L= LucidWorks:

LucidWorks Search
Custom Connector
Guide

v2.6 Documentation

Created: 12-Sep-2013

LucidWorks Search Documentation 12-Sep-2013

Table of Contents

How to Use this Documentation 4
Conventions 4
Customers of LucidWorks Search on AWS or Azure 6
Getting Support & Training 7

Custom Connector Guide 8
Example Crawler 8
Introduction to Lucid Connector Framework 9
How To Create A Connector 11
Integrating Google Connectors 24
Integrating New Crawlers with LucidWorks 32

Glossary of Terms 34
A 34
B 34
C 34
D 35
F 35
I 36
M 36
N 36
Q 36
R 36
S 37
T 38
W 38

About LucidWorks 39

© 2013 Find this documentation online at Page 2 of 39

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

LucidWorks Search Documentation

The LucidWorks Search Documentation is organized into several guides that cover all aspects of
using and implementing a search application with LucidWorks Search, whether on-premise or
hosted on AWS or Azure.

Installation & Upgrade Guide LucidWorks REST API Reference

Installing LucidWorks Search
System Directories and Logs
Upgrade instructions for v2.5
Review changes from LucidWorks
v2.1 to v2.5

Configure data sources and
administer crawls

Set system settings

Manage fields, field types, and
collections

® Example clients in C#, Perl and
Python

System Configuration Guide

Troubleshooting crawl issues

Alerts configuration

Query options

Custom fields, field types, and other

index customizations

® Performance considerations and
system monitoring

® Distributed search and indexing

® Security options

Custom Connector Guide

® Introduction to Lucid Connector
Framework
® How To Create A Connector

Lucid Query Parser

® How the default query parser handles
user requests
® Customization options

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 3 of 39

LucidWorks Search Documentation 12-Sep-2013

How to Use this Documentation

Audience and Scope Topics covered on

This guide is intended for search application developers and this page:
administrators who want to use LucidWorks Search to create world class

search applications for their websites. ® Audience

and Scope
While LucidWorks Search is built on Solr, and many of its features are ® Conventions
implementations of Solr and Lucene features, this Guide does not cover ® Customers of
basic Solr or Lucene configuration. We do, however, point out where LucidWorks
LucidWorks Search deviates from Solr or Lucene standard configuration Search on
practices, and have provided links to Solr and Lucene documentation AWS or
where possible for further explanation if the functionality in LucidWorks Azure
Search is identical to Solr or Lucene. ® Getting
One important note to remember is that LucidWorks is multi-core 'Is'll'JapiEionr; &

enabled by default, with col | ecti onl as the default core. This means
that standard Solr paths such as http://| ocal host: port/solr/*, as

shown in Solr documentation, would be
http://1ocal host:port/solr/collectionl/* in LucidWorks Search.

Conventions

Paths

Server paths are described in relation to the base LucidWorks Search installation path, indicated by
$LWS_HOME. For example, if LucidWorks Search was installed at / var/ | uci dwor ks, then the path to
the 'app' directory shown as $LW5s_HOVE/ app will be / var /| uci dwor ks/ app on the server.

Notes

Special notes are included throughout these pages.

Note Type Look & Description

Information

@ Notes with a blue background are used for information that is important
for you to know.

© 2013 Find this documentation online at Page 4 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Notes
» Notes are further clarifications of important points to keep in mind while
using LucidWorks.

Tip

) Notes with a green background are Helpful Tips.
Warning

=’ Notes with a red background are warning messages.
Cloud

Information for LucidWorks Search in the Cloud Users
Information specifically for LucidWorks Search customers on the AWS or Azure
Platform.

REST API Conventions

Many of the LucidWorks Search REST APIs support several methods (such as POST, GET, PUT,
DELETE) and each is documented with detailed attribute descriptions and examples of inputs and
outputs. Each description includes the path to the API endpoint, parameters for input, and the
attributes returned as a result of the request.

Parameters
Several of the paths shown in the API documentation include parameters that need to be modified
for your installation and specific configuration. These are indicated in italics.

For example, getting the details of a data source is shown as:
GET /api/collection/collection/datasources/id.
If you were using 'col | ecti onl' and data source '3', you would enter:

GET /api/collection/collectionl/datasources/3.

© 2013 Find this documentation online at Page 5 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Server Addresses

The LucidWorks Search REST API uses the Core component, installed at http://localhost:8888/ by
default in LucidWorks Search. Many examples in this Guide use this as the server location. If you
have installed LucidWorks Search locally, and you changed this location on install, be sure to
change the destination of your API requests accordingly.

Customers hosted on AWS or Azure should see the section for Customers of LucidWorks Search on
AWS or Azure below.

Customers of LucidWorks Search on AWS or Azure

All of the preceding information on this page applies to customers who have LucidWorks Search
hosted on either AWS or Azure Platforms, with a few small exception which are detailed below.

Configuration Options

Certain configuration options are available with on-premise installations only (such as installation
options, manual configuration file changes, etc.). The following panel will appear on any page or
section that does not apply or is not available for LucidWorks Search on the AWS or Azure
platforms:

This functionality is

not available with
LucidWorks Search

on AWS or Azure

API Conventions for LucidWorks Search on AWS or Azure

Nearly all of the documented REST APIs will work for customers on AWS or Azure, but the example
API calls must be modified to include either the Access Key or the API Key and used as
authentication credentials. Customers are being transitioned from a simple Access Key to a more
secure Basic authentication system that requires a unique API Key.

1. Customers who only have an Access Key can see the key on the My Search Server page and the
main Collections Overview page of your instance (click the REST API button above the usage
graphs). Example URLs for API calls used in this documentation would then be changed from
http://1ocal host: 8989/ api/... tohttp://access. | uci dworks.i o/ <access key>/api/....
This access key is specific to your instance and should be treated as securely as possible to prevent
unauthorized access via the APIs to your system.

2. Customers with Basic authentication have instances which use an URL with "https://s-
XXXXXXXX.lucidworks.io" where XXXXXXXX is 8 characters (letters or numbers). So, if your
instance URL is "https://s-9sdff10b.lucidworks.io/" you would use that in place of any example API
calls that used "http://localhost:8888". For example, this call to get all collections:

© 2013 Find this documentation online at Page 6 of 39
LucidWorks http://docs.lucidworks.com/

http://localhost:8888/

LucidWorks Search Documentation 12-Sep-2013
curl "http://1ocal host: 8888/ api/collections'

would be changed to:
curl -u ' APl _Key: password' 'https://s-9sdff10b. | uci dworks.io/api/collections'

The API_Key can be found by logging in to your LucidWorks Search instance, and clicking "My
Account" at the upper right of the screen. Click "API Access" on the left to view the API key. The
password is 'x' by default. There is not currently a way to change the default password. You should
take care not to expose this key when posting to our forums, as that information could be seen by
other LucidWorks Search customers.

For users on LucidWorks Search for Windows Azure, the above URL would be: ' https://s-
9sdf f 10b. azure. | uci dworks. i o/ api/col |l ections'.

Getting Support & Training

There are several options to get answers to questions besides this documentation:

® The LucidWorks Search Forum is a place to ask questions and share information about your
implementation.

® The LucidWorks Search KnowledgeBase has articles written by our support and consulting
staff around common issues and questions.

® Training Videos produced by the LucidWorks training team.

® Premium support is also available, providing access to a help desk ticketing system. For more
information see Lucene/Solr Support.

© 2013 Find this documentation online at Page 7 of 39
LucidWorks http://docs.lucidworks.com/

http://support.lucidworks.com/categories/20055683-lucidworks-search-community-help
http://support.lucidworks.com/categories/20056513-lucidworks-search-knowledge-base
http://support.lucidworks.com/forums/21153378-training-videos
http://www.lucidworks.com/support-services/lucene-solr-support

LucidWorks Search Documentation 12-Sep-2013

Custom Connector Guide

This guide discusses how to build a custom connector with the LucidWorks Connector Framework.
It contains the following sections:

® Introduction to Lucid Connector Framework: Provides a technical overview of how connectors
work in LucidWorks Search and an introduction to the various components of the Framework.

® How To Create A Connector: Provides detailed information about each component, including
how to build a custom component and which parts of the example connector to reference
while creating a connector.

® Integrating Google Connectors: If there is a Google Connector Manager connector that you'd
like to use with LucidWorks Search, here are some tips on how to integrate it.

® Integrating New Crawlers with LucidWorks: Once the custom connector is made, LucidWorks
Search needs to be able to discover it; this section describes how to do that.

Example Crawler

There is an example implementation of a crawler provided in the $LWS_HOVE/ app/ exanpl es/ j ava
directory of each LucidWorks installation. That directory also contains the source code for the
example crawler, which can be used as a basis for any custom implementations.

The example crawler provides three sample data sources:

® a very simple crawler for local file system.
® a "random" data source that produces a random number of example documents.
® a "secure" data source that allows you to implement "security trimming" feature.

The examples also include a nested library to illustrate the concept of packaging crawlers with all
dependent jars, and to show that crawlers can actually use such libraries.

Details on how to build and use the example crawler can be found in the README. t xt file in the
$LWS_HOVE/ app/ exanpl es/ j ava directory.

© 2013 Find this documentation online at Page 8 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

12-Sep-2013

Introduction to Lucid Connector Framework

LucidWorks Search offers an open API for managing the process of content acquisition (crawling)
from document repositories, and for adding new implementations for content acquisition

(crawlers).

The main principle behind the design of this API was to isolate the core of LucidWorks Search both
from the details of each crawler component implementation and the details of the indexing
platform, and to allow for integration of externally-developed crawler components. Currently this
API is in use and provides the integration for each crawler integrated with LucidWorks (whether
developed by LucidWorks or as a 3rd party integration).

This graphic gives an overview of the Crawler architecture:

REST API

lucid.aperture
CcC

lucid.gcm CC

Crawler
Controller
(cq)
Registry

lucid.fs CC

lucid.jdbec CC

lucid.solrxml
CC

lucid.external
CC

[lucid?qg=

LucidWorks Crawler architecture

LucidWorks core (/apiiwebapp)

file Aperture
Crawler

GCM
Crawler

web

SharePoint

ParserController
s3
FTP

HDFS

SMB

Filesystem
Crawler

JDBC JDBC Crawler

Solr XML

So {
Solr XML e

UpdateController

External

External
Crawler

Solr core (/solr webapp)

lucid-update-chain

FieldMapping
Processor

Tika

BatchCrawler

In general terms, each Crawler defines possible data source types and their parameters.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 9 of 39

LucidWorks Search Documentation 12-Sep-2013

Each data source is defined by a DataSourceSpec, which lists all possible properties that a
DataSource can take, their default values, and whether they are mandatory or optional. The
DataSourceFactory for each CrawlerController defines the valid DataSourceSpec(s) for a particular
crawler. The DataSourceSpec(s) for a crawler are also known as a type of data source, as a type
must be unique for each CrawlerController. The DataSourceFactory may also contain validation
rules for data source properties; for example, requiring that input to a property is a string instead
of numeric.

The CrawlerController handles the scheduling and execution of crawl jobs. Each job has a unique
identifier and the job definition is reusable. The job definition may include information to initiate a
crawl at a specific time each day, for example. The status of each job is also managed by the
CrawlerController with defined states such as RUNNING, FINISHED, STOPPED and others. Each
crawl job definition also includes instructions for how to handle the output of the job.

All CrawlerControllers are created and managed by the CrawlerControllerRegistry.

Once data has been acquired from content sources, the CrawlProcessor defines how it is further
processed. The ParserController is a document parsing and content extraction service and the
UpdateProcessor represents the output for SolrInputDocument(s) to be indexed. The default
LucidWorks CrawlProcessor currently uses Apache Tika v1.2 for content extraction and parsing
from the raw data. The UpdateProcessor uses a Solr] connection to the LucidWorks instance of
Solr.

It's possible to handle the output of a crawl job as a batch, meaning that no parsing or indexing
can take place (or a combination: no parsing but indexing or parsing but no indexing). The output
of the job is stored for later processing - either to be parsed by a separate process or indexed at a
more convenient time. Batches allow the crawl process to be split into three stages: fetching raw
content; parsing content; and indexing content. A BatchManager handles these processes and
stores the fetched content in a hierarchy of folders on the filesystem, which may consume a great
deal of space depending on the content. Stored content is not automatically cleaned after indexing
(if the content is ever indexed) to allow multiple indexing runs, so care must be taken to remove
unwanted batches when they are no longer needed.

After raw documents have been fetched and their text and metadata extracted, an initial version of
a SolrInputDocument is prepared. Each data source has a property called "mapping" which defines
how to handle the incoming fields of each document. The mappings can specify a field to use as the
unique key, map incoming fields to other previously defined fields, add fields to documents, or
convert field types to other field types. The FieldMapping definitions are sent to Solr in JSON
format to update the rules for the FieldMappingProcessor.

After FieldMapping has been completed, the documents are input to Solr and indexed.

© 2013 Find this documentation online at Page 10 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

How To Create A Connector

As described in the introduction, the Lucid Connector Framework is an open API for managing the
process of content acquisition, known as crawling, from document repositories and for adding new
implementations of content acquisition, referred to as crawlers.

This section and the ones following it, describe how to create a custom connector. Each section will
start with a technical overview of the component and then discuss the classes that are required to
create a custom component for your own needs. An example connector is also provided and can be
found in $LWS_HOME/ app/ exanpl es/ j ava.

The following sections will discuss each of the Connector Framework components:

® Crawl erControl | er facade, responsible for defining and controlling the crawl jobs executed
by a given crawler platform. Crawl er Cont r ol | er instances are created by
Crawl er Control | er Regi stry. This is the central class in the API, and users interact with
crawler platforms via methods defined in this class.

® Dat aSour ce which describes in an abstract way the configuration parameters for accessing a
content repository and the set of documents to retrieve. Dat aSour ce-s are created by a
Dat aSour ceFact ory specific to a concrete crawler platform.

® (Closely related to Dat aSour ce-s are Dat aSour ceSpec-s, which are descriptors that define
what properties can be set, their default values and how the values set by a user can be
validated.

® Crawl jobs run by Crawl er Control | er -s are represented by Crawl St at e, and their status
can be obtained from Crawl St at us.

® Crawl Processor is an abstraction for processing the output of a crawl job. This in turn uses a
Par ser Control | er and Updat eControl | er, responsible for parsing and indexing the results
of a crawl job.

® Bat chManager handles batch jobs, which are crawl jobs that don't immediately send their
output to a G awl Processor for parsing and indexing, but instead store the raw content for
later processing (either parsing + indexing, or just indexing).

® Fiel dvappi ng and Fi el dMappi ngUti | constitute a metadata mapping facility to map
metadata extracted from documents to the target index fields. This facility includes some
rudimentary type conversion.

The following graphic shows the architecture of the components in detail:

© 2013 Find this documentation online at Page 11 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Connector Framework Architecture

Example Crawler

A simple example crawler is provided in the $LW5s_HOVE/ app/ exanpl es/ j ava directory of a
LucidWorks installation. That directory also contains the source code for the example crawler,
which can be used as a basis for a custom crawler.

Custom Classes

To build a custom crawler you need to write the following classes. In each example, the crawler
name should begin each class name; replace cr awl er with the crawler name when creating the

files.

® craw er Dat aSour ceSpec: Derived from Dat aSour ceSpec. Defines data source properties,
their default values and validations.

® craw er Dat aSour ceFact ory: Derived from Dat aSour ceFact ory. It is responsible for
reporting the list of supported data source types and their specifications. The actual creation
of data source instances from a map of parameters is done in Dat aSour ceFact ory.

® craw erCraw er Control | er : Derived from Craw er Control | er . Defines the startup, stop
and reset of the crawler.

® craw erCrawl St at e: Derived from Craw St at e. Defines stop and start for a daemon-thread
the crawler should run with.

® craw er Craw er: Derived from Runnabl e. The traversal of the Dat aSour ce is done here.

© 2013 Find this documentation online at Page 12 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

DataSource and DataSourceSpec

Overview

The Dat aSour ce class is essentially a wrapper for a set of properties, with some specialized
methods and constructors that enforce providing some details. Dat aSour ceFact ory (an abstract
class, whose implementation is specific to a specific crawler platform) knows what kind of data
sources are supported by the platform, and it also knows how to validate a set of provided
properties to verify whether they can define a valid DataSource for this platform. For this purpose
the Dat aSour ceFact ory also keeps a registry of Dat aSour ceSpec-s. These "specs" list all possible
properties that a DataSource can take, their default values and whether they are mandatory.

Dat aSour ceSpec also provides a limited conversion facility (casting) of input data to the formats
and types expected by a corresponding DataSource (e.g., it's common for numeric parameters to
be supplied by a Ul as strings - the casting then uses Validator subclasses to convert such strings
to a numeric format, so that other parts of the API will deal only with the expected types of the
properties).

Dat aSour ce type is an arbitrary string identifier that must be unique in the scope of a given
crawler platform. DataSource category is a purely informative string that may provide hints to the
user about how to present documents retrieved from this source (e.g. files, database records, ...).

Dat aSour ce instances should be viewed as purely passive data containers. Any state related to
crawl jobs should be kept in implementation-specific subclass of Crawl St at e.

The properties of a Dat aSour ceSpec are those that are entered by a user when creating a new data
source of this type (either through the UI or via the API). Careful consideration should be given to
which properties should be required and each property should have as good a default as possible.
Validators that match the expected type of the value input for a property should be called to catch
configuration errors as early as possible (e.g., before they produce errors in the crawl). Several
predefined validators are available which match many common types (such as int, float, URL, etc.)
and they should be used where appropriate.

LucidWorks uses underscores for property hames in each of our crawler implementations instead of
CamelCase (so, a property is called "ignore_robots" instead of "ignoreRobots"). Following the same
standard may help your custom crawlers appear to work the same as the included set of crawlers.

The properties are also used by the Admin UI to dynamically create an entry form for users to
configure new data sources. The flexibility of this approach allows new crawlers to be added, or
properties of a data source modified, without having to create or update forms for each data source
type. There are some conventions the UI uses when reading the properties for a specific data
source. First, property names are normalized and used as form labels. The normalization removes
any underscores and the first word is capitalized. A property name such as "access_token" is
transformed to display as "Access token". Property descriptions are used to display information to
the user about what kind of information is expected for that attribute. Descriptions are optional,
but if they are used, they should be kept short.

© 2013 Find this documentation online at Page 13 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Custom Classes for This Component

In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in
$LWS HOVE/ app/ exanpl es/ javal/ craw er/src/javal/ com | uci d/ exanpl es/ craw .

To build a custom crawler you need to write the following classes for the DataSource component.
In each example, the crawler name should begin each class name; replace cr awl er with the
crawler name when creating the files.

® craw er Dat aSour ceSpec: Derived from Dat aSour ceSpec. Contains crawler-specific
properties. The super-constructor from Dat aSour ceSpec has to be called with the Category of
the Crawler (if there's no appropriate Category please use Cat egory. O her instead).

® craw er Dat aSour ceFact ory: Derived from Dat aSour ceFact or y. Registers supported crawler
types and their Dat aSour ceSpec-s. The Crawl er Control | er has to be set as a parameter in
the super-constructor. The Dat aSour ceSpec-s should be registered using the following calls:

publ i ¢ Exanpl eDat aSour ceFact ory(Crawl erController cc) {
super (cc);
/1 map type nanes to specifications
types. put ("xfile", new XFil eSpec());
types. put (" xrandont, new XRandonSpec());
types. put ("xsecure", new XSecureSpec());

© 2013 Find this documentation online at Page 14 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

CrawlerController, CrawlStatus and CrawlerControllerRegistry

Overview

The abstract class Crawl er Cont r ol | er models interactions with a crawler implementation.

Crawl er Control | er instances are created and managed by a Crawl er Control | er Regi stry. Each
crawler provided in a separate jar (including some built-in crawlers and all third-party crawlers) is
loaded using its own classloader - this way crawler implementations are isolated and can use
conflicting versions of dependencies.

Although the singleton pattern for Crawl er Cont rol | er -s is not enforced, it is followed in practice
through the use of Crawl er Control | er Regi stry (which is a singleton in LucidWorks Search).

A crawl job is the process of going to a document repository and retrieving documents.
The life-cycle of a crawl job consists of the following states:

® The crawl job is defined and registered with the crawler platform using
Crawl erControl | er.definedob(...). This is also a chance for the crawler platform to
perform additional verification of the crawl parameters. A defined job gets a unique identifier,
and the job definition with this identifier is reusable. An internal component
Crawl erControl | er.jobSt at eMgr manages this definition in memory. For crawler platforms
that run in separate processes there may be a need to synchronize this internal job status
with the external process; the crawler API makes no such provisions, since the details of this
process are implementation-specific.

® The crawl job is started using Crawl er Control | er.startJob(...). The job itself is then
being executed asynchronously (in a separate thread). This call should return quickly and
must not block for the duration of the crawl job. In the current API there is provision only for
one running crawl job per job definition.

® A transitory state is associated with the process of starting a job called "STARTING", which is
expected to last relatively shortly, after which the job transitions to a "RUNNING" state or to
one of the final failure states (see below). Most of the work for the crawl job is expected to
take place in the RUNNING state. When the work is finished in an orderly manner, the job
transitions to a FINISHING state, where the necessary commits and cleanups are performed,
and then finally transitions to a FINISHED state.

® A running crawl job can be stopped or aborted. When a crawl job is stopped, the
CrawlerController will make an attempt to preserve as much of the partial crawl results as
possible, and stops the job in an orderly manner. When the crawl job is aborted there are no
such guarantees; however, partial results may still become visible and committed to the
index. If this is not desireable the Crawl er Control | er implementation may track documents
by adding a run identifier (batch_id) and then issue a delete request with this batch_id.
There are two transitory states associated with these actions: STOPPING and ABORTING.
During these states it's expected that the controller will perform necessary cleanups. Final
states after these actions are STOPPED and ABORTED, respectively.

® In case of a non-recoverable error the job goes into a final EXCEPTION state.

© 2013 Find this documentation online at Page 15 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013
The following shows the various crawl job states and how they interact with one another:

" IOLE)
o] Initlal sware, anly
= befare first use

shart

wlr

= | STARTING RUNMING
= abior
", .-

exCRpl o
P in ¥ k4 . i -.
FIMISHING AEORTING rh':JFHNE |
| .) |)

s L= 3 (& G
(EXCEFTION | [FINISHED | ’nsumkuJ 's'umn‘|

B s =

Crawl Job States

Crawl job status can be retrieved using Crawl er Control |l er. get Status(...) or all running and
recently finished crawl jobs can be listed using Crawl er Control I er.listJobs(...). Thislistis
maintained in memory, so it's cleared on restart. There is also a persistent job history that is
maintained with Crawl er Control | er. get H st oryRecorder (). record(craw Status).

Crawler platforms that want to support batch operations should return a non-null implementation
of Bat chManager , such as the provided SimpleBatchManager that stores intermediate crawl results
in local files or another method.

Back to Top

Custom Classes for This Component

In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in
$LWS_HOWVE/ app/ exanpl es/ javal/ craw er/src/javal/ com | uci d/ exanpl es/ craw .

To build a custom crawler you need to write the following classes for the Crawl er Control | er
component. In each example, the crawler name should begin each class name; replace cr aw er
with the crawler name when creating the files.

® crawl erCrawl erControl | er: Derived from Craw er Control | er. Defines the startup, stop
and reset of the crawler.

® craw er Crawl St at e: Derived from Craw St at e. Defines stop and start for a daemon-thread
the crawler should run with.

For every derived class there are some methods that can be overridden:

© 2013 Find this documentation online at Page 16 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

® crawl erCrawl erControl l er:
® reset(String collection, String dataSourceld): tells the crawler to reset the
used data source, to clean up timestamps used to reinitialize the crawl state etc.
® resetAll (String collection): tells the crawler to reset all data sources
® Crawl I d definelob(DataSource ds, Craw Processor processor) : Initializes the
Crawl St at e. The Dat aSour ce and the Crawl Processor have to be registered like this:

state.init(ds,

ExchangeCrawl State state = new ExchangeCraw State();

this.jobStateMr.add(state);

processor, this. historyRecorder);

® startJob(Craw I d descrld): starts the job with Crawl State. start ()
® stopJob(Craw I d jobld): stops the job
® abortJob(Crawl I d jobld): aborts the job (can be the same as stopJob)

® cramerCraw State:

® start(): starts a Crawler over a daemon-thread

Back to Top
© 2013 Find this documentation online at Page 17 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Crawler

Overview

The Craw er does the work of traversing the Data Source and collecting the data for input.

Custom Classes for this Component

In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in
$LWS_HOWVE/ app/ exanpl es/ javal/ craw er/src/javal com | uci d/ exanpl es/ craw .

To build a custom crawler you need to write the following classes for the Crawler component. The
crawler name should begin each class name; replace cr awl er with the crawler name when creating
the files.

® craw er Craw er: Derived from Runnabl e. The traversal of the Dat aSour ce is done here.

All classes have to override some methods from the interfaces they are derived from or call a
method of the super class to get a successful registration in the LucidWorks framework.

® crawl erCraw er:
® run() : Overridden by the interface Runnabl e. Here the traversal of the data source is

done.
® stop(): Overridden by the interface Runnabl e.

© 2013 Find this documentation online at Page 18 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

CrawlProcessor, ParserController and UpdateController

Overview

Each crawl job definition should specify a sink for the output of the crawl job. A null value may be
provided to mean the default Crawl Processor implementation that uses the

Ti kaPar ser Control | er and Updat eControl | er depending on the setting of the datasource (see
below). This default implementation can be also configured to persist raw results of the crawl job
as a batch when the "caching" property is true for a datasource. Document parsing and indexing
can also be turned off (and the data stored in a batch) when a "parsing" property of a data source
is set to false.

The Craw Processor exposes a minimal API to simply consume the raw output documents plus the
protocol-level metadata. Alternatively, it can consume a Sol r | nput Docunent if the parsing process
was already performed. Usually only one of the methods is called; specific implementations of
Crawl Processor -s pass data between these methods as automatically as necessary.

The default Cr awl Processor that comes with LucidWorks (the one that is instantiated when no
Crawl Processor is specified) uses internally two other abstractions:

® PparserController represents a document parsing and content extraction service. The
default implementation of this abstract class in LucidWorks is called Ti kaPar ser Control | er
and uses Apache Tika v1.2 for content and metadata extraction.

® Updat eControl | er represents the output for Sol r I nput Docunent -s to be indexed. The
default implementation of this component obtained from Updat eControl l er.create(...)
uses a Solr] connection to the Lucidworks instance of Solr as output when the "indexing"
property is set to true, otherwise it stores parsed documents in batch data.

Custom Classes for This Component

None required, unless the default Cr awl Processor is not sufficient.

© 2013 Find this documentation online at Page 19 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

BatchManager

Overview

Bat chManager is a component that is responsible for persisting and managing intermediate crawl
results. This allows the crawling process to be split into up to three stages:

® fetching raw content from remote repositories
® parsing content, as well as text and metadata extraction
® indexing the extracted data as SolrInputDocuments

The advantage of this functionality is that the fetching of the data is usually the most costly step in
the crawling pipeline, and it's sometimes better to execute the parsing and indexing at a different
time than the fetching. It can also be used to re-do some of the steps e.g., after fixing
configuration errors (either in field mapping or in the schema. xni file). The disadvantage is that it
complicates the data flow and consumes additional disk space, but that may be an acceptable
tradeoff.

LucidWorks comes with an implementation of this API called Si npl eBat chManager . This
implementation stores batch data in a hierarchy of folders that in turn contain record-oriented files.
Si npl eBat chManager creates separate folder hierarchies for each crawler, each crawl job, and each
crawl job run that resulted in some batch data. The files are the following:

® patch. st at us - describes the status of the batch, e.g. how many raw documents are
present, how many parsed documents, timestamp, etc.
® content.raw - contains the raw content of retrieved documents together with protocol-level

metadata.
® solr.json - contains SolrInputDocument-s ready for indexing, in JSON format.

A Craw er Control | er implementation supports batch operations when it provides a non-null
instance of a Bat chManager . The following operations can be performed on batch data:

® Batch data can be created by setting appropriate options in Dat aSour ce-s, when the default
implementations of Crawl Processor, Parser Control | er and Updat eControl | er are used.
There is also a lower-level API available for writing individual records to a specified batch, see
the ContentFil eWiter and Sol rFi |l eWiter javadoc for more details.

® BatchManager.|istBatchStatuses(...) (ora REST API under
/api/col | ections/<col | ecti on>/bat ches) can be used to retrieve a list of available batch
data sets.

® A batch processing job can be started with Crawl er Control |l er. startBatchJob(...), where
the user can specify the output of the batch processing, whether the content should be
parsed (or re-parsed) and/or indexed, using the supplied Crawl Processor instance or a
default one when nul | is provided.

© 2013 Find this documentation online at Page 20 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

® running batch jobs can be listed with Crawl er Control |l er.|i st Bat chJobs(), or otherwise
controlled in the same way as regular crawl jobs, i.e. stopped or aborted. They also undergo
the same state changes as regular crawl jobs.

Obsolete or no longer needed batch data can be deleted using Bat chManager . del et eBat ch(...)
or using the bulk delete Bat chManager . del et eBat ches(. ..). Batch data is not deleted by default,
so must be managed to ensure the batches do not consume too much disk space.

Custom Classes for This Component

None. Customizations to support batch operations are defined in the custom Craw er Control |l er.

© 2013 Find this documentation online at Page 21 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

FieldMapping and FieldMappingUtil

Overview

After the raw documents are parsed and their text and metadata are extracted, an initial version of
Sol r I nput Docunent is prepared (this usually takes place somewhere in a Crawl Processor or a

Par ser Control | er that it uses). Since the metadata names in documents coming from various
sources can be pretty arbitrary it is necessary to normalize their values and to map their names to
Solr fields valid for the current index schema. This is the role of the Fi el dMappi ng and the

Fi el dMappi ngUti | helper class.

Each Dat aSour ce has a property "mapping" that contains an instance of Fi el dMappi ng (if there
was none specified on DataSource creation then a default one with the default mappings will be
provided). You can examine the details of the default field mapping by looking through the
response of Data Sources REST API.

Field mappings are specified per data source, and then passed to Updat eControl | er. The process
of field mapping is performed by the Updat eCont r ol | er so usually it should not be invoked
explicitly. Updat eCont r ol | er implementations may further verify the mappings using the current
Solr schema so that the mappings produce valid fields.

The mappings consist of the following main areas:

® uni queKey - this property specifies the name of the uniqueKey in the Solr schema. This value
is verfied with the current schema when a new crawl job is defined.

® mappi ngs - this is a map of source metadata names to target field names. Source names are
case-insensitive. A value of null means that this metadata should be discarded. See below for
the details of the mapping algorithm.

® |iteral s - this is a map of key/value pairs that define fields to be added to every document.

® types - defines any special field types if a conversion is necessary from the default STRING
type. Currently recognized types are STRING, INT, LONG, FLOAT, DOUBLE and DATE. If a
type is not specified then STRING is assumed.

® nmultiVal - thisis a map of field names and boolean values. True means that the target
index field with this name supports multiple values. False (or a missing key/value) means
that the field is single-valued.

® dynani cFi el d - this property specifies a prefix for dynamic fields if a more specific mapping
is missing. See also below for the details of the mapping algorithm.

® defaul t Fi el d - this property specifies a name of the default field if a more specific mapping
is missing. See also below for the details of the mapping algorithm.

® dat asourceFi el d - this property specifies a prefix of the fields that preserve data source id,
data source type and data source display name.

® | ucidworks_fiel ds - this boolean property (defaults to true) indicates that
LucidWorks-specific fields should be automatically added to incoming documents (such as
data_source id, data_source_name and data_source_type).

© 2013 Find this documentation online at Page 22 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013
Field mapping is usually created and initialized in DataSourceFactory.create(...) method when the
datasource is initially created. During job startup this mapping is passed to Updat eControl | er,
which can optionally verify field mappings with the current index schema for the collection specified
in the data source. If a field is missing in the schema then it's mapped to null (i.e., discarded). The
arity and the type of the field is checked and set appropriately. This process is repeated each time
Crawl erControl ler.startJob(...) is called.

The process of mapping source metadata names to the target field names works like this (note:
this process is already encapsulated in one of the existing Updat eCont r ol | er implementations):

® first a case-insensitive match is tried with the source names present in the "mappings". If a
value is found then it's returned (a value of null should be interpreted as "discard").

® then if dynam cFi el d is non-null the source name is converted to a dynamic field name like
this: to the value of dynani cFi el d an underscore is appended, and then an escaped version
of the source name is appended (the escaping replaces any non-word character with an
underscore).

® then if def aul t Fi el d is non-null then the value of def aul t Fi el d is returned

® finally, the source name is returned.

Internally, this process uses a helper class Fi el dMappi ngUti | . This class contains methods to:

® initialize field mappings with values suitable for Aperture or Tika parsing
® verify the mapping with the current index schema
® normalize fields - this normalization step should always be performed to make sure that the
SolrInputDocument instances contain only fields valid for the current schema, with correct
multiplicity and correct type. The normalization works like this:
® if a field is defined as type DATE then the value is checked - if it's an instance of
java. util . Date then it's left unchanged, otherwise the string representation of the
value is parsed using Solr's Dat eUti | to obtain a valid Dat e instance. In case of
parsing errors the offending value is discarded.
® if a field is defined as single-valued but multiple values are present then:
® if a field is type DATE only the first value is retained, all other values are
discarded
® otherwise a set of unique string representations of values is concatenated using
single space character, and the original multiple values are replaced with this
single concatenated value.
® there is also some other special treatment for the "mimeType" field to avoid common
Tika and Aperture parsing errors.
® addLucidworksFields - this method ensures that some fields necessary for the LucidWorks Ul
are populated.

Custom Classes for This Component

None necessary or required.

© 2013 Find this documentation online at Page 23 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

12-Sep-2013

Integrating Google Connectors

LucidWorks ships with a connector for SharePoint repositories
that uses the Google Connection Manager (GCM), which has
been integrated with LucidWorks Search. SharePoint is only one
of several available connectors, however, and others can be
integrated by following the process defined below. Other
repositories that can be crawled using GCM connectors include
Documentum, IBM FileNet, LDAP, and Lotus Notes.

The process to integrate a new connector is simpler than
developing a crawler from scratch, but requires understanding
many of the same concepts. Before proceeding, please review
the Introduction to Lucid Connector Framework. With this
procedure we'll create a Dat aSour ceSpec and then register it
with LucidWorks. Once created, the new connector will be a
type of data source for the | uci d. gcmcrawler (this would only
be important if you use the Data Sources API - if you use the
Admin UI only, you won't notice a difference between the other
data source types).

It may also be helpful to review the Connector Developer's
Guide from Google. LucidWorks is using Google Connector
Manager v2.8.6.

Overview of the Development Process

There are several steps described below, summarized here:

Covered in this section:

® Qverview of the
Development Process
® Preparing for
development
® Writing the
Dat aSour ceSpec
® Extract Fields
from the
Connector HTML
Form
® Writing the
Dat aSour ceSpec
® Registering the
Extension
® Deployment

1. Prepare the development environment by checking the requirements.
1. Download and install LucidWorks. Do not start it during installation, or stop it if it is

already running.

2. Download a compatible Google Connector and extract the files.

3. Start LucidWorks with a special port.

2. Use that sample Google Connector project included with LucidWorks to extract the connector
configuration form and use that information to create an appropriate Dat aSour ceSpec.
3. Implement a Dat aSour ceSpec class, extend it to register the Dat aSour ceSpec, then write a

configuration file for the java service loader.
4. Deploy the . j ar file.
5. Start LucidWorks and use the new connector.

Preparing for development

The included sample project requires the following installed on the system where development will

be completed:

© 2013 Find this documentation online at

LucidWorks http://docs.lucidworks.com/

Page 24 of 39

http://google-enterprise-connector-manager.googlecode.com/svn/docs/devguide/index.html
http://google-enterprise-connector-manager.googlecode.com/svn/docs/devguide/index.html

LucidWorks Search Documentation 12-Sep-2013

® Ant 1.8+
® Java 1.6+
® |ucidWorks Search

To properly prepare the development environment, perform these steps:

1. Download and install LucidWorks. More information on installing LucidWorks is available in
the section on Installation. If you have already installed it and have it running, stop it.

2. Download a compatible Google connector. Connectors can be found at at
https://code.google.com/p/google-enterprise-connector-manager/. Review the release notes
for the candidate connectors to make sure they work with GCM v2.8.

3. Extract the connector files from the downloaded Connector archive and copy the . j ar files
from | i b directory to $LWS_HOVE/ app/ webapps/ connect or - manager / WEB- | NF/ | i b/ . If there
are duplicate . j ars in the target directory, you may need to resolve any conflicts. For
example, you can test it with the example google Idap connector (see
$LWS_HOVE/ app/ exanpl es/ googl e- connect or/ googl e- connector-1 dap-2.8.4.jar)

4. Start LucidWorks with following command:
app/ bin/start.sh -1we_connectors_java opts "-D uci dwor ksGCMPort =10000"

5. After starting, verify there are no errors in the logs (see also System Directories and Logs for
more information on logs). Pay particular attention to possible errors in the
connect or s- <dat e>. | og.

6. Go to the $LWS_HOVE/ app/ exanpl es/ googl e- connect or directory. This folder contains an
ant buildable project that can be used as a starting point when implementing new
integrations.

7. Localize the sample project by editing the bui | d. xm file, and modifying the gcm ur |
property. The port must be changed to the port that was specified when starting LucidWorks.

8. Run ant di st to verify that the environment is successfully configured. If the build does not
succeed, correct any errors in bui | d. xm .

At this point, you should be ready to follow the rest of these instructions to extract the required
information for the custom connector for LucidWorks.

Back to Top

Writing the DataSourceSpec

When integrating Google connectors into LucidWorks Search, the majority of the work is to make
sure the new data source type can be used with Admin UI. By itself, a Google Connector provides a
UI through a HTML form. In LucidWorks, however, the way to provide the configuration UI is based
on Dat aSour ceSpec-s. A Dat aSour ceSpec is a class that provides sufficient information for the UI
so that it can render the configuration screen (data source configuration screens in LucidWorks are
dynamically generated based on information provided to it by the data source). Sometimes making
the Admin UI work with the new connector is a straightforward task, but sometimes it requires
some additional effort.

© 2013 Find this documentation online at Page 25 of 39
LucidWorks http://docs.lucidworks.com/

https://code.google.com/p/google-enterprise-connector-manager/

LucidWorks Search Documentation 12-Sep-2013

The configuration screen should provide the user with information about which fields are required
and if possible, provide some guidance about what format to enter information. Unfortunately, at
this point the process of figuring out what fields a Google Connector requires a little bit of reverse
engineering (figure aout required parameters and their format from the HTML form) and some trial
and error.

There are several steps to writing the Dat aSour ceSpec for the connector, explained in each of the
sections below:

1. Extracting Fields from the Connector HTML Form
2. Writing the Dat aSour ceSpec

Back to Top

Extract Fields from the Connector HTML Form

Once the environment is properly configured and the sample project is set up for development, you
can use the ant target ant |i st-connectors to show the GCM connectors installed in an
embedded Google Connector Manager web application in LucidWorks. You'll need the name of the
connector in order to retrieve the HTML form. The output of this command looks like this (the
WARN messages are fine):

sh> ant |ist-connectors

[java] Avail abl e connectors:
[java]

[java] - LDAPConnect or Type
[java] - sharepoint-connector

These lines show the GCM connectors installed on the system.

Next, retrieve the connector configuration HTML form by executing ant get - connect or-form

- Dconnect or =<nane of the connector> (for example, ant get-connector-form

- Dconnect or =LDAPConnect or Type). The output of this command is a file called

connector-form htnm that you can find in the example project main directory. You will need to
examine this file for the required fields and their valid formats. Then you can use that information
to write the Dat aSour ceSpec for the connector.

For example, the HTML form for LDAP connector looks like this:

<tr>
<td>

LDAP Connector Confi guration<span style="col or:
#FF0000" ><sup>Pr evi ew</ sup></ span></ b></t d>
</[tr>
<tr>

© 2013 Find this documentation online at Page 26 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

12-Sep-2013

<td vali gn="top"><l abel for="hostname">LDAP Directory
Host </ | abel ></td>

<t d><i nput nane="host nane"
</[tr>
<tr>

Server
i d="host nane" type="text"></input></td>

<td valign="top"><| abel for="port">Port nunber</|abel ></td>

<td><i nput nane="port" id="port" type="text" val ue="389"></input></td>
</[tr>
<tr>
<td val i gn="top"><l abel for="authtype">Authentication Type</I| abel ></td>
<t d><sel ect nane="aut htype" id="authtype">
<option val ue=" ANONYMOUS" sel ect ed="sel ect ed" >Anonynous</ opti on>
<option val ue="SI MPLE" >Si npl e</ opti on>
</sel ect ></td>
</tr>
<tr>
<td vali gn="top"><l abel for="usernane">LDAP Bi ndi ng
Di sti ngui shed Nanme (DN)</I abel ></td>
<t d><i nput nane="usernane" id="usernanme" type="text"></input></td>
</[tr>
<tr>
<td val i gn="t op"><l abel for="password">LDAP Bi ndi ng
Passwor d</ | abel ></t d>
<t d><i nput nane="password" id="password" type="password"></input></td>
</[tr>
<tr>
<td val i gn="top"><l abel for="nethod">Connection Method</I abel ></td>
<t d><sel ect name="net hod" id="nethod">
<option val ue="STANDARD" sel ect ed="sel ect ed" >St andar d</ opti on>
<option val ue="SSL" >SSL</ opti on>
</ sel ect></td>
</[tr>
<tr>
f or ="basedn" >LDAP Search Base</| abel ></td>
i d="basedn" type="text"></input></td>

<td valign="top"><| abel

<t d><i nput nane="basedn"
</tr>
<tr>

<td valign="top"><l abel for="filter">User Search Filter

(only these users will be indexed)</I|abel ></td>

<td><i nput nane="filter" id="filter" type="text"></input></td>
</[tr>
<tr style='display: none'>
<t d><i nput type='hi dden’

value="[]" />
<script type="text/javascript">

i d=' schemaval ue' nane=' schemaval ue'

function getlndexOf (arr, value) {
for (var i =0; i <arr.length; i++) {
if (arr[i] == value)
return i;
© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 27 of 39

LucidWorks Search Documentation 12-Sep-2013
}

return -1;

}

var schenmaList = new Array();
functi on appendToSchema(chkbox) {
if (schemaList.length == 0) {
schemali st = JSON
. par se(docunent . get El ement Byl d(' schemaval ue') . val ue);
}
if (chkbox. checked) ({
schemali st. push(chkbox. val ue) ;
docunent . get El enment Byl d(' schenmaval ue'). val ue = JSON
.stringify(schemalList);
} else {
if (getlndexOt (schemalist, chkbox.value) >= 0) {
schenali st. splice(getl ndexOf (schenali st, chkbox.value), 1);
docunent . get El enent Byl d(' schenaval ue'). val ue = JSON
.stringify(schemalLi st);

}
}
}
</script>
</td>

</[tr>

From that it is possible to see that there are 8 parameters: host nane, port, aut ht ype, user nang,
passwor d, basedn, fil ter and schemaval ue statically defined in the HTML form. Closer inspection
shows that the schemaval ue field is dynamically build with javascript (it is actually based on the
content of the LDAP server) and the format for that field is ["<fi el d1>", "<fiel d2>"].

Back to Top

Writing the DataSourceSpec

The next step is to write a Dat aSour ceSpec definition based on this information. Specs provide
information for the crawler to know which attributes are required, how the attributes should be
defined, and how the Admin UI should create a form to allow GUI configuration of the data source.

For all Google Connector-based data sources there is a base class called GCMSpec that can be
extended to the needs of the new Google Connector.

From the example project the class implementing the UI spec for the LDAP connector is called
GCMLDAPSpec and it looks like this:

© 2013 Find this documentation online at Page 28 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

12-Sep-2013

public class GCMLDAPSpec extends GCMSpec {

publ i ¢ GCMLDAPSpec(LMEGCMAdapt or adaptor) {
super (adaptor) ;

@verride
protected void addCraw er SupportedProperties() {
super . addCr awl er Support edProperties();
addSpecPr operty(new SpecProperty(HOSTNAMVE, " Host name",
String.class, "", Validator.NOT_BLANK VALI DATOR, true));
addSpecProperty(new SpecProperty(PORT, "Port",
I nteger.class, 389, Validator. NON_NEG | NT_STRI NG _VALI DATCR, true));
/1 all the other properties

@verride

publ i c Fi el dvappi ng get Def aul t Fi el dMVappi ng() {
Fi el dMappi ng fiel dMap = new Fi el dMappi ng();
fi el dMap. def i neMappi ng(" GCM_dn", "dn");
fi el dMap. def i neMappi ng("GCM cn", "cn");
fi el dMap. def i neMappi ng(" GCM_ui d", "uid");
return fiel dvap;

When deployed to LucidWorks, the data source will look like this in the Admin UI:

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 29 of 39

LucidWorks Search Documentation 12-Sep-2013
Dashboard » collection1 Help
Status Indexing Querying Access Control Advanced

Settings Data Sources Fields Dynamic Fields Field Types

] Ldap
* Name Test OpenDS Server
* Hostname localhost
* Port 1389 Bl

Authtype SIMPLE
Usemame cn=Directory Manager
Password LX)

Method STANDARD
* Basedn dc=example, dc=com

* Filter (objectclass=inetOrgPerson)

* Schemavalue ["dn","en","uid"]
Advanced show 4
Cancel
Back to Top

Registering the Extension

Finally the implemented classes needs to be registered into LucidWorks Search so that the new
Google Connector is recognized. This is done with a specific class that implements GCVExt ensi on:

public class GCMLDAPExt ensi on ext ends LWEGCMAdaptor inpl ements GCMEXxt ension {

@verride
protected void custom zeProperties(Map<String, Object> dsProperties, HashMap<Stri ng,
String> gcnProperties) {
gcnProperti es. put (GCMSpec. CONNECTOR _TYPE, " LDAPConnect or Type");

@verride

public void register(Map<String, comlucid.craw .datasource. Dat aSour ceSpec> types) {
LWEGCMAdapt or . regi ster ("l dap", this);
types. put ("l dap", new GCMLDAPSpec(this));

© 2013 Find this documentation online at Page 30 of 39

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

There are two methods in this class. The first is r egi st er , which registers the new connector. In
the other method, cust oni zePr operti es allows modifications to the parameters sent from the
Admin UI so they match what GCM expects (this may just be desirable, or it may be mandatory).

Some examples of transformations that might be needed are:

® Set values that are required by the connector or GCM but not exposed in the Admin UI (for
example, the CONNECTOR _TYPE)

® Build (sometimes cryptic) strings that are normally built with javascript by the connector
HTML form from static set of fields specified in the Spec

One final step is required, because the extensions are implemented by using the Java Service
Loader. A file in the example project called

src/ mai n/ resour ces/ META- | NF/ servi ces/ com | uci d. crawl . gcm GCMVEXt ensi on lists the
available GCMExtensions. You need to add the name of the class implementing GCVExt ensi on in
that file.

Back to Top

Deployment

During the development phase the ant target ant depl oy can be used. When everything is working
as expected the . j ar for the integration glue can be created by running ant di st that will create a
.j ar file in the di st directory. This . j ar file can then be added inside gcm craw er.jar in
directory $LWS_HOVE/ app/ cr aw er s/ (the deploy target does this automatically).

Once the connector has been deployed, restart LucidWorks Search and the new connector should
be available to use via the Admin UI or with the Data Sources API.

, During development it might be necessary to cleanup the GCM configuration and state in
$LWS_HOVE/ conf/ gcnl connect or s/ <connect or - nane> by running "rm -rf" inside that
directory.

Back to Top

© 2013 Find this documentation online at Page 31 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Integrating New Crawlers with LucidWorks

Register the Crawler

Once a new crawler has been created, it needs to be registered with the
Crawl er Control | er Regi stry in order to work with LucidWorks. In simple terms the way to do this
is to follow these steps:

1. Create a MANIFEST.MF file for the plugin . j ar with the required properties.
2. Place the .jar in the $LWS_HOVE/ app/ cr awl er s directory.
3. Restart LucidWorks.

Create MANIFEST.MF File

LucidWorks requires the following entries in the crawler plugin's jar META- | NF/ MANI FEST. M- file.
These properties may be placed either in the main section of the manifest, or in multiple sections
(e.g., one section per crawler implementation):

® Crawler-Alias: (required) this is a symbolic name under which this crawler implementation
will be known to LucidWorks. For example, the built-in Aperture crawler is registered under
alias "lucid.aperture". Implementors should pick a meaningful name that is unique.

® Crawler-Class: (required) this is a fully-qualified class name of the CrawlerController
implementation. For example, the built-in Aperture crawler's class is
"com.lucid.crawl.aperture.ApertureCrawlerController".

® Crawler-Exclude: (optional) this is a whitespace-separated list of packages and fully-qualified
class names that are excluded from loading using this class loader, instead their look-up and
loading will be delegated to the parent classloader. In some cases nested jars may provide
classes that conflict with other classes loaded from the parent classloader. Names of
packages and classes on this list are treated as plain string prefixes and regular expressions
are not supported.

An example MANIFEST.MF file for the included Aperture-based crawler looks like this:

Mani f est-Version: 1.0

Ant - Ver si on: Apache Ant 1.8.2

Created-By: 1.6.0_29-b11-402-11M3527 (Apple Inc.)

Crawl er-Alias: lucid.aperture

Crawm er-C ass: comlucid.craw . aperture. ApertureCraw erControll er
Craw er - Excl ude: javax.xnl . nanmespace

Loading the JAR

© 2013 Find this documentation online at Page 32 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Each crawler class is loaded in a separate classloader, together with its dependencies. Crawler
controller implementations are loaded by Crawl er Cont r ol | er Regi st ry from JAR files, typically
found in $LWS_HOME/ app/ cr awl er s. These jar files contain both the main Crawl er Control | er
implementation class, all other related classes (such as DataSourceFactory subclass), and may also
contain nested .jar-s with dependencies (libraries) used by the implementation. A special class
loader is used to load these classes, which unlike the default classloader:

® can discover and load classes from nested jar files.

® prefers classes found in the crawler jar over classes found in the parent classloader. This
means that you can implement crawlers that use different, possibly mutually conflicting
versions of dependencies.

® processes the crawler .jar's META-INF/MANIFEST.MF file looking for specific entries, and
initializes the crawler plugin.

This process is executed during Lucidworks start-up as a part of Crawl er Control | erRegi stry
initialization. This means that it's sufficient to just put a crawler plugin jar in
$LWS_HOVE/ app/ crawl er s for LucidWorks to discover it and initialize it.

How the Admin UI Reads Crawlers

The LucidWorks Admin UI has been designed to dynamically read available crawler and data source
types and display the list based on the currently enabled crawlers. When a specific data source
type has been selected by the user, the UI also dynamically draws the screen with the latest
available properties. So, once a new crawler is completed and properly registered (as above), then
it's enough to restart LucidWorks to see the data source in the UI.

There are some conventions the UI uses when reading the properties for a specific data source.
First, property names are normalized and used as form labels. The normalization removes any
underscores and the first word is capitalized. A property name such as "access_token" is
transformed to display as "Access token". Property descriptions are used to display information to
the user about what kind of information is expected for that attribute. Descriptions are optional,
but if they are used, they should be kept short.

© 2013 Find this documentation online at Page 33 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Glossary of Terms
Where possible, terms are linked to relevant parts of the documentation for more information.

Jump to a letter:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A

Alerts
An alert allows a user to save searches. There are two types: active, which will send notifications
when new results are found, and passive, which do not send notifications.

Auto-Complete

A way to provide users suggestions for possible matching queries before they have finished typing.
In LucidWorks Search, this relies on an index of terms to be created on a regular basis by
scheduling it as an activity.

Boolean Operators
These control the inclusion or exclusion of keywords in a query by using operators such as AND,
OR, and NOT.

C

Click Scoring Relevance Framework
A method of changing the relevance ranking of a document based on the number of times other
users have clicked on the same document.

Collection
One or more documents grouped together for the purposes of searching. See also Document.

© 2013 Find this documentation online at Page 34 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

Component

A part of LucidWorks Search that has been designed to stand alone or can be run independently
from other components. LucidWorks Search has three main components: LWE-Core, which runs
Solr, indexing, and other critical application functions, LWE-Connectors, which handles all crawling
activities, and LWE-UI, which runs the Administrative UI, the front-end search interface, and the
alerting functionality.

Connector
A connector is a program or piece of code that allows a connection to be made to a data source
and content to be extracted from it.

Crawler
Also known as a "spider", this is a program that is able to retrieve documents internal or external
servers.

D

Data Source
Defines the metadata required to connect to a location containing content to be indexed. It could
be a file system path, a Web URL, a JDBC connection, or some other set of values.

Distributed Index
A distributed index is one where the search index for a collection is spread across more than one
shard.

Distributed Search
Distributed search is one where queries are processed across more than one shard.

Document
One or more Fields. See also Field.

F

Field
The content to be indexed/searched along with metadata defining how the content should be
processed by LucidWorks Search.

© 2013 Find this documentation online at Page 35 of 39
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 12-Sep-2013

I

Inverse Document Frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents
divided by the number of Documents that a particular word occurs in the collection. See
http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html for more info on
TF-IDF based scoring and Lucene scoring in particular. See also Term Frequency.

Inverted Index

A way of creating a searchable index that lists every word and the documents that contain those
words, similar to an index in the back of a book which lists words and the pages on which they can
be found. When performing keyword searches, this method is considered more efficient than the
alternative, which would be to create a list of documents paired with every word used in each
document. Since users search using terms they expect to be in documents, finding the term before
the document saves processing resources and time.

M

Metadata
Literally, data about data. Metadata is information about a document, such as it's title, author, or
location.

Natural Language Query
A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Q

Query Parser
A query parser processes the terms entered by a user.

R

© 2013 Find this documentation online at Page 36 of 39
LucidWorks http://docs.lucidworks.com/

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

LucidWorks Search Documentation 12-Sep-2013

Recall
The ability of a search engine to retrieve all of the possible matches to a user's query.

Relevance
The appropriateness of a document to the search conducted by the user.

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers. In
LucidWorks Search, the master continues to manage updates to the index, while queries are
handled by the slaves. This approach enables LucidWorks Search to properly manage query load
and ensure responsiveness.

REST API
An alternative way of controlling LucidWorks Search without accessing the user interface.

S

Shard
A method of partitioning a database or search engine to maximize performance and efficiency.

SolrCloud
Ongoing work within the Solr community to improve Solr's ability to operate in a cloud
environment.

Solr Schema (schema.xml)

The Apache Solr index schema. The schema defines the fields to be indexed and the type for the
field (text, integers, etc.) The schema is stored in schema.xml and is located in the Solr home conf
directory.

Solr Config (solrconfig.xml)

The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting,
spellchecking and various other configurations. The file, solrconfig.xml is located in the Solr home
conf directory.

© 2013 Find this documentation online at Page 37 of 39
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 12-Sep-2013

Spell Check

The ability to suggest alternative spellings of search terms to a user, as a check against spelling
errors causing few or zero results. In LucidWorks Search, when spell-checking is enabled, a parallel
"spell" index is created as documents are indexed.

Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as
part of a natural language query. Stopwords are generally very small pronouns, conjunctions and
prepositions (such as, "the", "with", or "and")

Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one
another. In a search engine implementation, synonyms may be abbreviations as well as words, or
terms that are not consistently hyphenated. Examples of synonyms in this context would be "Inc."
and "Incorporated" or "iPod" and "i-pod".

T

Term Frequency

The number of times a word occurs in a given document. See http://en.wikipedia.org/wiki/Tf-idf
and http://lucene.apache.org/java/2_3_2/scoring.html for more info on TF-IDF based scoring and
Lucene scoring in particular.

See also Inverse Document Frequency (IDF).

W

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations
in spelling or tenses. In LucidWorks Search, there are two ways to use them. One is to use an
asterisk (*) at the end of a term to find all documents that contain words that start with that
pattern. For example, pai nt * would find pai nt, pai nt er and pai nti ng. A second way is to use a
question mark (?) in the middle of a term to substitute for one character in that term. Such as, c?t
would find cat, cot and cut . It's also possible to use wildcards at the start of a term in the same
way - either to replace a single letter (using the ? symbol) or to find documents that contain words
that end with a pattern using a *. For example, *spher e would find ecospher e and st r at osphere.

© 2013 Find this documentation online at Page 38 of 39
LucidWorks http://docs.lucidworks.com/

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

LucidWorks Search Documentation 12-Sep-2013

About LucidWorks

LucidWorks (formerly known as Lucid Imagination) is the trusted name in Search, Discovery and
Analytics, delivering the only enterprise-grade embedded search development solution built on the
power of the Apache Lucene/Solr open source search project. Founded in 2008, the company
initially provided support, consulting services, documentation and training for the Apache
Lucene/Solr open source search project.

Within a few years, the LucidWorks team realized the need to add value to the open source search
platform by developing an extensive layer of services which made Lucene/Solr secure and easier to
use and manage. The company shipped the first version of its flagship product, LucidWorks Search,
in 2011, followed by LucidWorks Big Data in May 2012. LucidWorks continues to offer support,
documentation, consulting services and training products for Lucene/Solr.

LucidWorks remains committed to giving back to the Apache Lucene/Solr community. Out of the 37
Core Committers to the Apache Lucene/Solr project, 9 individuals work for LucidWorks, making the
company the largest supporter of open source search in the industry. Further, LucidWorks hosts
the Lucene Revolution, a conference dedicated to sharing ideas and promoting the Apache
Lucene/Solr open source search project.

For more information on product and support options for LucidWorks Search, please write to:
sales@lucidworks.com or visit our website. Support inquiries can be submitted to our Support
group.

s LucidWorks:

LucidWorks
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.525.1365

© 2013 Find this documentation online at Page 39 of 39
LucidWorks http://docs.lucidworks.com/

http://www.lucidworks.com
http://www.lucidworks.com

	How to Use this Documentation
	Conventions
	Paths
	Notes
	REST API Conventions

	Customers of LucidWorks Search on AWS or Azure
	Configuration Options
	API Conventions for LucidWorks Search on AWS or Azure

	Getting Support & Training

	Custom Connector Guide
	Example Crawler
	Introduction to Lucid Connector Framework
	How To Create A Connector
	Example Crawler
	Custom Classes
	DataSource and DataSourceSpec
	Overview
	Custom Classes for This Component

	CrawlerController, CrawlStatus and CrawlerControllerRegistry
	Overview
	Custom Classes for This Component

	Crawler
	Overview
	Custom Classes for this Component

	CrawlProcessor, ParserController and UpdateController
	Overview
	Custom Classes for This Component

	BatchManager
	Overview
	Custom Classes for This Component

	FieldMapping and FieldMappingUtil
	Overview
	Custom Classes for This Component

	Integrating Google Connectors
	Overview of the Development Process
	Preparing for development
	Writing the DataSourceSpec
	Extract Fields from the Connector HTML Form
	Writing the DataSourceSpec

	Registering the Extension
	Deployment

	Integrating New Crawlers with LucidWorks
	Register the Crawler
	Create MANIFEST.MF File
	Loading the JAR

	How the Admin UI Reads Crawlers

	Glossary of Terms
	A
	B
	C
	D
	F
	I
	M
	N
	Q
	R
	S
	T
	W

	About LucidWorks

