
Created: 02-Jun-2014

LucidWorks Search
Custom Connector
Guide
2.8 Documentation

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 2 36

Table of Contents
How to Use this Documentation __ 5

Audience and Scope ___ 5
Conventions __ 5
Customers of LucidWorks Search on AWS or Azure ___________________________________ 7
Getting Support & Training __ 8

Custom Connector Guide ___ 9
Example Crawler __ 9
Introduction to Lucid Connector Framework __ 10
How To Create A Connector __ 12
Integrating Google Connectors __ 26
Integrating New Crawlers with LucidWorks ___ 34

About LucidWorks ___ 36

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 3 36

LucidWorks Search Documentation
The LucidWorks Search Documentation is organized into several guides that cover all aspects of
using and implementing a search application with LucidWorks Search, whether on-premise or
hosted on AWS or Azure.

Installation & Upgrade Guide

Installing LucidWorks Search
System Directories and Logs
Upgrade instructions for v2.8
Review changes from LucidWorks v2.7 to v2.8

System Configuration Guide

Troubleshooting crawl issues
Alerts configuration
Query options
Custom , field types, and other fields index customizations
Performance considerations and system monitoring
Distributed search and indexing
Security options

Lucid Query Parser

How the default query parser handles user requests
Customization options

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 4 36

LucidWorks REST API Reference

Configure and data sources administer crawls
Set system settings
Manage , , and fields field types collections
Example clients in , and C# Perl Python

Custom Connector Guide

Introduction to Lucid Connector Framework (see page 10)
How To Create A Connector (see page 12)

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 5 36

How to Use this Documentation

Audience and Scope
This guide is intended for search application developers and administrators who want to use
LucidWorks Search to create world class search applications for their websites.

While LucidWorks Search is built on Solr, and many of its features are implementations of Solr and
Lucene features, this Guide does not cover basic Solr or Lucene configuration. We do, however,
point out where LucidWorks Search deviates from Solr or Lucene standard configuration practices,
and have provided links to Solr and Lucene documentation where possible for further explanation if
the functionality in LucidWorks Search is identical to Solr or Lucene.

One important note to remember is that LucidWorks is multi-core enabled by default, with
 as the default core. This means that standard Solr paths such as collection1

, as shown in Solr documentation, would be http://localhost:port/solr/*

 in LucidWorks Search.http://localhost:port/solr/collection1/*

Topics covered on this page:

Audience and Scope (see page 5)
Conventions (see page 5)
Customers of LucidWorks Search on AWS or Azure (see page 7)
Getting Support & Training (see page 8)

Conventions

Paths
Server paths are described in relation to the base LucidWorks Search installation path, indicated by

. For example, if LucidWorks Search was installed at , then the path to$LWS_HOME /var/lucidworks

the 'app' directory shown as will be on the server.$LWS_HOME/app /var/lucidworks/app

Notes
Special notes are included throughout these pages.

Note Type Look & Description

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 6 36

Note Type Look & Description

Information

Notes with a blue background are used
for information that is important for
you to know.

Notes

Notes are further clarifications of
important points to keep in mind while
using LucidWorks.

Tip

Notes with a green background are
Helpful Tips.

Warning

Notes with a red background are
warning messages.

Cloud

 Information for LucidWorks Search
in the Cloud Users
Information specifically for LucidWorks
Search customers on the AWS or Azure
Platform.

REST API Conventions
Many of the LucidWorks Search support several methods (such as POST, GET, PUT,REST APIs
DELETE) and each is documented with detailed attribute descriptions and examples of inputs and
outputs. Each description includes the path to the API endpoint, parameters for input, and the
attributes returned as a result of the request.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 7 36

Windows users should take care when copying the examples as they assume that you are familiar
with how to modify unix-based curl commands for the Windows environment.

Parameters
Several of the paths shown in the API documentation include parameters that need to be modified
for your installation and specific configuration. These are indicated in .italics

For example, getting the details of a data source is shown as:

GET /api/collection/collection/datasources/id.

If you were using ' ' and data source ' ', you would enter:collection1 3

GET /api/collection/collection1/datasources/3.

Server Addresses
The LucidWorks Search REST API uses the , installed at byCore component http://localhost:8888/
default in LucidWorks Search. Many examples in this Guide use this as the server location. If you
have installed LucidWorks Search locally, and you changed this location on install, be sure to
change the destination of your API requests accordingly.

Customers hosted on AWS or Azure should see the section for #Customers of LucidWorks Search
 below.on AWS or Azure (see page 7)

Customers of LucidWorks Search on AWS or Azure
All of the preceding information on this page applies to customers who have LucidWorks Search
hosted on either AWS or Azure Platforms, with a few small exception which are detailed below.

Configuration Options
Certain configuration options are available with on-premise installations only (such as installation
options, manual configuration file changes, etc.). The following panel will appear on any page or
section that does not apply or is not available for LucidWorks Search on the AWS or Azure
platforms:

http://localhost:8888/

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 8 36

API Conventions for LucidWorks Search on AWS or Azure
Nearly all of the documented REST APIs will work for customers on AWS or Azure, but the example
API calls must be modified to include either the Access Key or the API Key and used as
authentication credentials. Customers are being transitioned from a simple Access Key to a more
secure Basic authentication system that requires a unique API Key.

1. Customers who only have an Access Key can see the key on the My Search Server page and the
main Collections Overview page of your instance (click the REST API button above the usage
graphs). Example URLs for API calls used in this documentation would then be changed from

 to .http://localhost:8989/api/... http://access.lucidworks.io/<access key>/api/...

This access key is specific to your instance and should be treated as securely as possible to prevent
unauthorized access via the APIs to your system.

2. Customers with Basic authentication have instances which use an URL with "https://s-
.lucidworks.io" where XXXXXXXX is 8 characters (letters or numbers). So, if yourXXXXXXXX

instance URL is "https://s-9sdff10b.lucidworks.io/" you would use that in place of any example API
calls that used "http://localhost:8888". For example, this call to get all collections:

curl 'http://localhost:8888/api/collections'

would be changed to:

curl -u 'API_Key:password' 'https://s-9sdff10b.lucidworks.io/api/collections'

The API_Key can be found by logging in to your LucidWorks Search instance, and clicking "My
Account" at the upper right of the screen. Click "API Access" on the left to view the API key. The
password is 'x' by default. There is not currently a way to change the default password. You should
take care not to expose this key when posting to our forums, as that information could be seen by
other LucidWorks Search customers.

For users on LucidWorks Search for Windows Azure, the above URL would be: 'https://s-
.9sdff10b.azure.lucidworks.io/api/collections'

Getting Support & Training
There are several options to get answers to questions besides this documentation:

The is a place to ask questions and share information about yourLucidWorks Search Forum
implementation.
The has articles written by our support and consultingLucidWorks Search KnowledgeBase
staff around common issues and questions.
Training Videos produced by the LucidWorks training team.
Premium support is also available, providing access to a help desk ticketing system. For more
information see .Lucene/Solr Support

http://support.lucidworks.com/categories/20055683-lucidworks-search-community-help
http://support.lucidworks.com/categories/20056513-lucidworks-search-knowledge-base
http://support.lucidworks.com/forums/21153378-training-videos
http://www.lucidworks.com/support-services/lucene-solr-support

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 9 36

Custom Connector Guide
This guide discusses how to build a custom connector with the LucidWorks Connector Framework.
It contains the following sections:

Introduction to Lucid Connector Framework (see page 10): Provides a technical overview of
how connectors work in LucidWorks Search and an introduction to the various components of
the Framework.
How To Create a Connector (see page 12): Provides detailed information about each
component, including how to build a custom component and which parts of the example
connector to reference while creating a connector.
Integrating Google Connectors (see page 26): If there is a Google Connector Manager
connector that you'd like to use with LucidWorks Search, here are some tips on how to
integrate it.
Integrating New Crawlers with LucidWorks (see page 34): Once the custom connector is
made, LucidWorks Search needs to be able to discover it; this section describes how to do
that.

Example Crawler
There is an example implementation of a crawler provided in the $LWS_HOME/app/examples/java
directory of each LucidWorks installation. That directory also contains the source code for the
example crawler, which can be used as a basis for any custom implementations.

The example crawler provides three sample data sources:

a very simple crawler for local file system.
a "random" data source that produces a random number of example documents.
a "secure" data source that allows you to implement "security trimming" feature.

The examples also include a nested library to illustrate the concept of packaging crawlers with all
dependent jars, and to show that crawlers can actually use such libraries.

Details on how to build and use the example crawler can be found in the file in the README.txt

 directory.$LWS_HOME/app/examples/java

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 10 36

Introduction to Lucid Connector Framework
LucidWorks Search offers an open API for managing the process of content acquisition (crawling)
from document repositories, and for adding new implementations for content acquisition
(crawlers).

The main principle behind the design of this API was to isolate the core of LucidWorks Search both
from the details of each crawler component implementation and the details of the indexing
platform, and to allow for integration of externally-developed crawler components. Currently this
API is in use and provides the integration for each crawler integrated with LucidWorks (whether
developed by LucidWorks or as a 3rd party integration).

This graphic gives an overview of the Crawler architecture:

LucidWorks Crawler architecture
In general terms, each Crawler defines possible data source types and their parameters.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 11 36

Each data source is defined by a DataSourceSpec, which lists all possible properties that a
DataSource can take, their default values, and whether they are mandatory or optional. The
DataSourceFactory for each CrawlerController defines the valid DataSourceSpec(s) for a particular
crawler. The DataSourceSpec(s) for a crawler are also known as a type of data source, as a type
must be unique for each CrawlerController. The DataSourceFactory may also contain validation
rules for data source properties; for example, requiring that input to a property is a string instead
of numeric.

The CrawlerController handles the scheduling and execution of crawl jobs. Each job has a unique
identifier and the job definition is reusable. The job definition may include information to initiate a
crawl at a specific time each day, for example. The status of each job is also managed by the
CrawlerController with defined states such as RUNNING, FINISHED, STOPPED and others. Each
crawl job definition also includes instructions for how to handle the output of the job.

All CrawlerControllers are created and managed by the CrawlerControllerRegistry.

Once data has been acquired from content sources, the CrawlProcessor defines how it is further
processed. The ParserController is a document parsing and content extraction service and the
UpdateProcessor represents the output for SolrInputDocument(s) to be indexed. The default
LucidWorks CrawlProcessor currently uses Apache Tika v1.2 for content extraction and parsing
from the raw data. The UpdateProcessor uses a SolrJ connection to the LucidWorks instance of
Solr.

It's possible to handle the output of a crawl job as a batch, meaning that no parsing or indexing
can take place (or a combination: no parsing but indexing or parsing but no indexing). The output
of the job is stored for later processing - either to be parsed by a separate process or indexed at a
more convenient time. Batches allow the crawl process to be split into three stages: fetching raw
content; parsing content; and indexing content. A BatchManager handles these processes and
stores the fetched content in a hierarchy of folders on the filesystem, which may consume a great
deal of space depending on the content. Stored content is not automatically cleaned after indexing
(if the content is ever indexed) to allow multiple indexing runs, so care must be taken to remove
unwanted batches when they are no longer needed.

After raw documents have been fetched and their text and metadata extracted, an initial version of
a SolrInputDocument is prepared. Each data source has a property called "mapping" which defines
how to handle the incoming fields of each document. The mappings can specify a field to use as the
unique key, map incoming fields to other previously defined fields, add fields to documents, or
convert field types to other field types. The FieldMapping definitions are sent to Solr in JSON
format to update the rules for the FieldMappingProcessor.

After FieldMapping has been completed, the documents are input to Solr and indexed.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 12 36

How To Create A Connector
As described in the , the Lucid Connector Framework is an open API forintroduction (see page 10)
managing the process of content acquisition, known as crawling, from document repositories and
for adding new implementations of content acquisition, referred to as crawlers.

This section and the ones following it, describe how to create a custom connector. Each section will
start with a technical overview of the component and then discuss the classes that are required to
create a custom component for your own needs. An example connector is also provided and can be
found in .$LWS_HOME/app/examples/java

The following sections will discuss each of the Connector Framework components:

CrawlerController facade, responsible for defining and controlling the crawl jobs executed
by a given crawler platform. instances are created by CrawlerController

. This is the central class in the API, and users interact withCrawlerControllerRegistry

crawler platforms via methods defined in this class.
DataSource which describes in an abstract way the configuration parameters for accessing a
content repository and the set of documents to retrieve. -s are created by a DataSource

 specific to a concrete crawler platform.DataSourceFactory

Closely related to -s are -s, which are descriptors that defineDataSource DataSourceSpec

what properties can be set, their default values and how the values set by a user can be
validated.
Crawl jobs run by -s are represented by , and their statusCrawlerController CrawlState

can be obtained from .CrawlStatus

CrawlProcessor is an abstraction for processing the output of a crawl job. This in turn uses a
 and , responsible for parsing and indexing the resultsParserController UpdateController

of a crawl job.
BatchManager handles batch jobs, which are crawl jobs that don't immediately send their
output to a for parsing and indexing, but instead store the raw content forCrawlProcessor

later processing (either parsing + indexing, or just indexing).
FieldMapping and constitute a metadata mapping facility to mapFieldMappingUtil

metadata extracted from documents to the target index fields. This facility includes some
rudimentary type conversion.

The following graphic shows the architecture of the components in detail:

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 13 36

Connector Framework Architecture

Example Crawler
A simple example crawler is provided in the directory of a$LWS_HOME/app/examples/java

LucidWorks installation. That directory also contains the source code for the example crawler,
which can be used as a basis for a custom crawler.

Custom Classes
To build a custom crawler you need to write the following classes. In each example, the crawler
name should begin each class name; replace with the crawler name when creating thecrawler

files.

crawlerDataSourceSpec: Derived from . Defines data source properties,DataSourceSpec

their default values and validations.
crawlerDataSourceFactory: Derived from . It is responsible forDataSourceFactory

reporting the list of supported data source types and their specifications. The actual creation
of data source instances from a map of parameters is done in .DataSourceFactory

crawlerCrawlerController: Derived from . Defines the startup, stopCrawlerController

and reset of the crawler.
crawlerCrawlState: Derived from . Defines stop and start for a daemon-threadCrawlState

the crawler should run with.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 14 36

crawlerCrawler: Derived from . The traversal of the is done here.Runnable DataSource

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 15 36

DataSource and DataSourceSpec

Overview
The class is essentially a wrapper for a set of properties, with some specializedDataSource

methods and constructors that enforce providing some details. (an abstractDataSourceFactory

class, whose implementation is specific to a specific crawler platform) knows what kind of data
sources are supported by the platform, and it also knows how to validate a set of provided
properties to verify whether they can define a valid DataSource for this platform. For this purpose
the also keeps a registry of -s. These "specs" list all possibleDataSourceFactory DataSourceSpec

properties that a DataSource can take, their default values and whether they are mandatory.
 also provides a limited conversion facility (casting) of input data to the formatsDataSourceSpec

and types expected by a corresponding DataSource (e.g., it's common for numeric parameters to
be supplied by a UI as strings - the casting then uses Validator subclasses to convert such strings
to a numeric format, so that other parts of the API will deal only with the expected types of the
properties).

DataSource type is an arbitrary string identifier that must be unique in the scope of a given
crawler platform. DataSource category is a purely informative string that may provide hints to the
user about how to present documents retrieved from this source (e.g. files, database records, ...).

DataSource instances should be viewed as purely passive data containers. Any state related to
crawl jobs should be kept in implementation-specific subclass of .CrawlState

The properties of a are those that are entered by a user when creating a new dataDataSourceSpec

source of this type (either through the UI or via the API). Careful consideration should be given to
which properties should be required and each property should have as good a default as possible.
Validators that match the expected type of the value input for a property should be called to catch
configuration errors as early as possible (e.g., before they produce errors in the crawl). Several
predefined validators are available which match many common types (such as int, float, URL, etc.)
and they should be used where appropriate.

LucidWorks uses underscores for property names in each of our crawler implementations instead of
CamelCase (so, a property is called "ignore_robots" instead of "ignoreRobots"). Following the same
standard may help your custom crawlers appear to work the same as the included set of crawlers.

The properties are also used by the Admin UI to dynamically create an entry form for users to
configure new data sources. The flexibility of this approach allows new crawlers to be added, or
properties of a data source modified, without having to create or update forms for each data source
type. There are some conventions the UI uses when reading the properties for a specific data
source. First, property names are normalized and used as form labels. The normalization removes
any underscores and the first word is capitalized. A property name such as "access_token" is
transformed to display as "Access token". Property descriptions are used to display information to
the user about what kind of information is expected for that attribute. Descriptions are optional,
but if they are used, they should be kept short.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 16 36

Custom Classes for This Component
In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in

.$LWS_HOME/app/examples/java/crawler/src/java/com/lucid/examples/crawl

To build a custom crawler you need to write the following classes for the DataSource component.
In each example, the crawler name should begin each class name; replace with thecrawler

crawler name when creating the files.

crawlerDataSourceSpec: Derived from . Contains crawler-specificDataSourceSpec

properties. The super-constructor from has to be called with the Category ofDataSourceSpec

the Crawler (if there's no appropriate Category please use instead).Category.Other

crawlerDataSourceFactory: Derived from . Registers supported crawlerDataSourceFactory

types and their -s. The has to be set as a parameter inDataSourceSpec CrawlerController

the super-constructor. The -s should be registered using the following calls:DataSourceSpec

public ExampleDataSourceFactory(CrawlerController cc) {

 super(cc);

 // map type names to specifications

 types.put("xfile", new XFileSpec());

 types.put("xrandom", new XRandomSpec());

 types.put("xsecure", new XSecureSpec());

 }

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 17 36

CrawlerController, CrawlStatus and CrawlerControllerRegistry

Overview
The abstract class models interactions with a crawler implementation. CrawlerController

 instances are created and managed by a . EachCrawlerController CrawlerControllerRegistry

crawler provided in a separate jar (including some built-in crawlers and all third-party crawlers) is
loaded using its own classloader - this way crawler implementations are isolated and can use
conflicting versions of dependencies.

Although the singleton pattern for -s is not enforced, it is followed in practiceCrawlerController

through the use of (which is a singleton in LucidWorks Search).CrawlerControllerRegistry

A crawl job is the process of going to a document repository and retrieving documents.

The life-cycle of a crawl job consists of the following states:

The crawl job is defined and registered with the crawler platform using
. This is also a chance for the crawler platform toCrawlerController.defineJob(...)

perform additional verification of the crawl parameters. A defined job gets a unique identifier,
and the job definition with this identifier is reusable. An internal component

 manages this definition in memory. For crawler platformsCrawlerController.jobStateMgr

that run in separate processes there may be a need to synchronize this internal job status
with the external process; the crawler API makes no such provisions, since the details of this
process are implementation-specific.
The crawl job is started using . The job itself is thenCrawlerController.startJob(...)

being executed asynchronously (in a separate thread). This call should return quickly and
must not block for the duration of the crawl job. In the current API there is provision only for
one running crawl job per job definition.
A transitory state is associated with the process of starting a job called "STARTING", which is
expected to last relatively shortly, after which the job transitions to a "RUNNING" state or to
one of the final failure states (see below). Most of the work for the crawl job is expected to
take place in the RUNNING state. When the work is finished in an orderly manner, the job
transitions to a FINISHING state, where the necessary commits and cleanups are performed,
and then finally transitions to a FINISHED state.
A running crawl job can be stopped or aborted. When a crawl job is stopped, the
CrawlerController will make an attempt to preserve as much of the partial crawl results as
possible, and stops the job in an orderly manner. When the crawl job is aborted there are no
such guarantees; however, partial results may still become visible and committed to the
index. If this is not desireable the implementation may track documentsCrawlerController

by adding a run identifier (batch_id) and then issue a delete request with this batch_id.
There are two transitory states associated with these actions: STOPPING and ABORTING.
During these states it's expected that the controller will perform necessary cleanups. Final
states after these actions are STOPPED and ABORTED, respectively.
In case of a non-recoverable error the job goes into a final EXCEPTION state.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 18 36

The following shows the various crawl job states and how they interact with one another:

Crawl Job States
Crawl job status can be retrieved using or all running andCrawlerController.getStatus(...)

recently finished crawl jobs can be listed using . This list isCrawlerController.listJobs(...)

maintained in memory, so it's cleared on restart. There is also a persistent job history that is
maintained with .CrawlerController.getHistoryRecorder().record(crawlStatus)

Crawler platforms that want to support batch operations should return a non-null implementation
of , such as the provided SimpleBatchManager that stores intermediate crawl resultsBatchManager

in local files or another method.

Back to Top (see page)

Custom Classes for This Component
In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in

.$LWS_HOME/app/examples/java/crawler/src/java/com/lucid/examples/crawl

To build a custom crawler you need to write the following classes for the CrawlerController
component. In each example, the crawler name should begin each class name; replace crawler
with the crawler name when creating the files.

crawlerCrawlerController: Derived from . Defines the startup, stopCrawlerController

and reset of the crawler.
crawlerCrawlState: Derived from . Defines stop and start for a daemon-threadCrawlState

the crawler should run with.

For every derived class there are some methods that can be overridden:

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 19 36

crawlerCrawlerController:
reset(String collection, String dataSourceId): tells the crawler to reset the
used data source, to clean up timestamps used to reinitialize the crawl state etc.
resetAll(String collection): tells the crawler to reset all data sources
CrawlId defineJob(DataSource ds, CrawlProcessor processor): Initializes the

. The and the have to be registered like this:CrawlState DataSource CrawlProcessor

ExchangeCrawlState state = new ExchangeCrawlState();

state.init(ds, processor, this.historyRecorder);

this.jobStateMgr.add(state);

startJob(CrawlId descrId): starts the job with CrawlState.start()
stopJob(CrawlId jobId): stops the job
abortJob(CrawlId jobId): aborts the job (can be the same as stopJob)

crawlerCrawlState:
start(): starts a Crawler over a daemon-thread

Back to Top (see page)

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 20 36

Crawler

Overview
The does the work of traversing the Data Source and collecting the data for input.Crawler

Custom Classes for this Component
In the example crawler provided with LucidWorks, you can find examples of customized classes for
this component in

.$LWS_HOME/app/examples/java/crawler/src/java/com/lucid/examples/crawl

To build a custom crawler you need to write the following classes for the Crawler component. The
crawler name should begin each class name; replace with the crawler name when creatingcrawler

the files.

crawlerCrawler: Derived from . The traversal of the is done here.Runnable DataSource

All classes have to override some methods from the interfaces they are derived from or call a
method of the super class to get a successful registration in the LucidWorks framework.

crawlerCrawler:
run(): Overridden by the interface . Here the traversal of the data source isRunnable

done.
stop(): Overridden by the interface .Runnable

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 21 36

CrawlProcessor, ParserController and UpdateController

Overview
Each crawl job definition should specify a sink for the output of the crawl job. A null value may be
provided to mean the default implementation that uses the CrawlProcessor

 and depending on the setting of the datasource (seeTikaParserController UpdateController

below). This default implementation can be also configured to persist raw results of the crawl job
as a batch when the "caching" property is true for a datasource. Document parsing and indexing
can also be turned off (and the data stored in a batch) when a "parsing" property of a data source
is set to false.

The exposes a minimal API to simply consume the raw output documents plus theCrawlProcessor

protocol-level metadata. Alternatively, it can consume a if the parsing processSolrInputDocument

was already performed. Usually only one of the methods is called; specific implementations of
-s pass data between these methods as automatically as necessary.CrawlProcessor

The default that comes with LucidWorks (the one that is instantiated when no CrawlProcessor

 is specified) uses internally two other abstractions:CrawlProcessor

ParserController represents a document parsing and content extraction service. The
default implementation of this abstract class in LucidWorks is called TikaParserController
and uses Apache Tika v1.2 for content and metadata extraction.
UpdateController represents the output for -s to be indexed. TheSolrInputDocument

default implementation of this component obtained from UpdateController.create(...)
uses a SolrJ connection to the Lucidworks instance of Solr as output when the "indexing"
property is set to true, otherwise it stores parsed documents in batch data.

Custom Classes for This Component
None required, unless the default is not sufficient.CrawlProcessor

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 22 36

BatchManager

Overview
BatchManager is a component that is responsible for persisting and managing intermediate crawl
results. This allows the crawling process to be split into up to three stages:

fetching raw content from remote repositories
parsing content, as well as text and metadata extraction
indexing the extracted data as SolrInputDocuments

The advantage of this functionality is that the fetching of the data is usually the most costly step in
the crawling pipeline, and it's sometimes better to execute the parsing and indexing at a different
time than the fetching. It can also be used to re-do some of the steps e.g., after fixing
configuration errors (either in field mapping or in the file). The disadvantage is that itschema.xml

complicates the data flow and consumes additional disk space, but that may be an acceptable
tradeoff.

LucidWorks comes with an implementation of this API called . ThisSimpleBatchManager

implementation stores batch data in a hierarchy of folders that in turn contain record-oriented files.
 creates separate folder hierarchies for each crawler, each crawl job, and eachSimpleBatchManager

crawl job run that resulted in some batch data. The files are the following:

batch.status - describes the status of the batch, e.g. how many raw documents are
present, how many parsed documents, timestamp, etc.
content.raw - contains the raw content of retrieved documents together with protocol-level
metadata.
solr.json - contains SolrInputDocument-s ready for indexing, in JSON format.

A implementation supports batch operations when it provides a non-nullCrawlerController

instance of a . The following operations can be performed on batch data:BatchManager

Batch data can be created by setting appropriate options in -s, when the defaultDataSource

implementations of , and are used.CrawlProcessor ParserController UpdateController

There is also a lower-level API available for writing individual records to a specified batch, see
the and javadoc for more details.ContentFileWriter SolrFileWriter

BatchManager.listBatchStatuses(...) (or a REST API under
) can be used to retrieve a list of available batch/api/collections/<collection>/batches

data sets.
A batch processing job can be started with , whereCrawlerController.startBatchJob(...)

the user can specify the output of the batch processing, whether the content should be
parsed (or re-parsed) and/or indexed, using the supplied instance or aCrawlProcessor

default one when is provided.null

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 23 36

running batch jobs can be listed with , or otherwiseCrawlerController.listBatchJobs()

controlled in the same way as regular crawl jobs, i.e. stopped or aborted. They also undergo
the same state changes as regular crawl jobs.

Obsolete or no longer needed batch data can be deleted using BatchManager.deleteBatch(...)
or using the bulk delete . Batch data is not deleted by default,BatchManager.deleteBatches(...)

so must be managed to ensure the batches do not consume too much disk space.

Custom Classes for This Component
None. Customizations to support batch operations are defined in the custom .CrawlerController

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 24 36

FieldMapping and FieldMappingUtil

Overview
After the raw documents are parsed and their text and metadata are extracted, an initial version of

 is prepared (this usually takes place somewhere in a or a SolrInputDocument CrawlProcessor

 that it uses). Since the metadata names in documents coming from variousParserController

sources can be pretty arbitrary it is necessary to normalize their values and to map their names to
Solr fields valid for the current index schema. This is the role of the and the FieldMapping

 helper class.FieldMappingUtil

Each has a property "mapping" that contains an instance of (if thereDataSource FieldMapping

was none specified on DataSource creation then a default one with the default mappings will be
provided). You can examine the details of the default field mapping by looking through the
response of .Data Sources REST API

Field mappings are specified per data source, and then passed to . The processUpdateController

of field mapping is performed by the so usually it should not be invokedUpdateController

explicitly. implementations may further verify the mappings using the currentUpdateController

Solr schema so that the mappings produce valid fields.

The mappings consist of the following main areas:

uniqueKey - this property specifies the name of the uniqueKey in the Solr schema. This value
is verfied with the current schema when a new crawl job is defined.
mappings - this is a map of source metadata names to target field names. Source names are
case-insensitive. A value of null means that this metadata should be discarded. See below for
the details of the mapping algorithm.
literals - this is a map of key/value pairs that define fields to be added to every document.
types - defines any special field types if a conversion is necessary from the default STRING
type. Currently recognized types are STRING, INT, LONG, FLOAT, DOUBLE and DATE. If a
type is not specified then STRING is assumed.
multiVal - this is a map of field names and boolean values. True means that the target
index field with this name supports multiple values. False (or a missing key/value) means
that the field is single-valued.
dynamicField - this property specifies a prefix for dynamic fields if a more specific mapping
is missing. See also below for the details of the mapping algorithm.
defaultField - this property specifies a name of the default field if a more specific mapping
is missing. See also below for the details of the mapping algorithm.
datasourceField - this property specifies a prefix of the fields that preserve data source id,
data source type and data source display name.
lucidworks_fields - this boolean property (defaults to true) indicates that
LucidWorks-specific fields should be automatically added to incoming documents (such as
data_source id, data_source_name and data_source_type).

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 25 36

Field mapping is usually created and initialized in DataSourceFactory.create(...) method when the
datasource is initially created. During job startup this mapping is passed to ,UpdateController

which can optionally verify field mappings with the current index schema for the collection specified
in the data source. If a field is missing in the schema then it's mapped to null (i.e., discarded). The
arity and the type of the field is checked and set appropriately. This process is repeated each time

 is called.CrawlerController.startJob(...)

The process of mapping source metadata names to the target field names works like this (note:
this process is already encapsulated in one of the existing implementations):UpdateController

first a case-insensitive match is tried with the source names present in the "mappings". If a
value is found then it's returned (a value of null should be interpreted as "discard").
then if is non-null the source name is converted to a dynamic field name likedynamicField

this: to the value of an underscore is appended, and then an escaped versiondynamicField

of the source name is appended (the escaping replaces any non-word character with an
underscore).
then if is non-null then the value of is returneddefaultField defaultField

finally, the source name is returned.

Internally, this process uses a helper class . This class contains methods to:FieldMappingUtil

initialize field mappings with values suitable for Aperture or Tika parsing
verify the mapping with the current index schema
normalize fields - this normalization step should always be performed to make sure that the
SolrInputDocument instances contain only fields valid for the current schema, with correct
multiplicity and correct type. The normalization works like this:

if a field is defined as type DATE then the value is checked - if it's an instance of
 then it's left unchanged, otherwise the string representation of thejava.util.Date

value is parsed using Solr's to obtain a valid instance. In case ofDateUtil Date

parsing errors the offending value is discarded.
if a field is defined as single-valued but multiple values are present then:

if a field is type DATE only the first value is retained, all other values are
discarded
otherwise a set of unique string representations of values is concatenated using
single space character, and the original multiple values are replaced with this
single concatenated value.

there is also some other special treatment for the "mimeType" field to avoid common
Tika and Aperture parsing errors.

addLucidworksFields - this method ensures that some fields necessary for the LucidWorks UI
are populated.

Custom Classes for This Component
None necessary or required.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 26 36

1.
a.

b.
c.

2.

3.

4.

Integrating Google Connectors
LucidWorks ships with a connector for SharePoint repositories that uses the Google Connection
Manager (GCM), which has been integrated with LucidWorks Search. SharePoint is only one of
several available connectors, however, and others can be integrated by following the process
defined below. Other repositories that can be crawled using GCM connectors include Documentum,
IBM FileNet, LDAP, and Lotus Notes.

The process to integrate a new connector is simpler than developing a crawler from scratch, but
requires understanding many of the same concepts. Before proceeding, please review the

. With this procedure we'll create a Introduction to Lucid Connector Framework (see page 10)
 and then register it with LucidWorks. Once created, the new connector will be aDataSourceSpec

type of data source for the crawler (this would only be important if you use the lucid.gcm Data
 - if you use the Admin UI only, you won't notice a difference between the other dataSources API

source types).

It may also be helpful to review the from Google. LucidWorks is usingConnector Developer's Guide
Google Connector Manager v2.8.6.

Covered in this section:

Overview of the Development Process (see page 26)
Preparing for development (see page 27)
Writing the DataSourceSpec (see page 28)

Extract Fields from the Connector HTML Form (see page 28)
Writing the DataSourceSpec (see page 31)

Registering the Extension (see page 32)
Deployment (see page 33)

Overview of the Development Process
There are several steps described below, summarized here:

Prepare the development environment by checking the requirements.
Download and install LucidWorks. Do not start it during installation, or if it isstop it
already running.
Download a compatible Google Connector and extract the files.
Start LucidWorks with a special port.

Use that sample Google Connector project included with LucidWorks to extract the connector
configuration form and use that information to create an appropriate .DataSourceSpec

Implement a class, extend it to register the , then write aDataSourceSpec DataSourceSpec

configuration file for the java service loader.
Deploy the file..jar

http://google-enterprise-connector-manager.googlecode.com/svn/docs/devguide/index.html

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 27 36

5.

1.

2.

3.

4.

5.

6.

7.

8.

Start LucidWorks and use the new connector.

Preparing for development
The included sample project requires the following installed on the system where development will
be completed:

Ant 1.8+
Java 1.6+
LucidWorks Search

To properly prepare the development environment, perform these steps:

Download and install LucidWorks. More information on installing LucidWorks is available in
the section on . If you have already installed it and have it running, stop it.Installation
Download a compatible Google connector. Connectors can be found at at

. Review the release noteshttps://code.google.com/p/google-enterprise-connector-manager/
for the candidate connectors to make sure they work with GCM v2.8.
Extract the connector files from the downloaded Connector archive and copy the files.jar

from directory to . If therelib $LWS_HOME/app/webapps/connector-manager/WEB-INF/lib/

are duplicate in the target directory, you may need to resolve any conflicts. For.jars

example, you can test it with the example google ldap connector (see
)$LWS_HOME/app/examples/google-connector/google-connector-ldap-2.8.4.jar

Start LucidWorks with following command:
app/bin/start.sh -lwe_connectors_java_opts "-DlucidworksGCMPort=10000"

After starting, verify there are no errors in the logs (see also forSystem Directories and Logs
more information on logs). Pay particular attention to possible errors in the

.connectors-<date>.log

Go to the directory. This folder contains an$LWS_HOME/app/examples/google-connector

ant buildable project that can be used as a starting point when implementing new
integrations.
Localize the sample project by editing the file, and modifying the build.xml gcm-url

property. The port must be changed to the port that was specified when starting LucidWorks.
Run to verify that the environment is successfully configured. If the build does notant dist

succeed, correct any errors in .build.xml

At this point, you should be ready to follow the rest of these instructions to extract the required
information for the custom connector for LucidWorks.

Back to Top (see page)

https://code.google.com/p/google-enterprise-connector-manager/

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 28 36

1.
2.

Writing the DataSourceSpec
When integrating Google connectors into LucidWorks Search, the majority of the work is to make
sure the new data source type can be used with Admin UI. By itself, a Google Connector provides a
UI through a HTML form. In LucidWorks, however, the way to provide the configuration UI is based
on -s. A is a class that provides sufficient information for the UIDataSourceSpec DataSourceSpec

so that it can render the configuration screen (data source configuration screens in LucidWorks are
dynamically generated based on information provided to it by the data source). Sometimes making
the Admin UI work with the new connector is a straightforward task, but sometimes it requires
some additional effort.

The configuration screen should provide the user with information about which fields are required
and if possible, provide some guidance about what format to enter information. Unfortunately, at
this point the process of figuring out what fields a Google Connector requires a little bit of reverse
engineering (to figure out the required parameters and their format from the HTML form) and
some trial and error.

There are several steps to writing the for the connector, explained in each of theDataSourceSpec

sections below:

#Extracting Fields from the Connector HTML Form (see page)
#Writing the {{DataSourceSpec}} (see page)

Back to Top (see page)

Extract Fields from the Connector HTML Form
Once the environment is properly configured and the sample project is set up for development, you
can use the ant target to show the GCM connectors installed in anant list-connectors

embedded Google Connector Manager web application in LucidWorks. You'll need the name of the
connector in order to retrieve the HTML form. The output of this command looks like this (the
WARN messages are fine):

sh> ant list-connectors

...

 [java] Available connectors:

 [java]

 [java] - LDAPConnectorType

 [java] - sharepoint-connector

...

These lines show the GCM connectors installed on the system.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 29 36

Next, retrieve the connector configuration HTML form by executing ant get-connector-form
 (for example, -Dconnector=<name of the connector> ant get-connector-form

). The output of this command is a file called -Dconnector=LDAPConnectorType

 that you can find in the example project main directory. You will need toconnector-form.html

examine this file for the required fields and their valid formats. Then you can use that information
to write the for the connector.DataSourceSpec

For example, the HTML form for LDAP connector looks like this:

<tr>

 <td>

 LDAP Connector Configuration<span style="color:

#FF0000">^{Preview}</td>

</tr>

<tr>

 <td valign="top"><label for="hostname">LDAP Directory

 Server Host</label></td>

 <td><input name="hostname" id="hostname" type="text"></input></td>

</tr>

<tr>

 <td valign="top"><label for="port">Port number</label></td>

 <td><input name="port" id="port" type="text" value="389"></input></td>

</tr>

<tr>

 <td valign="top"><label for="authtype">Authentication Type</label></td>

 <td><select name="authtype" id="authtype">

 <option value="ANONYMOUS" selected="selected">Anonymous</option>

 <option value="SIMPLE">Simple</option>

 </select></td>

</tr>

<tr>

 <td valign="top"><label for="username">LDAP Binding

 Distinguished Name (DN)</label></td>

 <td><input name="username" id="username" type="text"></input></td>

</tr>

<tr>

 <td valign="top"><label for="password">LDAP Binding

 Password</label></td>

 <td><input name="password" id="password" type="password"></input></td>

</tr>

<tr>

 <td valign="top"><label for="method">Connection Method</label></td>

 <td><select name="method" id="method">

 <option value="STANDARD" selected="selected">Standard</option>

 <option value="SSL">SSL</option>

 </select></td>

</tr>

<tr>

 <td valign="top"><label for="basedn">LDAP Search Base</label></td>

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 30 36

 <td><input name="basedn" id="basedn" type="text"></input></td>

</tr>

<tr>

 <td valign="top"><label for="filter">User Search Filter

 (only these users will be indexed)</label></td>

 <td><input name="filter" id="filter" type="text"></input></td>

</tr>

<tr style='display: none'>

 <td><input type='hidden' id='schemavalue' name='schemavalue'

 value='[]' />

 <script type="text/javascript">

 function getIndexOf(arr, value) {

 for (var i = 0; i < arr.length; i++) {

 if (arr[i] == value)

 return i;

 }

 return -1;

 }

 var schemaList = new Array();

 function appendToSchema(chkbox) {

 if (schemaList.length == 0) {

 schemaList = JSON

 .parse(document.getElementById('schemavalue').value);

 }

 if (chkbox.checked) {

 schemaList.push(chkbox.value);

 document.getElementById('schemavalue').value = JSON

 .stringify(schemaList);

 } else {

 if (getIndexOf(schemaList, chkbox.value) >= 0) {

 schemaList.splice(getIndexOf(schemaList, chkbox.value), 1);

 document.getElementById('schemavalue').value = JSON

 .stringify(schemaList);

 }

 }

 }

 </script>

 </td>

</tr>

From that it is possible to see that there are 8 parameters: , , , , hostname port authtype username

, , and statically defined in the HTML form. Closer inspectionpassword basedn filter schemavalue

shows that the field is dynamically build with javascript (it is actually based on theschemavalue

content of the LDAP server) and the format for that field is .["<field1>", "<field2>"]

Back to Top (see page)

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 31 36

Writing the DataSourceSpec
The next step is to write a definition based on this information. Specs provideDataSourceSpec

information for the crawler to know which attributes are required, how the attributes should be
defined, and how the Admin UI should create a form to allow GUI configuration of the data source.

For all Google Connector-based data sources there is a base class called that can beGCMSpec

extended to the needs of the new Google Connector.

From the example project the class implementing the UI spec for the LDAP connector is called
 and it looks like this:GCMLDAPSpec

...

public class GCMLDAPSpec extends GCMSpec {

...

 public GCMLDAPSpec(LWEGCMAdaptor adaptor) {

 super(adaptor);

 }

 @Override

 protected void addCrawlerSupportedProperties() {

 super.addCrawlerSupportedProperties();

 addSpecProperty(new SpecProperty(HOSTNAME, "Hostname",

 String.class, "", Validator.NOT_BLANK_VALIDATOR, true));

 addSpecProperty(new SpecProperty(PORT, "Port",

 Integer.class, 389, Validator.NON_NEG_INT_STRING_VALIDATOR, true));

 // all the other properties

 }

 @Override

 public FieldMapping getDefaultFieldMapping() {

 FieldMapping fieldMap = new FieldMapping();

 fieldMap.defineMapping("GCM_dn", "dn");

 fieldMap.defineMapping("GCM_cn", "cn");

 fieldMap.defineMapping("GCM_uid", "uid");

 return fieldMap;

 }

}

When deployed to LucidWorks, the data source will look like this in the Admin UI:

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 32 36

Back to Top (see page)

Registering the Extension
Finally the implemented classes needs to be registered into LucidWorks Search so that the new
Google Connector is recognized. This is done with a specific class that implements :GCMExtension

...

public class GCMLDAPExtension extends LWEGCMAdaptor implements GCMExtension {

 @Override

 protected void customizeProperties(Map<String, Object> dsProperties, HashMap<String,

String> gcmProperties) {

 gcmProperties.put(GCMSpec.CONNECTOR_TYPE, "LDAPConnectorType");

 }

 @Override

 public void register(Map<String, com.lucid.crawl.datasource.DataSourceSpec> types) {

 LWEGCMAdaptor.register("ldap", this);

 types.put("ldap", new GCMLDAPSpec(this));

 }

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 33 36

There are two methods in this class. The first is , which registers the new connector. Inregister

the other method, allows modifications to the parameters sent from thecustomizeProperties

Admin UI so they match what GCM expects (this may just be desirable, or it may be mandatory).

Some examples of transformations that might be needed are:

Set values that are required by the connector or GCM but not exposed in the Admin UI (for
example, the)CONNECTOR_TYPE

Build (sometimes cryptic) strings that are normally built with javascript by the connector
HTML form from static set of fields specified in the Spec

One final step is required, because the extensions are implemented by using the Java Service
Loader. A file in the example project called

 lists thesrc/main/resources/META-INF/services/com.lucid.crawl.gcm.GCMExtension

available GCMExtensions. You need to add the name of the class implementing inGCMExtension

that file.

Back to Top (see page)

Deployment
During the development phase the ant target can be used. When everything is workingant deploy

as expected the for the integration glue can be created by running that will create a.jar ant dist

 file in the directory. This file can then be added inside in.jar dist .jar gcm-crawler.jar

directory (the deploy target does this automatically).$LWS_HOME/app/crawlers/

Once the connector has been deployed, restart LucidWorks Search and the new connector should
be available to use via the Admin UI or with the API.Data Sources

During development it might be necessary to cleanup the GCM configuration and state in
 by running "rm -rf" inside that$LWS_HOME/conf/gcm/connectors/<connector-name>

directory.

Back to Top (see page)

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 34 36

1.
2.
3.

Integrating New Crawlers with LucidWorks

Register the Crawler
Once a new crawler has been created, it needs to be registered with the

 in order to work with LucidWorks. In simple terms the way to do thisCrawlerControllerRegistry

is to follow these steps:

Create a MANIFEST.MF file for the plugin with the required properties..jar

Place the .jar in the directory.$LWS_HOME/app/crawlers

Restart LucidWorks.

Create MANIFEST.MF File
LucidWorks requires the following entries in the crawler plugin's jar file.META-INF/MANIFEST.MF

These properties may be placed either in the main section of the manifest, or in multiple sections
(e.g., one section per crawler implementation):

Crawler-Alias: (required) this is a symbolic name under which this crawler implementation
will be known to LucidWorks. For example, the built-in Aperture crawler is registered under
alias "lucid.aperture". Implementors should pick a meaningful name that is unique.

Crawler-Class: (required) this is a fully-qualified class name of the CrawlerController
implementation. For example, the built-in Aperture crawler's class is
"com.lucid.crawl.aperture.ApertureCrawlerController".

Crawler-Exclude: (optional) this is a whitespace-separated list of packages and fully-qualified
class names that are excluded from loading using this class loader, instead their look-up and
loading will be delegated to the parent classloader. In some cases nested jars may provide
classes that conflict with other classes loaded from the parent classloader. Names of
packages and classes on this list are treated as plain string prefixes and regular expressions
are not supported.

An example MANIFEST.MF file for the included Aperture-based crawler looks like this:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.8.2

Created-By: 1.6.0_29-b11-402-11M3527 (Apple Inc.)

Crawler-Alias: lucid.aperture

Crawler-Class: com.lucid.crawl.aperture.ApertureCrawlerController

Crawler-Exclude: javax.xml.namespace

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 35 36

Loading the JAR
Each crawler class is loaded in a separate classloader, together with its dependencies. Crawler
controller implementations are loaded by from JAR files, typicallyCrawlerControllerRegistry

found in . These jar files contain both the main $LWS_HOME/app/crawlers CrawlerController

implementation class, all other related classes (such as DataSourceFactory subclass), and may also
contain nested .jar-s with dependencies (libraries) used by the implementation. A special class
loader is used to load these classes, which unlike the default classloader:

can discover and load classes from nested jar files.
prefers classes found in the crawler jar over classes found in the parent classloader. This
means that you can implement crawlers that use different, possibly mutually conflicting
versions of dependencies.
processes the crawler .jar's META-INF/MANIFEST.MF file looking for specific entries, and
initializes the crawler plugin.

This process is executed during Lucidworks start-up as a part of CrawlerControllerRegistry
initialization. This means that it's sufficient to just put a crawler plugin jar in

 for LucidWorks to discover it and initialize it.$LWS_HOME/app/crawlers

How the Admin UI Reads Crawlers
The LucidWorks Admin UI has been designed to dynamically read available crawler and data source
types and display the list based on the currently enabled crawlers. When a specific data source
type has been selected by the user, the UI also dynamically draws the screen with the latest
available properties. So, once a new crawler is completed and properly registered (as above), then
it's enough to restart LucidWorks to see the data source in the UI.

There are some conventions the UI uses when reading the properties for a specific data source.
First, property names are normalized and used as form labels. The normalization removes any
underscores and the first word is capitalized. A property name such as "access_token" is
transformed to display as "Access token". Property descriptions are used to display information to
the user about what kind of information is expected for that attribute. Descriptions are optional,
but if they are used, they should be kept short.

LucidWorks Search Documentation 02-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 36 36

About LucidWorks
LucidWorks (formerly known as Lucid Imagination) is the trusted name in Search, Discovery and
Analytics, delivering the only enterprise-grade embedded search development solution built on the
power of the Apache Lucene/Solr open source search project. Founded in 2008, the company
initially provided support, consulting services, documentation and training for the Apache
Lucene/Solr open source search project.

Within a few years, the LucidWorks team realized the need to add value to the open source search
platform by developing an extensive layer of services which made Lucene/Solr secure and easier to
use and manage. The company shipped the first version of its flagship product, LucidWorks Search,
in 2011, followed by LucidWorks Big Data in May 2012. LucidWorks continues to offer support,
documentation, consulting services and training products for Lucene/Solr.

LucidWorks remains committed to giving back to the Apache Lucene/Solr community. Out of the 37
Core Committers to the Apache Lucene/Solr project, 9 individuals work for LucidWorks, making the
company the largest supporter of open source search in the industry. Further, LucidWorks hosts
the Lucene Revolution, a conference dedicated to sharing ideas and promoting the Apache
Lucene/Solr open source search project.

For more information on product and support options for LucidWorks Search, please write to:
 or visit our . Support inquiries can be submitted to our sales@lucidworks.com website Support

.group

LucidWorks
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.525.1365

http://www.lucidworks.com
http://www.lucidworks.com

	How to Use this Documentation
	Audience and Scope
	Conventions
	Paths
	Notes
	REST API Conventions

	Customers of LucidWorks Search on AWS or Azure
	Configuration Options
	API Conventions for LucidWorks Search on AWS or Azure

	Getting Support & Training

	Custom Connector Guide
	Example Crawler
	Introduction to Lucid Connector Framework
	How To Create A Connector
	Example Crawler
	Custom Classes
	DataSource and DataSourceSpec
	Overview
	Custom Classes for This Component

	CrawlerController, CrawlStatus and CrawlerControllerRegistry
	Overview
	Custom Classes for This Component

	Crawler
	Overview
	Custom Classes for this Component

	CrawlProcessor, ParserController and UpdateController
	Overview
	Custom Classes for This Component

	BatchManager
	Overview
	Custom Classes for This Component

	FieldMapping and FieldMappingUtil
	Overview
	Custom Classes for This Component

	Integrating Google Connectors
	Overview of the Development Process
	Preparing for development
	Writing the DataSourceSpec
	Extract Fields from the Connector HTML Form
	Writing the DataSourceSpec

	Registering the Extension
	Deployment

	Integrating New Crawlers with LucidWorks
	Register the Crawler
	Create MANIFEST.MF File
	Loading the JAR

	How the Admin UI Reads Crawlers

	About LucidWorks

