L= LucidWorks:

LucidWorks Search
System Configuration
Guide

2.6.3 Documentation

Created: 10-Dec-2013

LucidWorks Search Documentation 10-Dec-2013

Table of Contents

How to Use this Documentation 4
Conventions 4
Customers of LucidWorks Search on AWS or Azure 6
7

8

1

Getting Support & Training
Getting Started

LucidWorks Search User Interface Help 1
System Configuration Guide 12
Understanding LucidWorks Search 13
Collections and Indexes 36
Crawling Content 72
Query and Search Configuration 114
Security and User Management 192
Solr Direct Access 211
Performance Tips 213
Expanding Capacity 215
Integrating Monitoring Services 233
Glossary of Terms 251
A 251
B 251
C 251
D 252
F 252
I 253
M 253
N 253
Q 253
R 253
S 254
T 255
w 255
About LucidWorks 256
© 2013 Find this documentation online at Page 2 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

LucidWorks Search Documentation

The LucidWorks Search Documentation is organized into several guides that cover all aspects of
using and implementing a search application with LucidWorks Search, whether on-premise or
hosted on AWS or Azure.

Installation & Upgrade Guide LucidWorks REST API Reference
® Installing LucidWorks Search ® Configure data sources and
® System Directories and Logs administer crawls
® Upgrade instructions for v2.6 ® Set system settings
® Review changes from LucidWorks ® Manage fields, field types, and
v2.5 to v2.6 collections
® Example clients in C#, Perl and
Python

System Configuration Guide

® Troubleshooting crawl issues Custom Connector Guide
® Alerts configuration
® Query options ® Introduction to Lucid Connector
® Custom fields, field types, and other Framework
index customizations ® How To Create A Connector

® Performance considerations and
system monitoring

® Distributed search and indexing

® Security options

Lucid Query Parser

® How the default query parser handles
user requests
® Customization options

© 2013 Find this documentation online at Page 3 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

How to Use this Documentation

Audience and Scope Topics covered on

This guide is intended for search application developers and this page:
administrators who want to use LucidWorks Search to create world class

search applications for their websites. ® Audience

and Scope
While LucidWorks Search is built on Solr, and many of its features are ® Conventions
implementations of Solr and Lucene features, this Guide does not cover ® Customers of
basic Solr or Lucene configuration. We do, however, point out where LucidWorks
LucidWorks Search deviates from Solr or Lucene standard configuration Search on
practices, and have provided links to Solr and Lucene documentation AWS or
where possible for further explanation if the functionality in LucidWorks Azure
Search is identical to Solr or Lucene. ® Getting
One important note to remember is that LucidWorks is multi-core 'Is'll'JapiEionr; &

enabled by default, with col | ecti onl as the default core. This means
that standard Solr paths such as http://| ocal host: port/solr/*, as

shown in Solr documentation, would be
http://1ocal host:port/solr/collectionl/* in LucidWorks Search.

Conventions

Paths

Server paths are described in relation to the base LucidWorks Search installation path, indicated by
$LWS_HOME. For example, if LucidWorks Search was installed at / var/ | uci dwor ks, then the path to
the 'app' directory shown as $LW5s_HOVE/ app will be / var /| uci dwor ks/ app on the server.

Notes

Special notes are included throughout these pages.

Note Type Look & Description

Information

@ Notes with a blue background are used for information that is important
for you to know.

© 2013 Find this documentation online at Page 4 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Notes
» Notes are further clarifications of important points to keep in mind while
using LucidWorks.

Tip

) Notes with a green background are Helpful Tips.
Warning

=’ Notes with a red background are warning messages.
Cloud

Information for LucidWorks Search in the Cloud Users
Information specifically for LucidWorks Search customers on the AWS or Azure
Platform.

REST API Conventions

Many of the LucidWorks Search REST APIs support several methods (such as POST, GET, PUT,
DELETE) and each is documented with detailed attribute descriptions and examples of inputs and
outputs. Each description includes the path to the API endpoint, parameters for input, and the
attributes returned as a result of the request.

Windows users should take care when copying the examples as they assume that you are familiar
with how to modify unix-based curl commands for the Windows environment.

Parameters
Several of the paths shown in the API documentation include parameters that need to be modified
for your installation and specific configuration. These are indicated in italics.

For example, getting the details of a data source is shown as:
GET /api/collection/collection/datasources/id.
If you were using 'col | ecti onl' and data source '3', you would enter:

GET /api/collection/collectionl/datasources/3.

© 2013 Find this documentation online at Page 5 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Server Addresses

The LucidWorks Search REST API uses the Core component, installed at http://localhost:8888/ by
default in LucidWorks Search. Many examples in this Guide use this as the server location. If you
have installed LucidWorks Search locally, and you changed this location on install, be sure to
change the destination of your API requests accordingly.

Customers hosted on AWS or Azure should see the section for Customers of LucidWorks Search on
AWS or Azure below.

Customers of LucidWorks Search on AWS or Azure

All of the preceding information on this page applies to customers who have LucidWorks Search
hosted on either AWS or Azure Platforms, with a few small exception which are detailed below.

Configuration Options

Certain configuration options are available with on-premise installations only (such as installation
options, manual configuration file changes, etc.). The following panel will appear on any page or
section that does not apply or is not available for LucidWorks Search on the AWS or Azure
platforms:

This functionality is

not available with
LucidWorks Search

on AWS or Azure

API Conventions for LucidWorks Search on AWS or Azure

Nearly all of the documented REST APIs will work for customers on AWS or Azure, but the example
API calls must be modified to include either the Access Key or the API Key and used as
authentication credentials. Customers are being transitioned from a simple Access Key to a more
secure Basic authentication system that requires a unique API Key.

1. Customers who only have an Access Key can see the key on the My Search Server page and the
main Collections Overview page of your instance (click the REST API button above the usage
graphs). Example URLs for API calls used in this documentation would then be changed from
http://1ocal host: 8989/ api/... tohttp://access. | uci dworks.i o/ <access key>/api/....
This access key is specific to your instance and should be treated as securely as possible to prevent
unauthorized access via the APIs to your system.

2. Customers with Basic authentication have instances which use an URL with "https://s-
XXXXXXXX.lucidworks.io" where XXXXXXXX is 8 characters (letters or numbers). So, if your
instance URL is "https://s-9sdff10b.lucidworks.io/" you would use that in place of any example API
calls that used "http://localhost:8888". For example, this call to get all collections:

© 2013 Find this documentation online at Page 6 of 256
LucidWorks http://docs.lucidworks.com/

http://localhost:8888/

LucidWorks Search Documentation 10-Dec-2013
curl "http://1ocal host: 8888/ api/collections'

would be changed to:
curl -u ' APl _Key: password' 'https://s-9sdff10b. | uci dworks.io/api/collections'

The API_Key can be found by logging in to your LucidWorks Search instance, and clicking "My
Account" at the upper right of the screen. Click "API Access" on the left to view the API key. The
password is 'x' by default. There is not currently a way to change the default password. You should
take care not to expose this key when posting to our forums, as that information could be seen by
other LucidWorks Search customers.

For users on LucidWorks Search for Windows Azure, the above URL would be: ' https://s-
9sdf f 10b. azure. | uci dworks. i o/ api/col |l ections'.

Getting Support & Training

There are several options to get answers to questions besides this documentation:

® The LucidWorks Search Forum is a place to ask questions and share information about your
implementation.

® The LucidWorks Search KnowledgeBase has articles written by our support and consulting
staff around common issues and questions.

® Training Videos produced by the LucidWorks training team.

® Premium support is also available, providing access to a help desk ticketing system. For more
information see Lucene/Solr Support.

© 2013 Find this documentation online at Page 7 of 256
LucidWorks http://docs.lucidworks.com/

http://support.lucidworks.com/categories/20055683-lucidworks-search-community-help
http://support.lucidworks.com/categories/20056513-lucidworks-search-knowledge-base
http://support.lucidworks.com/forums/21153378-training-videos
http://www.lucidworks.com/support-services/lucene-solr-support

LucidWorks Search Documentation 10-Dec-2013

Getting Started

The steps to get started with LucidWorks Search are not very different from getting started with
any new search platform. One needs to consider the nature of the documents to be indexed, how
users expect to find them, and how results will be presented to users. This section outlines those
activities and points to parts of documentation to help you understand how to accomplish the
necessary tasks for a successful search application.

If you are new to search applications, these sections may be helpful:

® How Search Engines Work
® Indexing Documents
® Overview of Crawling

AMn Installation aof LuckfWerks Entesprise Edition
Infarmation

\

lucid

Enterprise

lucid

IMAGIHATION

Thinking Laeas Thisi Lkl

Version 0.0dench

Luziimagination

(o) Cau) |
The obvious first step is to install the
application (if you are using LucidWorks Search On-Premise; LucidWorks Search on AWS or Azure,
of course, is already installed).

® Installation

In general, LucidWorks Search provides two modes of interacting with the system: the Admin UI or
the REST API. When just starting out, it's easier to use the Admin UI, but when developing your
search application, you may want to use the API, depending on your needs. LucidWorks Search is
split into three components, and it's worth getting a sense for what each one does before diving
too deep into application development.

® Working With LucidWorks Search Components

© 2013 Find this documentation online at Page 8 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Before any user can send queries to your search applications, you need to index data. LucidWorks
Search requires configuring data sources for each content repository that will be added to the index
and several types of repositories are supported. These can be created via the Admin UI or with the
REST API.

® Creating Data Sources with the Admin UI
® (Creating Data Sources with the REST API

New in v2.6 is a feature to get content into the system quickly. Called "Quick Start", it can be
accessed from the UI Landing Page found at http://localhost:8989 (be sure to adjust the host and
port to the LWE-UI component as needed).

When first starting out, it's best to use a small set of documents and test that they are being
indexed according to the needs of your users. The built-in Search Ul was designed to be used
during implementation. Queries can also be sent directly to Solr using the standard Solr syntax.

® Using the Search Ul
® Getting Search Results
® Query and Response Examples

Once you see the results of initial crawls, you may realize that some of your documents don't
appear as expected, or facets important to you are not appearing as you'd like.

Raw documents are broken up into various fields during the crawling and indexing processes, and
the fields contained in your documents may vary from the default fields provided by LucidWorks
Search through a file called schema. xm . While we've tried to anticipate the needs of most
customers, you may find tweaks are required for your content.

In addition, LucidWorks Search provides the ability to separate indexed content into collections,
that each have their own field definitions, data sources, synonym lists, activity schedules, query
settings and other configurations. It's worth considering if you need to break up your content in
this way, and create new collections as needed.

Understanding Collections

Creating Collections with the Admin UI
Creating Collections with the REST API
Customizing the Field Schema
Managing Fields with the Admin UI
Managing Fields with the REST API

© 2013 Find this documentation online at Page 9 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://localhost:8989
http://docs.lucidworks.com/display/help/Searching
http://docs.lucidworks.com/display/help/Collections
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 10-Dec-2013

Qusernying Setlings

Defau b et viveanin b
Dusry parmar i | sl
e T
Show “Bnd similer inie. #
Depramy Ninaty =
Ursspanvissd feeinach
Usnsapreruined Bepolanh anphesis o = mevanny el
NE AR TI0g WOSEE I BearShiEE
Avka comgietn
Raagtrecoar o
am wgnangms. 2
Enabls ok raciing snd boasteg @

Sane 6l

Frpmright B 3573 Larel e, b A Bges e

Once the content is being indexed as you expect, you can modify the way user queries are handled
and how results are shown to users. There are many features available, such as synonymes,
auto-complete, alerting users of new results, boosting documents based on user clicks among
other features.

® Synonyms

® Stop Words

® Using User Clicks to Boost Results

® Modifying Query Settings with the Admin UI
® Modifying Query Settings with the REST API
® | ucid Query Parser Guide

® Spell Check

® Auto-Complete

® User Alerts

Before going live with your search application, you'll want to consider user authentication and
system security issues. LucidWorks can integrate with LDAP and supports SSL. Additionally, Access
Control List information from Windows Shares can be incorporated to restrict result sets to only
those documents users are allowed to see. You may also want to integrate with a JMX client,
Zabbix or Nagios to monitor system performance.

LDAP Integration

Restricting Access to Content
Enabling SSL

Securing LucidWorks
Integrating Monitoring Services

Finally, those using (or hoping to use) the SolrCloud features of LucidWorks Search will want to
review the section on Using SolrCloud in LucidWorks.

© 2013 Find this documentation online at Page 10 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Synonyms
http://docs.lucidworks.com/display/help/Stop%20Words
http://docs.lucidworks.com/display/help/Click%20Scoring
http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Alerts

LucidWorks Search Documentation 10-Dec-2013

LucidWorks Search User Interface Help

Help for the LucidWorks Search User Interface is located at
http://docs.lucidworks.com/display/help.

© 2013 Find this documentation online at Page 11 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help

LucidWorks Search Documentation 10-Dec-2013

System Configuration Guide

The System Configuration Guide provides detailed information about many of the features included
with LucidWorks Search. It describes the layout of a LucidWorks Search installation and how to
work with many of the configuration options included with the system. It contains the following
sections:

Understanding LucidWorks Search:
Introduction, location of logs, working
with components

Collections and Indexes: Setting up
collections, designing the index structure
Crawling Content: Crawling content of
different filetypes and in different
repositories

Query and Search Configuration:
Configuring the user experience and how
to get search results to your application

Security and User Management: SSL
communication between components and
user authentication

Solr Direct Access: Using Solr
Performance Tips: How to judge
performance and strategies for
improvement

Expanding Capacity: SolrCloud, index
replication and distributed search
Integrating Monitoring Services: Using
JMX, MBeans, and integrating with Zabbix

or Nagios

Information for LucidWorks Search in the Cloud Users
While nearly all of the features described in this section are available to LucidWorks Search
customers hosted on AWS or Azure, some of the advanced configuration options are not. When
editing a setting requires direct access to a configuration file, instead of accessing the setting
via the UI or an API, contact your support representative for information about how you might
tweak that setting for your needs.

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 12 of 256

LucidWorks Search Documentation 10-Dec-2013

Understanding LucidWorks Search

This section covers the architecture of LucidWorks Search and nitty-gritty details like where log
files and important directories can be found.

We also cover some introductory material: if you're not familiar with search engines, there's a

section How Search Engines Work and we continue that with some more information about How
LucidWorks Search Works.

Then we get into the details with these sections:

Working With LucidWorks Search Components
System Directories and Logs

Starting and Stopping LucidWorks Search
Configuring Default Settings

LucidWorks System Usage Monitor

© 2013 Find this documentation online at Page 13 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

How Search Engines Work

In its simplest form, a search engine is an application that enables a user to query a data set and
get a list of documents in response. Most people are familiar with search engines that search the
internet, but search engines are also built for more specific purposes. Enterprise documents or
websites are not available to the public at large, so they can't be searched with internet search
engines such as Google or Yahoo. An organization may have an online store and wish to customize
their site to allow customers to find products.

In LucidWorks Search, each unit of text to be searched is a "document", whether it is an article, a
website, a product description, or a phone book entry. In an enterprise environment, the
administrator determines which of these documents make up the data set to be searched.

This graphic shows the basic operation of a search engine:

Basic Operation of a
Search Engine

User Query
lucidworks enlerprise Bearch
Result List
Search Index _ |
l e Gl
Indexing
© 2013 Find this documentation online at Page 14 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

For a user to search a set of documents, the search engine needs to know what is in them. The
process a search engine uses to find out what is in a document is called "indexing". Essentially, an
administrator tells the search engine where to find the document or documents, or feeds them to
the search engine by way of an uploading process. The search engine then creates an index of all
the words it finds, along with a pointer to the document in which it found them. Most information
within documents is organized into "fields." Fields contain information that serves a specific,
important purpose in the document, such as Title, Author, or Creation Date. Good search engines
are able to identify these fields and create an index for each one.

Once the search engine creates an index, lots of interesting features can be added to aid users in
their search experience, such as a spelling checker, automatic query completion, faceting of
results, and "find similar" functionality.

Searching

Once the search engine has created an index of available content, it is ready to accept a search.
This happens when the user enters a keyword or phrase, and the search engine compares that
keyword or phrase against the index, returning pointers to any documents that are associated with
them.

Of course, people are surprisingly different in the way in which they approach a topic, so search
engines need to take these variations into account. The goal of a search engine is to match words
entered by a user to words found in a document, so one technique it uses is to "normalize" both
the user's query and terms that have been indexed as much as possible to find the best possible
match, similar to the way in which you might convert both a target string and the text you are
matching to uppercase in order to eliminate case-sensitivity.

Full-text Searching and Challenges

Several inherent challenges complicate full-text search. First, there is currently no way to
guarantee the searcher will find the "best" results because there is often no agreement on what the
"best" result is for a particular search. That's because evaluating results can be very subjective.
Also, users generally enter only a few terms into a search engine, and there is no way for the
search system to understand the user's intention for a search. In fact, if the user is doing an initial
exploration of a topic area, the user may not even be aware of his or her intention.

A system that understands natural language (that is, the way people speak or write) perfectly is
usually considered the ultimate goal in search engine technology, in that it would do as good a job
as a person in finding answers. But even that is not perfect, as variations in human communication
and comprehension mean that even a person is not guaranteed to find the "right" answer,
especially in situations where there may not even be a single "right" answer for a particular
question.

Some search engines, such as LucidWorks Search, are built with features that try to solve, or at
least mitigate, these challenges. This System Configuration Guide will introduce you to many of
these features and describe how to configure them.

© 2013 Find this documentation online at Page 15 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

How LucidWorks Search Works

Like any other search engine, LucidWorks Search works by indexing several kinds of documents
and providing a way for a user to search them. It uses Lucene and Solr to handle the core indexing
and query processing tasks, and leverages the latest advancements in those projects. LucidWorks
also builds on the work of the open-source community by adding crawling features, a robust REST
API, an easy-to-use administration interface, and other features.

The Apache Solr/Lucene core provides the indexing and searching functionality on which
LucidWorks is built. As an application developer using LucidWorks Search, you can access this
functionality in the same way that you access a traditional Solr installation. This includes field
definition, document analysis, faceting, and basic query interpretation. Customers with LucidWorks
Search installed on their own servers can work with the Apache Solr/Lucene core directly if they
choose. Customers who use LucidWorks Search on AWS or Azure access much of the same
functionality through the Admin UI.

On top of the Apache Solr/Lucene core is LucidWorks Search, which provides programmatic and
GUI access to features that are normally difficult to work with directly, such as field definition or
data source creation and scheduling.

® The LucidWorks Search Admin User Interface provides configuration and management tools
for almost every feature of LucidWorks, including document acquisition, security, and field
definitions.

® The REST API provides programmatic access to almost all configuration and management
functions within LucidWorks.

Most of the functionality provided by LucidWorks comes from the LWE-Core and LWE-Connectors
components, which manage all of these processes and features so administrators can concentrate
on building and managing their own applications rather than the underlying search engine.

Related Topics

® Working With LucidWorks Search Components
® Indexing Documents
® Getting Started

© 2013 Find this documentation online at Page 16 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 10-Dec-2013

Working With LucidWorks Search Components

LucidWorks Search has three main components that can each be run together on a single server or
deployed on separate servers if desired. While LucidWorks Search customers on AWS or Azure will
not often need to interact with these components, an understanding of how they work is helpful for
a deeper understanding of the system as a whole.

® About the Components

® | WE-Core

® | WE-UI

® [WE-Connectors

® Default Installation URLs
® Configuring the Components
® Related Topics

About the Components

Each component is a single JVM process. The system properties for each JVM can be modified with
the mast er. conf file found in the $LWS_HOVE/ conf directory.

LWE-Core

The LucidWorks Search Core component is the main engine of the application. It contains the
search index, the index definitions, the query parser, the embedded Solr application and Lucene
libraries, as well as serves the REST API (with the exception of Alerts).

LWE-UI

The UI component includes all web-based graphical interfaces for administering the application, a
sample search interface, Relevancy Workbench and the enterprise alerts feature.

Through the Admin UI, you can modify index fields, configure data sources for content collection,
define aspects of the search experience, and monitor system performance.

The Search UI provides a front-end for users to submit queries to LucidWorks Search and review
results. It is not intended as a production-grade user interface, rather as a sample interface to use
while configuring and testing the system.

Relevancy Workbench is a tool to model possible changes to how user query terms are interpreted
in order to improve relevancy. More information about this tool is available at Relevance
Workbench.

Enterprise Alerts provide a way for users of the front-end Search UI to save searches and receive

notifications when new results match their query terms. There is a user interface piece with forms
and screens for users to configure and review their alerts, as well as a REST API for programmatic
access to the Alerts features.

LWE-Connectors

© 2013 Find this documentation online at Page 17 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Relevancy+Workbench
http://docs.lucidworks.com/display/help/Relevancy+Workbench

LucidWorks Search Documentation 10-Dec-2013

The Connectors component performs all the crawler functions, which include crawling data sources
on demand or at a specific schedule, maintaining a crawl history (as applicable; each crawler varies
in their behavior), and saving data source configuration information for use by the crawlers. The
Connectors component also manages the LucidWorks Logs crawler.

Default Installation URLs

This guide will refer to example URLs that will reference the default installation URLs for each
component. These defaults are:

Component Default URL Web Interfaces

LWE-Core http://127.0.0.1:8888/ This URL is used as the base for accessing most of the
REST APIs, and also for accessing Solr Admin UI at
http://127.0.0.1:8888/solr

LWE-UI http://127.0.0.1:8989/ There are multiple front-ends at this URL. This base
URL will access the Landing Page, which will provide
access to the Quick Start, the LucidWorks Search
Admin UI, Relevancy Workbench, and also a link to the
Solr Admin UL

LWE-Connectors http://127.0.0.1:8765/ There is no web front-end at this URL, it is used by the
LWE-Core and LWE-UI components to communicate
with the Connectors component.

These URLs are used by the installer for two purposes:

1. When the various components communicate with each other, or link to one another, they
specify which URL will be used.

2. If the "Enable" check box is selected for a component when using the installer, then that
component will be run locally, using the port specified in the URL.

) The default LucidWorks start scripts start all components at the same time. However, it is
possible to restart or stop a single component. See the section Starting and Stopping
LucidWorks Search for details.

Back to Top

Configuring the Components

If all components are run on the same machine, they must be defined with different ports. They
can also be configured to run on different servers.

There are three possible ways to configure the components:

© 2013 Find this documentation online at Page 18 of 256
LucidWorks http://docs.lucidworks.com/

http://127.0.0.1:8888
http://127.0.0.1:8888/solr
http://127.0.0.1:8989
http://127.0.0.1:8765/

LucidWorks Search Documentation 10-Dec-2013

1. All components run on the same machine and they are started and stopped together. This is
the default for the standalone installer, which automatically prompts for default ports that are
different for each component. To use this mode, you only need to run the installer once and
follow through the process completely.

2. All components run on the same machine but they are started and stopped separately. This
would require running the installer three times on the same machine. See Installing
Components on Different Servers for detailed instructions on how to do this.

3. Each component is on a different machine and started and stopped separately. This requires
running the installer on each machine. See Installing Components on Different Servers below
for detailed instructions on how to do this.

Back to Top

Related Topics

® Expanding Capacity

© 2013 Find this documentation online at Page 19 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

System Directories and Logs

This functionality is
not available with
LucidWorks Search
on AWS or Azure

There are several important directories in the LucidWorks Search
installation. System activities are recorded in several log files. Knowing where files and logs are
located will make system configuration and troubleshooting easier.

® |[ocating Files and Directories
® Configuring LucidWorks Search Directories
® Temporary Files

® System Logs
® | og Properties

® |ucidWorksLogs Collection

® Related Topics

Locating Files and Directories

The following table shows the default location of some directories that may be needed to effectively
work with LucidWorks Search. These paths are all relative to the LucidWorks Search installation
path (referred to as $LW5_HQOVE) which is specified during installation.

What Path

Configuration Files $LWS_HOVE/ conf/

Documentation $LWS_HOVE/ app/ docs/ (PDF) or http://docs.lucidworks.com (Online)
Examples $LWS_HOVE/ app/ exanpl es/

Jetty Libraries $LWS_HOVE/ app/ jetty/lib/

Licenses $LWS_HOVE/ app/ | egal /

Logs $LWS _HOVE/ dat a/ | ogs/ (See below for log file list)

LucidWorks Indexes $LWS_HOWVE/ dat a/ sol r/ cores/ col | ecti on/ dat a/
LucidWorks Logs $LWS_HOWVE/ dat a/ sol r/ cor es/ Luci dWor ksLogs/ dat a/
Solr Home $LWS_HOVE/ conf/sol r/

Solr Configuration Files $LW5s_HOVE/ conf/sol r/ cores/ col | ecti on/ conf/

Solr Source Code $LWS_HOVE/ app/ sol r-src/

© 2013 Find this documentation online at Page 20 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com

LucidWorks Search Documentation 10-Dec-2013

Start/Stop Scripts $LWS_HOVE/ app/ bi n/

» Editing Configuration Files on Windows

LucidWorks Search holds configuration files open after reading them, which may cause
problems on Windows systems that do not allow editing open files. In this case, stop
LucidWorks Search before editing files on Windows to be sure the edits are saved properly.

Configuring LucidWorks Search Directories

After you have installed LucidWorks Search, you can configure the location of of the app, conf,
dat a, and | ogs directories by passing these parameters to the start script (start. sh or start. bat

):

® -lwe_app_dir
® -|we_conf dir
® -|we _data dir
® -Iwe_log_ dir

For example, to change the location of the dat a directory, pass the following parameter to your
start script:

start.sh -lwe _data dir /var/data

See the section on Starting and Stopping LucidWorks Search for more information about the start
scripts.

Temporary Files

By default, LucidWorks Search uses standard system directories (as detected by the JVM) for
creating temporary files. This can be changed by adding a system property to the nast er. conf for
java.io. tnpdir in the section that controls each JVM for the system. For example, to change the
location of temporary files for the LucidWorks Core component, you would follow these steps:

1. Shut down LucidWorks using the instructions found in the section on Starting and Stopping
LucidWorks Search.

2. Open nast er. conf with a text editor (found in $LWS_HOVE/ conf .

3. Find the section for | wecore.jvm parans and add -Djava.io.tnpdir=/tnp/fil es/.

4. Start LucidWorks.

The directory chosen as the location for temporary files should exist before starting LucidWorks
Search, and must be writable by the user running LucidWorks.

Back to Top

System Logs

© 2013 Find this documentation online at Page 21 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

LucidWorks Search records system activities to rolling log files located in the $LW5_HOVE/ dat a/ | ogs
directory of the installation by default. The table below describes the main purpose of the various

log files.

Log Name Name Pattern Function

Connector connectors. <YYYY_MM DD>. | og Connectors component operations,

component including the output of all crawling

log operations.

Connector connectors. request. <YYYY_MM DD>. 1 og Requests to the connectors component.

request log These usually come from the Core
component.

Core core. <YYYY_MWM DD>. | og LucidWorks Core component operations,

component such as indexing.

log

Core core. request. <YYYY_MWM DD>. | og Requests to the core component. These

request log could come from either the Connectors
or the UI component.

Core core-stderr.log Errors from Jetty startup (if any).

standard

error log

Core core-stdout.log Messages from Jetty startup (if any).

standard

output log

Ul ui . <YYYY_MM DD>. | og Information from the Rails application,

component which runs the Search, Admin and Alerts

log components.

UI request ui.request.<YYYY_MM DD>. 1 og Requests to the UI component.

log

Ruby ruby-stderr. | og Errors from Ruby startup (if any).

standard

error log

Ruby ruby- st dout .| og Messages from Ruby startup (if any).

standard

output log

Click log click-<col | ecti onNanme>. | og User click data, for use in relevance
boosting (if enabled).

© 2013 Find this documentation online at Page 22 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

SharePoint googl e _connectors. f eed. | og SharePoint crawling operations. Note,
crawl log this file can also include a number in the
name, such as
googl e_connectors. feed0. | og, etc.

Log files are available through the Admin UI, by going to the Server Logs page for a collection and
clicking the link at the bottom of the page. If for some reason the Admin UI is not available, log
files can be downloaded with a curl command to the Core component such as:

curl http://local host: 8888/ ogs/<log file_nanme>

Note, however, if the LucidWorks Search Core component is down, that curl command will not
work.

Log Properties

The LucidWorks Search Core log is configured by the $LWS_HOVE/ conf /| og4j - core. xml properties
file. The default is to create a distinct log per date (server time).

The LucidWorks Search Ul log is configured by the $LW5_HOME/ conf /| og4j - ui . xnml properties file.
The default is to create a distinct log per date (server time).

The LucidWorks Search Connector log is configured by the
$LWS_HOVE/ conf/ | og4j - connect ors. xm properties file. The default is to create a distinct log per
date (server time).

) The LucidWorks Search Connectors log includes information about crawl activities such as
attempts to access a file or URL and the results of those attempts. By default, the log does
not record the collection or data source associated with crawl activities. However, if you
would like to record that information for later review, you can edit the
$LWS_HOVE/ conf /| og4j - connect ors. xm file.

In the file, find the section that begins with a comment to "Use the pattern below to log
additional context info...", as below:

<l-- Use the pattern below to | og additional context info |like collection and
data source nanme -->
<l--
<par am val ue="9% {1 SO8601} % %{2} - X %PHm" nane="ConversionPattern"/>
-->

Uncomment <par am val ue="%{| SO8601} % %{2} - %X %rPm"
nane="Conver si onPat t ern"/ > and save the file. You should restart LucidWorks Search
after making this change.

© 2013 Find this documentation online at Page 23 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

More information on how to modify log4j settings for the Core and Ul log files is available at
http://logging.apache.org/log4j/1.2/manual.html.

Back to Top

LucidWorksLogs Collection

LucidWorks Search records log files for your Solr indexes in a collection called LucidWorksLogs,
which contains a pre-configured data source also called | uci dwor ksl ogs. You can view the data for
the LucidWorksLogs collection as you would for any other collection. You can also access the log
files directly in the $LWS_HOVE/ dat a/ sol r/ cor es/ Luci dWor ksLogs/ directory.

The LucidWorksLogs collection powers the error log and all statistics about recent query and
indexing activity that is shown in the Admin UI.

The log files on a LWE-Core server are accessible via HTTP at the URL
"http://server:port/logs". This URL lists all files currently in the logs directory, and provides
links for downloading them individually. This can be useful in situations where you do not have
direct shell access to the LWE-Core machine, but would like to review the log files for
troubleshooting purposes.

If you are using LucidWorks Search in SolrCloud mode or with each component installed on a
different server, please see the section Log Indexing with Separated Components for details on
how to make sure your logs are fully indexed.

When securing the HTTP Port of LWE-Core installation, consideration should be taken as to whether
the "/logs" directory should be secured or not.

Deleting the LucidWorksLogs Collection

It is possible to delete the LucidWorksLogs collection if desired; however, this will disable
the server log page within other collections, all activity graphing, and all calculations of
Most Popular and Most Recent queries.

If the collection was deleted in error, or if you'd like to restore it at a later time, go to the
Server log page within any collection and click Recreate the log collection.

It is also possible to remove the LucidWorksLogs data source from the LucidWorksLogs
collection (i.e., retain the collection for possible later use, but remove the mechanism that
indexes the logs). However, at the current time it will automatically be re-created and
re-scheduled on server restart. If you wish to disable log crawling, you must either remove
the entire LucidWorksLogs collection, or modify the LucidWorksLogs data source so that
the schedule is not active (you can modify the schedule with the Data Source Schedules
API or in the Schedules screen of the Admin UI.

Related Topics

© 2013 Find this documentation online at Page 24 of 256
LucidWorks http://docs.lucidworks.com/

http://logging.apache.org/log4j/1.2/manual.html

LucidWorks Search Documentation 10-Dec-2013

® Working With LucidWorks Search Components
® Starting and Stopping LucidWorks Search

Back to Top

© 2013 Find this documentation online at Page 25 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Starting and Stopping LucidWorks Search

This functionality is
not available with
LucidWorks Search
on AWS or Azure

LucidWorks Search can be started and stopped using start and stop scripts provided with the
application. These scripts are described below.

) Windows users who have configured LucidWorks Search to run as a service should use the
Services panel in Windows to manage start and stop.

® Starting a Standalone LucidWorks Search Instance

® Starting SolrCloud-enabled LucidWorks Search Instances
® Passing SolrCloud parameters at Start
® Updating nast er. conf

® Stopping LucidWorks Search (all modes)

® Starting or Stopping Components Separately

Starting a Standalone LucidWorks Search Instance

If you did not allow the installer to start LucidWorks Search, or if shortcuts were not installed, you
can still start or stop the system manually from the command line. This will start all components:

1. Open a command shell, and make sure Java 1.6 or greater is in your path.

2. Change directories to the LucidWorks installation directory, then to the $LWS_HOVE/ app/ bi n
directory.

3. Invoke start.sh for UNIX/Mac/Cygwin or st art. bat for Windows systems.

. If you are using LucidWorks Search in SolrCloud mode, please refer to the section Starting
LucidWorks Search in the documentation for Using SolrCloud in LucidWorks Search.

Starting SolrCloud-enabled LucidWorks Search Instances

If you are using LucidWorks Search in SolrCloud mode, you must start the application in a way that
the underlying Solr instances are aware of where ZooKeeper is. If you used the LucidWorks Search
installer, the required parameters have been added to the conf/ mast er. conf file for each
instance.

© 2013 Find this documentation online at Page 26 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
However, if you bootstrapped LucidWorks Search manually, or installed without the all of the
SolrCloud installer steps, you will need to pass the required parameters on the command line. You
can also manually update conf/ nast er. conf file.

Passing SolrCloud parameters at Start

As long as the initial bootstrap has been completed (if not, please see Starting LucidWorks Search),
the only parameter that is required on future startup is the zkHost parameter. This parameter
points to each of the ZooKeeper instances and the root directory for the configurations that are
stored in ZooKeeper. This example commmand starts LucidWorks Search and points to an external
ZooKeeper:

$./start.sh -lwe_core_java-opts
"-DzkHost =10. 0. 1. 7: 5001, 10. 0. 1. 9: 5001, 10. 0. 1. 11: 5001/ | ws"

If you are using the embedded ZooKeeper instance, then you may alternately need to start
ZooKeeper while starting LucidWorks Search with the zkRun parameter on one of the instances.
Subsequent instances would require the zkHost parameter to point to the instance with the
running ZooKeeper. For example, to start the first instance:

$./start.sh -lwe_core_java-opts "-DzkRun"

Then all subsequent instances are started:

$./start.sh -lwe_core_java-opts "-DzkHost:10.0. 1. 7:9988"

Note when using the embedded ZooKeeper that the port is the LWE-Core component port + 1000.

Updating master.conf

If you don't want to have to pass the ZooKeeper parameters each time you restart, you can modify
the conf/ mast er. conf file for each instance. Simply add the - DzkHost parameters to the section
JVM Settings of LWE-Core and they'll be passed to the start script. For example, here is a
sample where:

COMPONENT LWE-Core - LWE-Solr + LWE REST API.

| wecor e. enabl ed=t rue
| wecor e. address=http://10.0. 1. 5: 8888

JVM Settings for LWE-Core

I wecore. jvm parans=- Xn6512M - Xnx1024M - XX: MaxPer n5i ze=256M - Duser . | anguage=en

- Duser. country=US -Duser.tinezone=UTC -Dfil e. encodi ng=UTF- 8

- Dcom sun. managenent . j nxr enot e - DzkHost =10. 0. 1. 7: 5001, 10. 0. 1. 9: 5001, 10. 0. 1. 11: 5001/ | ws

If using the embedded ZooKeeper instance, the same approach can be taken to add the - DzkRun
parameter to one instance, with - DzkHost being added to the other instances.

© 2013 Find this documentation online at Page 27 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
These parameters only need to be added to the LWE-Core component for each instance that runs
the LWE-Core component; so if you have an instance that is only running the UI or the Connectors,
the parameters don't need to be added at all.

Stopping LucidWorks Search (all modes)

To stop LucidWorks Search, use the stop scripts at the command line. This will stop all components
and any running processes.

1. Open a command shell, and make sure Java 1.6 or greater is in your path.

2. Change directories to the LucidWorks installation directory, then to the $LW5_HOVE/ app/ bi n
directory.

3. Invoke st op. sh for UNIX/Mac/Cygwin or st op. bat for Windows systems.

) Restarting LucidWorks Search

To restart LucidWorks Search, first stop the servers and start them again using the
processes outlined above.

Starting or Stopping Components Separately

To start or stop any of the components without starting or stopping the other components, you can
use the start.sh/start. bat or stop. sh/stop. bat scripts with the - onl y parameter, followed by
the component name.

® Core component: | we-core
® UI component: | we- ui
® Connectors component: connectors

For example, this would start only the connectors using the start. sh script:

start.sh -only connectors

© 2013 Find this documentation online at Page 28 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Configuring Default Settings

This functionality is
not available with
LucidWorks Search
on AWS or Azure

You can configure many default settings in LucidWorks Search in
the def aul ts. ynl file located in the $LWS_Hone/ conf/ | we- cor e directory. You must restart
LucidWorks after editing this file for your changes to take effect.

Some of the default settings you can configure include:

Default crawl depth

Default field mappings for crawlers

Batch crawling of data sources

Enabling or restricting data sources by crawler
Default HTTP proxy settings

For example, to set the default crawl depth to 3 (which means that the crawler will follow
links/sub-directories up to three steps away from the initial target), set dat asource. craw _dept h:
3.

Here is an example def aul t s. ym file with comments that explain the various default settings
(your default.yml file may vary):

file: defaults.yn
initCalled: true
| ocation: CONF
val ues:
Set to true to block index updates
control . bl ockUpdat es: fal se
A whitespace-separated |list of symbolic crawl er nanmes to enable; all crawers are
enabled if this list is enpty
craw ers. enabl ed. crawl ers:
Absolute path that will be used to resolve relative path of local file systemcraws
craw ers.fil esystemcraw . home: null
Per-craw er |ist of enabl ed datasource types, whitespace-separated. Al available
types are enabled if this list is enpty.
crawl ers. | ucid. aperture. enabl ed. dat asour ces:
Per-craw er whitespace-separated list of restricted datasource types; all enabl ed
types are unrestricted if this list is enpty
craw ers. lucid. aperture.restricted. datasources:
crawl ers. | uci d. external . enabl ed. dat asour ces:
craw ers. lucid. external .restricted. dat asources:
craw ers. |l ucid. fs. enabl ed. dat asour ces:
craw ers.lucid.fs.restricted. dat asources:

© 2013 Find this documentation online at Page 29 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

craw ers. | uci d. gcm enabl ed. dat asources: '
craw ers. lucid.gcmrestricted. dat asources:

craw ers. |l ucid.jdbc. enabl ed. dat asour ces:
craw ers. lucid.jdbc.restricted. datasources:
craw ers. | uci d. | ogs. enabl ed. dat asources: '

craw ers.lucid.logs.restricted. dat asources:

crawl ers. |l ucid. sol rxnl . enabl ed. dat asour ces:
craw ers. lucid.solrxm .restricted. dat asources:

Default data source bounds: choose none or tree
dat asour ce. bounds: none

Bat ch processing; caching of crawl ed raw content
dat asour ce. cachi ng: fal se

Explicitly commt when crawl is finished
dat asource.conmit_on_finish: true

Solr's conmtWthin setting, in mlliseconds
dat asour ce. comrt _w t hin: 900000

-1 for unlimted crawl depth
dat asource.crawl _depth: -1
dat asource.follow_ | inks: true
Set to true to ignore the rules defined in /robots.txt for a site
dat asour ce. i gnore_robots: false
Performindexing at the same tine as craw i ng
dat asour ce. i ndexi ng: true
Default field mapping for Aperture-based crawers. This is the baseline
mappi ng for each data source can be custom zed
dat asour ce. mappi ng. aperture: & d001
I'l'com | ucid.adm n. col | ection. datasource. Fi el dMappi ng
dat asour ceFi el d: data_source
defaul t Field: nul
dynam cField: attr
literals: {}
nappi ngs:
sl i de-count: pageCount
content-type: m neType
body: body
sl i des: pageCount
subj ect: subject
pl ai nt ext nessagecontent: body
| astnodi fied: |asthMdified
| ast nodi fi edby: aut hor
cont ent - encodi ng: char act er Set
type: nul
date: nul
creator: creator
aut hor: aut hor
title: title
m metype: m neType
created: dateCreated
pl ai ntextcontent: body

Default crawl depth: the nunber of cycles or hops fromthe root URL/directory. Set to

the field

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 30 of 256

LucidWorks Search Documentation

10-Dec-2013

pagecount : pageCount

cont ent creat ed: dat eCreat ed
description: description
contributor: author

name: title
filelastnodified: |astMdified
full name: aut hor

fulltext: body
nessagesubject: title
last-nodified: |astMdified
acl: ac

keywor d: keywords

contentl astnodi fied: |astMdified
last-printed: nul

links: null

url: url

batch_id: batch_id

crawl _uri: craw _uri
filesize: fileSize

page- count: pageCount
content-length: fileSize
filenanme: fil eName

mul tiVal :
fileSize: false
body: false

aut hor: true
title: false
acl: true
description: false
dateCreated: false
types:
filesize: LONG
| ast nodi fi ed: DATE
dat ecreat ed: DATE
date: DATE
uni quekey: id
Default field mapping for crawl ers that use Tika parsers
dat asour ce. mappi ng. ti ka: *id001
Maxi mum si ze of content to be fetched
dat asour ce. max_bytes: 10485760

dat asour ce. max_docs: -1

craw ers that support nulti-threaded craw i ng

data source types.
dat asour ce. max_t hreads: 1

dat asour ce. parsi ng: true

Maxi mum nunber of docunents to collect; set to -1 for unlimted docunents

The maxi mum nunmber of concurrent requests processed by a data source crawl, for those

As of v2.1, this is only the lucid.fs crawl er, which supports the Hadoop, S3 and SMB

Set to true to apply content parsers to the retrieved raw docunents

Defines the host nane of an HTTP proxy server to use for web crawing; |eave blank if

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 31 of 256

LucidWorks Search Documentation 10-Dec-2013

you are not using a proxy server
dat asour ce. proxy_host: '
HTTP proxy password, if you are using an HTTP proxy server
dat asour ce. proxy_password: "'
proxyPort for an HTTP proxy server, if you are using one
dat asource. proxy_port: -1
Usernane to authenticate with HTTP proxy server
dat asour ce. proxy_user nanme: "'
If true, text extracted froma conpound docunent (one which has other enbedded
docunents and resources, such as enmnils wth attachnents
or Ofice documents with CLE attachments, but not .zip, .jar., or simlar) will be
appended to the text of the container docunent.
|If false, each enbedded resource is treated as a separate docunent with a URL in the
formof the container document URL plus ! and
the enbedded document's nanme or identifier. If docunments are treated as separate
docunents (when this setting is false),
the URL of the container docunent is added to the field "bel ongsToContai ner".
dat asource. ti ka. parsers. flatten. conpound: true
|If false, docunents with nmine types that start with "inmage/" are ignored. |f true,
the documents are sent to Tika for parsing,
which may result in useful netadata being extracted fromthembut may also result in
a large nunber of fields and terns.
dat asource. ti ka. parsers.include.imges: false
If true, and LucidWrks runs in the sane JVWM as Solr, then crawlers will first try
using direct calls to SolrCore for updates,
which may result in performance inprovenments. |If false (the default), the SolrJ API
is used for updates.
dat asource. use_direct _solr: false
If true, datasources will attenpt to verify access to the renbte repositories.
dat asource. verify_access: true
HTTP-specific preferences sent in HTTP headers during craw ing.
http.accept.charset: utf-8,1S0 8859-1;q=0.7,*;q=0.7
http. agent. browser: Mzilla/5.0
http.agent.email: crawl er at exanple dot com
http. agent. name: Luci dWrks
The agent.string will allow a conpletely customhttp.agent identifier. If this is not
enpty, it will be used verbatiminstead of all other 'http.agent.*"' settings.
http.agent.string: "'
http.agent.url: "'
http. agent. version:
http.craw . del ay: 2000
Maxi mum nunber of redirections in a redirection chain.
http. max.redirects: 10
Nunber of threads for HTTP craw ing.
http. numthreads: 1
Socket tineout in mlliseconds.
http.tineout: 10000
Specify the HTTP version: HITP/ 1.1 if true; HTTP/1.0 if fal se.
http. use. httpll: true
ssl.auth_require_authorization: false

© 2013 Find this documentation online at Page 32 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
ssl.auth_require_secure: false

Related Topics

® Overview of Crawling

© 2013 Find this documentation online at Page 33 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

LucidWorks System Usage Monitor

The LucidWorks System Usage Monitor is a voluntary program to allow LucidWorks Search users to
anonymously send basic information about their system to LucidWorks. We use this information to
analyze the types of systems in use by our customers and how they are used so we can improve
our product. At no point does the system collect information that could identify you, your
organization, the documents indexed, or the type of content indexed.

Information Collected

The System Usage Monitor collects the following information for LucidWorks Search installations:

Operating System version and type

Java version and type

LucidWorks Search version and type

Number of LucidWorks Search collections created
Number of LucidWorks Search data sources created
Number of LucidWorks Search documents indexed
JVM memory free, available, and used

Number of LucidWorks Search queries

Number of documents added since last submission

How the System Usage Monitor Works

When Information is Sent

The System Usage Monitor sends information at each LucidWorks startup (using the start. sh or
start. bat scripts) and once per week on Saturdays.

How Information is Sent

When LucidWorks Search is started, the System Usage Monitor will transmit data about your
system to a server hosted by LucidWorks with two HTTP requests. The first request contains
system-level information and if that is successful, the second request will send LucidWorks-specific
information, as listed above.

The information is sent via an encrypted POST request to https://heartbeat.demo.lucidworks.io.
Each request includes a unique identifier, which is anonymous and can't be used to identify the
sender. The IP that sent the request is not stored with the request.

The requests are logged in the LucidWorks Search core log (core. YYYY_MM DD. | og). The requests
will appear similar to this:

© 2013 Find this documentation online at Page 34 of 256
LucidWorks http://docs.lucidworks.com/

https://heartbeat.demo.lucidworks.io

LucidWorks Search Documentation 10-Dec-2013

2012-10-23 19: 05: 56,618 | NFO heartbeat. Luci dSt at sPubl i sher - Sendi ng heartbeat stats:
uui d=' 3532f 7e9- 4280- 4714- 9e83- ea0a95f e90bd' , dat a=' { pr oduct =l we,

current _product _version=0.0Enif, is_cloudy=fal se,
lwe_git_sha=7568ce8c35a394c4b987e3al7cb5elb5ae5dac?25, j ava_version=1.6.0_35 (Apple
Inc.), numcpu_cores=4, os_version=Mac OS X (x86_64)}'2012-10-23 19: 05: 58, 831 | NFO
publ i sh. Moni t or Regi stryMetricPoller - cache refreshed, 8 nonitors matched filter,
previ ous age 1351019158 seconds

2012-10-23 19: 05: 58, 865 | NFO heartbeat. Luci dSt at sPubl i sher - Sendi ng heartbeat stats:
uui d=' 3532f 7e9- 4280- 4714- 9e83- ea0a95f e90bd' , dat a=' { num_docs=0, num col | ecti ons=1,

num dat asources=0, jvm nenory_free=506720952, jvm nenory_nax=1065025536,

jvm menory_total =534708224, num adds=0, num search_request s=0}"'

Subsequent weekly updates are sent as a single request, including only the LucidWorks
Search-specific information like number of documents, number of data sources, etc.

How to Opt-In or Opt-Out

During Installation

During installation of LucidWorks Search, you will be presented with an option to opt-in to the
System Usage Monitor program. This option will appear after defining the installation path for the
system. With the graphical installer, the box is checked by default and un-checking the box will
opt-out of the program. If using the console installer, choose '0' as a response to opt-out of the
program.

Post-Installation

Opting-in to the program will insert a line at the beginning of the $LW5_HOVE/ conf / nast er . conf
file, as so:

Luci dWorks System Usage Monitor (comment the next line to disable this feature)
usagesSt at sServer | d=3532f 7e€9- 4280- 4714- 9e83- ea0a95f e90bd

To opt-out:

1. Stop LucidWorks Search

2. Open nast er. conf found in $LW5_HOVE/ conf

3. Comment out the line containing the usageSt at sSer ver | D by adding a hash mark (#) at the
beginning of the line

4, Start LucidWorks Search

The same process can be followed to opt-in if the service was previously disabled, by removing the
hash mark instead of inserting it.

More Information

For more information, including details of our commitment to protecting the privacy of your data,
please see our website at http://www.lucidworks.com/lucidworks-system-usage-monitor.

© 2013 Find this documentation online at Page 35 of 256
LucidWorks http://docs.lucidworks.com/

http://www.lucidworks.com/lucidworks-system-usage-monitor

LucidWorks Search Documentation 10-Dec-2013

Collections and Indexes

This section covers how to configure LucidWorks Search for your data.

Content in LucidWorks is indexed into a collection, which can have different documents, data
sources, fields, field types and settings from other collections. Before starting to work with
LucidWorks Search, review the section Working with Collections. Once one collection is configured
as you like, it can be used as a template, as described in Using Collection Templates.

Once the collections are considered, then you can think about how to configure LucidWorks Search
to index your content. These sections describe the options for setting up the indexes:

® Indexing Documents
® How Documents Map To Fields
® Customizing the Field Schema
® Reindexing Content
® Multilingual Indexing and Search
® | ucid Plural Stemming Rules
® Deleting the Index
© 2013 Find this documentation online at Page 36 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Working with Collections

A single installation of LucidWorks Search may be used to index multiple types of content, serve
multiple user constituencies, or accommodate multiple overlapping security rules. It does this by
supporting the creation and use of multiple "collections". A collection is a set of documents that are
grouped together with the same indexing and query rules. Each collection in LucidWorks has its
own index and configuration files and is logically separate from all other collections.

For those familiar with Solr, the concept of collections in LucidWorks is very similar to the concept
of cores in Saolr.

Default Collections

By default, each LucidWorks Search installation includes two collections out of the box:
"collection1" and "LucidWorksLogs".

Collectionl is the primary collection used by LucidWorks Search to store indexes and define query
settings. It can be used as-is immediately after installation to start indexing documents and using
the default Search UI. However, a collection cannot be renamed once created (nor can content be
moved from one collection to another without indexing it all from scratch). So, if you think you'll
use multiple collections and want to name each one based on what it contains or what it will be
used for, you would probably create a new collection and start from there.

The LucidWorksLogs collection is a special collection, used to index logs for easier troubleshooting.
It is discussed in more detail in the section on the LucidWorksLogs collection. It can be deleted at
any time and recreated later, if desired.

If you want to delete collectionl, you can do so after you've created at least one other standard
collection, as there must always be at least one collection (not including the LucidWorksLogs
collection).

A collection that has been customized can also be used as the basis for future collections; see the
section on Collection Templates for more information.

Per-Collection Features

You can configure the following items for each collection individually:

Data sources
Fields

Query settings
Search UI
Search Filters
Schedules
Solr Admin

© 2013 Find this documentation online at Page 37 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/CoreAdmin

LucidWorks Search Documentation 10-Dec-2013
After you have created additional collections, you should pay special attention to the collection
name you are working with so you edit the proper configuration files or make the correct API calls.
This is particularly true when using the REST API or several of the advanced configuration options
discussed later in this Guide, but it also applies to the various screens of the Admin UI. Modifying
the wrong collection out of context may have unexpected consequences including poorly indexed
content or an inconsistent search experience for users.

System-Wide Features

The following items are system-wide and can only be configured for the entire LucidWorks Search
installation or instance:

Collection definition

Access to user interfaces

Users

Alerts (although these take the collection as a parameter to limit the query)

Related Topics

® (Creating a collection with the Collections API
® (Creating a collection with the Admin UI
® System Directories and Logs

© 2013 Find this documentation online at Page 38 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/
http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 10-Dec-2013

Using Collection Templates

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Collection templates allow you to copy the configuration files
from a collection and use it as the basis for future templates. Creating a template is as simple as
creating a . zi p file from configuration files in the base collection and explicitly specifying that . zi p
file during new collection creation either via the Admin UI or the REST API.

Included Templates

Several templates are included with LucidWorks out of the box. They can be found in
$LWS_HOVE/ app/ col | ecti on_t enpl at es.

® default.zip: This has the same default options and out-of-the-box fields as the standard
"collection1" that exists by default after LucidWorks Search installation.

® essential . zip: This is a stripped-down version of the LucidWorks default configuration that
includes only the few fields that are absolutely essential for the system to run (see
Customizing the Field Schema for more details on the default field set).

® hadoop. zi p: provides the basic configuration for storing the Solr indexes for a collection in a
Hadoop Filesystem (HDFS). For more details, see Storing Indexes in HDFS.

® | uci dwor ksl ogs: provides the configuration for the LucidWorksLogs collection only. This is a
system collection with a very specific configuration and this template should not be used for
any other collection.

Creating a Template

W app
F B conf
L gom
"l solr
B cares
B collectionl_0
> [l bin
el conf
= [l jdbclib
il LucidWorksLogs
@ colr.xm
* roo.cfg

| data To make a custom template, create a new collection and

configure it as needed, whether that is via the user interface, using the REST API, or manual
editing of configuration files. All of the configuration files for a collection reside in the

i nst ance_di r for the collection, which is found under $LW5S_HOME/ conf/ sol r/ cores/ col | ecti on,
where col | ecti on is the name of the collection that is being used as the basis for the template.

© 2013 Find this documentation online at Page 39 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 10-Dec-2013
Then create a . zi p file from the i nst ance_di r. The .zip file can have any name, including

def aul t. zi p, although using the same name would overwrite the system default template,
meaning it would not be available at a later time if needed. All templates must be placed in
$LWS_HOVE/ conf/ col | ecti on_t enpl at es to be available during collection creation.

We recommend that you use all the sub-directories from the i nst ance_di r even if some of
the files have not been customized in the base collection.

Related Topics

® Working with Collections

© 2013 Find this documentation online at Page 40 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Indexing Documents

The first step to being able to search is to create an index. The index stores all the terms from
documents in such a way that results for user queries can be returned as quickly as possible.

Indexes are created by breaking a document into individual words and saving the word list. At the
same time, documents are not solely lists of sentences and words, but instead usually contain
some sort of structure - an email will likely have "to" and "from" information; Word and PDF
documents may have "title" and "author" information, in addition to the main "body"; product
descriptions may have "price", "description" or "color" information. These are known as fields
within each document. Adding field information to the word list facilitates a user's ability to search
for emails from a specific person, or shoes that come in a particular color.

Fields can contain different types of data. A title field, for example, is usually text (character data).
A price contains a mix of digits and special characters (such as $ or €). Dates are generally
Defining the type of data that a field will contain is a critical first step in defining the fields for the
index.

Defining Fields

There are several things to consider when configuring fields. The primary one is whether to store
the field or not. Stored fields take up space in the index, but they allow the field to then be indexed
(that is, made searchable) or available to users for display. It may be preferable to store a field
and use it for display in a results list, but not allow it to be searchable. Alternately, a field can be
designated for use in a facet, so it would be stored and indexed, but perhaps not searchable. A
careful analysis of documents should occur before indexing to be able to anticipate how it will be
indexed. If fields are not correctly configured before a document is indexed, documents will need to
be re-indexed at a later time. If that is required, the existing index can be deleted and documents
can be added to it from scratch.

Indexing Data Sources

In order for users to be able to search, LucidWorks Search needs to have indexed documents.
LucidWorks Search supports two main approaches for document discovery:

® Documents can be pushed directly into the system. Users who are familiar with Solr may
already have processes and systems in place to push documents into the index. This is also
an option if LucidWorks Search is not able to connect to the repository to pull documents
from it.

® Documents can be pulled from remote repositories. LucidWorks Search has several
pre-defined types of repositories that it is able to connect to; you configure these
connections by creating "data sources" and selecting options appropriate for your needs.

Each of these approaches has several options and caveats to consider, which are covered in more
detail Overview of Crawling.

© 2013 Find this documentation online at Page 41 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Related Topics

® Customizing the Field Schema

© 2013 Find this documentation online at Page 42 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

How Documents Map To Fields

When LucidWorks Search crawls a data source, it extracts the target data and stores it in fields in
the index. The specific mapping from the source data to the indexed fields is determined by the
crawler you are using, which is in turn determined by the data source type. For a list of file types
supported by LWE, see Supported Filetypes. Let us consider two common file types, both
processed by the Aperture crawler: a website and a Microsoft Word document.

For the website, consider a case where you have crawled http://www.lucidworks.com with a crawl
depth of zero, which means that only the first page is indexed. The Aperture crawler maps the web
page as follows (note that this example is not complete or exhaustive):

Data Source Field Mapping Field Content

url url http://lucidworks.com

content-type mimeType html/text

title title Lucid Imagination is now LucidWorks. LucidWorks
body body The Future Of Search

And so on.

For the Microsoft Word document, consider this document, included here in its entirety:

This Is The Heading

This is some text. It is very interesting.

L..Aq,.._ T PE . P

T T e P

Data Field Field Content

Source Mapping

mimetype mimeType application/vnd.openxmliformats-officedocument.wordprocessingml
title title Example Word Doc

© 2013 Find this documentation online at Page 43 of 256

LucidWorks http://docs.lucidworks.com/

http://aperture.sourceforge.net/
http://docs.lucidworks.com/display/help/Create%20a%20New%20Web%20Data%20Source
http://www.lucidworks.com
http://lucidworks.com
http://docs.lucidworks.com/display/help/Create%20a%20New%20File%20Data%20Source

LucidWorks Search Documentation 10-Dec-2013

author author Drew Wheeler

body body This Is The Heading This is some text. It is very interesting.

For information on which crawlers handle which data source types, see the Overview of Crawling. If
using the Admin UI, you don't need to worry about the crawler type. The UI also includes screens
for modifying how documents are mapped to fields, or the Data Sources API can be used. For more
information on fields in LucidWorks Search, see the Table of Fields in the section Customizing the
Field Schema.

Related Topics

® Qverview of Crawling
® Indexing Documents
® Editing Field Mapping

© 2013 Find this documentation online at Page 44 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://docs.lucidworks.com/display/help/Editing%20Field%20Mapping

LucidWorks Search Documentation 10-Dec-2013

Customizing the Field Schema

When indexing documents, LucidWorks Search doesn't merely generate a list of all the words found
on the page. It also tries to recognize the structure of the document, and remember some of that
structure in the index. The structure of indexed documents is represented by the fields defined for
the LucidWorks Search index. When terms are saved in the index, they are saved with information
about the field in which they were found in the document.

Field definitions are stored in a schema. xm file for each collection. Users familiar with Solr will
recognize this file, since it is the same schema. xnm file that is used with a Solr installation. Instead
of editing this file by hand, however, LucidWorks Search allows modifying the field and field type
definitions with the Admin UI or with the REST API.

By default, LucidWorks Search contains field definitions to support various features of LucidWorks
(such as crawling documents and Click Scoring) and to make it easier for users to get up and
running. Not all users will need all fields, however, so you may want to add fields unique to your
search application or just to trim the default set of fields so the list is easier to work with. This
section describes the default fields, how they are used by LucidWorks Search, and if they can be
removed for local installations.

One of the primary added values of LucidWorks Search is the integration of content crawlers for
web sites, filesystems and other repositories of content. Many of the default fields are for this
purpose and should be retained. In many cases, if they are removed from the schema, they will be
recreated the next time a crawler needs them. However, if not using the LucidWorks crawlers, they
can generally be safely removed. They will be added based on a dynamic rule ("*" rule) in the
schema. xml file that should be retained to avoid unexpected failures of the crawlers. If this rule is
left in place, nearly any field in the schema can be removed as it will be added back if it is needed.

= Only delete the "*" rule if you are absolutely positive other deleted fields will not be
needed in your specific implementation. Deleting this rule may also complicate future
upgrades, as it is not possible to predict when LucidWorks Search will add new fields to the
schema. xnl file to support future functionality.

® Guidelines for Removing Fields from the Schema
® Essential Fields
® Built-In Search UI Fields
® Fields to Support Specific Features
® Crawler Fields
® QOther Dynamic Fields
® Table of Fields

Guidelines for Removing Fields from the Schema

Essential Fields

© 2013 Find this documentation online at Page 45 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

There are two fields that must be retained in schema. xml . The Admin UI and the Fields API will not
allow deleting them:

* id
® timestamp

There are three additional fields that are considered essential to LucidWorks Search.

® data_source

® data_source_name
® data_source_type
® text_all

The three data source-related fields are considered essential for the Admin UI and APIs to know
the source of the content that has been indexed. If not using the Admin UI nor the LucidWorks
REST APIs, they could be deleted.

The text_all field is required because schenma. xm declares it as the default search field for the
Lucene RequestHandler (query parser), which is also the default for the basic Solr query parser. If
you are using | uci d or Di sMax, however, and will never use the Lucene or Solr query parsers, the
field could be deleted. However, it may be best to retain it.

) We have created a sample schema that includes only the essential fields listed above that
can be used for collection creation. See Using Collection Templates for more information.

Built-In Search UI Fields

LucidWorks includes a default search UI that can be used as-is or replaced with a fully local
interface. If using it as-is, even for testing or during initial implementation, the following fields
must also be retained in schema. xni :

author
author_display
body
dateCreated
description
keywords
keywords_display
lastModified
mimeType
pageCount
title

url

The Search UI includes these fields for results display and default faceting, so for it to work
properly, these fields should be retained.

© 2013 Find this documentation online at Page 46 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Fields to Support Specific Features

Several fields are included in schema. xnl in support of specific LucidWorks features. They can be
removed if those features are disabled or not in use. In some cases, however, they will be added
back to the schema if the feature is enabled in the future.

Feature Fields

Click Scoring Relevance Framework click

click_terms
click_val
ACL acl
Spell Check spell
Auto Completion autocomplete
Enterprise Alerts timestamp

SolrCloud and Near Realtime Search _version_

De-duplication signatureField

Crawler Fields

The crawlers included with LucidWorks create fields in schema. xnmd that begin with *attr_* and are
used to store document-specific metadata during crawl processes. They are not generally used
otherwise by LucidWorks (such as in search results or other computations). Due to the dynamic "*"
rule, they will be added back to schema. xnl if not in place. If not using the LucidWorks crawlers,
they can be removed, but it is recommended to retain them if possible.

Other Dynamic Fields

Several other dynamic fields (all including an '*', such as *_i, *_s, *_|, etc.) are defined in
schema. xm . These can be removed if they will not be used - the only two we recommend that you
retain are the "*" rule and the attr_* fields.

Table of Fields

. The table below notes whether a field will be indexed, stored, used for facets or included in
results. This is default behavior, and can be modified locally. After customization, this table
may not reflect the state of your schema. xnl file.

Field Name Type Indexed Stored Used Included Used for
for in
Facets Results

© 2013 Find this documentation online at Page 47 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

version

acl

attr_* (any field
starting with
attr_")

author

author_display

long

string

string

text_en

string

Document
version control,
used with Near
Realtime Search
and SolrCloud.

Storing Access
Control List
information.

Created by the
crawlers and used
for a wide array
of
document-specific
metadata. Not
specifically
declared in the
schema.xml file,
but dynamically
created during
crawls.

Raw author
pulled from
documents. Used
by default in the
built-in Search
Ul.

Used for display
of authors in
facets. Used by
default in the
built-in Search
Ul.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 48 of 256

LucidWorks Search Documentation

10-Dec-2013

autocomplete textSpell

batch_id string

bcc text_en

belongsToContainer text_en

body text_en

Stores terms for
the
auto-complete
index. By
default, it is
created by
copying terms
from the title,
body, description
and author fields.

Identifies the
batch that added
the document.

Used in
processing email
messages.

Used to store the
URL of the
archive file (.zip,
.mbox, etc.)
which contains
the file.

The body of a
document
(generally, the
main text). Used
by default for
display in the
built-in Search
UI.

© 2013 Find this documentation online at

LucidWorks

http://docs.lucidworks.com/

Page 49 of 256

LucidWorks Search Documentation

10-Dec-2013

byteSize

CcC

characterSet

click

int X

text_en X X

string X

string X X

The size of the
document.

Used in
processing email
messages.

The character set
used for the
document. Only
populated if it is
declared in the
document (most
commonly with
HTML files).

Used with the
Click Scoring
Relevance
Framework and
contains the
boost value.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 50 of 256

LucidWorks Search Documentation

10-Dec-2013

click_terms

click_val

contentCreated

crawl_uri

text_ws

string

date

string

Used with the
Click Scoring
Relevance
Framework and
contains the top
terms associated
with the
document.

Used with the
Click Scoring
Relevance
Framework and
contains a string
representation for
the boost value
for the document.
The format allows
it to be used for
processing
function queries.

The creation date
for the document,
if available.

A copy of the URL
for the document.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 51 of 256

LucidWorks Search Documentation 10-Dec-2013

creator text_en X X The creator of the
document, if
available.

data_source string X X The ID of the
data source that
crawled this
document.

data_source_name string X X X The name of the
data source that
crawled this
document.

data_source_type string X X X The type of data
source that
crawled this
document.

dateCreated date X X X The date the
content was
created, if
available.

description text_en X X X The description
from a document,
if it exists in the
document. For
example,
Microsoft Office
document
properties
contains a
description field
that can be filled
in by the user.

© 2013 Find this documentation online at Page 52 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

email

fileName

fileSize

from

fullname

generator

id_highlight

incubationdate_dt

keywords

text_en X X

text_en X X

int X X

text_en X X

text_en X X

text_en X X

string X X

text_en X X

date X X

text_en X X

Not currently
used by any
LucidWorks
crawlers.

The name of the
file.

The size of the
file.

Used in
processing email
messages.

Data in this field
is mapped to
"author".

The name of the
software that
generated the
document, if
available.

Unique ID for the
document.

No longer used
by LucidWorks
and will be
removed in a
later version.

Used in older Solr
example
documents.

The keyword list
from a Microsoft
Office document.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 53 of 256

LucidWorks Search Documentation

10-Dec-2013

keywords_display

lastModified

mimeType

name

otherDates

pageCount

partOf

price

comma-separated

date

string

text_en

date

int

string

float

x

Terms from the
keyword field
formatted for
display to users.

Date the content
was last
modified.

The type of
document (PDF,
Microsoft Office,
etc.).

Data in this field
is mapped to
"title".

Dates other than
dateCreated or
lastModified
would be mapped
to this field.

The number of
pages in a
Microsoft Office
document such as
Word or
PowerPoint.

Typically used for
an email
attachment, this
points to the
larger document
of which this
document is a
part.

Example field
that could be
used for
processing
e-commerce
data.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 54 of 256

LucidWorks Search Documentation

10-Dec-2013

retrievalDate

rootElementOf

signatureField

spell

text_all

text_medium

text_small

date

text_en

string

textSpell

text_en

text_en

text_en

Not currently
used, but could
be used for the
date a web
document was
retrieved from its
server.

Populated only
for the root or
initial document
of a crawl.

Used with the
de-duplication
feature.

Stores the terms
to be used in
creating the spell
check index.
Created by
copying terms
from the title,
body, description
and author fields.

Used to combine
text fields for
faster searching.
Created by
copying terms
from the id, url,
title, description,
keywords, author
and body fields.

Not currently
used.

Not currently
used.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 55 of 256

LucidWorks Search Documentation

10-Dec-2013

timestamp

title

to

type

url

username

date

text_en

text_en

text_en

string

text_en

Time the
document was
crawled and used
for date faceting
and display of
activities in the
LucidWorks
Admin UI. Also
used for
Enterprise Alerts
to know when the
document was
added to the
index for alerts
processing.

The title of the
document.

Used in
processing email
messages.

Used by the
lucid.aperture
crawler to store
Aperture's
classification of
an information
object, separate
from its MIME

type.

The URL to
access the
document.

No longer used
and may be
removed in a
later version.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 56 of 256

LucidWorks Search Documentation 10-Dec-2013

weight float X X Example field
that could be
used for
processing
e-commerce
data.

© 2013 Find this documentation online at Page 57 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Reindexing Content

It is considered a best practice to fully design your index (i.e., define all the fields you'll need and
their attributes) before indexing large amounts of content. However, the reality is that things
change - you have new requirements, new content, or you'd like to give users new options for
searching.

As tolerant as LucidWorks Search is to changes, there are certain changes that cannot be made
without fully reindexing, by which we mean deleting content from the indexes and re-processing it
from scratch. Adding a field or changing field mapping options for an existing data source, as
examples, require indexing the content again to get the new field information from the document
or change the way the incoming content was processed into the index.

In addition, changes to the following attributes of a field require some degree of re-index:

Field Type value

If it is Indexed

If it is Stored

If it is Multi-valued
Short Field Boost value

Below are the options for re-indexing content.
Re-crawl the Content

All of the crawlers store information about what documents it has previously processed, and uses
that information for future crawls, usually only adding documents that are new (have never been
indexed before), removed from the content repository (and should be removed from the index), or
changed (and should be replaced in the index with the new copy). This means that documents
already in the index are not re-processed and may be skipped, which may create a mis-match
between existing content and new content being indexed.

Empty the Data Source

The Admin UI includes a button to Empty a data source. This button only deletes the documents
from the data source, but does not reset any of the crawl history information, which keeps track of
content that were previously found and uses that information to understand if content is new, has
been deleted (and should be removed from the index), or has been updated (and should be
removed and replaced with the new content). The associated API is the Collection Index Delete
API, which has an option to specify deleting documents from the index associated with a data
source.

© 2013 Find this documentation online at Page 58 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration

LucidWorks Search Documentation 10-Dec-2013

If changes to a collection's field list or field type list have been made, emptying the documents
from the data source may not be sufficient to fully re-crawl the content to update the fields
because the next time a crawl is run it will be executed incrementally, using the crawl history
information that it has stored. This means that if a document has not changed it will not be
re-added to the index because the crawl history registers it as unchanged.

There is, however, a REST API to delete the crawl history called Data Source Crawl Data Delete
which can be used if necessary.

Delete the Data Source

Deleting the data source deletes the metadata for the data source (the configuration details for
LucidWorks Search to access the content repository), and any of the content from the index and
the crawl history. It can be done with either the Admin UI Delete button or the Data Sources API.
This might be the easiest way to clear the content so it can be re-crawled and re-indexed with the
new field attributes.

Empty the Collection

Emptying the collection stops any running data sources, deletes the entire search index for the
collection, and removes all crawl history for each data source. It is a good option if you have a
number of data sources that you configured during initial implementation and would like to start
fresh with production data. Emptying the collection can be done with either the Empty this
Collection button in the Admin or the Collection Index Delete API.

Delete the Collection

Deleting the entire collection will delete all the data sources, stop any running jobs, delete all
associated content, and remove all collection-related settings for the index. It can be done with the
Delete this Collection button in the Admin UI or the Collections API.

Related Topics

® Indexing Documents
® Qverview of Crawling

© 2013 Find this documentation online at Page 59 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Source%20Details
http://docs.lucidworks.com/display/help/Collection%20Overview
http://docs.lucidworks.com/display/help/Collection%20Overview
http://docs.lucidworks.com/display/help/Collection%20Overview

LucidWorks Search Documentation 10-Dec-2013

Multilingual Indexing and Search

LucidWorks Search has a number of capabilities designed to make working with multilingual data
straightforward. By default, it includes support for most European languages, Japanese, Korean
and Chinese. Multilingual capabilities are provided by Lucene's analysis process (see the Language
Analysis section of the Solr Reference Guide for more details). Since Lucene is built on Java, which
is Unicode enabled, many multilingual issues are handled automatically by LucidWorks and Solr. In
fact, the main issues with multilingual search are mostly the same issues for working with any
language: how to analyze content, configure fields, define search defaults, and so on.

Approaches to Multilingual Search

Besides the normal language issues, multilingual search does require decisions about whether to
use a single field for each language, a field for each language or even a separate indexes for each
language. Each of these three approaches has pros and cons.

Single Field Approach

Pros

® Simple to search across all languages
® Fast to search

Cons

® Requires Language Detection software, which is not included in LucidWorks, and which will
slow down indexing

® Requires the query language to be specified beforehand, since language detection on queries
is often inaccurate

® May return irrelevant results, since words may have same spelling but different meanings in
different languages

® May skew relevancy statistics

® Hard to filter/search by language

Multiple Field Approach

Pros

® No language detection required

® FEasy to search and/or filter by language

® Relevancy is clear since there is no noise from other languages with common spellings
(minor)

Cons

® Many languages = many fields = more difficult to know what to search
® Slower to search across all languages

Multiple Indexes Approach

© 2013 Find this documentation online at Page 60 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 10-Dec-2013

Pros

® FEasy to bring one language off-line for maintenance without effecting other languages
® Can easily partition data and searches across machines by language
® Easy to search and filter by language

Cons

® More complex administration
® Slower and more difficult to search across all languages

Currently, LucidWorks supports the multiple field and multiple index approach out of the box, but
the single field approach is still possible with some additional work that requires intermediate level
Solr expertise.

Open Source Multilingual Capabilities

The crux of multilingual handling is applying analysis techniques to the content to be indexed.
These techniques are specified in the Solr's schema. xml by the <fi el dType> declarations. Out of
the box, LucidWorks comes configured with numerous predefined field types designed to make
indexing and searching multilingual content easy to do.

Note that most of the supported languages (especially the European languages) are designed to
use Dr. Martin Porter's Snowball stemmers along with stop word filters, synonym filters and various
other filters.

@ Multiple Languages May Require Customization

Although LucidWorks ships with default analysis and filter techniques, they may need
customization for your search application. Consider the included language configurations to
be good starting points for support of any given language and make adjustments as
needed. For information on relevance tuning and debugging for additional tools and
techniques to improve results, see Understanding and Improving Relevance.

By setting up the appropriate fields per language, it is possible to simply point LucidWorks at the
given data source and have it index the content.

Adding Support for Other Languages

While there are a wide variety of languages available "out of the box", there may come a time
where support for a new language is needed. There are a few possibilities:

® Try out the language with the StandardAnalyzer, since it often does the right thing as far as
tokenization and basic analysis goes. Note that the analyzer doesn't do stemming or perform
more advanced language translation.

© 2013 Find this documentation online at Page 61 of 256
LucidWorks http://docs.lucidworks.com/

http://snowball.tartarus.org/

LucidWorks Search Documentation 10-Dec-2013

® Write an Analyzer, Tokenizer or TokenFilter and the associated Solr classes as described on
the Solr Wiki page at http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

® Use an n-gram character-based approach that chunks characters into n-grams and indexes
them. Accuracy will be limited, but it may be better than nothing.

If choosing the second option, the new capability can be brought into LucidWorks as described in
the Solr wiki section on SolrPlugins.

Related Topics

® | anguage Analysis from the Solr Reference Guide
® AnalyzersTokenizersTokenFilters from the Apache Solr Wiki

© 2013 Find this documentation online at Page 62 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

LucidWorks Search Documentation 10-Dec-2013

Lucid Plural Stemming Rules

The purpose of stemming is to translate different forms of similar words to a common form so that
a query for one form of a word will also match the other forms. The most common difference
between word forms is singular words versus their plurals. Another variation in form is the variety
of conjugations of a word. Although the administrator can select what stemming filter or options
are enabled for each field type, by default all text fields will have a stemming filter that converts
most plural words to singular.

Stemming is not a perfect process, so some plurals may be missed and some singular words may
be mistakenly translated to some other singular or possibly even a non-word. Non-words, such as
jargon, names, and acronyms can also be mistakenly stemmed. But, since stemming usually
occurs at both document indexing time and at query time, improper stemming is frequently not
even detectable. The default rules try to avoid removing "s" endings that are not plural (or verb
conjugations), such as "alias" or "business."

If stemming proves problematic for a given application, the administrator can always turn it off or
select an alternative stemming filter.

The Lucid plural stemmer is designed to focus on stemming of plural words into their singular
forms. It is rule-based, so the rules can be supplemented and tuned to handle a wide range of
exceptions. Individual words can be protected from stemming and can be given special-case stem
words. Usually, general patterns cover wide classes of words.

The input token does not need to be lower case, but the stemming change will be lower case.

The Stemming Rules File

The default rules file is named Luci dSt enRul es_en. t xt and found in

$LWS_HOVE/ conf/sol r/ cores/ col | ecti on/ conf. The rules file can be defined by changing the
"rules" parameter in schema. xm for com | uci d. anal ysi s. Luci dPl ural StenFil terFactory.
These rules files are specified per text field type. It is expected that each natural language will
have its own stemming rules file. This file is also specific to each collection.

If you wish to edit the stemming rules file, adhere to the following format guidelines.

® An exclamation point (!) indicates a comment or comment line to be ignored.
® White space is extraneous and ignored.
® Blank lines ignored.

Rules are evaluated in the order that they appear in the rules file, except that whole protected
words and replacement words are processed before examining suffixes.

To restrict the minimum word length that is to be stemmed, simply create rules consisting of only
question marks ('?") to match and protect words of those lengths. For example, to protect words of
less than four characters in length, add three rules, before any other rules:

© 2013 Find this documentation online at Page 63 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

? ! Protects 1-char words.
?? I Protects 2-char words.
??7? I Protects 3-char words.

Types of Stemming Rules

Protected Word

Just write the word itself, it will not be changed.

® word

Replacement Word

Word will always be changed to a replacement word.

® word => new word
® word -> newword
® word --> new word
® word = new word

Protected Suffixes

Any matching word will be protected.
® pattern suffix

Pattern may start with an asterisk to indicate variable length. Use zero or more question marks to
indicate that a character is required. Use a trailing slash if a consonant is required.

Examples:

® ?ass
® *77ass
® *977?/ass

Translation Suffix
The suffix of a matching word will be replaced with new suffix.

® pattern suffix => newsuffix

Pattern rules are the same as for protected suffixes. The pattern may be repeated before the
replacement suffix for readability.

Examples:

® *gses => se
® *gses -> *se

© 2013 Find this documentation online at Page 64 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

® *?/uses => se
® *9?97s =>

® *975 => *
The latter two examples show no new suffix, meaning that the existing suffix is simply removed.

Example Stemming Rules File

Here is the default Luci dSt enRul es_en. t xt file that ships with LucidWorks Search, found in
$LWS_HOVE/ conf/sol r/ cores/ col |l ecti on/ conf (unique to each collection):

? ! Mninmmof four characters before any stenm ng

??

???

*ss | No change : business

*'s | No change : cat's - Handled in other filters

*elves => *elf | selves => self, elves, thensel ves, shelves

appendi ces => appendi X

*indices => *index ! indices => index, subindices - NOT jaundices
*theses => *thesis ! hypotheses => hypothesis, parentheses, theses
*aderies => aderie ! camaraderie

*ies => *y | countries => country, flies, fries, ponies, phonies, queries, synphonies
*hes => *h | dishes => dish, ashes, snmashes, nmatches, batches

*???0es => *0 : potatoes => potato, avocadoes, tomatoes, zeroes

goes => go

does => do

?0es => *oe ! toes => toe, foes, hoes, joes, npes - NOT does, goes - but "does" is also
plural for "doe"

??0es => ??0e ! floes => floe

*sses => *ss | passes => pass, bosses, classes, presses, tosses
*jigases => *igase ! |ligases => |igase

*gases => *gas ! outgases => outgas, gases, degases

*mases => *mas ! Christmases => Christnas, Thonmases

*?vases => *vas ! canvases => canvas - NOTI vases

*iases => *ias | aliases => alias, bias, Eliases

*abuses => *abuse ! di sabuses => di sabuse, abuses

*cuses => *cuse ! accuses => accuse, recuses, excuses

*fuses => *fuse ! diffuses => diffuse, fuses, refuses

*/uses => *us : buses => bus, airbuses, viruses; NOT houses, npuses, causes
*xes => *x | indexes => index, axes, taxes

*zes => *z | buzzes => buzz

*es => *e | spaces => space, files, planes, bases, cases, races, paces
*ras => *ra ! zebras => zebra, agoras, algebras

*us

/s => | cats => cat (require consonant (not "s") or "o" before "s")
*oci => *ocus ! foci => focus
*cti => *ctus ! cacti => cactus
pl usses => plus
gasses => gas
© 2013 Find this documentation online at Page 65 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

cl asses => cl ass
m ce => nouse

data => datum

I bases => basis

anmebi ases => anebi asi s
atl ases => atl as

Eli ases => Elias

nol asses

feet => foot

backhoes => backhoe
calories => calorie

! Some plurals that don't make sense as singul ar
sal es

news

j eans

© 2013 Find this documentation online at Page 66 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Choosing an Alternate Stemmer

Out of the box, the Lucid query parser comes with a basic plural stemmer that translates most
plural words to their singular form. This should be sufficient for most applications. The stemming
rules are all rule-based in an easy to read and write text file format that permits the addition of
new rules and permits words to be protected or mapped specially. This permits flexibility for many
more specialized applications.

If for some reason the administrator wishes to use an alternative stemmer, the change can be
made manually in the schema. xnl file or by using the FieldTypes API. Any stemming filter can be
specified, but Lucid KStem is a typical alternative.

Information for LucidWorks Search in the Cloud Users
The instructions below refer to editing schena. xm to modify the stemmer used for each field
type. Manual editing of the schenma. xnml file cannot be done by customers using LucidWorks
Search hosted on AWS or Azure, but the same results can be achieved with the FieldTypes API.

Be sure to use the same stemmer class for both the index and query analyzers. If the stemmer
classes do not match, the result can be that some queries can fail if terms were indexed according
to different rules than those used by the Lucid query parser.

In general, it is best to delete the index and do a full re-indexing of the data collection whenever
an index analyzer is radically changed, such as is the case when stemming filters or rules are
changed. See Reindexing Content for more information about the options to reindex.

Other alternative stemming filters, such as Snowball and Porter, can be used instead of Lucid
KStem if desired.

Using the FieldTypes API
The FieldTypes API is covered in depth in the section on the FieldTypes API.

The stemming rules are defined in the "analyzers" section for the field type. The analyzers section
is considered an individual attribute as a whole, and it's not possible to update a single part of the
analyzers rules without updating the entire section.

The com | uci d. anal ysi s. Luci dPl ural StenFi | t er Fact ory class represents the default plural
stemmer and will be shown in an API call in both the i ndex and query section of the anal yzers
attribute. The rul es parameter specifies the name of the text file that contains the plural
stemming rules.

The com | uci d. anal ysi s. Luci dKSt enFi | t er Fact ory class represents the Lucid KStem stemmer.
To switch to this stemmer (or any other), make an API PUT call to the appropriate field type and
update the anal yzer s attribute (in both the i ndex and query sections).

© 2013 Find this documentation online at Page 67 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

For example, changing to the Lucid KStem stemmer for the t ext _en field type would require the
following API call:

curl -X PUT -H 'Content-type: application/json'
-d "{"anal yzers": {
"index": {
"char_filters": [],
"token_filters": [
{
"catenateAll": "0",
"cat enat eNunbers": "1",
"cat enateWords": "1",
"class": "solr.WordDelimterFilterFactory",
"gener at eNunber Parts": "1",
"gener at eWordParts": "1",
"splitOnCaseChange": "1"
8
{
"class": "solr.LowerCaseFilterFactory"
8
{
"class": "solr.ASCl | Fol di ngFi | terFactory”
}
{
"class": "comlucid. anal ysis. Luci dKStenti | t er Fact ory"
}
1.
"t okeni zer": {
"class": "solr.WitespaceTokeni zer Factory"
}
}
"query": {
"char _filters": [],
"token_filters": [
{
"class": "solr.SynonynFilterFactory",
"expand": "true",
"ignoreCase": "true",
"synonyns": "synonyms. txt"
}
{
"class": "solr. StopFilterFactory",
"ignoreCase": "true",
"words": "stopwords.txt"
8
{
"catenateAll": "0O",
"cat enat eNunbers": "0",
"cat enat eWords": "0",
© 2013 Find this documentation online at Page 68 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

"class": "solr.WordDelinmterFilterFactory"
"gener at eNunber Parts": "1",
"gener at eWsrdParts": "1",
"splitOnCaseChange": "1"
8
{
"class": "solr.LowerCaseFilterFactory"
8
{
"class": "solr.ASCl | Fol di ngFi |l terFactory”
}
{
"class": "comlucid. anal ysis. Luci dKStenti | t er Fact ory"
}

1,
"t okeni zer": {
"class": "solr.WitespaceTokeni zer Factory"

}
}}" http://1ocal host: 8888/ api/collections/TestCollection/fieldtypes/text_en

Editing schema.xml

If you edit schema. xm , and search for the t ext _en field type, you should see that both its index
and query analyzers have XML entries for the stemming filter that appear as follows:

<filter class="solr.|SOLatinlAccentFilterFactory"/>

<I-- <filter class="comlucid.anal ysis.LucidKStenFilterFactory"/> -->
<filter class="com | ucid. anal ysis. LucidPlural StenFilterFactory"

rul es="Luci dStenRul es_en.txt"/>

The com | uci d. anal ysi s. Luci dPl ural Stenfi | t er Fact ory class represents the default plural
stemmer. The rul es parameter specifies the name of the text file that contains the plural
stemming rules.

The com | uci d. anal ysi s. Luci dKSt enFi | t er Fact ory class represents the Lucid KStem stemmer,
which is disabled by default using the standard <! - 7and > comment markers.

To disable the default plural stemmer and enable Lucid KStem, simply remove the comment
markers from the latter and add them to the former. Do this same thing for both the index and
query analyzers. The edited lines should now appear as follows:

<filter class="solr.|SCOLati nlAccentFilterFactory"/>

<filter class="com | ucid. anal ysis. Luci dKSt enFilterFactory"/>

<I-- <filter class="comlucid.analysis.LucidPlural StenfilterFactory"
rul es="LucidStenRul es_en.txt"/> -->

© 2013 Find this documentation online at Page 69 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Deleting the Index

During application development, you might use sample data that is inappropriate for the
production system. To remove this data, you can delete the entire index or just delete the content
and crawl history for a single data source.

The easiest way to do this is to use the Admin UI to delete documents from a specific data source
or an entire collection.

Another way to do this is to issue an API command using the Collections Index API. This API
provides two methods to stop all running indexing tasks, clear the index, and clear any persistent
crawl data (crawl history) for either the entire collection or a single data source.

= This Will Delete ALL of Your Data

The following procedure to delete a collection should only be used if you are sure you want
to delete all documents in your index. Once this command has been executed, there is
no way to retrieve the content. If only some documents should be deleted, use the
method to delete documents for a specific data source.

If you only want to clear the crawl history, the Data Source Crawl Data API provides a way to
delete only the history for a data source, but not the content.

An alternative approach would be to issue a delete command directly to Solr with the following
syntax. However, this will not stop running tasks nor clear persistent crawl data.

http://1ocal host: 8888/ sol r/ updat e?stream body=<del et e><query>i d:\[* TO
\ *\] </ query></del et e>

Related Topics

® Reindexing Content
® Qverview of Crawling

© 2013 Find this documentation online at Page 70 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 10-Dec-2013

Storing Indexes in HDFS

It is possible to store the Solr indexes in your Hadoop Filesystem (HDFS). The benefits of this are
to distribute the indexes and Solr's transaction logs across a Hadoop cluster. Note that this does
not use MapReduce for index processing, but instead uses Hadoop for transcation log and index file
storage. LucidWorks Search (and Solr) support doing this with Hadoop version 2.x only.

In LucidWorks Search, this is enabled by with a new collection template named "hadoop" which
defines the configuration required to store Solr indexes on Hadoop. This template can be used to
create new collections whose indexes will be stored in the HDFS specified with the parameters.

The main configuration changes are defined in sol rconfi g. xm . The di rect or yFact ory needs to
be set to use the Hdf sDi r ect or yFact ory and two parameters are defined for sol r. hdf s. hone and
sol r. hdfs. confdir. The sol rconfig. xm supplied with the 'hadoop' collection template includes
this section:

<directoryFactory nane="DirectoryFactory"
cl ass="org. apache. sol r. core. Hdf sDi rect or yFact ory" >
<str name="sol r. hdfs. home">${sol r. hdfs. hone: } </ str>
<str nane="sol r. hdfs.confdir">${solr.hdfs.confdir:}</str>
</directoryFactory>

Note that the two required parameters are defined as system properties. To supply the values for
the system properties, you should modify $LW5_HOVE/ conf / mast er . conf for the installation to add
them. The values must be supplied for the LWE-Core component as in this example:

JVM Settings for LWE-Core

I wecore. jvm par ans=- Xns512M - Xnx1024M - XX: MaxPer nf5i ze=256M - Duser . | anguage=en
- Duser.country=US -Duser.tinezone=UTC -Dfi | e. encodi ng=UTF- 8

-Dcom sun. nanagenent . j nxrenot e - Dsol r. hdf s. hone=/ pat h/ t o/ hadoop/ hore

-Dsol r. hdf s. conf di r =/ pat h/ t o/ hadoop/ hone/ conf

Defining the values in mast er. conf has the benefit of allowing you to define the HDFS location
once. However, if you have multiple HDFS locations, you could instead define the values within the
sol rconfi g. xm file for each collection that will be stored in HDFS. In that case, do not also add
the values to nast er. conf.

Note the parameters described here are the basic parameters to allow LucidWorks to store the Solr
indexes on HDFS. There are other available parameters, however, described in the Apache Solr
Reference Guide section Running Solr on HDFS.

Related Topics

® Using Collection Templates
® Running Solr on HDFS from the Apache Solr Reference Guide

© 2013 Find this documentation online at Page 71 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS
https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS

LucidWorks Search Documentation 10-Dec-2013

Crawling Content

This section describes how to configure crawling with LucidWorks Search, to get the content to put
in the indexes.

For the most part, crawling only requires configuring a data source with the UI or the API and
starting the crawl. However, if using batch crawling, Access Control Lists, databases containing
binary data, or an "external" crawler, there may be additional configuration you'll want to do.

Start with the Overview of Crawling to understand how the crawlers work.

Then dive into the detailed sections as needed:

® Supported Filetypes ® Using the High Volume Crawlers
® Troubleshooting Document Crawling ® Suggestions for External Data Sources
® Crawling Windows Shares with Access ® Indexing Documents Directly to Solr
Control Lists ® Integrating Nutch
® Indexing Binary Data Stored in a ® Processing Documents in Batches
Database
© 2013 Find this documentation online at Page 72 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

Overview of Crawling

LucidWorks Search has integrated several crawlers to make adding
content to the index easier and more straightforward.

A crawler is a program which understands how to connect to a
remote repository (or several types of repositories), find documents
within the repository, and retrieve the documents for indexing by
the system. A synonym in some contexts is a connector, but there
are differences between the terms. A crawler discovers new
documents on its own and makes decisions about which documents
to retrieve, based on rules provided to it by its own code or by
configuration. A connector is more passive - it connects to a
repository and pulls all the documents, without the ability to make
decisions; interpreting rules and making decisions would be up to
the crawler which controls the connector.

As each repository is different, each crawler needs information to
connect to a specific repository, such as the network address of the
repository and any required authentication information. This
information is provided to the crawler by creating a data source.

The data source is the central way in which you interact with the
crawlers. There is one defined per repository, filesystem, website,
etc. So, for example, if you want to index three websites, you'll
create three Web Data Sources. Three S3 buckets, then you'll
create three S3 Data Sources.

For the most part, we've tried to make each data source consistent
in terms of the options provided, but there are differences between
the crawlers and their capabilities. This leads to differences when
configuring data sources of different types, and differences in
performance and behavior of the crawlers themselves while
retrieving documents and passing them along the indexing process.

The Crawl Process

Topics covered in this
section:

The Crawl
Process
® Re-Crawling
Documents
Data Source
Options
® | ogging
® Scheduling
® Field
Mapping
Data Source
Types
Related Topics

When starting a crawl, the crawler associated with a specific data source uses the information
saved in the data source configuration to connect to the repository and find documents. Most of the
data sources support inclusion or exclusion parameters to define the types of documents (or paths
to documents) that should be indexed. The crawlers use that information to know what pages to

retrieve for eventual indexing.

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 73 of 256

LucidWorks Search Documentation 10-Dec-2013

The crawlers do not actually index content. A crawler retrieves the pages, and passes them to a
parser, which prepares the documents for the indexing process. The parser handles breaking the
documents into their parts, identifying fields within the documents and normalizing data so it can
be more easily consumed in the index. In most cases, the crawlers use Apache Tika for parsing.

@ The exception to this is the Aperture crawler, which has its own parser embedded within it.
In cases where the Aperture parser fails to parse a document, Tika is used as a fall-back.
However, documents that were successfully parsed by the Aperture crawler do not get
another pass through Tika. There is no way to change this behavior at this time.

Once documents have been retrieved and parsed, they are passed to the UpdateController which
pushes them into the index using Solr], a common client used for indexing content in Solr. This
process also performs field mapping, where the extracted fields from a document can be mapped
to other fields.

Re-Crawling Documents

When working with data sources and their content, it helps to understand how content is handled
during the initial crawl and in subsequent re-crawls to update the index with new, updated, or
removed content.

Some of the crawlers keep track of documents that have been "seen" which helps speed later
crawls by not processing unchanged content, but it can be confusing if the configuration settings
change between crawls. In some cases, you may need to remove the crawl history in order to get
the results you want; an example of this would be the add_f ai | ed_docs setting: if it is not set for
the initial crawl of a repository, it will be skipped on subsequent crawls unless it has been modified
in some way. Other examples include (but aren't limited to) settings to map fields from the
incoming documents to another field, options to add LucidWorks-specific fields to the documents,
as well as changes to fields themselves and any dynamic field rules.

If making changes to a data source configuration after content has already been crawled and
indexed, review the options in the section on Reindexing Content for possible approaches.

Back to Top

Data Source Options
Logging

The crawlers log information about attempts to access documents and the results of those
attempts. The log is kept in $LW5_HOVE/ dat a/ | ogs in a file named connect ors. <YYYY_MM DD>. | og

In general, the crawlers will:

© 2013 Find this documentation online at Page 74 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

® print one line to the log with the document ID when it has successfully accessed a document,
describing the status (New, Updated, Deleted, etc.). In cases where the document could not
even be accessed, this may lead to the attempt not being recorded in the logs.

® not log documents of unknown type that cannot be processed as plain text.

® not log documents that fail parsing.

® not add documents that fail parsing.

Each of these behaviors can be changed in most crawlers, which would allow more information to
be added to the log or more documents added to the index. With some crawlers, however, the
default behaviors are the only options. More information for each data source type is available in
the documentation for the Admin UI and the REST API.

Scheduling

Each data source can be scheduled to run at regular intervals. Using the Admin UI, it is only
possible to schedule crawling at specific intervals (hourly, daily, weekly), but using the REST API,
more complex schedules can be constructed. It is, however, only possible to have a single schedule
for each data source.

Field Mapping

Field Mapping provides the ability to map fields in documents to fields or dynamic field rules
already defined in LucidWorks or add fields to incoming documents. This can be done generically
when an unexpected field is introduced or specifically for known incoming fields. The mapping rules
can be manipulated via the Admin UI from the Data Source Details screen, or with either the Data
Sources API or the Field Mapping API.

Some explicit field mappings are defined by default. This table shows the LucidWorks Search
default mappings:

From Crawler Metadata To Field

acl acl

author author
batch_id batch_id
body body
content-encoding characterSet
content-length fileSize
contentcreated dateCreated
contentlastmodified lastModified
contributor author
crawl_uri crawl_uri

© 2013 Find this documentation online at Page 75 of 256

LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://docs.lucidworks.com/display/help/Data%20Source%20Details

LucidWorks Search Documentation 10-Dec-2013
created dateCreated
creator creator
date null
description description
filelastmodified lastModified
filename fileName
filesize fileSize
fullname author
fulltext body
keyword keywords
last-modified lastModified
last-printed null
lastmodified lastModified
lastmodifiedby author

links null
messagesubject title
mimetype mimeType
name title
page-count pageCount
pagecount pageCount
plaintextcontent body
plaintextmessagecontent body
slide-count pageCount
slides pageCount
subject subject

title title

type null

url url

© 2013 Find this documentation online at Page 76 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

When the mapping is created or updated, LucidWorks checks the mappings against the schema. xni
for the collection and verifies that the target fields exist in the schema.

During indexing, the field mapping process performs the following steps:

1.

The mappings are checked for the existence of the source field name. If it exists, it will be
mapped to the target field.

If the source field name does not exist in the mappings, the schema. xnml for the collection is
checked. If the source field name exists in the schema, it will be indexed to that field.

If a dynami c_fi el d has been defined, a dynamic field will be created according to the
dynamic field rule.

If adefault _fieldhas been defined, the source field will be mapped to the defined default
field.

If none of these steps has produced a match, the field will be discarded.

Back to Top

Data Source Types

LucidWorks Search currently supports 8 crawlers and 13 types of data sources. When using the
Admin UI, the selection of a crawler is hidden; when using the REST API, the selection of a crawler
is a required attribute.

The table summarizes the types of content repositories that can be crawled:

Crawler Data Source Capabilities Limitations (not comprehensive;

Types Supported see documentation for each type
for full details)

© 2013 Find this documentation online at Page 77 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Aperture
® Websites Can crawl The Aperture crawler is not
® Filesystems websites and designed for large-scale crawls of
filesystems. more than about 10,000 pages
Stores a or files in a single crawl.
history of It is a single-threaded process,
documents meaning that one data source
that have will only use a single server
been seen process to crawl sites. This can
before. make a long crawl take a long
Indexes data period of time to complete.
contained in Multiple data sources all use the
<META> tags. same "triple-store", which is a
Web crawling database inside Aperture that
will respect keeps track of web pages visited.
robots.txt If multiple data sources are
rules or can running at the same time, the
be configured triple-store can get easily
to ignore corrupted. It's highly
them. recommended to avoid running
multiple Aperture-based crawls
at the same time.
Doesn't use Apache Tika for
document parsing and may not
be as accurate with some
documents as Tika (however, if it
cannot parse a document at all,
it will pass that document to Tika
for parsing).
© 2013 Find this documentation online at Page 78 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

JDBC

Google
Connector
Manager

® Databases

® SharePoint
Repositories

Allows
indexing of
databases.
Supports
nested queries
for complex
data
environments.
Supports delta
queries to
limit
subsequent
crawls on only
new or
changed table
rows.

Indexes all
content in the
SharePoint
repository
(files,
discussion
boards,
calendars,
contacts,
sites, images,
etc.).
Support
SharePoint
security
configuration.
Can add new
connectors
supported by
the Google
Connector
Manager
framework.

The LucidWorks Search
implementation is based on the
DatalmportHandler, which can
be difficult to precisely configure
in unique environments.
Requires uploading a driver
before it can be used.
Converting date types can be
problematic.

Must install additional Web
services to work properly.
Security options can be complex
to configure.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 79 of 256

LucidWorks Search Documentation 10-Dec-2013
SolrXML
® SolrXML files Easy to ® Not a generic XML indexer;
understand documents must be structured in
XML structure. a very specific way.
Many users
already have
documents in
this format
due to prior
use of Solr.
Can point it to
a directory of
files instead of
one at a time.
Can add a
unique
identifier to
each
document as
it's indexed if
it doesn't have
one already.
Filesystem
Amazon S3 Provides ® Must allow the LucidWorks server
buckets access to access to the remote systems.
SMB/Windows multiple ® Hadoop crawls are throttled to
Shares remote prevent overloading the system.
Hadoop filesystems. ® Crawls are "stateless", meaning
Distributed Allows the crawler can not be aware of
Filesystems multi-threaded documents deleted or modified
(HDFS) crawls. between crawls. In crawl
Hadoop over statistics, this can mean that
S3 deleted or updated documents
FTP servers are not counted as such, or that
Local adding the total number of "new"
Filesystems documents in two different
crawls does not equal the
number of documents in the
index.
© 2013 Find this documentation online at Page 80 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
MongoDB
® MongoDB ® Supports MongoDB collections indexed
multiple restricted by username and
databases and password provided to the
tables within a crawler.
single Crawling all databases and
MongoDB collections requires allowing the
installation crawler to have "admin" access
to the database.
MapR
® MapR ® Supports all Only crawls MapR distributions;
filesystems features of the other Hadoop distributions must
HDFS crawler, use the generic HDFS crawler.
but is
optimized for
MapR Hadoop
distributions.
® Allows
multi-threaded
crawls.
MapR High
Volume ® MapR ® Allows Must design your LucidWorks
Filesystems unthrottled Search cluster appropriately to
crawling of take full advantage of the speed
MapR capabilities.
filesystems. The LucidWorks Search
® Supports implementation is still in beta
adding phase; may include unknown
extracted bugs.
document Only crawls MapR distributions;
metadata and other Hadoop distributions must
Behemoth use the generic High Volume
annotations, if HDFS crawler.
present.
® Customized
client for
MapR
specifically.
© 2013 Find this documentation online at Page 81 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Azure Blob
® Azure Blob ® Indexes all Can only specify a single
storage content found container.
in an Azure
Blob storage
container.
Azure Table
® Azure Table Indexes all Does not support incremental
instances content found crawling (i.e., delta queries). All
in an Azure documents are retrieved with
Table every crawl.
instance.
Twitter
Stream ® Twitter Allows filtering Will continue to crawl indefinitely
Stream API indexed unless manually stopped or
tweets by controlled with a parameter
userlD, that's only available via the REST
location, or API.
keywords. The LucidWorks implementation
is still in beta phase; may include
unknown bugs.
High-Volume
HDES ® Hadoop Allows Must design your LucidWorks
Distributed unthrottled cluster appropriately to take full
Filesystems crawling of advantage of the speed
(HDFS) HDFS capabilities.
systems. The LucidWorks implementation
Supports is still in beta phase; may include
adding unknown bugs.
extracted
document
metadata and
Behemoth
annotations, if
present.
© 2013 Find this documentation online at Page 82 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
External
® Push to Can use Solr] ® The documents or processes for
LucidWorks or another crawling must be prepared in
established advance.
Solr indexing
process to get
documents
into
LucidWorks.
Full access to
field mapping
capabilities
that other
crawlers use.
Related Topics
® Data Sources in the Admin UI
® Data Sources with the REST API
® Custom Connector Guide
Back to Top
© 2013 Find this documentation online at Page 83 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration

LucidWorks Search Documentation 10-Dec-2013

Supported Filetypes

LucidWorks Search crawlers can identify many different file formats (MIME types), and can extract
text and metadata from the MIME types listed in the table below. Even if the crawlers cannot
extract data from a file, it can often at least recognize the file type and index basic information
about the file, such as the filename and its metadata. Many of the crawlers have settings that allow
how to handle the situation where the MIME type is not supported.

Note that extracting data from third party proprietary file formats is often difficult and may result
in irregular text being extracted and indexed. If you encounter a format that is supported, but does
not get properly extracted, please share the information with Lucid Support, including the file, if
possible.

Supported File Formats

Name MIME Type(s) Notes

HTML text/html

Images image/jpeg, image/png, Metadata Only
image/tiff

Mail message/rfc822 and Some mime based mail attachments
message/news can be extracted.

MP3 Metadata audio/mpeg Metadata only

Microsoft Office Word, PowerPoint, Excel, MS All applications are trademarks of the
Publisher, Visio Microsoft Corporation

Open Office OpenDocument and StarOffice
documents

OpenXML Microsoft's latest Office format

Adobe Portable application/pdf PDF is a trademark of Adobe

Document Format

Plain Text text/plain

Quattro application/x-quattropro, Trademark of Corel

application/wb2
Rich Text Format text/rtf

eXtensible Markup text/xml
Language (XML)

Archives application/zip, application/gzip,
application/x-tar

© 2013 Find this documentation online at Page 84 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Troubleshooting Document Crawling

LucidWorks Search crawling events are logged to the connect ors. <YYYY_MM DD>. | og file, found in
the $LWS_HOVE/ dat a/ | ogs directory.

Serious exceptions will be reported to the LucidWorksLogs collection, which you can search as you
can any other collection through the default Search UI. In addition, the Admin UI provides some
visibility into errors during crawling by showing them on the Server Log page, found under the
Status menu. That page also allows access to browse all the log files without having to access the
server.

Problems such as a document not being found or access denied will not be reported the the
LucidWorksLogs collection, but will show in the Admin UI and in the Data Source Status/History
APIs as "not found". This may make it difficult to find which documents were skipped, but a review
of the log file may yield further information.

In general, the crawlers will:

® print one line to the log with the document ID when it has successfully accessed a document,
describing the status (New, Updated, Deleted, etc.). In cases where the document could not
even be accessed, this may lead to the attempt not being recorded in the logs. This can be
changed by modifying the setting "Log Extra Detail" in crawlers that support it.

® not log documents of unknown type that cannot be processed as plain text. This can be
changed by modifying the setting "Log warnings for unknown mime types" in crawlers that
support it.

® not log documents that fail parsing. This can be changed by modifying the setting "Fail
unsupported file types" in crawlers that support it.

® not add documents that fail parsing. This can be changed by modifying the setting "Add
failed docs" in crawlers that support it.

© 2013 Find this documentation online at Page 85 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

) By default, the LucidWorks Search Connectors log does not record the collection or data
source associated with crawl activities. However, if you would like to record that
information to make troubleshooting simpler, you can edit the
$LWS _HOVE/ conf/ | og4j - connect ors. xnl file.

In the file, find the section that begins with a comment to "Use the pattern below to log
additional context info...", as below:

<l-- Use the pattern below to | og additional context info |like collection and
data source nanme -->
<l--
<param val ue="%l{1 S08601} % %{2} - WX %mPm" nane="ConversionPattern"/>

>

Uncomment <par am val ue="%l{1 SO8601} % %{2} - %X %Pmn"
nane=" Conver si onPatt ern"/> and save the file. You should restart LucidWorks Search

after making this change.

Errors Creating Data Sources

Path or URL Errors

By default, all data sources try to verify that the repository to be crawled is accessible to the
Connectors component with the information provided. In most cases, the data source will not be
created unless the data source is accessible.

Most of the crawlers support disabling the verification step during data source creation with a
parameter in the API (the Admin UI has no ability to skip verification). However, if the Connectors
component cannot access the repository, it will not be able to crawl it.

MapR-related Errors

Before using either MapR data source, you must first have the MapR client installed at a filesystem
location accessible by the LucidWorks Connector component. For information about the MapR
client, please see the MapR documentation Setting Up the Client.

The Connector component looks for the client libraries in / opt / mapr by default, but the location
can be modified by editing the | weconnect ors. j vm parans in $LW5_HOVE/ conf / nast er. conf . Find
the setting - Dmapr . hone and modify the path as needed.

The following errors indicate that either the MapR Client is not installed or not accessible to the
Connectors component:

In core. <date>. 1 og:

© 2013 Find this documentation online at Page 86 of 256
LucidWorks http://docs.lucidworks.com/

http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 10-Dec-2013
® Unprocessable Entity (422) - [{"nessage":"unknown craw er type
| uci d. map. reduce. maprfs","code":"error.invalid.value","key":"crawm er"}]
® Unprocessable Entity (422) - [{"nessage":"unknown craw er type
lucid. mapr", "code":"error.invalid.value","key":"craw er"}]

In connect ors. <dat e>. | 0g:

® External library path doesn't exist: /opt/nmapr/hadoop/hadoop-0. 20. 2/ conf
® External library path doesn't exist: /opt/mapr/hadoop/hadoop-0.20.2/1ib
® External library path doesn't exist:
/ opt / mapr/ hadoop/ hadoop-0.20. 2/1ib/jsp-2.1
® No valid external paths - skipping mapr-client initialization.
® Dependency 'mapr-client' of /Luci dWrks/2.5.6-32/app/craw ers/ mapr-crawl er.jar
NOT FOUND
® No valid craw er plugins in
file:/Luci dWrks/2.5.6-32/app/crawl ers/ mapr-craw er.jar
® Dependency 'mapr-client' of
/ Luci dWor ks/ 2. 5. 6- 32/ app/ crawl er s/ mapr - hv-craw er.jar NOT FOUND
® No valid cramer plugins in
file:/Luci dWbrks/2.5.6-32/app/craw ers/ mapr-hv-craw er.jar

Exact paths referenced in these errors will vary depending on how you have installed LucidWorks
Search.

Understanding Crawl Errors

Crawling is dependent on a number of factors. In order for a site to be crawl-able, several things
must be aligned:

® The repository must be supported by one of the crawler and data source types.

® The repository must be accessible to the LucidWorks Search server. If authentication is
required to access the repository, the data source must support the authentication type and
the correct credentials supplied.

® The documents must be parseable, so the fields and content can be extracted.

® The specific data source settings must be configured to include the specific documents.

For example, if I have a file system with 100 PDF documents, each of which are OCR scans and
100Mb in size, the PDF documents: a) may not be parseable because OCR scans are images and,
b) may exceed the maximum file size configured in the data source (the default is 10Mb). In this
example, the files would be skipped by the crawler, which is not considered a serious exception
and is generally only logged when the data source setting to "Log extra detail" is selected. Then
the skipped files would be found in the log file with a format like this:

INFO fil esystem Fil eSystenCraw er - File <file-URL> exceeds the maxi mum si ze
specified for this data source. Skipping.

© 2013 Find this documentation online at Page 87 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
WARN No extractor for <file format>; Skipping: <docunent-URl >

Possible Errors

This information is provided to help you find the errors in the log file; precise troubleshooting
requires information about the documents and system environment. If a document causes an error
(besides being too large or the system being out of memory), it may be helpful to try to isolate it
and try again to be sure it is the document causing the problem and not some other system error
that may have occurred at the same time.

In each of the errors below, the document URI will be listed. For files this will be the path and
filename, for websites it would be the URL, and for other data source types a base document URI
will be configured based on how the data source is configured.

Exception

WARN Exception while crawl ing: <docunent-URl > <exception-w th-stack-trace>
WARN Doc failed: <exception-wth-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-cause-nessage>

PDF files are notorious for causing exceptions in their processing. These errors are not always fatal,
but may cause all or part of the file to be skipped.

WARN util.PDFStreantEngi ne - java.io. | OException: Error: expected hex character and
not :32

WARN util . PDFStreantEngi ne - java.io.|OException: Error: expected the end of a
dictionary.

Out of memory

WARN Fil e caused an Qut of Menmory Exception, skipping: <document-URI >
<exception-with-stack-trace>

WARN Doc fail ed: <exception-wth-stack-trace>

WARN Doc failed: <docunent-URI> - cause: <OOMW exception-nessage>

SubCrawlerException

WARN Doc failed: <exception-wth-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-nessage>

Unknown file type
WARN Doc failed: Could not find extractor: <docunent-URl >

In this case, this warning will be seen in the logs but will not be reported in the LucidWorksLogs
collection.

I/0 error

© 2013 Find this documentation online at Page 88 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
WARN | O Exception processing: <document-URl > <exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <docunment-URI> - cause: <exception-nessage>

HTML/XML/XHTML parsing errors

WARN Doc failed: <exception-with-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-cause-nmessage>

This is another case where a warning will be seen in the logs but will not be reported in the
LucidWorksLogs collection.

Related Topics

® System Directories and Logs

© 2013 Find this documentation online at Page 89 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Crawling Windows Shares with Access Control Lists

LucidWorks Search can crawl Windows Shares (SMB filesystems) and the Access Control Lists
(ACLs) associated with shared files and directories. The ACL information can then be used to limit
users' searches to the content they are permitted to access. This page describes how to configure
using ACLs to control search results based on the user's permissions

As of LucidWorks Search v2.5, it's possible to configure ACL and Active Directory connections on a
per-data source basis. This means that you can simply create a Windows Share data source with
either the UI or the API, configure the connection to the Active Directory server, define if you want
to trim results based on user authorizations, and then crawl the content.

When configuring the connection between LucidWorks Search and Active Directory, keep these
requirements in mind:

® Credentials with READ and ACL READ permissions for accessing the Windows share. We
recommend that you create a special user for this purpose.

® Credentials with read-only access to the Active Directory LDAP. This is used for search-time
filtering, and we recommend that you create a special user for this purpose.

Permissions with Access Control Lists

The following model is implemented as a search filtering component by default:

Group READ Subgroup READ User READ Search Result
Access Access Access Returned?

o (permit) o] o) o

o] x (deny) o] X

o o X X

o X X X

X (0] (o] X

X X (0] X

X (0] X X

X X X X

o] - (not set) o] o]

o o - o

o - - o

- o o o

© 2013 Find this documentation online at Page 90 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

- - (0] (0]

To understand this table, read the rows left to right. For example, in the first row, we see that the
user's main group, subgroup, and individual permissions all allow READ access to a shared
resource, so the search result is returned. In the second row, we see that the user's main group
and user's individual permissions allow READ access, but the user's subgroup's permissions do not,
so no search result is returned to the user.

How SMB ACL Information Is Stored In The Index

For each file that is crawled through the SMB data source the acl field is populated with data that
can be used at search time to filter the results so that only people that have been granted access
at the user level or through group membership can see them. Two kinds of tokens are stored:
Allow and Deny. The format used is as follows:

Allow:
W NA<SI D>

Deny:
W ND<S| D>

Where SI D is the security identifier commonly used in Microsoft Windows systems. There are some
well known SIDs that can be used in the acl field to make documents that are crawled through
some other mechanism than by using SMB data source behave, from the acl pow, the same way
as the crawled SMB content:

SID Description
S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system administrator. By default, it is the only user
account that is given full control over the system.

S-1-5-domain-512 Domain Admins: a global group whose members are authorized to administer
the domain. By default, the Domain Admins group is a member of the
Administrators group on all computers that have joined a domain.

S-1-5-domain-513 Domain Users.

Note that some of the listed SIDs contain a domai n token. This means that the actual SIDs differ
from system to system. To find out the SIDs for particular user in particular system you can use
the information provided by the Windows command line tool whoam by executing command
whoam /all.

© 2013 Find this documentation online at Page 91 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
You can populate the acl field in your documents with these Windows SIDs to make them
searchable in LucidWorks Search. For example, if you wanted to make some documents available
to "Everyone" you would populate the acl field with the W NAS- 1- 1- 0 token. If you wanted to
make all docs from one data source available to everybody you can use the literal definitions in the
data source configuration.

Related Topics

® Filtering API
® Search Handler Components API
® | DAP Integration

© 2013 Find this documentation online at Page 92 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Indexing Binary Data Stored in a Database

This functionality is
not available with
LucidWorks Search
on AWS or Azure

The Database crawler in LucidWorks Search does not automatically discover and index binary data
you may have stored in your database (such as PDF files). However, you can configure LucidWorks
to recognize and extract the binary data correctly by modifying the data source configuration file
(which does not exist until you create a JDBC data source).

@ For detailed information about working with JDBC data sources, see Create a New JDBC
Data Source or the Database Data Sources API.

After you have created a Database data source, you can find the configuration file in
$LWS_HOVE/ dat a/ | uci d. j dbc/ dat asources/i d/ conf/dataconfi g. xml . The ID in the path is the

ID of the data source created. If you are familiar with Solr, you will recognize this file as a Data
Import Handler configuration file.

Follow these steps to modify the configuration file:

1. Add a nane attribute for the database containing your binary data to the dat aSour ce entry.

2. Set the convert Type attribute for the dat aSour ce to f al se. This prevents LucidWorks from
treating binary data as strings.

3. Add a Fi el dStreanDat aSour ce to stream the binary data to the Tika entity processor.

4. Specify the dat aSour ce name in the r oot entity.

5. Add an entity for your Fi el dSt r eanDat aSour ce using the Ti kaEntityProcessor to take the
binary data from the Fi el dSt r eanDat aSour ce, parse it, and specify a field for storing the
processed data.

6. Reload the Solr core to apply your configuration changes.

& After you have modified the data source configuration file you should not modify the data
source from the LucidWorks Admin UI because LucidWorks will automatically overwrite the
convert Type attribute, and indexing for the modified data source will fail.

Example

© 2013 Find this documentation online at Page 93 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://wiki.apache.org/solr/DataImportHandler
http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 10-Dec-2013
In this example there is a MySQL database called t est containing a table called docunent s that
contains PDF data in a column called bi nary_cont ent . When the data source is first created, the

data source configuration file (in
$LWS_HOVE/ dat a/ | uci d. j dbc/ dat asour ces/ i d/ conf/ dat aconfi g. xnl) looks like this:

<dat aConfi g>
<dat aSour ce autoConmmit="true" batchSize="-1" convertType="true"
driver="com nysql .jdbc. Driver" password="admi n"
url ="jdbc: nysql://1ocal host/test" user="root"/>
<docunent nanme="itemns">
<entity name="root" prelnportDel eteQuery="data_source: 9" query="SELECT * FROM
docunent s"
transforner="Tenpl at eTr ansf or ner" >
<field colum="data_source" tenplate="9"/>
<field colum="data_source_type" tenpl ate="Jdbc"/>
<field colum="dat a_source_nanme" tenpl ate="M/SQ"/>
</entity>
</ docunent >
</ dat aConfi g>

To modify this data configuration file, follow these steps:

1. Add the nane attribute to the dat aSour ce and set convert Type to f al se:

<dat aSource autoConmit="true" batchSize="-1" convert Type="fal se"
driver="comnysql.jdbc.Driver" password="adm n"
url ="jdbc: mysql ://1 ocal host/test" user="root" name="test"/>

Specify another dat aSour ce called fi el dReader to handle the binary data:

<dat aSour ce name="fi el dReader" type="Fi el dStreanDat aSource" />

2. Specify the data source for the root entity:

<entity name="root" prelnportDel et eQuery="data_source: 9" query="SELECT * FROM
docunent s"
transforner="Tenpl at eTransforner" dataSource="test">

3. Add an entity for the fi el dReader data source specifying the Ti kaEntityProcessor and a
dat aFi el d for storing the processed binary data:

<entity dataSource="fi el dReader" processor="Ti kaEntityProcessor"
dat aFi el d="root. bi nary_content" format="text">

<field colum="text" nane="body" />
</entity>

4. Restart LucidWorks Search to apply your configuration changes.

For this example, the final configuration file looks like this:

© 2013 Find this documentation online at Page 94 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<dat aConfi g>
<dat aSource autoConmit="true" batchSi ze="-1" convert Type="fal se"
driver="com nysql .jdbc. Driver" password="adm n"
url ="jdbc: nysql://1 ocal host/test" user="root" name="test"/>
<dat aSour ce name="fi el dReader" type="Fi el dStreanDat aSource" />
<docunent name="itens">
<entity name="root" prelnportDel eteQuery="data_source: 9" query="SELECT * FROM
docunent s"
transf or ner="Tenpl at eTr ansf or ner"
dat aSour ce="test" >
<field colum="data_source" tenplate="9"/>
<field colum="dat a_source_type" tenpl ate="Jdbc"/>
<field colum="dat a_source_nane" tenpl ate="M/SQ"/>
<entity dataSource="fiel dReader" processor="Ti kaEntityProcessor"
dat aFi el d="root. bi nary_content” format="text">
<field colum="text" name="body" />
</entity>
</entity>
</ docunent >
</ dat aConfi g>

Related Topics

® Create a New JDBC Data Source
® Database Data Sources API
® Data Import Handler

© 2013 Find this documentation online at Page 95 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 10-Dec-2013

Using the High Volume Crawlers

The High Volume HDFS (HV-HDFS) Crawlers are MapReduce-enabled crawlers designed to leverage
the scaling qualities of Apache Hadoop and MapR while indexing content into LucidWorks Search.
In conjunction with LucidWorks' usage of SolrCloud, applications should be able to meet their large
scale indexing and search requirements.

To achieve this, the high volume crawlers consist of a series of MapReduce-enabled Jobs to convert
raw content into documents that can be indexed into LucidWorks which in turn relies on the
Behemoth project (specifically, the LWE fork/branch of Behemoth hosted on Github) for
MapReduce-ready document conversion via Apache Tika and writing of documents to LucidWorks.

The high volume crawlers are currently marked as "Early Access" and are subject to changes in
how they works in future release.

System Requirements

® Apache Hadoop or MapR. We've tested with Hadoop v1 and v2 and MapR 2.1.2. Other
versions may also work, but we recommend thorough testing for compatibility.

® LucidWorks running in SolrCloud mode.

Please note, explanation of setting up Hadoop or MapR is beyond the scope of this document. We
recommend reading one of the many tutorials found online or one of the books on Hadoop or
MapR.

Using a Local Hadoop Instance

LucidWorks has been tested with Hadoop v1 and v2. The HV-HDFS and HDFS data sources can use
the version of Hadoop bundled with LucidWorks Search (v2.0.5-alpha), or an external Hadoop of
either version 1 or version 2 can be used by specifying a parameter in the system nast er. conf.
The parameter varies depending on the Hadoop version being used: enter - Dhadoop if using
Hadoop v1 or - Dhadoop2 for Hadoop v2. The value entered should be the path to the Hadoop client
libraries, and complete (non-relative) paths should be used (such as - Dhadoop2=/ pat h/ t o/ Hadoop

).

Note that this system parameter will apply to all HDFS data sources.

Special Requirements for MapR

® Modify the default DirectoryFactory. If you intend to use the MapR High-Volume data source,
you should use Solr's Nl OFSDi r ect or yFact ory instead of the default Si npl eFSDi rect ory.
You can change this by editing the | wecor e. j vm par ans in $LW5_HOVE/ conf / mast er . conf
and adding "- Dsol r. di rect oryFact ory=sol r. Nl OFSDi r ect or yFact ory" to the end of the
settings already there. More information about the NI OFSDi r ect or yFact ory is available in
the Lucene javadocs documentation.

© 2013 Find this documentation online at Page 96 of 256
LucidWorks http://docs.lucidworks.com/

http://hadoop.apache.org
http://www.mapr.com
https://github.com/digitalpebble/behemoth
https://github.com/gsingers/behemoth/tree/LWE
http://tika.apache.org
http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/store/NIOFSDirectory.html

LucidWorks Search Documentation 10-Dec-2013
® MapR Client. The MapR client must be installed at a filesystem location accessible by the

LucidWorks Connector component. For information about the MapR client, please see the
MapR documentation Setting Up the Client. The Connector component looks for the client
libraries in / opt / mapr by default, but the location can be modified by editing the
| weconnect ors. jvm parans in $L\W5_HOVE/ conf / mast er . conf . Find the setting - Dmapr . hone
and modify the path as needed. On Windows, you will need to include the drive (i.e., c: or
d:) and also use two backslashes following the drive letter, as in c: \\ opt\ mapr.

Using High Volume Crawlers in LucidWorks

Once Hadoop or MapR and LucidWorks are ready, configure a data source within LucidWorks, either
with the High Volume HDFS data source type or the MapR High Volume Crawler in the Admin UI or
using the Data Sources API.

If you do not see the MapR High Volume Crawler in the UI, or get an error from the API of
"unknown crawler type lucid.map.reduce.maprfs", it is likely because the MapR Client is not
installed or not accessible to the Connectors component. Please see the information in the System
Requirements section for more details about the MapR Client.

@ Unlike other crawlers in LucidWorks Search, these crawlers currently have no way of
tracking which content is new, updated, or deleted. Thus, all content found is reported as
"new" with each crawl. It is also not possible to configure batch operations with the

high-volume data source types.

How it Works

The high volume crawlers consist of three stages designed to take in raw content and output
results to LucidWorks Search. These stages are:

1. Create one or more SequenceFiles from the raw content. This can be done in one of two
ways:

1. If the source files are available in a shared Hadoop filesystem, prepare a list of source
files and their locations as a SequenceFile. The raw contents of each file are not
processed until step 2.

2. If the source files are not available, prepare a list of source files and the raw content,
stored as a BehemothDocument. This process is currently done sequentially and can
take a significant amount of time if there is a large number of documents and/or if they
are very large.

2. Run a MapReduce job to extract text and metadata from the raw content using Apache Tika.
This is similar to the LucidWorks approach of extracting content from crawled documents,
except it is done with MapReduce.

3. Run a MapReduce job to send the extracted content from HDFS to LucidWorks using the Solr]
client. This implementation works with Solr)'s CloudServer Java client which is aware of
where LucidWorks is running via Zookeeper.

© 2013 Find this documentation online at Page 97 of 256
LucidWorks http://docs.lucidworks.com/

http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client
http://docs.lucidworks.com/display/help/Create%20a%20New%20High_Volume_HDFS%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20MapR_HV%20Data%20Source

LucidWorks Search Documentation 10-Dec-2013

. The processing approach is currently all or nothing when it comes to ingesting the raw
content and all 3 steps must be completed each time, regardless of whether the raw
content hasn't changed. Future versions may allow the crawler to restart from the
SequenceFile conversion process.

Permission Issues

Using either Hadoop or MapR, you will need to be aware of the way Hadoop and systems based on
Hadoop (such as MapR) handle permissions for services that communicate with other nodes.

Hadoop and MapR services execute under specific user credentials: a quadruplet consisting of user
name, group name, numeric user id, numeric group id. Installations that follow the manual usually
use user 'mapr' and group 'mapr’, with numeric ids assigned by the operating system (e.g.,
uid=1000, gid=20). When the system is configured to enforce user permissions (which is the
default in MapR), any client that connects to Hadoop or MapR services has to use a quadruplet that
exists on the MapR server. This means that ALL values in this quadruplet must be equal between
the client and the server, i.e., an account with the same user, group, uid, and gid must exist on
both client and server machines.

% While it's easy to create a user with a given name and group name, it's less obvious to
casual users how to create an account with exactly the same numeric id-s. On POSIX
systems (Linux and Mac) it's possible to do so, on Windows it's probably not possible. For
this reason there's a section of code in Hadoop and MapR to "spoof" user ids on Windows,
using the following properties:

® hadoop. spoof . user : boolean, when true then spoofing will be attempted

® hadoop. spoof ed. user . user nane: name of the user account to spoof

® hadoop. spoof ed. user. gr oupnane: group name of the user account to spoof
® hadoop. spoof ed. user. ui d: numeric user id of the user account to spoof

® hadoop. spoof ed. user. gi d: numeric group id of the user account to spoof

These properties will be used ONLY on Windows. Users on other operating systems will
have to create a real account with matching identifiers.

When a client attempts to access a resource on Hadoop or MapR filesystems (or the MapR
JobTracker, which also uses this authentication method) it sends its credentials, which are looked
up on the server, and if an exactly matching record is found then those local permissions will be
used to determine read/write access. If no such account is found then the user is treated as "other"
in the sense of the permission model.

© 2013 Find this documentation online at Page 98 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

This means that the crawlers for the HDFS and MapR data sources should be able to crawl Hadoop
or MapR filesystems without any authentication, as long as there is a read (and execute for
directories) access for "other" users granted on the target resources. Authenticated users will be
able to access resources owned by their equivalent account.

However, with the High-Volume HDFS and MapR High Volume data sources require write access to
a /t mp directory to use as a working directory. In many cases, this directory does not exist, or if it
does, it doesn't have write access to "other" (not authenticated) users. Therefore users of these
data sources should make sure that there is a / t np directory on the target filesystem that is
writable using their local user credentials, be it a recognized user, group, or "other". If a local user
is recognized by the server then it's enough to create a / t np directory that is owned by that user.
If there is no such user, then the / t np directory must be modified to have write permissions for
"other" users. The working directory can be modified to be another directory that can be used for
temporary working storage that has the correct permissions.

Differences from Other Hadoop Crawlers in LucidWorks

While the HV-HDFS, MapR High Volume, Hadoop File System (HDFS) and Hadoop File System over
S3 (S3H) crawlers all use Hadoop to access Hadoop's distributed file system, there is a big
difference in how they utilize those resources. The HDFS and S3H data sources are designed to be
polite and crawl through the content stored in HDFS just as if they were crawling a web site or any
other file system.

The HV-HDFS and MapR High Volume crawlers, on the other hand, are designed to take full
advantage of the scaling abilities of the MapReduce architecture. Thus, it runs jobs using all of the
nodes available in the cluster just like any other MapReduce job. This has significant ramifications
for performance since it is designed to move a lot of content, in parallel, as fast as possible
(depending on the system's capabilities), from its raw state to the LucidWorks Search index. Thus,
you will need to design your LucidWorks Search SolrCloud implementation accordingly and make
sure to provision the appropriate number of nodes.

Conversion to SequenceFiles

The first step of the crawl process converts the input content into a SequenceFile. In order to do
this, the entire contents of that file must be read into memory so that it can be written out as a
BehemothDocument in the SequenceFile. Thus, you should be careful to ensure that the system
does not load into memory a file that is larger than the Java heap size of the process. In certain
cases, Behemoth can work with existing files such as SequenceFiles to convert them to Behemoth
SequenceFiles. Contact LucidWorks for possible alternative approaches.

Example: Indexing Shakespeare with MapReduce

The following steps demonstrate indexing the complete works of Shakespeare using the
LucidWorks Search HV-HDFS crawler.

Prepare the Content

© 2013 Find this documentation online at Page 99 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

1. Download the data into a temporary directory.

1. cd /tnp

2. nkdir shakespeare

3. wget http://ww.it.usyd. edu. au/ ~matty/ Shakespear e/ shakespeare.tar. gz
2. Unpack the archive with tar -xf shakespeare.tar.gz -C shakespeare
3. Load the data to Hadoop with <PATH TO HADOOP>/ bi n/ hadoop fs -put shakespeare

./ shakespeare

Setup LucidWorks Search

Start LucidWorks Search in SolrCloud mode and make note of where Zookeeper is running. See the
section on Using SolrCloud in LucidWorks for more information on how to start in SolrCloud mode.

Setup the Data Source and Run
Create a new data source using either the Admin UI or the Data Source API, as described above.

The "path" would be the location of the Hadoop NameNode, such as,
hdf s://1 uci dserver: 54310/ user/ | uci dwor ks/ shakespeare.

When using MapR High Volume, you can leverage CLDBs (if you're using them) to crawl all the
nodes of your cluster. See the section Create a New MapR_HV Data Source for details.

Once the data source is created, you can use the Hadoop or MapR UI to track the progress of the
various MapReduce jobs. You can also inspect your specified work path to see the intermediate files

using the Hadoop filesystem commands (e.g., hadoop fs -1s).

Related Topics

Using SolrCloud in LucidWorks
Apache Hadoop
Behemoth

o
[}
[J
® Scaling Solr Indexing With SolrCloud, Hadoop and Behemoth

© 2013 Find this documentation online at Page 100 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Create+a+New+MapR_HV+Data+Source
http://hadoop.apache.org
http://www.github.com/digitalpebble/behemoth
http://www.lucidimagination.com/blog/2012/03/05/scaling-solr-indexing-with-solrcloud-hadoop-and-behemoth/

LucidWorks Search Documentation 10-Dec-2013

Suggestions for External Data Sources

In some cases, it may not be possible to use the crawlers included with LucidWorks Search to index
content, such as an email archive or a Web repository that's best accessed via an API. Instead,
another process may be possible, such as using SolrJ, to feed documents directly to Solr. In that
situation, LucidWorks would not normally know about the documents and would not be able to
include information about the data source in facets or display statistical data about the data source
in the Admin UI.

Fortunately, there is a way to create an 'external' data source to add fields to the document so
LucidWorks will treat the documents the same as documents found via the embedded crawlers. The
data source can be created either via the Sources screen in the Admin UI or with the Data Sources
API.

The 'external' data source type is different from the other data source types in that it is the only
one that uses a "push" mechanism to push content into LucidWorks (and, by extension, Solr),
while the other data source types use a "pull" model to go and get content for processing. Because
the content is being pushed from an external process, these suggestions will ensure that they are
processed consistently by LucidWorks Search.

Add the fm.ds Parameter to the Push Request

External data sources support field mapping in the same way all other data source types do (by
specifying the mapping with the Data Sources API or via the Admin UI). The f m ds parameter in
the request allows LucidWorks to know which data source's field mapping rules to apply to the
content as it is being processed. Without this parameter in the request, the default field mapping
will be applied, even if the field mapping has been customized for the data source.

The default search UI included with LucidWorks relies on the titl e and body fields being populated
in order to display information about results to users; the aut hor and | ast Modi fi ed fields are also
used for display and faceting. If your custom search UI uses these or other fields for display of
results, it's recommended that the documents pushed directly to Solr include content in the those
fields for a consistent user experience.

The value of the f m ds parameter should match the ID of the data source, which can be found with
either the Data Sources API (by reviewing the full list of data sources) or via the Admin UI (by
inspecting the URL of the Edit Settings screen for the specific data source ID). If the ID supplied
does not match an existing data source ID, an error will be returned and the documents will not be
loaded.

It is also possible to supply '-1' for the f m ds ID. In cases where there is only one external type of
data source, the fields for that data source will be filled in to the documents and the mapping for
that data source will be applied. If there are zero external data sources or more than one external
data source, an error will be returned and the documents will not be loaded.

Add lucidworks_fields to Incoming Content

© 2013 Find this documentation online at Page 101 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/Solrj
http://docs.lucidworks.com/display/help/Create%20a%20New%20External%20Data%20Source

LucidWorks Search Documentation 10-Dec-2013

When LucidWorks crawlers acquire content, certain fields related to the data source are added to
each document to help identify the documents as belonging to the data source for use in statistics,
faceting, and document deletion (if necessary). This is done via an attribute called

| uci dwor ks_fi el ds (which is shown as "Create LucidWorks fields" in the Edit Mapping screen of
the Admin UI). The default for this attribute is "true", which means the fields will be added to all
incoming documents, so usually no editing is required to add these fields as long as the f m ds

parameter has been added to the update request.

The fields added to each document are from the data source, but have different names. This table
shows the relationship between the data source attribute name and the fields added to documents:

Data Source Attribute Field Name (in schema. xnl)

id data_source
type data_source_type
name data_source_name

Schedule the Data Source with the callback Attribute

The external data source can be scheduled in the same ways as any other data source to
periodically update, delete or add new documents. The cal | back attribute must be set in order for
the schedule to work correctly. This attribute requires LucidWorks to issue an HTTP GET request to
trigger the push when a job is started, either via the scheduler or manually via API or the UI. This
call occurs just after LucidWorks updates the field mapping, so if the mapping is modified between
schedules incoming documents get the new mapping.

Examples
Using the Data Sources API, a new data source could be created with these settings:

curl -X post -H 'Content-type: application/json' -d '{"nane":"Test External
#1","type":"external ","craw er": "l ucid. external ", "source_type":"Raw

Sol r XML.", "source": " Sol r update"}'
http://1ocal host: 8888/ api/coll ections/collectionl/datasources

The output of this command would be as follows:

© 2013 Find this documentation online at Page 102 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

"commt_on_finish":true,
"verify_access":true,

"i ndexi ng":true,
"source_type":"Raw Sol r XM.",
"col l ection":"collectionl",
"type":"external ",

"craw er": "l uci d. external ",
"id": 3,
"category":"External ",
"source":"Sol r update",
"nanme": " Test External #1",
"parsing":true,

"conmmit _within":900000,
"caching": fal se,

"max_docs": -1

Then a document such as this could be added directly to Solr:

curl -H ' Content-type: text/xm' --data-binary '<add> <doc> <field
name="i d" >t estdoc</fiel d> <field nane="body">test</field> </ doc> </add>'
http://1ocal host: 8888/ solr/coll ectionl/update?f mds=3\&conm t=true

Here is an example document using SolrJ:

String dsld = "3";

Sol r I nput Docunent doc = new Sol r | nput Docunent () ;
doc. addFi el d("id", "1234");

doc. addFi el d(" body", "test");

Sol r Server server = new

ConmonsHt t pSol r Server ("http://1 ocal host: 8888/solr/collectionl");
Updat eRequest req = new Updat eRequest ();

req.set Param("fmds", dsld);

req. add(doc);

req. process(server);

Related Topics

* Solr Direct Access

® Indexing and Basic Data Operations from the Apache Solr Reference Guide.

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 103 of 256

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 10-Dec-2013

Indexing Documents Directly to Solr

Solr provides many ways to index content, and these can be used in addition to or instead of the
crawlers built into LucidWorks Search. Solr includes several approaches to indexing content:

® Solr can index XML (in a specific Solr format), CSV files and JSON formats natively

® Solr Cell (Content Extraction Library) uses Tika to extract documents from a variety of
sources

® Solrd is used by many to connect their Java applications to Solr for indexing and also
querying document once they've been indexed

® The DatalmportHandler (DIH) provides access to structured data in relational databases (the
Database data source in LucidWorks uses DIH under the hood)

® Crawling can be done with Nutch and then pushed into Solr

This page provides a brief overview of how to index content into Solr; for more information,
including details of the options mentioned above, please see the Solr Reference Guide section on
Indexing and Basic Data Operations.

Solr and the LucidWorks Admin UI

If you push documents directly to Solr without using LucidWorks Search data sources, the
LucidWorks Admin UI will be unable to display statistical information about those documents. This
is because documents crawled via LucidWorks Search contain a field that includes the data source
ID, and the data source ID is used by the Admin UI to display information such as the number of
documents in the index for that data source, and to know which crawl statistics to display.

The LucidWorks data source type "external" would allow you to integrate documents pushed
directly to Solr with documents indexed from the crawlers and get statistics such as number of
documents per data source in the Admin UI. In addition, the external data source also allows using
LucidWorks data source field mapping functionality. For more information, see Suggestions for
External Data Sources; the information contained below is still valid, but would be slightly modified
when using the "External" approach.

Indexing Solr XML

One way to integrate LucidWorks with a custom data source is to dump the data from that data
source into XML files formatted in this way, and index them as a Solr XML data source. LucidWorks
has built-in support for indexing a directory tree of Solr XML files and scheduling periodic
re-indexing. Alternatively, the XML files can easily be posted into LucidWorks and Solr externally
using curl, the REST API, or other tools that can HTTP POST, like this:

curl http://local host:8888/solr/collectionl/update --data-binary @il enane.xm -H
"Content-type:text/xm; charset=utf-8

Solr natively digests a simple XML structure like this:

© 2013 Find this documentation online at Page 104 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 10-Dec-2013

<add>
<doc>
<field name="fi el dnanel">field val ueA</fiel d>
<field name="fiel dnane2">field val ueB</fiel d>
</ doc>
<doc>
<field name="fi el dnane3">mnul ti val uel</fi el d>
<field nanme="fiel dnane3">mnul ti val ue2</fi el d>
</ doc>
</ add>

The <add> structure supports multiple <doc> declarations and each <doc> supports multiple

<f i el d> declarations. Fields can be multi- or single-valued, depending on the schena. xni
configuration. The LucidWorks Search Fields screens provide a handy user interface for managing
field properties, including the multivalued setting.

Solr's XML format can perform other operations including deleting documents from the index,
committing pending operations, and optimizing an index (a housekeeping operation). For more
information on these operations, as well as adding documents, refer to Solr's Update XML
Messages.

Indexing Column (Comma) Delimited Data

The following section uses an example to illustrate how to index delimited text with LucidWorks.

1. Save the following simple comma-separated data as sample_data.text:

id, title,categories
1, Exanple Title, "categoryl, cat egory2"
2, Anot her Record Exanple Title, "category?2, category3"

2. Configure the index schema using the Fields editor in the Admin UI as follows:
® At the bottom of the page, click Add new field to get a blank field form
® Add a new field with the following settings:

Name: categories

Type: string

Stored: checked

Multi-valued: checked

Short Field Boost: none

Search by Default: checked

Include in Results: checked

Facet: checked

3. Save and apply those settings.

© 2013 Find this documentation online at Page 105 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Field%20Configuration
http://wiki.apache.org/solr/UpdateXmlMessages
http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Documentation 10-Dec-2013

4. Now index the CSV data from the command-line using curl:

5. You can also make the file pipe-delimited, like this:

curl
"http://1ocal host: 8888/ solr/collectionl/update/csv?conmi t=true& .categories.split=tn
--data-binary @anple_data.txt -H ' Content-type:text/plain; charset=utf-8

—

id/title|categories
3| Thr ee| cat egory3
4| Four | cat egor y4, cat egory5

nd then you can index using this command:

curl
"http://1ocal host: 8888/ solr/collectionl/update/csv?conmi t=true& .categories.split=tn
--data-binary @ipe.txt -H'Contenttype:text/plain; charset=utf-8

—

For a full description of all CSV options, see the Solr UpdateCSV documentation.

Related Topics

® S

uggestions for External Data Sources

From our Apache Solr Reference Guide:

® Indexing and Basic Data Operations
® Using Solr]

© 2013

Find this documentation online at Page 106 of 256

LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/UpdateCSV
http://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
http://cwiki.apache.org/confluence/display/solr/Using+SolrJ

LucidWorks Search Documentation 10-Dec-2013

Integrating Nutch

LucidWorks Search includes support for "external" data sources (also known as "push crawlers").
While the built-in LucidWorks crawlers use the "pull" model (meaning that LucidWorks initiates the
crawl and actively discovers new or updated resources), push crawlers are external processes that
manage the discovery and sending of new and updated documents for indexing outside of the
LucidWorks crawler framework.

Apache Nutch is a framework for building and running large-scale Web crawling using Hadoop
map-reduce clusters (see http://nutch.apache.org/ for more information). Recent releases of Nutch
rely on Solr for indexing and searching. From the point of view of LucidWorks, Nutch can be
integrated as an "external" or "push" crawler.

The following sections describe step-by-step how to integrate a Nutch 1.4 crawler (or Nutch trunk)
with LucidWorks.

Solr indexer

Nutch comes with a tool for map-reduce indexing to Solr called Sol r | ndexer . From the
command-line, this tool is invoked like this:

nut ch solrindex http://1ocal host:8983/solr/collectionl db -1inkdb Iinkdb [-parans
k1=v1, k2=v2] segmentl segment2 [...]

) Support for the - par ans option exists in Nutch trunk, post 1.4 release, or if you apply the
patch found in NUTCH-1212).

Field mapping in Nutch

Nutch uses indexing plugins to construct the outgoing documents, and these plugins add various
fields with various names. These field nhames do not necessarily match the default LucidWorks
schema. xnl for a collection. Nutch provides a limited facility to adjust these names (see

$nut ch_hone/ conf/ sol ri ndex- mappi ng. xm). This field mapping facility is often enough in simple
cases to re-map field names so that they match the LucidWorks schema.

However, this solution has some drawbacks:

® This mapping is static for all indexing jobs that use the same job file (or the same conf
directory in the case of a non-distributed Nutch installation) and changing it requires
rebuilding of the job file, which can be cumbersome.

® There is no easy way to add fields that are useful for managing documents in LucidWorks
(such as dat a_source_type, dat a_source_nane or dat a_sour ce), short of implementing a
new Nutch indexing plugin.

© 2013 Find this documentation online at Page 107 of 256
LucidWorks http://docs.lucidworks.com/

http://nutch.apache.org/
http://www.apache.org/dyn/closer.cgi/nutch/
http://nutch.apache.org/nightly.html
http://issues.apache.org/jira/browse/NUTCH-1213

LucidWorks Search Documentation 10-Dec-2013
® the field mapping in sol ri ndex- mappi ng. xnl cannot be managed from the LucidWorks
Admin UL

Fortunately, there is a better solution to this problem which is to use the field mapping
functionality in LucidWorks, defined as part of the External data source type definition, in
combination with the - par ans option for Sol r | ndexer.

Field mapping in LucidWorks

External processes that submit documents to LucidWorks can be integrated using the External data
source type. When you define a new data source in LucidWorks, one of its properties is
fi el d_mappi ng. With the Data Sources API, the JSON serialization looks similar to this:

© 2013 Find this documentation online at Page 108 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

"mappi ng”: {

"dat asource_field": "data_source",
"default_field": null,
"dynam c_field": "attr",

"literals": {},
"luci dworks fields": true,
"mappi ngs": {
"acl": "acl",
"aut hor": "author",
"batch_id": "batch_id",
"content": "body",
"content-encodi ng": "characterSet",
"content-length": "fileSize",
"content-type": "m meType",
"contentcreated": "dateCreated",
"contentlastnodified": "lastMdified",
b
"mul ti _val": {
"acl": true,
"aut hor": true,
"body": fal se,
"dat eCreated": false,
"description": false,
"fileSize": false,
"m meType": false,
"title": false
b
"types": {
"date": "DATE",
"dat ecreat ed": "DATE",
"filesize": "LONG',
"lastnodi fied": "DATE"
b
"uni que_key": "url",
"verify_schema": true

b

The LucidWorks Admin UI includes a page for each data source to edit field mapping for that data
source which is where you can define, for example, that "content" should be mapped to "body", or
that you allow only a single value for "title", etc.

In particular, you can define what is the name of the "uniqueKey" field in the incoming documents.
If Nutch produces documents that use "url" as their unique identifier, then you would specify

"uni queKey": "url". If "verify_schema" is set to "true" then LucidWorks will automatically define a
mapping from "url" to whatever the current "uniqueKey" field is in the Solr schema for the target
collection.

© 2013 Find this documentation online at Page 109 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Once the external data source is defined (or updated) LucidWorks sends the serialized field
mapping to the FieldMappingUpdateProcessor, which is a part of the "lucid-update-chain". This
update processor receives the field mapping definition, and stores it in memory under a specified
data source id. This field mapping is then updated each time a user makes some modifications to
the data source definition, either via the Admin UI or using the REST API.

From this point, whenever an update request is received from an external process and it goes
through this update chain, the update processor looks for a Solr parameter "fm.ds", which
indicates the data source ID. If this parameter is present, and matches an existing defined
mapping, then the documents in the update request are put through the
FieldMappingUpdateProcessor, which re-maps field names, adjusts field multiplicity and adds
LucidWorks-specific field names and values (which, among others, help to manage documents
using the LucidWorks Admin UI).

Putting it all together

Now that we know how the field mapping is configured and processed in LucidWorks we can make
sure that Nutch SolrIndexer uses the correct parameters, so that the correct field mapping is
applied in LucidWorks to documents arriving from Nutch. Let's say that our external data source in
LucidWorks has a data source id "4", we want to add the documents to "collection1" and our
LucidWorks instance is running on a host "lucidworks.io:8888". Then the command-line parameters
to SolrIndexer would look like this:

nutch solrindex http://lucidworks.io:8888/solr/collectionl db -linkdb |inkdb -parans
' updat e. chai n=l uci d- updat e- chai n& m ds=4' segnentl1l segnment2 [...]

As you can see, we are using the target collection's URL, and we specify "fm.ds=4" parameter that
determines what field mapping needs to be applied to the incoming documents. Just in case, we
explicitly set the update chain in case "lucid-update-chain" is not the default one (which it is in an
out-of-the-box installation of LucidWorks). Please note that the - par ans option uses a URL-like
syntax for passing Solr parameters, and since ampersand is usually a special shell character we
had to enclose the - par ans string in single quotes to prevent the shell from interpreting it.

Summary

Nutch and LucidWorks form a powerful combination. Nutch is a robust crawling platform that can
easily crawl thousands of pages per second while LucidWorks offers a scalable and robust indexing
and search platform.

The way to use the two together is simply to:

® Define an "external" data source in LucidWorks, and adjust its field mapping to properly map
the default Nutch field names to the ones that make sense in the current LucidWorks schema
(e.g., "uniqueKey":"url", "content":"body", etc.). An external data source can be created by
choosing the "External" type in the Sources page of the Admin UI or with the Data Sources
API, specifying "lucid.external" for the crawl er and "external"” for the t ype.

© 2013 Find this documentation online at Page 110 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

® Start the Nutch SolrIndexer job with the additional -params option that specifies the data
source id of the "external" data source defined in LucidWorks.

Related Topics

® Suggestions for External Data Sources
® Apache Nutch homepage

© 2013 Find this documentation online at Page 111 of 256
LucidWorks http://docs.lucidworks.com/

http://nutch.apache.org/

LucidWorks Search Documentation 10-Dec-2013

Processing Documents in Batches

By default, LucidWorks Search will crawl as much content as it can (within limits set on the data
source), parse the documents to extract fields, and finally index the documents in one seamless
step. However, there may be times when you would like to do some processing on the documents
before indexing them, perhaps to add metadata or to modify data in specific fields. In that case, it
is possible to only crawl the content and save it in a batch for later parsing and/or indexing. This is
called Batch Processing and allows you to separate the fetching data from the process of parsing
the rich formats (such as PDFs, Microsoft Office documents, and so on), as well as the process of
indexing the parsed content in Solr.

How a Batch is Constructed

Batches consist of the following two parts:

® a container with raw documents, and the protocol-level metadata per document
® a container with parsed documents, ready to be indexed.

The exact format of this storage is specific to a crawler controller implementation. Currently a
simple file-based store is used, with a binary format for the raw content part and a JSON format for
the parsed documents. The first container is created during the fetching phase, and the second
container is created during the parsing phase. A new round of fetching creates a new batch if one
or more of the parameters described above requires it.

Steps to Configure Batch Crawling

It's not possible to configure Batch Crawling with the LucidWorks Search Admin UI. To work with
batches and batch jobs, use the Batch Operations API. The basic workflow is as follows:

1. Create a data source using the Admin UI or Data Sources API. Don't start crawling yet.

2. Configure the data source to be saved as a batch by setting the i ndexi ng parameter to
f al se using the Data Sources API. You can also set the cachi ng and i ndexi ng parameters
as described below.

3. Start the crawl and let it finish.

4. Get the bat ch_i d for the data source using the Batch Operations API call: GET
http://1 ocal host: 8888/ api/collections/collectionl/batches.

5. Using the Batch Operations API, start the batch job for your data source using the batch_id
obtained in the previous step:

PUT http://1ocal host: 8888/ api/coll ections/collectionl/batches/craw er/job/
batch_id.

More about the Data Source Settings

© 2013 Find this documentation online at Page 112 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 10-Dec-2013
To instruct LucidWorks Search not to parse or index the crawled documents, set the i ndexi ng
parameter of a data source to f al se using the Data Sources API. You can also set the parsi ng and
cachi ng parameters to true or false, depending on your needs. Batch crawling attributes for data

sources are as follows:

Key Type Default Description

parsing boolean true If true, the raw content fetched from remote repositories is
immediately parsed in order to extract the plain text and metadata.
If false, the content is not parsed: it is stored in a new batch with its
protocol-level metadata. New batches are created during each crawl
run as needed.

caching boolean false If true, the raw content is stored in a batch even if immediate
parsing and/or indexing is requested. You can use this to preserve
the intermediate data in case of crawling or indexing failure, or in
cases where full re-indexing is needed and you would like to avoid
fetching the raw content again.

indexing boolean true If true, the parsed content is sent to Solr for indexing. If false, the
parsed document is not indexed: it is stored in a batch (either a
newly created one, or the one where the corresponding raw content
was stored). Set this attribute to f al se to enable batch crawling.

) When you configure a data source to process documents as a batch, information about
crawl attempts will display in the Admin UI for that data source (even though you cannot
configure the batch parameters via the UI). So, you can use the Data Sources API to
enabled cachi ng and/or disable i ndexi ng, and initiate the crawl through the Admin ULI.
The UI will show the number of documents found, updated, deleted, etc.

Not all crawler controllers support all batch processing operations. For example, the Aperture
crawler (l uci d. apert ure) does not support raw content storage: it behaves as if the "parsing"
parameter is always t rue and caching is always f al se. Also, the MapR High Volume Data Sources
and High-Volume HDFS Data Sources do not support any kind of batch processing.

You can also use the Batch Operations to get the status of or stop running batch jobs as well as
delete batches and batch jobs.

Related Topics

® Batch Operations
® Data Sources

© 2013 Find this documentation online at Page 113 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Query and Search Configuration

Once your content is in the index, you and your users will want to query the index to find the
documents they need. This section covers the options and settings to optimize the search
experience for users.

First, there's an overview of how searching works in the section Overview of Query Processing.

A few features make it easy for users to find documents: Enterprise Alerts allow them to get email
notifications when new documents are added to the index; Spell Check corrects errors in terms
they've entered; Auto-Complete of User Queries makes suggestions for valid terms while they
type, and Synonyms and Stop Words allows use of similar terms and very common words to
improve the search experience.

While LucidWorks Search includes a Search UI, it's meant to be used during development and not
for a production application. The section Getting Search Results describes in detail how to query
the LucidWorks Search index, and what responses look like, for use while designing your own
search application customized for your needs.

You may have need to improve the results your users see. The Click Scoring Relevance Framework
provides a way to boost documents that other users have already clicked on for the same query,
with the theory that if other users found it useful, you might too.

If you have serious business needs for including very specific rules in response to certain queries
(or all queries), the section Business Rules Integration describes how to plug in those rules with
LucidWorks Search.

© 2013 Find this documentation online at Page 114 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Overview of Query Processing

The goal for any search application is to return the correct document while allowing a user to enter
a query however they want. The query may be in the form of keywords, a natural language
question, or snippets of documents. Advanced queries may be (or may include) date ranges,
Boolean operations, searches on specific document fields, or proximity information to define how
close (or how far apart) terms should be to each other.

Features like spell check and auto-complete can help prompt users to enter terms that are more
likely to retrieve results. In LucidWorks Search, spell check provides suggestions for terms close to
the user's terms, but which definitely exist in the index (that is the default implementation; a
dictionary could be used instead). Auto-complete also provides suggestions based on terms in the
index, but does so while the user is typing their query, providing real-time feedback to the user.
More details are available in the sections Spell Check and Auto-Complete of User Queries.

Matching the User's Query to Documents

Once the user hits enter, search engines take the query and transform it to find the best results.
The section Getting Search Results describes how your search application should send the user's
query to LucidWorks Search, and how the response will be formatted.

Synonyms of the terms entered may be applied to expand the number of possible document
matches (such as looking for "attorney" when a user enters "lawyer"). If terms are stripped of
punctuation and capital letters during indexing, a similar process should also be applied to the user
query to ensure matches in the index. In LucidWorks Search, much of this is pre-configured but
could be modified if needed.

The system then tries to match the user's transformed terms to terms in documents in the index.
Once it finds documents, it puts the list of matching documents into some order. They might be
ordered by date, by entry to the index, or, most commonly, by relevance, which is an order based
on which the system thinks are best for the query entered.

Relevance ranking is one of the most complex components of a search engine, and this guide
covers the topic in more detail later (see Understanding and Improving Relevance). Most queries
are very short (one to three words) and that is usually not enough information to know the user's
full intention. To compensate for this, several techniques may be employed such as boosting based
on the number of times the user's search terms appear in a document or boosting based on the
location of the user's search terms in a document (in the title, at the beginning, etc.). Some
approaches may drop very small words like "of", or "the" (also called stop words), so they don't
unduly influence the term calculations.

Other techniques used in relevance ranking include considering the date of the item (documents
that are more recent may be considered more relevant to some users) or where the term matches
occur (words in the title of the document may be more relevant than words at the end).
LucidWorks Search includes the option to use Click Scoring, which uses information about the
documents other users have selected as a factor when calculating relevance.

© 2013 Find this documentation online at Page 115 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Search Results

Once the system has compiled a list of matching documents, they need to be presented to the user
with enough information to help them decide which documents are best. First, the documents
should be sorted in some way: the most common is by how well the documents match the query
(relevance), but date may also be preferred, or another field such as author or manufacturer.
Some snippet of the document should be used to help users figure out if the document is a match,
such as title, author and date. The first few sentences, or a few sentences around the highlighted
occurrence of the user's search term, are also helpful to give the user some context for why each
document was selected as a match.

Document clustering, also called faceting, can help users select from a large list of results. Facets
are documents grouped together by some common element such as author, type, or subject and
are usually displayed with the number of results that can be found in each group. Providing facets
allows users to "drill down" or further restrict their results and find the documents they are looking
for.

Users may also benefit from tools to expand their queries without providing additional search
terms. A "find similar" option allows users to request documents that are similar to one they
consider almost right. Explicit or automatic feedback allows users to resubmit their search with
terms pulled from documents that are considered near matches, in hopes of getting more or better
matches. In LucidWorks Search, unsupervised feedback can be enabled, which automatically takes
the top documents from the preceding results and pulls important terms from them to use with the
user's original query.

Some queries are run on a periodic basis (daily, weekly, etc.). LucidWorks Search includes a
feature to allow users to save their queries and the system will run them at defined intervals and
send a notification if new documents have been added that match their query. This feature is called
Enterprise Alerts.

Result lists may need to be limited to only documents that a user has access to view. LucidWorks
Search has several options for doing this, described in the section Securing LucidWorks.

© 2013 Find this documentation online at Page 116 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Getting Search Results

LucidWorks Search includes a default search interface that is designed to
be used during development to evaluate and test the performance of
crawler and index configuration. At this time, there are no options to
customize the default Search UI because we expect that you will prefer
your own designs and options specifically tailored to your audience.

This page is an
introduction to
Solr searching.

You should also
look at these

What follows is some information about how to start working with search
results in LucidWorks Search.

sections:
LucidWorks is built upon Solr and supports it natively. While LucidWorks
includes a REST API for many administrative functions (like creating data ¢ Constructing
sources, updating fields, etc.), there is no LucidWorks-specific API for Solr Queries
search results. In order to get results from LucidWorks, you'll need to ¢ Solr Query
learn a little Solr syntax. To help you with this, you may find it helpful to Responses

review LucidWorks' free Apache Solr Reference Guide, particularly the
section on Searching.

Basics of Searching

Searching LucidWorks Search makes a direct connection to Solr, which processes queries with a
request handler. The request handler defines the logic to be used for processing the query. Solr
supports several different request handlers, and LucidWorks includes a special Solr search request
handler called /| uci d. Details about this special request handler are in the section Lucid Query
Parser.

The /1 uci d handler is pre-selected as the default, but could be changed to another request handler
by editing sol rconfi g. xm for the collection. The simplest way to do this is to change the def Type
parameter from "lucid" to "edismax", "dismax" or a custom parser you've created.

Request Handlers

Each request handler has several settings pre-configured, but these can be overridden for an
individual query by the client application. In some cases, this may adversely affect the expected
search results, so care should be taken when overriding some parameters.

To process a query, a request handler calls a query parser, which interprets the terms and
parameters of a query. The query parser understands the terms the user entered (the actual
words), any parameters entered for fine-tuning the query (such as instructions to search a specific
field for the terms, to boost terms found in specific fields to rank them higher in results, and to
interpret the syntax for advanced queries including ranges or boolean operators, etc.), and any
parameters for controlling the presentation of the response (such as the order of results or the
fields of a document to be returned). LucidWorks has created its own query parser that is used by
default, but any other Solr query parser could also be used (the two most popular are DisMax and
ExtendedDisMax).

© 2013 Find this documentation online at Page 117 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 10-Dec-2013
The request handler also likely has defined many parameters for faceting, spell check,
autocomplete, highlighting, security settings and so on. The /| uci d request handler has enabled
and defined each of those components by default; with other request handlers those may need to
be defined in sol rconfi g. xm or defined with each search request. Each of these will either help
fine-tune the query or control the presentation of results.

Query Parsers

During query processing, Solr queries specific fields for matches to the user query. The fields may
be a default set configured in advance or specifically defined in the query request. Each field has a
type, and each field type has defined rules for how to index content of that type, and how to
process queries of that content. In general, rules applied during indexing should be applied during
queries to be confident of expected results. For example, if all fields are modified to lower-case
during indexing, queries should be modified to lower-case to be sure they match as many terms as
possible. These are defined in the field analyzer definitions, which include tokenizers and filters
to be applied to indexing and queries. The tokenizers and filters will in many cases modify the
original query from the user, perhaps by converting the user's input to lower-case or stripping
extra characters like hyphens or other punctuation. There are several dozen options for tokenizers
and filters and links at the end of this section will take you to more information about them. You
can see the defined field analyzers by looking in the schema. xnl file for the collection, or in the
Admin UI screens for Field Type.

While all of this may seem quite complicated, LucidWorks can be used out of the box with pre-set
defaults. If the defaults do not match your desired behavior, however, learning a bit more about
how Solr processes content during indexing and handles query requests may be required.

Related Topics

Apache Solr Reference Guide
Tokenizers

Filter Descriptions
CharFilterFactories

Language Analysis

© 2013 Find this documentation online at Page 118 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Field%20Type%20Configuration
http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Tokenizers
http://cwiki.apache.org/confluence/display/solr/Filter+Descriptions
http://cwiki.apache.org/confluence/display/solr/CharFilterFactories
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 10-Dec-2013

Constructing Solr Queries

In basic terms, searches are done with an HTTP GET that specifies the
parameters to use for the search. As noted above, the /1 uci d request

handler includes several components by default, which means they do Topics covered in

not have to be added to the query. If using the / sel ect request handler, this section:
however, i-tgms such as faceting and spell check suggestions would need ® Solr Query
to be specifically requested. S
To search using the /1 uci d request handler, simply point your HTTP * Query
client or browser to Pl
[}

http://localhost:8888/solr/collection1/lucid?g=some+query. LucidWorks Related

Topics

returns XML by default. If you would rather have serialized PHP returned
instead of XML, modify the URL to
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps
and the response will be formatted in PHP.

@ Any request sent to Solr must include the collection name. In
the above example URLs, col | ecti onl refers to the default
LucidWorks collection. If you have configured multiple
collections, replace "collection1" with the appropriate collection
name.

Solr Query Parameters

Solr has a tremendous amount of flexibility for controlling how queries are handled and how results
are returned, all of which can be defined as parameters of the query. Some basic parameters to
know, however are discussed below.

Parameter Name Uses Example Def:
Luci

q query The main search request and keyword terms g=sol r No s
for the query. but 1

g. al

as *

find

g. al

defir

none

by tl

© 2013 Find this documentation online at Page 119 of 256
LucidWorks http://docs.lucidworks.com/

http://localhost:8888/solr/collection1/lucid?q=some+query
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps

LucidWorks Search Documentation 10-Dec-2013

sort sort The field to sort the results by. Must also sort =dat eCr eat ed+asc scor
specify asc or desc to define the order.
Multiple values can be used, separated by a
comma. Multi-valued fields cannot be used

for sorting.
fl fields The fields to return with the response. fl=id, title id,t
dat e
, | as
m ne
page
start start The number of results to skip when start=20 Non¢
returning the results. Can be used with r ows Lucit
to provide pagination. defa
is er
inste
rows rows The number of results to return. Can be rows=15 Non
used with st art to provide pagination. Lucit
defa
is er
inste
w writer The response writer that Solr should use, wt =j son Solr'
which defines the format of the results. XML
qt query The request handler to use to process the wt=/lucid /1 uc
handler query. This can be used instead of a syntax defa
like hanc
http://localhost:8888/solr/collection1/lucid?
or
http://localhost:8888/solr/collection1/select?
shown in the examples above, or in
conjunction with them to override the
default request handler if one is defined.
© 2013 Find this documentation online at Page 120 of 256

LucidWorks http://docs.lucidworks.com/

http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/select?

LucidWorks Search Documentation 10-Dec-2013

debug debug Detailed information about the query and debug=ti ni ng In tt
results, for debugging purposes. There are Sear

four options for this parameter: "exp

infor

® true: all of the debug information (det.

® query: information about the query doct

only scor

® results: information about the
documents returned and how they
scored

® timng: information about how long
each component took to complete
their tasks

There are many other parameters that can be employed, but these are the basic ones that let you
submit a query and see some responses. For more detailed information on Solr's query capabilities
(some of which depend on the query parser used), see the section of the Apache Solr Reference
Guide on Query Syntax and Parsing.

) To ensure that your query is indexed and shown in the activity graphs in the LucidWorks
Search Admin U, include the req_t ype=mai n parameter in your query URL.

Back to Top

Query Parsers

All of query parsers included with Solr are available for use, in addition to the enhanced parser
included with LucidWorks. This table shows what are considered the "main" query parsers that are
designed for general use. There are also parsers that can be used for specific purposes, listed
below.

Name ID in Description

LucidWorks
Lucene lucene The Lucene Query Parser, with some Solr enhancements. In the Apache
or Solr Solr Reference Guide, the section The Standard Query Parser has more

details about the options for this parser.

DisMax dismax Search across multiple fields, allow +, -, and phrase queries while
escaping most other Lucene syntax to avoid syntax errors. More
information is available in the Apache Solr Reference Guide in the
section The DisMax Query Parser.

© 2013 Find this documentation online at Page 121 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser

LucidWorks Search Documentation 10-Dec-2013

Extended edismax A version of the Extended DisMax parser developed by LucidWorks and

DisMax donated to the Apache Software Foundation for inclusion in Solr. More
information is available in the Apache Solr Reference Guide in the
section The Extended DisMax Query Parser.

Lucid lucid Allows Lucene syntax, enhanced proximity boosting, and query time
synonym expansion. Tolerant of syntax errors. More information
available in this guide in the section on the Lucid Query Parser.

There are also a number of query parsers which can be used on an ad hoc basis. Each of these are
documented in full in the Apache Solr Reference Guide, in the section Other Query Parsers. A few
highlights include:

Name Description

Boost Generates a BoostedQuery which boosts a Query by a FunctionQuery.
Function Parses a FunctionQuery which calculates a function over field values.

Field Generates a query on a single field.

Nested Delegates to another query parser, which can be used to override the default

parser for a specific purpose.

Prefix Query Generates a prefix query on a single field.
Parser

Raw Generates a raw unanalyzed term query.

Spatial Filter = Generates a query which filters results by a defined distance from a point in
space.

Other query parsers are also available.
Related Topics

® Query Syntax and Parsing, with several sub-pages for query parsers and local parameters

© 2013 Find this documentation online at Page 122 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/Other+Parsers
http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 10-Dec-2013

Solr Query Responses

® Structure of the Response
® The responseHeader Section
® The r esponse Section
® The hi ghl i ghti ng Section
® The facet counts Section
® The spel | check Section
® The debug Section
® Format of Results
® Related Topics

Structure of the Response

All Solr responses have at least two sections, the r esponseHeader and the r esponse.

The responseHeader Section

The r esponseHeader includes the status of the search (st at us), the processing time (QTi ne), and
the parameters (par ans) that were used to process the query.

The response Section

The r esponse includes the documents that matched the query, in doc sub-sections. The fields
return depend on the parameters of the query (and the defaults of the request handler used). The
number of results is also included in this section.

The highlighting Section

The hi ghl i ghti ng section will show, for each document in the response, the sections of text in the
document that should be highlighted. If using the /| uci d request handler, they will be shown as
snippets of text, with HTML tags around them. Your client can consume those and you can
format them by specifying the hi ghl i ght class in your CSS however you'd like.

If using another request handler, such as / sel ect , that does not have predefined configuration
options for highlighting, you may need to set the parameters in your request. There are quite a few
Solr parameters to control highlighting and the output in the response. For more details, see the
section of the Apache Solr Reference Guide for Highlighting.

The facet_counts Section

The facet _count s shows the facets that have been constructed for the result list, including the
facet fields and facet values (with counts) to populate each field.

The spellcheck Section

The spel | check will include suggestions for possible spelling errors in the user's query.

The debug Section

© 2013 Find this documentation online at Page 123 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/Highlighting

LucidWorks Search Documentation 10-Dec-2013

The debug section will contain the detailed information about how the query was processed. This
section will only be returned if the debug parameter was used with the query.

There are many sub-section of this section, including:

® expl ai n: Information about how each document scored according to the in relevancy ranking
algorithm.

® timng: Information of how long each component took.

® parsedquery: The query string as submitted to the query parser.

Calculating the debug info, particularly the scores, is expensive in terms of processing power, so it
should only be used when needed to debug query results.

@ Ack! What Do Those Scores Mean?

The expl ai n sub-section of debug is the section that gives you information about the
relevancy scores of each document returned in the query. It's the section you'll want to
look at if you want to know why one document is ranked higher than another. But it's
pretty complex.

The expl ai n section shows you each factor that went into the final score and how it was
weighted. There may be specific boosts defined (LucidWorks for example boosts a
document when the query terms are found in the title, among others), the frequency of
the term in the document may be high relative to the frequency of the term in all
documents (a relationship called the "term frequency-inverse document frequency", or
TF-IDF), or the term may have matched a field that is smaller than others (such as
"author" instead of "body").

Some make the mistake of focusing on the score of a document in absolute terms instead
of looking at a document's score relative to the other documents returned. This is an error
because scoring of a single document is always relative to other documents in the index,
and your index changes over time. The point of looking at scoring should be instead to
understand why a document is ranked higher or lower than other document.

More information on expl ai n can be found in the section describing the Explain Info of the
LucidWorks Search UL.

Back to Top

Format of Results

The default format for search results in LucidWorks Search is XML. There are other options
available - such as JSON, PHP, and CSV, among others - and you request the results in that format
when sending the query. This is defined with the wt parameter.

© 2013 Find this documentation online at Page 124 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Explain%20Info

LucidWorks Search Documentation 10-Dec-2013

The data is returned as a standard Solr search data structure, formatted either as XML, Ruby,
Python, PHP, PHPS, and even server-side XSL. For more information, see the section in the Apache
Solr Reference Guide on Response Writers.

Related Topics

® Understanding and Improving Relevance
® Explain Info
® Response Writers

© 2013 Find this documentation online at Page 125 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/Response+Writers
http://cwiki.apache.org/confluence/display/help/Explain%20Info
http://cwiki.apache.org/confluence/display/solr/Response+Writers

LucidWorks Search Documentation 10-Dec-2013

Query and Response Examples

LucidWorks Search includes a simple Search UI, but if you are going to build your own user
interface, or your own application to access the data stored in LucidWorks, you will need to access
the underlying engine directly.

LucidWorks is built on Apache Solr, so the techniques necessary for performing a search against it
are the same as those for performing a search against Solr. In other words, an HTTP call to a URL
of:

http://127.0.0. 1: 8888/ sol r/col | ecti onl/sel ect/ ?q=Ni ckChase

Would return a result such as this:

© 2013 Find this documentation online at Page 126 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<l st name="r esponseHeader" >
<int name="status">0</int>
<int name="Qrli me">99</int >
<l st nanme="parans">
<str name="qg">N ckChase</str>
</lst>
</lst>
<result name="response" nunfound="151" start="0">
<doc>
<str name="geo">none</str>
<str nanme="id">29059644164939776</str >
<int name="retweet Count">0</int>
<str name="source" >web</str>

Twitter library?</str>
<arr nanme="text_nedi uni'>
<str>Ni ckChase</str>
<str>en</str>
<str/>
<str>web</str>

library?</str>
<str>2011- 01- 23T06: 15: 33. 000Z</ st r>
<str>0</str>
</arr>
<dat e nanme="ti mestanp">2011-02- 13T14: 06: 53. 1917</ dat e>
<arr name="userld">
<str>99999999</ st r>
</arr>
<str name="user Lang">en</str>
<str name="user Name">Ni chol as Chase</str>
<str name="user Scr eenNane" >Ni ckChase</ str>
</ doc>
</result>
</ response>

<str name="text">Wrrking on a Twitter app; anybody got a preferred Java

<str>Working on a Twitter app; anybody got a preferred Java Twitter

You can then consume that XML from within your application.

While XML is the default output format, LucidWorks supports multiple formats, including JSON,

CSV, and even object formats such as PHP, Java, and Python.

In general, to change the output format, use the wt parameter, as in:

http://127.0.0. 1:8888/sol r/coll ectionl/sel ect/?g=N ckChase&at =j son

This provides a response of

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 127 of 256

LucidWorks Search Documentation 10-Dec-2013

"responseHeader": {
"status":0,
"Qrlinme": 1,
"parans": {

"w":"json",
"q":"N ckChase"

3
"response":{

"nunfound": 151,

"start":O0,

"docs": [

{
"id":"29059644164939776",
"user Nane": " Ni chol as Chase",
"user ScreenNane": " Ni ckChase"
"userLang":"en",
"source":"web",
"text":"Working on a Twitter app; anybody got a preferred Java Twitter
library?",
"retweet Count": 0,
"tinmestanp":"2011-02-13T14: 06: 53. 1917",
"geo":"none",
"text _medium':["N ckChase","en","","web","Wrking on a Twitter app
anybody got a preferred Java Twitter library?"
"2011-01-23T06: 15: 33. 000Z","0"],

"userld":["99999999"]

The structure of the results depends on the options you choose in the request string. For example,
you can specify faceting and highlighting;

http://127.0.0. 1:8888/solr/collectionl/select/?g=twitter& acet=on&f acet.fiel d=user Scr eenNn

Which gives a result such as this:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="r esponseHeader" >
<int name="status">0</int>
<int name="Qrli ne">359</int >
<l st nanme="parans">
<str name="facet">on</str>

© 2013 Find this documentation online at Page 128 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<str name="facet.fiel d">user ScreenName</str>
<str name="hl.fl">text</str>
<str name="hl">true</str>
<str name="qg">twitter</str>
</lst>
</lst>
<result name="response" nunmFound="2190" start="0">
<doc>
<str nanme="geo" >none</str>
<str nanme="id">38402455221829632</str >
<arr name="obj ect Type">
<str>twSt at us</str>
</arr>
<i nt name="r et weet Count " >0</i nt>
<str name="source">& t;a href="http://twitter.com" rel="nofoll ow > Twitter
for iPhone&t;/a></str>
<str nanme="text">RT @nventive: Really useful Twitter Android code RT @nbake
Devel oping an android twitter
client using twitter4j http://is.gd/ 1YUFyY #a ...</str>
<arr nanme="text_nedi un'>
<str>t4j news</str>
<str>en</str>
<str/>
<str>& t;a href="http://twitter.com" rel="nofoll ow > Twitter for
i Phone&l t;/aé> </str>
<str>RT @nventive: Really useful Twitter Android code RT @nbake
Devel opi ng an android twitter
client using twitter4j http://is.gd/ 1YUFyY #a ...</str>
<str>2011- 02- 18T01: 00: 33. 000Z</ st r>
<str>0</str>
</arr>
<dat e nanme="ti nmestanp">2011-02- 18T01: 45: 05. 52Z</ dat e>
<arr name="userld">
<str>88888888</str>
</arr>

<str nane="userLang">en</str>
<str nane="user Name">t 4] news</str>
<str name="user ScreenNane" >t 4] _news</str>
</ doc>
</result>
<l st nanme="facet counts">
<l st name="facet_queries"/>
<l st nanme="facet_fields">
<l st nanme="user Scr eenNane" >
<i nt name="beaker">189</i nt >
<i nt name="cl oudexpo">35</int >
<int name="randybi as">35</int >
<i nt nanme="getj avaj ob" >26</i nt >

© 2013 Find this documentation online at Page 129 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
</lst>
</lst>
<l st name="facet_dates"/>
<l st name="facet_ranges"/>
</lst>
<l st name="hi ghlighting">
<l st name="38402455221829632" >
<arr name="text">
<str>RT @nventive: Really useful &t;span
class="highlight"&t; Twitter& t;/span> Android code RT
@nbake Devel oping an android & t; span
class="highlight">twitter& t;/span> client</str>
</arr>
</lst>

</ response>

Notice the structure of the search response: it starts with the r esponseHeader block, which
provides information such as the query, whether you have specified highlighting, and so on.

Next is the resul t block, which shows the actual documents returned by the search, along with
the nunfFound and st art attributes, which specify the total number of results and the starting
position for the results returned in this response. For each document, LucidWorks Search returns
all fields that are marked as st or ed=t r ue in the field definition.

If you have specified faceting, next you will see facet counts for each field specified. You can then
use that information to build links to your narrowed search. For example, we started with the

query:

http://127.0.0. 1: 8888/ solr/col |l ectionl/sel ect/?q=twi tter& acet =on&f acet.fi el d=user Scr eenNp

If you then wanted to build a link to results narrowed on the user Scr eenNane cl oudExpo, it would
look like this:

http://127.0.0. 1:8888/sol r/coll ectionl/sel ect/?g=twitter& acet =on&hl =true&hl . fl =t ext & q=up

This way you have the same set of results, with the additional filter query of
user Scr eenNane: cl oudExpo, which selects only the documents with a user Scr eenNane field of
cl oudExpo.

After the facet information comes the hi ghl i ghti ng block. Highlighting consists of snippets with
the relevant information marked up appropriately. (By default, terms are marked up as a span with
the class hi ghl i ght, so you can use CSS to style them however you like.) Each snippet is
contained in a block that refers back to the i d value of the original document. So in this case, the
nane attribute of 38402455221829632 refers back to doc with an i d of 38402455221829632. You
can then use this information to build your web application.

© 2013 Find this documentation online at Page 130 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
As far as how to actually use these responses, you can either work with them directly, or use the
Solr API as provided for your programming language. For example, a Solr] request looks
something like this:

Sol r Server server = new
CommonsH t pSol r Server ("http://1 ocal host: 8888/ solr/collectionl");

Sol rQuery query = new Sol rQuery();
query.setQuery("twitter");
query. addSort Fi el d("tinmestanp", SolrQuery. ORDER desc);

QueryResponse rsp = server.query(query);
Sol r Docurnent Li st docs = rsp. getResults();
for (Sol rDocurment doc : docs){
Systemout. println((String)doc.getFieldvalue("id")+": ");
Systemout. printl n((String)doc. getFi el dVal ue("user Scr eenName") +" - -
"+(String)doc. getFieldVal ue("text"));

Here you are creating a connection to the server, then creating and executing the request. From
there, you can manipulate documents as you see fit.

APIs exist for most programming languages. You can find a list of bindings on the Solr Wiki.
Related Topics

® Searching chapter from the Apache Solr Reference Guide

© 2013 Find this documentation online at Page 131 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/IntegratingSolr
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 10-Dec-2013

Understanding and Improving Relevance

Relevance is one of the most complex components of a search engine
implementation, but it has a direct impact on how users perceive the

value of the search system. Topics in later

sections:
One of the reasons relevance is so complex is because two users
performing the same query will likely have differing opinions about which ¢ Indexing and
documents best match their query. In the end, judging relevance has an Relevance
inherent subjectivity to it. However, there are some ways to assess ® Queries and
relevance and adjust how documents are scored to improve ranking. Relevance
This section discusses the various approaches to analyzing a problem ¢ Relevance
with relevance (real or perceived) and possible solutions. Tuning Tools

For more background on how LucidWorks Search approaches relevance,
see the discussion in the section on Overview of Query Processing.

Relevance Testing

Relevance should always be judged in the context of a specific index and a set of queries for that
index. You should tune your relevance parameters for the types of queries users submit and the
types of content you have indexed. For example, if you have an e-commerce site where users are
accustomed to searching for your specific product names, and your content includes those names
in the title, you might consider boosting title matches. If, however, your users do not know your
specific product names very well, you might want to boost another field like color, or size.

When developing a search application, you will likely encounter issues with relevance during
testing. Usually this happens when one or more users run their favorite query and aren't impressed
with the results. This becomes a system bug that must be dealt with before launch. While the
favorite-query approach can be useful, a more systematic approach may be more telling in the long
run about how queries are and aren't being handled by the system.

An empirical approach uses real sample queries gathered from query log analysis. The top 50 or so
queries are extracted from the logs, plus ten to twenty random queries. Next, one to three users
enter each query into the system and then judge the top ten (or five) results. Judgments may be
done on a scale of 1-5, with 1 being "relevant" and 5 being "embarrassing", or using another scale
you determine. The goal of relevancy tuning is to maximize the number of relevant documents
while minimizing the number of irrelevant ones. By recording these values and repeating the test
over time, it becomes possible to see if relevancy is getting better or worse for the particular
system in question.

An alternative method for judging relevance is to use what is commonly referred to as A/B testing.
In this approach, some set of users are shown results using one version of the index while another
set of users is shown the results from a different version. To judge the success of a particular
approach, user clicks are tracked and analyzed to determine which approach provides better
results.

© 2013 Find this documentation online at Page 132 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Other approaches include log analysis on a beta site, letting users rate documents using a star (or
similar) system, using third-party evaluation data sets such as TREC, or using focus groups. These
approaches will all yield benefits, and you may want to adopt a combination of approaches, but
empirical testing and A/B testing are the most comprehensive and give you easily repeatable
results and verifiable results.

Once you have some data in hand about the scope of your problem, you are in a better position to
understand what you want to try to improve and the changes you may need to make.

After Testing

Once you have identified that you want to make some changes to improve relevance of results, the
next sections will discuss various approaches to doing so.

First, we cover some index-based approaches (things you do to documents as they are indexed), in
the section Indexing and Relevance.

Next, we cover query-based approaches (things you do to user queries), in the section Queries and
Relevance.

Finally, we'll cover Relevance Tuning Tools.

» Click Scoring Relevance Framework

One important aspect of LucidWorks relevance scoring functionality is the ability to boost
documents that prior users have selected. This functionality is the Click Scoring Relevance
Framework and can be enabled through the Administrative User Interface.

Related Topics

® Relevance chapter from the Apache Solr Reference Guide
® Debugging Search Application Relevance Issues, by Grant Ingersoll, hosted at
SearchHub.org.

© 2013 Find this documentation online at Page 133 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr/Relevance
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/

LucidWorks Search Documentation 10-Dec-2013

Indexing and Relevance

For the most part, it is easier and more flexible to use query-time approaches to alter relevance
ranking, but there are several techniques can be employed during indexing. These techniques
almost always have to be mirrored on the query side, so they are only partially index-time
approaches.

Stop words

Removing stop words (such as a, the, of, etc.) from the index and stripping them from queries is a

common technique for reducing the size of an index and improving search results, despite the fact

that it throws away information. While LucidWorks Search can remove stop words at indexing time,
it does not do so by default.

Removing stop words during indexing is now considered an archaic approach in most search
applications. Instead, it is preferred to remove stop words from queries, except in certain types of
queries where they are used to better clarify a user's intent (such as in phrases). Both the
Extended Dismax Query Parser and the Lucid Query Parser can take advantage of stop words, see
the section Synonyms and Stop Words for more information.

If stop words are removed from the index, you'll want to be sure to remove the same set of stop
words from user queries. Not removing stop words at query-time when they have been removed
from the index may actually reduce relevance by leading to a high number of unmatched terms
from user queries.

Alternate Indexing Fields

When indexing, it is often useful to apply several different analysis techniques to the same content.
For example, providing a default case-insensitive search is often the best choice for general users,
but expert users will often want to do exact match searches which may additionally require a
case-sensitive field. In Solr, this can be accomplished by using the <copyFi el d> mechanism, as
described in the Apache Solr Reference Guide section on Copying Fields. In LucidWorks Search, this
can be configured in the Fields screen of the Admin UI, with the Fields API, or by editing the
schema. xni file. If you use the Admin UI or the Fields API, you will not need to restart LucidWorks
Search, but if you edit schema. xm by hand, a restart of LucidWorks Search will be required.

Other examples of times when alternate fields may be useful include applying different stemming
approaches, using character-based and word-based n-grams, or stripping punctuation, accents and
other marks. At query-time, you'll want to make sure to submit user queries to the fields that have
had content analyzed the way you want.

Document and Field Boosting

© 2013 Find this documentation online at Page 134 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/Copying+Fields
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 10-Dec-2013

When indexing using the Solr APIs it is possible to mark one document or field as being more
important than other documents or fields by setting a boost value during indexing. These boost
factors are then multiplied into the scoring weight during search, thus potentially boosting the
result higher up in the result set. This type of boosting is usually done when knowledge about a
document's importance is known beforehand. However, index time boosting only provides 255
distinct values of granularity and if a change is needed to the boost value, the document must be
re-indexed.

In general, this type of index-time boosting is somewhat impractical: the field or document boosts
must be included with the document every time the document is updated. If using one of the
LucidWorks Search crawlers, this may be difficult to achieve without a workflow that includes
crawling as a batch, modifying documents offline, and then indexing the documents. In addition,
the query-time boosting techniques offer much broader control over when and how boosts are
applied.

However, LucidWorks Search also includes a way to boost fields in a document based on the length
of the field. In theory, if a term that the user has searched for appears in a field that is significantly
shorter than other fields (such as the title), it should be boosted more than if the term appears in a
longer field (such as the body). The short field boost factor provides three approaches: "none",
which provides no boost; "moderate", which uses the Luci dSi m | ari t yFact ory to provide a
smaller boost than the standard Lucene calculations; and "high", which uses Lucene's

Defaul t Sim | arityFactory to calculate the boosts. This functionality is used during indexing -
during query time, the standard Lucene calculations are used.

Stemming and Lemmatization

Stemming is the process of reducing a word to a base or root form. For example, removing plurals,
gerunds ("ing" endings) or "ed" endings are all stemming techniques. Lemmatization is a variation
of stemming that leaves a whole word in place, while stemming need not do that. There are many
stemming theories and techniques. Some are quite aggressive, stripping words down to very small
roots, while others (called light stemmers) are less aggressive.

LucidWorks includes many options for stemming but it is also possible to plug in a custom analyzer
or use other Solr or Lucene analyzers not included. As a general rule of thumb, it is usually best to
start with a light stemming approach that removes plurals and other basics techniques and then
progress to more aggressive stemming only after performing some relevance testing as described
in Judging Relevance.

Default stemming in LucidWorks uses the Lucid Plural Stemmer for the default English text analysis
Field Type which simply stems plural words into their singular form, although rules can be added to
a rules file to protect and specially translate words or even add or modify stemming rules as
needed (see the section Lucid Plural Stemming Rules.) More aggressive stemmers are also
available, like Dr. Martin Porter's Snowball stemmers (choose the "text (English Snowball)" Field

Type).

© 2013 Find this documentation online at Page 135 of 256
LucidWorks http://docs.lucidworks.com/

http://snowball.tartarus.org/

LucidWorks Search Documentation 10-Dec-2013

To experiment with different stemmers, there is a well-defined mechanism in Solr for plugging in
stemmers via the Analysis Process. There is also an easy to use Admin interface for testing the
analysis process located in the Solr Admin screens (access it via the "Advanced" tab of the Admin
UI, or by going to http://localhost:8888/solr/#/collectionl, replacing "localhost:8888" and
"collection1" as needed for your environment).

© 2013 Find this documentation online at Page 136 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://localhost:8888/solr/#%2Fcollection1

LucidWorks Search Documentation 10-Dec-2013

Queries and Relevance

When working with queries to improve relevance ranking, there are a great number of tweaks and
techniques that you can consider. In the section on Relevance Tuning Tools, we'll discuss those
smaller tweaks in more detail. But here we'll discuss some of the broader approaches you might
consider.

One factor that shouldn't be overlooked is the importance of user education. While the techniques
described below can make things much easier for users, educating users on how to use the proper
query syntax, when to use it, and how to refine queries can be instrumental in enhancing the
relevance of search results. Obviously, not all users will read manuals or take the time to learn new
query syntax, so the following techniques can be used to achieve better results in many situations.

Boosting Specific Documents

The QueryElevationComponent in Solr provides a way to force specific documents to the top of the
result list in response to a specific query. In Solr, it is configured with the el evati ons. xm file, but
in LucidWorks Search it can be configured either with the Search UI or the Settings API.

This approach is useful if you have a few known documents that should always appear at the top
for a query. It's also possible to force documents to not appear at all in the results for a query (i.e.,
"blacklisting") if that's required.

Query Term Boosting

Similar to Document/Field boosting, terms in a query can be boosted. Boosting a query term
implies that the term in question is somehow more important than the other terms in the query.
One advantage of query time boosting is an expanded level of granularity is available for
expressing the boost value. Additionally, the boost value is not "baked in" to the index, so it is
easier to change.

You may also decide to give boosts if the user's term appears in specific fields, such as the title.

Click Scoring Relevance Framework

Available only in LucidWorks Search, this approach stores information about documents prior users
have selected during their searches. The document ID and the user's query are recorded and then

used to calculate boost values for those documents that are applied the next time the same query

is submitted. Over time, the documents that have been clicked on the most will rise in the results

list; if users stop clicking on the document, the algorithm has an aging factor that will cause them

to gradually fall in the results list.

For more details, including how to enable Click Scoring, see the section Click Scoring Relevance
Framework

Synonyms

© 2013 Find this documentation online at Page 137 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Searching#Searching-ElevatingorExcludingResults

LucidWorks Search Documentation 10-Dec-2013
Synonym expansion is a common technique that looks up each token in the original query and
expands it with synonyms; strictly speaking, synonym expansion mostly improves the ability to get
more documents (also called recall) rather than improving relevance ranking or excluding
irrelevant documents. For instance, a user query containing "USA" could be expanded to "(USA OR
"United States" OR "United States of America")", which may bring back results that the user
intended to retrieve, but did not fully specify. If the user was looking for "USA" only, the results
may be less relevant to him.

In LucidWorks Search, it is easy to specify a list of synonyms that can be used for expansion.
Synonym lists are best created by analyzing query logs and then looking up synonyms for common
query terms and then testing the results. Generic synonym lists (like those obtained from WordNet
) can be useful, but care must be taken as too many synonyms can be problematic for users,
especially if they are not appropriate for the genre of the index. It is, however, quite common to
produce synonym lists contain common abbreviations, numbers (for example, 1 -> one, 2 -> two,
and so on) and acronyms.

Unsupervised Feedback

Unsupervised feedback is a relevancy tuning technique that executes the user's query, takes the
top five or ten documents from the result, extracts "important" terms from each of the documents
and uses those terms to create a new query. The expanded query is executed and new results are
returned to the user. This is all done automatically in the background with no interaction required
by the end user. As an example, if the user searches for the word "dog" and the top three
documents are (for the sake of example):

1. Great big brown dogs run through the woods.
2. Dogs don't like cats.
3. A poodle is a type of dog.

The feedback query might look something like (dog) OR (great OR big OR brown OR dog OR
run OR woods OR cat OR poodl e).

Since these terms co-occur with the word "dog" in high ranking documents, these terms may help
further define a user's short query. Unsupervised feedback is often viewed as a helper, but it does
rely on the assumption that the top few documents are highly relevant to the search. If they are
not, then the results incorporating feedback will likely be worse than those without feedback.

Unsupervised feedback is optional in LucidWorks Search and is disabled by default. It may be
enabled by checking the Enable Unsupervised Feedback check box in the Querying Settings tab
of the Admin UI, or with the Settings API.

© 2013 Find this documentation online at Page 138 of 256
LucidWorks http://docs.lucidworks.com/

http://wordnet.princeton.edu/
http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation 10-Dec-2013

) supervised Feedback

Supervised feedback is similar to unsupervised feedback except that users explicitly pick
which results are relevant, usually by clicking the result or checking a box indicating it is

relevant. The LucidWorks Search feedback component does not currently support
supervised feedback.

Boosting Documents According to Rules

You may have a complex suite of business rules (i.e., if user A is male, aged 25-35, display XYZ
results first) that you'd like to apply. These may be built around profit or sales goals for the
organization, but they may also be built around a deep knowledge of your users that you'd like to
apply. In that case, you may need to integrate a Business Rues Engine. LucidWorks Search has

provided an integration with Drools, but it's also possible to plug in other options. See the section
Business Rules Integration for more details.

Related Topics

® Options to Tune Documents' Relevance, by Tomas Fernandez Lobbe, hosted on
SearchHub.org

© 2013 Find this documentation online at Page 139 of 256
LucidWorks http://docs.lucidworks.com/

http://searchhub.org/2011/12/14/options-to-tune-documents-relevance-in-solr/

LucidWorks Search Documentation 10-Dec-2013

Relevance Tuning Tools

Before starting to modify settings that impact how results are ranked, it's best to have an idea for
the outcome you hope to achieve. Too often we have an emotional response to relevance, choosing
a small number of favorite queries as our tests. However, as discussed in the opening section, you
should run tests using queries that real users have submitted that have been pulled out of query
logs. The scope of these tests is up to you and your available resources, but a methodical approach
is preferred.

If you have done tests with real-world sample queries and had users (or internal testers) score
results of those queries using a common scale, you have a way to quantify how "bad" the issue is
before you make changes. This will allow you to quantify how much things improve for each
proposed change, so you can base your decisions on data. This will also allow you to understand
(and explain to stakeholders) some of the trade-offs you may need to make if your user's queries
are improved but your CEQ's favorite query is not.

If you do find you want to make changes, here are some tools and tips to assist you.

Relevancy Workbench

One way to experiment with system changes is to use the Relevancy Workbench, a new tool
included with LucidWorks Search which allows side-by-side comparison of search results using
different query parameters for two queries. This tool allows you to experiment with changes before
making them permanently for all users.

Several parameters are available for experimentation, all of which relate to the fields that will be
searched or the boosts that will be applied. A catch-all field is available for any parameters that
aren't explicitly shown, making it a vital tool for testing the impact of any change you can think of.

The tool is available through the LucidWorks Search Admin UI, in the Relevance tab. See the
Relevance Help for detailed information.

Explain Scoring

In the default LucidWorks Search UI, links will appear under each search result for "Explain";
clicking that will show the scoring of each document for the query. The scores cannot be tweaked
here, but you can see the factors that make up the score and understand why the result appears
where it does. This information can provide clues about why documents appear in the order that
they do. The scores themselves are not the most important factor, but the scores of each
document relative to other documents is telling.

More information about how to read explain scores is available in the section Explain and
Document Scoring.

Solr Analysis

© 2013 Find this documentation online at Page 140 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Relevancy%20Workbench
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring

LucidWorks Search Documentation 10-Dec-2013

Some problems may be deeper within the system, and may only be resolved by either changing
how content is analyzed and transformed before indexing or changing how the user's query is
analyzed and transformed. The field types defined for each field dictate this analysis and while
LucidWorks Search includes sensible defaults, they are not universal and may need to be tweaked
depending on your content.

The Solr Admin UI, which is available from the LucidWorks Search Admin UI through the Advanced
tab, has a tool to help better visualize the analysis process which shows the outcome of each
analysis step on both the indexing side and the query side. To use this tool, point a browser at
http://localhost:8888/solr/#/collectionl/analysis and enter the text to be analyzed. By trying out
the text with different analysis capabilities (by selecting different Fields or Field Types), it is
possible to better understand why matches may or may not occur.

More information about analyzers is available in the Apache Solr Reference Guide in the section
Understanding Analyzers, Tokenizers, and Filters.

Using Luke

Another useful tool for evaluating how documents have been indexed is Luke, which is an easy to
use GUI that provides valuable information about the underlying Lucene index. Its features include
document browsing, query testing, term browsing (including high frequency terms) and statistics
about the collection as a whole. To use Luke with LucidWorks Search, launch it using the script
located in the $SLWS_HOVE/ app/ | uke directory.

Once Luke is launched, point it at the LucidWorks Search index directory (such as

$LWS_HOVE/ dat a/ sol r/ cores/ col | ecti onl_0/ dat a/i ndex, replacing "collection1_0" with the
actual collection path you want to look at) and open the index. From there, the most useful actions
are to view the high frequency terms, and also particular documents (under the Documents tab)
using the "Browse by term" and "Browse by document humber" options. Key items to look for are
missing documents and fields, terms, or words that are not tokenized "correctly". Incorrect
tokenization may not mean the analysis process was wrong, but rather the output is not what a
user would expect.

Again, you probably wouldn't make changes with Luke, but it provides a deeper look into what is
happening so you can make educated decisions about what should be changed, whether that is the
analysis process for incoming content, the analysis process for user queries, or the default boost
factors in play.

@ Luke in LucidWorks Search

LucidWorks Search packages a version of Luke, which is provided 'as is'. It can be found at
$LWS_HOVE/ app/ | uke and launched by running the | uke. sh script for Linux/Mac or the
| uke. bat script for Windows.

External Boost Data

© 2013 Find this documentation online at Page 141 of 256
LucidWorks http://docs.lucidworks.com/

http://localhost:8888/solr/#%2Fcollection1%2Fanalysis
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://code.google.com/p/luke/

LucidWorks Search Documentation 10-Dec-2013
The standard mechanism in Solr for adding external field data (which may affect ranking) is
through the use of Ext er nal Fi | eFi el d type. This mechanism is sufficient when adding simple
string or numeric values to be processed by function queries, but it's not sufficient to express more
complex scoring mechanisms, based on other regular query types.

More information about external boost data is available in the Apache Solr Reference Guide in the
section Working with External Files and Processes.

Related Topics

® Relevance tab from the Help documentation for the Admin UI screen
® Explain and Document Scoring from the Help documentation
® |uke

© 2013 Find this documentation online at Page 142 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes
http://docs.lucidworks.com/display/help/Relevancy%20Workbench
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring
http://code.google.com/p/luke/

LucidWorks Search Documentation 10-Dec-2013

Synonyms and Stop Words

Synonyms are words that are similar in meaning to each other, such as "hat" and "cap". In the
context of a search application, they are another tool for improving results for users because they
provide the opportunity to substitute words and expand the terms matched in the index.

Stop Words, on the other hand, are used to restrict the results of a search, by removing very small
and very common words (such as "the" and "and") that often have little bearing on whether a
document is a good match or not.

Synonym Expansion

LucidWorks Search manages synonyms with the use of a synonyns. t xt file found in the
$LWS HOVE/ conf/ sol r/ cores/ col | ection/ conf directory (unique for each collection). Synonyms
can be edited in that file, via the Admin UI, or with the Settings API.

Synonyms can be either single terms or multi-term phrases. There are two ways to express
synonyms:

® A comma-separated list of words (i.e., "lawyer, attorney" or "i-pod, i pod, ipod"). When the
term entered by the user matches a term in the list, all terms are substituted for the term
the user entered, including the matching term. If "lawyer, attorney" appears in the synonym
list, when the user enters "lawyer", the system will search for documents that include both
"lawyer" and "attorney".

® A mapping of one or more terms to another (i.e., "i-pod => ipod"). When entered as a
mapping, the terms on the left of the "=>" symbol will be replaced by the terms on the right
side of the symbol, which means that the user's query may not appear in the documents
returned for the query. If "i-pod => ipod" appears in the synonym list, when the user enters
"i-pod", the system will search for documents that contain the term "ipod" only.

There can be an unlimited number of terms and phrases which are defined as synonyms. However,
it's usually not a good idea to add an entire thesaurus as a synonym file because not all terms are
necessarily interchangeable (in some contexts, yes, but not always). For example, a doctor looking
"myocardial infarction" is likely looking for documents that use the clinical term for the condition
(and are thus more advanced) instead of documents written for a layman which likely uses the
phrase "heart attack".

When considering synonyms, you should also consider which fields should be used for synonym
expansion. In LucidWorks Search, the body, description, title andtext_all fields are used for
synonym expansion by default, meaning that those are the fields that will be used for the
expanded or modified query.

© 2013 Find this documentation online at Page 143 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

If creating a synonym file manually, make sure to format the file properly. Lines starting with
pound (#) are comments. Explicit mappings are indicated with terms separated by "=>", where a
comma-separated list of terms on the left side will be replaced with the list of terms on the right
side. Equivalent synonyms may be separated with commas and will give no explicit mapping (that
is, the listed terms are equivalent). This allows the same synonym file to be used in different
synonym handling strategies. For example:

| awyer, attorney

one, 1
two, 2
three, 3
ten, 10

hundred, 100
t housand, 1000
tv, television

#mul tiple synonym mappi ng entries are nerged
foo => foo bar

foo => baz

#i s equivalent to

foo => foo bar, baz

If familiar with Solr, the file is formatted the same as the Solr synonyms file.

Stop Words

LucidWorks Search stores stop words in a file called st opwor ds. t xt, found in the
$LWS_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf directory (unique for each collection). The stop
words can be edited in that file, via the Admin UI, or with the Settings API.

The stop word file is just a list of terms, one per line.

Many common prepositions, pronouns, and adjectives offer little benefit for matching documents,
but can add some value when ranking results. Although it is possible to remove stop words when
documents are indexed, more relevant results will be achieved by indexing all terms, querying only
non-stop words, and then boosting the results by including the stop words with non-stop words.
There is the special case where a query consists only of stop words (such as the classic, "To be or
not to be"). In that case, all words are included in the query.

All words within quoted phrases are used for the query, even if they are stop words. The user can
also force a stop word to be included in the search by either preceding it with a plus sign ("+") or
enclosing it within double quotation marks. For example,

User Input Query Interpretation

at a "at" and "a" are stop words, so they will not be included with the query
conf erence

© 2013 Find this documentation online at Page 144 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory

LucidWorks Search Documentation 10-Dec-2013

+at a "at" will be included in the query, but "a" will not
conf erence

"at" a Same
conf erence

"at a All three words will participate in the query
conf erence"

this is it There is no need to override because all three words are stop words, so all three
will be included in the query

If creating the stop words file manually, the format is one term per line, as in:

an
and
are
as
at

This is the same format as the Solr stopwords format.

Related Topics

Suppressing Stop Word Indexing
Settings API

Synonyms in the Admin UI

Stop words in the Admin Ul

© 2013 Find this documentation online at Page 145 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory
http://docs.lucidworks.com/display/help/Synonyms
http://docs.lucidworks.com/display/help/Stop%20Words

LucidWorks Search Documentation 10-Dec-2013

Suppressing Stop Word Indexing

This functionality is
not available with
LucidWorks Search
on AWS or Azure

By default, LucidWorks Search indexes all stop words. Modern data storage is very cheap and even
the simplest of stop words provide additional context that boosts relevancy and enables more
precise queries. By default, the Lucid query parser eliminates stop words from basic queries,
including them only when they are used in quoted phrases, or when the query term list consists
only of stop words. In addition, the Lucid query parser uses query stop words to construct
relevancy boosting phrase terms (bigram and trigram phrases) to supplement the basic query.
Still, there may be applications and environments where the choice is to suppress the indexing of
stop words.

TODO - update this for Field Types in the UI and API

Disabling Stop Word Indexing

Solr field types in the schema XML file control whether stop words will be indexed for particular
fields. A stop word filter may be placed in the tokenizer chain for the index analyzer for a field type
to filter out stop words and assure that they will not be stored in the index.

Filters are specified at the field type level, not the field level. For example, you may havetitle
and body fields, both with the t ext _en field type. A stop word filter may be specified for the

t ext _en field type and will apply to all fields of that same type, in this case titl e and body. If you
really need to have a separate filter for a subset of the fields of a given type, you must create a
separate field type to use for that subset of fields.

The standard stop word filter is named St opFi | t er and is generated by the St opFi | t er Factory
Java class. LucidWorks ships with a schema XML file (schema. xnl) with the t ext _en field type with
a commented out entry for this standard stop word filter. To enable it, simply remove the XML
comment markers around that one filter entry.

@ sSchemas are Collection Specific

The schema. xnl file is specific to each collection and can be found under

$LWS_HOVE/ conf/sol r/ cores/ col | ecti on/ conf . If using multiple collections, be sure to
locate the correct schema. xni file for the collection to be updated. After editing the
schema.xml file, LucidWorks should be restarted. On some Windows machines, LucidWorks
may need to be stopped before editing the file.

© 2013 Find this documentation online at Page 146 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

So, starting with the following in schema. xm :

<filter

-->
<l--

<filter

-->

<filter

<filter
<filter
<filter

<fiel dType class="solr. TextFi el d" nane="text_en" positionlncrenment Gap="100">
<anal yzer type="index">

<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>

<I-- in this exanple, we will only use synonyns at query tine

cl ass="sol r. SynonynfFil ter Factory" synonyns="i ndex_synonyns. t xt"
i gnor eCase="true" expand="fal se"/>

class="solr. StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

class="solr. WrdDelimterFilterFactory"

gener at eNunber Part s="1" gener at eWordParts="1"
catenat eAl | ="0" cat enat eNunmber s="1" cat enat eWr ds="1"
spl i t OnCaseChange="0"/ >

cl ass="sol r. Lower CaseFi |l t er Factory"/ >
class="solr.ISOLati nlAccentFilterFactory"/>

cl ass="com | uci d. anal ysi s. Luci dPl ural StenFi |l ter Fact ory"
rul es="Luci dStenRul es_en. txt"/>

</ anal yzer>

Edit the stop filter factory entry that is commented out:

<l --

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

nd remove the XML comment markers to get:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

Which results in the following analyzer description:

© 2013
LucidWorks

Find this documentation online at Page 147 of 256

http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<fiel dType cl ass="solr. Text Fi el d* nanme="text_en" positionlncrenment Gap="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<I-- in this exanple, we will only use synonyns at query tine
<filter class="solr.SynonynFilterFactory" synonyns="index_synonyns.txt"
i gnoreCase="true" expand="fal se"/>
-->
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>
<filter class="solr.WrdDelimterFilterFactory"
gener at eNunber Part s="1" gener at eWordPart s="1"
catenat eAl | ="0" cat enat eNunmber s="1" cat enat eWr ds="1"
spl i t OnCaseChange="0"/ >
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.|SCLati nlAccentFilterFactory"/>
<filter class="com | ucid. anal ysis.LucidPlural StenfilterFactory"
rul es="Luci dStenRul es_en. txt"/>
</ anal yzer >

After such a change, be sure to re-index all documents.

Also, make sure that the query analyzer for that field type references the same stop words file:

<anal yzer type="query">
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"/>

Do not change or comment out the query analyzer when making this index change.

This example only changes the t ext _en field type. If other field types are being used, or should be
changed, find the section of the schema. xnl for that field type and

Position Increment Mode

There are two modes for suppressing stop word indexing:

1. Skip mode: Completely ignore or skip them, as if they were not present. This is the default
when no other option is selected. When skip mode is selected, the query parser will ignore or
skip stop words in quoted phrases.

2. Position increment mode: Do not store them in the index, but increment the position
counter so as to leave a blank at the position of each stop word. When position increment
mode is selected, the query parser will also skip each stop word, but will increment the
position of the next term in the phrase so as to allow any term to match between the
previous term and the next term after the stop word. This will allow for more precise query
matching than the first mode where stop words are simply discarded.

© 2013 Find this documentation online at Page 148 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
For example, given these documents:

® Doc #1: Buy the time for the test.
® Doc #2: Buy more time for the test.
® Doc #3: Buy time for test.

A query of Buy the time regardless of the stop word indexing mode will be equivalent to Buy AND
ti me and match all three documents.

A query of "buy the tine" in normal indexing mode will match exactly that phrase and match
only the first document. In skip mode it is equivalent to "buy ti ne" and will match the first and
third documents. In position increment mode the query is equivalent to "buy * ti me" which is not
a valid query format but indicates that "ti ne" will match the second word after "buy" regardless
of the intervening word. This will match the first and second documents, but not the third
document.

To enable position increment mode, edit the St opFi | t er Fact ory entry of the index analyzer
(which was un-commented above) in schema. xm to add enabl ePosi ti onl ncrenents="true". The
section will appear as follows:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt" enabl ePositionl ncrements="true"/>

Only the index analyzer should be changed. The query analyzer should not be changed regardless
of the indexing mode. The query parser has internal logic that decides whether and when to call
the query stop word filter.

After this change, be sure to re-index all documents.

© 2013 Find this documentation online at Page 149 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Spell Check

Spell check, also known as "Did You Mean?", is the ability of the search application to make
alternate suggestions for queries based on words that are similar to the terms entered by the user.

Integrated query spell checking is bundled with LucidWorks Search, with the option to integrate
third-party enhanced spell checking capabilities. It is index-driven, meaning all suggestions are
derived from the actual content in an indexed collection and not from a predefined dictionary of
words. In practical terms, this helps solve problems with messy data written by a variety of
authors of varying quality where one author may spell a word one way, while another author spells
it a different way and the user spells it a third way. An index-derived spell checker provides
suggestions based on the (sometimes incorrect) words in the dictionary, ensuring that end users
still find relevant documents even if they contain misspellings.

To enable spell checking for specific fields, three steps must be taken:

1. Enable spell checking by accessing the Querying - Settings tab of the Admin UI and check the
box next to "Spell-check". Alternatively, the Settings API can be used.

2. Ensure there are fields configured for spell checking by accessing the Indexing - Fields tab
and choosing "Index for Spell Checking". The Fields API could also be used to modify field
settings. Be sure to select fields that contain ample text-based content that end users are
going to search against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field likely isn't.

3. Crawl your content.

4. Perform queries.

. Spell Check Settings are Per Collection

The indexes created for spell checking are unique to each collection, and based on the
documents indexed for a particular collection. In a multi-collection environment, the steps
to enable spell checking must be done in each collection.

When indexing content, LucidWorks will automatically create an index of terms to be used for term
suggestions. By default, LucidWorks will create this index from content in the aut hor, body,
description,andtitl e fields.

) In prior versions of LucidWorks, a separate task needed to be scheduled to build the spell
check index of terms. Starting with v2.0 of LucidWorks Search, that requirement has been
removed and the spel | index will be created automatically during regular indexing.

Related Topics

® (Query Settings
© 2013 Find this documentation online at Page 150 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Field%20Configuration
http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation 10-Dec-2013
® Settings

© 2013 Find this documentation online at Page 151 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Auto-Complete of User Queries

Query auto-complete shows users suggestions for their queries as they type the words. In
LucidWorks Search, this is an index-driven feature, meaning all suggestions are derived from the
actual content in an indexed collection and not from a predefined dictionary of words. For users,
this means they will see suggestions for actual terms in documents, not for terms that may not
exist in the content.

» Auto-Complete Settings are Per Collection

The indexes created for auto-complete are unique to each collection, and based on the
documents indexed for a particular collection. In a multi-collection environment, the steps
to enable auto-complete must be done in each collection.

To enable auto-complete of user queries, three steps must be taken:

1. Enable auto-complete by accessing the Query Settings screen of the Admin UI and check the
box next to "Auto complete”. Alternatively, the Settings API can be used.

2. Ensure there are fields configured for auto-complete by accessing the Indexing Fields screen
and choosing "Index for autocomplete". The Fields API can be used instead if you prefer. A
good auto-complete field is a field that contains ample text-based content that end users are
going to search against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field probably isn't.

3. After crawling some content, create the "autocomplete" index by accessing the Index
Settings page and scheduling a time for the "Generate autocomplete index" job to run. The
Activities API can be used instead if preferred. This must be done before automatic query
completion will occur for users.

LucidWorks Search does not create the auto-complete index by default. Auto-Complete indexing
jobs must be scheduled using the Indexing - Settings tab of the Admin UI (or via the Activities API)

before query suggestions will appear for users.

© 2013 Find this documentation online at Page 152 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Field%20Configuration
http://docs.lucidworks.com/display/help/Indexing%20Settings
http://docs.lucidworks.com/display/help/Indexing%20Settings
http://docs.lucidworks.com/display/help/Indexing%20Settings

LucidWorks Search Documentation 10-Dec-2013

) If you enable auto-complete but don't see any suggestions, you may want to modify the
t hr eshol d parameter, which defines the minimum fraction of documents a term should
appear in before being added to the aut oconpl et e index. The default is "0.05" (or 5%),
and a lower number will include more terms in the index. A smaller number may be helpful
when just starting out with a small sample set of documents.

To modify this parameter, edit sol rconfi g. xml for each collection (in
$LWS_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf). Find the section:

<sear chConponent cl ass="sol r. Spel | CheckConponent" nanme="aut oconpl et e">

Find the parameter <f| oat name="t hr eshol d">. 005</ f | oat > and change it to the desired
value. After saving sol rconfi g. xm , restart LucidWorks.

Automatic Creation of Auto-Complete Indexes

This functionality is
not available with

LucidWorks Search
on AWS or Azure

By default, LucidWorks does not build the indexes for auto-complete each time documents are
added to the index because doing so may have performance implications in a production
environment with a large index. However, LucidWorks can be configured to do this automatically by
changing the bui | dOnCommi t setting in sol rconfi g. xm to true. Usually, it's a better idea to
schedule index builds so that they run on a regular interval rather than doing it on every commit
using this method.

If, however, you would like this to happen automatically, find the following section in the

sol rconfig. xm file for each collection:

© 2013 Find this documentation online at Page 153 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<!'-- Aut o- Conpl ete conponent -->
<sear chConponent nane="aut oconpl ete" class="sol r. Spel | CheckConponent ">
<l st name="spel | checker">
<str name="nane">aut oconpl ete</str>
<str name="cl assnane" >or g. apache. sol r. spel | i ng. suggest . Suggester</str>
<str name="1 ookupl npl ">or g. apache. sol r. spel | i ng. suggest . tst. TSTLookup</str>
<str name="fiel d">autoconpl ete</str>
<str name="storeDir">aut oconpl ete</str>
<str name="buil dOnCommi t " >f al se</str>
<fl oat name="t hreshol d">. 005</f| oat >
<I-- <str name="sourcelLocation">anerican-english</str> -->
</lst>
</ sear chConponent >

In the section, str nanme="bui | dOnConmi t " >f al se</ st r>, change "false" to "true", and save the
file. Restart LucidWorks for the changes to take effect. Repeat this for each collection that should
build the auto-complete index each time documents are added to the index.

© 2013 Find this documentation online at Page 154 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Enterprise Alerts

The alerts feature of LucidWorks Search allows a user to save a search and receive notifications
when new results are available.

A passive alert acts like a smart saved search. It is smart in the sense that it keeps track of the
last time the user checked for new results to their search and provides only new results the next
time the alert is checked. As the name implies, a passive alert provides no notification when new
documents are indexed. It waits for a request before it checks for new query results.

An active alert is checked periodically at a user-defined interval (currently every hour, day or week
is available). When new results to the query are discovered, an active alert sends a notification via
email to the email address defined in the alert. At the current time, only email notifications are
possible.

How Alerts Work

1. The user does a search, and clicks the link under the search box to "Create new alert".

1. The user configures the alert and notification settings, including how often to run the
alert (peri od) and an email address to send alert notifications.

2. LucidWorks Search automatically saves the timestamp of when the alert was created (
checked_at).

2. Every 60 seconds, a scheduled process within the UI checks to see if it is time to run any
alerts.

3. When the alert is run, the query is executed as entered by the user, on the collection that the
query was initially run on, and the timestamp of the most recent document is compared to
the timestamps of documents in the result set.

4. If there are new results for the user, a notification is sent, assuming the mail server has been
configured in the Settings page of the UI.

Parameter names in parentheses above refer to the attributes used with the Alerts API. Alerts can
be set up with the default Search UI, but while designing your own search application, you will
likely need to use the Alerts API to integrate the functionality.

Enabling Alerts

In order for alert notifications to work with LucidWorks Search, the email server must be
configured via the System Settings page in the Admin UI.

In addition, the LucidWorks Search schema must define a ti nest anp date field. Both active and
passive alerts require that the index define a ti nest anp date field that is indexed, defaulted to
NOW, and used to indicate the time of document indexing. By default, LucidWorks Search schema
already defines this field. However, if modifying the LucidWorks Search default field set (the
"schema"), you must retain this field for alerts to work properly.

© 2013 Find this documentation online at Page 155 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/System%20Settings
http://docs.lucidworks.com/display/help/System%20Settings

LucidWorks Search Documentation

10-Dec-2013

Click Scoring Relevance Framework

One way to modify how results are ranked for users is to adjust the
scoring of results based on user feedback (either explicitly or
implicitly). Query logs provide a wealth of information that indicates
what users were searching for and which results they found
relevant to the query. If certain documents are often selected as
answers to queries, it makes sense to increase their ranking based
on their popularity with users.

LucidWorks Search includes a component that enables
administrators to add this type of information to the index. This
component is referred to as the Click Scoring Relevance Framework
(or Click Scoring, for short). The framework includes tools for query
log collection, log processing, and robust calculation of log data to
boost certain documents. It is possible to supply boost data
prepared without Click Scoring tools included with LucidWorks,
however the data must be available in a predefined location and
follow a specified text format. More details about how Click Scoring
works and information about advanced configuration parameters
are described in Using Click Scoring Tools.

This component can be enabled in the Query Settings section of the
Admin UI or with the cl i ck-related parameters of the Settings API.
Once enabled, a job must be scheduled to process the click logs
and create the data for boosting documents based on prior clicks.

& Thereis currently a known issue where Click Scoring will
not properly process calculated boost information until
LucidWorks Search is restarted. So, when enabling Click
Scoring, please also schedule a full LucidWorks Search
restart. For details on how to restart, see the section
Starting and Stopping LucidWorks Search.

Functionality of Click Scoring

Topics covered in this

section:

® Functionality of
Click Scoring

Collection of
Query
Terms and
User Clicks
Processing
Logs
Maintenance
of Historical
Click Data
Document
Boost Data
Integration
of Boost
Data with
the Index

® Using Click
Scoring
information

® Related Topics

When users select a particular document for viewing from a list of search results, we can interpret
this as implicit feedback that the document is more relevant to the query than other documents in
the results list. We can infer a strong association between the terms of the query and the selected
document, because users have shown through clicks that they believe the selected document

matches their query better than other returned documents.

This graphic gives an overview of how Click Scoring works:

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 156 of 256

http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation

10-Dec-2013

1. Enable Click Scoring enabled in Admin Ul
Click ‘
\ SGDHI‘IQ Click Scoring type enabled in solrconfig.xml

”2. Users search & click on relevant”

results

3. Clicks and associated queries are H
stored in click_<collection>.log

4. Click Scoring Activity
is scheduled and run to
create boost file

5. Users do more
searches &
previously clicked
. results are boosted

During Click Activity:
- Top query terms are analyzed

- Weights are calculated with number of
clicks per document and positions in
results lists (lower positions get a higher
weight)

- New data is merged with older boost
data; boost values expire if document is
not clicked on again

Boost values contribute to overall
relevance calculations for a document,
but clicks are not the only factor

The reinforcement of ranking and terms is counterbalanced by the "expiration" of the past history
of click-through events, to avoid situations when documents that are selected many times start to
permanently dominate the list of results. Without expiration of old history, these results may

become selected even more often at the expense of other perhaps more relevant documents that

did not enjoy such popularity over time.

Click Scoring implements several major areas of functionality related to the processing of

click-through events:

® collection of query logs and click-through logs
® maintenance of historical click data to control the expiration of past click-through events
® aggregation of log data, calculation of click-induced weights and association of query terms

with target documents

® integration of boost data with the main index data

These areas of functionality are described in the following sections.

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 157 of 256

LucidWorks Search Documentation 10-Dec-2013
Collection of Query Terms and User Clicks

Records of user clicks include two pieces of information: the document ID and the query term
entered by the user.

The default LucidWorks Search UI records user clicks automatically when Click Scoring has been
enabled. When you write your own search application, you will need to make calls to the Click
Scoring API to record user clicks and query events.

Both the queries and the user clicks are logged to the same log file. The default location of this file
is in SLWS_HOVE/ dat a/ | ogs/ cl i ck-col I ection. | og, where col | ecti on is the name of the
collection (for example, cli ck-col | ecti onl.| og contains clicks to the the default LucidWorks
collection, collectionl).

When using Index Replication this log data is not replicated to slave nodes. Since the Click Scoring
API points to the LucidWorks Search Core component, which is only used on a single node, and not
directly to the indexes, it is not required to replicate the log files across shards. The latest version
of the calculated boost data (after the logs have been processed) is replicated together with the
main index files, this allows the slave nodes to perform click-based scoring in the same way as the
master node that calculated the boost data.

., Click Scoring is not available in SolrCloud mode.

Processing Logs

Whether generated by the default LucidWorks Search UI or from your own application with the
Click Scoring API, the Click Scoring log files must be processed to calculate boost values. This
processing step can be started with the Activities API, or scheduled to run periodically using the
Admin UI by setting a recurring activity in the Index Settings screen of the Admin UI.

This process results in the creation of calculated click boost data, which is by default located in
$LWS_HOWVE/ dat a/ sol r/ cores/ col | ection/data/click-datal/current.

Maintenance of Historical Click Data

Each time the Click Scoring logs are processed, the system stores a copy of the current
click-collection.log (by default, this is in

$LWS_HOVE/ dat a/ sol r/ cores/ col | ecti on/data/click-data/). Other data produced during Click
processing is also stored in that location.

Over time the amount of data collected could be significant. LucidWorks Search does not delete
this data automatically, because query and click-through logs are a valuable resource and can be
used for other data mining tasks. If the size of this data becomes a concern, all subdirectories in
that location can be removed except for current/ and previ ous/ directories that preserve the
current and previous boost data.

Document Boost Data

© 2013 Find this documentation online at Page 158 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Indexing%20Settings

LucidWorks Search Documentation 10-Dec-2013

The final boost data file follows a simple text format, so the boost data can be also supplied by an
external process if desired. See Using Click Scoring Tools for more details about the structure of
the boost data file.

Integration of Boost Data with the Index

If Click Scoring is enabled and logs have been processed, the boost data is integrated on the fly
with the main index when new documents are indexed, an index optimization is run, or a full
re-index is executed. Most frequent query terms are added as a field to respective documents, and
weights of these documents are adjusted.

The field names added by Click Scoring are configurable, but assuming their prefix is set to the
default value of cl i ck the following fields will be created from boost data and automatically
populated:

® click: an indexed, not-stored field with a single term "1", whose purpose is only to convey a
floating-point field boost value. Field boost values have limited resolution, which means that
small differences in boost value may yield the same value after rounding.

® click_terns: an indexed, stored, and analyzed field that contains a list of top terms
associated with the document (presumably obtained through analysis of click-through data).
This field's Lucene boost is also set to the boost value for this document obtained from the
boost data file.

® click_val : an indexed, stored field that contains a single term: a string representation of
the boost value for this document. This format is suitable for processing in function queries.

'/ Using Click Scoring with NearRealTime Search

Enabling Solr's Near RealTime (NRT) search by configuring the

updat e_handl er _aut osof t conmi t _* parameters with the Settings API or the
Auto-soft-commit* settings in the Admin UI has some impacts on how user clicks are
processed by LucidWorks.

In order to avoid performance issues with NRT search when Click Scoring is enabled,
documents added between the last "hard" commit and the current "soft" commit are not
augmented with click-through data.

Deletions since the last hard commit are processed as usual (i.e., documents deleted are
not visible), but their term statistics are still included in the global term statistics (which

includes the fields added by Click). Added documents since the last hard commit will not
get any click-related fields until the next hard commit, even if a document with the same
unique key was deleted and replaced by a new, updated, version of the document.

Using Click Scoring information

© 2013 Find this documentation online at Page 159 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Indexing%20Settings

LucidWorks Search Documentation 10-Dec-2013

There are several ways that Click Scoring information can affect ranking of results. By default,
LucidWorks Search is configured to use Click Scoring data as an additional field in a query parsed
by the Lucid Query Parser. Other methods can be configured manually, and may involve using
click_val field as an input to a function query. This section describes the | uci d query parser
method, which is the default.

When Click Scoring is enabled via the Admin UI, a boost field cl i ck_t er n8”75. 0 is automatically
added to the list of fields for the search handler (which uses a | uci d query parser). This means
that query terms will be matched with the cl i ck_t er ms field using the relative weight of 5.0. This
weight can be changed with the Settings API or by editing sol rconfi g. xrmd) if you'd like a larger or
smaller boost.

The end result of this query processing is that documents that contain in their cli ck_t er ns field
terms from the query will have a higher ranking, proportionally higher to the popularity of the
document (the number of click-throughs) and the overlap of query terms with cli ck_terns. It
may be difficult, however, to see the effects of integrating Click Scoring boosts from only a few
clicks on a document during testing. This is because the actual boost that occurs The score
contribution of this match will be related to this weight, the term frequency/inverse document
frequency scoring formula for this field, and the usual | uci d (extended di smax) scoring rules.

Related Topics

® Using Click Scoring Tools

© 2013 Find this documentation online at Page 160 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Click%20Scoring

LucidWorks Search Documentation 10-Dec-2013

Using Click Scoring Tools

This functionality is
not available with
LucidWorks Search
on AWS or Azure

The Click Scoring Tools package is a set of tools for analyzing
query and click-through logs in order to obtain relevance-boosting data. This boost data can then
be used by other Click Scoring components such as C i ckl ndexReader Fact ory and the | uci d
query parser to adjust document ranking based on the click-through rate and common query
terms.

File Formats

The Click Scoring Tools package reads and generates files that follow specific formats, which are
summarized below. All files are plain text files with tab-separated records, one record per line.

Query and Click-through Log Format

Click Scoring tools expect this file to be located in
$LWS_HOWVE/ dat a/ | ogs/ cl i ck-<col | ecti onName>. | og.

Q TAB queryTi nestanp TAB query TAB request| D TAB nunberOfHits
C TAB clickTinestanp TAB request| D TAB docunent| D TAB position

The fields are:

Field Description
QorC Identifies the type of the record, either a query log record or a click-through
log record

quer yTi mest anp A long integer representing the time when the query was executed

query The user query, after basic escaping (removal of TAB and new-line characters)
request| D A unique request identifier related to query and timestamp

numberf Hits The total number of results matching the query

clickTi mestanp A long integer representing the time of the click-through event

request| D The same value as above for the Q record
docunent | D The uni queKey of the document that was selected
posi tion The 0-based position of the selected document on the list of results

Boost File Format

© 2013 Find this documentation online at Page 161 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
This file is usually generated as a result of the Click Scoring processing of log files, but it could be
also supplied by some other external process. Click Scoring expects this file to be located in

$LWS HOVE/ dat a/ sol r/ cores/ col | ection/data/click-datal/current.

docurent | D TAB list(topTerms) TAB |ist(boost) TAB |i st (updateTi nestanp)

The fields are:

Field Description
docunent | D The uni queKey of the document
|ist(topTerns) A comma-separated list of pairs in the format phrase:weight

| i st (updat eTi nest anmp) A comma-separated list of long integer timestamps, which affect how
the current boost data will be aggregated with the next version of
boost data. This element is optional and it's for internal use by Click
Scoring Tools

Click-induced Boost Calculation

When Click Scoring tools are run (using the C i ckAnal ysi sRequest Handl er) old boost data (if
present) is merged with the new boost data, processed by a Boost Processor to produce the new
numeric boost value per documentID, and a new list of top-N shingles per documentID. Previous
values of the floating-point boost are preserved in a boost history field, so that they may be
considered during the next round of calculations.

The default configuration uses a Boost Pr ocessor that discounts historical boost values depending
on the passed time by applying an exponential half-life decay formula. Such discounted historical
values are then aggregated with the current values. This method of aggregation reflects both past
history of click-throughs and also reacts closely to recent click-through events.

ClickAnalysisRequestHandler

The d i ckAnal ysi sRequest Handl er initiates and monitors the click-through analysis. The tools for
Click Scoring processing are available via com | uci d. handl er. d i ckAnal ysi sRequest Handl er,
which can be activated from the sol rconfi g. xm configuration file the same way as any other
request handler.

The configuration that ships with LucidWorks Search already contains a section that activates this
handler, under the relative path / cli ck.

This handler accepts a request parameter, which can take one of the following values:

STATUS: return the status of the ongoing analysis, if any. Example request:

curl http://local host:8888/solr/collectionl/click?request=STATUS

© 2013 Find this documentation online at Page 162 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>

<l st nanme="responseHeader" >

<int name="status">0</int>

<int name="Qqrli ne">205</int >

</I|sté>

<str name="logDir">java.io.File:.../logs</str>

<str name="prepDir">java.io.File:.../click-prepare</str>
<str name="boostDir">java.io.File:.../click-data</str>

<null nane="dictDir"/>
<str nanme="processing">ldle.</str>
</ response>

PRCCESS: start the clickthrough processing. If the processing is already running, an error message
will be returned and this request will be ignored.

Example request:

curl http://1ocal host: 8888/ solr/collectionl/click?request=PROCESS

Example response:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>
<l st name="r esponseHeader" >
<int name="status">0</int>
<int name="Qrli me">136</int >
</lst>
<str name="result">Cickthrough analysis started.</str>
</ response>

Subsequently, the status returned after all processing is finished will look like this:

© 2013 Find this documentation online at Page 163 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<?xm version="1.0" encodi ng="UTF- 8" ?>
<response>

<l st name="r esponseHeader" >

<int name="status">0</int>

<int name="Qrli me">1</i nt >

</lst>

<str name="logDir">java.io.File:./logs</str>

<str name="prepDir">java.io.File:./click-prepare</str>
<str name="boostDir">java.io.File:./click-data</str>
<nul |l name="dictDir"/>

<str name="processi ng">St opped: Stage 3/3: prepare=finished, ok aggregate=finished, ok
boost _cal c=fi ni shed, ok</str>
</ response>

STOP: stop the currently ongoing analysis, if any is running.
Example request:

curl "http://local host: 8888/ solr/collectionl/click?request=STOP"

Example response:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r esponse>
<l st name="responseHeader" >
<int name="status">0</int>
<i nt name="Qri me">0</int>
</lst>
<str name="result">There is no running analysis to stop - ignored.</str>
</ response>

When processing is finished, new versions of boost files will be placed in the current directory, and
previous boost data will be moved to the previ ous directory. At this point in order to read the new
boost values SolrCore needs to be reloaded (for example, by issuing a <conmi t / > update request).

In addition to the r equest parameter this handler supports also the following parameters:

® commit (default to false) if set to true, then after the processing is finished the handler will
automatically execute a commit operation to reopen the IndexReader and to load the newly
calculated boost data. Please note that Solr supports only a single global commit, which

means that all other open transactions (such as ongoing indexing) will also be committed at
this time.

® sync (default to false) if set to true, then the processing will be executed synchronously,

blocking the caller and returning only when all processing is finished. Default is to run the
processing in a separate background thread.

© 2013 Find this documentation online at Page 164 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Click Scoring Tools and Index Replication

When LucidWorks Search is configured to use Index Replication the boost data files (by default, in
$LWS_HOVE/ dat a/ sol r/ cores/ col | ecti on/ dat a/ cli ck-data) will also be automatically replicated.
Due to the internal limitations of Solr's Repl i cati onHandl er the boost data file will be located
inside the main index directory on the slave nodes, but it will be properly recognized by the Click
Scoring components on the slave nodes.

Click Scoring does not currently work with the SolrCloud functionality available with Solr 4.

For the replication of boost . dat a to work the sol confi g. xm must contain the following line in the
<mai nl ndex> section:

<mai nl ndex>
<del etionPolicy class="comlucid.solr.click.CickDeletionPolicy"/>

</ mai nl ndex>

© 2013 Find this documentation online at Page 165 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Business Rules Integration

This functionality is
not available with

LucidWorks Search
on AWS or Azure

LucidWorks Search integrates the Business Rules Module
available for Solr installations in the LucidWorks Marketplace. In v2.6.3, this replaces the prior
implementation of business rules.

About Rules Engines

A rules engine is designed to allow business users to write rules that effect the processing of search
results. For instance, an e-commerce company may wish to alter the search results to boost
particular documents based on a sale, or the HR department of a company may wish to make sure
the document covering 401K benefits is always at the top of a search for 401K. In essence, a rules
engine integrated with a search engine allows businesses to dynamically impact relevance of
results based on business needs without having to write extensive, low-level client-server code.
Instead, they can express rules in a declarative programming language that are much simpler to
understand without the complexity of logic that goes into writing code in a programming language
like Java or Ruby.

All business rules depend on information from the system to analyze and take actions. This
information is known to the rule processor as facts which will be present in the knowledge session.
LucidWorks Search will add facts to the knowledge session on each request and the user’s business
rules can use and manipulate those facts.

In a rules engine, users express rules to be matched along with instructions in case a rule is
matched, using simple if-then statements. The rules engine then figures out which rules should be
fired given the facts present in the system. For example, a set of rules may look like:

if owner.hasDog then reconmmrend dog food
if owner.hasCat then recomrend cat food
if owner.gender is female and store is "sporting goods" then discount golf clubs 20%

The important thing to note in this example is we didn't have to do any complex logic to tie these
rules together. We simply express the conditions and the things that should happen if a condition is
true. The engine is responsible for figuring out which rules should fire based on the information
(facts) it has to work with when evaluating the rules. It is also important to note that at any given
execution of the engine some, all, or none of the conditions may be met depending on the facts in
the system, thus implying that all of the "then" clauses will be executed.

When Should I Use Business Rules?

© 2013 Find this documentation online at Page 166 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

There is a time and place for the use of business rules. Generally speaking, they are most
effectively used in situations where non-developers are expected to apply changes to the search
results based on business conditions. They are not a replacement for code that integrates search
into an application, but instead should be thought of as a way for companies to fine tune user
interactions with a system without the need to go through extensive (and expensive) development
cycles. It also is not a substitute for general relevance tuning across a broad set of queries nor is it
appropriate for ranking modifications that are best done at a lower level in the search engine.

How to Implement Business Rules in LucidWorks Search

There are two main areas to cover for implementing business rules with LucidWorks Search:

First, determine how the rules will be implemented. There are a variety of methods, each described
in the section on Configuring Business Rules in LucidWorks Search.

Second, define the rules themselves. LucidWorks Search has integrated Drools, and you'll want to
look at the section on Writing Rules for information on how to construct a rules file.

There are Example Rules and Recipes. If you're not using rules at all, you can disable business
rules.

Integrating with your Rules Engine

If you already have a rules engine (such as ILOG's JRules or Fair Isaac's Blaze Advisor) you can
hook them into LucidWorks by implementing a RulesEngine class that talks to your rules engine.
Naturally, you can also implement your own SearchComponent, DocTransformer,
UpdateRequestProcessor, etc., if the ones shipped with LucidWorks do not meet your needs.

© 2013 Find this documentation online at Page 167 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Configuring Business Rules in LucidWorks Search

While business rules in LucidWorks Search is based on

the add-on Solr module of the same name, LucidWorks

Search is configured out of the box to use rules files. Topics discussed in this section:
There are several points of configuration that can be

- . ® RequestHandlers
modified or re-used as needed, and includes:

® /rul esMyr

® a requestHandler named "/rulesMgr" ® Optional
® a searchComponent named "landingPage" RequestHandlers
® a searchComponent named "firstRulesComp" ® SearchComponents
® a searchComponent named "lastRulesComp" ¢ firstRul esConp
® addition of rules to the ® |astRul esConp
updateRequestProcessorChain named ® Rules Component
"lucid-update-chain" Parameters
® a document transformer named "rules” ¢ landi ngPage
® UpdateRequestProcessorChain
There are also a few optional requestHandlers that ® Document Transformer
could be configured if desired. °

Rules with Index Replication

The rest of this section will describe each one, and
discuss how to integrate it with an existing Solr system.
If you are not yet familiar with requestHandlers,
searchComponents and similar configurations in a

sol rconfig. xn file, you may want to review the Solr
Reference Guide section RequestHandlers and
SearchComponents in SolrConfig.

RequestHandlers

The Rul esEngi neManager Handl er is the Solr r equest Handl er that holds on to references to the
various rules engine instances specified in the Solr configuration. The manager maintains a map of
engines to their names. Most components are set up to take in the name of this Request Handl er
and then go ask it for the engine by name.

/rulesMgr

The rulesMgr handles references to rules engine instances. Each of the engines are defined and
used by the searchComponents.

© 2013 Find this documentation online at Page 168 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig

LucidWorks Search Documentation 10-Dec-2013

<request Handl er cl ass="com | uci d. rul es. Rul esEngi neManager Handl er" name="/rul esMyr" >
<!-- Engines can be shared, but they don't have to be. A SearchConmponent or other
consuner can
speci fy the engi ne they want by nane.
-->
<l st nane="engi nes">
<l st name="engi ne" >
<str name="nane">first</str>
<str
name="cl ass">com | uci d. rul es. dr ool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rules/defaultFirst.drl</str>
</lst>
</lst>
<l st name="engi ne" >
<str name="nane">| andi ng</str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaul tLanding.drl </str>

</lst>
</Ist>
<l-- Engine is using rules that are designed to be called after all other

conponents -->
<l st name="engi ne">
<str name="nane">| ast </str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaul tLast.drl</str>
</lst>
</lst>
<l st name="engi ne">
<str name="nane">docs</str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaul tDocs.drl</str>
</lst>
</lst>
</lst>
</ request Handl er >

Optional RequestHandlers

The following requestHandlers are not included with LucidWorks Search by default, but could be
added to the sol rconfi g. xml for a collection. Much of the same functionality exists with the
default / | uci d requestHandler, but these might be useful if you would like to have specific
handlers for specific purposes. Some of the example rules files reference these handlers.

© 2013 Find this documentation online at Page 169 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

/update-with-rules

This is an updateRequestHandler for indexing documents. Note that it calls the
updateRequestProcessorChain, defined later. This allows using rules to alter documents while they
are being indexed, using Solr's standard updateRequestHandler class.

<request Handl er name="/update-w th-rul es" class="sol r. Updat eRequest Handl er ">
<l st name="defaul ts">
<str nanme="update. chai n">update-w t h-rul es-chai n</str>
</lst>
</ request Handl er >

The "/update-with-rules" requestHandler works in a similar way to the default "/update"
requestHandler and takes the same parameters when used. As with the default "/update"
requestHandler, in Solr 4.x versions, you can use this one handler to send documents to Solr as
CSV, JSON, and XML files.

/update-extract-with-rules

This is another updateRequestHandler for indexing documents with rules, and it also calls the
updateRequestProcessorChain. However, this requestHandler is based on Solr's
ExtractingRequestHandler, which allows you to use Tika to extract content from complex files such
as Word documents, PDF files, and binary files.

<request Handl er name="/updat e-extract-w th-rul es"”
startup="I azy"
class="sol r.extraction. Extracti ngRequest Handl er" >
<l st name="defaul ts">
<str name="update. chai n">updat e-w t h-rul es-chai n</str>
<str name="| ower names" >true</str>
<str name="uprefix">ignored_</str>
<l-- capture link hrefs but ignore div attributes -->
<str name="captureAttr">true</str>
<str name="fmap. a">links</str>
<str name="fmap. di v"'>i gnored_</str>
</lst>
</ request Handl er >

Because this requestHandler is based on the ExtractingRequestHandler, it allows the same
parameters.

/search-with-rules

This is a requestHandler which provides an example rules-based search. Note in the configuration
below that we have defined two arrays, "first-components"” and "last-components" and named
specific searchComponents.

© 2013 Find this documentation online at Page 170 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<request Handl er nanme="/search-wi th-rul es" class="sol r. SearchHandl er" >
<l st name="defaul ts">
<str name="echoParans">explicit</str>
<int name="rows">10</int>
<str name="df">text</str>
</lst>
<arr name="first-conponents">
<str>| andi ngPage</str>
<str>firstRul esConp</str>
</arr>
<arr name="| ast - conponents">
<str>| ast Rul esConp</str>
</arr>
</ request Handl er >

If you want to integrate rules with an existing requestHandler, you can add the named
searchComponents to the handler, in the same way shown in this example.

SearchComponents

The primary mechanism for applying rules at query time (i.e., not a document indexing request) is
via a Solr sear chConponent called Rul esConponent . The Rul esConponent can be configured to
occur anywhere in the searchComponent, but it is typically best to configure it to be the first item
in the chain after the filter by role component, since it is often the case that you want rules to
make decisions based on the application's input parameters (such as the query, sort, etc.) and you
want the rules to make changes before they get processed by the other components. For instance,
you may have a rule that fires when the user query is equal to "title:dogs" and you want the rule
to change the query to be "title:dogs AND category:pets". By configuring the component first in
the chain, you will be able to change the query before it is parsed, thus saving extra rule writing
involving re-arranging complex Query objects.

firstRulesComp

The firstRulesComp is a searchComponent which is meant to be placed within the
"first-components" capability of Solr. This allows applying a rule before other searchComponents
have been applied. An example of this might be to limit search results with parameters not entered
by the user (which may be conditional depending on the user, or other factors). Then other
searchComponents, such as faceting or highlighting, can be applied to the reduced result set.

<sear chConponent cl ass="com | uci d. rul es. Rul esConponent"” name="fir st Rul esConp">

<str name="request Handl er">/rul esMyr</str>

<str name="engi ne">first</str>

<!-- The handl e can be used to turn on or off explicit rules conponents in the

case when you have nultiple rules at different stages of the conponent

ordering-->

<str name="handl e">first</str>

</ sear chConponent >

© 2013 Find this documentation online at Page 171 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

lastRulesComp

The lastRulesComp is a searchComponent which is meant to be placed within the
"last-components" capability of Solr. This allows applying a rule after other searchComponents
have been applied.

<sear chConponent cl ass="com | ucid. rul es. Rul esConponent"” nane="1| ast Rul esConmp" >

</ sear chConponent >

<str nanme="request Handl er">/rul esMyr</str>
<str name="engi ne">l ast</str>
<str name="handl e" >l ast</str>

Rules Component Parameters

Input Parameters

There is a fair amount of control around exactly when rules will be fired.
Parameter Type Description Default Example
rules boolean Turn on or off the false & ul es=f al se

RulesComponent

rules.<handle boolean Turn on or off a specific true & ul es.first=fal se

name> Rul esConponent instance
using the handle name

rules.prepare boolean Turn off rule processing as true &r ul es. prepare=f al se
part of the prepare phase

rules.process boolean Turn off rule processing as true &r ul es. process=fal se
part of the process phase

rules.finishStage boolean Turn off rule processing as true &r ul es. fini shSt age=f al se

part of the finishStage phase

The system does not currently allow you to turn off individual phases of an instance (unless it is
the only instance that is configured). In other words, if two Rul esConponent -s are configured, it is

not possible to turn off the process phase of only one.

Facts

Collected for the RulesComponent

The facts collected for the Rul esConponent are:

The ResponseBui | der object

The Sol r Quer yRequest object

The schema for the index

The context information of the request (including the phase of processing, like “process” or
“prepare)

The Sol r Quer yResponse object

The query response NamedList

The request parameters map as a Modi fi abl eSol r Par ans instance (can be edited by rules)

© 2013 Find this documentation online at Page 172 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

® The generated query object, which is the same as the parsed query. In some cases, clauses
of the query will be added to the knowledge session to allow the rules engine to evaluate any
part of the query.

® The filter queries

® Response results (the DocLi st AndSet instance)

® The sort spec

® The grouping spec

® Facet counts

Some of the items on this list will only be available to the rules engine if the Rul esConponent is
placed after the associated sear chConponent for the fact. For example, in order to have facet
information available to the rules engine, the Rul esConponent has to be placed after that
component in the sear chConponent s chain for the r equest Handl er .

Back to Top

landingPage

The landingPage searchComponent is generally used to define a specific result for conditions that
match the rule. For example, you could redirect users to a specific page of the website in response
to a query, or you could highlight specific documents for a query in combination with other factors
such as time of day, or user attributes.

The Landi ngPageConponent does not turn off other components in the chain, but it is generally
possible for the rules engine to do so. For example, if you wanted to disable faceting, you would
add a rule such as f acet =f al se. For the query, you could add quer y=f al se. The exact methods
you need are dependent on the search components you have enabled. See also the section Search
Components API for one approach to finding enabled search components for the requestHandler in
use.

Placing the landing page in the output is also the responsibility of the rule writer. In essence, all
the LandingPageComponent does is guarantee that it is called as part of rules and fact preparation
and that the rules used can be configured separately from other rules.

<sear chConponent cl ass="com | uci d. rul es. Landi ngPageConponent " name="1 andi ngPage" >
<str name="request Handl er">/rul esMyr</str>
<str nane="engi ne" >l andi ng</str>
<I-- The handl e can be used to turn on or off explicit rules conponents in the
case when you have nultiple rules at different stages of the conponent
ordering
-->
<str name="handl e">| andi ng</str>
</ sear chConmponent >

Input Parameters

© 2013 Find this documentation online at Page 173 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Like the Rul esConponent , the Landi ngPageConponent has several parameters. One thing to note is
that the Landi ngPageConponent is only executed in the prepare phase of rules execution, so other
available parameters will likely not be required for your implementation.

Parameter Type Description Default Example

landing boolean Turn on or off the false &l andi ng=f al se
LandingPageComponent

landing.<handle boolean Turn on or off a specific true & andi ng. first=fal se
name> LandingPageComponent
instance using the handle name

landing.prepare boolean Turn off rule processing as part true &l andi ng. prepare
of the prepare phase =false
landing.process boolean Turn off rule processing as part true &l andi ng. process
of the process phase =false
landing.finishStage boolean Turn off rule processing as part true &l andi ng. fi ni shSt age
of the finishStage phase =false

Facts Collected for the LandingPageComponent
The facts collected for the Landi ngPageConponent are:

® The ResponseBui | der object

® The Sol r Quer yRequest object

® The schema for the index

® The context information of the request (including the phase of processing, like “process” or
“prepare)

® The Sol r Quer yResponse object

® The query response NamedList

® The request parameters map as a Modi fi abl eSol r Par ans instance (can be edited by rules)

® The generated query object, which is the same as the parsed query. In some cases, clauses
of the query will be added to the knowledge session to allow the rules engine to evaluate any
part of the query.

® The filter queries

® Response results (the DoclLi st AndSet instance)

® The sort spec

® The grouping spec

® Facet counts

Some of the items on this list will only be available to the rules engine if the {

Landi ngPageConponent is placed after the associated sear chConponent for the fact. For example,
in order to have facet information, the Landi ngPageConponent has to be placed after that
component in the sear chConponent s chain for the r equest Handl er .

© 2013 Find this documentation online at Page 174 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Back to Top

UpdateRequestProcessorChain

LucidWorks supplies a custom updateRequestProcessorChain called "lucid-update-chain". We have
added the Rul esUpdat ePr ocessor to the default chain. This allows you to make transformations to
documents while they are being indexed. Note that the example "/update-with-rules" and
"/update-extract-with-rules" requestHandlers both call this chain definition.

By default, the Rul esUpdat ePr ocessor is configured in the | uci d- updat e- chai n and can be
enabled or disabled by passing in the name of the handle, prefixed by rul es. . For instance, if the
Processor has a handle of docProc, then &r ul es. docPr oc=f al se would disable the processor and
processing would continue down the chain. Rule processing is on by default.

Like the query-related rules processing, altering documents relies on facts during the knowledge
session.

Here is the default configuration for the | uci d- updat e- chai n in the sol rconfi g. xm file for each
collection:

<updat eRequest Pr ocessor Chai n nane="I uci d- updat e- chai n" >
<processor class="com | ucid. update. Conmi t Wt hi nUpdat ePr ocessor Factory" />
<processor class="com | ucid. update. Fi el dvappi ngUpdat ePr ocessor Factory" />
<processor class="com | ucid.rul es. Rul esUpdat ePr ocessor Fact ory">
<str name="request Handl er">/rul esMgr</str>

<I-- we re-use the engine, but we could have an independent one-->
<str name="engi ne">docs</str>
<!-- Each one should have it's own handl e, as you can have multiple

in the chain -->
<str name="handl e">docProc</str>
</ processor >
<processor class="com | ucid.update. D stributedUpdat eProcessor Factory">
<I-- exanple configuration... "shards should be in the *same* order for
every server in a cluster. Only "self" should change to represent what
server
this is. <str nane="sel f">| ocal host: 8983/ sol r</str> <arr nane="shards">
<str>| ocal host: 8983/ sol r</str> <str>| ocal host: 7574/ solr</str> </arr> -->
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<int nanme="maxNunfToLog">10</i nt >
</ processor >
<processor class="solr.DistributedUpdat eProcessorFactory" />
<processor class="sol r. RunUpdat eProcessor Factory" />
</ updat eRequest Pr ocessor Chai n>

To disable rules processing, you can either remove or comment out the section that defines the
com | uci d. rul es. Rul esUpdat ePr ocessor Fact ory parameters.

Facts Collected for the RulesUpdateProcessor

© 2013 Find this documentation online at Page 175 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

The facts collected for the Rul esUpdat eProcessor are:

® The AddUpdat eCommrand as received in the

Updat eRequest Processor . processAdd(AddUpdat eConmand) method
® The Sol r | nput Docunent being added
® The schema for the index

Back to Top

Document Transformer

The document transformer allows applying rules that alter documents during query time. It is
invoked as part of Solr's response and can inject or modify fields before they are returned.

<transformer name="rul es" class="com | ucid.rules. Rul esDocTransf or ner Fact ory" >
<str nanme="request Handl er">/rul esMyr</str>
<str name="engi ne">docs</str>
</ transforner>

Note that alterations to documents made with this transformer are not saved to the documents
themselves. If you want to make changes that are saved with documents, use the
UpdateRequestProcessorChain instead.

. Altering a field will not cause an item to be resorted

If, for example, you are sorting by price and you change one of the document's prices, this

will not cause a re-sort. If you want to do that, we suggest you use Solr's Sort by Function
capability.

Facts Collected for the RulesDocTransformer

The facts collected for the Rul esDocTr ansf or ner are:

The Sol r I nput Docunent being transformed

The docl d of the document being transformed (the Lucene internal docl d, not Solr’s
uni queKey)

® The schema for the index

Back to Top

Rules with Index Replication

If you are using what is now considered "old-style" replication (i.e., you are not using SolrCloud),
you should add the rules files to the conf Fi | es list of configuration files that are copied to the
slave servers with each update.

© 2013 Find this documentation online at Page 176 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<l-- Optional -->
<l-- If using older v3 style naster/slave replication, instead of 4x Sol rd oud
add these files to your master confFiles |ist
<str
name="confFiles">. .., rules/defaul tFirst.drl,rul es/defaultLast.drl,rul es/defaultLanding.dr

<request Handl er nane="/replication" class="solr.ReplicationHandler" >
<l st name="master">
<str name="replicateAfter">conmmt</str>
<str name="replicateAfter">startup</str>
<str
nane="conf Fi | es">schema. xm , st opwords. txt,rul es/defaul tFirst.drl,rul es/defaultLast.drl,ru
</lst>
<l st name="sl ave">
<str nanme="master Ul ">http://your-naster-host nane: 8983/ sol r</str>
<str name="pol | I nterval ">00: 00: 60</str>
</|st>

</ request Handl er >

Back to Top

© 2013 Find this documentation online at Page 177 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

Writing Rules

The Business Rules module integrates Drools 5.5 with LucidWorks
Search. The Drools Rule Language Reference provides a much more
thorough overview, but the below can serve as a brief introduction.

In Drools, rules are defined with Java-like declarations. While the
software is meant to be easier for non-programmers to write rules, it
is still a heavily technical syntax and assumes some technical
proficiency.

To help you with writing rules, we have provided a

Dr ool sHel per. j ava class which consists of helper functions to make
the task easier. You can find this class in the

sol r- busi ness-rul es. jar file (the full name may include version
numbers, but you should only have one . j ar starting with

sol r - busi ness-rul es) found in

$LWS_HOVE/ app/ webapps/ | we-core/ | we-core/ VEB-I NF/ i b. It is
also included below.

In this section:

Rules Files
Rule
Declarations
® ruleand
Attributes
® when
Conditions
® then
Actions
DroolsHelper
Class
® |imitations
Related Topics

Rules Files

A rules file has a file extension of . drl . For the Business Rules module, we have placed the rules in
the conf directory of each Solr collection, in a sub-directory called rul es. The example
configurations assume this path; if they are located in another area of the filesystem, the examples
will need to be updated.

Before starting the rule declarations, the package is defined, as are any imports and globals. The
import statements are similar to import statements in Java, where you specify the fully qualified
paths and type names for objects that will be used with the rules. The global statements allow you
to make application objects available to the rules, such as if there is data or services the rules use.

Rule Declarations

At it's simplest, a rule declaration looks like this:

rule "nane"

<a set of attributes>

when

<a set of qualifying conditions, in Drools called "Left Hand Side">

t hen

<a set of actions to perform in Drools called "Right Hand Side">

end
© 2013 Find this documentation online at Page 178 of 256
LucidWorks http://docs.lucidworks.com/

http://www.jboss.org/drools/
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html

LucidWorks Search Documentation 10-Dec-2013
rule and Attributes

The first step is to state you are going to define a rule, simply with rul e and a name of the rule.

Next, you can define attributes for the rule, which influence the behavior of the rule. One of the
most important of these is no- | oop, which prevents an infinite loop if a rule modifies a fact that
causes the rule to activate again. There are several other attributes, however, which may be
important to your rule. See the Drools documentation on Rule Attributes for more information.

when Conditions

In Drools language, the conditions that must be met for a rule to fire are also called "Left Hand
Side".

Conditions work on one or more patterns, which include the object and constraints. For example, a
condition like $rb: ResponseBuil der($qStr : req.paranms.get("q") matches "(?i).*ipod.*"
)) will match queries sent to Solr containing the term "ipod". What's going on in this example?

First, we've declared that the variable $rb will match the object ResponseBui | der. The
ResponseBui | der is a Solr class that builds the query responses. The rest of the condition states
we want to look at what the value was for Solr's q parameter, and match queries that contain the
term "ipod".

There are multiple variations on how to declare the conditions. You can use Java expressions,
booleans, binding variables, maps, and many more. Refer to the Drools documentation on Left
Hand Side (when) syntax for all of the options and details on how to use them.

then Actions

In Drools language, the actions of a rule are also called "Right Hand Side". These are the changes
that should be made to the "facts" known to the rules engine. In search, this would be changes to
documents, the order of results, or other impacts on the results of the user's query. Keep in mind
that these actions should not be conditional (as in, "when this, maybe this"), but atomic, meaning
all of the stated actions should be performed (as in, "when this, t hen this"). If you find you need
further conditions, you may want to consider breaking your rule into smaller pieces to achieve this
goal.

As with when conditions, there are multiple variations on how to use t hen actions. Of particular
assistance here is the Dr ool sHel per. cl ass, found in the

sol r-busi ness-rul es-0. 1-sol r-4. 4. 0. j ar, where several methods have been pre-defined such
as addToResponse, which allows adding a key-value pair to the response, and nodRequest , which
modifies the request to Solr.

Refer to the Drools documentation on Right Hand Side (then) for more details.

Back to Top

DroolsHelper Class

© 2013 Find this documentation online at Page 179 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5150
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e7386

LucidWorks Search Documentation 10-Dec-2013
The Dr ool sHel per class contains a number of methods that can be invoked by rules writers to help
with common tasks and simplify the "then" part of the rule. For instance, there is a method that
can take in a query and a boost and set the boost value. There are also methods for helping merge
separate facet requests together (such as a field facet with a facet query). For instance, it has
methods that evaluate what phase the engine is in and returns true or false if it matches an
expected value. This can be useful if you want rules to fire only during certain phases of the

Sear chConponent process (i.e. prepare, process, etc.). To see this in action, notice the use of the
hasPhaseMat ch() method in the example rules section.

The Dr ool sHel per. cl ass file may not be in your distribution of LucidWorks. For that reason, we've
provided the text of the code below.

package com | ucid. rul es.drools;

public class Drool sHel per extends java.l ang. Obj ect

{
/* Fields */
private static transient org.slf4j.Logger |og;
public final static java.lang. String RULES PHASE = "rul esPhase";
public final static java.lang.String RULES HANDLE = "rul esHandl e";

/* Constructors */
public Drool sHel per() {

}

/* Methods */
public static bool ean
hasPhaseMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der, java.lang.String) ({

}

public static bool ean
hasPhaseMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der, java.lang. String,

java.lang. String) {
}

public static bool ean
hasHandl er NameMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String) {

}

public static void boostQery(org. apache. | ucene. search. Query, float) {

}

public static void addToResponse(org. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang.Object) {

}

public static void addToResponse(org. apache. sol r. comon. util . NanedLi st,

© 2013 Find this documentation online at Page 180 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
java.lang. String, java.lang. Object) {

}

public static void mergeFacets(org.apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, int, java.lang.String[]) {

}

public static void addFacet (org. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang. String, int, int) {

}

public static void nmodRequest (org. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang. String[]) {

}

public static void nmodRequest (org. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, int) {

}

public static void nmodRequest (org. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, boolean) {

}

public static boolean contains(java.lang. String, java.lang.String) {

}

public static java.util.Collection analyze(org. apache. sol r.schena. | ndexSchems,
java.lang. String, java.lang.String) throws java.io.lOException {

}

Limitations

Since the implementation is stateless, there is obviously no way to write rules that go across
requests without implementing your own RulesEngine.

Back to Top

Related Topics

There are several rules provided as examples, which may help you get started with the rules
language. See Example Rules for a walk-through of two examples, plus an overview of other
included examples.

© 2013 Find this documentation online at Page 181 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Example Rules and Recipes

Several example rules are provided in the $app/ exanpl es/ busi ness_r ul es directory of your
LucidWorks Search installation.

In this section we'll pick a couple of the rules and walk through them.

Sample Rule Files

The example rules are designed to be used with the example documents provided by Solr. Each file
includes extensive comments that explain what they are doing and how to use them with the
sample documents that are included with Solr. Note, however, that LucidWorks Search does not
include the same directory of sample documents, and the default LucidWorks Search schema. xni is
also different. These rules may need a bit of tweaking to work correctly with your own content and
customized schema.

In most cases, the recommendation is to add new rules to the files in the rul es directory found in
the $LW5S_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf directory, where col | ecti on is the name of
the collection where rules will be used.

While it's possible to define multiple rules files in sol rconfi g. xm (in the /rul eshvgr
requestHandler section, it is simpler to use a single rules file (when possible) for each rules engine.
This keeps all your rules in one place, making them easier to manage. You can modify the name of
the single file if you'd like, just be sure to update the / rul esMyr requestHandler appropriately.

The following rules are included as examples:

Filename Rule What It Does
Type
def aul t Docs-create-title.drl Indexing Adds title fields to incoming documents.
rule
def aul t Docs- manuf act ur er - check. drl Indexing Copies the document ID field to the nmanu
rule field on documents where manu is blank.
def aul t Docs- pri ce- check. drl Indexing Checks the price of an incoming
rule document and adds a label when it

matches a specific criteria. This approach
is designed for times when using text
(i.e., JSON, XML) codecs for indexing.

def aul t Docs- pri ce-check-1ong-formdrl Indexing An alternate approach to price checks.

rule This approach is designed for times when
using binary (i.e., Javabin) codecs for
indexing.
© 2013 Find this documentation online at Page 182 of 256

LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

def aul t Fi rst - appl e. drl Query Adds a defined manu field to all searches
rule for a specific term.
defaul t First-facets-partlof2.drl Query First of two steps to modify a facet;
rule injects a facet query and alters the facet
limit.
defaultFirst-fromreadne-file.drl Query Adds a term to the query.
rule
def aul t Fi r st - nodel - nunber . dr| Query Defines a method to find model humbers
rule in a query, and if found looks in the ID

field for a match.

def aul t Fi r st - show phases. dr| Demonstrates the phases of filtering.
def aul t Landi ng- bel ki n. drl Landing Returns a specific URL in response to a
rule query, which can be used by the

front-end to either redirect the user or
display it a specific way.

def aul t Last - f acet s- part 2of 2. dr | Query Part two of the earlier rule to modify a

rule facet; injects the facet to the response.

Detailed Examples

README Example

This example is included in the file defaul t First-fromreadne-file. drl. The goal of this rule is
to add query terms to a search when the user enters a specific string.

First, here is the text of the rule (note, this isn't the whole file, just the part that defines a rule; be
sure to look at the whole rule for important comments on how to run it).

rule "el ectronics”
no- | oop
when
$rb: ResponseBuil der ($gqStr : req.parans.get("q") == "text:el ectronics");
t hen
addToResponse($rb, "origQuery", $qStr);
addToResponse($rb, "nodQuery", "text:electronics text:apache");
nodRequest ($rb, "qg", "text:electronics text:apache");
end

Let's step through this example in detail.

Line 1 states we are declaring a rule and gives it the name "electronics".

© 2013 Find this documentation online at Page 183 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Line 2 says to only run the rule once to prevent an infinite loop. In this case, our when statement
looks for the query term "electronics" on the field "text"; after the modifications from the rule, the
query will still match the rule, which could make it fire again. Using no- | oop prevents the rule
firing over and over.

Line 3 starts the when conditions.

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the query (in the g
parameters of the request sent to Solr) matches "text:electronics". Note this line is also setting a
variable $qSt r, and assigning it the query and parameters. This variable will be used again later.

Line 5 starts the t hen actions.

Line 6 defines a key/value pair for the ResponseBuilder of "origQuery" and the query string
variable defined in line 4 ($qStr.

Line 7 defines another key/value pair for the ResponseBuilder of "modQuery", and the modified
query string.

Line 8 modifies the request to the ResponseBuilder with a key/value pair, modifying the user's
entry to include "text:apache" as well as what was initially entered.

Line 9 ends the rule.

To run this rule, once the rule has been added to rul es/ defaul t First.drl, you can send a
request to Solr that looks something like this:

http://1ocal host: 88888/ solr/collectionl/lucid?g=text:electronics& ules=true& ules.first=t

The request should be customized for your hostname and port, and this example also assumes you
have indexed Solr's sample documents in the exanpl e/ exanpl edocs directory.

Landing example

This example is included in the file def aul t Landi ng- bel ki n. drl . The goal of this rule is to force
Solr to return a document first in the list when a specific manufacturer ("Belkin") is entered by the
user.

First, here is the text of the rule (note, this isn't the whole file, just the part that defines a rule; be
sure to look at the whole rule for important comments on how to run it).

© 2013 Find this documentation online at Page 184 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

rul e "Landi ng Page"
no- | oop
when
$rb: ResponseBuilder($gStr : req.parans.get("q") == "manu: Bel kin");
t hen
addToResponse((NarmedLi st) $rb. rsp. get Val ues() . get ("responseHeader"), "I andi ngPage"
"http://ww. Bel kin.con');
end

This rule is quite simple, actually, but let's step through it line-by-line.
Line 1 states we are declaring a rule and gives it the name "Landing Page".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our when statement
looks for the query term "Belkin" on the field "manu"; after the modifications from the rule, the
query will still match the rule, which could make it fire again. Using no- | oop prevents the rule
firing over and over.

Line 3 starts the when conditions.

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the query (in the g
parameters of the request sent to Solr) matches "manu:Belkin". Note this line is also setting a
variable $qSt r, and assigning it the query and parameters. This variable will be used again later.

Line 5 starts the t hen actions.

Line 6 defines a key/value pair to the NamedList. In this case, inserting "landing page" and the URL
into the responseHeader.

Line 7 ends the rule.

Note that this rule by itself does not magically redirect the user to the Belkin website - it includes
the information to the client, which then must decide what to do: redirect the user, make it the
first result in the list, or some other transformation as needed.

To run this rule, once the rule has been added to rul es/ def aul t Landi ng. drl, you can send a
request to Solr that looks something like this:

http://1ocal host: 8888/ solr/collectionl/lucid?g=manu: Bel ki n&r ul es=t rue& andi ng=true

The request should be customized for your hostname and port, and this example also assumes you
have indexed Solr's sample documents in the exanpl e/ exanpl edocs directory.

© 2013 Find this documentation online at Page 185 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Disabling Business Rules
Business rules are enabled by default. Even if you are not using rules, there should be no impact

on performance, but if you want to simplify your configuration, you can remove or comment out
references to rules in the sol rconfi g. xm file for each collection.

It would be possible to remove these rules parameters from the default sol rconfi g. xm file and
create a template for future collection creation. To learn more about this, see the section on
Collection Templates.

) When removing business rules from the sol rconfi g. xn file, LucidWorks will need to be
either stopped while making the changes, or restarted once the changes are made.

These are the steps to disabling business rules:

Remove Rules from Update Chain

Remove Rules from the /lucid Request Handler
Remove the Rules Request Handler

Remove Rules Search Components

Remove the RulesDocTransformer

Remove Rules From the Replication Handler

Remove Rules from Update Chain

Comment out the section that defines the Rules Update Processor (<pr ocessor
cl ass="com | uci d. rul es. Rul esUpdat ePr ocessor Fact or y" > until the closing </ processor > tag).

In most cases, this is sufficient to disable business rules. However, the next sections will assist you
in fully removing business rules from your implementation.

© 2013 Find this documentation online at Page 186 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<updat eRequest Pr ocessor Chai n nane="I uci d- updat e- chai n" >
<processor class="com |l ucid.update. Conm t Wt hi nUpdat ePr ocessor Factory"/>
<processor class="com | ucid.rul es.Rul esUpdat eProcessor Fact ory" >
<str name="request Handl er">/rul esMyr</str>

<l-- we re-use the engine, but we could have an independent one-->
<str nane="engi ne" >docs</str>
<l-- Each one should have it's own handle, as you can have nultiple in

the chain -->
<str name="handl e">docProc</str>
</ processor >
<processor class="com | ucid.update. D stributedUpdat eProcessor Factory">
<I-- exanple configuration... "shards should be in the *same* order for
every server in a cluster. Only "self" should change to represent what server
this is. This is only used for Index Replication.
<str name="sel f">l ocal host: 8983/ sol r</str> <arr name="shards">
<str>| ocal host: 8983/ sol r</str> <str>| ocal host: 7574/ sol r</str> </arr> -->
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<i nt name="nmaxNunifoLog" >10</i nt >
</ processor >
<processor class="solr.DistributedUpdat eProcessorFactory"/>
<processor class="com |l ucid.update. Fi el dMappi ngUpdat ePr ocessor Factory"/ >
<processor class="solr.RunUpdat eProcessor Factory"/>
</ updat eRequest Pr ocessor Chai n>

The specific section to remove is:

<processor class="com | ucid.rul es. Rul esUpdat eProcessor Fact ory" >
<str name="request Handl er">/rul esMyr</str>

<!-- we re-use the engine, but we could have an independent one-->
<str name="engi ne">docs</str>
<!-- Each one should have it's own handle, as you can have multiple in the

chain -->
<str nane="handl e">docProc</str>
</ processor >

Back to Top

Remove Rules from the /lucid Request Handler

Find the section as below that defines the /| uci d request handler, and remove the lines for
| andi ngPage and first Rul esConp and | ast Rul esConp.

© 2013 Find this documentation online at Page 187 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

<request Handl er cl ass="sol r. St andar dRequest Handl er" nanme="/|uci d">
<arr nanme="conponents">
<str>filterbyrol e</str>
<str>| andi ngPage</str>
<str>firstRul esConp</str>
<str>query</str>
<str>mt</str>
<str>stats</str>
<str>f eedback</str>
<I-- Note: highlight needs to be after feedback -->
<str>hi ghlight</str>
<I-- Note: facet also needs to be after feedback -->
<str>facet</str>
<str>spel | check</str>
<str>| ast Rul esConmp</str>
<str>debug</str>
</arr>

</ request Handl er >

Back to Top

Remove the Rules Request Handler

The rules request handler defines the Rul eEngi ne instances and the rules files. The entire section

copied below can be removed or commented out.

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 188 of 256

LucidWorks Search Documentation 10-Dec-2013

<request Handl er cl ass="com | uci d. rul es. Rul esEngi neManager Handl er" name="/rul esMyr" >
<l--

Engi nes can be shared, but they don't have to be. A SearchConponent or other
consuner can
speci fy the engi ne they want by nane.
-->
<l st name="engi nes">
<l st name="engi ne">
<str nanme="nanme">first</str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rules/defaultFirst.drl</str>
</lst>
<I-- The fact collector defines what facts get injected into the rul es engines
wor ki ng nenory -->
<l--<| st nanme="factCol | ector">
<str name="cl ass">com | uci d.rul es.drool s. Fact Col | ector</str>
</lst>->
</lst>

<l st name="engi ne" >
<str name="nane">| andi ng</str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaul tLanding.drl </str>

</lst>
</Ist>
<l-- Engine is using rules that are designed to be called after all other

conponents -->
<l st nanme="engi ne">
<str name="nane">| ast </str>
<str
name="cl ass">com | uci d. rul es. dr ool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaultlast.drl</str>
</lst>
</lst>
<l st nanme="engi ne" >
<str name="nane">docs</str>
<str
name="cl ass">com | uci d. rul es. dr ool s. st at el ess. St at el essDr ool sRul esEngi ne</str>
<l st name="rul es">
<str name="file">rul es/defaul t Docs.drl </str>
</lst>
</lst>
</lst>
</ request Handl er >

© 2013 Find this documentation online at Page 189 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Back to Top

Remove Rules Search Components

The search components allow the rules to make changes to queries, based on the rules defined.
The entire sections shown below can be removed or commented out.

<sear chConponent cl ass="com | uci d. rul es. Landi ngPageConponent " name="1 andi ngPage" >
<str name="request Handl er">/rul esMgyr</str>
<str name="engi ne" >l andi ng</str>
<!'-- The handl e can be used to turn on or off explicit rules conponents in the
case when you have nultiple rules at different stages of the conponent ordering
-->
<str name="handl e" >l andi ng</str>
</ sear chConponent >
<sear chConponent cl ass="com | uci d. rul es. Rul esConponent"” name="fir st Rul esConp" >
<str name="request Handl er">/rul esMgyr</str>
<str name="engi ne">first</str>
<!'-- The handl e can be used to turn on or off explicit rules conponents in the
case when you have nultiple rules at different stages of the conponent ordering-->
<str name="handl e">first</str>
</ sear chConmponent >
<sear chConponent cl ass="com | ucid. rul es. Rul esConponent"” nane="1| ast Rul esConmp" >
<str nanme="request Handl er">/rul esMyr</str>
<str name="engi ne">l ast</str>
<str name="handl e" >l ast</str>
</ sear chConponent >

Back to Top

Remove the RulesDocTransformer

The Rul esDocTr ansf or mer allows business rules to inject or modify fields in a document before
returning them to a client.

<transfornmer class="com | ucid.rul es. Rul esDocTr ansf or mer Fact ory" nane="rul es">
<str name="request Handl er">/rul esMgr</str>
<str name="engi ne">docs</str>
</transforner>

Back to Top

Remove Rules From the Replication Handler

If using Index Replication, remove the rules-related files from the list of conf files to replicate
between servers. In this section:

© 2013 Find this documentation online at Page 190 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<request Handl er class="solr.ReplicationHandl er" name="/replication">
<l st name="master">
<str name="replicateAfter">commt</str>
<str
name="conf Fi | es">adni n-extra. ht m , adm n- extra. menu-bottom htm , adnm n-extra. menu-top. htnm,
</lst>
</ request Handl er >

1%

Specifically, remove rul es/defaul t First.drl, rul es/ defaul t Last.drl,
rul es/ defaul t Landi ng. drl, and rul es/ def aul t Docs. drl .

Back to Top

© 2013 Find this documentation online at Page 191 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Security and User Management

Generally, enterprise-level application designers must take into account four main security
considerations for any search application:

® Network access to the various components of the service
® Authentication of users

® Authorization to use various parts of the user interface

® Authorization to view certain documents

LucidWorks Search implements security for each of these as follows:

Network access: Because the components of LucidWorks (LWE-Core, LWE-UI and
LWE-Connectors) run on different ports, an administrator can easily secure individual components
at the network level by restricting access to the port in question. For example, if only the Admin
and Search UI services need to be accessible outside the production network, an administrator can
leave those ports open while blocking LWE-Core. The chapter Securing LucidWorks describes this
process in more detail. Note that if you are using the LucidWorks Search document authorization
features this step is particularly important, as direct access to the underlying Solr application can
circumvent these measures.

In addition, you may want to ensure that the components use SSL for communication or that users
access the Admin UI via HTTPS. The chapter Enabling SSL describes how to do that in more detail.

User authentication: LucidWorks supports LDAP binding for user authentication, so an
administrator can create roles or groups on an external LDAP server, then use them to control
access to UI functionality or sets of documents. The chapter LDAP Integration describes how to
configure LDAP for LucidWorks.

UI authorization: LucidWorks controls access to the Admin UI and the Search UI. The chapter
LDAP Integration discusses how to configure these access levels in order to give different LDAP
users and groups authorization to use these different functions.

Document authorization: LucidWorks allows the administrator to configure document filters for
different roles. These document filters then limit what documents appear in search results for users
in those roles. For example, the administrator can create a filter that enables users in the finance
role to see only documents that satisfy a query of department:finance. You can create these filters
with the Search Filters screen of the Admin UI. LucidWorks also enables the creation of
document-based filtering, in which only the owner (or owners) of a document are able to see it.
The section Restricting Access to Content describes how to set up your documents to support this
functionality.

© 2013 Find this documentation online at Page 192 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

Securing LucidWorks

There are several approaches to securing access to LucidWorks Search:
by requiring authentication to access the Uls and APIs, by restricting
users to specific roles within the system, and finally by restricting
access to certain documents in results lists.

Restricting Access

LucidWorks Search consists of three components: LWE-Core, LWE-UI,
and LWE-Connectors.

Because it provides access to the REST API, direct access to the
LWE-Core component provides access to all of Solr's capabilities,
including adding and removing documents, retrieving stored field
values for all documents, and additional LucidWorks Search-enhanced
capabilities such as job scheduling and system status. The LWE-Core
component should only be directly HTTP accessible to other
components that need access to Solr or REST API interfaces. If you are
using a single server installation and don't want to expose Solr or REST
API interfaces via the network then you might want to restrict access to
LWE-Core to localhost only. You can do that by adding the socket
connector's host attribute for the Jetty container.

Topics covered in
this section:

® Restricting
Access
® Enabling
Basic
Auth for
Uls and
APIs
® Restricting
Access to
LucidWorks
Search User
Interfaces
® Hiding
Documents by
Restricting
Access
® Related Topics

You can also restrict direct access to LucidWorks components by IP address, or by fronting it with
an authenticating firewall. For a production implementation, consider restricting access to the
component HTTP ports to only those required by the application, just as one would do with a
typical relational database. If you are using the built-in search filters or document-level
authentication, you must prevent access to LucidWorks by any process other than your application

in order to prevent circumvention of these features.

@ Implementing SSL

more details.

Each of the components can be implemented with SSL. See the chapter Enabling SSL for

Enabling Basic Auth for UIs and APIs

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 193 of 256

http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options
http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options

LucidWorks Search Documentation 10-Dec-2013
It is additionally possible to require basic authentication before accessing the LucidWorks Search
UIs (Admin and Search Uls) and REST APIs. This entails creating a real m properti es file that
contains usernames and passwords, then configuring the j etty. xm files to use real m properties
, and finally modifying the web. xm file for each interface to be restricted. This does not replace the
built-in user authentication for LucidWorks Search (i.e., the login to access the Uls), but adds an
additional layer of authentication and authorization.

Because LucidWorks Search components run in separate JVMs, they run in separate Jetty
containers. However, you should secure both the LWE-UI and LWE-Core components so they can
successfully communicate with one another. The LWE-Connectors JVM does not need
authentication, since it generally only needs to communicate with the LWE-Core component
internally.

Modify jetty.xml

Thejetty.xm file contains a sample configuration that is commented out. This sample can be
used by removing the comment markers and changing the nane parameter as needed. The default
uses "Test Auth" for the name, but in the below you'll see we have changed that to "Auth". The
name can be whatever you'd like it to be, but it must match the name you use in the web. xm file
configuration (below).

<Cal | name="addBean">
<Ar g>
<New cl ass="org. eclipse.jetty.security. HashLogi nService">
<Set name="name">Aut h</ Set >
<Set nane="confi g"><SystenProperty nane="| uci dwor ksConf Hone"

default="."/>/jetty/lwe-core/etc/real mproperties</Set>
<Set name="refreshl nterval ">0</ Set >
</ New>
</ Arg>
</Cal |l >

This configuration also defines the location of the real m properti es file, which you will create in
the next step. Note that the above example defines a path of

/jetty/lwe-core/etc/etc/real mproperties. If the user accounts will be the same for both the
Uls and the APIs, it is fine to refer to the same file for both components. If, however, the users
and/or roles will be different, you need to change the path to the appropriate real ns. properties
file for each component.

These changes need to be done two times: once for the jetty. xm file for the LWE-UI component,
and again for the jetty. xm for the LWE-Core component. These files are found at the following
paths:

® $LWS HOVE/ conf/jetty/lwe-core/etc/jetty. xn
® $LWS HOVE/ conf/jetty/lwe-ui/etc/jetty.xnl

Create a realm.properties File

© 2013 Find this documentation online at Page 194 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
The real m properti es file contains usernames, passwords and roles of users who will be allowed

to use the Uls and APIs. The passwords can be stored in plain text, encrypted with an MD5 hash,
or obfuscated. In this example, we have just used a plain text password:

adm n: password, user

If the password is not defined in plain text, you would preface it with "CRYPT:" if using an MD5
hash or with "OBF:" if obfuscated.

This allows the "admin" user to access the UI and APIs. The role "user" is one that we'll define in
the web. xnl file (described below). If you have multiple roles, they can be listed for each user
separated by commas.

Modify web.xml

The web. xm file and we'll use it to define the roles, the URLs roles have access to, and the realm
name. Below is an example:

<l-- Security Constraints -->
<security-rol e>
<rol e- name>user </ r ol e- nane>
</security-rol e>
<l ogi n-confi g>
<r eal m nanme>Aut h</r eal m nane>
</l ogi n-confi g>
<security-constraint>
<web-resource-col |l ecti on>
<web- resour ce- nane>al | resources</web-resource- nane>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<rol e- nane>user </ rol e- nane>
</ aut h-constrai nt>
</ security-constraint>

In this example, we have defined the security-rol e as "user" and constrained access to all web
resources (via the aut h-constrai nt) to the role "user". This means users must be defined with the
role "user" in r eal ns. properti es. Additional roles could be defined if needed, but LucidWorks
Search already supports "admin" and "search" users (see below), so it may not be necessary to
duplicate that functionality.

However, there may be room for roles that restrict access to the APIs. The url - pattern could also
be modified to support several roles, restricting certain roles to only certain parts of Uls or APIs.

Note that we have defined the r eal m nane as "Auth", which is the same name we used in the
jetty.xm configuration. Those hames must match, or Jetty will not be able to locate the
real ns. properti es file.

© 2013 Find this documentation online at Page 195 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
These changes need to be done two times: once for the web. xm file for the LWE-UI component,
and again for the web. xnl for the LWE-Core component. These files are found at the following
paths:

® $LW5 HOVE/ app/ webapps/ | we- cor e/ | we- cor e/ VEEB- | NF/ web. xmi
® $LWS HOVE/ app/ webapps/ | we- ui / VEB- | NF/ web. xnl

Note that since nearly all of the REST APIs and the Solr Admin UI are powered by the LWE-Core
component, specific restrictions for those APIs and Solr Admin UI must be defined in the LWE-Core
web. xm file. The LWE-UI web. xnl file can be used to restrict the Admin UI, the Search UI, as well
as the Alerts and Users APIs.

Once these changes are completed, LucidWorks Search must be restarted. Additional information
about using realms and basic auth with Jetty is available from the Jetty 8 documentation.

Restricting Access to LucidWorks Search User Interfaces

LucidWorks has two built-in authorizations to control user access:

® ADMIN allows users to access any part of the LucidWorks UI.
® SEARCH limits users to only the built-in end user search interface.

You can restrict a user's access to specific parts of the application by mapping manually created or
LDAP-supplied usernames and/or LDAP-supplied groups to the appropriate authorization. There are
two ways to do this: via the Users API on via the User screen in the Admin UI.

Hiding Documents by Restricting Access

The privileges of the LucidWorks process and the rights that process has to access documents for
indexing are crucial to its proper operation. Generally, you want LucidWorks Search to be able to
access all documents within a particular folder or from a particular web site. The built-in
LucidWorks Search crawlers will index any specified document, as long as the LucidWorks process
has permissions to do so. After a document has been indexed, all stored fields are accessible
through the Solr interface.

That said, documents can be excluded from indexing by leveraging operating system, file, and
web-level security capabilities; if the process doesn't have access, it will not index the content.

Some data sources, such as those configured to crawl content in a database or in SMB, SharePoint,
S3 or Hadoop over S3 servers, credentials need to be supplied for the crawler to access the
system. Those credentials determine what documents the crawler has access to. Other data
sources may also require credentials to access content.

Related Topics

® Restricting Access to Content
® Enabling SSL
® | DAP Integration

© 2013 Find this documentation online at Page 196 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.eclipse.org/Jetty/Feature/Realms
http://docs.lucidworks.com/display/help/User%20Management
http://docs.lucidworks.com/display/help/Create%20a%20New%20Database%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Windows%20Share%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20SharePoint%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Amazon%20S3%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Hadoop%20File%20System%20over%20S3%20File%20Data%20Source

LucidWorks Search Documentation

10-Dec-2013

Enabling SSL

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Secure Socket Layer (SSL) encryption can be enabled in

LucidWorks Search with a few modifications to Jetty configuration files.

Steps to Enable SSL

Certificate Management

Client Certificates for LWE-Core and Connectors
Configuring Mutually Authenticated SSL
Debugging SSL Configuration

Related Topics

Steps to Enable SSL

In the steps below, note that LucidWorks Search components run under Jetty, but have separate
configuration files. Each component needs to be enabled separately, although the process for each
component is the same. For more information about configuring Jetty to use SSL, see also the Jetty

documentation on Configuring SSL.

Step 1: Modify master.conf

If you have already installed LucidWorks Search, you can set these values by modifying the
mast er. conf file found in $LWS_HOVE/ conf/ . You should change the addr ess for each component
to include htt ps. If you'd like to change the port for each component, that is done in mast er. conf

also.

COVMPONENT LWE-Core - LWE-Solr + LWE REST API.

| wecor e. enabl ed=true
| wecor e. address=https://127.0.0. 1: 8888

COVPONENT LWE- Connect ors.

| weconnect or s. enabl ed=t rue
| weconnect ors. address=https://127.0.0. 1: 8765

COVPONENT LWE-U - Admin and Search U as well as Alerts

| weui . enabl ed=t rue
| weui . addr ess=https://127.0.0.1: 8989

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 197 of 256

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

LucidWorks Search Documentation 10-Dec-2013
Alternately, each component could be set to htt ps:// and the desired port during the installation
process.

Step 2: Modify jetty.xml for LWE-Core Component

Thejetty.xm file found in $SLWS_HOVE/ conf/j etty/ | we-core/ et c needs to be modified to
comment out the non-SSL connector. In the file, find the following section and add comment
markers at the beginning and at the end (<! -- and - - >, respectively):

<Cal | nane="addConnector">
<Ar g>
<New cl ass="org. eclipse.jetty.server. bi o. Socket Connect or" >
<Set nanme="port"><SystenProperty nane="jetty.port" default="8888"/></Set>
<Set name="maxl| dl eTi ne" >50000</ Set >
<Set name="| owResour ceMax! dl eTi me" >1500</ Set >

</ New>
</ Arg>
</Call>

Step 3: Modify jetty-ssl.xml for LWE-Core Component

In the directory $LW5_HOVE/ conf/j etty/ | we-core/ etc the file jetty-ssl.xm should be edited to
activate the sample configuration. The configuration is currently commented out, but the comment
tags should be removed and the keySt or e, keySt or ePasswor d, keyManager Passwor d, t rust St or e
and t rust St or ePasswor d properties should be configured.

© 2013 Find this documentation online at Page 198 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<Configure id="Server" class="org.eclipse.jetty.server. Server">

<Cal | nanme="addConnect or">
<Ar g>
<New cl ass="org. eclipse.jetty.server.ssl. Ssl Sel ect Channel Connect or" >
<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl Cont ext Factory">
<Set nane="keySt ore"><Syst enProperty
name="1 uci dwor ksConf Home"/ >/ keyst or e</ Set >
<Set nane="keySt or ePasswor d" >secr et </ Set >
<Set nane="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><Syst enProperty
name="| uci dwor ksConf Hone"/ >/ t r ust st or e</ Set >
<Set nanme="trust St or ePasswor d" >secr et 2</ Set >
<Set nane="needd i ent Aut h">f al se</ Set >
</ New>

</ Arg>

<Set nane="port"><SystenProperty name="jetty.port" default="8888"/></Set>

<Set name="rmaxl| dl eTi ne" >30000</ Set >

</ New>
</ Arg>
</ Call >

</ Confi gur e>

The keySt ore and t rust St or e files must be located in the locations specified so they can be found

on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the jetty-ssl.xm file.

Step 4: Modify jetty.xml for LWE-UI Component

Thejetty.xm file found in $LWS_HOVE/ conf/j etty/| we- ui / et c needs to be modified to comment
out the non-SSL connector. In the file, find the following section and add comment markers at the
beginning and at the end (<! -- and - - >, respectively) so it looks like this:

<Cal | nanme="addConnector">
<Ar g>
<New cl ass="org. eclipse.jetty.server. bi o. Socket Connect or" >
<Set name="port"><SystenProperty nane="jetty.port" default="8989"/></Set >
<Set name="maxl| dl eTi ne" >50000</ Set >
<Set name="| owResour ceMaxl| dl eTi ne" >1500</ Set >

</ New>
</ Ar g>
</Call>

Step 5: Modify jetty-ssl.xml for LWE-UI Component

© 2013 Find this documentation online at Page 199 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
In the directory $LW5s_HOVE/ conf/jetty/ | we-ui/etc the filejetty-ssl.xm should be edited to
activate the sample configuration. The configuration is currently commented out, but the comment
tags should be removed and the keySt or e, keySt or ePasswor d, keyManager Passwor d, t rust St or e
and trust St or ePasswor d parameters should be configured.

<Configure id="Server" class="org.eclipse.jetty.server. Server">

<Cal | name="addConnect or">
<Ar g>
<New cl ass="org. eclipse.jetty.server.ssl.Ssl Sel ect Channel Connector">
<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl ContextFactory">
<Set nane="keySt ore"><Syst enProperty
name="1| uci dwor ksConf Home"/ >/ keyst or e</ Set >
<Set name="keySt or ePasswor d" >secr et </ Set >
<Set name="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><Syst enProperty
name="| uci dwor ksConf Hone"/ >/ t r ust st or e</ Set >
<Set name="trust St orePasswor d" >secr et 2</ Set >
<Set name="needd i ent Aut h" >f al se</ Set >
</ New>

</ Ar g>

<Set nane="port"><SystenProperty name="jetty.port" default="8989"/></Set>

<Set name="nmaxl| dl eTi ne" >30000</ Set >

</ New>
</ Ar g>
</Call>

</ Confi gur e>

The keySt ore and t rust St or e files must be located in the locations specified so they can be found
on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the jetty-ssl.xnl file.

Step 6: Modify jetty.xml for the LWE-Connectors Component

Thejetty.xm file found in $LWS_HOVE/ conf/j etty/ connect or s/ et c needs to be modified to
comment out the non-SSL connector and activate the SSL-connector. Unlike the LWE-Core and
LWE-UI components, the Connectors component only requires modifying a single file.

In the file, find the following section and add comment markers at the beginning and at the end (
<! -- and - - >, respectively) so it looks like this:

© 2013 Find this documentation online at Page 200 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<Cal | nanme="addConnector">
<Ar g>
<New cl ass="org. eclipse.jetty.server. bi o. Socket Connect or" >
<Set name="port"><SystenProperty nane="jetty.port" default="8765"/></ Set >
<Set name="maxl| dl eTi me" >50000</ Set >
<Set name="| owResour ceMaxl| dl eTi ne" >1500</ Set >

</ New>
</ Arg>
</Call>

In the same file, uncomment the section "To add a HTTPS SSL Listener" to activate the sample
configuration. After the comment tags are removed, configure the keySt or e, keySt or ePassword,
keyManager Passwor d, t rust St or e and t r ust St or ePasswor d parameters.

<Cal | nanme="addConnect or">
<Ar g>
<New cl ass="org. eclipse.jetty.server. ssl. Ssl Sel ect Channel Connect or" >
<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl Cont ext Factory">
<Set nane="keySt ore"><Syst enProperty
name="1| uci dwor ksConf Home"/ >/ keyst or e</ Set >
<Set nane="keySt or ePasswor d" >secr et </ Set >
<Set nane="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><Syst enProperty
name="| uci dwor ksConf Hone"/ >/ t r ust st or e</ Set >
<Set nanme="trust St or ePasswor d" >secr et 2</ Set >
<Set nane="needd i ent Aut h">f al se</ Set >
</ New>
</ Ar g>
<Set nane="port"><SystenProperty name="jetty.port" default="8765"/></Set>
<Set nane="rmaxl| dl eTi ne" >30000</ Set >
</ New>
</ Ar g>
</Call >

The keySt ore and trust St or e files must be located in the locations specified so they can be found

on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the file.

Step 7: Restart LucidWorks

After verifying that the keySt or e and trust St or e files are in the locations specified in each file,
LucidWorks Search must be restarted for the changes to take effect.

Certificate Management

© 2013 Find this documentation online at Page 201 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

LucidWorks uses standard java jks format in keystores and truststores. Those stores can be
managed using the standard Java keytool.

Currently all certificates are managed outside of LucidWorks. There are no certificate management
tools or admin displays for configuring SSL certificate related settings. All configuration tasks need
to be made manually after installing LucidWorks and potentially repeated on all nodes where
LucidWorks is running.

Client Certificates for LWE-Core and Connectors

It is possible to configure the LWE-Core and Connectors components to use certificates while
communicating.

Prior to LucidWorks v2.5.2, the SSL Configuration API was used to define client certificates. This is
now configured in nmast er. conf as Java SSL system properties. To use these properties, open
mast er. conf (found in $LWS_HOVE/ conf and edit these properties:

- Dj avax. net . ssl . keySt or e=conf/ keystore. client

- Dj avax. net . ssl . keySt or ePasswor d=secr et 2

-Dj avax. net.ssl.trust Store=conf/truststore.client
-Dj avax. net. ssl . trust St or ePasswor d=secret 3

The paths to the keySt ore and trust St or e should be entered as complete paths, or relative to
$LWS_HOVE/ app/ bi n.

. Itis not possible to configure the LWE-UI component in this way

Configuring Mutually Authenticated SSL

LucidWorks supports securing communications to the core APIs with Mutual SSL authentication.
This means the REST API and Solr API can be protected so that only clients that you trust can
access these APIs. The system can also use mutually authenticated SSL internally to communicate
to each Solr node when using distributed search.

The LucidWorks portions of SSL functionality can be configured by using the SSL Configuration API.

When configuring LucidWorks to use mutually authenticated SSL the container must also be
configured to require certificates for authentication. In Jetty this is done by using <set
nanme="needC i ent Aut h" >t r ue</ Set > in the related SSL Connector section of the Jetty
configuration files (see above).

= Mutual authentication is not supported for the LWE-UI component, and thus the Admin UI.

Debugging SSL Configuration

© 2013 Find this documentation online at Page 202 of 256
LucidWorks http://docs.lucidworks.com/

http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 10-Dec-2013
Reviewing logging events from the LucidWorks log files (either core. YYYY_MM DD. | og or

ui . YYYY_WM DD. | og) may provide some hints about what is going on if SSL is not working as
expected.

Common SSL Problems

Symptom: j avax. net . ssl . SSLHandshakeException: null cert chain

Cause: Client is not sending client certificate. Reconfigure client so that it sends a client certificate
with the request.

Symptom: j avax. net. ssl . SSLException: Unrecogni zed SSL nessage, pl ai ntext
connecti on?

Cause: Client is connecting to SSL endpoint without using SSL.

) The cURL command line tool can be used to verify the SSL configuration. For example,:

curl --cacert <ca.crt> --key <host.key> --cert <client.crt>
https://| ocal host: 8443/ dashboard

The link in this example is to the main LucidWorks Admin UI dashboard. Since this requires
authentication, you should see the HTML indicating you will be redirected to the login page.
If that's what you see, then SSL is properly set up.

Related Topics

® Jetty doc on configuring SSL
® Java keytool

© 2013 Find this documentation online at Page 203 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 10-Dec-2013

Restricting Access to Content

LucidWorks Search provides three ways to restrict access to content through based on user
identity:

® Search Filters
® Access Control Lists
® Document-based Authorization

Information for LucidWorks Search in the Cloud Users
Some sections following refer to editing the sol rconfi g. xm file, which is not possible for
LucidWorks Search customers hosted in AWS or Azure.

Search Filters

Search filters provide the ability to limit the visibility of content only to specific users or user
groups. For example, users in the finance role might be limited only to documents that satisfy the
query depart nent : fi nance. The LucidWorks Search Admin UI allows the creation of search filters
that can be appended to all user queries. Usernames (manually created or supplied by the LDAP
system) and/or groups (supplied by the LDAP system) can be mapped to search filters with the
Search Filters page. You can also configure manual or LDAP search filters using the Roles API.

By default, LucidWorks comes configured with a default filter called "DEFAULT" that allows users to
see all results for any query. This filter is defined in sol rconfi g. xm , and could be modified if
needed:

<sear chConponent cl ass="com | uci d. handl er. Rol eBasedFi | t er Conponent "
nane="filterbyrol e">

<I-- Solr filter query that will be applied for users w thout group/role info -->

<str name="default.filter">-*:*</str>

<l-- Solr filter queries for roles, one role may have multiple filter queries
nane is the role, value is the part of the filterquery that is to be formed. -->

<l st name="filters">
<str name="DEFAULT">*:*</str>
</lst>
</ sear chConponent >

Note that this has defined that the default filter is - *: *. What this means is that someone without
the DEFAULT role should see no results. However, since queries in LucidWorks Search are handled
by the /I uci d request handler, we have configured that handler to process searches for users
without a role as though they had the DEFAULT role. This is in a later section of sol rconfig. xm ,
where defaults are defined for the /| uci d request handler (the below is truncated):

© 2013 Find this documentation online at Page 204 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 10-Dec-2013

<l st nane="defaults">

<str nanme="rol e">DEFAULT</ str >

</|st>

Access Control Lists

LucidWorks also supports access control lists (ACL) on Windows Share (SMB) and SharePoint data
sources. ACL uses Windows Active Directory to control document access on a per-user basis. ACL
filtering is configured for each data source, allowing you to have different authorizations depending
on the definitions in each repository. To use this functionality, set up a Windows Share or
SharePoint data source and configure the requisite fields.

If you do not need to configure ACL filtering on a per-data source basis, you can use the Filtering
API to configure a Search Handler to perform the same functionality. Note that this is only
supported for a Windows Share data source type. The Filtering API will configure the search
handler in sol rconfi g. xm like this:

<sear chConponent cl ass="com | uci d. security. Acl BasedFi | ter Conponent"” name="adfiltering">
<str name="provider.class">com | ucid.security.ad. ADACLTagPr ovi der</str>
<str name="filterer.class">comlucid.security. WndowsACLQueryFilterer</str>
<l st name="provider.config">
<str name="j ava. nam ng. provider.url ">l dap://127.0.0.1</str>
<str nanme="j ava. nam ng. security. principal ">adm n</str>
<str name="j ava. nam ng. security.credential s">adm n</str>
</lst>
<l st name="filterer.config">
<str name="shoul d_cl ause">*:* -data_source_type: snb</str>
</[lst>
</ sear chConponent >

In certain circumstances, you may need to add a userFi |l ter or groupFi | t er parameter to the
search component to properly implement your ACL filter.

Once created, the search component must be added to the /| uci d request handler with the Search
Components API.

Document-based Authorization

© 2013 Find this documentation online at Page 205 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
An application can enforce document visibility controls in front of LucidWorks simply by adding
fields to each document that represent usernames, group membership, or other types of flags that
help match a user with the content they are allowed to see in results. Generally these types of
fields would be of type "string", possibly multi-valued. This technique is best suited to content
extracted from a database or custom data source. The file and web crawling capabilities in
LucidWorks do not index any security related attributes (though the file path itself may be useful
for application-level restrictions).

For example, documents could be indexed with an "owner" field. Here's a Solr XML file for this
example:

<add>
<doc>
<field nane="id">1</fi el d>
<field nane="text">Bob's Docunent - For his eyes only\!</field>
<field name="owner">bob</fiel d>
</ doc>
<doc>
<field nane="id">2</fiel d>
<field name="text">Jill"'s Docunment - Only she should find this</field>
<field name="owner">jill</field>
</ doc>
</ add>

Related Topics

® Windows Shares Data Sources
® SharePoint Data Sources
® Filtering Results

© 2013 Find this documentation online at Page 206 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

LDAP Integration

This functionality is
not available with
LucidWorks Search
on AWS or Azure

LucidWorks Search supports integrating user authentication with
an existing LDAP system.

Two LDAP features are currently supported:

1. Authentication and Authorization of users (prerequisite for any other LDAP functionality)
2. User-to-group mapping (optional)

LDAP and built-in (API-based) user authentication are mutually exclusive. If LDAP is enabled,
built-in authentication is not, and the reverse.

For standard LDAP integration, the LDAP administrative user only needs permissions to query the
LDAP server for users and groups. We recommend that you create an LDAP admin user with only
the necessary minimal user and group querying permissions for use with LucidWorks.

LucidWorks also allows you to authenticate users without LDAP administrative credentials. This
method is called "queryless" authentication, because LucidWorks does not query the LDAP directory
for user information. Rather, LucidWorks uses the attribute value plus the user's login and the base
suffix as the user's DN. This method only works if the exact location of your LDAP user data is
known and is the same for all relevant users. Another limitation of queryless authentication is that
LucidWorks cannot find members of a group, only individual users.

It is also possible, using standard Java SSL functionality, to use certificate authentication with a
SSL-enabled LDAP server. More information on that is available here:
http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html.

For information about filtering search results based on LDAP permissions, see Restricting Access to
Content and Search Filters.

Enabling LDAP

These steps need to be completed to successfully enable LDAP. Each step is required and should be
done in this order:

1. Configure the LDAP Configuration File with the instructions below.

© 2013 Find this documentation online at Page 207 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html
http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 10-Dec-2013

2. Map at least one user to have admin permissions using the LDAP section of the Settings page
. Because the built-in authentication is disabled when LDAP authentication is enabled, you
cannot map a user or group to the Admin authorization after LDAP is enabled. If no one has
Admin authorization, no one will be able to access the Administration User Interface. So,
before enabling LDAP, go to the System Settings page and map an LDAP username or a
group to "Admin UI" by adding it to the Group or User section of the Admin UI definition.

3. Enable LDAP by setting the environment variable | weui . | dap. enabl ed to true in the
mast er. conf file found in $LW5s_HOVE/ conf /.

4. Restart LucidWorks.

LDAP Configuration File

The main configuration file for configuring LDAP is | dap. ynl , found in the $LWS_HOVE/ conf /
directory. The default settings must be modified as needed for LucidWorks to connect to the LDAP
server and query the database for user authentication. If LDAP is already enabled and this file is
edited, you will need to restart the server for changes to take effect.

Below is the main section of the | dap. yml configuration file that needs to be edited. Note that the
file also includes sample configurations for standard LDAP authentication, queryless authentication,
and Microsoft ActiveDirectory integration for use with Windows Shares data sources.

* Lines Must Be Indented

When customizing the | dap. yni file, keep in mind that the attributes must be indented at
least two spaces. So, when removing the hash mark (#), do not remove the extra spaces.
All lines must also be indented the same number of spaces (so, if some lines are indented
three spaces, then all lines must be indented three spaces).

© 2013 Find this documentation online at Page 208 of 256
LucidWorks http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/System%20Settings
http://docs.lucidworks.com/display/help/System%20Settings

LucidWorks Search Documentation

HHHHH R

Warning: Always restart the application after adjusting

your LDAP config, or unpredictable behavior may result.

B HH R

production:

host: | ocal host

port: 389 # 636 for SSL

attribute: uid

base: dc=xyz, dc=corp, dc=com

user_query: 'SATTR=SLOG N # default query is '$ATTR=$LOGA N, set this if you
need sonet hi ng nore conpl ex

adm n_user: cn=Manager, dc=xyz, dc=cor p,dc=com # |If you don't have an adm n
password, you can di sable

adm n_password: secret # admin login in the U "Settings"
page

ssl: fal se

group_base: ou=groups, dc=xyz, dc=cor p, dc=com

group_nenbershi p_attri bute: uni queMenber

group_nanme_attribute: cn

group_query: ' (&(objectclass=groupOt Uni queNanes) ($ATTR=SUSER))' # default query
is '$ATTR=$USER where $USER i s user's DN

H H H R

The attribute definitions included in the | dap. ynl file are as follows:

10-Dec-2013

Attribute Definition

host The hostname of the LDAP server that contains the user
information.

port The port to use while connecting to the LDAP server that contains
the user information.

attribute The attribute of the user object that the system will use to search
for the user, or assume when constructing an explicit DN via
query-less authentication.

base Search base for user queries, or suffix appended to attribute +
login for queryless authentication.

user_query Optional: supplies an arbitrarily complex query if the default user

admin_user

query is not sufficient. Variable substitutions are as follows: $ATTR
will be substituted with the value of 'attribute' from above;
$LOGIN will be substituted with the value the user entered in the
login form in the UI.

Search is performed using 'base' as a search base.

Administrative login to use for searching the directory. Not used
for queryless authentication.

© 2013
LucidWorks

Find this documentation online at Page 209 of 256
http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

admin_password

ssl

group_base

group_membership_attribute

group_name_attribute

group_query

User to Group Mappings

Administrative password to use for searching the directory. Not
used for queryless authentication.

Enable/disable SSL.

Search base for group queries. Not used with queryless
authentication.

The attribute to look for in the group object that will contain
members' user DNs.

The attribute of the group object that the system will use to search
for the group.

Optional: supplies an arbitrarily complex query if the default group
query is not sufficient. Variable substitutions are as follows: $ATTR
will be substituted with the value of 'group_name_attribute’;
$USER will be substituted with the logged-in user's fully-qualified
LDAP DN. Search is performed using 'group_base' as a search
base.

@ The default query ($ATTR=$USER) does not specify the
object type for groups. Several different group object
types are common, such as group, groupOfNames,
groupOfUniqueNames, and so on. Therefore, non-group
objects may also match if they contain a matching
attribute.

LucidWorks supports mapping users to groups with the group_nenber shi p_attri but e setting. This
allows LucidWorks to do an additional query while the user is logging in to find all the groups the

user is a member of.

Manual User Management

LucidWorks also includes a REST API that allows creation and authentication of users. Using this
API and the Perl Examples provided with the application, users can be created, passwords reset,
and accounts deleted. As mentioned previously, API-based user management and LDAP
authentication are mutually exclusive: you can only use one user management method.

Related Topics

® Restricting Access to Content

® Search Filters

© 2013
LucidWorks

Find this documentation online at Page 210 of 256
http://docs.lucidworks.com/

http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 10-Dec-2013

Solr Direct Access

LucidWorks Search is Solr-powered at its core. Solr, an Apache Software Foundation project,
provides an easy-to-use HTTP interface above and beyond Lucene, a very fast and scalable Java
search engine library. Both Solr and Lucene are entirely open source, available under the Apache
Software License.

LucidWorks Search exposes the Solr interface directly. This means that applications can leverage
both Solr's power and openness and LucidWorks Search's ease of use.

This guide covers Solr when LucidWorks and Solr intersect but it does not provide an extensive
overview of the inner workings of Solr, and in places assumes some basic knowledge of Solr. For a
good introduction to Solr, the Lucene/Solr community has produced an Apache Solr Reference
Guide which provides a lot of information about how Solr works "under the hood".

Solr Version

For information about the Solr version included in this release of LucidWorks, see the
SOLR_VERSION.txt file in $LW5_HOVE/ app/ SOLR_VERSI ON. t xt . For LucidWorks v2.6.3, we have
included Solr version 4.6 (the official release).

You can also get detailed Solr version information for all releases of LucidWorks Search from our
public Github fork here: https://github.com/lucidimagination/lucene-solr. To see information for a
specific LucidWorks version, select the tag for that version from the "Switch Tags" drop-down list.
Please note, however, that this is not a stand-alone, runnable Lucene or Solr release; it is intended
as a source reference only.

How the LucidWorks-Bundled Solr is Different

The primary difference between using Solr and LucidWorks is the base URL. Solr's example
application is accessed by default at http://1 ocal host: 8983/ sol r/, whereas the LucidWorks
default collection instance of Solr is rooted at http://1 ocal host: 8888/ sol r/col | ecti onl/. If
using multiple collections, replace col | ecti onl with the correct collection name. The Solr URL for
each collection is displayed under each collection listing on the main Collections page in the Admin
UI.

In addition, some of the examples that are usually included with Solr are not included with
LucidWorks. This includes detailed examples and explanations that are provided in the schema. xni
and sol rconfig. xm files. Those examples will likely still work with LucidWorks, but would need to
be inserted manually into those files.

Other differences are mentioned specifically in sections that discuss certain features. If a limitation
with Solr is not mentioned, it can be assumed that the Solr functionality works as you would expect
with a stand-alone Solr instance.

Adding Solr Plugins

© 2013 Find this documentation online at Page 211 of 256
LucidWorks http://docs.lucidworks.com/

http://cwiki.apache.org/confluence/display/solr
http://cwiki.apache.org/confluence/display/solr
https://github.com/lucidimagination/lucene-solr
http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 10-Dec-2013

Generally speaking, most plugins to Solr should work with LucidWorks Search, provided that they
are compatible with the Solr version used with LucidWorks Search (see Solr Version above). As
described in the Solr Wiki page on Solr Plugins, there are two options for integrating plugins:

1. "Place your JARs in a | i b directory in the instanceDir of your SolrCore." For LucidWorks
Search, this would mean the | i b directory of your collection i nst ance_di r . For example, if
you wanted to use the plugin with the default collection, collection1, you would put the
relevant JARs in $LWB_HOVE/ conf/ sol r/ cores/ col | ecti onl 0/ bi n. You can find the
i nstance_di r name with the Collections API. The name indicates a directory name, always
relative to $LWS_HOVE/ conf/ sol r/ cor es.

2. "Use the | i b directive in your sol rconfi g. xm file to specify an arbitrary JAR path, directory
of JAR files, or a directory plus regex that JAR file names must match." This alternative
allows you define the path in sol rconfi g. xm for your collection using the <l i b> directive.
More information on using this directive is available in the Apache Solr Reference Guide
section on Lib Directives in SolrConfig.

Either of these approaches will allow integration of a Solr-based plugin with LucidWorks Search. If
the plugin will be used with multiple LucidWorks Search collections, pick either approach here and
configure the use of the plugin for one collection. Once you've verified that it works successfully
with LucidWorks Search, you can use that single collection to create a Collection Template for use
as the basis for future collections.

If there is configuration to be done in sol rconfi g. xm or schema. xnml (or other configuration files)
in order to properly use the plugin, you will need to make those changes as a separate step and by
manually editing the files. If the changes conflict with or modify the LucidWorks Search defaults,
the Admin or Search UI may behave abnormally. It's best to do thorough testing before moving to
production with any plugin.

More information on how to create a custom plugin is available from the Solr Wiki at
http://wiki.apache.org/solr/SolrPlugins.

Related Topics

® Apache Solr Reference Guide
® Apache Solr project homepage
® Apache Solr Wiki

® Solr Plugins from the Solr Wiki

© 2013 Find this documentation online at Page 212 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/SolrPlugins
https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 10-Dec-2013

Performance Tips

A number of configuration items can be manipulated for better performance when benchmarking
LucidWorks. Implementing some of these optimizations may require directly configuring Solr via
schema. xm and sol rconfi g. xm . See the Apache Solr Reference Guide for details on Solr

customizations that may be right for your implementation.

Ensure that you are running the JVM in server mode.
Allocate only as much memory as needed to the JVM heap. The rest should be left free to
allow the operating system to cache as much of the Lucene index files as possible.

Improving indexing speed

Minimize indexing the same content in more than one field. Each field should be either
indexed on its own or Solr's copyField functionality can be used to copy it to an indexed
catch-all field.

Avoid storing the same content more than once. The target field of copyField commands
should almost never be stored.

Avoid commits during the indexing process. Turn off Solr auto-commit and avoid explicitly
committing until indexing has completed.

Disable rules processing if not using business rules as part of your implementation. See the
section on Disabling Business Rules for details on how to disable rules processing.

Improving Search speed

Perform a variety of searches before starting any timings. This warms up the server JVM, and
causes parts of the index, commonly used sort fields and filters to be cached by the
operating system.

Search in as few fields as possible. A single indexed catch-all text field containing the
contents of all the other searchable fields (generated by copyField commands) will be faster
to search than a multi-field query across many indexed fields.

If necessary, turn off relevancy enhancers such as proximity phrase queries, date recency
boosts, and synonym expansion to generate benchmarks for comparison with later tests
when those features are re-enabled.

Retrieve the minimum number of stored fields that still provide a optimal search experience
for users.

Only retrieve the number of documents that are immediately necessary. The start and rows
query arguments may be used to request pages of results.

Disable rules processing if not using business rules as part of your implementation. See the
section on Disabling Business Rules for details on how to disable rules processing.

For a large index (on *NIX), force key parts of the indexed portion into operating system
cache by changing to the index directory and executing cat *.prx *.frq *.tis >

/ dev/ nul |

© 2013 Find this documentation online at Page 213 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr/Copying+Fields
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 10-Dec-2013

® Review the section on Wildcards at Start of Terms if leading wildcards have been enabled for
important performance considerations.

Related Topics

® Expanding Capacity

© 2013 Find this documentation online at Page 214 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Expanding Capacity

This functionality is
not available with
LucidWorks Search
on AWS or Azure

As your search application grows, you may need to scale the
system to add space for indexes or to increase query responsiveness. This section discusses
advanced deployment options to enhance system performance and ensure seamless application
scaling.

With Solr 4, which is included with LucidWorks Search, the best way to scale is in SolrCloud mode.
How to start LucidWorks in SolrCloud mode is discussed in the section Using SolrCloud in
LucidWorks.

If you only need to extend your index across multiple servers Index Replication shows how to
configure multiple shards for a master-slave environment. Or you can use Distributed Search

and Indexing to distribute search and indexing processes across multiple servers or shards for
peak performance. Note, however, that distributed search and replication are no longer in active
development by the Solr community.

© 2013 Find this documentation online at Page 215 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

Using SolrCloud in LucidWorks

SolrCloud is a set of Solr features that expands the capabilities of
Solr's distributed search, simplifying the creation and
management of Solr clusters. SolrCloud is still under active
development, but already supports the following features:

® Central configuration for the entire cluster

® Automatic load balancing and fail-over for queries

® Zookeeper integration for cluster coordination and
configuration

For an introduction to SolrCloud, and how it is different from
index replication, see the LucidWorks Knowledgebase article What
is SolrCloud?. In addition, the Apache Solr Reference Guide
includes an extensive section on SolrCloud, which includes
background information and configuration instructions. Some
changes have been made for LucidWorks Search, however, which
are described below.

LucidWorks Search implements SolrCloud as a purely Solr
feature; to manage SolrCloud shards and replicas, you should
refer to and use instructions designed for a purely Solr
installation. There are only a few caveats and modifications for
LucidWorks Search, detailed below, specifically for bootstrapping
ZooKeeper and the cluster nodes.

Enabling SolrCloud Mode

Topics discussed in this
section:

® Enabling SolrCloud
Mode
® Using the
Embedded
ZooKeeper
® Bootstrapping
Solr vs.
LucidWorks
Search
® How SolrCloud
Works with
LucidWorks
® Replicated
Configurations
® Using the
Admin UI in
SolrCloud
Mode
® Feature
Limitations
® Collections
APIs
® Using a Stand-Alone
ZooKeeper Instance
or Ensemble
® Related Topics

LucidWorks Search includes an installer that can install the application on each node of the planned
SolrCloud cluster. For details on using this approach, see the section SolrCloud Cluster Installation.
This approach will allow you to install three ZooKeeper instances to create a quorum, and then

install as many LucidWorks Search nodes as needed.

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 216 of 256

https://support.lucidworks.com/entries/24134353-What-is-SolrCloud-And-how-does-it-compare-to-master-slave-
https://support.lucidworks.com/entries/24134353-What-is-SolrCloud-And-how-does-it-compare-to-master-slave-
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 10-Dec-2013

The standard instructions for starting SolrCloud are modified slightly for LucidWorks Search.
Commands within the installer take these modifications into account, but if starting without the
installer, refer to the modifications described below.

While much of the SolrCloud documentation in the Apache Solr Reference Guide section on
SolrCloud can be used, it is important to only start LucidWorks Search in SolrCloud mode with the
instructions included here.

Using the Embedded ZooKeeper

It's possible to make two standalone, or single server, installations communicate with each other in
SolrCloud mode using the ZooKeeper instance embedded with Lucidworks Search. This can be
useful to create a simple two-node cluster when just starting to learn how this functionality can
work for your search application. With this approach, two separate installations are made (as
described in the section Single Server Installation). Then one installation is started with commands
to bootstrap configurations and start ZooKeeper.

Because we need two servers for this example, we will make two installations of LucidWorks, one
on the server "exanpl e" and the other on the server "exanpl e2". During installation, do not start
LucidWorks Search. Instead, start the two installations manually, as shown below.

@ We recommend that you only install LucidWorks using the installer application; copying the
Luci dWor ksSear ch directory to another directory to create another server may cause
conflicts with ports. Information on installing LucidWorks is available in the section on
Installation.

The installation in exanpl e should use port 8983 for the LWE-Core component, which will be
changed from the default during the installation process. The installation on exanpl e2 should use
the default port (8888) for the LWE-Core component. If enabling other components, be sure to
modify the ports for each installation as well. If new to LucidWorks, see the section on Working
With LucidWorks Search Components for more information about the components. Your port
selections might look like this:

Component exanpl e Ports exanpl e2 Ports
LWE-Core 8983 8888
LWE-Connectors 8965 8765
LWE-UI 8889 8989

ZooKeeper will run on the LWE-Core port + 1000, so in this scenario we expect ZooKeeper to run
on port 9983. It's important to keep that in mind while planning the installation ports so there isn't
an inadvertent conflict with LucidWorks Search ports.

© 2013 Find this documentation online at Page 217 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 10-Dec-2013

) SolrCloud uses ZooKeeper to manage nodes, and it's worth taking a look at the ZooKeeper
website to understand how ZooKeeper works before configuring SolrCloud. Solr can embed
ZooKeeper, but for a production use, it's recommended to run a ZooKeeper ensemble, as
described in the ZooKeeper section of the SolrCloud wiki page.

Starting LucidWorks Search

To start LucidWorks Search in SolrCloud mode, use the usual LucidWorks start script, but pass
some Java options to it. To start exanpl e, you would use a command like this:

Start 'example'

$LW5_HOVE/ app/ bi n/start.sh -1we_core_java_opts "-Dbootstrap_conf=true -DzkRun
- Dnunthar ds=2"

The boot st rap_conf allows copying of the configuration files for each collection to the nodes, while
zkRun starts ZooKeeper. The nuntShar ds value defines how many nodes there will be in the cluster.
Be sure to set this accurately, as Solr cannot yet easily increase the number of shards without
re-bootstrapping the cluster.

We only need to pass boot st rap_conf and nunShar ds the first time LucidWorks is started in
SolrCloud mode. In subsequent LucidWorks restarts, start this leader node with . /start. sh
-lwe_core_java_opts "-DzkRun". The - DzkRun could be added to mast er. conf, in which case the
start.sh script alone would start ZooKeeper each time.

To start the next nodes of the cluster, we still use the start script, but with some different options.
This would start exanpl e2:

Start 'example2'

$LWS_HOVE/ app/ bin/start.sh -1we_core_java_opts "-DzkHost =l ocal host: 9983"

Note that the port defined as the zkHost is the port of the LWE-Core component + 1000. So, if
LWE-Core on our exanpl e server was defined at port 8983, ZooKeeper would be started at port
9983.

© 2013 Find this documentation online at Page 218 of 256
LucidWorks http://docs.lucidworks.com/

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/

LucidWorks Search Documentation 10-Dec-2013

@ The above instructions assume a Linux-based operating system. For Windows-based
systems, use start. bat as in these examples:

Start exanpl e:

$LW5S_HOVE\ app\ bi n\start.bat -lwe_core_java_opts "-Dbootstrap_conf=true -DzkRun
- DnunBShar ds=2"

Start exanpl e2:

$LWS_HOVE\ app\ bi n\start.bat -lwe_core_java_opts "-DzkHost =l ocal host: 9983"

If you have used the installer to install LucidWorks in SolrCloud mode, the required commands
have been added to the nast er. conf for each server, and no special start or stop instructions are
required for restarts. In that case, you would not run the embedded ZooKeeper; instead you would
have installed and configured a quorum, and the zkHost parameters have been added to the

mast er. conf file.

Bootstrapping Solr vs. LucidWorks Search

This table outlines the differences between the Solr instructions for bootstrapping SolrCloud mode
and the LucidWorks Search instructions. It is meant as a summary if you are already familiar with
how SolrCloud works.

SolrCloud LucidWorks Search

Use start.jar Use start.sh or start. bat with
-lwe_core_java_opts defined

Use boot st rap_confdir to upload boot strap_conf =t rue
configuration files to ZooKeeper

Use col | ecti on. confi gName Not needed with boot st rap_conf =true
Default configuration directory is Default configuration directory is
./Isolr/collectionl/conf $LWS_HOWVE/ conf/ sol r/ cores/col | ectionl_0/conf

How SolrCloud Works with LucidWorks

There are some caveats to using SolrCloud with LucidWorks Search, as it is so far only partially
integrated with the system. Future releases of LucidWorks Search will contain more tight
integration points with SolrCloud functionality.

Replicated Configurations

© 2013 Find this documentation online at Page 219 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
When running LucidWorks Search in SolrCloud mode, some LucidWorks Search-specific features
are not yet fault tolerant and highly available. While the index and configuration files are fully
SolrCloud supported, the following are not currently replicated across shards:

® Data sources and their related metadata (such as crawl history)

® The LucidWorks user database, which stores manually created users (such as the default
"admin" user)

® User alerts

® [DAP configuration files

® SSL configuration

Even though these features aren't replicated, they can still be used with LucidWorks Search in
SolrCloud mode. The files that hold this metadata are in the $LW5_HOME/ conf folder and could be
copied to the other nodes in the cluster to act as backup if the main node goes down for any length
of time. This is a manual process and not yet automated by LucidWorks Search.

Using the Admin UI in SolrCloud Mode

To accommodate for the lack of replicated configurations, we recommend that you do a full
LucidWorks Search installation (i.e., all components) on every machine in your cluster. You should
then choose one node to use for the Admin UI. This is the node that will store your data sources
and associated metadata. Another node can be chosen as the node that does crawling, or you can
use the same node used by the Admin UI. Document updates will still be sent to the nodes, via the
index update processes that make up SolrCloud functionality.

If the node used for the Admin UI goes down, you can choose another node to act as the Admin Ul
node, but unless the related configuration files have been copied to that node you will not have the
same user accounts and data sources in the other nodes. Once you bring the node originally used
for the Admin UI back, it should still have your data sources and other LucidWorks-specific
metadata.

You can configure LucidWorks Search to not start the Admin UI by changing
$LWS_HOVE/ conf/ mast er . conf and setting the | weui . enabl ed parameter to 'false’.

Feature Limitations

The following LucidWorks features may encounter significant problems when working in SolrCloud
mode:

® (Click Scoring cannot be used in SolrCloud mode at this time.

® Auto-complete-related suggestions should be pulled from a single index node if
auto-complete is enabled by adding '&di st ri b=f al se' to any query. Distributed
auto-complete indexing is possible but requires configuration of the auto-complete indexing
on each node and adding a 'quer y' component to the autocomplete requestHandler in
sol rconfig. xnm .

® De-duplication does not work in SolrCloud due to a bug in Solr (SOLR-3473).

® SSL does not work with SolrCloud due to a bug in Solr (SOLR-3854).

© 2013 Find this documentation online at Page 220 of 256
LucidWorks http://docs.lucidworks.com/

https://issues.apache.org/jira/browse/SOLR-3473
https://issues.apache.org/jira/browse/SOLR-3854

LucidWorks Search Documentation 10-Dec-2013
® |og indexing and query statistics in the Admin UI will be inconsistent. If you are using
LucidWorks Search in SolrCloud mode or with each component installed on a different server,
please see the section Log Indexing with Separated Components for details on how to make
sure your logs are fully indexed.

Collections APIs

LucidWorks Search and Solr both have Collections APIs. They are not duplicates, even though they
share the same parameters. It is important, however, to only use the LucidWorks Search
Collections API to create collections, because of the issues described in the section Replicated
Configurations. The LucidWorks Search Admin UI also uses the LucidWorks Collections API to
create collections.

When creating a new collection (with either the Admin UI or the API), and you are working in
SolrCloud mode, you can specify the number of shards to break it up into. This number, however,
cannot be higher than the number of shards defined when LucidWorks Search was bootstrapped.

Behind the scenes, the LucidWorks Search Collections API update LucidWorks Search-specific
collection configuration files and also uses Solr's Collection API to create the collection in Solr. This
has some ramifications for LucidWorks Search:

® Solr's Collection API does not allow defining the instanceDir or the dataDir, so there is no way
for LucidWorks Search to instruct Solr to create the new collection directories in the same
place on the filesystem as the pre-existing collections that ship with LucidWorks Search. Solr
creates collections by default with the conf and dat a directories in the same location, but the
LucidWorks Search directory structure separates those directories to
$LWS_HOVE/ conf/ sol r/ cores and $LW5s_HOVE/ dat a/ sol r/ cor es. Because Solr's Collection
API does not allow setting the path values explicitly, they are created in Solr's default
location. What this means is that new collections created in SolrCloud mode will be located in
a different location from the pre-existing collections (i.e., they will be located under
$LWS_HOVE/ conf/ sol r and the data directory will not be located under
$LWS_HOVE/ dat a/ sol r). This is normal and will not have any impact on document indexing
or searching.

® Solr's Collection API itself uses Solr's CoreAdmin API to asynchronously create cores on each
node. For this reason, the collection will appear to be renamed as
<col | ecti on>_shard<x>_replica<y>. LucidWorks Search will mostly display the correct
name, but the directory on the server will show the core name (and each core on each node
will be named differently). The Solr Admin UI will also display the core name in the Core
dropdown list. If you are accessing the Solr Admin for several different nodes, this may cause
some initial confusion. Essentially, LucidWorks displays information about a collection, but
Solr displays information about the specific core you are looking at. For more information
about the differences between cores and collections in Solr, also refer to the SolrCloud
Glossary and other pages on SolrCloud in the Apache Solr Reference Guide.

Using a Stand-Alone ZooKeeper Instance or Ensemble

© 2013 Find this documentation online at Page 221 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary
https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary

LucidWorks Search Documentation 10-Dec-2013

If you review the Solr Reference Guide or any of the Solr documentation about SolrCloud, you may
notice that using the Apache ZooKeeper instance that is included with Solr is not recommended for
real production systems. This is because the embedded Zookeeper will not provide sufficient
failover; the ZooKeeper instance is dependent on the Solr instance so if one of the Solr instances is
shut down, an associated ZooKeeper instance will also be shut down.

For this reason, the LucidWorks installer includes the ability to install a ZooKeeper quorum while
installing LucidWorks Search.

If you have an existing ZooKeeper, or an existing SolrCloud setup, the Apache Solr Reference
Guide provides information about how to use a stand-alone ZooKeeper instance at Setting Up an
External ZooKeeper Ensemble. That information is worth reviewing before installing a stand-alone
ZooKeeper. The same instructions apply if used with LucidWorks Search, with the exception of the
bootstrapping instructions as described in the earlier section Starting LucidWorks Search (above).

» When using stand-alone ZooKeeper with LucidWorks Search, you need to take care to keep
your version of ZooKeeper updated with the latest version distributed with Solr and
LucidWorks Search. Since you are using it as a stand-alone application, it does not get
upgraded when you upgrade LucidWorks Search.

Solr 4.0 and LucidWorks 2.5.0 and 2.5.1 use Apache ZooKeeper v3.3.6.

Solr 4.1 and higher, and LucidWorks 2.5.2 and higher, use Apache ZooKeeper v3.4.5.

Related Topics

® Getting Started with SolrCloud from the Apache Solr Reference Guide
® SolrCloud Wiki page

© 2013 Find this documentation online at Page 222 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble
https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble
https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 10-Dec-2013

Index Replication

This functionality is
not available with
LucidWorks Search
on AWS or Azure

% As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for redundancy,
failover, and improved performance. Index Replication and Distributed Search are
considered obsolete technologies; while still supported, they are not in active development.
See the section on Using SolrCloud in LucidWorks for more information on using SolrCloud
with LucidWorks Search.

Index Replication distributes complete copies of a master index to one or more slave servers. The
master server continues to manage updates to the index. All querying is handled by the slaves.
This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes. The master server's index is replicated on the slaves, which then process
requests such as queries.

LucidWorks Search supports index replication, but it is not configured through the Admin UL.
Instead, replication configuration requires editing XML configuration files in the Solr release
included with LucidWorks Search. This section explains how replication works and how to edit the
configuration files. Detailed examples are provided, so even if you're new to XML and Solr
configuration, you should be able to set up and configure master/slave replication servers with
ease.

) When the Click Scoring Relevance Framework is enabled, LucidWorks ensures that also the
click boost data is replicated together with index files. See the section on Click Scoring
Tools and Index Replication for more information.

Configuring Replication on the Master Server

To set up replication, you will need to edit the sol rconfi g. xn file on the master server. To edit
the file, you can use an XML editor or even a simpler tool such as Notepad on a PC or TextEdit on a
Mac.

Within the sol rconfi g. xm file, you will edit the definition for a Request Handler. A Request
Handler is a Solr process that responds to requests. In this case, you will be configuring the
Replication RequestHandler, which processes requests specific to replication.

© 2013 Find this documentation online at Page 223 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
The example below shows how to configure the Replication RequestHandler on a master server.

<request Handl er name="/replication" class="solr.ReplicationHandl er">
<l st name="master">
<l-- Replicate on 'optimze' . O her values can be 'commit', 'startup'.
It is possible to have nultiple entries of this config string -->
<str nanme="replicateAfter">optim ze</str>
<I-- Create a backup after 'optimze'. Oher values can be 'commit', 'startup'.
It is possible to have nultiple entries of this config string.
Note that this is just for backup, replication does not require this.
-->
<l-- <str name="backupAfter">optim ze</str> -->
<I-- If configuration files need to be replicated give the nanes here,
separated by coma -->
<str name="confFil es">schema. xm , st opwords. t xt, el evate. xm </str>
<I-- The default value of reservation is 10 secs. See the docunentation
bel ow. Normally, you should not need to specify this -->
<str name="conmnm t ReserveDurati on">00: 00: 10</str>
</lst>
</ request Handl er >

Operations that Trigger Replication

The value of the repl i cat eAft er parameter in the ReplicationHandler configuration determines
which types of events should trigger the creation of snapshots for use in replication.

The replicat eAft er parameter can accept multiple arguments.

replicateAfter Description

Setting

startup Triggers replication whenever the master index starts up.

conmi t Triggers replication whenever a commit is performed on the master
index.

optim ze Triggers replication whenever the master index is optimized.

If you are using st art up setting for repl i cat eAfter, you'll also need a conmi t or opti mi ze if you
want to trigger replication on future commits/optimizes as well. If only the st art up option is given,
replication will not be triggered on subsequent commits/optimizes after it is done for the first time
at the start.

Configuring Replication on Slave Servers

The code below shows how to configure a ReplicationHandler on a slave server.

© 2013 Find this documentation online at Page 224 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<request Handl er nanme="/replication" class="solr.ReplicationHandl er">
<l st name="sl ave">
<l-- fully qualified url for the replication handler of naster.
It is possible to pass on this as a request param for the
f et chi ndex comrand
-->
<str
name="nmasterUrl ">http:// master. sol r.conpany. com 8983/ sol r/ corenane/ replication</str>

<l-- Interval in which the slave should poll naster. Fornmat is HH nm ss.
If this is absent slave does not poll automatically.
But a fetchindex can be triggered fromthe admin or the http API

-->

<str name="pol || nterval ">00: 00: 20</ str >

<!-- THE FOLLOW NG PARAMETERS ARE USUALLY NOT REQUI RED - - >

<I-- To use conpression while transferring the index files.
The possi bl e values are internal|external
if the value is '"external' make sure that your master Solr
has the settings to honor the accept-encodi ng header.
see here for details http://w ki.apache. org/sol r/ Sol r H t pConpr essi on
If it is '"internal' everything will be taken care of automatically.

USE THIS ONLY | F YOUR BANDW DTH IS LOW
TH S CAN ACTUALLY SLOW DOMN REPLI CATION IN A LAN -->
<str name="conpression">internal </str>
<l-- The follow ng values are used when the slave connects to the
master to download the index files.
Default values inplicitly set as 5000nms and 10000ms respectively.
The user DCOES NOT need to specify these unless the bandw dth
is extremely lowor if there is an extrenmely high | atency
-->
<str name="httpConnTi meout " >5000</str>
<str name="htt pReadTi meout " >10000</str>
<!-- |f HITP Basic authentication is enabled on the master,
then the slave can be configured with the following -->
<str name="httpBasi cAut hUser " >user nane</str>
<str name="htt pBasi cAut hPasswor d" >passwor d</ str >
</lst>
</ request Handl er >

The master server is unaware of the slaves. Each slave server continuously polls the master
(depending on the pol I I nt er val parameter) to check the current index version of the master. If
the slave finds out that the master has a newer version of the index it initiates a replication
process. The steps are as follows:

1. The slave issues a filelist command to get the list of the files. This command returns the
names of the files as well as some metadata (e.g., size, a lastmodified timestamp, an alias if
any).

© 2013 Find this documentation online at Page 225 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

2. The slave checks with its own index if it has any of those files in the local index. It then runs
the filecontent command to download the missing files. This uses a custom format (akin to
the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between, the download resumes from the point it failed. At any point,
the slave tries 5 times before giving up a replication altogether.

3. The files are downloaded into a temp directory, so that if either the slave or the master
crashes during the download process, no files will be corrupted. Instead, the replication
process will simply abort.

4. After the download completes, all the new files are 'mv'ed to the live index directory, and the
file's timestamp is set to be identifical to the file's counterpart on the master master.

5. A commit command is issued on the slave by the Slave's ReplicationHandler, and the new
index is loaded.

Configuring Replication on a Repeater Server

A master may be able to serve only so many slaves without affecting performance. Some
organizations have deployed slave servers across multiple data centers. If each slave downloads
the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more
slaves as repeaters. A repeater is simply a node that acts as both a master and a slave. To
configure a server as a repeater, the definition of the Replication requestHandler in the

sol rconfig. xm file must include file lists of use for both masters and slaves. Be sure to set the
replicateAfter parameter to commit, even if replicateAfter is set to optimize on the main master.
This is because on a repeater (or any slave), a commit is called only after the index is downloaded.
The optimize command is never called on slaves. Optionally, one can configure the repeater to
fetch compressed files from the master through the compression parameter to reduce the index
download time.

Here's an example of a ReplicationHandler configuration for a repeater:

<request Handl er nanme="/replication" class="solr.ReplicationHandl er">
<l st name="master">
<str name="replicateAfter">commt</str>
<str name="confFil es">schema. xm , st opwor ds. t xt, synonyns. t xt </ str>
</lst>
<l st name="sl ave" >
<str
name="nmasterUr| ">http:// master. sol r.conpany. com 8983/ sol r/ corenane/ replication</str>
<str name="pol || nterval ">00: 00: 60</str>
</lst>
</ request Handl er >

Replicating Configuration Files

To replicate configuration files, list them with the conf Fi | es parameter in the master's
configuration. Only files found in the conf directory of the master's Solr instance will be replicated.

© 2013 Find this documentation online at Page 226 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Solr replicates configuration files only when the index itself is replicated. Even if a configuration file
is changed on the master, that file will be replicated only after there is a new commit/optimize on
master's index.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary
directory before moving them into their ultimate location in the conf directory. The old
configuration files are then renamed and kept in the same conf/ directory. The ReplicationHandler
does not automatically clean up these old files.

Unlike the index files, where the timestamp is good enough to figure out if they are identical,
configuration files are compared against their checksum. If a replication involved downloading at
least one configuration file with a modified checksum, the ReplicationHandler issues a core-reload
command instead of a commit command.

Replicating the solrconfig.xml File

To keep the configuration of the master servers and slave servers in sync, you can configure the
replication process to copy configuration files from the master server to the slave servers. In the
sol rconfig. xm on the master server, include a conf Fi | es value like the following:

<str name="confFil es">sol rconfig_slave.xm :solrconfig.xm,6 x.xm ,y.xm</str>

This ensures that the local configuration sol rconfi g_sl ave. xm will be saved as sol rconfi g. xm
on the slave. All other files will be saved with their original names. On the master server, the file
name of the slave configuration file can be anything, as long as the name is correctly identified in
the conf Fi | es string; then it will be saved as whatever file name appears after the colon ':".

Related Topics

® Using SolrCloud in LucidWorks
® Scaling and Distribution chapter from the Apache Solr Reference Guide

© 2013 Find this documentation online at Page 227 of 256
LucidWorks http://docs.lucidworks.com/

https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

LucidWorks Search Documentation 10-Dec-2013

Distributed Search and Indexing

This functionality is
not available with
LucidWorks Search
on AWS or Azure

% As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for redundancy,
failover, and improved performance. Index Replication and Distributed Search are
considered obsolete technologies; while still supported, they are not in active development.
See the section on Using SolrCloud in LucidWorks for more information on using SolrCloud
with LucidWorks Search.

Consider using distributed search when an index becomes too large to fit on a single system, or
when a single query takes too long to execute. Distributed search can reduce the latency of a

query by splitting the index into multiple shards and querying across all shards in parallel, merging
the results.

Distributed search should not be used if queries to a single index are fast enough but one simply

wishes to expand the capacity (queries per second) of the system. In this case, standard Index
Replication should be used.

Distributed Indexing

To utilize distributed search, the index must be split into shards across multiple servers. Each
shard is a LucidWorks Search server containing a complete index that can be queried
independently, but which only contains a fraction of the complete search collection.

© 2013 Find this documentation online at Page 228 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

= If using distributed indexing with a Solr XML data source type, you may encounter a
situation where the crawl never ends without a restart of LucidWorks. This is due to a
problem in the distributed index processor and the way Solr XML files are crawled by
LucidWorks.

There are two possible solutions to this problem:

1. Use SolrCloud. The distributed indexing is handled automatically by ZooKeeper, and
provides automatic failover in case of server failure.

2. Disable the Di stri but edUpdat ePr ocessor on all but the primary, master, node. It is
not really required to be running on slave nodes since LucidWorks crawlers send their
files through only one node during processing.

Manual Distributed Indexing

One method of splitting the search collection into multiple shards is to index some documents to
each shard instead of sending all documents to a single shard. Updates to a document should
always be sent to the same shard, and documents should not be duplicated on different shards.

Manual Configuration

A Distributed Update Processor can be enabled to automatically support distributed indexing by
sending update requests to multiple servers (shards).

Enabling distributed indexing is done via the sol rconfi g. xm file, found in

$LWS HOVE/ sol r/ cores/ col | ection/ conf (replace col | ecti on with the name of the collection
that is being configured for distributed indexing). By default it is not enabled. The sol rconfi g. xmi
file needs to be installed on each shard, and the shards should be listed in the same order in each
file.

The distributed update processor is controlled by two parameters, shards and sel f, which may
either be specified in sol r confi g. xm , or supplied with a specific update request to Solr.

® shards lists the servers in the cluster. The list should be exactly the same (that is, in the
same order) in the configuration file for every server in the cluster.

® sel f should be different for each server in the cluster and should match the entry in shards
for the particular server. It is used to allow updates for the particular server to be directly
added rather than going through the HTTP interface. If it is missing, distributed update will
still work, but will be less efficient.

To start using distributed indexing, find the following section in sol rconfi g. xm , and uncomment
the shard location definitions. Below is an example of shard definition that is not commented out.

© 2013 Find this documentation online at Page 229 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

<updat eRequest Pr ocessor Chai n nane="I uci d- updat e- chai n" >
<processor class="com |l ucid.update. D stributedUpdat eProcessor Factory">
<I-- exanple configuration...
"shards should be in the *same* order for every server
inacluster. Only "self" should change to represent
what server *this* is. -->

<str nane="sel f">| ocal host: 8983/ sol r</str>
<arr name="shards">
<str>l ocal host: 8983/ sol r</str>
<str>| ocal host: 7574/ sol r</ str>
<larr>
</ processor >
<processor class="solr.LogUpdat eProcessor Factory">
<i nt name="maxNunifoLog" >10</i nt >
</ processor >
<processor class="com | ucid.update. Fi el dMappi ngUpdat ePr ocessor Factory"/ >
<processor class="sol r.RunUpdat eProcessor Factory"/>
</ updat eRequest Pr ocessor Chai n>

Indexing Documents

If distributed indexing has been configured as above, then any indexing initiated from the
LucidWorks Search administration user interface, such as crawling directories, will be appropriately
handled by sending some documents to each server. One can use the distributed update processor
in conjunction with any update handler while directly updating Solr. The / updat e/ xm and

/ updat e/ csv update handlers are already configured to use di stri b, the distributed update
processor, by default.

If an update handler has not been configured to use the distributed update processor, it may be
specified in the URL via the updat e. pr ocessor parameter:

http://1ocal host: 8888/ solr/collectionl/update?update. processor=distrib

If the sel f and shar ds parameters are not configured in solrconfig.xml, then they may be
specified as arguments on the update url.

http://1ocal host: 8888/ solr/coll ectionl/update?update. processor=di stri b&sel f=| ocal host: 888B

Update commands may be sent to any server with distributed indexing configured correctly.
Document adds and deletes are forwarded to the appropriate server/shard based on a hash of the
unique document id. commit commands and deleteByQuery commands are sent to every server
in shards.

Distributed Search

© 2013 Find this documentation online at Page 230 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

After a logical index is split across multiple shards, distributed search is used to make requests to
all shards, merging the results to make it appear as if it came from a single server.

Programmatic Distributed Search

One can use distributed search with Solr request handlers such as st andar d, di smax, or | uci d (the
handler used by the LucidWorks Search), or any other search handler based on
or g. apache. sol r. handl er. conponent . Sear chHandl er .

Supported Components

The following Solr components currently support distributed searching:

® The Query component that returns documents matching a query

® The Facet component, for f acet. query and facet. fi el d requests where
facet. sorted=true (the default: return the constraints with the highest counts)

® The Highlighting component, which highlights results

® The Debug component

The presence of the shards parameter in a request will cause that request to be distributed across
all shards in the list. The syntax of shards is
host 1: port 1/ base_url 1, host 2: port 2/ base_url 2, ...

The example below would query across 3 different shards, combining the results:

http://1ocal host: 8888/ solr/collectionl/sel ect?shards=l ocal host: 8983/ sol r, | ocal host: 7574/ sp

As a convenience to clients, a new request handler could be created with shar ds set as a default
like any other ordinary parameter.

. The shards parameter should not be set as a default in the standard request handler as
this could cause infinite recursion.

Scalability and Fault Tolerance

To provide fault tolerance and increased scalability, standard replication can be used to provide
multiple identical copies of each index shard. Each shard would have a master and multiple slaves.

Indexing in a Fault Tolerant Distributed Configuration

Only the master for each shard should be configured in distributed indexing or specified to the
distributed update processor. There is no fault tolerance while indexing - if the master for a shard
goes down, indexing should be suspended.

Searching in a Fault Tolerant Distributed Configuration

© 2013 Find this documentation online at Page 231 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Each shard will have multiple replicas. A Virtual IP (VIP) should be configured in the load balancer
for each shard, consisting of all replicas. LucidWorks Search distributed search configuration, and
the shar ds parameter for distributed search requests should use these VIPs.

A single VIP consisting of all the shard VIPs should be configured for all external systems to use the

search service.

© 2013 Find this documentation online at Page 232 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Integrating Monitoring Services

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Monitoring your application always is an important part of
running production system. Most system administrators have used various tools to ensure
everything is ok from the health of server's filesystem to the the temperature of CPUs. LucidWorks
Search provides additional capabilities to integrate application level statistics information into these
monitoring tools.

LucidWorks Search and Solr make available several JMX MBeans which can be used with
stand-alone JMX clients, or integrated with servers that support MBeans, such as Nagios or Zabbix.
More information on all these options is below.

* JMX
® Enabling JMX for LucidWorks Search
® JMX Clients

® JMX MBeans

® Integrating with Monitoring Systems
® Zabbix
® Nagios

® Helpful Tips

JMX

JMX is a standard way for managing and monitoring all varieties of software components for Java
applications. JMX uses objects called MBeans (Managed Beans) to expose data and resources from
your application. LucidWorks Search provides number of read-only monitoring beans that provide
useful statistical/performance information. Combined with JVM (platform JMX MBeans) and OS
level information, it becomes powerful tool for monitoring.

Enabling JMX for LucidWorks Search

By default JMX is enabled in LucidWorks Search for local access only. If you want to connect and
monitor application remotely you need to change | wecor e. j vm par ans parameter in the
$LWS_HOVE/ conf/ mast er. conf file and add the following JVM parameters:

I wecore.jvm parans=... -Dcom sun. nanagenent.j nxrenote

- Dcom sun. managenent . j nxr enot e. por t =3000 - Dcom sun. managenent . j nxr enot e. ssl =f al se
- Dcom sun. managenent . j nxr enot e. aut hent i cat e=f al se

-Dj ava. rm . server. host name=ny. server. name

© 2013 Find this documentation online at Page 233 of 256
LucidWorks http://docs.lucidworks.com/

http://en.wikipedia.org/wiki/Java_Management_Extensions

LucidWorks Search Documentation 10-Dec-2013
Where 3000 is an unused TCP port number.

You might want to secure remote JMX access either by configuring a software or hardware firewall
to allow connections to specified port only from your hosts/network or by configuring password
authentication and/or SSL encryption. For more information about various security options please
refer to the JMX documentation.

JMX Clients

There are number of various JMX clients you can use to connect to the LucidWorks Search server
and browse available information.

JConsole

JConsole is a standard (part of the JDK) graphical monitoring tool to monitor Java Virtual Machine
(JVM) and Java applications which provides a nice way to display memory and CPU information as
well MBeans from arbitrary applications.

© 2013 Find this documentation online at Page 234 of 256
LucidWorks http://docs.lucidworks.com/

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

LucidWorks Search Documentation

10-Dec-2013

Canpdilen Wwdaw =
I T ——
o R IE
Hzp Bevasy eage
IME
25 My , u=
My
(LD
I:I.Eﬂ IIE'I\:I IIEIII
W AN Coeeilad G547 W0 Men |1 Ch Vivw 47 fusk 48 Ttal K6
s L TRV
a0 ¥
oo . B
(acs
= |
il il i , [l
180 L:ta P FE R TR F ¥]
lLosdel §045 Usiosled 0 Towsl 8045 CFUihigs DLIN
Canrilen Awdaw Hilp
| v ey Thiesls Cloaes ey Ve L e
e e
10 s
1% M
Py
15
o
0o s . ﬂ'-'am
[FT) [ENT) [F] -'l
il
[Tame we W e
Ml T re——
Uemanimngdr 00,00 s =
Mol 200 TNE ke
Ll e 5 S e d o P (17 oo L L‘ ‘
LR] k —
"
o] bt

Conmalion Wadaw Hip

— | Owrseem My Thiemls Clmasy *WE—'

T P
[L R e v
= e g caihing T
= [e LG o ol CORE
* I g iy Meeriia ulou‘:'.lmu
RTINS Y maaiiar -
= B W TR E R N e rgEScne 1o sk Roirindeadea ke
R . R G []
= B ey Etpeshany | | SRGRCAA o fal 18 O7-FIL26 UTC 2048
= D e DieonsAz oy gress_l
* i gmrn, it rrapebn AR b
g "y rigberzdsi M Jal LA O7-TLIT UTC 2000

L | . . SuTrde] EEaEd s mn
*) anecsmn = T

= sewn nay

b i LE

. T o

= I i

= i e

= I el

= e TR

= I dretipien

& [| tvERd "|

2 | Refras |

IJMXTerm

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 235 of 256

LucidWorks Search Documentation 10-Dec-2013

Jmxterm is an open source command line based interactive JMX client. It allows you to easily
navigate JMX MBeans on remote servers without running a graphical interface or opening a JMX
port. It can also be integrated with script languages such as Bash, Perl, Python, Ruby, etc. See the
following as an example of how it can be used:

sh> java -jar jnxterm1.0-al pha-4-uber.jar
Wel come to JMX terminal. Type "hel p" for avail abl e comands.

$>j vns

67183 () - start.jar /Users/al exey/ LME/ conf/jetty/rails/etc/jetty.xm

/ Users/ al exey/ LME/ conf/jetty/rails/etc/jetty-jm. xm

/ Users/ al exey/ LME/ conf/jetty/rails/etc/jetty-ssl.xmn

67182 (m - start.jar /Users/al exey/ LME/ conf/jetty/lwe-core/etc/jetty.xmn
/ User s/ al exey/ LME/ conf/jetty/|lwe-core/etc/jetty-jnx. xm

/ User s/ al exey/ LMWE/ conf/jetty/|lwe-core/etc/jetty-ssl.xm

93534 () - jnmxterm 1. 0-al pha-4-uber.jar

8554 () -

$>open 67182
#Connection to 67182 is opened

$>donmi ns

#fol | owi ng domai ns are avail abl e
JM npl errent at i on

com sun. managenent
java. |l ang
java.util .l ogging
org.northay.jetty
org.nortbay.jetty. handl er
org.nortbay.jetty.security
org.northay.jetty. servl et
org.nortbay.jetty.webapp
org. nortbay. | og
org.nortbay. uti

sol r/ Luci dWor ksLogs
solr/collectionl

$>domai n solr/collectionl
#domain is set to solr/collectionl

$>beans
#domain = solr/collectioni:

sol r/col l ectionl:id=collectionl,type=core
sol r/col | ectionl:id=org. apache. sol r. handl er. St andar dRequest Handl er, t ype=st andar d

sol r/col | ectionl:id=org. apache. sol r. search. Fast LRUCache, t ype=fi el dval ueCache
sol r/col |l ectionl:id=org. apache. sol r. search. LRUCache, t ype=docunent Cache
sol r/coll ectionl:id=org. apache. sol r. search. LRUCache, t ype=filterCache

© 2013 Find this documentation online at Page 236 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation

sol r/col l ectionl:id=org. apache. sol r. search. LRUCache, t ype=quer yResul t Cache
sol r/col |l ectionl:id=org. apache. sol r. search. Sol r Fi el dCacheMBean, t ype=fi el dCache

sol r/coll ectionl:id=org. apache. sol r. search. Sol r| ndexSear cher, t ype=sear cher
sol r/col | ectionl:id=org. apache. sol r. updat e. Di r ect Updat eHandl er 2, t ype=updat eHandI er

$>bean type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2
#bean is set to
sol r/col | ectionl:type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2

$>info

#nbean =

sol r/col | ectionl:type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2
#cl ass nane = org. apache. sol r.core. JmxMni t or edMap$Sol r Dynanmi cMBean

attributes

% - adds (java.lang.String, r)

% - autocommit naxTine (java.lang.String, r)

" - autocommits (java.lang.String, r)

%3 - category (java.lang.String, r)

% - commits (java.lang.String, r)

%5 - cumul ative_adds (java.lang.String, r)

%6 - cumul ative_del etesByld (java.lang.String, r)

%’ - cumul ative_del etesByQuery (java.lang.String, r)
%8 - cunulative_errors (java.lang.String, r)

%0 - deletesByld (java.lang. String, r)

%40 - deletesByQuery (java.lang.String, r)
%1 - description (java.lang.String, r)
%2 - docsPending (java.lang.String, r)

%3 - errors (java.lang.String, r)
%44 - expungeDeletes (java.lang.String, r)
%5 - name (java.lang.String, r)

%6 - optimzes (java.lang.String, r)
%7 - rollbacks (java.lang.String, r)

%48 - source (java.lang.String, r)
%49 - sourceld (java.lang.String, r)
%0 - version (java.lang.String, r)

#there's no operations
#there's no notifications

$>get cumul ati ve_adds

#mbean =

sol r/col | ectionl:type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2:
cunmul ati ve_adds = 125;

10-Dec-2013

JMX MBeans

LucidWorks includes a number of useful JMX MBeans, some available through Solr and some

developed in LucidWorks Search itself:

© 2013 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 237 of 256

LucidWorks Search Documentation

10-Dec-2013

Solr MBeans

Domain

solr/
collection

solr/
collection

Objects

type=updateHandler,
id=org.apache.solr.update.
DirectUpdateHandler2

type=/update,

id=org.apache.solr.handler.

XmlUpdateRequestHandler

Available attributes

cumulative_adds,
cumulative_deletesByld,
cumulative_deletesByQuery,
cumulative_errors,
commits, autocommits,
optimizes, rollbacks,
docsPending, etc

request, errors,
avgTimePerRequest, etc

Comments

This MBean provides
comprehensive information
about indexing activity like
number of added
documents, number of
errors, number of commits,
autocommits and optimize
operations. It is really
useful to plot that
information into graphs in
your monitoring system.
The cumulative_errors
parameter shows the
number of low level I0
exceptions.

If using direct Solr API,
there are separate beans
for all types of handlers
you can use to index
documents into the
system, such as XML, CSV,
JSON request handlers. It
makes sense to add this
UpdateRequest Handler
information to indexing
graphs as well. You might
also setup monitoring alert
on a number of errors for
particular update handler
to make sure LucidWorks
Search clients don't hit any
errors during indexing like
invalid fields names or
types, no required fields in
indexed documents, etc.

© 2013

LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 238 of 256

LucidWorks Search Documentation 10-Dec-2013

solr/ type=/lucid, requests, errors, timeouts, This MBean represents the
collection id=org.apache.solr.handler. avgTimePerRequest default LucidWorks Search
StandardRequestHandler request handler and

provides statistics about
number of search requests,
errors, timeouts and
average response time for
search requests. It's pretty
useful to display this
information on monitoring
graphs as well as setup
monitoring alerts, such as,
"notify administrator if
average response time is
more than 0.5 second or
total number of errors and
timeouts is more than 1%
of total requests".

© 2013 Find this documentation online at Page 239 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

solr/ type=searcher, numbDocs, warmupTime numbDocs is the total
collection id=org.apache.solr.search. number of documents in
SolrIndexSearcher the index. warmupTime is

the amount of time a new
Searcher takes to warm.
When LucidWorks Search
commits new data into
index, a new Searcher is
opened and warmed. The
warming operation
regenerates caches from
the previous Searcher
instance and runs some
predefined in
solrconfig.xml queries to
warm up IO filesystem
cache and load Lucene
FieldCache in memory. This
attribute basically defines
how long does it take to
commit before new data
will be available to users. It
makes sense to monitor
this parameter and setup
trigger to alert the
LucidWorks Search
administrator if it takes
more time than you
expect.

© 2013 Find this documentation online at Page 240 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

solr/

collection id=org.apache.solr.search.

solr/

solr/

collection id=org.apache.solr.search.

type=filterCache,

LRUCache

type=queryResultCache,
collection id=org.apache.solr.search.

LRUCache

type=documentCache,

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_ hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

cumulative_evictions,
cumulative_ hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

cumulative_evictions,
cumulative_hitratio,
cumulative_ hits,
cumulative_inserts,

Solr caches popular filter
query (fg=category:IT)
attributes as unordered
sets of document ids. This
technique significantly
improves search
filtering/faceting
performance. size is the
current number of cached
filter queries.
cumulative_hitratio
represents if this cache is
successfully utilized by
giving the ratio of
successful cache hits to
overall number of lookups.
If it's low (such as < 0.3 or
30%) over long period of
time then you might want
either increase cache size
or disable it at all to reduce
performance overhead.

This cache stores ordered
sets of document IDs and
the top N results of a query
ordered by some criteria. It
has the same attributes as
filterCache.

The documentCache stores
Lucene Document objects
that have been fetched
from disk.

cumulative_lookups, etc

LucidWorks Search MBeans

Available Comments

attributes

Domain Objects

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 241 of 256

LucidWorks Search Documentation 10-Dec-2013

Iwe id=crawlers, total_runs, This MBean displays crawlers statistics
name=<data_source_id>, total_time, information for specific data source
type=datasources num_total, (like number of processed documents,

num_new, number of errors, etc). If you have
num_updated, periodically or long running scheduled
num_unchanged, data source then you might want to
num_failed, monitor and alert if there's any problem
num_deleted with the underlying source (web site,

SharePoint server, etc) or how
optimized your incremental crawl is
(percentage of num_unchanged to
num_total), for example.

Iwe id=crawlers, total_runs, If you have multiple data sources and
name=<collection_name>, total_time, don't want to monitor on per data
type=collections num_total, source level, but keep an eye on

num_new, aggregate numbers for the whole
num_updated, collection you might want to use this
num_unchanged, bean.

num_failed,

num_deleted

Iwe id=crawlers, total_runs, You can use this MBean if you have
type=total total_time, multiple collections (homogeneous
num_total, collections or multi-tenant architecture)
num_new, to monitor on per instance level.

num_updated,
num_unchanged,
num_failed,
num_deleted

Integrating with Monitoring Systems

Using JConsole and JmxTerm tools is a good way to explore information hidden in JMX, but what
you really need is to monitor your application automatically, record historical information, display it
in a graphical form, configure parameters thresholds as triggers and send alerts in case of denial of
service or performance problems. There are various standard sysadmin tools for that and
integrating LucidWorks with them is no different than with any other Java application. The idea is
that you can retrieve application information and send it to external monitoring system. In our
documentation we provide two examples of integrating LucidWorks server with popular open
source monitoring tools - Zabbix and Nagios.

Zabbix

© 2013 Find this documentation online at Page 242 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Zabbix is an enterprise-class open source distributed monitoring solution for networks and
applications. It comes with pre-defined templates for almost all operating systems as well as
various open source applications. It also has a great template for JVM that contains the most vital
statistics of arbitrary Java application. There are different ways how you can integrate LucidWorks
with Zabbix and the best approach depends on the Zabbix release version.

Pre-2.0 Releases

Zabbix does not contain built-in support for monitoring Java applications prior to v2.0, but if you
are handy with scripting and command line tools then there are two possible approaches:

UserParameter: You can configure the Zabbix system agent to send custom monitored items
using User Par anet er . For retrieving JMX statistics you can use either cmmdline-jmxclient or
jmxterm as command line clients.

User Par anet er =j vm nmaxt hreads, java -jar cndline-jmxclient.jar |ocal host: 3000
java. |l ang: t ype=Thr eadi ng PeakThr eadCount

zabbix_sender utility: If you have a large number of JMX monitored items, or you need to monitor
some items quite frequently, then spawning a Java Virtual Machine process to get a single
object/attribute can be too expensive. In this case consider scripting JMX interactions using the
JMXTerm command line tool and your favorite scripting language. The solution below is in Ruby but
could be implemented using any scripting language. The main idea is that you can run a JMXTerm
java application from your script and communicate with it using st di n and st dout streams using
the expect library.

© 2013 Find this documentation online at Page 243 of 256
LucidWorks http://docs.lucidworks.com/

http://www.zabbix.com
http://www.zabbix.com/documentation/1.8/manual/config/user_parameters
http://crawler.archive.org/cmdline-jmxclient/
http://wiki.cyclopsgroup.org/jmxterm
http://www.zabbix.com/documentation/1.8/manual/processes/zabbix_sender
http://en.wikipedia.org/wiki/Expect

LucidWorks Search Documentation 10-Dec-2013

require "open3"
require 'expect'

run jnxtermjava application

stdin, stdout, wait_thr = Open3. popen2e('java -jar jnxterm1l.0-al pha-4-uber.jar")
wait for pronpt

result = stdout.expect('$>, 60)

connect to specific jvm
stdin. puts("open #{process_id}")
result = stdout.expect('$>, 60)

stdin.puts('get -d solr/collectionl -b

t ype=sear cher, i d=or g. apache. sol r. search. Sol rI ndexSear cher nunDocs')
result = stdout.expect('$>, 60)

parse response from jnmxterm conmand

run zabbi x_sender conmand to send single itemor save nultiple values into file and
send as a batch

out put = "zabbi x_sender -z #{@erver_nane} -p #{@erver_port} -i file.txt .chonp

parse response and validate that operation is successfu

2.X Releases

Zabbix 2.0 contains built-in support for monitoring Java applications (Zabbix Java proxy). For more
information please see the JMX Monitoring section of the Zabbix manual.

The following steps describe how to integrate LucidWorks Search with the Zabbix 2.0 release.

1. Download and install the 2.0 release according to the official documentation.
In order to build Zabbix JMX proxy you should build Zabbix package with the - - enabl e-j ava
configuration option, such as ./ confi gure --enabl e-server --wth-nysqgl --enable-java

If you intend to run Zabbix on the same server where you installed LucidWorks, you may
want to add the - - enabl e- agent option, such as ./ configure --enabl e-server
--with-nysgl --enable-java --enabl e-agent.

3. After make install, copy the example i nit. d start script from
m sc/init.d/ debi an/ zabbi x- server into the/etc/init.d directory and edit it to start the
JMX proxy daemon by adding <i nstal | _di r>/sbi n/ zabbi x_j ava/ start up. sh and
<install _dir>/sbhin/zabbix_javal/ shut down. sh calls to the corresponding options in
init.d.

© 2013 Find this documentation online at Page 244 of 256
LucidWorks http://docs.lucidworks.com/

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/installation/install

LucidWorks Search Documentation 10-Dec-2013

4.

10.

11.

Configure JMX proxy in / et c/ zabbi x/ zabbi x_server. conf by editing the JavaGat eway,
JavaGat ewayPort and StartJavaPol | ers parameters. The JavaGat ewayPort should match
the LI STEN_PORT defined in <i nst al | _di r>/ shi n/ zabbi x_j ava/ settings. sh. It is also
recommended to enable JMX proxy verbose logging by editing

<install _dir>/sbhin/zabbix_java/lib/logback.xm and changing the fil e element to
point to your log file directory and setting the | evel attribute to "debug".

Import, using the Zabbix UI, the sample templates found in

$LWS_HOVE/ app/ exanpl es/ zabbi x called | we_zabbi x_t enpl at es. xml (there are 3 in that
file).

Install the Zabbix agent to the server where LucidWorks Search is installed and configure it
to connect to the Zabbix server.

Add Zabbix host and assign proper template for the specific operating system (i.e., linux,
freebsd, etc.).

Assign the imported templates (Template_JVM, Template_Solr, Template_LWE) to that host.
Enable JMX monitoring in LucidWorks and allow the Zabbix server connect to JMX interface
over the network. Instructions to enable JMX monitoring are in the Enabling JMX for
LucidWorks Search section of this Guide.

Add the JMX interface to the host where LucidWorks is installed. This is done via the Zabbix
UI by creating JMX agents for each counter.

Start any activity in LucidWorks (such as, crawling, indexing, or serving queries) and review
the graphs for the monitored host (see screenshots below).

Example graphs

® Total number of documents in search index

Wiurkar ddecanants g 2 0 Kodps ATEE

i Solr index operations (commlts optlmlzes rollbacks)

5
1
‘ ‘ I ‘

© 2013 Find this documentation online at Page 245 of 256
LucidWorks http://docs.lucidworks.com/

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring#configuring_jmx_interfaces_and_items_in_zabbix_gui

LucidWorks Search Documentation 10-Dec-2013
b _SoIr document operations (adds, deletes by id or query)

Zabeds gwnamr Szir Dazs=wre dxeewdzte (13

vl ol
||1f'l.'l|"|"[Ii iy b I'|1 SN |Lt '--L lu.'.ﬁﬂt J“‘-*|”' Ayt

L]
[w i [T

Wi I =t e ar [T o 51 Huw
Iu -u- e e LT Capn dur o
£ i ity g 470 ot W B B G

i Crawllng activity - number of total documents processed, number of failures (retrieve,
parsing), humber of new documents

Tackw parve Trandlmg asuey 15T

]
£3 i
ELPE

Wrramars Tad Do [o v '
Poassiirandlng fuy Gl Cde @Ry
| o = e Pt

® Search activity - number of search requests

Zabcla ennemr Sewrc- ooy (IR

R —
@ - Mg — =
i - e " "y s
i
i i
\
- |
L -
EEECCESEEEEEEzcicSEdds EENE]
na g w
[£ iy
e s -
- =y [w o I

® Search Average Response Time

Zackw eerua Saarch fwmrage Sszorea Timw (1)

wa i wi

* Searcher Warmup Time (how fast commltted docs become V|S|ble/searchable)

ZasK anAr Saaeeer Warmup T e

© 2013 Find this documentation online at Page 246 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
® Java Heap Memory Usage

© 2013 Find this documentation online at Page 247 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation

10-Dec-2013

® (Caches stats

Fatiedx morwer- Cltar Cache Sra (1)
am
-] f 1 "t I| |".r W
= |I|' || I 1
f |
ma |4l ., \
wa | ¥ |
E ll'll
et
= +
B I = AT @ 3 ® P @A B 1 8 B g ® I B % 8 B £ H E H I EBE B HEH g
W & m & @ a & & @ = = & &] A4 8 d da 4 i A i g
]]
W R w vin
WPl Defmliie Jod 400 NG 434
X Zaz w2 mmrvee: e Car-o Hie Ras 1 (L7
'
4
|
= |
B4 .
PR R E R L T P L R R E
L] B
L1 2
Wi ierd HEfEe :‘:a ':.r':l ;A- :;
Zmdwearver Dec—at Cxcha J2a 117
s
w 7
| i) ; |
| i I I 1
| [’
B | i r I|
xa | L
| 1
za !
[I
Y EmREEggiq SAEFNBUUBECEEas
FEEEEEEEEEEE EEEEERERE RN
] I
F 3
R
Bisawt Crim Gan amg B2 a AEAT i
) Zack-x gervws Zocumes: Caca HrAme (IK
w
ar | —
1 —_—
i
n| i
4
u | R
" o i
¥
: IRIANEHELES
133313 s 3
5
1
o | - i T T
| L i H 1
= 14 1 ! I
aa ' 1} < & 1
| | by -i-gr I}
na | 1! pe - tt
| i v
o |] 'I: |||
mn ! -
G EEERGHCFRAEREEES THERRAA3 33835823 153 RRRLFFEFESFEEREEAD ¢
A A EH = ddd:i13::241 215z 3342568 CEEEAAdAdAdd s
L] B
L] E
Winwyhekiaraize fwdl DE &8 mals di
X Iakziz pumar CQumry lemuz Zaz~a HE Rtk (D
b | E,
1) .i_’_.—""_
=i -
=H| "
¥l r
2 | e i
224 4 .
I I H IR
= [
L1 2
I ma am
Winey ek ahs HiBue wdl BN ElL ElF ad

Nagios

© 2013
LucidWorks

Find this documentation

online at Page 248 of 256

http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013
Nagios is a popular open source computer system and network monitoring software application. It
watches hosts and services, alerting users when things go wrong and again when they get better.
There are different Nagios plugins that allow you to monitor Java applications using JMX interface.
We recommend you to use Syabru Nagios JMX Plugin as the most mature plugin that supports
different data types (integers, floats, string regular expressions) and advanced Nagios threshold
syntax. In order to install Syabru Nagios JMX Plugin you should copy check_j nx and

check_j nx. j ar from the downloaded package to Nagios pl ugi ns directory and add check_jmx
command definition to either global commands. cf g configuration file or put the j nx. cf g file into
nagi os_pl ugi ns configuration directory. The next step is to define Nagios services, as in this

example:

LWE searcher warnmup tinme is no nore than 1) 1 second - warning state 2) 2 seconds -
critical state
define service {

host gr oup_nane al |
servi ce_description LVWE_SEARCHER WARMUP_TI ME
check_conmmand check_j mx! 3000! - O

"sol r/coll ectionl:type=searcher,id=org.apache. sol r. search. Sol rl ndexSearcher" -A
war mupTi mre -w 1000 -c¢ 2000 -u ns
use generi c-service
notification_interval 0
}
LVE search average response tinme is no nore than 1) 100ms - warning state 2) 200ns -
critical state
define service {

host gr oup_nane al |
servi ce_description LWE_SEARCHER_AVG _RSP_TI ME
check_command check_j mx! 3000! - O

"solr/collectionl:type=/lucid,id=org. apache. sol r. handl er. St andar dRequest Handl er" - A
avgTi mePer Request -w 100 -c¢ 200 -u ns

use generic-service

notification_interval 0

After you setup your services and reload the Nagios configuration you can monitor application state
using either the Nagios web UI or receive email notifications.

® Nagios UI screenshot (thresholds on the screenshots are lowered to trigger critical state as
an example)

ocalhost () LWE SEARCHER AVG RSP TIME _ 2011-08-2208:02:21 0d0h23m52s 4/4 JMX CRITICAL - avgTimePerRequest = 3.3344553ms
LWE SEARCHER WARMUP TIME [CRMICAINNN 2011-08-22 08:01:56 0d Oh 17m 53s 44 JMX CRITICAL - warmupTime = 1284ms
© 2013 Find this documentation online at Page 249 of 256

LucidWorks http://docs.lucidworks.com/

http://www.nagios.org/
http://snippets.syabru.ch/nagios-jmx-plugin/
http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition
http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition

LucidWorks Search Documentation 10-Dec-2013

Nagios email alert
* PROBLEM Service Alert: localhost/LWE_SEARCHER_WARMUP_TIME is CRITICAL **

Inbox | X

nagios@ip-10-110-235-82.ec2.internal to me 11:52 AM (44 minutes agc

Mofification Type: PROBLEM

Service: LWE_SEARCHER_WARMUP_TIME
Host: localhost

Address:; 127.0.0.1

State: CRITICAL

Date/Time: Mon Aug 22 07:52:01 UTC 2011
Additional Info:

JMX CRITICAL - warmupTime = 1114ms

Helpful Tips

OS file system cache: One of the frequent problems with LucidWorks Search and
Lucene/Solr applications is that if you do not have enough free memory and a significant
index size you might notice performance problems because there's not enough free memory
for the file system cache. IO cache is a crucial resource for search applications, so it
definitely makes sense to monitor this parameter and display it in graphs with other memory
information like free memory, jvm heap memory, swap, etc. This parameter is part of the OS
level monitoring in Zabbix (name is vm nenory. si ze[cached]).

File descriptors: Another problem is that sometimes your application can hit OS or per
process file descriptor limits. It is also recommended to monitor these parameters and set
trigger thresholds for these parameters.

CPU usage: Default Zabbix templates have triggers for CPU load average numbers. You
might want to tune thresholds for your server based on number of CPUs and expected load.
Heap memory usage and garbage collector statistics: Zabbix Java template contains
multiple items and triggers for memory and garbage collector invocation counts. You should
also tune these parameters to match your scenario.

Solr index size and free disk space: These should be set properly to avoid "Out Of Disk
Space" errors.

© 2013 Find this documentation online at Page 250 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Glossary of Terms
Where possible, terms are linked to relevant parts of the documentation for more information.

Jump to a letter:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A

Alerts
An alert allows a user to save searches. There are two types: active, which will send notifications
when new results are found, and passive, which do not send notifications.

Auto-Complete

A way to provide users suggestions for possible matching queries before they have finished typing.
In LucidWorks Search, this relies on an index of terms to be created on a regular basis by
scheduling it as an activity.

Boolean Operators
These control the inclusion or exclusion of keywords in a query by using operators such as AND,
OR, and NOT.

C

Click Scoring Relevance Framework
A method of changing the relevance ranking of a document based on the number of times other
users have clicked on the same document.

Collection
One or more documents grouped together for the purposes of searching. See also Document.

© 2013 Find this documentation online at Page 251 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

Component

A part of LucidWorks Search that has been designed to stand alone or can be run independently
from other components. LucidWorks Search has three main components: LWE-Core, which runs
Solr, indexing, and other critical application functions, LWE-Connectors, which handles all crawling
activities, and LWE-UI, which runs the Administrative UI, the front-end search interface, and the
alerting functionality.

Connector
A connector is a program or piece of code that allows a connection to be made to a data source
and content to be extracted from it.

Crawler
Also known as a "spider", this is a program that is able to retrieve documents internal or external
servers.

D

Data Source
Defines the metadata required to connect to a location containing content to be indexed. It could
be a file system path, a Web URL, a JDBC connection, or some other set of values.

Distributed Index
A distributed index is one where the search index for a collection is spread across more than one
shard.

Distributed Search
Distributed search is one where queries are processed across more than one shard.

Document
One or more Fields. See also Field.

F

Field
The content to be indexed/searched along with metadata defining how the content should be
processed by LucidWorks Search.

© 2013 Find this documentation online at Page 252 of 256
LucidWorks http://docs.lucidworks.com/

LucidWorks Search Documentation 10-Dec-2013

I

Inverse Document Frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents
divided by the number of Documents that a particular word occurs in the collection. See
http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html for more info on
TF-IDF based scoring and Lucene scoring in particular. See also Term Frequency.

Inverted Index

A way of creating a searchable index that lists every word and the documents that contain those
words, similar to an index in the back of a book which lists words and the pages on which they can
be found. When performing keyword searches, this method is considered more efficient than the
alternative, which would be to create a list of documents paired with every word used in each
document. Since users search using terms they expect to be in documents, finding the term before
the document saves processing resources and time.

M

Metadata
Literally, data about data. Metadata is information about a document, such as it's title, author, or
location.

Natural Language Query
A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Q

Query Parser
A query parser processes the terms entered by a user.

R

© 2013 Find this documentation online at Page 253 of 256
LucidWorks http://docs.lucidworks.com/

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

LucidWorks Search Documentation 10-Dec-2013

Recall
The ability of a search engine to retrieve all of the possible matches to a user's query.

Relevance
The appropriateness of a document to the search conducted by the user.

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers. In
LucidWorks Search, the master continues to manage updates to the index, while queries are
handled by the slaves. This approach enables LucidWorks Search to properly manage query load
and ensure responsiveness.

REST API
An alternative way of controlling LucidWorks Search without accessing the user interface.

S

Shard
A method of partitioning a database or search engine to maximize performance and efficiency.

SolrCloud
Ongoing work within the Solr community to improve Solr's ability to operate in a cloud
environment.

Solr Schema (schema.xml)

The Apache Solr index schema. The schema defines the fields to be indexed and the type for the
field (text, integers, etc.) The schema is stored in schema.xml and is located in the Solr home conf
directory.

Solr Config (solrconfig.xml)

The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting,
spellchecking and various other configurations. The file, solrconfig.xml is located in the Solr home
conf directory.

© 2013 Find this documentation online at Page 254 of 256
LucidWorks http://docs.lucidworks.com/

http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 10-Dec-2013

Spell Check

The ability to suggest alternative spellings of search terms to a user, as a check against spelling
errors causing few or zero results. In LucidWorks Search, when spell-checking is enabled, a parallel
"spell" index is created as documents are indexed.

Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as
part of a natural language query. Stopwords are generally very small pronouns, conjunctions and
prepositions (such as, "the", "with", or "and")

Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one
another. In a search engine implementation, synonyms may be abbreviations as well as words, or
terms that are not consistently hyphenated. Examples of synonyms in this context would be "Inc."
and "Incorporated" or "iPod" and "i-pod".

T

Term Frequency

The number of times a word occurs in a given document. See http://en.wikipedia.org/wiki/Tf-idf
and http://lucene.apache.org/java/2_3_2/scoring.html for more info on TF-IDF based scoring and
Lucene scoring in particular.

See also Inverse Document Frequency (IDF).

W

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations
in spelling or tenses. In LucidWorks Search, there are two ways to use them. One is to use an
asterisk (*) at the end of a term to find all documents that contain words that start with that
pattern. For example, pai nt * would find pai nt, pai nt er and pai nti ng. A second way is to use a
question mark (?) in the middle of a term to substitute for one character in that term. Such as, c?t
would find cat, cot and cut . It's also possible to use wildcards at the start of a term in the same
way - either to replace a single letter (using the ? symbol) or to find documents that contain words
that end with a pattern using a *. For example, *spher e would find ecospher e and st r at osphere.

© 2013 Find this documentation online at Page 255 of 256
LucidWorks http://docs.lucidworks.com/

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

LucidWorks Search Documentation 10-Dec-2013

About LucidWorks

LucidWorks (formerly known as Lucid Imagination) is the trusted name in Search, Discovery and
Analytics, delivering the only enterprise-grade embedded search development solution built on the
power of the Apache Lucene/Solr open source search project. Founded in 2008, the company
initially provided support, consulting services, documentation and training for the Apache
Lucene/Solr open source search project.

Within a few years, the LucidWorks team realized the need to add value to the open source search
platform by developing an extensive layer of services which made Lucene/Solr secure and easier to
use and manage. The company shipped the first version of its flagship product, LucidWorks Search,
in 2011, followed by LucidWorks Big Data in May 2012. LucidWorks continues to offer support,
documentation, consulting services and training products for Lucene/Solr.

LucidWorks remains committed to giving back to the Apache Lucene/Solr community. Out of the 37
Core Committers to the Apache Lucene/Solr project, 9 individuals work for LucidWorks, making the
company the largest supporter of open source search in the industry. Further, LucidWorks hosts
the Lucene Revolution, a conference dedicated to sharing ideas and promoting the Apache
Lucene/Solr open source search project.

For more information on product and support options for LucidWorks Search, please write to:
sales@lucidworks.com or visit our website. Support inquiries can be submitted to our Support
group.

s LucidWorks:

LucidWorks
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.525.1365

© 2013 Find this documentation online at Page 256 of 256
LucidWorks http://docs.lucidworks.com/

http://www.lucidworks.com
http://www.lucidworks.com

	How to Use this Documentation
	Conventions
	Paths
	Notes
	REST API Conventions

	Customers of LucidWorks Search on AWS or Azure
	Configuration Options
	API Conventions for LucidWorks Search on AWS or Azure

	Getting Support & Training

	Getting Started
	LucidWorks Search User Interface Help
	System Configuration Guide
	Understanding LucidWorks Search
	How Search Engines Work
	Indexing
	Searching
	Full-text Searching and Challenges

	How LucidWorks Search Works
	Related Topics

	Working With LucidWorks Search Components
	About the Components
	LWE-Core
	LWE-UI
	LWE-Connectors
	Default Installation URLs

	Configuring the Components
	Related Topics

	System Directories and Logs
	Locating Files and Directories
	Configuring LucidWorks Search Directories
	Temporary Files

	System Logs
	Log Properties

	LucidWorksLogs Collection
	Related Topics

	Starting and Stopping LucidWorks Search
	Starting a Standalone LucidWorks Search Instance
	Starting SolrCloud-enabled LucidWorks Search Instances
	Passing SolrCloud parameters at Start
	Updating master.conf

	Stopping LucidWorks Search (all modes)
	Starting or Stopping Components Separately

	Configuring Default Settings
	Related Topics

	LucidWorks System Usage Monitor
	Information Collected
	How the System Usage Monitor Works
	When Information is Sent
	How Information is Sent

	How to Opt-In or Opt-Out
	During Installation
	Post-Installation

	More Information

	Collections and Indexes
	Working with Collections
	Default Collections
	Per-Collection Features
	System-Wide Features
	Related Topics

	Using Collection Templates
	Included Templates
	Creating a Template
	Related Topics

	Indexing Documents
	Defining Fields
	Indexing Data Sources
	Related Topics

	How Documents Map To Fields
	Related Topics

	Customizing the Field Schema
	Guidelines for Removing Fields from the Schema
	Essential Fields
	Built-In Search UI Fields
	Fields to Support Specific Features
	Crawler Fields
	Other Dynamic Fields

	Table of Fields

	Reindexing Content
	Related Topics

	Multilingual Indexing and Search
	Approaches to Multilingual Search
	Single Field Approach
	Multiple Field Approach
	Multiple Indexes Approach

	Open Source Multilingual Capabilities
	Adding Support for Other Languages
	Related Topics

	Lucid Plural Stemming Rules
	The Stemming Rules File
	Types of Stemming Rules
	Protected Word
	Replacement Word
	Protected Suffixes
	Translation Suffix

	Example Stemming Rules File
	Choosing an Alternate Stemmer
	Using the FieldTypes API
	Editing schema.xml

	Deleting the Index
	Related Topics

	Storing Indexes in HDFS
	Related Topics

	Crawling Content
	Overview of Crawling
	The Crawl Process
	Re-Crawling Documents

	Data Source Options
	Logging
	Scheduling
	Field Mapping

	Data Source Types
	Related Topics

	Supported Filetypes
	Supported File Formats

	Troubleshooting Document Crawling
	Errors Creating Data Sources
	Path or URL Errors
	MapR-related Errors

	Understanding Crawl Errors
	Possible Errors

	Related Topics

	Crawling Windows Shares with Access Control Lists
	Permissions with Access Control Lists
	How SMB ACL Information Is Stored In The Index
	Related Topics

	Indexing Binary Data Stored in a Database
	Example
	Related Topics

	Using the High Volume Crawlers
	System Requirements
	Using a Local Hadoop Instance
	Special Requirements for MapR

	Using High Volume Crawlers in LucidWorks
	How it Works
	Permission Issues
	Differences from Other Hadoop Crawlers in LucidWorks
	Conversion to SequenceFiles

	Example: Indexing Shakespeare with MapReduce
	Prepare the Content
	Setup LucidWorks Search
	Setup the Data Source and Run

	Related Topics

	Suggestions for External Data Sources
	Add the fm.ds Parameter to the Push Request
	Add lucidworks_fields to Incoming Content
	Schedule the Data Source with the callback Attribute
	Examples
	Related Topics

	Indexing Documents Directly to Solr
	Solr and the LucidWorks Admin UI
	Indexing Solr XML
	Indexing Column (Comma) Delimited Data
	Related Topics

	Integrating Nutch
	Solr indexer
	Field mapping in Nutch
	Field mapping in LucidWorks
	Putting it all together
	Summary
	Related Topics

	Processing Documents in Batches
	How a Batch is Constructed
	Steps to Configure Batch Crawling
	More about the Data Source Settings

	Related Topics

	Query and Search Configuration
	Overview of Query Processing
	Matching the User's Query to Documents
	Search Results

	Getting Search Results
	Basics of Searching
	Request Handlers
	Query Parsers

	Related Topics
	Constructing Solr Queries
	Solr Query Parameters
	Query Parsers
	Related Topics

	Solr Query Responses
	Structure of the Response
	The responseHeader Section
	The response Section
	The highlighting Section
	The facet_counts Section
	The spellcheck Section
	The debug Section

	Format of Results
	Related Topics

	Query and Response Examples
	Related Topics

	Understanding and Improving Relevance
	Relevance Testing
	After Testing
	Related Topics
	Indexing and Relevance
	Stop words
	Alternate Indexing Fields
	Document and Field Boosting
	Stemming and Lemmatization

	Queries and Relevance
	Boosting Specific Documents
	Query Term Boosting
	Click Scoring Relevance Framework
	Synonyms
	Unsupervised Feedback
	Boosting Documents According to Rules
	Related Topics

	Relevance Tuning Tools
	Relevancy Workbench
	Explain Scoring
	Solr Analysis
	Using Luke
	External Boost Data
	Related Topics

	Synonyms and Stop Words
	Synonym Expansion
	Stop Words
	Related Topics
	Suppressing Stop Word Indexing
	Disabling Stop Word Indexing
	Position Increment Mode

	Spell Check
	Related Topics

	Auto-Complete of User Queries
	Automatic Creation of Auto-Complete Indexes

	Enterprise Alerts
	How Alerts Work
	Enabling Alerts

	Click Scoring Relevance Framework
	Functionality of Click Scoring
	Collection of Query Terms and User Clicks
	Processing Logs
	Maintenance of Historical Click Data
	Document Boost Data
	Integration of Boost Data with the Index

	Using Click Scoring information
	Related Topics
	Using Click Scoring Tools
	File Formats
	Query and Click-through Log Format
	Boost File Format

	Click-induced Boost Calculation
	ClickAnalysisRequestHandler
	Click Scoring Tools and Index Replication

	Business Rules Integration
	About Rules Engines
	When Should I Use Business Rules?
	How to Implement Business Rules in LucidWorks Search
	Integrating with your Rules Engine

	Configuring Business Rules in LucidWorks Search
	RequestHandlers
	/rulesMgr
	Optional RequestHandlers
	/update-with-rules
	/update-extract-with-rules
	/search-with-rules

	SearchComponents
	firstRulesComp
	lastRulesComp
	Rules Component Parameters
	Input Parameters
	Facts Collected for the RulesComponent

	landingPage
	Input Parameters
	Facts Collected for the LandingPageComponent

	UpdateRequestProcessorChain
	Facts Collected for the RulesUpdateProcessor

	Document Transformer
	Facts Collected for the RulesDocTransformer

	Rules with Index Replication

	Writing Rules
	Rules Files
	Rule Declarations
	rule and Attributes
	when Conditions
	then Actions

	DroolsHelper Class
	Limitations

	Related Topics

	Example Rules and Recipes
	Sample Rule Files
	Detailed Examples
	README Example
	Landing example

	Disabling Business Rules
	Remove Rules from Update Chain
	Remove Rules from the /lucid Request Handler
	Remove the Rules Request Handler
	Remove Rules Search Components
	Remove the RulesDocTransformer
	Remove Rules From the Replication Handler

	Security and User Management
	Securing LucidWorks
	Enabling Basic Auth for UIs and APIs
	Modify jetty.xml
	Create a realm.properties File
	Modify web.xml

	Restricting Access to LucidWorks Search User Interfaces
	Hiding Documents by Restricting Access
	Related Topics

	Enabling SSL
	Steps to Enable SSL
	Step 1: Modify master.conf
	Step 2: Modify jetty.xml for LWE-Core Component
	Step 3: Modify jetty-ssl.xml for LWE-Core Component
	Step 4: Modify jetty.xml for LWE-UI Component
	Step 5: Modify jetty-ssl.xml for LWE-UI Component
	Step 6: Modify jetty.xml for the LWE-Connectors Component
	Step 7: Restart LucidWorks

	Certificate Management
	Client Certificates for LWE-Core and Connectors
	Configuring Mutually Authenticated SSL
	Debugging SSL Configuration
	Common SSL Problems

	Related Topics

	Restricting Access to Content
	Search Filters
	Access Control Lists
	Document-based Authorization
	Related Topics

	LDAP Integration
	Enabling LDAP
	LDAP Configuration File
	User to Group Mappings

	Manual User Management
	Related Topics

	Solr Direct Access
	Solr Version
	How the LucidWorks-Bundled Solr is Different
	Adding Solr Plugins
	Related Topics

	Performance Tips
	Improving indexing speed
	Improving Search speed
	Related Topics

	Expanding Capacity
	Using SolrCloud in LucidWorks
	Enabling SolrCloud Mode
	Using the Embedded ZooKeeper
	Starting LucidWorks Search

	Bootstrapping Solr vs. LucidWorks Search

	How SolrCloud Works with LucidWorks
	Replicated Configurations
	Using the Admin UI in SolrCloud Mode
	Feature Limitations
	Collections APIs

	Using a Stand-Alone ZooKeeper Instance or Ensemble
	Related Topics

	Index Replication
	Configuring Replication on the Master Server
	Operations that Trigger Replication

	Configuring Replication on Slave Servers
	Configuring Replication on a Repeater Server
	Replicating Configuration Files
	Replicating the solrconfig.xml File

	Related Topics

	Distributed Search and Indexing
	Distributed Indexing
	Manual Distributed Indexing
	Manual Configuration
	Indexing Documents

	Distributed Search
	Programmatic Distributed Search
	Supported Components

	Scalability and Fault Tolerance
	Indexing in a Fault Tolerant Distributed Configuration
	Searching in a Fault Tolerant Distributed Configuration

	Integrating Monitoring Services
	JMX
	Enabling JMX for LucidWorks Search
	JMX Clients
	JConsole
	JMXTerm

	JMX MBeans

	Integrating with Monitoring Systems
	Zabbix
	Pre-2.0 Releases
	2.x Releases
	Example graphs

	Nagios

	Helpful Tips

	Glossary of Terms
	A
	B
	C
	D
	F
	I
	M
	N
	Q
	R
	S
	T
	W

	About LucidWorks

