdHh0OmlwYWQiXX0="
}]

Run "topClicked" report, return 5 most-clicked documents:

617

> curl -u user:pass -X POST -H 'Content-type: application/json' -d @- \
> http://localhost:8764/api/apollo/reports/bb_catalog/topClicked \
> <<EOF
> {"num":5}
> EOF

[{
 "key" : "2842056",
 "count" : 42636,
 "percentage" : 0.0107869385,
 "token" : "eyJmaWx0ZXJzIjpbInR5cGVfczpjbGljayIsImRvY19pZF9zOjI4NDIwNTYiXX0="
}, {
 "key" : "1945531",
 "count" : 23510,
 "percentage" : 0.0059480467,
 "token" : "eyJmaWx0ZXJzIjpbInR5cGVfczpjbGljayIsImRvY19pZF9zOjE5NDU1MzEiXX0="
}, {
 "key" : "2842092",
 "count" : 22683,
 "percentage" : 0.0057388153,
 "token" : "eyJmaWx0ZXJzIjpbInR5cGVfczpjbGljayIsImRvY19pZF9zOjI4NDIwOTIiXX0="
}, {
 "key" : "9225377",
 "count" : 21603,
 "percentage" : 0.0054655746,
 "token" : "eyJmaWx0ZXJzIjpbInR5cGVfczpjbGljayIsImRvY19pZF9zOjkyMjUzNzciXX0="
}, {
 "key" : "9755322",
 "count" : 20993,
 "percentage" : 0.005311244,
 "token" : "eyJmaWx0ZXJzIjpbInR5cGVfczpjbGljayIsImRvY19pZF9zOjk3NTUzMjIiXX0="
}]

Get a histogram of the number of documents returned for queries over range 0 to 2000, interval 500 (4 bins):

618

> curl -u user:pass -X POST -H 'Content-type: application/json' -d @- \
> http://localhost:8764/api/apollo/reports/bb_catalog/histo \
> <<EOF
> {"field": "numdocs_l", "rangeStart": 0, "rangeEnd": 100, "interval": "25"}
> EOF

-X POST -H 'Content-type: application/json' -d @- http://localhost:8764/api/apollo/reports/bb_catalog/histo
<<EOF
> {"field": "numdocs_l", "rangeStart": 0, "rangeEnd": 2000, "interval": 500 }
> EOF
[{
 "key" : "0",
 "count" : 10,
 "percentage" : 0.16949153,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbMCBUTyA1MDB9Il19"
}, {
 "key" : "500",
 "count" : 0,
 "percentage" : 0.0,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbNTAwIFRPIDEwMDB9Il19"
}, {
 "key" : "1000",
 "count" : 39,
 "percentage" : 0.66101694,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbMTAwMCBUTyAxNTAwfSJdfQ=="
}, {
 "key" : "1500",
 "count" : 0,
 "percentage" : 0.0,
 "token" : "eyJmaWx0ZXJzIjpbIm51bWRvY3NfbDpbMTUwMCBUTyAyMDAwfSJdfQ=="
}]

Get a date histogram for the last two days, with an interval of 1 day:

> curl -u user:pass -X POST -H Content-type:application/json -d @- \
> http://localhost:8764/api/apollo/reports/bb_catalog/dateHisto \
> <<EOF
> {"dateRangeStart": "NOW/DAY-1DAY", "dateRangeEnd": "NOW/DAY+1DAY", "timeInterval": "+1DAY"}
> EOF

[{
 "key" : "2016-04-04T00:00:00Z",
 "count" : 0,
 "percentage" : 0.0,
 "token" :
"eyJmaWx0ZXJzIjpbInRpbWVzdGFtcF9kdDpbTk9XL0RBWS0xREFZIFRPIE5PVy9EQVkrMURBWV0iLCJ0aW1lc3RhbXBfZHQ6WzIwMTZcXC0wN
FxcLTA0VDAwXFw6MDBcXDowMFogVE8gMjAxNi0wNC0wNFQwMDowMDowMForMURBWX0iXX0="
}, {
 "key" : "2016-04-05T00:00:00Z",
 "count" : 7,
 "percentage" : 1.0,
 "token" :
"eyJmaWx0ZXJzIjpbInRpbWVzdGFtcF9kdDpbTk9XL0RBWS0xREFZIFRPIE5PVy9EQVkrMURBWV0iLCJ0aW1lc3RhbXBfZHQ6WzIwMTZcXC0wN
FxcLTA1VDAwXFw6MDBcXDowMFogVE8gMjAxNi0wNC0wNVQwMDowMDowMForMURBWX0iXX0="
}]

619

14.29. Roles API

Roles are groups of permissions that allow access to the UI and the REST APIs. See Roles for details.

Security Realms can be configured to use LDAP group membership to assign Roles to users. See the LDAP configuration
instructions for details.

14.29.1. Create, Update or Delete Roles

The endpoint for this request can take the role ID as a request parameter:

/api/roles/<id>

The role ID string is generated by Fusion when the role is created.

A GET request returns the configured roles for a specific ID. If the ID is omitted from the path, all roles will be returned.

A POST request creates a new role. When creating a new role, the request path is /api/roles. If the role is created, the
request returns the role ID.

A PUT request updates an existing role.

A DELETE request will remove the role configuration.

14.29.2. Role Specification

To create or update a Role via a POST or PUT request, the request body is a JSON object with the following attributes:

Property Description

name
Required

A string containing the role name.

desc
Optional

A string containing a brief text description, for display on
the Access Control "ROLES" panel.

permissions
Optional

A list of permissions, specified in JSON notation. See
section Permissions for details.

uiPermissions
Optional

A list of names of UI components.

The following example describes a role with permissions to access Fusion Dashboards for collection "mdb1":

620

{
 "name":"view-dashboard-mdb1",
 "desc":"can access/use analytics dashboard \"mdb1\" but not allowed to change dashboard controls.",
 "permissions":[
 {"methods":["GET"],"path":"/solr/system_banana/*"},
 {"methods":["GET"],"path":"/solr/{id}/*","params":{"id":["mdb1"]}},
 {"methods":["GET"],"path":"/solr/{id}/admin/luke","params":{"id":["mdb1"]}},
 {"methods":["GET"],"path":"/collections/system_banana"}
],
 "uiPermissions":[
 "dashboards",
 "fields"
]
}

14.29.3. Examples

Get the details for the role with id '3416c03a-31df-4103-b446-358f6790af3e':

REQUEST

curl -u user:pass http://localhost:8764/api/roles/3416c03a-31df-4103-b446-358f6790af3e

RESPONSE

{
 "id":"3416c03a-31df-4103-b446-358f6790af3e",
 "name":"search",
 "createdAt":"2016-03-09T20:01:48Z",
 "permissions":[
 {"methods":["GET"],"path":"/query-pipelines/*/collections/*/select"},
 {"methods":["GET"],"path":"/query-pipelines"},
 {"methods":["GET"],"path":"/solr/*/schema"},
 {"methods":["GET"],"path":"/prefs/apps/search/*"},
 {"methods":["GET"],"path":"/collections/**"},
 {"methods":["GET"],"path":"/solr/*/admin/luke"}
],
 "uiPermissions":[
 "search",
 "collections"
],
 "desc":"Provides read-only/required permissions for the Fusion Search UI."
}

621

14.30. Scheduler API

The scheduler REST API is used to define a schedule for system activities and manage the jobs that result from the
schedule.

All of the Fusion services are available for scheduling, as are any Solr activities and any other HTTP-based URI.

See Schedules for more information about all of the options available for scheduling, and instructions for configuring
scheduler jobs using the Fusion UI.

14.30.1. Manage Schedules: List, Create, Update, Delete

The path for this request is:

/api/apollo/scheduler/schedules/<id>

where <id> is the name of a specific schedule.

• GET - returns the definition of a specific schedule, or all defined schedules, if the schedule name is omitted.

• POST - creates a new schedule. The schedule name is included in the definition in the request body.

• PUT - modifies an existing schedule.

• DELETE - removes the schedule.

14.30.2. Stop or List Running Scheduled Jobs

The path for this request is:

/api/apollo/scheduler/jobs/<id>

where <id> is the name of a specific schedule.

A GET request will list the specified job, or all jobs if the ID is omitted.

A DELETE will stop the defined job, or all jobs if the ID is omitted.

14.30.3. Get Job History

This is a request to the History API. The path for this request is:

/api/apollo/history/scheduler/items/<id>

where <id> is the name of a scheduled job.

A GET request will list the history of 50 runs of the specified job. If the job is omitted, this will return a list of the IDs for
all scheduled jobs.

To see a history of past jobs, you can use the History API.

14.30.4. Schedule Definition Properties

622

Parameter Description

id
Required

The ID of the schedule. This is required when creating a
schedule with a POST request.

creatorType
Optional

The type of user that created the schedule. If you have
resources creating schedules programmatically, you could
define a type that helps distinguish those schedules from
others created by people.

creatorId
Optional

An ID for the user that created the schedule.

startTime
Optional

A time when the schedule should be started. If this is not
set, it will be set to the date/time when the schedule was
created.

endTime
Optional

A time when the schedule should be terminated, i.e., when
it will not run any more in the future. If not set, the
schedule will run until it is disabled (i.e., "active" is set to
false) or deleted.

repeatUnit
Optional

A unit of time that when combined with the interval
property defines how often the schedule will run. Allowed
values are:

• "millisecond" or "ms"

• "second" or "sec"

• "minute" or "min"

• "hour" or "hr"

• "day"

• "week"

• "month"

These time units are not case sensitive.

interval
Optional

An integer that when combined with the repeatUnit
property defines how often the schedule will run. If this is
not set, or set to a number lower than '1' (i.e., '0'), the
schedule will only be run once.

active
Optional

If true, the schedule will be executed according to the
defined interval. If false, the schedule will be disabled and
will not run at the defined time.

623

Parameter Description

callParams
Required

The callParams define the API call to execute at the
defined time intervals. It allows several properties:

• uri: a fully-qualified service URI. This can be an HTTP
call, a Solr request, or a Fusion service call. Supported
URI schemas are:

◦ http:// or https://

◦ solr://{collection}/…

A SolrCloud request.

◦ service://{serviceName}/{path}

A load-balanced Fusion service request.

• method: The method to use, as in GET, POST, PUT, or
DELETE.

• queryParams: query parameters to be passed with
the request. For Solr calls, this could be parameters
such as "q", "fq", "commit", etc.

• headers: any additional protocol headers, such as
"Content-type".

• entity: an optional payload to be sent with the request.

14.30.5. Examples

Run a crawl of the datasource "LocalDocs2" every day:

REQUEST

curl -u user:pass -X POST -H 'Content-Type: application/json' -d '{"id":"1", "creatorType":"human",
"creatorId":"admin1", "repeatUnit":"DAY", "interval":1, "active":true,
"callParams":{"uri":"service://connectors/jobs/LocalDocs2", "method":"POST"}}'
http://localhost:8764/api/apollo/scheduler/schedules

RESPONSE

624

{
 "id" : "1",
 "trigger" : "1_1400007488512_-9223372036854775808",
 "schedule" : {
 "id" : "1",
 "creatorType" : "human",
 "creatorId" : "admin1",
 "createTime" : "2014-05-13T18:58:08.512Z",
 "startTime" : "2014-05-13T18:58:08.512Z",
 "endTime" : null,
 "repeatUnit" : "DAY",
 "interval" : 1,
 "active" : true,
 "callParams" : {
 "uri" : "service://connectors/jobs/LocalDocs2",
 "method" : "POST",
 "queryParams" : { },
 "headers" : { },
 "entity" : null
 }
 }
}

Issue a commit to the SolrCloud collection "demo" every hour:

REQUEST

curl-u user:pass -X POST -H 'Content-Type: application/json' -d '{"id":"2", "creatorType":"human",
"creatorId":"admin1", "repeatUnit":"HOUR", "interval":1, "active":true,
"callParams":{"uri":"solr://demo/update", "method":"GET", "queryParams":{"stream.body":"<commit/>"}}}'
http://localhost:8764/api/apollo/scheduler/schedules

RESPONSE

625

{
 "id" : "2",
 "trigger" : "2_1400011854443_-9223372036854775807",
 "schedule" : {
 "id" : "2",
 "creatorType" : "human",
 "creatorId" : "admin1",
 "createTime" : "2014-05-13T20:10:54.443Z",
 "startTime" : "2014-05-13T20:10:54.443Z",
 "endTime" : null,
 "repeatUnit" : "HOUR",
 "interval" : 1,
 "active" : true,
 "callParams" : {
 "uri" : "solr://demo/update",
 "method" : "GET",
 "queryParams" : {
 "stream.body" : "<commit/>"
 },
 "headers" : { },
 "entity" : null
 }
 }
}

Set schedule "2" to inactive:

REQUEST

curl -u user:pass -X PUT -H 'Content-Type: application/json' -d '{"creatorType":"human", "creatorId":"admin1",
"repeatUnit":"HOUR", "interval":1, "active":false, "callParams":{"uri":"solr://demo/update", "method":"GET",
"queryParams":{"stream.body":"<commit/>"}}}' http://localhost:8764/api/apollo/scheduler/schedules/2

There will be no response if the PUT request was successful.

List all scheduled jobs:

REQUEST

 curl -u user:pass http://localhost:8764/api/apollo/scheduler/jobs

RESPONSE

626

[{
 "id" : "2",
 "trigger" : "2_1400011854443_-9223372036854775807",
 "schedule" : {
 "id" : "2",
 "creatorType" : "human",
 "creatorId" : "admin1",
 "createTime" : "2014-05-13T20:10:54.443Z",
 "startTime" : "2014-05-13T20:10:54.443Z",
 "endTime" : null,
 "repeatUnit" : "HOUR",
 "interval" : 1,
 "active" : true,
 "callParams" : {
 "uri" : "solr://demo/update",
 "method" : "GET",
 "queryParams" : {
 "stream.body" : "<commit/>"
 },
 "headers" : { },
 "entity" : null
 }
 }
}, {
 "id" : "1",
 "trigger" : "1_1400007488512_-9223372036854775808",
 "schedule" : {
 "id" : "1",
 "creatorType" : "human",
 "creatorId" : "admin1",
 "createTime" : "2014-05-13T18:58:08.512Z",
 "startTime" : "2014-05-13T18:58:08.512Z",
 "endTime" : null,
 "repeatUnit" : "DAY",
 "interval" : 1,
 "active" : true,
 "callParams" : {
 "uri" : "service://connectors/jobs/LocalDocs2",
 "method" : "POST",
 "queryParams" : { },
 "headers" : { },
 "entity" : null
 }
 }
}]

List the history of job ID '1':

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/history/scheduler/items/1

RESPONSE

627

{
 "events" : [{
 "start" : "2014-05-16T15:34:49.008Z",
 "end" : "2014-05-16T15:34:49.435Z",
 "source" : "scheduler",
 "type" : "execute",
 "status" : "ok",
 "details" : {
 "status" : 200,
 "entity" : "{\n \"id\" : \"TwitterSearch\",\n \"dataSourceId\" : \"TwitterSearch\",\n \"state\" :
\"RUNNING\",\n \"message\" : null,\n \"startTime\" : 1400254489000,\n \"endTime\" : -1,\n \"finished\" :
false,\n \"counters\" : { },\n \"exception\" : null,\n \"running\" : true\n}"
 },
 "error" : null
 }, {
 "start" : "2014-05-16T15:38:32.536Z",
 "end" : "2014-05-16T15:38:32.559Z",
 "source" : "scheduler",
 "type" : "execute",
 "status" : "ok",
 "details" : {
 "status" : 200,
 "entity" : "{\n \"id\" : \"TwitterSearch\",\n \"dataSourceId\" : \"TwitterSearch\",\n \"state\" :
\"RUNNING\",\n \"message\" : null,\n \"startTime\" : 1400254712000,\n \"endTime\" : -1,\n \"finished\" :
false,\n \"counters\" : { },\n \"exception\" : null,\n \"running\" : true\n}"
 }]
}

628

14.31. Search Cluster API

The search cluster API allows users to connect Fusion with any existing Solr instances that are already present.

Once the Solr cluster is registered with Fusion, requests can be proxied through Fusion to it. The possible requests
include search requests, but they can also be content indexing requests, such as the content crawled with a connector.

Once the searchCluster has been configured, the user can create Fusion collections that refer to the Solr collections that
have been previously defined.

14.31.1. Manage Search Cluster Definitions: List, Create, Update, Delete

The path for this request is:

/api/apollo/searchCluster/<id>

where <id> is the name of a specific search cluster.

• GET - returns the definition of a specific cluster, or all defined clusters, if the cluster name is omitted.

• POST - creates a new search cluster definition.

• PUT - modifies an existing serach cluster definition.

• DELETE - removes the search cluster definition.

14.31.2. Get System Information and Node Status for a Specific Search Cluster

The path for this request is one of:

/api/apollo/searchCluster/<id>/systemInfo

/api/apollo/searchCluster/<id>/nodes

where <id> is the name of a specific search cluster.

A GET request provides information about a specific search cluster. The systemInfo request returns details such as the
JVM version, the OS, free space available, etc. A nodes request returns the status of each node of the cluster.

A systemInfo request takes the following parameters:

Parameter Description

nodeName When defined with the name of a specific node, such as
"nodeName=10.0.1.11:7574_solr", system information will
be returned for the named node only.

all When defined as "all=true", system information for every
node of the cluster will be returned.

For the 'nodes' endpoint, the output will include the node name, the baseURL for the node and it’s current state as
known by ZooKeeper.

For the 'systemInfo' endpoint, the output will include detailed system information such as the Lucene and Solr versions,
the JVM version and memory settings, the OS and version, the available server memory and disk space, the system load
and other similar settings.

629

14.31.3. Search Cluster Definition Properties

Property Description

id
Required

The ID of the search cluster. This is only required when
creating a new cluster definition with a POST request.

connectString
Required

The string to use to connect to the existing Solr cluster or
standalone instance.

If the existing Solr is running in SolrCloud mode, use the
connect string for the ZooKeeper ensemble.

If the existing Solr is running as a standalone instance, use
the full URL for the Solr instance.

cloud
Required

Defines if the "cluster" being defined is a SolrCloud cluster
(true) or a standalone Solr instance (false).

bufferCommitWithin
Optional

Defines a commitWithin property for the buffer when
writing to this cluster. If not defined, the system will
default to 10,000 milliseconds.

bufferFlushInterval
Optional

Defines how often to flush the buffer when writing to this
cluster. If not defined, the system will default to 1000
milliseconds.

bufferSize
Optional

Defines the size of the buffer. If not defined, the system
will default to 100 items in the buffer.

concurrency
Optional

Defines the maximum number of concurrent /parallel
requests to Solr servers when Fusion index pipeline Solr
Indexer stage has property bufferDocsForSolr set to true.

zkClientTimeout
Optional

The maximum amount of time to wait when
communicating with the ZooKeeper ensemble for a
SolrCloud instance.

zkConnectTimeout
Optional

The maximum amount of time to wait when trying to
connect to the ZooKeeper ensemble for a SolrCloud
instance.

14.31.4. Examples

Create a new search cluster that is an existing SolrCloud cluster:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"mySolrCluster",
"connectString":"10.0.1.6:5001,10.0.1.6:5002,10.0.1.6:5003", "cloud":true}'
http://localhost:8764/api/apollo/searchCluster

RESPONSE

630

{
 "id" : "mySolrCluster",
 "connectString" : "10.0.1.6:5001,10.0.1.6:5002,10.0.1.6:5003",
 "cloud" : true,
}

Create a 'cluster' that is a standalone Solr instance:

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"id":"myOtherSolrCluster",
"connectString":"http://localhost:8983/solr", "cloud":false}' http://localhost:8764/api/apollo/searchCluster

RESPONSE

{
 "id" : "myOtherSolrCluster",
 "connectString" : "http://localhost:8983/solr",
 "cloud" : false,
}

Show the status of each node of 'mySolrCluster':

REQUEST

curl http://localhost:8764/api/apollo/searchCluster/mySolrCluster/nodes

RESPONSE

[{
 "name" : "10.0.1.11:7574_solr",
 "baseUrl" : "http://10.0.1.11:7574/solr",
 "state" : "active"
}, {
 "name" : "10.0.1.8:7574_solr",
 "baseUrl" : "http://10.0.1.8:7574/solr",
 "state" : "active"
}]

Show the system information for one named node:

REQUEST

curl http://10.0.1.8:8764/api/apollo/searchCluster/mySolrCluster/systemInfo?nodeName=10.0.1.8:7574_solr

RESPONSE

631

{
 "10.0.1.8:7574_solr" : {
 "mode" : "solrcloud",
 "lucene" : {
 "solr-spec-version" : "4.8.0",
 "lucene-spec-version" : "4.8.0"
 },
 "jvm" : {
 "version" : "1.8.0_121 25.121-b13",
 "name" : "Oracle Corporation Java HotSpot(TM) 64-Bit Server VM",
 "processors" : 4,
 "memory" : {
 "raw" : {
 "free" : 66736272,
 "total" : 204800000,
 "max" : 204800000,
 "used" : 138063728,
 "used%" : 67.4139296875
 }
 }
 },
 "system" : {
 "name" : "Mac OS X",
 "version" : "10.9.3",
 "arch" : "x86_64",
 "systemLoadAverage" : 2.130859375,
 "committedVirtualMemorySize" : 2963378176,
 "freePhysicalMemorySize" : 9321914368,
 "freeSwapSpaceSize" : 1073741824,
 "processCpuTime" : 313176000000,
 "totalPhysicalMemorySize" : 17179869184,
 "totalSwapSpaceSize" : 1073741824,
 "openFileDescriptorCount" : 208,
 "maxFileDescriptorCount" : 10240,
 "uname" : "Darwin MacMini.local 13.2.0 Darwin Kernel Version 13.2.0: Thu Apr 17 23:03:13 PDT 2014;
root:xnu-2422.100.13~1/RELEASE_X86_64 x86_64\n",
 "uptime" : "15:48 up 3 days, 7:08, 7 users, load averages: 2.13 2.01 1.91\n"
 }
 }
}

632

14.32. Sessions API

The session API is used to create sessions using defined realms, such as LDAP.

A session can be saved into a cookies file that can be re-used for subsequent requests. Sessions time out after 10 minutes
of no activity, or after 8 hours.

14.32.1. Create a Session

The path for this request is:

/api/session?realmName=<realmName>

where the query parameter realmName takes as its value the name of a realm to authenticate against.

Input

Parameter Description

username
Required

The username to use in authentication.

password
Required

The password to use in authentication.

Output

The output will include a cookie ID in the HTTP response header. This can be saved to a file and re-used with
subsequent REST API requests.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Create a session against an LDAP server and store it in a file named 'cookies':

REQUEST

curl -c cookies -i -H "content-type:application/json" -X POST -d '{"username":"myUser",
"password":"myPassword"}' http://localhost:8764/api/session?realmName=myLDAP

RESPONSE

HTTP/1.1 201 Created
Set-Cookie: id=840a33d4-b650-49f2-87a4-85412e99b37c;HttpOnly;Path=/api
Content-Length: 0
Server: Jetty(9.1.4.v20140401)

633

Note In this case, we got a response because we set curl to
include the HTTP in the output. Otherwise, we would not
know for sure the session was created.

Use the cookie in another cURL request to see all collections:

curl -b cookies http://localhost:8764/api/apollo/collections

634

14.33. Signals Aggregator API

The Signals Aggregator API is used to aggregate signal events, which allows faster querying for recommendations. To
use recommendations, signals need to be recorded and then aggregated.

When signals are enabled for a collection, two system-level collections are created. The first is named
collection_signals, where collection is the sibling collection name, and signal events are indexed to this collection. The
second is named collection_signals_aggr, and is the default location for aggregated signal events. See Signals API for
more information on how to index signal events.

The aggregation process creates tuples for the fields selected when creating the aggregator job. A default tuple is applied
if none is specified.

The aggregation process can remove the raw signals if desired, or keep them for other aggregation jobs.

14.33.1. Create, Update, Delete or List an Aggregator Job

The path for this request is:

/api/apollo/aggregator/aggregations/<id>

where <id> is the ID of an aggregation job.

A GET request will list the properties for an aggregator job with a provided ID or all defined aggregation jobs by ID if the
path doesn’t include a specific job ID.

POST requests with parameters define jobs, and PUT allows replacing existing job properties. Note that the PUT request
will replace the existing job definitions with the new properties submitted with the request. Any properties not included
with the PUT request will be replaced (possibly as 'null' if omitted.)

DELETE will remove the aggregator job.

Aggregator Job Definition Properties

Parameter Description

time A timestamp for signals to aggregate, used when starting
the aggregation job.

rows Defines the size of event batches to retrieve.

sync If set to true, the aggregation job will run in the
foreground and will restrict any other aggregation jobs
from running until it is complete. The default is false,
which also requires you to poll the job for status.

The response to either a POST or a GET request includes the properties of the job and the current status. Whan a job is
started, the output includes the output_collection, the dates that will be used, and the collection being used for the data.

14.33.2. Start or Check an Aggregator Job

The path for this request is:

/api/apollo/aggregator/jobs/<collectionName>_signals/<id>

635

where <id> is the ID of an aggregation job and <collectionName>_signals is the signals collection that contains the events
to be aggregated.

A POST request will start the specified job, while a GET request will check the job status.

14.33.3. Get Aggregator Job History

The path for this request is one of:

/api/apollo/history/aggregator/items

/api/apollo/history/aggregator/items/<id>

where <id> is the ID of an aggregation job.

If the ID is specified, a GET request will return the history for the defined aggregator job. If the ID is omitted, a GET
request will return a list of all aggregation job IDs.

Input

None.

Output Content

The output will include information about the job including when it started and ended, how many signals were
processed, and the details of the job properties.

14.33.4. Signals Aggregator Definitions Properties

Parameter Description

id
Optional

A unique identifier for this aggregator job.

groupingFields
Optional

The fields that define unique tuples. The fields list is
defined as a JSON array, with commas between each field
name.

If a set of fields is not defined, then a default tuple
'doc_id_s','query_s','filters_s' will be used.

signalTypes
Optional

The types of signals to aggregate. The type list is defined as
a JSON array, with commas between each type.

The types must be existing types used for events in your
signals collection.

636

Parameter Description

aggregator
Optional

The name of the aggregator implementation.

If it is not defined, this will default to click , which is an
implementation optimized for aggregating signals based
on user clicks. Aggregated records from this
implementation will include a 'weight_d' field which can
be used in boosting clicked documents.

If you are not aggregating user click events, you can
choose simple. This implementation does not add a
'weight_d' field to each record.

A third option is special is described in more detail in
page Aggregator Scripting.

selectQuery
Optional

Any query to identify signal events.

timeRange
Optional

A valid range query to select events to aggregate.

sort
Optional

Specifies ordering of raw signal events within an
aggregation.

The default ordering is by event id ("id asc"). It can be set
to use other fields using the standard Solr sort
expressions, e.g. "timestamp_dt asc", also multiple criteria
separate by comma, e.g. "type_s asc,timestamp_dt desc".

Note: the sorting by "id asc" is always appended as the last
sort criteria in order to break ties.

outputPipeline
Optional

The name of a pipeline to use for processing aggregating
events.

outputCollection
Optional

The collection in which to store the aggregated events.

rollupPipeline
Optional

The pipeline to use for rollups.

rollupAggregator
Optional

The name of the aggregator implementation to use for
rollups.

sourceRemove
Optional

If true, then signal events that have been aggregated will
be removed from the index.

The default is false.

637

Parameter Description

sourceCatchup
Optional

If true, the original time range of the aggregation will be
modified to span only the period since the last successful
aggregation.

The default is false.

outputRollup
Optional

If true, the default, after performing the source data
aggregation an additional aggregation step will be
executed to roll-up the new aggregates with old aggregates
that exist in the output collection for the same aggregation
type.

aggregates
Optional

A list of aggregation functions. Since it’s possible to pass
side-effects from one function to a later function in the
list, the functions should be declared in the desired order
of execution.

The available aggregator functions are described in more
detail in the section Aggregator Functions.

params
Optional

The params allows defining aggregation job parameters.

The most common use of this property is to define
JavaScript scripts to customize the aggregator behavior.
See the section Aggregator Scripting for more details.

Note that for large aggregation definitions, you could create a .json formatted file with the desired properties and
upload it with cURL’s -d parameter.

No output is returned when creating or updating an aggregator job.

When a job is listed, the properties returned are the same as the possible properties when defining a job.

14.33.5. Examples

Create an aggregator job for the click type of signals, with an aggregate function to provides counts by the id field:

REQUEST

curl -u user:pass -X POST -H 'Content-Type: application/json' -d '{"id":"1", "signalTypes":["click"],
"aggregates":[{"type":"count", "sourceFields":["id"], "targetField": "count_d"}]}'
http://localhost:8764/api/apollo/aggregator/aggregations

RESPONSE

None.

Update the properties for aggregator job '1', including all the original properties plus the ones we want to add or change:

638

REQUEST

curl -u user:pass -X PUT -H 'Content-Type: application/json' -d '{"signalTypes":["click"], "timeRange":"[NOW/-
1 TO NOW]", "aggregates":[{"type":"count", "sourceFields":["id"], "targetField": "count_d"}]}'
http://localhost:8764/api/apollo/aggregator/aggregations/1

RESPONSE

None.

List the properties for aggregator job '1':

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/aggregator/aggregations/1

RESPONSE

{
 "id" : "1",
 "groupingFields" : [],
 "signalTypes" : ["click"],
 "timeRange" : "[NOW/-1 TO NOW]",
 "sourceRemove" : false,
 "sourceCatchup" : false,
 "outputRollup" : false,
 "aggregates" : [{
 "type" : "count",
 "sourceFields" : ["id"],
 "targetField" : "count_d",
 "params" : { }
 }],
 "params" : { }
}

Start job '1' on the 'demo_signals' collection:

REQUEST

curl -u user:pass -X POST http://localhost:8764/api/apollo/aggregator/jobs/demo_signals/1

RESPONSE

The following output has been truncated to omit the aggregation job definition and only shows the other job properties
that are returned on start.

639

{
 "signals" : {
 "types" : ["click"],
 "stats" : { }
 },
 "state" : "running",
 "job_id" : "4d69ec73358b41d38caf1eb3b378809e",
 "aggregation_time_date" : "2014-09-11T16:39:58.347Z",
 "aggregation" : {
 "id" : "r1",
 "groupingFields" : ["doc_id_s", "query_s", "filters_s"],
 "signalTypes" : ["click"],
 "selectQuery" : "*:*",
...
 "output_collection" : "bestbuy_signals_aggr",
 "NOW" : 1410453598347,
 "NOW_date" : "2014-09-11T16:39:58.347Z",
 "collection" : "bestbuy_signals",
 "aggregation_time" : 1410453598347,
 "compound_id" : "bestbuy_signals:r1"
}

See the list of aggregator job items:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/history/aggregator/items

RESPONSE

["demo_signals:1"]

Get the history of job "demo_signals:1":

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/history/aggregator/items/demo_signals:1

RESPONSE

640

{
 "events" : [{
 "start" : "2014-04-16T20:45:16.582Z",
 "end" : "2014-04-16T20:45:16.781Z",
 "source" : "demo_signals:1",
 "type" : "run",
 "status" : "ok",
 "details" : {
 "signals" : {
 "click" : {
 "state" : "finished",
 "raw" : 2,
 "aggr_type_s" : "click",
 "aggr_class" : "com.lucidworks.apollo.service.aggregation.ClickSignalAggregator",
 "aggregated" : 2
 }
 },
 "state" : "finished",
 "job_id" : "467bc0db-a9c9-4b48-8080-439958818907",
 "aggregation_time_date" : "2014-04-16T20:45:16.556Z",
 "aggregation" : {
 "id" : "1",
 "fields" : ["doc_id_s", "query_s", "filters_s"],
 "types" : ["click"],
 "select" : "*:*",
 "range" : "[* TO NOW]",
 "remove" : false,
 "rolling" : false,
 "params" : { },
 "anyAggr" : false
 },
 "NOW" : 1397681116556,
 "commit" : "done",
 "NOW_date" : "2014-04-16T20:45:16.556Z",
 "collection" : "demo_signals",
 "aggregation_time" : 1397681116556,
 "compound_id" : "demo_signals:1"
 },
 "error" : null
 }]
}

641

14.34. Signals API

The Signals API accepts a set of signals, encoded as JSON objects, for indexing into a signals collection.

Normally, signals are indexed just like ordinary documents, through a configured datasource and index pipeline. This
API is provided for cases where it is more convenient to index signals directly.

To aggregate the signals, see the Signals Aggregator API.

14.34.1. Index a Signal

The REST API endpoint which ingests raw signal data in JSON format is:

/api/apollo/signals/<collectionName>

where <collectionName> is the name of an specific collection.

A POST request sends one or more signals to be indexed.

This request takes several optional query parameters:

Parameter Description

pipeline

Optional

An optional parameter to define a specific index pipeline
to be used while indexing these signals. If none is defined,
the pre-configured 'signals_ingest' pipeline will be used.

Note that any index pipeline used must include a solr-
index stage at the end (to index the documents to Solr),
and in this stage the 'enforce_schema' property must be
set to true.

commit If true, then a Solr commit will occur at the end of
indexing.

async If true, then signals will be indexed in asynchronous
mode, which issues an autoCommit and does not report
failures. The default is false.

14.34.2. Signal document structure

A raw signal is stored as a Solr document with the following fields, which are derived from the raw signal as follows:

Field Description

id

Optional
The signal ID. If no ID is supplied, one will be
automatically generated.

642

Field Description

type

Required
The signal type that is being sent. This value is used during
aggregation to filter events of the same type. Types can be
mixed in aggregation jobs, if needed.

The type can consist of any string you choose. For
consistency, always send events of the same type with the
same type value.

During indexing, type values will be moved to a field
named type_s.

params

Optional
The params allow flexible definition of the fields you care
about and will use later for signal aggregation:

• docId – A unique document ID

This is stored in the Solr raw signal document as field
doc_id_s.

• userId – A unique user ID

This is stored in the Solr raw signal document as field
user_id_s.

• query – A query string; for example, a user’s search

This is copied to the Solr raw signal document as both
fields query_s and query_t. Some cleanup occurs to
convert the string to lowercase, decode URL encoding,
and replace white space with single space characters.
The original query is saved in field query_orig_s.

• filterQueries – A list of strings, such as filters on the
search query

This is copied to the Solr raw signal document as both
filters_s and filters_orig_ss.

• collection – The primary collection name

• weight – A float value representing the relative weight
of this signal

This is saved in the field weight_d.

• count – A positive integer value representing the
incremented count of signals

This is saved in the field count_i.

643

Field Description

timestamp The timestamp of the signal event.

• When using the Signals API, this property is optional;
it defaults to the current server time.

• When using the Signal Formatter index stage, one of
the following fields must be present: timestamp,
timestamp_tdt, timestamp_dt, or epoch.

Here is the JSON representation of one click signal, taken from an example dataset of synthetic clickstream data:

{ "params": {
 "docId": "2125233",
 "filterQueries": ["cat00000","abcat0100000", "abcat0101000", "abcat0101001"],
 "query": "Televisiones Panasonic 50 pulgadas" }
 "type":"click",
 "timestamp": "2011-09-01T23:44:52.533000Z",
}

14.34.3. Examples

Send two signal events to record user clicks:

REQUEST

curl \
 -u user:pass -X POST -H 'Content-type:application/json' -d @- \
http://localhost:8764/api/apollo/signals/docs?commit=true \
<<EOF
[
 {"params": {
 "query": "Televisiones Panasonic 50 pulgadas",
 "filterQueries": ["cat00000","abcat0100000", "abcat0101000", "abcat0101001"],
 "docId": "2125233" },
 "type":"click",
 "timestamp": "2011-09-01T23:44:52.533000Z"
 },
 {"params": {
 "query": "Sharp",
 "filterQueries": ["cat00000", "abcat0100000", "abcat0101000", "abcat0101001"],
 "docId": "2009324" },
 "type":"click",
 "timestamp": "2011-09-05T12:25:37.420000Z"
 }
]
EOF

A successful request results in events being added to the signals collection. For the above example, the events will be
represented as follows:

644

 {
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "indent":"true",
 "q":"doc_id_s: 2125233",
 "wt":"json"}
 },
 "response":{"numFound":1198,"start":0,"docs":[
 {
 "id": "7aee7b1f-5cde-4957-b73c-c15881f559ec",
 "filters_s": "abcat0100000 $ abcat0101000 $ abcat0101001 $ cat00000",
 "query_orig_s": "Televisiones Panasonic 50 pulgadas",
 "params.user_s": "000000df17cd56a5df4a94074e133c9d4739fae3",
 "doc_id_s": "2125233",
 "params.query_time__s": "2011-09-01T23:43:59.752Z",
 "query_t": "televisiones panasonic 50 pulgadas",
 "query_s": "televisiones panasonic 50 pulgadas",
 "filters_orig_ss": [
 "abcat0100000",
 "abcat0101000",
 "abcat0101001",
 "cat00000"
],
 "flag_s": "EVENT",
 "type_s": "click",
 "attr_params.filterQueries_": [
 "cat00000",
 "abcat0100000",
 "abcat0101000",
 "abcat0101001"
],
 "timestamp_dt": "2011-09-01T23:44:52.533Z",
 "_version_": 1478892846857584600
 },
 {
 "id": "6789a209-f5b5-457e-9df6-8033b8f7f317",
 "filters_s": "abcat0100000 $ abcat0101000 $ abcat0101001 $ cat00000",
 "query_orig_s": "Sharp",
 "params.user_s": "000001928162247ffaf63185cd8b2a244c78e7c6",
 "doc_id_s": "2009324",
 "params.query_time__s": "2011-09-05T12:25:01.187Z",
 "query_t": "sharp",
 "query_s": "sharp",
 "filters_orig_ss": [
 "abcat0100000",
 "abcat0101000",
 "abcat0101001",
 "cat00000"
],
 "flag_s": "EVENT",
 "type_s": "click",
 "attr_params.filterQueries_": [
 "cat00000",
 "abcat0100000",
 "abcat0101000",
 "abcat0101001"

645

],
 "timestamp_dt": "2011-09-05T12:25:37.42Z",
 "_version_": 1478892846859681800
 }
]
 }
}

646

14.35. Solr API

The Solr API is used to manage collection-level configurations.

The path for this request is:

/api/apollo/solr/<collectionName>/<solrRequest>

where <collectionName> is the name of an specific collection and <solrRequest> is the Solr command you wish to run.

Since this API proxies requests to Solr, each available method corresponds to the method in Solr. So, a GET request to
Solr would use the GET method of this endpoint; a POST would use the POST method, etc.

Depending on the request, the response may consist of records that match a query or output from a Schema API request.

14.35.1. Examples

Query Solr for documents in the 'docs' collection containing the term 'solr', limiting the results to only 2 records, returning
only the title, and in JSON format:

REQUEST

http://localhost:8764/api/apollo/solr/docs/select?q=solr&rows=2&fl=title&wt=json

RESPONSE

647

{
 "responseHeader": {
 "status": 0,
 "QTime": 2,
 "params": {
 "fl": "title",
 "q": "solr",
 "wt": "json",
 "rows": "2"
 }
 },
 "response": {
 "numFound": 52,
 "start": 0,
 "docs": [
 {
 "title": [
 "Solr and SolrAdmin APIs - Fusion Documentation - Lucidworks"
]
 },
 {
 "title": [
 "Search Clusters - Fusion Documentation - Lucidworks"
]
 }
]
 }
}

648

14.36. SolrAdmin API

The Solr Admin API lets you send commands to Solr through Fusion’s proxy service. This allows you to protect your Solr
instances from outside connections, and apply roles and user permissions from Fusion when running Solr commands.
Requests sent to this API are subject to access restrictions above the collection level.

Note that because one searchCluster may host several collections, it’s not recommended to use this with a collection-level
command (such as a query, or document update).

The path for this request is:

/api/apollo/solrAdmin/<searchCluster>/<solrRequest>

where <searchCluster> is the ID of the searchCluster and <solrRequest> is the Solr command you wish to run, e.g., check
status of the nodes.

14.36.1. Example

Request all CORE MBeans for the 'default' searchCluster, formatted in JSON:

REQUEST

http://localhost:8764/api/apollo/solrAdmin/default/admin/mbeans?cat=CORE&wt=json

RESPONSE

649

{
 "responseHeader": {
 "status": 0,
 "QTime": 1
 },
 "solr-mbeans": [
 "CORE",
 {
 "searcher": {
 "class": "org.apache.solr.search.SolrIndexSearcher",
 "version": "1.0",
 "description": "index searcher",
 "src": null
 },
 "core": {
 "class": "collection1",
 "version": "1.0",
 "description": "SolrCore",
 "src": null
 },
 "Searcher@435cf502[collection1] main": {
 "class": "org.apache.solr.search.SolrIndexSearcher",
 "version": "1.0",
 "description": "index searcher",
 "src": null
 }
 }
]
}

650

14.37. Solr Configuration API

The Solr Configuration REST API is used to access and manage the Solr configuration files stored in ZooKeeper.

To manage Solr synonym lists, use the Synonyms API.

To manage Solr lists of stopwords, use the Stopwords API.

14.37.1. List and View Configuration Files

The path for this request is:

/api/apollo/collections/<collectionName>/solr-config

/api/apollo/collections/<collectionName>/solr-config/<path>

where <collectionName> is the name of an specific collection and <path> is the name of a new or existing configuration
file.

A GET request will retrieve either a list of all configuration files from ZooKeeper, if no path is specified. If a path or part
of a path is specified, a GET request will return information on a single file or a directory.

If the "recursive" query parameter is used (below), this request will recurse through all subdirectories and files.

14.37.2. Create or Update a File in ZooKeeper

The path for this request is:

/api/apollo/collections/<collectionName>/solr-config/<path>

where <collectionName> is the name of an specific collection and <path> is the name of a new or existing configuration
file.

A POST request will add a configuration file.

A PUT request will replace the configuration file.

14.37.3. Solr Configuration Definition Properties

Path Parameters

Parameter Description

collection The collection that contains the configuration files to list or
view.

path The path to a specific file or nested child nodes. If the file
is not nested, the filename can be entered without any
path information.

Query Parameters

651

Parameter Description

expand If true, the binary content of a file will be returned base64
encoded. If this is not included, only the metadata about
each node will be returned.

If you would like to see the content of the file in plain text,
you can add 'Accept: text/plain' to the request header.
Alternately, you can get the raw bytes by adding 'Accept:
application/octet-stream' to the header.

recursive If true, children of nested ZooKeeper nodes will be
returned. This can be used in conjunction with the path to
show only children of a specific node.

The output will include a list of each file with the following information:

• name: The name of the file or node.

• version: The file or node version from ZooKeeper.

• isDir: If the node has children, this value will be true.

• value: Only returned if "expand=true" is added as a query parameter. This will be returned as the base64 encoding
of the contents of the file.

If the header includes 'Accept: text/plain' or 'Accept: application/octet-stream', metadata about the file will not be
returned and only the content as either plain text or raw bytes.

If recursive=true and expand=true are both used in the same request, the request may be a little slow depending on how
much data is requested.

14.37.4. ZooKeeper Collection Configuration Definition Properties

Path Parameters

Parameter Description

collection The collection that contains the configuration files to list or
view.

path The path to a specific file (including nested child nodes).

Query Parameters

Parameter Description

reload If true, the collection will be reloaded to make the changes
available to Solr immediately.

Input Content

The REST API does not restrict the type of content that can be sent to ZooKeeper, but care should be taken to make sure
the the format of the file remains compatible with Solr’s requirements.

652

As a best practice, all requests should include the Content-type in the request header.

14.37.5. Examples

Show _rest_managed.json for the 'docs' collection, with the base64 encoded content:

INPUT

curl -u user:pass http://localhost:8764/api/apollo/collections/docs/solr-config/_rest_managed.json?expand=true

OUTPUT

{
 "name" : "_rest_managed.json",
 "version" : 0,
 "isDir" : false,
 "value" : "eyJpbml0QXJncyI6e30sIm1hbmFnZWRMaXN0IjpbXX0NCg=="
}

Get the plain text version of 'synonyms.txt':

INPUT

curl -u user:pass -H 'Accept: text/plain' http://localhost:8764/api/apollo/collections/docs/solr-
config/synonyms.txt

OUTPUT

GB,gib,gigabyte,gigabytes
MB,mib,megabyte,megabytes
Television, Televisions, TV, TVs
pixima => pixma

Show the child nodes of 'clustering':

INPUT

curl -u user:pass http://localhost:8764/api/apollo/collections/docs/solr-config/clustering?recursive=true

OUTPUT

653

{
 "name" : "clustering",
 "version" : 0,
 "isDir" : true,
 "children" : [{
 "name" : "carrot2",
 "parent" : "clustering",
 "version" : 0,
 "isDir" : true,
 "children" : [{
 "name" : "kmeans-attributes.xml",
 "parent" : "clustering/carrot2",
 "version" : 0,
 "isDir" : false
 }, {
 "name" : "lingo-attributes.xml",
 "parent" : "clustering/carrot2",
 "version" : 0,
 "isDir" : false
 }, {
 "name" : "stc-attributes.xml",
 "parent" : "clustering/carrot2",
 "version" : 0,
 "isDir" : false
 }]
 }]
}

Replace the contents of the existing synonyms.txt file with the contents of a file named "updated-synonyms.txt" and reload
the collection:

INPUT

curl -u user:pass -X PUT -H 'Content-type: text/plain' -d '@updated-synonyms.txt'
http://localhost:8764/api/apollo/collections/docs/solr-config/synonyms.txt?reload=true

OUTPUT

None.

654

14.38. Stopwords API

The Stopwords REST API manages the stop words file for a collection. Only a one general set of stop words can be
defined using this REST API. If you need different sets of stop words for different field types (perhaps for different
languages), you will need to edit the schema.xml and manually manage the stop word files.

When updating the stop words, please note that only PUT requests are supported and any new data sent will overwrite
the previous stop words. As such, PUT requests can be seen as replacement requests.

14.38.1. List or Update Stop Words

The path for this request is:

/api/apollo/stopwords/<collectionName>

where <collectionName> is the name of an specific collection.

A GET request will return the stop words in JSON format. A PUT request will replace the existing stop words with the
new list.

These endpoints also allow for import and export of the stop words list. To download the list, replace the Content-Type
in the GET request to "`Accept: application/octet-stream"`. To upload a file, you can emulate an HTTP form with cURL’s
"-form" option, as in -form file=@stopwords.txt.

Input

A JSON format list of stop words.

Output

A GET request will return the current stop words list, in JSON format.

No data will be returned for a PUT request.

14.38.2. Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Update the stop words list with a new list of stop words:

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '["a", "and", "of", "the"]'
http://localhost:8764/api/apollo/stopwords/docs

RESPONSE

None.

List the current stop words list:

655

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/stopwords/docs

RESPONSE

["a", "and", "of", "the"]

Upload a stop words file:

REQUEST

curl -u user:pass -X PUT --form file=@stopwords.txt http://localhost:8764/api/apollo/stopwords/docs

RESPONSE

None.

Download a stop words list & save it as a file named "stopwords.txt":

REQUEST

curl -H "Accept: application/octet-stream" http://localhost:8764/api/apollo/stopwords/docs > stopwords.txt

RESPONSE

None.

656

14.39. Synonyms API

The Synonyms API manages the set of synonyms defined in Solr for a collection:

• a string of terms that will expand on the terms the user entered, like Television, TV.

• a term that should be mapped to another term, like i-pod⇒ipod.

When updating the synonyms, note that only PUT requests are supported, and any new data sent will overwrite the
previous synonyms. As such, PUT requests can be seen as replacement requests.

It is only possible to have a single set of stop words when using this REST API. If you need different sets of stop words
for different field types (perhaps for different languages), you will need to edit the schema.xml and manually manage
the stop word files.

14.39.1. List or Update Synonyms

The path for this request is:

/api/apollo/synonyms/<collectionName>

where <collectionName> is the name of an specific collection.

A GET request will return the synonym definitions in JSON format. A PUT request will replace the existing synonyms
with the new list.

These endpoints also allow for import and export of the synonyms list. To download the list, replace the Content-Type in
the GET request to "`Accept: application/octet-stream"`. To upload a file, you can emulate an HTTP form with cURL’s "-
form" option, as in -form file=@synonyms.txt.

Input

Property Description

match
Required

The terms that should be matched from the user input.

When defining synonyms that should expand on the user’s
input, simply enter all of the terms as values of this
property separated by commas.

When defining synonyms where one or more terms
should map to another term, only enter the term(s) to be
mapped as the values for this property.

replace
Optional

The terms that should replace the user input. This
property is only used when mapping terms entered by the
user to another term.

Output

A GET request will return the current synonym list, in JSON format.

No data will be returned for a PUT request.

657

14.39.2. Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

Update the synonym list with a new list of synonyms for a collection named 'docs':

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '[{"match":["GB","gib","gigabyte","gigabytes"
]}, {"match": ["MB","mib","megabyte","megabytes"]}, {"match" :
["Television","Televisions","TV","TVs"]},{"match":["foo"],"replace":["bar"]}]'
http://localhost:8764/api/apollo/synonyms/docs

RESPONSE

None.

List the current synonyms list:

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/synonyms/docs

RESPONSE

[{
 "match" : ["GB", "gib", "gigabyte", "gigabytes"]
}, {
 "match" : ["MB", "mib", "megabyte", "megabytes"]
}, {
 "match" : ["Television", "Televisions", "TV", "TVs"]
}, {
 "match" : ["foo"],
 "replace" : ["bar"]
}, {
 "match" : ["i-pod"],
 "replace" : ["ipod"]
}]

Upload a synonyms list:

REQUEST

curl -u user:pass -X PUT --form file=@synonyms.txt http://localhost:8764/api/apollo/synonyms/docs

RESPONSE

None.

Download a synonyms list, and save it as a file named "synonyms.txt":

658

REQUEST

curl -u user:pass -H "Accept: application/octet-stream" http://localhost:8764/api/apollo/synonyms/docs >
synonyms.txt

RESPONSE

None.

659

14.40. System Admin APIs

The System Admin APIs are REST API endpoints that can be used by a system administrator to configure various Fusion
processes. The REST APIs are:

• Configurations API, to check and modify global settings in Fusion.

• History API, to retrieve historic events of each service in the system.

• Nodes API, to check the status of each node in the search cluster.

• System API, to retrieve system metrics, ping the system for life, flush buffers, or view active threads.

• Usage API, to retrieve system information that is shared with Lucidworks about the size of your system.

660

14.41. System API

The System REST API allows you to monitor the system performance.

The 'metrics' endpoint provides statistics on the performance of each service, with several available counters, gauges,
histograms, etc. More information about the available metrics is available in the section System Metrics.

The 'ping' endpoint allows you to ping the system for a response, to be sure it is up.

The 'threads' endpoint reports on the running threads.

The 'buffers' endpoint allows flushing buffers.

The 'version' endpoint shows the versions of included components.

14.41.1. Get Metric Names

The request path is:

/api/apollo/system/metricNames

A GET request shows available metric names, for use with the 'metric' endpoint (described in the following section). This
request takes the following optional parameters:

Parameter Description

pattern The pattern allows using a regular expression to find all
configuration items that contain the specified string.

prefix The prefix allows finding all configuration items that start
with the specified string.

The response will include all matching metrics, separated by type of metric:

• Gauges: single values, valid for the point in time at which the metrics are collected.

• Counters: values that are incremented or decremented over time.

• Histograms: the distribution of values. They will report the minimum, maximum, mean, and the values at the 50th,
75th, 95th, 98th, 99th, and 99.9th percentiles.

• Meters: rate of events over time. They include a mean rate, as well as a 1-, 5- and 15-minute moving average. Most of
these moving averages are exponentially weighted, so that more recent values contribute more heavily than older
values; exceptions to this rule have the word "unweighted" in their name.

• Timers: a meter combined with a histogram; it measures the length of time that a particular operation takes (both
mean duration and moving averages) as well as the distribution of those durations.

When filtering on metric names, matching names will be shown in the applicable section.

14.41.2. Get System Metrics

The request path is:

/api/apollo/system/metrics

661

A GET request will return the system metrics.

Because there are nearly 600 metrics, the metricNames endpoint can help you identify a specific metric to return. This
request takes the following optional query parameters which can also be used to filter the outputs:

Parameter Description

pattern The pattern allows using a regular expression to find all
configuration items that contain the specified string.

prefix The prefix allows finding all configuration items that start
with the specified string.

pretty If true, the response will be formatted for easier reading.

rateUnit The time unit (i.e., "seconds", "minutes", etc.) to use to
show rates.

durationUnit The time unit (i.e., "seconds", "minutes", etc.) to use to
show durations.

showSamples If true, the data values used in calculations will be shown.

The output will include matching metrics, separated by type of metric, and any data for the metrics.

Many of the metrics include percentile and mean rates. Some are simply counts.

See the section System Metrics for more details about metrics that may be of interest.

14.41.3. Threads

The request path is:

/api/apollo/system/threads

A GET request shows all active system threads, as Java thread dump in JSON. The output is a standard Java thread
dump, formatted for JSON.

14.41.4. Buffers

The request path is:

/api/apollo/system/buffers

A PUT request with this endpoint will flush the currently active buffers, if needed.

14.41.5. Ping

The request path is:

/api/apollo/system/ping

A GET request queries the system to see if it is up. If the system is up, the response will be 'pong'.

14.41.6. Examples

662

Metric names

Get metric names that start with 'mem.heap':

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/system/metricNames?prefix=mem.heap

RESPONSE

{
 "gauges" : ["mem.heap.committed", "mem.heap.init", "mem.heap.max", "mem.heap.usage", "mem.heap.used"],
 "counters" : [],
 "histograms" : [],
 "meters" : [],
 "timers" : []
}

Metrics

Find all metrics that match the regular expression pattern 'com.lucidworks.apollo.pipeline.index.', format the response so
it’s readable, and show the sample data, if any:

REQUEST

curl -u user:pass
http://localhost:8764/api/apollo/system/metrics?pattern=com.lucidworks.apollo.*pipeline.index.*&pretty=true&sh
owSamples=true

RESPONSE

{
 "version" : "3.0.0",
 "gauges" : { },
 "counters" : { },
 "histograms" : { },
 "meters" : {
 "com.lucidworks.apollo.pipeline.index.IndexPipelineCache.cacheHit" : {
 "count" : 4775,
 "m15_rate" : 0.03604340402401043,
 "m1_rate" : 0.04985610410800882,
 "m5_rate" : 0.04753263154077047,
 "mean_rate" : 0.05028487069705915,
 "units" : "events/second"
 }
 },
 "timers" : {
 "com.lucidworks.apollo.pipeline.index.IndexPipelineCache.deserialize" : {
 "count" : 7,
 "max" : 0.078783,
 "mean" : 0.028265285714285715,
 "min" : 9.800000000000001E-5,
 "p50" : 1.94E-4,

663

 "p75" : 0.06996100000000001,
 "p95" : 0.078783,
 "p98" : 0.078783,
 "p99" : 0.078783,
 "p999" : 0.078783,
 "values" : [9.800000000000001E-5, 1.09E-4, 1.62E-4, 1.94E-4, 0.04855, 0.06996100000000001, 0.078783],
 "stddev" : 0.03620774742010466,
 "m15_rate" : 2.964393875E-314,
 "m1_rate" : 2.128434034679706E-46,
 "m5_rate" : 4.9195401948202935E-138,
 "mean_rate" : 7.371603924510614E-5,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 },
 "com.lucidworks.apollo.pipeline.index.IndexStageConfigCache.deserialize" : {
 "count" : 7,
 "max" : 0.002377,
 "mean" : 4.6642857142857147E-4,
 "min" : 8.7E-5,
 "p50" : 1.16E-4,
 "p75" : 3.46E-4,
 "p95" : 0.002377,
 "p98" : 0.002377,
 "p99" : 0.002377,
 "p999" : 0.002377,
 "values" : [8.7E-5, 9.300000000000001E-5, 1.11E-4, 1.16E-4, 1.35E-4, 3.46E-4, 0.002377],
 "stddev" : 8.47267737523163E-4,
 "m15_rate" : 2.964393875E-314,
 "m1_rate" : 2.1522151745137967E-46,
 "m5_rate" : 5.086288568158318E-138,
 "mean_rate" : 7.372680363461613E-5,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 },
 "com.lucidworks.apollo.pipeline.index.IndexStageConfigStore.deserialize" : {
 "count" : 6,
 "max" : 0.0019760000000000003,
 "mean" : 5.606666666666667E-4,
 "min" : 1.0800000000000001E-4,
 "p50" : 1.4250000000000002E-4,
 "p75" : 0.00114875,
 "p95" : 0.0019760000000000003,
 "p98" : 0.0019760000000000003,
 "p99" : 0.0019760000000000003,
 "p999" : 0.0019760000000000003,
 "values" : [1.0800000000000001E-4, 1.2200000000000001E-4, 1.35E-4, 1.5000000000000001E-4,
8.730000000000001E-4, 0.0019760000000000003],
 "stddev" : 7.54704622131511E-4,
 "m15_rate" : 2.964393875E-314,
 "m1_rate" : 1.0220227879692082E-48,
 "m5_rate" : 7.20591046931865E-140,
 "mean_rate" : 6.318494243486903E-5,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 },
 "com.lucidworks.apollo.pipeline.index.IndexStageConfigStore.getItem" : {
 "count" : 6,
 "max" : 0.003128,

664

 "mean" : 0.002295,
 "min" : 0.0017770000000000002,
 "p50" : 0.0020715,
 "p75" : 0.002774,
 "p95" : 0.003128,
 "p98" : 0.003128,
 "p99" : 0.003128,
 "p999" : 0.003128,
 "values" : [0.0017770000000000002, 0.002066, 0.002066, 0.0020770000000000003, 0.0026560000000000004,
0.003128],
 "stddev" : 4.989869737778733E-4,
 "m15_rate" : 2.964393875E-314,
 "m1_rate" : 1.0220227879692082E-48,
 "m5_rate" : 7.20591046931865E-140,
 "mean_rate" : 6.318494244418448E-5,
 "duration_units" : "seconds",
 "rate_units" : "calls/second"
 }
 }
}

The above output has been truncated for space to remove metrics with no data or with very long value lists.

Threads

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/system/threads

RESPONSE (truncated to a single thread)

665

[{
 "id" : 2,
 "native" : false,
 "name" : "Reference Handler",
 "locks" : {
 "waiting" : {
 "identity" : "0x7257d934",
 "class" : "java.lang.ref.Reference$Lock"
 },
 "locking" : {
 "identity" : "0x7257d934",
 "class" : "java.lang.ref.Reference$Lock"
 }
 },
 "state" : "WAITING",
 "suspended" : false,
 "stackTrace" : [{
 "methodName" : "wait",
 "fileName" : "Object.java",
 "lineNumber" : -2,
 "className" : "java.lang.Object",
 "nativeMethod" : true
 }, {
 "methodName" : "wait",
 "fileName" : "Object.java",
 "lineNumber" : 503,
 "className" : "java.lang.Object",
 "nativeMethod" : false
 }, {
 "methodName" : "run",
 "fileName" : "Reference.java",
 "lineNumber" : 133,
 "className" : "java.lang.ref.Reference$ReferenceHandler",
 "nativeMethod" : false
 }]
}]

Buffers

REQUEST

curl -u user:pass -X PUT http://localhost:8764/api/apollo/system/buffers

Ping

REQUEST

curl -u user:pass http://localhost:8764/api/apollo/system/ping

RESPONSE

pong

666

14.42. Usage API

The Usage API sends system usage data to Fusion. See the section System Usage Monitor for details.

14.42.1. Get Usage Stats or the System ID

The path for this request is one of:

/api/apollo/usage

/api/apollo/usage/<id>

where <id> is the UUID of a specific system.

A GET request with the 'usage' endpoint retrieves the data that is sent to Fusion. A GET request with the 'id' endpoint
retrieves the UUID of the system that is sent to Fusion with the usage data.

14.42.2. Examples

Get the latest data that will be sent to Fusion on the next run:

INPUT

curl -u user:pass http://localhost:8764/api/apollo/usage

OUTPUT

667

[{
 "type" : "GAUGE",
 "name" : "solr.clusters",
 "value" : 3
}, {
 "type" : "GAUGE",
 "name" : "solr.nodes",
 "value" : 2
}, {
 "type" : "RATE",
 "name" : "recommender.itemsForQuery.timer.rate",
 "value" : 0
}, {
 "type" : "RATE",
 "name" : "recommender.queriesForItem.timer.rate",
 "value" : 0
}, {
 "type" : "GAUGE",
 "name" : "nodes",
 "value" : 2
}, {
 "type" : "RATE",
 "name" : "recommender.queriesForItem.counter.rate",
 "value" : 0
}, {
 "type" : "RATE",
 "name" : "recommender.itemsForItem.timer.rate",
 "value" : 0
}, {
 "type" : "RATE",
 "name" : "recommender.itemsForQuery.counter.rate",
 "value" : 0
}, {
 "type" : "RATE",
 "name" : "recommender.itemsForItem.counter.rate",
 "value" : 0
}]

668

14.43. User API

The User API allows you to create, update, and remove user accounts. This API should only be called to manage users in
the native security realm. Users from other security realms are managed directly by Fusion’s auth proxy.

14.43.1. Create, Update, Delete or List Users

The path for this request is:

/api/users/<id>

where <id> is the user ID.

A GET request lists information about the user. The ID can be omitted in a GET request to get all users.

A POST request creates a new user, while a PUT updates a user record.

DELETE will remove the user.

Input

Parameter Description

username
Required

The username. This is distinct from their ID, which is
assigned by the system as a unique identifier.

password
Required

The user’s password. Required when creating a new user.
The user’s password is not returned in the output of any
request.

passwordConfirm
Required

When creating a user or updating a user’s password, you
must confirm the defined password.

realmName
Required

The realm the user belongs to, which defines how they
authenticate against the system.

permissions
Optional

The permissions that have been defined for this user that
are not inherited from their assigned role.

inheritedPermissions
Optional

The user’s specific permissions that are inherited from
their role assignment.

roleNames
Optional

The list of user’s roles, which define some or all of the
permissions they have.

Output

When creating a user with a POST request or listing users with GET, the user properties will be returned.

When updating or removing a user with a PUT or DELETE, no output will be returned.

Examples

Note Use port 8765 in local development environments only. In
production, use port 8764.

669

Get all the configured users of the system:

REQUEST

curl -u user:pass http://localhost:8764/api/users

RESPONSE

[
 {
 "realmName":"native",
 "username":"admin",
 "id":"2856ba33-80bd-400d-99dc-3d181bc68d9a",
 "roleNames":["admin"],
 "permissions":[],
 "createdAt":"2015-07-01T03:18:06Z"},
 {"realmName":"native",
 "username":"collection-admin",
 "id":"9780a33c-c49d-48e3-a869-bd65951aea8f",
 "roleNames":["ui-user","collection-admin"],
 "permissions":[],
 "createdAt":"2015-07-01T03:18:06Z"
 }
]

Add a new user named 'guest':

REQUEST

curl -u user:pass -X POST -H 'Content-type: application/json' -d '{"username":"guest",
"password":"password456", "passwordConfirm":"password456", "realmName": "native"}'
http://localhost:8764/api/users

RESPONSE

{
 "realmName":"native",
 "username":"guest",
 "id":"2f5b52a7-550d-407d-b592-32ab42afe3ca",
 "roleNames":[],
 "permissions":[],
 "createdAt":"2015-08-06T11:42:15Z"
}

Update a user to include the role named "admin":

REQUEST

curl -u user:pass -X PUT -H 'Content-type: application/json' -d '{"name":"joe.smith", "realmName":"myLDAP",
"roleNames":["admin"]}' http://localhost:8764/api/users/aefa7ffc-23f1-45ac-b326-f7bb007d3b9d

670

RESPONSE

None.

671

14.44. ZooKeeper Import/Export API

The ZooKeeper Import/Export API provides methods to upload or download information from Fusion’s ZooKeeper
service. This service provides an alternative to the ZooKeeper clients zkCli.sh and zk-shell which are part of the
Apache Zookeeper distribution included as part of the Fusion distribution. It was introduced as part of the Fusion 2.0
release.

The ZKImportExport service may be used to export ZooKeeper data for any Fusion release. It can be used to import
configuration data into the ZooKeeper service for a new or existing Fusion deployment. Note that since the Fusion 3.0
release all ZooKeeper paths vary according to the version of Fusion that you are running.

• For details on using this script during the Fusion upgrade procedure, see Upgrading Fusion.

• For details on using this script to migrate Fusion configurations from one deployment to another, see Migrating
Fusion data.

The REST API only supports requests to export ZooKeeper configurations. The Fusion distribution includes a utility
script zkImportExport.sh which can be used to import ZooKeeper configuration as well as to export it from arbitrary
Fusion instances.

14.44.1. ZooKeeper

Apache ZooKeeper is a distributed configuration service, synchronization service, and naming registry. Fusion uses
ZooKeeper to configure and manage all Fusion components in a single Fusion deployment.

• znode: ZooKeeper data is organized into a hierarchal name space of data nodes called znodes. A znode can have
data associated with it as well as child znodes. The data in a znode is stored in a binary format, but it is possible to
import, export, and view this information as JSON data. Paths to znodes are always expressed as canonical, absolute,
slash-separated paths; there are no relative reference.

• ephemeral nodes: An ephemeral node is a znode which exists only for the duration of an active session. When the
session ends the znode is deleted. An ephemeral znode cannot have children.

• server: A ZooKeeper service consists of one or more machines; each machine is a server which runs in its own JVM
and listens on its own set of ports. For testing, you can run several ZooKeeper servers at once on a single
workstation by configuring the ports for each server.

• quorum: A quorum is a set of ZooKeeper servers. It must be an odd number. For most deployments, only 3 servers
are required.

• client: A client is any host or process which uses a ZooKeeper service.

See the official ZooKeeper documentation for details about using and managing a ZooKeeper service.

14.44.2. Utility script zkImportExport.sh

This script is located in the top-level Fusion scripts directory. The script takes the following command-line arguments:

672

http://zookeeper.apache.org/
http://zookeeper.apache.org/doc/trunk/

-c,--cmd <arg> Command, one of: 'export', 'import', 'update', 'delete'.

-e,--encode <arg> Type of encoding for znodes. Valid options:
 'none', 'utf-8', 'base64', default is 'base64'.
 Option 'none' will not return any data from the znodes.

-ep,--exclude <arg> Exclude znode paths, followed by list of paths.
 Can only be used to exclude nodes one level below the root node.

-eph,--ephemeral Include ephemeral nodes while exporting znodes, boolean, default false.

-f,--filename <arg> Name of file containing import/export data.

-h,--help Display help page.

-ip,--include <arg> Include znode paths to include, followed by a list of paths.
 Can only be used to include nodes one level below the root node.

-nr,--non-recursive Do not perform recursive operations on znodes.

-o,--overwrite Overwrite data for existing znodes. Valid only with 'update' command.

-p,--path <arg> Path from ZooKeeper root node, e.g. '/lucid/query-pipelines'.

-r,--recursive Perform recursive operations on znodes.

-z,--zkhost <arg> ZooKeeper Connect string, required.

Required arguments are: * -c, --cmd : operation to perform. * -z, --zkhost : the ZooKeeper Connect string.

Examples

Export all data from a local single-node ZooKeeper service, save data to a file:

zkImportExport.sh -zkhost localhost:9983 -cmd export -path / -filename znode_dump.json

Export all Fusion configurations from a local single-node ZooKeeper service, save data to a file:

zkImportExport.sh -zkhost localhost:9983 -cmd export -path /lucid -filename znode_lucid_dump.json

Export Fusion user databases, groups, roles, and realms configurations from a local single-node ZooKeeper service, save
data to a file:

zkImportExport.sh -zkhost localhost:9983 -cmd export -path /lucid-apollo-admin -filename
znode_lucid_admin_dump.json

Initial import of saved Fusion configuration into a new ZooKeeper:

zkImportExport.sh -zkhost localhost:9983 -cmd import -filename znode_lucid_dump.json

673

Note that the above command will fail if there is conflict between existing znode structures or contents between the
ZooKeeper service and the dump file.

Update information for Fusion’s ZooKeeper service:

zkImportExport.sh -zkhost localhost:9983 -cmd update -filename znode_lucid_dump.json

Remove a znode from Fusion’s ZooKeeper service:

zkImportExport.sh -zkhost localhost:9983 -cmd delete -path /lucid/test

14.44.3. Fusion REST API service ZKImportExport

The Fusion REST API can only be used to download information from ZooKeeper, via the 'GET' method with the
following configuration:

 "zk-import-export::v1" : {
 "name" : "com.lucidworks.apollo.resources.ZKImportExportResource",
 "uri" : "/zk/export",
 "methods" : [{
 "uri" : "/zk/export/{path:.*}",
 "name" : "getNodeInfo",
 "verb" : "GET",
 "pathParams" : [{
 "name" : "path",
 "type" : "String"
 }],
 "queryParams" : [{
 "name" : "recursive",
 "type" : "Boolean"
 }, {
 "name" : "excludePaths",
 "type" : "List"
 }, {
 "name" : "includePaths",
 "type" : "List"
 }, {
 "name" : "encodeValues",
 "type" : "String"
 }],
 "hasEntity" : false
 }]
 }

GET data from path `/lucid/query-pipelines`

674

> curl -u user:pass -X GET http://localhost:8764/api/apollo/zk/export/lucid/query-pipelines

{
 "path" : "/lucid/query-pipelines",
 "children" : [{
 "path" : "/lucid/query-pipelines/default",
 "data" :
"ewogICJpZCIgOiAiZGVmYXVsdCIsCiAgInN0YWdlcyIgOiBbIHsKICAgICJ0eXBlIiA6ICJzZWFyY2gtZmllbGRzIiwKICAgICJpZCIgOiAiM
zc1NmI1ZDctY2MwMC00MDAyLWJiOWQtNTQzNjQ4NzVjMjgyIiwKICAgICJyb3dzIiA6IDEwLAogICAgInN0YXJ0IiA6IDAsCiAgICAic2tpcCI
gOiBmYWxzZSwKICAgICJsYWJlbCIgOiAic2VhcmNoLWZpZWxkcyIsCiAgICAidHlwZSIgOiAic2VhcmNoLWZpZWxkcyIKICB9LCB7CiAgICAid
HlwZSIgOiAiZmFjZXQiLAogICAgImlkIiA6ICI3MTFmZWM1Ni03MzRmLTRiYTAtOWY1NS0wZTQ4YmU2NTllM2UiLAogICAgInNraXAiIDogZmF
sc2UsCiAgICAibGFiZWwiIDogImZhY2V0IiwKICAgICJ0eXBlIiA6ICJmYWNldCIKICB9LCB7CiAgICAidHlwZSIgOiAic29sci1xdWVyeSIsC
iAgICAiaWQiIDogIjYwNDU1YjU2LTdkN2MtNDZjYi1iN2QzLTIxOWU1N2U3MWNjMyIsCiAgICAiaHR0cE1ldGhvZCIgOiAiUE9TVCIsCiAgICA
ic2tpcCIgOiBmYWxzZSwKICAgICJsYWJlbCIgOiAic29sci1xdWVyeSIsCiAgICAidHlwZSIgOiAic29sci1xdWVyeSIKICB9IF0KfQ=="
 }],
 "data" : ""
}

Get info for node /lucid/query-pipelines. Do not expand the znodes

curl -u user:pass -X GET http://localhost:8764/api/apollo/zk/export/lucid/query-
pipelines?recursive=true&encodeValues=none
{
 "path" : "/lucid/query-pipelines",
 "children" : [{
 "path" : "/lucid/query-pipelines/default"
 }]
}

Get info for node /lucid/query-pipelines. encode in `utf-8`

curl -u user:pass -X GET http://localhost:8764/api/apollo/zk/export/lucid/query-
pipelines?recursive=true&encodeValues=utf-8
{
 "path" : "/lucid/query-pipelines",
 "children" : [{
 "path" : "/lucid/query-pipelines",
 "data" : "{\n \"id\" : \"default\",\n \"stages\" : [{\n \"type\" : \"search-fields\",\n \"id\" :
\"3756b5d7-cc00-4002-bb9d-54364875c282\",\n \"rows\" : 10,\n \"start\" : 0,\n \"skip\" : false,\n
\"label\" : \"search-fields\",\n \"type\" : \"search-fields\"\n }, {\n \"type\" : \"facet\",\n
\"id\" : \"711fec56-734f-4ba0-9f55-0e48be659e3e\",\n \"skip\" : false,\n \"label\" : \"facet\",\n
\"type\" : \"facet\"\n }, {\n \"type\" : \"solr-query\",\n \"id\" : \"60455b56-7d7c-46cb-b7d3-
219e57e71cc3\",\n \"httpMethod\" : \"POST\",\n \"skip\" : false,\n \"label\" : \"solr-query\",\n
\"type\" : \"solr-query\"\n }]\n}"
 }],
 "data" : ""
}

Get info for node /lucid/query-pipelines. Exclude path `/lucid/query-pipelines/default`

675

curl -u user:pass -X GET http://localhost:8764/api/apollo/zk/export/lucid/query-
pipelines?recursive=true&encodeValues=utf-8&excludePaths=/lucid/query-pipelines/default
{
 "path" : "/lucid/query-pipelines",
 "data" : ""
}

676

	Fusion 2.1 Documentation
	Table of Contents
	User Manual
	Chapter 1. Fusion Installation and Upgrades
	1.1. Installation
	1.2. Upgrades
	1.3. Related Topics
	1.4. System Requirements
	1.4.1. Supported Operating Systems
	1.4.2. Hardware requirements
	1.4.3. Java
	1.4.4. Cluster Requirements
	1.4.5. Recommended HTTP Clients

	1.5. Install Fusion on a Single Node
	1.5.1. Ports
	1.5.2. Unix installation
	1.5.3. Windows installation
	1.5.4. Starting Fusion
	1.5.5. Stopping Fusion
	1.5.6. Installation with an existing Solr instance or cluster
	1.5.7. Troubleshooting
	1.5.8. Directories and Logs
	1.5.9. Checking System State

	1.6. Upgrade Fusion
	1.6.1. Per-version instruction sets
	1.6.2. Upgrade overview: migrating data, configurations, and customizations
	1.6.3. Version Incompatibilities
	1.6.4. Upgrade Fusion 2.1 or 2.2 to Fusion 2.4
	1.6.5. Upgrade Fusion 1.2 to Fusion 2.4

	1.7. Integrate Fusion with an Existing Solr Deployment
	1.7.1. Prerequisites
	1.7.2. Configure Fusion to use an existing Solr deployment
	1.7.3. Sending Documents to Solr through Fusion
	1.7.4. Querying Solr via Fusion requests

	1.8. Configuring Fusion for SSL
	1.8.1. Installing an SSL certificate
	1.8.2. Configuring the Fusion UI
	1.8.3. Configure Jetty to use the JSSE keystore
	1.8.4. Configure the Fusion UI startup script
	1.8.5. Disabling HTTP
	1.8.6. Configuring Fusion for SSL Solr/SolrCloud
	1.8.7. Generating a self-signed certificate
	1.8.8. References and tutorials

	1.9. Web Authentication Cookie FAQs
	1.10. Application Configuration Template Expressions
	1.10.1. Index Pipeline Stage Templates
	1.10.2. Query Pipeline Stage Templates
	1.10.3. Messaging Services Templates

	1.11. System Usage Monitor
	1.11.1. Information Collected by the Usage Monitor
	1.11.2. How Data is Sent
	1.11.3. How to Opt-Out

	Chapter 2. First Run Tutorial
	2.1. Fusion Key Concepts
	2.2. Download and Install Fusion
	2.3. Create a Collection
	2.4. Document Indexing with Datasources and Pipelines
	2.5. Search
	2.6. Lucene and Solr
	2.7. Further Reading

	Chapter 3. Fusion Architecture
	3.1. Fusion Platform Component Architecture
	3.2. Fusion Platform Deployment Architecture
	3.3. The Fusion UI
	3.4. UI service
	3.4.1. The auth proxy
	3.4.2. UI configuration
	3.4.3. UI logs

	3.5. Connectors
	3.5.1. Connector configuration
	3.5.2. Connector logs

	3.6. REST API Services
	3.6.1. API Service configuration
	3.6.2. API Service logs

	3.7. Solr
	3.7.1. Solr configuration
	3.7.2. Solr logs
	3.7.3. Accessing the Solr UI
	3.7.4. Solr documentation

	3.8. Apache Spark
	3.9. ZooKeeper
	3.9.1. ZooKeeper Terminology
	3.9.2. Fusion ZooKeeper Nodes

	3.10. bin/fusion
	3.10.1. Start Fusion
	3.10.2. Check the status of Fusion
	3.10.3. Stop Fusion
	3.10.4. Troubleshooting

	Chapter 4. Collections
	4.1. Primary and Auxiliary Collections
	4.2. System Collections
	4.3. Collection Configuration Properties
	4.4. Collection Profiles
	4.5. Solr Config Files
	4.6. Stopwords Files
	4.7. Synonyms Files
	4.7.1. Synonyms Manager

	Chapter 5. Other Ingestion Methods
	5.1. Importing Data with Connectors
	5.1.1. Connector configuration

	5.2. Importing Data with Pig
	5.2.1. Available Functions
	5.2.2. Using the Functions
	5.2.3. Indexing to a Kerberos-Secured Solr Cluster
	5.2.4. Indexing to a SSL-Enabled Solr Cluster
	5.2.5. Sample CSV Script

	5.3. Importing Data with Hive
	5.3.1. Install the SerDe Jar to Hive
	5.3.2. Create External Tables
	5.3.3. Query and Insert Content
	5.3.4. Example Hive Table

	Chapter 6. Indexing Data
	6.1. Index Pipelines
	6.1.1. Collection-specific Pipelines
	6.1.2. Pre-configured Pipelines

	6.2. Fusion PipelineDocument Objects
	6.2.1. The PipelineDocument Java Object
	6.2.2. JSON representation of a PipelineDocument
	6.2.3. Submitting PipelineDocuments Directly to a Pipeline via the REST API

	6.3. Index Pipeline Stages
	6.4. Index Profiles
	6.5. Entity Extraction
	6.5.1. Loading Models and Lookup Files to Solr
	6.5.2. Entity Extraction Capabilities

	6.6. Pushing Documents to a Pipeline
	6.6.1. Indexing PDFs and MS Office Documents
	6.6.2. Indexing CSV Files

	6.7. Blob Storage
	6.8. Custom JavaScript Stages For Index Pipelines
	6.8.1. JavaScript Index Stage Global Variables
	6.8.2. JavaScript Index Stage Examples
	6.8.3. Debugging and Troubleshooting
	6.8.4. The JavaScript Engine Used by Fusion

	Chapter 7. Search
	7.1. Query Pipelines
	7.1.1. Default Query Pipelines
	7.1.2. Custom Query Pipelines

	7.2. Fusion Query Request Objects
	7.2.1. The Request Java API
	7.2.2. JSON representation of a Request object

	7.3. Fusion Query Response Objects
	7.4. Faceting
	7.4.1. Field faceting
	7.4.2. Range faceting
	7.4.3. Faceting concepts
	7.4.4. Further Reading

	7.5. Search Query Pipeline Stages
	7.5.1. Configuring query pipeline stages
	7.5.2. Conditional query processing
	7.5.3. Reference topics

	7.6. Query Profiles
	7.6.1. Query Profiles in the UI

	7.7. Fusion UI Search Tool
	7.7.1. Search Tool Elements
	7.7.2. Search Results Display
	7.7.3. Search Tool Options
	7.7.4. Comparing Query pipelines

	7.8. Using Query Pipelines with SolrJ
	7.8.1. Authentication with SolrJ
	7.8.2. Example

	7.9. Search Query Reporting
	7.9.1. Available Reports

	7.10. Custom JavaScript Stages for Query Pipelines
	7.10.1. JavaScript Query Stage Global Variables
	7.10.2. JavaScript Query Stage Examples
	7.10.3. Debugging and Troubleshooting
	7.10.4. The JavaScript Engine Used by Fusion

	Chapter 8. Signals and Aggregations
	8.1. Signals
	8.2. Aggregations
	8.3. The cold start problem
	8.4. Signals
	8.4.1. Enabling and disabling signals
	8.4.2. Signal document structure
	8.4.3. The default signals index pipeline
	8.4.4. Removing signals
	8.4.5. Video tutorial

	8.5. Aggregations
	8.5.1. Aggregation Pipelines
	8.5.2. Aggregation Functions
	8.5.3. Aggregation properties
	8.5.4. EventMinerAggregator
	8.5.5. Aggregation job configuration
	8.5.6. EventMinerAggregator configuration parameters
	8.5.7. Example Configuration
	8.5.8. Aggregator Functions
	8.5.9. Aggregator Scripting
	8.5.10. Example Aggregation with Sample Data

	8.6. DateTime Processing
	8.6.1. DateUtils - Uniform API for Date Parsing and Formatting
	8.6.2. Supported Formats
	8.6.3. DateUtils Usage

	Chapter 9. Dashboards
	9.1. Dashboard Access and Authorizations
	9.2. Dashboard Components
	9.3. Pre-configured Dashboards
	9.4. Getting Started
	9.5. Get Started with Fusion Dashboards
	9.5.1. Dashboard Controls
	9.5.2. Create the Raw Signals Collection
	9.5.3. Create the Dashboard
	9.5.4. Save the Dashboard
	9.5.5. Conclusion

	9.6. Log Analytics Dashboards
	9.6.1. Search query controls
	9.6.2. Display controls

	9.7. Signals Dashboards
	9.7.1. Signals Analytics Components

	9.8. Non-Time Series Dashboards
	9.8.1. Search query controls
	9.8.2. Display controls

	9.9. Dashboard Layouts
	9.9.1. Configuring Rows
	9.9.2. Configuring Panels
	9.9.3. Nested Panel Layout using Column Panels

	9.10. Input Panels
	9.10.1. Query Syntax
	9.10.2. Inspect a Panel Query
	9.10.3. Query Panel
	9.10.4. Timepicker Panel

	9.11. Display Panels
	9.11.1. What Data is Displayed
	9.11.2. Layout Panels
	9.11.3. Textual Information Panels
	9.11.4. Graphical Visualization Panels
	9.11.5. Bettermap Panel
	9.11.6. Filtering Panel
	9.11.7. Heatmap Panel
	9.11.8. Histogram Panel
	9.11.9. Hits Panel
	9.11.10. Map Panel
	9.11.11. Table Panel
	9.11.12. Terms Panel
	9.11.13. Text Panel
	9.11.14. Ticker Panel

	Chapter 10. Dev Ops
	10.1. System Metrics
	10.1.1. Types of Metrics Collected
	10.1.2. Metrics of Particular Interest
	10.1.3. Changing Metric Collection Frequency

	10.2. Schedules
	10.2.1. Scheduler job definitions
	10.2.2. How to define a scheduler job

	10.3. Messaging and Alerting
	10.3.1. Supported Message Types
	10.3.2. Messaging Service Configuration
	10.3.3. Triggering Messages and Alerts

	Chapter 11. Access Control
	11.1. User Authentication and Authorization
	11.2. User Account Admininistration
	11.3. Video tutorial
	11.4. Users
	11.4.1. Add Users
	11.4.2. Manage Users in the Fusion UI
	11.4.3. Manage Users via HTTP Requests to the Users API
	11.4.4. User Information

	11.5. Roles
	11.5.1. Where You Specify Roles
	11.5.2. Default Roles
	11.5.3. Role Information
	11.5.4. Manage Roles

	11.6. Permissions
	11.6.1. Specify UI Permissions
	11.6.2. Specify API Permissions
	11.6.3. Example Permissions Set

	11.7. Security Realms
	11.7.1. Security Realm Types
	11.7.2. Manage Security Realms

	11.8. Configuring Fusion for LDAP
	11.8.1. Fusion Configuration for an LDAP Realm
	11.8.2. Basic LDAP Concepts and Terminology

	11.9. Configuring Fusion for Kerberos
	11.9.1. Configuring the Kerberos client
	11.9.2. The Service Principal Keytab file
	11.9.3. Configuring Fusion Authentication for Kerberos Realm
	11.9.4. Kerberos/SPNEGO HTTP Authentication
	11.9.5. Testing and Troubleshooting
	11.9.6. References and Tutorials

	11.10. User Access Request Params
	11.10.1. Per-Request Authentication
	11.10.2. Session Cookies

	Reference Manual
	Chapter 12. Connectors Configuration Reference
	12.1. Database Connectors
	12.2. Filesystem Connectors
	12.3. Hadoop Cluster Connectors
	12.4. Logging Connectors
	12.5. Push Content Connectors
	12.6. Repository Connectors
	12.7. Script Connectors
	12.8. Social Media Connectors
	12.9. Web Connectors
	Connectors
	12.10. Alfresco Connector and Datasource Configuration
	12.10.1. Configuration

	12.11. Azure Connector and Datasource Configuration
	12.11.1. Configuration

	12.12. Box.com Connector and Datasource Configuration
	12.12.1. Box Authorization, Access, and Refresh Tokens
	12.12.2. Configuration

	12.13. Couchbase Connector and Datasource Configuration
	12.13.1. Indexing and Commits
	12.13.2. Splitting Couchbase Documents
	12.13.3. Field Mapping with Couchbase
	12.13.4. Configuration

	12.14. Dropbox Connector and Datasource Configuration
	12.14.1. Dropbox Authentication
	12.14.2. Configuration

	12.15. Drupal 7.x Connector and Datasource Configuration
	12.15.1. Configuration

	12.16. FTP Connector and Datasource Configuration
	12.16.1. Configuration

	12.17. GitHub Connector and Datasource Configuration
	12.17.1. Configuration

	12.18. Google Drive Connector and Datasource Configuration
	12.18.1. Google Drive authentication
	12.18.2. Configuration

	12.19. HDFS Connector and Datasource Configuration
	12.19.1. Configuration

	12.20. Hadoop Connector and Datasource Configuration
	12.20.1. Hadoop Installation and Configuration
	12.20.2. Configuration

	12.21. JDBC Connector and Datasource Configuration
	12.21.1. SQL queries for document retrieval
	12.21.2. Uploading a JDBC driver
	12.21.3. Indexing binary data
	12.21.4. Troubleshooting
	12.21.5. Configuration

	12.22. JIRA Connector and Datasource Configuration
	12.22.1. Configuration

	12.23. Javascript Connector and Datasource Configuration
	12.23.1. The JavaScript Program
	12.23.2. Examples
	12.23.3. Configuration

	12.24. Jive Connector and Datasource Configuration
	12.24.1. Updating the Jive connector
	12.24.2. Security Trimming of Results
	12.24.3. Configuration

	12.25. Local Filesystem Connector and Datasource Configuration
	12.25.1. Configuration

	12.26. Logstash Connector and Datasource Configuration
	12.26.1. Configuration
	12.26.2. Running a Datasource Job
	12.26.3. Examples
	12.26.4. Tutorial

	12.27. MongoDB Datasource and Connector Configuration
	12.27.1. Configuration

	12.28. Solr Push Endpoint Datasource and Configuration
	12.28.1. Configuration

	12.29. S3 Connector and Datasource Configuration
	12.29.1. Bucket Permissions
	12.29.2. Configuration

	12.30. S3H Connector and Datasource Configuration
	12.30.1. Bucket Permissions
	12.30.2. Configuration

	12.31. Salesforce Connector and Datasource Configuration
	12.31.1. Security Trimming
	12.31.2. Creating a Salesforce Connected App
	12.31.3. Configuration

	12.32. ServiceNow Connector and Datasource Configuration
	12.32.1. Configuration

	12.33. SharePoint Connector and Datasource Configuration
	12.33.1. SharePoint Permissions
	12.33.2. Configuration

	12.34. Slack Connector and Datasource Configuration
	12.34.1. Configuration

	12.35. Solr Connector and Datasource Configuration
	12.35.1. Limitations
	12.35.2. Configuration

	12.36. SolrXML Connector and Datasource Configuration
	12.36.1. The SolrXML Format
	12.36.2. Configuration

	12.37. Subversion Connector and Datasource Configuration
	12.37.1. Configuration

	12.38. Twitter Search Connector and Datasource Configuration
	12.38.1. Registering for Twitter Credentials
	12.38.2. Configuration

	12.39. Twitter Stream Connector and Datasource Configuration
	12.39.1. Registering for Twitter Credentials
	12.39.2. Configuration

	12.40. Web Connector and Datasource Configuration
	12.40.1. Limiting Crawl Scope
	12.40.2. Extracting Content from Pages
	12.40.3. Sitemap Processing
	12.40.4. Website Authentication
	12.40.5. Configuration

	12.41. Websphere Connector and Datasource Configuration
	12.42. Windows Share Connector and Datasource Configuration
	12.42.1. Access Control Lists (ACLs)
	12.42.2. Configuration

	12.43. Zendesk Connector and Datasource Configuration
	12.43.1. Authorization
	12.43.2. Required Configuration Properties
	12.43.3. Configuration Properties

	Chapter 13. Pipeline Stages Reference
	13.1. Pipeline Stage Properties
	13.2. Conditional Processing
	13.3. Index Pipeline Stages
	13.3.1. Apache Tika Parser Index Stage
	13.3.2. Call Pipeline Index Stage
	13.3.3. CSV Parsing Index Stage
	13.3.4. Date Parsing Index Stage
	13.3.5. Exclusion Filter Index Stage
	13.3.6. Field Mapping Index Stage
	13.3.7. Find and Replace Index Stage
	13.3.8. Gazetteer Lookup Extraction Index Stage
	13.3.9. HTML Transformation Index Stage
	13.3.10. REST Query Index Stage
	13.3.11. JavaScript Index Stage
	13.3.12. JDBC Index Stage
	13.3.13. JSON Parsing Index Stage
	13.3.14. Detect Language Index Stage
	13.3.15. Logging Index Stage
	13.3.16. Write Log Message Index Stage
	13.3.17. Resolve Multivalued Fields Index Stage
	13.3.18. OpenNLP NER Extraction Index Stage
	13.3.19. Tag Part-of-Speech Index Stage
	13.3.20. Regex Field Extraction Index Stage
	13.3.21. Regex Field Filter Index Stage
	13.3.22. Send SMTP Email Index Stage
	13.3.23. Send PagerDuty Message Index Stage
	13.3.24. Send Slack Message Index Stage
	13.3.25. Detect Sentences Index Stage
	13.3.26. Set Property Index Stage
	13.3.27. Filter Short Fields Index Stage
	13.3.28. Format Signals Index Stage
	13.3.29. Solr Indexer Stage
	13.3.30. Solr Partial Update Indexer Stage
	13.3.31. XML Transformation Index Stage

	13.4. Query Pipeline Stages
	13.4.1. Active Directory Security Trimming Stage
	13.4.2. Parameterized Boosting Stage
	13.4.3. Parameterized Faceting Stage
	13.4.4. Block Documents Stage
	13.4.5. Boost Documents Stage
	13.4.6. Facets Stage
	13.4.7. JavaScript Stage
	13.4.8. JDBC Lookup Stage
	13.4.9. Landing Pages Stage
	13.4.10. Logging Stage
	13.4.11. Write Log Message Stage
	13.4.12. Boost with Signals Stage
	13.4.13. Return Query Parameters Stage
	13.4.14. Rollup Aggregation Stage
	13.4.15. Query Fields Stage
	13.4.16. Security Trimming Stage
	13.4.17. Send SMTP Email Stage
	13.4.18. Send PagerDuty Message Stage
	13.4.19. Send Slack Message Stage
	13.4.20. Additional Query Parameters Stage
	13.4.21. Solr Query Stage
	13.4.22. Retrieve Stored Parameters Stage
	13.4.23. Solr SubQuery Stage
	13.4.24. User Recommendation Boosting Stage

	Chapter 14. REST API Reference
	14.1. Listing all Fusion component services
	14.2. Fusion Components REST API Reference Pages
	14.3. Fusion Services
	14.3.1. Summary of Services

	14.4. Authentication and Authorization APIs
	14.5. Blob Store API
	14.5.1. Get, Upload, Update or Delete a Blob
	14.5.2. List a Blob Manifest
	14.5.3. Examples

	14.6. Collections API
	14.6.1. Create, List, Update or Delete Collections
	14.6.2. Get Collection Status or Statistics
	14.6.3. Examples

	14.7. Collection Features API
	14.7.1. Get a List of Collection Feature Properties
	14.7.2. Update a Specified Feature
	14.7.3. Examples

	14.8. Configurations API
	14.8.1. Get, Create or Update Configuration Items
	14.8.2. Examples

	14.9. Connector APIs
	14.10. Connector Datasources API
	14.10.1. List a Datasource or All Datasources
	14.10.2. Create or Update a Datasource
	14.10.3. Delete a Datasource or All Datasources

	14.11. Connector History API
	14.11.1. Get or Delete the History for a Datasource

	14.12. Connector JDBC API
	14.12.1. Upload a Driver
	14.12.2. List Available Drivers
	14.12.3. Delete a Driver

	14.13. Connector Jobs API
	14.13.1. Start, Stop or Check Status of a Job
	14.13.2. Get Detailed Job Statistics

	14.14. Connector Plugins API
	14.14.1. List Connectors
	14.14.2. List Connector Types
	14.14.3. Drop ConnectorDB State

	14.15. Connector Status API
	14.15.1. Reload, Quit or Get Status of Connector Registry

	14.16. Connectors Crawl Database API
	14.16.1. Get Statistics for a Datasource Database or Drop Database
	14.16.2. Get Table Statistics or Drop the Table
	14.16.3. Get or Delete Table Items

	14.17. History API
	14.17.1. List History and History Items
	14.17.2. Examples

	14.18. Index Pipelines API
	14.18.1. Manage Index Pipelines: List, Create, Update, Delete
	14.18.2. Refresh an Index Pipeline
	14.18.3. Submit a Set of Documents to an Index Pipeline
	14.18.4. Debug a Pipeline
	14.18.5. Examples

	14.19. Index Stages API
	14.19.1. List Index Stages or Properties of an Index Stage Type
	14.19.2. List an Index Stage
	14.19.3. Create, Update or Delete an Index Stage
	14.19.4. Send a Test Document through an Index Stage
	14.19.5. Examples

	14.20. Index Profiles API
	14.20.1. Create, List, Update or Delete an Index Profile
	14.20.2. Use a Profile to Index Documents

	14.21. Messaging API
	14.21.1. Attributes
	14.21.2. Add or Display a list of messaging service instances
	14.21.3. Send a message
	14.21.4. Schedule messaging
	14.21.5. Check message status
	14.21.6. Examples

	14.22. Nodes API
	14.22.1. Get Hosts, Node Status by Service or Node Status by Host
	14.22.2. Examples

	14.23. Query Pipelines API
	14.23.1. Manage Query Pipelines: List, Create, Delete
	14.23.2. Manage Query Pipelines: Update
	14.23.3. List a Query Pipeline
	14.23.4. Send a Query through a Pipeline
	14.23.5. Query Pipeline Definition Properties
	14.23.6. Examples

	14.24. Query Profiles API
	14.24.1. Create, List, Update or Delete a Query Profile
	14.24.2. Use a Profile to Run a Query
	14.24.3. Examples

	14.25. Query Stages API
	14.25.1. List Query Stages or Properties of an Query Stage Type
	14.25.2. List a Query Stage
	14.25.3. Create, Update, or Delete a Query Stage
	14.25.4. Send a Test Query through a Query Stage
	14.25.5. Examples

	14.26. Realms API
	14.26.1. Create, Update, Delete or List Realms

	14.27. Recommendations API
	14.27.1. Recommendation types
	14.27.2. Request Parameters
	14.27.3. Output
	14.27.4. Examples

	14.28. Reporting API
	14.28.1. Report Configuration Information
	14.28.2. Reports request syntax
	14.28.3. Format of Report Results
	14.28.4. Examples

	14.29. Roles API
	14.29.1. Create, Update or Delete Roles
	14.29.2. Role Specification
	14.29.3. Examples

	14.30. Scheduler API
	14.30.1. Manage Schedules: List, Create, Update, Delete
	14.30.2. Stop or List Running Scheduled Jobs
	14.30.3. Get Job History
	14.30.4. Schedule Definition Properties
	14.30.5. Examples

	14.31. Search Cluster API
	14.31.1. Manage Search Cluster Definitions: List, Create, Update, Delete
	14.31.2. Get System Information and Node Status for a Specific Search Cluster
	14.31.3. Search Cluster Definition Properties
	14.31.4. Examples

	14.32. Sessions API
	14.32.1. Create a Session

	14.33. Signals Aggregator API
	14.33.1. Create, Update, Delete or List an Aggregator Job
	14.33.2. Start or Check an Aggregator Job
	14.33.3. Get Aggregator Job History
	14.33.4. Signals Aggregator Definitions Properties
	14.33.5. Examples

	14.34. Signals API
	14.34.1. Index a Signal
	14.34.2. Signal document structure
	14.34.3. Examples

	14.35. Solr API
	14.35.1. Examples

	14.36. SolrAdmin API
	14.36.1. Example

	14.37. Solr Configuration API
	14.37.1. List and View Configuration Files
	14.37.2. Create or Update a File in ZooKeeper
	14.37.3. Solr Configuration Definition Properties
	14.37.4. ZooKeeper Collection Configuration Definition Properties
	14.37.5. Examples

	14.38. Stopwords API
	14.38.1. List or Update Stop Words
	14.38.2. Examples

	14.39. Synonyms API
	14.39.1. List or Update Synonyms
	14.39.2. Examples

	14.40. System Admin APIs
	14.41. System API
	14.41.1. Get Metric Names
	14.41.2. Get System Metrics
	14.41.3. Threads
	14.41.4. Buffers
	14.41.5. Ping
	14.41.6. Examples

	14.42. Usage API
	14.42.1. Get Usage Stats or the System ID
	14.42.2. Examples

	14.43. User API
	14.43.1. Create, Update, Delete or List Users

	14.44. ZooKeeper Import/Export API
	14.44.1. ZooKeeper
	14.44.2. Utility script zkImportExport.sh
	14.44.3. Fusion REST API service ZKImportExport

