
Created: 03-Jun-2014

LucidWorks Search
System Configuration
Guide
2.8 Documentation

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 2 291

Table of Contents
How to Use this Documentation __ 5

Audience and Scope ___ 5
Conventions __ 5
Customers of LucidWorks Search on AWS or Azure ___________________________________ 7
Getting Support & Training __ 8

Getting Started __ 9
LucidWorks Search User Interface Help ___ 12
System Configuration Guide ___ 13

Understanding LucidWorks Search ___ 14
Collections and Indexes __ 38
Crawling Content ___ 82
Query and Search Configuration __ 141
Security and User Management __ 224
Solr Direct Access ___ 245
Performance Tips __ 247
Expanding Capacity __ 249
Integrating Monitoring Services __ 267

Glossary of Terms __ 286
A __ 286
B __ 286
C __ 286
D __ 287
F __ 287
I ___ 288
M __ 288
N __ 288
Q __ 288
R __ 289
S __ 289
T __ 290
W __ 290

About LucidWorks __ 291

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 3 291

LucidWorks Search Documentation
The LucidWorks Search Documentation is organized into several guides that cover all aspects of
using and implementing a search application with LucidWorks Search, whether on-premise or
hosted on AWS or Azure.

Installation & Upgrade Guide

Installing LucidWorks Search
System Directories and Logs (see page 22)
Upgrade instructions for v2.8
Review changes from LucidWorks v2.7 to v2.8

System Configuration Guide

Troubleshooting crawl issues (see page 98)
Alerts configuration (see page 184)
Query options (see page 141)
Custom , field types, and other fields (see page 49) index customizations (see page 82
)
Performance considerations (see page 247) and system monitoring (see page 267)
Distributed search and indexing (see page 249)
Security options (see page 224)

Lucid Query Parser

How the default query parser handles user requests
Customization options

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 4 291

LucidWorks REST API Reference

Configure and data sources administer crawls
Set system settings
Manage , , and fields field types collections
Example clients in , and C# Perl Python

Custom Connector Guide

Introduction to Lucid Connector Framework
How To Create A Connector

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 5 291

How to Use this Documentation

Audience and Scope
This guide is intended for search application developers and administrators who want to use
LucidWorks Search to create world class search applications for their websites.

While LucidWorks Search is built on Solr, and many of its features are implementations of Solr and
Lucene features, this Guide does not cover basic Solr or Lucene configuration. We do, however,
point out where LucidWorks Search deviates from Solr or Lucene standard configuration practices,
and have provided links to Solr and Lucene documentation where possible for further explanation if
the functionality in LucidWorks Search is identical to Solr or Lucene.

One important note to remember is that LucidWorks is multi-core enabled by default, with
 as the default core. This means that standard Solr paths such as collection1

, as shown in Solr documentation, would be http://localhost:port/solr/*

 in LucidWorks Search.http://localhost:port/solr/collection1/*

Topics covered on this page:

Audience and Scope (see page 5)
Conventions (see page 5)
Customers of LucidWorks Search on AWS or Azure (see page 7)
Getting Support & Training (see page 8)

Conventions

Paths
Server paths are described in relation to the base LucidWorks Search installation path, indicated by

. For example, if LucidWorks Search was installed at , then the path to$LWS_HOME /var/lucidworks

the 'app' directory shown as will be on the server.$LWS_HOME/app /var/lucidworks/app

Notes
Special notes are included throughout these pages.

Note Type Look & Description

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 6 291

Note Type Look & Description

Information

Notes with a blue background are used
for information that is important for
you to know.

Notes

Notes are further clarifications of
important points to keep in mind while
using LucidWorks.

Tip

Notes with a green background are
Helpful Tips.

Warning

Notes with a red background are
warning messages.

Cloud

 Information for LucidWorks Search
in the Cloud Users
Information specifically for LucidWorks
Search customers on the AWS or Azure
Platform.

REST API Conventions
Many of the LucidWorks Search support several methods (such as POST, GET, PUT,REST APIs
DELETE) and each is documented with detailed attribute descriptions and examples of inputs and
outputs. Each description includes the path to the API endpoint, parameters for input, and the
attributes returned as a result of the request.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 7 291

Windows users should take care when copying the examples as they assume that you are familiar
with how to modify unix-based curl commands for the Windows environment.

Parameters
Several of the paths shown in the API documentation include parameters that need to be modified
for your installation and specific configuration. These are indicated in .italics

For example, getting the details of a data source is shown as:

GET /api/collection/collection/datasources/id.

If you were using ' ' and data source ' ', you would enter:collection1 3

GET /api/collection/collection1/datasources/3.

Server Addresses
The LucidWorks Search REST API uses the , installed at Core component (see page 19)

 by default in LucidWorks Search. Many examples in this Guide use this ashttp://localhost:8888/
the server location. If you have installed LucidWorks Search locally, and you changed this location
on install, be sure to change the destination of your API requests accordingly.

Customers hosted on AWS or Azure should see the section for #Customers of LucidWorks Search
 below.on AWS or Azure (see page 7)

Customers of LucidWorks Search on AWS or Azure
All of the preceding information on this page applies to customers who have LucidWorks Search
hosted on either AWS or Azure Platforms, with a few small exception which are detailed below.

Configuration Options
Certain configuration options are available with on-premise installations only (such as installation
options, manual configuration file changes, etc.). The following panel will appear on any page or
section that does not apply or is not available for LucidWorks Search on the AWS or Azure
platforms:

http://localhost:8888/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 8 291

API Conventions for LucidWorks Search on AWS or Azure
Nearly all of the documented REST APIs will work for customers on AWS or Azure, but the example
API calls must be modified to include either the Access Key or the API Key and used as
authentication credentials. Customers are being transitioned from a simple Access Key to a more
secure Basic authentication system that requires a unique API Key.

1. Customers who only have an Access Key can see the key on the My Search Server page and the
main Collections Overview page of your instance (click the REST API button above the usage
graphs). Example URLs for API calls used in this documentation would then be changed from

 to .http://localhost:8989/api/... http://access.lucidworks.io/<access key>/api/...

This access key is specific to your instance and should be treated as securely as possible to prevent
unauthorized access via the APIs to your system.

2. Customers with Basic authentication have instances which use an URL with "https://s-
.lucidworks.io" where XXXXXXXX is 8 characters (letters or numbers). So, if yourXXXXXXXX

instance URL is "https://s-9sdff10b.lucidworks.io/" you would use that in place of any example API
calls that used "http://localhost:8888". For example, this call to get all collections:

curl 'http://localhost:8888/api/collections'

would be changed to:

curl -u 'API_Key:password' 'https://s-9sdff10b.lucidworks.io/api/collections'

The API_Key can be found by logging in to your LucidWorks Search instance, and clicking "My
Account" at the upper right of the screen. Click "API Access" on the left to view the API key. The
password is 'x' by default. There is not currently a way to change the default password. You should
take care not to expose this key when posting to our forums, as that information could be seen by
other LucidWorks Search customers.

For users on LucidWorks Search for Windows Azure, the above URL would be: 'https://s-
.9sdff10b.azure.lucidworks.io/api/collections'

Getting Support & Training
There are several options to get answers to questions besides this documentation:

The is a place to ask questions and share information about yourLucidWorks Search Forum
implementation.
The has articles written by our support and consultingLucidWorks Search KnowledgeBase
staff around common issues and questions.
Training Videos produced by the LucidWorks training team.
Premium support is also available, providing access to a help desk ticketing system. For more
information see .Lucene/Solr Support

http://support.lucidworks.com/categories/20055683-lucidworks-search-community-help
http://support.lucidworks.com/categories/20056513-lucidworks-search-knowledge-base
http://support.lucidworks.com/forums/21153378-training-videos
http://www.lucidworks.com/support-services/lucene-solr-support

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 9 291

Getting Started
The steps to get started with LucidWorks Search are not very different from getting started with
any new search platform. One needs to consider the nature of the documents to be indexed, how
users expect to find them, and how results will be presented to users. This section outlines those
activities and points to parts of documentation to help you understand how to accomplish the
necessary tasks for a successful search application.

If you are new to search applications, these sections may be helpful:

How Search Engines Work (see page 15)
Indexing Documents (see page 43)
Overview of Crawling (see page 83)

 The obvious first step is to install the
application (if you are using LucidWorks Search On-Premise; LucidWorks Search on AWS or Azure,
of course, is already installed).

Installation

In general, LucidWorks Search provides two modes of interacting with the system: the Admin UI or
the REST API. When just starting out, it's easier to use the Admin UI, but when developing your
search application, you may want to use the API, depending on your needs. LucidWorks Search is
split into three components, and it's worth getting a sense for what each one does before diving
too deep into application development.

Working With LucidWorks Search Components (see page 19)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 10 291

Before any user can send queries to your search applications, you need to index data. LucidWorks
Search requires configuring data sources for each content repository that will be added to the index
and several types of repositories are supported. These can be created via the Admin UI or with the
REST API.

Creating Data Sources with the Admin UI
Creating Data Sources with the REST API

To help you get started quickly, you can use "Quick Start" from the UI Landing Page found at
 (be sure to adjust the host and port to the LWE-UI component as needed). Ithttp://localhost:8989

will allow you to quickly configure a website or local file system as a data source and start indexing
content immediately.

When first starting out, it's best to use a small set of documents and test that they are being
indexed according to the needs of your users. The built-in Search UI was designed to be used
during implementation. Queries can also be sent directly to Solr using the standard Solr syntax.

Using the Search UI
Getting Search Results (see page 144)
Query and Response Examples (see page 155)

Once you see the results of initial crawls, you may realize that some of your documents don't
appear as expected, or facets important to you are not appearing as you'd like.

Raw documents are broken up into various fields during the crawling and indexing processes, and
the fields contained in your documents may vary from the default fields provided by LucidWorks
Search through a file called . While we've tried to anticipate the needs of mostschema.xml

customers, you may find tweaks are required for your content.

In addition, LucidWorks Search provides the ability to separate indexed content into collections,
that each have their own field definitions, data sources, synonym lists, activity schedules, query
settings and other configurations. It's worth considering if you need to break up your content in
this way, and create new collections as needed.

Understanding Collections (see page 39)
Creating Collections with the Admin UI
Creating Collections with the REST API
Customizing the Field Schema (see page 49)
Managing Fields with the Admin UI
Managing Fields with the REST API

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://localhost:8989
http://docs.lucidworks.com/display/help/Searching
http://docs.lucidworks.com/display/help/Collections
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 11 291

Once the content is being indexed as you expect, you can modify the way user queries are handled
and how results are shown to users. There are many features available, such as synonyms,
auto-complete, alerting users of new results, boosting documents based on user clicks among
other features.

Synonyms
Stop Words
Using User Clicks to Boost Results
Modifying Query Settings with the Admin UI
Modifying Query Settings with the REST API
Lucid Query Parser Guide
Spell Check (see page 179)
Auto-Complete (see page 181)
User Alerts

Before going live with your search application, you'll want to consider user authentication and
system security issues. LucidWorks can integrate with LDAP and supports SSL. Additionally, Access
Control List information from Windows Shares can be incorporated to restrict result sets to only
those documents users are allowed to see. You may also want to integrate with a JMX client,
Zabbix or Nagios to monitor system performance.

LDAP Integration (see page 240)
Restricting Access to Content (see page 237)
Enabling SSL (see page 230)
Securing LucidWorks (see page 225)
Integrating Monitoring Services (see page 267)

Finally, those using (or hoping to use) the SolrCloud features of LucidWorks Search will want to
review the section on .Using SolrCloud in LucidWorks (see page 250)

http://docs.lucidworks.com/display/help/Synonyms
http://docs.lucidworks.com/display/help/Stop%20Words
http://docs.lucidworks.com/display/help/Click%20Scoring
http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Alerts

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 12 291

LucidWorks Search User Interface Help
The license could not be verified: License Certificate has expired!

Help for the LucidWorks Search User Interface is located at
.http://docs.lucidworks.com/display/help

http://docs.lucidworks.com/display/help

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 13 291

System Configuration Guide
The System Configuration Guide provides detailed information about many of the features included
with LucidWorks Search. It describes the layout of a LucidWorks Search installation and how to
work with many of the configuration options included with the system. It contains the following
sections:

Understanding LucidWorks Search (see page 14): Introduction, location of logs, working
with components
Collections and Indexes (see page 38): Setting up collections, designing the index structure
Crawling Content (see page 82): Crawling content of different filetypes and in different
repositories
Query and Search Configuration (see page 141): Configuring the user experience and how to
get search results to your application

Security and User Management (see page 224): SSL communication between components
and user authentication
Solr Direct Access (see page 245): Using Solr
Performance Tips (see page 247): How to judge performance and strategies for improvement
Expanding Capacity (see page 249): SolrCloud, index replication and distributed search
Integrating Monitoring Services (see page 267): Using JMX, MBeans, and integrating with
Zabbix or Nagios

 Information for LucidWorks Search in the Cloud Users
While nearly all of the features described in this section are available to LucidWorks Search
customers hosted on AWS or Azure, some of the advanced configuration options are not. When
editing a setting requires direct access to a configuration file, instead of accessing the setting
via the UI or an API, contact your support representative for information about how you might
tweak that setting for your needs.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 14 291

Understanding LucidWorks Search
This section covers the architecture of LucidWorks Search and nitty-gritty details like where log
files and important directories can be found.

We also cover some introductory material: if you're not familiar with search engines, there's a
section and we continue that with some moreHow Search Engines Work (see page 15)
information about .How LucidWorks Search Works (see page 18)

Then we get into the details with these sections:

Working With LucidWorks Search Components (see page 19)
System Directories and Logs (see page 22)
Starting and Stopping LucidWorks Search (see page 28)
Configuring Default Settings (see page 31)
LucidWorks System Usage Monitor (see page 36)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 15 291

How Search Engines Work
In its simplest form, a search engine is an application that enables a user to query a data set and
get a list of documents in response. Most people are familiar with search engines that search the
internet, but search engines are also built for more specific purposes. Enterprise documents or
websites are not available to the public at large, so they can't be searched with internet search
engines such as Google or Yahoo. An organization may have an online store and wish to customize
their site to allow customers to find products.

In LucidWorks Search, each unit of text to be searched is a "document", whether it is an article, a
website, a product description, or a phone book entry. In an enterprise environment, the
administrator determines which of these documents make up the data set to be searched.

This graphic shows the basic operation of a search engine:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 16 291

Indexing
For a user to search a set of documents, the search engine needs to know what is in them. The
process a search engine uses to find out what is in a document is called " ".indexing (see page 43)
Essentially, an administrator tells the search engine where to find the document or documents, or
feeds them to the search engine by way of an uploading process. The search engine then creates
an index of all the words it finds, along with a pointer to the document in which it found them.
Most information within documents is organized into " ." Fields containfields (see page)
information that serves a specific, important purpose in the document, such as Title, Author, or
Creation Date. Good search engines are able to identify these fields and create an index for each
one.

Once the search engine creates an index, lots of interesting features can be added to aid users in
their search experience, such as a spelling checker, automatic query completion, faceting of
results, and "find similar" functionality.

Searching
Once the search engine has created an index of available content, it is ready to accept a search.
This happens when the user enters a keyword or phrase, and the search engine compares that
keyword or phrase against the index, returning pointers to any documents that are associated with
them.

Of course, people are surprisingly different in the way in which they approach a topic, so search
engines need to take these variations into account. The goal of a search engine is to match words
entered by a user to words found in a document, so one technique it uses is to "normalize" both
the user's query and terms that have been indexed as much as possible to find the best possible
match, similar to the way in which you might convert both a target string and the text you are
matching to uppercase in order to eliminate case-sensitivity.

Full-text Searching and Challenges
Several inherent challenges complicate full-text search. First, there is currently no way to
guarantee the searcher will find the "best" results because there is often no agreement on what the
"best" result is for a particular search. That's because evaluating results can be very subjective.
Also, users generally enter only a few terms into a search engine, and there is no way for the
search system to understand the user's intention for a search. In fact, if the user is doing an initial
exploration of a topic area, the user may not even be aware of his or her intention.

A system that understands (that is, the way people speak or write) perfectly isnatural language
usually considered the ultimate goal in search engine technology, in that it would do as good a job
as a person in finding answers. But even that is not perfect, as variations in human communication
and comprehension mean that even a person is not guaranteed to find the "right" answer,
especially in situations where there may not even be a single "right" answer for a particular
question.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 17 291

Some search engines, such as LucidWorks Search, are built with features that try to solve, or at
least mitigate, these challenges. This System Configuration Guide will introduce you to many of
these features and describe how to configure them.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 18 291

How LucidWorks Search Works
Like any other search engine, LucidWorks Search works by indexing several kinds of documents
and providing a way for a user to search them. It uses Lucene and Solr to handle the core indexing
and query processing tasks, and leverages the latest advancements in those projects. LucidWorks
also builds on the work of the open-source community by adding ,crawling features (see page 43)
a robust , an easy-to-use administration interface, and other features.REST API

The Apache Solr/Lucene core provides the indexing and searching functionality on which
LucidWorks is built. As an application developer using LucidWorks Search, you can access this
functionality in the same way that you access a traditional Solr installation. This includes field
definition, document analysis, faceting, and basic query interpretation. Customers with LucidWorks
Search installed on their own servers can work with the Apache Solr/Lucene core directly if they
choose. Customers who use LucidWorks Search on AWS or Azure access much of the same
functionality through the .Admin UI

On top of the Apache Solr/Lucene core is LucidWorks Search, which provides programmatic and
GUI access to features that are normally difficult to work with directly, such as field definition or
data source creation and scheduling.

The provides configuration andLucidWorks Search Admin User Interface (see page 12)
management tools for almost every feature of LucidWorks, including document acquisition,
security, and field definitions.
The provides programmatic access to almost all configuration and managementREST API
functions within LucidWorks.

Most of the functionality provided by LucidWorks comes from the LWE-Core and LWE-Connectors
, which manage all of these processes and features so administratorscomponents (see page 19)

can concentrate on building and managing their own applications rather than the underlying search
engine.

Related Topics

Working With LucidWorks Search Components (see page 19)
Indexing Documents (see page 43)
Getting Started (see page 9)

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 19 291

Working With LucidWorks Search Components
LucidWorks Search has three main components that can each be run together on a single server or
deployed on separate servers if desired. While LucidWorks Search customers on AWS or Azure will
not often need to interact with these components, an understanding of how they work is helpful for
a deeper understanding of the system as a whole.

About the Components (see page 19)
LWE-Core (see page 19)
LWE-UI (see page 19)
LWE-Connectors (see page 20)
Default Installation URLs (see page 20)

Configuring the Components (see page 21)
Related Topics (see page 21)

About the Components
Each component is a single JVM process. The system properties for each JVM can be modified with
the file found in the directory.master.conf $LWS_HOME/conf

LWE-Core

The LucidWorks Search Core component is the main engine of the application. It contains the
search index, the index definitions, the , the embedded query parser Solr (see page 245)
application and Lucene libraries, as well as serves the (with the exception of Alerts).REST API

LWE-UI

The UI component includes all web-based graphical interfaces for administering the application, a
sample search interface, Relevancy Workbench and the enterprise alerts feature.

Through the Admin UI, you can modify index fields, configure data sources for content collection,
define aspects of the search experience, and monitor system performance.

The Search UI provides a front-end for users to submit queries to LucidWorks Search and review
results. It is not intended as a production-grade user interface, rather as a sample interface to use
while configuring and testing the system.

Relevancy Workbench is a tool to model possible changes to how user query terms are interpreted
in order to improve relevancy. More information about this tool is available at Relevance

.Workbench

Enterprise Alerts provide a way for users of the front-end Search UI to save searches and receive
notifications when new results match their query terms. There is a user interface (see page 184)
piece with forms and screens for users to configure and review their alerts, as well as a REST API
for programmatic access to the Alerts features.

http://docs.lucidworks.com/display/help/Relevancy+Workbench
http://docs.lucidworks.com/display/help/Relevancy+Workbench

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 20 291

1.

2.

LWE-Connectors

The Connectors component performs all the crawler functions, which include crawling data sources
on demand or at a specific schedule, maintaining a crawl history (as applicable; each crawler varies
in their behavior), and saving data source configuration information for use by the crawlers. The
Connectors component also manages the crawler.LucidWorks Logs (see page 26)

Default Installation URLs

This guide will refer to example URLs that will reference the default installation URLs for each
component. These defaults are:

Component Default URL Web Interfaces

LWE-Core http://127.0.0.1:8888/ This URL is used as the base
for accessing most of the REST
APIs, and also for accessing
Solr Admin UI at
http://127.0.0.1:8888/solr

.

LWE-UI http://127.0.0.1:8989/ There are multiple front-ends
at this URL. This base URL will
access the Landing Page,
which will provide access to
the Quick Start, the
LucidWorks Search Admin UI,
Relevancy Workbench, and
also a link to the Solr Admin
UI.

LWE-Connectors http://127.0.0.1:8765/ There is no web front-end at
this URL, it is used by the
LWE-Core and LWE-UI
components to communicate
with the Connectors
component.

These URLs are used by the installer for two purposes:

When the various components communicate with each other, or link to one another, they
specify which URL will be used.
If the "Enable" check box is selected for a component when using the installer, then that
component will be run locally, using the port specified in the URL.

http://127.0.0.1:8888
http://127.0.0.1:8888/solr
http://127.0.0.1:8989
http://127.0.0.1:8765/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 21 291

1.

2.

3.

The default LucidWorks start scripts start all components at the same time. However, it is
possible to restart or stop a single component. See the section Starting and Stopping

 for details.LucidWorks Search (see page 28)

Back to Top (see page)

Configuring the Components
If all components are run on the same machine, they must be defined with different ports. They
can also be configured to run on different servers.

There are three possible ways to configure the components:

All components run on the same machine and they are started and stopped together. This is
the default for the , which automatically prompts for default ports that arestandalone installer
different for each component. To use this mode, you only need to run the installer once and
follow through the process completely.
All components run on the same machine but they are started and stopped separately. This
would require running the installer three times on the same machine. See Installing

 for detailed instructions on how to do this.Components on Different Servers
Each component is on a different machine and started and stopped separately. This requires
running the installer on each machine. See belowInstalling Components on Different Servers
for detailed instructions on how to do this.

Back to Top (see page)

Related Topics

Expanding Capacity (see page 249)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 22 291

System Directories and Logs

 There are several important directories in the LucidWorks Search
installation. System activities are recorded in several log files. Knowing where files and logs are
located will make system configuration and troubleshooting easier.

Locating Files and Directories (see page 22)
Configuring LucidWorks Search Directories (see page 23)
Temporary Files (see page 23)

System Logs (see page 24)
Log Properties (see page 25)

LucidWorksLogs Collection (see page 26)
Related Topics (see page 27)

Locating Files and Directories
The following table shows the default location of some directories that may be needed to effectively
work with LucidWorks Search. These paths are all relative to the LucidWorks Search installation
path (referred to as) which is specified .$LWS_HOME during installation

What Path

Configuration Files $LWS_HOME/conf/

Documentation $LWS_HOME/app/docs/ (PDF) or
 (Online)http://docs.lucidworks.com

Examples $LWS_HOME/app/examples/

Jetty Libraries $LWS_HOME/app/jetty/lib/

Licenses $LWS_HOME/app/legal/

Logs $LWS_HOME/data/logs/ (See below (see page
 for log file list)24)

LucidWorks Indexes $LWS_HOME/data/solr/cores/collection

/data/

LucidWorks Logs $LWS_HOME/data/solr/cores/LucidWorksLogs/data/

Solr Home $LWS_HOME/conf/solr/

http://docs.lucidworks.com

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 23 291

1.

2.
3.
4.

What Path

Solr Configuration Files $LWS_HOME/conf/solr/cores/collection

/conf/

Solr Source Code $LWS_HOME/app/solr-src/

Start/Stop Scripts $LWS_HOME/app/bin/

Editing Configuration Files on Windows

LucidWorks Search holds configuration files open after reading them, which may cause
problems on Windows systems that do not allow editing open files. In this case, stop
LucidWorks Search before editing files on Windows to be sure the edits are saved properly.

Configuring LucidWorks Search Directories

After you have installed LucidWorks Search, you can configure the location of of the , , app conf

, and directories by passing these parameters to the start script (or data logs start.sh start.bat

):

-lwe_app_dir

-lwe_conf_dir

-lwe_data_dir

-lwe_log_dir

For example, to change the location of the directory, pass the following parameter to yourdata

start script:

start.sh -lwe_data_dir /var/data

See the section on for more informationStarting and Stopping LucidWorks Search (see page 28)
about the start scripts.

Temporary Files

By default, LucidWorks Search uses standard system directories (as detected by the JVM) for
creating temporary files. This can be changed by adding a system property to the for master.conf

 in the section that controls each JVM for the system. For example, to change thejava.io.tmpdir

location of temporary files for the LucidWorks Core component, you would follow these steps:

Shut down LucidWorks using the instructions found in the section on Starting and Stopping
.LucidWorks Search (see page 28)

Open with a text editor (found in .master.conf $LWS_HOME/conf

Find the section for and add .lwecore.jvm.params -Djava.io.tmpdir=/tmp/files/

Start LucidWorks.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 24 291

The directory chosen as the location for temporary files should exist before starting LucidWorks
Search, and must be writable by the user running LucidWorks.

Back to Top (see page)

System Logs
LucidWorks Search records system activities to rolling log files located in the $LWS_HOME/data/logs
directory of the installation by default. The table below describes the main purpose of the various
log files.

Log Name Name Pattern Function

Connector component log connectors.<YYYY_MM_DD>.log Connectors component
operations, including the
output of all crawling
operations.

Connector request log connectors.request.<YYYY_MM_DD>.logRequests to the connectors
component. These usually
come from the Core
component.

Core component log core.<YYYY_MM_DD>.log LucidWorks Core component
operations, such as indexing.

Core request log core.request.<YYYY_MM_DD>.logRequests to the core
component. These could come
from either the Connectors or
the UI component.

Core standard error log core-stderr.log Errors from Jetty startup (if
any).

Core standard output log core-stdout.log Messages from Jetty startup (if
any).

UI component log ui.<YYYY_MM_DD>.log Information from the Rails
application, which runs the
Search, Admin and Alerts
components.

UI request log ui.request.<YYYY_MM_DD>.log Requests to the UI component.

Ruby standard error log ruby-stderr.log Errors from Ruby startup (if
any).

Ruby standard output log ruby-stdout.log Messages from Ruby startup (if
any).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 25 291

Log Name Name Pattern Function

Click log click-<collectionName>.log User click data, for use in
relevance boosting (see page

 (if enabled).185)

SharePoint crawl log google_connectors.feed.log SharePoint crawling
operations. Note, this file can
also include a number in the
name, such as
google_connectors.feed0.log

, etc.

Log files are available through the Admin UI, by going to the Server Logs page for a collection and
clicking the link at the bottom of the page. If for some reason the Admin UI is not available, log
files can be downloaded with a curl command to the Core component such as:

curl http://localhost:8888/logs/<log_file_name>

Note, however, if the LucidWorks Search Core component is down, that curl command will not
work.

Log Properties

The LucidWorks Search Core log is configured by the properties$LWS_HOME/conf/log4j-core.xml

file. The default is to create a distinct log per date (server time).

The LucidWorks Search UI log is configured by the properties file.$LWS_HOME/conf/log4j-ui.xml

The default is to create a distinct log per date (server time).

The LucidWorks Search Connector log is configured by the
 properties file. The default is to create a distinct log per$LWS_HOME/conf/log4j-connectors.xml

date (server time).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 26 291

The LucidWorks Search Connectors log includes information about crawl activities such as
attempts to access a file or URL and the results of those attempts. By default, the log does
not record the collection or data source associated with crawl activities. However, if you
would like to record that information for later review, you can edit the

 file.$LWS_HOME/conf/log4j-connectors.xml

In the file, find the section that begins with a comment to "Use the pattern below to log
additional context info...", as below:

<!-- Use the pattern below to log additional context info like collection and

data source name -->

 <!--

 <param value="%d{ISO8601} %p %c{2} - %X %m%n" name="ConversionPattern"/>

 -->

Uncomment <param value="%d{ISO8601} %p %c{2} - %X %m%n"
 and save the file. You should restart LucidWorks Searchname="ConversionPattern"/>

after making this change.

More information on how to modify log4j settings for the Core and UI log files is available at
.http://logging.apache.org/log4j/1.2/manual.html

Back to Top (see page)

LucidWorksLogs Collection
LucidWorks Search records log files for your Solr indexes in a collection called LucidWorksLogs,
which contains a pre-configured data source also called . You can view the data forlucidworkslogs

the LucidWorksLogs collection as you would for any other collection. You can also access the log
files directly in the directory.$LWS_HOME/data/solr/cores/LucidWorksLogs/

The LucidWorksLogs collection powers the error log and all statistics about recent query and
indexing activity that is shown in the Admin UI.

The log files on a LWE-Core server are accessible via HTTP at the URL
. This URL lists all files currently in the logs directory, and provides"http://server:port/logs"

links for downloading them individually. This can be useful in situations where you do not have
direct shell access to the LWE-Core machine, but would like to review the log files for
troubleshooting purposes.

If you are using LucidWorks Search in SolrCloud mode or with each component installed on a
different server, please see the section for details onLog Indexing with Separated Components
how to make sure your logs are fully indexed.

http://logging.apache.org/log4j/1.2/manual.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 27 291

When securing the HTTP Port of LWE-Core installation, consideration should be taken as to whether
the "/logs" directory should be secured or not.

Deleting the LucidWorksLogs Collection

It is possible to delete the LucidWorksLogs collection if desired; however, this will disable
the server log page within other collections, all activity graphing, and all calculations of
Most Popular and Most Recent queries.

If the collection was deleted in error, or if you'd like to restore it at a later time, go to the
Server log page within any collection and click .Recreate the log collection

It is also possible to remove the LucidWorksLogs data source from the LucidWorksLogs
collection (i.e., retain the collection for possible later use, but remove the mechanism that
indexes the logs). However, at the current time it will automatically be re-created and
re-scheduled on server restart. If you wish to disable log crawling, you must either remove
the entire LucidWorksLogs collection, or modify the LucidWorksLogs data source so that
the schedule is not active (you can modify the schedule with the Data Source Schedules
API or in the Schedules screen of the Admin UI.

Related Topics

Working With LucidWorks Search Components (see page 19)
Starting and Stopping LucidWorks Search (see page 28)

Back to Top (see page)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 28 291

1.
2.

3.

Starting and Stopping LucidWorks Search

LucidWorks Search can be started and stopped using start and stop scripts provided with the
application. These scripts are described below.

Windows users who have configured LucidWorks Search to run as a service should use the
Services panel in Windows to manage start and stop.

Starting a Standalone LucidWorks Search Instance (see page 28)
Starting SolrCloud-enabled LucidWorks Search Instances (see page 29)

Passing SolrCloud parameters at Start (see page 29)
Updating master.conf (see page 29)

Stopping LucidWorks Search (all modes) (see page 30)
Starting or Stopping Components Separately (see page 30)

Starting a Standalone LucidWorks Search Instance
If you did not allow the installer to start LucidWorks Search, or if shortcuts were not installed, you
can still start or stop the system manually from the command line. This will start all components:

Open a command shell, and make sure Java 1.6 or greater is in your path.
Change directories to the LucidWorks installation directory, then to the $LWS_HOME/app/bin
directory.
Invoke for UNIX/Mac/Cygwin or for Windows systems.start.sh start.bat

If you are using LucidWorks Search in SolrCloud mode, please refer to the section Starting
 in the documentation for Using SolrCloud in LucidWorksLucidWorks Search (see page 252)

Search.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 29 291

Starting SolrCloud-enabled LucidWorks Search Instances
If you are using LucidWorks Search in SolrCloud mode, you must start the application in a way that
the underlying Solr instances are aware of where ZooKeeper is. If you used the LucidWorks Search
installer, the required parameters have been added to the file for eachconf/master.conf

instance.

However, if you bootstrapped LucidWorks Search manually, or installed without the all of the
SolrCloud installer steps, you will need to pass the required parameters on the command line. You
can also manually update file.conf/master.conf

Passing SolrCloud parameters at Start

As long as the initial bootstrap has been completed (if not, please see Starting LucidWorks Search
), the only parameter that is required on future startup is the parameter.(see page 252) zkHost

This parameter points to each of the ZooKeeper instances and the root directory for the
configurations that are stored in ZooKeeper. This example commmand starts LucidWorks Search
and points to an external ZooKeeper:

$./start.sh -lwe_core_java-opts

"-DzkHost=10.0.1.7:5001,10.0.1.9:5001,10.0.1.11:5001/lws"

If you are using the embedded ZooKeeper instance, then you may alternately need to start
ZooKeeper while starting LucidWorks Search with the parameter on one of the instances.zkRun

Subsequent instances would require the parameter to point to the instance with thezkHost

running ZooKeeper. For example, to start the first instance:

$./start.sh -lwe_core_java-opts "-DzkRun"

Then all subsequent instances are started:

$./start.sh -lwe_core_java-opts "-DzkHost:10.0.1.7:9988"

Note when using the embedded ZooKeeper that the port is the LWE-Core component port + 1000.

Updating master.conf

If you don't want to have to pass the ZooKeeper parameters each time you restart, you can modify
the file for each instance. Simply add the parameters to the section conf/master.conf -DzkHost

 and they'll be passed to the start script. For example, here is aJVM Settings of LWE-Core

sample where:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 30 291

1.
2.

3.

COMPONENT LWE-Core - LWE-Solr + LWE REST API.

lwecore.enabled=true

lwecore.address=http://10.0.1.5:8888

JVM Settings for LWE-Core

lwecore.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M -Duser.language=en

-Duser.country=US -Duser.timezone=UTC -Dfile.encoding=UTF-8

-Dcom.sun.management.jmxremote -DzkHost=10.0.1.7:5001,10.0.1.9:5001,10.0.1.11:5001/lws

If using the embedded ZooKeeper instance, the same approach can be taken to add the -DzkRun
parameter to one instance, with being added to the other instances.-DzkHost

These parameters only need to be added to the LWE-Core component for each instance that runs
the LWE-Core component; so if you have an instance that is only running the UI or the Connectors,
the parameters don't need to be added at all.

Stopping LucidWorks Search (all modes)
To stop LucidWorks Search, use the stop scripts at the command line. This will stop all components
and any running processes.

Open a command shell, and make sure Java 1.6 or greater is in your path.
Change directories to the LucidWorks installation directory, then to the $LWS_HOME/app/bin
directory.
Invoke for UNIX/Mac/Cygwin or for Windows systems.stop.sh stop.bat

Restarting LucidWorks Search

To restart LucidWorks Search, first stop the servers and start them again using the
processes outlined above.

Starting or Stopping Components Separately
To start or stop any of the components without starting or stopping the other components, you can
use the / or / scripts with the parameter, followed bystart.sh start.bat stop.sh stop.bat -only

the component name.

Core component: lwe-core
UI component: lwe-ui
Connectors component: connectors

For example, this would start only the connectors using the script:start.sh

start.sh -only connectors

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 31 291

Configuring Default Settings

 You can configure many default settings in LucidWorks Search in
the file located in the directory. You must defaults.yml $LWS_Home/conf/lwe-core restart

 after editing this file for your changes to take effect.LucidWorks (see page 28)

Some of the default settings you can configure include:

Default crawl depth
Default field mappings for crawlers
Batch crawling of data sources
Enabling or restricting data sources by crawler
Default HTTP proxy settings

For example, to set the default crawl depth to 3 (which means that the crawler will follow
links/sub-directories up to three steps away from the initial target), set datasource.crawl_depth:
.3

Here is an example file with comments that explain the various default settingsdefaults.yml

(your default.yml file may vary):

file: defaults.yml

initCalled: true

location: CONF

values:

Set to true to block index updates

 control.blockUpdates: false

A whitespace-separated list of symbolic crawler names to enable; all crawlers are

enabled if this list is empty

 crawlers.enabled.crawlers: ''

Absolute path that will be used to resolve relative path of local file system crawls

 crawlers.filesystem.crawl.home: null

Per-crawler list of enabled datasource types, whitespace-separated. All available

types are enabled if this list is empty.

 crawlers.lucid.aperture.enabled.datasources: ''

Per-crawler whitespace-separated list of restricted datasource types; all enabled

types are unrestricted if this list is empty

 crawlers.lucid.aperture.restricted.datasources: ''

 crawlers.lucid.external.enabled.datasources: ''

 crawlers.lucid.external.restricted.datasources: ''

 crawlers.lucid.fs.enabled.datasources: ''

 crawlers.lucid.fs.restricted.datasources: ''

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 32 291

 crawlers.lucid.gcm.enabled.datasources: ''

 crawlers.lucid.gcm.restricted.datasources: ''

 crawlers.lucid.jdbc.enabled.datasources: ''

 crawlers.lucid.jdbc.restricted.datasources: ''

 crawlers.lucid.logs.enabled.datasources: ''

 crawlers.lucid.logs.restricted.datasources: ''

 crawlers.lucid.solrxml.enabled.datasources: ''

 crawlers.lucid.solrxml.restricted.datasources: ''

Default data source bounds: choose none or tree

 datasource.bounds: none

Batch processing; caching of crawled raw content

 datasource.caching: false

Explicitly commit when crawl is finished

 datasource.commit_on_finish: true

Solr's commitWithin setting, in milliseconds

 datasource.commit_within: 900000

Default crawl depth: the number of cycles or hops from the root URL/directory. Set to

-1 for unlimited crawl depth

 datasource.crawl_depth: -1

 datasource.follow_links: true

Set to true to ignore the rules defined in /robots.txt for all crawled sites

 datasource.ignore_robots: false

Perform indexing at the same time as crawling

 datasource.indexing: true

Global exclude regular expression patterns for different crawlers which allow

excluding specific document types or paths for all data source types

that use the defined crawler. Multiple patterns can be defined by separating regular

expressions with a 'pipe' (|)

or with the YAML list format as shown in the examples below.

 datasource.lucid.aperture.file.exclude_paths: '.*\.xls|.*\.ppt'

 datasource.lucid.aperture.web.exclude_paths:

 - '.*domain1.*'

 - '.*domain2.*'

 datasource.lucid.fs.exclude_paths: []

 datasource.lucid.gcm.sharepoint.excluded_urls: []

Default field mapping for Aperture-based crawlers. This is the baseline, the field

mapping for each data source can be customized.

 datasource.mapping.aperture: &id001

!!com.lucid.admin.collection.datasource.FieldMapping

 datasourceField: data_source

 defaultField: null

 dynamicField: attr

 literals: {}

 mappings:

 slide-count: pageCount

 content-type: mimeType

 body: body

 slides: pageCount

 subject: subject

 plaintextmessagecontent: body

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 33 291

 lastmodified: lastModified

 lastmodifiedby: author

 content-encoding: characterSet

 type: null

 date: null

 creator: creator

 author: author

 title: title

 mimetype: mimeType

 created: dateCreated

 plaintextcontent: body

 pagecount: pageCount

 contentcreated: dateCreated

 description: description

 contributor: author

 name: title

 filelastmodified: lastModified

 fullname: author

 fulltext: body

 messagesubject: title

 last-modified: lastModified

 acl: acl

 keyword: keywords

 contentlastmodified: lastModified

 last-printed: null

 links: null

 url: url

 batch_id: batch_id

 crawl_uri: crawl_uri

 filesize: fileSize

 page-count: pageCount

 content-length: fileSize

 filename: fileName

 multiVal:

 fileSize: false

 body: false

 author: true

 title: false

 acl: true

 description: false

 dateCreated: false

 types:

 filesize: LONG

 lastmodified: DATE

 datecreated: DATE

 date: DATE

 uniqueKey: id

Default field mapping for crawlers that use Tika parsers

 datasource.mapping.tika: *id001

Maximum size of content to be fetched

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 34 291

 datasource.max_bytes: 10485760

Maximum number of documents to collect; set to -1 for unlimited documents

 datasource.max_docs: -1

The maximum number of concurrent requests processed by a data source crawl, for those

crawlers that support multi-threaded crawling.

As of v2.1, this is only the lucid.fs crawler, which supports the Hadoop, S3 and SMB

data source types.

 datasource.max_threads: 1

Set to true to apply content parsers to the retrieved raw documents

 datasource.parsing: true

Defines the host name of an HTTP proxy server to use for web crawling; leave blank if

you are not using a proxy server

 datasource.proxy_host: ''

HTTP proxy password, if you are using an HTTP proxy server

 datasource.proxy_password: ''

proxyPort for an HTTP proxy server, if you are using one

 datasource.proxy_port: -1

Username to authenticate with HTTP proxy server

 datasource.proxy_username: ''

If true, text extracted from a compound document (one which has other embedded

documents and resources, such as emails with attachments

or Office documents with OLE attachments, but not .zip, .jar., or similar) will be

appended to the text of the container document.

If false, each embedded resource is treated as a separate document with a URL in the

form of the container document URL plus ! and

the embedded document's name or identifier. If documents are treated as separate

documents (when this setting is false),

the URL of the container document is added to the field "belongsToContainer".

 datasource.tika.parsers.flatten.compound: true

If false, documents with mime types that start with "image/" are ignored. If true,

the documents are sent to Tika for parsing,

which may result in useful metadata being extracted from them but may also result in

a large number of fields and terms.

 datasource.tika.parsers.include.images: false

If true, and LucidWorks runs in the same JVM as Solr, then crawlers will first try

using direct calls to SolrCore for updates,

which may result in performance improvements. If false (the default), the SolrJ API

is used for updates.

 datasource.use_direct_solr: false

If true, datasources will attempt to verify access to the remote repositories.

 datasource.verify_access: true

HTTP-specific preferences sent in HTTP headers during crawling.

 http.accept.charset: utf-8,ISO-8859-1;q=0.7,*;q=0.7

 http.agent.browser: Mozilla/5.0

 http.agent.email: crawler at example dot com

 http.agent.name: LucidWorks

The agent.string will allow a completely custom http.agent identifier. If this is not

empty, it will be used verbatim instead of all other 'http.agent.*' settings.

 http.agent.string: ''

 http.agent.url: ''

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 35 291

 http.agent.version: ''

 http.crawl.delay: 2000

Maximum number of redirections in a redirection chain.

 http.max.redirects: 10

Number of threads for HTTP crawling.

 http.num.threads: 1

Socket timeout in milliseconds.

 http.timeout: 10000

Specify the HTTP version: HTTP/1.1 if true; HTTP/1.0 if false.

 http.use.http11: true

 ssl.auth_require_authorization: false

 ssl.auth_require_secure: false

Related Topics

Overview of Crawling (see page 83)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 36 291

LucidWorks System Usage Monitor
The LucidWorks System Usage Monitor is a voluntary program to allow LucidWorks Search users to
anonymously send basic information about their system to LucidWorks. We use this information to
analyze the types of systems in use by our customers and how they are used so we can improve
our product. At no point does the system collect information that could identify you, your
organization, the documents indexed, or the type of content indexed.

Information Collected
The System Usage Monitor collects the following information for LucidWorks Search installations:

Operating System version and type
Java version and type
LucidWorks Search version and type
Number of LucidWorks Search collections created
Number of LucidWorks Search data sources created
Number of LucidWorks Search documents indexed
JVM memory free, available, and used
Number of LucidWorks Search queries
Number of documents added since last submission

How the System Usage Monitor Works

When Information is Sent

The System Usage Monitor sends information at each LucidWorks startup (using the or start.sh

 scripts) and once per week on Saturdays.start.bat

How Information is Sent

When LucidWorks Search is started, the System Usage Monitor will transmit data about your
system to a server hosted by LucidWorks with two HTTP requests. The first request contains
system-level information and if that is successful, the second request will send LucidWorks-specific
information, as listed above.

The information is sent via an encrypted POST request to .https://heartbeat.demo.lucidworks.io
Each request includes a unique identifier, which is anonymous and can't be used to identify the
sender. The IP that sent the request is not stored with the request.

The requests are logged in the LucidWorks Search core log (). The requestscore.YYYY_MM_DD.log

will appear similar to this:

https://heartbeat.demo.lucidworks.io

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 37 291

1.
2.
3.

4.

2012-10-23 19:05:56,618 INFO heartbeat.LucidStatsPublisher - Sending heartbeat stats:

uuid='3532f7e9-4280-4714-9e83-ea0a95fe90bd',data='{product=lwe,

current_product_version=0.0Enif, is_cloudy=false,

lwe_git_sha=7568ce8c35a394c4b987e3a17cb5e1b5ae5dac25,java_version=1.6.0_35 (Apple

Inc.), num_cpu_cores=4, os_version=Mac OS X (x86_64)}'2012-10-23 19:05:58,831 INFO

publish.MonitorRegistryMetricPoller - cache refreshed, 8 monitors matched filter,

previous age 1351019158 seconds

2012-10-23 19:05:58,865 INFO heartbeat.LucidStatsPublisher - Sending heartbeat stats:

uuid='3532f7e9-4280-4714-9e83-ea0a95fe90bd',data='{num_docs=0, num_collections=1,

num_datasources=0, jvm_memory_free=506720952, jvm_memory_max=1065025536,

jvm_memory_total=534708224,num_adds=0, num_search_requests=0}'

Subsequent weekly updates are sent as a single request, including only the LucidWorks
Search-specific information like number of documents, number of data sources, etc.

How to Opt-In or Opt-Out

During Installation

During installation of LucidWorks Search, you will be presented with an option to opt-in to the
System Usage Monitor program. This option will appear after defining the installation path for the
system. With the graphical installer, the box is checked by default and un-checking the box will
opt-out of the program. If using the console installer, choose '0' as a response to opt-out of the
program.

Post-Installation

Opting-in to the program will insert a line at the beginning of the $LWS_HOME/conf/master.conf
file, as so:

LucidWorks System Usage Monitor (comment the next line to disable this feature)

usageStatsServerId=3532f7e9-4280-4714-9e83-ea0a95fe90bd

To opt-out:

Stop LucidWorks Search
Open found in master.conf $LWS_HOME/conf

Comment out the line containing the by adding a hash mark (#) at theusageStatsServerID

beginning of the line
Start LucidWorks Search

The same process can be followed to opt-in if the service was previously disabled, by removing the
hash mark instead of inserting it.

More Information
For more information, including details of our commitment to protecting the privacy of your data,
please see our website at .http://www.lucidworks.com/lucidworks-system-usage-monitor

http://www.lucidworks.com/lucidworks-system-usage-monitor

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 38 291

Collections and Indexes
This section covers how to configure LucidWorks Search for your data.

Content in LucidWorks is indexed into a collection, which can have different documents, data
sources, fields, field types and settings from other collections. Before starting to work with
LucidWorks, review the section . Once one collection isWorking with Collections (see page 39)
configured as you like, it can be used as a template, as described in Using Collection Templates

.(see page 41)

Once the collections are considered, then you can think about how to configure LucidWorks Search
to index your content. These sections describe the options for setting up the indexes:

Indexing Documents (see page 43)
Storing Indexes in HDFS (see page 45)
How Documents Map to Fields (see page 47)
Customizing the Field Schema (see page 49)
Reindexing Content (see page 69)
Multilingual Indexing and Search (see page 71)
Lucid Plural Stemming Rules (see page 74)
Deleting the Index (see page 81)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 39 291

Working with Collections
A single installation of LucidWorks Search may be used to index multiple types of content, serve
multiple user constituencies, or accommodate multiple overlapping security rules. It does this by
supporting the creation and use of multiple "collections". A collection is a set of documents that are
grouped together with the same indexing and query rules. Each collection in LucidWorks has its
own index and configuration files and is logically separate from all other collections.

For those familiar with Solr, the concept of collections in LucidWorks is very similar to the concept
of in Solr.cores

Default Collections
By default, each LucidWorks Search installation includes two collections out of the box:
"collection1" and "LucidWorksLogs".

Collection1 is the primary collection used by LucidWorks Search to store indexes and define query
settings. It can be used as-is immediately after installation to start indexing documents and using
the default Search UI. However, a collection cannot be renamed once created (nor can content be
moved from one collection to another without indexing it all from scratch). So, if you think you'll
use multiple collections and want to name each one based on what it contains or what it will be
used for, you would probably create a new collection and start from there.

The LucidWorksLogs collection is a special collection, used to index logs for easier troubleshooting.
It is discussed in more detail in the section on the . It canLucidWorksLogs collection (see page)
be deleted at any time and recreated later, if desired.

If you want to delete collection1, you can do so after you've created at least one other standard
collection, as there must always be at least one collection (not including the LucidWorksLogs
collection).

A collection that has been customized can also be used as the basis for future collections; see the
section on for more information.Collection Templates

Per-Collection Features
You can configure the following items for each collection individually:

Data sources
Fields
Query settings
Search UI
Search Filters
Schedules
Solr Admin

http://wiki.apache.org/solr/CoreAdmin

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 40 291

After you have created additional collections, you should pay special attention to the collection
name you are working with so you edit the proper configuration files or make the correct API calls.
This is particularly true when using the or several of the advanced configuration optionsREST API
discussed later in this Guide, but it also applies to the various screens of the . ModifyingAdmin UI
the wrong collection out of context may have unexpected consequences including poorly indexed
content or an inconsistent search experience for users.

System-Wide Features
The following items are system-wide and can only be configured for the entire LucidWorks Search
installation or instance:

Collection definition
Access to user interfaces
Users
Alerts (although these take the collection as a parameter to limit the query)

Related Topics

Creating a collection with the Collections API
Creating a collection with the Admin UI
System Directories and Logs (see page 22)

http://docs.lucidworks.com/display/help/
http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 41 291

Using Collection Templates

 Collection templates allow you to copy the configuration files
from a collection and use it as the basis for future templates. Creating a template is as simple as
creating a file from configuration files in the base collection and explicitly specifying that .zip .zip

file during new collection creation either via the or the .Admin UI REST API

Included Templates
Several templates are included with LucidWorks out of the box. They can be found in

.$LWS_HOME/app/collection_templates

default.zip: This has the same default options and out-of-the-box fields as the standard
"collection1" that exists by default after LucidWorks Search installation.
essential.zip: This is a stripped-down version of the LucidWorks default configuration that
includes only the few fields that are absolutely essential for the system to run (see

 for more details on the default field set).Customizing the Field Schema (see page 49)
hadoop.zip: provides the basic configuration for storing the Solr indexes for a collection in a
Hadoop Filesystem (HDFS). For more details, see .Storing Indexes in HDFS (see page 45)
lucidworkslogs: provides the configuration for the LucidWorksLogs collection only. This is a
system collection with a very specific configuration and this template should not be used for
any other collection.

Creating a Template

 To make a custom template, create a new collection and
configure it as needed, whether that is via the user interface, using the REST API, or manual
editing of configuration files. All of the configuration files for a collection reside in the

 for the collection, which is found under ,instance_dir $LWS_HOME/conf/solr/cores/collection

where is the name of the collection that is being used as the basis for the template.collection

http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 42 291

Then create a file from the . The .zip file can have any name, including .zip instance_dir

, although using the same name would overwrite the system default template,default.zip

meaning it would not be available at a later time if needed. All templates must be placed in
 to be available during collection creation.$LWS_HOME/conf/collection_templates

We recommend that you use all the sub-directories from the even if some ofinstance_dir

the files have not been customized in the base collection.

Related Topics

Working with Collections (see page 39)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 43 291

Indexing Documents
The first step to being able to search is to create an index. The index stores all the terms from
documents in such a way that results for user queries can be returned as quickly as possible.

Indexes are created by breaking a document into individual words and saving the word list. At the
same time, documents are not solely lists of sentences and words, but instead usually contain
some sort of structure - an email will likely have "to" and "from" information; Word and PDF
documents may have "title" and "author" information, in addition to the main "body"; product
descriptions may have "price", "description" or "color" information. These are known as fields
within each document. Adding field information to the word list facilitates a user's ability to search
for emails from a specific person, or shoes that come in a particular color.

Fields can contain different types of data. A title field, for example, is usually text (character data).
A price contains a mix of digits and special characters (such as $ or €). Dates are generally
Defining the type of data that a field will contain is a critical first step in defining the fields for the
index.

Defining Fields
There are several things to consider when configuring fields. The primary one is whether to store
the field or not. Stored fields take up space in the index, but they allow the field to then be indexed
(that is, made searchable) or available to users for display. It may be preferable to store a field
and use it for display in a results list, but not allow it to be searchable. Alternately, a field can be
designated for use in a facet, so it would be stored and indexed, but perhaps not searchable. A
careful analysis of documents should occur before indexing to be able to anticipate how it will be
indexed. If fields are not correctly configured before a document is indexed, documents will need to
be re-indexed at a later time. If that is required, the existing index can be deleted (see page 81)
and documents can be added to it from scratch.

Indexing Data Sources
In order for users to be able to search, LucidWorks Search needs to have indexed documents.
LucidWorks Search supports two main approaches for document discovery:

Documents can be pushed directly into the system. Users who are familiar with Solr may
already have processes and systems in place to push documents into the index. This is also
an option if LucidWorks Search is not able to connect to the repository to pull documents
from it.

Documents can be pulled from remote repositories. LucidWorks Search has several
pre-defined types of repositories that it is able to connect to; you configure these
connections by creating "data sources" and selecting options appropriate for your needs.

Each of these approaches has several options and caveats to consider, which are covered in more
detail .Overview of Crawling (see page 83)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 44 291

Related Topics

Customizing the Field Schema (see page 49)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 45 291

Storing Indexes in HDFS
As of LucidWorks Search v2.6.3, it is possible to store the Solr indexes in your Hadoop Filesystem
(HDFS). The benefits of this are to distribute the indexes and Solr's transaction logs across a
Hadoop cluster. Note that this does not use MapReduce for index processing, but instead uses
Hadoop for transaction log and index file storage. LucidWorks Search (and Solr) support doing this
with Hadoop 2.0.x versions only.

In LucidWorks Search, this is enabled with a new namedcollection template (see page 41)
"hadoop" which defines the configuration required to store Solr indexes on Hadoop. This template
can be used to create new collections whose indexes will be stored in the HDFS specified with the
parameters.

Defining the HdfsDirectoryFactory in solrconfig.xml
The main configuration changes are defined in . The needs tosolrconfig.xml directoryFactory

be set to use the and two parameters are defined for ,HdfsDirectoryFactory solr.hdfs.home

which points to a directory accessible to the LWE-Core and Connectors components that contains
the Hadoop binaries, and , which is the location of the hadoop configurationsolr.hdfs.confdir

files.

The supplied with the 'hadoop' collection template includes this section:solrconfig.xml

<directoryFactory name="DirectoryFactory"

class="org.apache.solr.core.HdfsDirectoryFactory">

 <str name="solr.hdfs.home">${solr.hdfs.home:}</str>

 <str name="solr.hdfs.confdir">${solr.hdfs.confdir:}</str>

 </directoryFactory>

Updating master.conf
Note that the two required parameters are defined as system properties. To supply the values for
the system properties, you should modify for the installation to add$LWS_HOME/conf/master.conf

them. The values must be supplied for the as in thisLWE-Core component (see page 19)
example:

JVM Settings for LWE-Core

lwecore.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M -Duser.language=en

-Duser.country=US -Duser.timezone=UTC -Dfile.encoding=UTF-8

-Dcom.sun.management.jmxremote -Dsolr.hdfs.home=/path/to/hadoop/home

-Dsolr.hdfs.confdir=/mnt/hadoop/hadoop2x/etc/hadoop

The directory will be appended to the directory in HDFS. You must alsosolr.hdfs.home /usr

ensure that the directory has write permissions so LucidWorks Search can write to it./usr

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 46 291

If you have modified after starting LucidWorks Search, you will need to master.conf restart it (see
.page 28)

If you are running LucidWorks Search in SolrCloud mode, you should update master.conf
on each node that is running the LWE-Core component.

Defining the values in has the benefit of allowing you to define the HDFS locationmaster.conf

once. However, if you have multiple HDFS locations, you could instead define the values within the
 file for each collection that will be stored in HDFS. In that case, do not also addsolrconfig.xml

the values to .master.conf

Note the parameters described here are the basic parameters to allow LucidWorks to store the Solr
indexes on HDFS. There are other available parameters, however, described in the Apache Solr
Reference Guide section .Running Solr on HDFS

Related Topics

Using Collection Templates (see page 41)
Running Solr on HDFS from the Apache Solr Reference Guide

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS
https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 47 291

How Documents Map To Fields
When LucidWorks Search crawls a data source, it extracts the target data and stores it in fields in
the index. The specific mapping from the source data to the indexed fields is determined by the
crawler you are using, which is in turn determined by the data source type. For a list of file types
supported by LWE, see . Let us consider two common fileSupported Filetypes (see page 96)
types, both processed by the crawler: a website and a Microsoft Word document.Aperture

For the , consider a case where you have crawled with a crawlwebsite http://www.lucidworks.com
depth of zero, which means that only the first page is indexed. The Aperture crawler maps the web
page as follows (note that this example is not complete or exhaustive):

Data Source Field Mapping Field Content

url url http://lucidworks.com

content-type mimeType html/text

title title Lucid Imagination is
now LucidWorks.

LucidWorks

body body The Future Of Search

And so on.

For the , consider this document, included here in its entirety:Microsoft Word document

Data Source Field Mapping Field Content

mimetype mimeType application/vnd.openxmlformats-officedocument.wordprocessingml

title title Example Word Doc

http://aperture.sourceforge.net/
http://docs.lucidworks.com/display/help/Create%20a%20New%20Web%20Data%20Source
http://www.lucidworks.com
http://lucidworks.com
http://docs.lucidworks.com/display/help/Create%20a%20New%20File%20Data%20Source

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 48 291

Data Source Field Mapping Field Content

author author Drew Wheeler

body body This Is The Heading This is
some text. It is very
interesting.

For information on which crawlers handle which data source types, see the Overview of Crawling
. If using the , you don't need to worry about the crawler type. The UI also(see page 83) Admin UI

includes screens for modifying how documents are mapped to fields, or the Data Sources API can
be used. For more information on fields in LucidWorks Search, see the Table of Fields in the section

.Customizing the Field Schema (see page 49)

Related Topics

Overview of Crawling (see page 83)
Indexing Documents (see page 43)
Editing Field Mapping

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://docs.lucidworks.com/display/help/Editing%20Field%20Mapping

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 49 291

Customizing the Field Schema
When indexing documents, LucidWorks Search doesn't merely generate a list of all the words found
on the page. It also tries to recognize the structure of the document, and remember some of that
structure in the index. The structure of indexed documents is represented by the fields defined for
the LucidWorks Search index. When terms are saved in the index, they are saved with information
about the field in which they were found in the document.

Field definitions are stored in a file for each collection. Users familiar with Solr willschema.xml

recognize this file, since it is the same file that is used with a Solr installation. Insteadschema.xml

of editing this file by hand, however, LucidWorks Search allows modifying the field and field type
definitions with the Admin UI or with the REST API.

By default, LucidWorks Search contains field definitions to support various features of LucidWorks
(such as crawling documents and Click Scoring) and to make it easier for users to get up and
running. Not all users will need all fields, however, so you may want to add fields unique to your
search application or just to trim the default set of fields so the list is easier to work with. This
section describes the default fields, how they are used by LucidWorks Search, and if they can be
removed for local installations.

One of the primary added values of LucidWorks Search is the integration of content crawlers for
web sites, filesystems and other repositories of content. Many of the default fields are for this
purpose and should be retained. In many cases, if they are removed from the schema, they will be
recreated the next time a crawler needs them. However, if not using the LucidWorks crawlers, they
can generally be safely removed. They will be added based on a dynamic rule ("*" rule) in the

 file that should be retained to avoid unexpected failures of the crawlers. If this rule isschema.xml

left in place, nearly any field in the schema can be removed as it will be added back if it is needed.

Only delete the "*" rule if you are absolutely positive other deleted fields will not be
needed in your specific implementation. Deleting this rule may also complicate future
upgrades, as it is not possible to predict when LucidWorks Search will add new fields to the

 file to support future functionality.schema.xml

Guidelines for Removing Fields from the Schema (see page 50)
Essential Fields (see page 50)
Built-In Search UI Fields (see page 50)
Fields to Support Specific Features (see page 51)
Crawler Fields (see page 51)
Other Dynamic Fields (see page 51)

Table of Fields (see page 52)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 50 291

Guidelines for Removing Fields from the Schema

Essential Fields

There are two fields that must be retained in . The Admin UI and the Fields API will notschema.xml

allow deleting them:

id
timestamp

There are three additional fields that are considered essential to LucidWorks Search.

data_source
data_source_name
data_source_type
text_all

The three data source-related fields are considered essential for the Admin UI and APIs to know
the source of the content that has been indexed. If not using the Admin UI nor the LucidWorks
REST APIs, they could be deleted.

The text_all field is required because declares it as the default search field for theschema.xml

Lucene RequestHandler (query parser), which is also the default for the basic Solr query parser. If
you are using or , however, and will never use the Lucene or Solr query parsers, thelucid DisMax

field could be deleted. However, it may be best to retain it.

We have created a sample schema that includes only the essential fields listed above that
can be used for collection creation. See forUsing Collection Templates (see page 41)
more information.

Built-In Search UI Fields

LucidWorks includes a default search UI that can be used as-is or replaced with a fully local
interface. If using it as-is, even for testing or during initial implementation, the following fields
must also be retained in :schema.xml

author
author_display
body
dateCreated
description
keywords
keywords_display
lastModified
mimeType

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 51 291

pageCount
title
url

The Search UI includes these fields for results display and default faceting, so for it to work
properly, these fields should be retained.

Fields to Support Specific Features

Several fields are included in in support of specific LucidWorks features. They can beschema.xml

removed if those features are disabled or not in use. In some cases, however, they will be added
back to the schema if the feature is enabled in the future.

Feature Fields

Click Scoring Relevance Framework click
click_terms
click_val

ACL acl

Spell Check spell

Auto Completion autocomplete

Enterprise Alerts timestamp

SolrCloud and Near Realtime Search _version_

De-duplication signatureField

Crawler Fields

The crawlers included with LucidWorks create fields in that begin with *attr_* and areschema.xml

used to store document-specific metadata during crawl processes. They are not generally used
otherwise by LucidWorks (such as in search results or other computations). Due to the dynamic "*"
rule, they will be added back to if not in place. If not using the LucidWorks crawlers,schema.xml

they can be removed, but it is recommended to retain them if possible.

Other Dynamic Fields

Several other dynamic fields (all including an '*', such as *_i, *_s, *_l, etc.) are defined in
. These can be removed if they will not be used - the only two we recommend that youschema.xml

retain are the "*" rule and the attr_* fields.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 52 291

Table of Fields

The table below notes whether a field will be indexed, stored, used for facets or included in
results. This is default behavior, and can be modified locally. After customization, this table
may not reflect the state of your file.schema.xml

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

version long X X Document
version
control,
used with
Near
Realtime
Search
and
SolrCloud
(see page

.250)

Only if not
using
Near
Realtime
Search or
SolrCloud
features.

acl string X X Storing
Access
Control
List
information.

Only if
never
using
Access
Control
List (ACL)
query-time
document
security.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 53 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

attr_*
(any field
starting
with
'attr_')

string X X Created
by the
crawlers
and used
for a wide
array of
document-specific
metadata.
Not
specifically
declared
in the
schema.xml
file, but
dynamically
created
during
crawls.

Yes, but
automatically
created by
LucidWorks
crawlers,
so will be
recreated
at next
crawl run.

author text_en X X X Raw
author
pulled
from
documents.
Used by
default in
the
built-in
Search UI.

Only if
never
using
built-in
Search UI.

author_displaystring X X Used for
display of
authors in
facets.
Used by
default in
the
built-in
Search UI.

Only if
never
using
built-in
Search UI.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 54 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

autocompletetextSpell X X Stores
terms for
the
auto-complete
index. By
default, it
is created
by
copying
terms
from the
title,
body,
description
and
author
fields.

Only if
never
using
built-in
auto-complete
functionality.

batch_id string X X Identifies
the batch
that
added the
document.

Yes.

bcc text_en X X Used in
processing
email
messages.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 55 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

belongsToContainertext_en X X Used to
store the
URL of the
archive
file (.zip,
.mbox,
etc.)
which
contains
the file.

Yes.

body text_en X X The body
of a
document
(generally,
the main
text).
Used by
default for
display in
the
built-in
Search UI.

Only if
never
using
built-in
Search UI.

byteSize int X The size
of the
document.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field
and was
crawled
by the
lucid.aperture
crawler
(local file
systems
and web
sites).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 56 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

cc text_en X X Used in
processing
email
messages.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.

characterSetstring X The
character
set used
for the
document.
Only
populated
if it is
declared
in the
document
(most
commonly
with HTML
files).

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.

click string X X Used with
the Click
Scoring
Relevance
Framework
and
contains
the boost
value.

Only if
Click
Scoring
will not be
used.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 57 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

click_terms text_ws X X Used with
the Click
Scoring
Relevance
Framework
and
contains
the top
terms
associated
with the
document.

Only if
Click
Scoring
will not be
used.

click_val string X X Used with
the Click
Scoring
Relevance
Framework
and
contains a
string
representation
for the
boost
value for
the
document.
The
format
allows it
to be used
for
processing
function
queries.

Only if
Click
Scoring
will not be
used.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 58 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

contentCreateddate X X The
creation
date for
the
document,
if
available.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.
However,
it will not
be added
as a date,
but a
string,
which
may cause
sorting
issues if
the field is
used
again
later.

crawl_uri string X A copy of
the URL
for the
document.

Yes.

creator text_en X X The
creator of
the
document,
if
available.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 59 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

data_sourcestring X X The ID of
the data
source
that
crawled
this
document.

No. Field
is
essential.

data_source_namestring X X X The name
of the
data
source
that
crawled
this
document.

No. Field
is
essential.

data_source_typestring X X X The type
of data
source
that
crawled
this
document.

No. Field
is
essential.

dateCreateddate X X X The date
the
content
was
created, if
available.

Only if
never
using
built-in
Search UI.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 60 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

description text_en X X X The
description
from a
document,
if it exists
in the
document.
For
example,
Microsoft
Office
document
properties
contains a
description
field that
can be
filled in by
the user.

Only if
never
using
built-in
Search UI.

email text_en X X Not
currently
used by
any
LucidWorks
crawlers.

Yes. Will
be added
dynamically
if an
indexed
document
contains
this field.

fileName text_en X X The name
of the file.

Yes.

fileSize int X X The size
of the file.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 61 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

from text_en X X Used in
processing
email
messages.

Yes. Will
be created
dynamically
if indexing
a
document
that
contains
this field.

fullname text_en X X Data in
this field
is mapped
to
"author".

Yes.

generator text_en X X The name
of the
software
that
generated
the
document,
if
available.

Yes.

id string X X X Unique ID
for the
document.

No. Field
is
essential.

id_highlight text_en X X No longer
used by
LucidWorks
and will
be
removed
in a later
version.

Yes.

incubationdate_dtdate X X Used in
older Solr
example
documents.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 62 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

keywords text_en X X X The
keyword
list from a
Microsoft
Office
document.

Only if
never
using
built-in
Search UI.

keywords_displaycomma-separatedX X Terms
from the
keyword
field
formatted
for display
to users.

Only if
never
using
built-in
Search UI.

lastModified date X X X Date the
content
was last
modified.

Only if
never
using
built-in
Search UI.

mimeType string X X X X The type
of
document
(PDF,
Microsoft
Office,
etc.).

Only if
never
using
built-in
Search UI.

name text_en X X Data in
this field
is mapped
to "title".

Yes.

otherDates date X X Dates
other than
dateCreated
or
lastModified
would be
mapped
to this
field.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 63 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

pageCount int X X X The
number of
pages in a
Microsoft
Office
document
such as
Word or
PowerPoint.

Only if
never
using
built-in
Search UI.

partOf string X X Typically
used for
an email
attachment,
this points
to the
larger
document
of which
this
document
is a part.

price float X X Example
field that
could be
used for
processing
e-commerce
data.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 64 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

retrievalDatedate X X Not
currently
used, but
could be
used for
the date a
web
document
was
retrieved
from its
server.

Yes.

rootElementOftext_en X X Populated
only for
the root
or initial
document
of a crawl.

Yes.

signatureFieldstring X X Used with
the
de-duplication
feature.

Yes,
however if
de-duplication
is
enabled,
the field
will be
added
back to
your
schema.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 65 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

spell textSpell X Stores the
terms to
be used in
creating
the spell
check
index.
Created
by
copying
terms
from the
title,
body,
description
and
author
fields.

Only if
never
using
built-in
spelling
checker.

text_all text_en X Used to
combine
text fields
for faster
searching.
Created
by
copying
terms
from the
id, url,
title,
description,
keywords,
author
and body
fields.

No. Field
is
essential.

text_mediumtext_en X X Not
currently
used.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 66 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

text_small text_en X X Not
currently
used.

Yes.

timestamp date X X X X Time the
document
was
crawled
and used
for date
faceting
and
display of
activities
in the
LucidWorks
Admin UI.
Also used
for
Enterprise
Alerts to
know
when the
document
was added
to the
index for
alerts
processing.

No, field is
considered
essential.

title text_en X X The title
of the
document.

Only if
never
using
built-in
Search UI.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 67 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

to text_en X X Used in
processing
email
messages.

Yes. Will
be created
dynamically
if indexing
a
document
that
contains
this field.

type text_en X X Used by
the
lucid.aperture
crawler to
store
Aperture's
classification
of an
information
object,
separate
from its
MIME
type.

Yes.

url string X X The URL
to access
the
document.

Only if
never
using
built-in
Search UI.

username text_en X X No longer
used and
may be
removed
in a later
version.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 68 291

Field
Name

Type Indexed Stored Used for
Facets

Included
in
Results

Used for Can Be
Deleted

weight float X X Example
field that
could be
used for
processing
e-commerce
data.

Yes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 69 291

Reindexing Content
It is considered a best practice to fully design your index (i.e., define all the fields you'll need and
their attributes) before indexing large amounts of content. However, the reality is that things
change - you have new requirements, new content, or you'd like to give users new options for
searching.

As tolerant as LucidWorks Search is to changes, there are certain changes that cannot be made
without fully reindexing, by which we mean deleting content from the indexes and re-processing it
from scratch. Adding a field or changing field mapping options for an existing data source, as
examples, require indexing the content again to get the new field information from the document
or change the way the incoming content was processed into the index.

In addition, changes to the following attributes of a field require some degree of re-index:

Field Type value
If it is Indexed
If it is Stored
If it is Multi-valued
Short Field Boost value

Below are the options for re-indexing content.

Re-crawl the Content

All of the crawlers store information about what documents it has previously processed, and uses
that information for future crawls, usually only adding documents that are new (have never been
indexed before), removed from the content repository (and should be removed from the index), or
changed (and should be replaced in the index with the new copy). This means that documents
already in the index are not re-processed and may be skipped, which may create a mis-match
between existing content and new content being indexed.

Empty the Data Source

The includes a button to Empty a data source. This button only deletes the documentsAdmin UI
from the data source, but does not reset any of the crawl history information, which keeps track of
content that were previously found and uses that information to understand if content is new, has
been deleted (and should be removed from the index), or has been updated (and should be
removed and replaced with the new content). The associated API is the Collection Index Delete
API, which has an option to specify deleting documents from the index associated with a data
source.

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 70 291

If changes to a collection's field list or field type list have been made, emptying the documents
from the data source may not be sufficient to fully re-crawl the content to update the fields
because the next time a crawl is run it will be executed incrementally, using the crawl history
information that it has stored. This means that if a document has not changed it will not be
re-added to the index because the crawl history registers it as unchanged.

There is, however, a REST API to delete the crawl history called Data Source Crawl Data Delete
which can be used if necessary.

Delete the Data Source

Deleting the data source deletes the metadata for the data source (the configuration details for
LucidWorks Search to access the content repository), and any of the content from the index and
the crawl history. It can be done with either the or the API.Admin UI Delete button Data Sources
This might be the easiest way to clear the content so it can be re-crawled and re-indexed with the
new field attributes.

Empty the Collection

Emptying the collection stops any running data sources, deletes the entire search index for the
collection, and removes all crawl history for each data source. It is a good option if you have a
number of data sources that you configured during initial implementation and would like to start
fresh with production data. Emptying the collection can be done with either the Empty this

 in the Admin or the API.Collection button Collection Index Delete

Delete the Collection

Deleting the entire collection will delete all the data sources, stop any running jobs, delete all
associated content, and remove all collection-related settings for the index. It can be done with the

 in the Admin UI or the API.Delete this Collection button Collections

Related Topics

Indexing Documents (see page 43)
Overview of Crawling (see page 83)

http://docs.lucidworks.com/display/help/Data%20Source%20Details
http://docs.lucidworks.com/display/help/Collection%20Overview
http://docs.lucidworks.com/display/help/Collection%20Overview
http://docs.lucidworks.com/display/help/Collection%20Overview

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 71 291

Multilingual Indexing and Search
LucidWorks Search has a number of capabilities designed to make working with multilingual data
straightforward. By default, it includes support for most European languages, Japanese, Korean
and Chinese. Multilingual capabilities are provided by Lucene's analysis process (see the Language

 section of the Solr Reference Guide for more details). Since Lucene is built on Java, whichAnalysis
is Unicode enabled, many multilingual issues are handled automatically by LucidWorks and Solr. In
fact, the main issues with multilingual search are mostly the same issues for working with any
language: how to analyze content, configure fields, define search defaults, and so on.

Approaches to Multilingual Search
Besides the normal language issues, multilingual search does require decisions about whether to
use a single field for each language, a field for each language or even a separate indexes for each
language. Each of these three approaches has pros and cons.

Single Field Approach

Pros

Simple to search across all languages
Fast to search

Cons

Requires Language Detection software, which is not included in LucidWorks, and which will
slow down indexing
Requires the query language to be specified beforehand, since language detection on queries
is often inaccurate
May return irrelevant results, since words may have same spelling but different meanings in
different languages
May skew relevancy statistics
Hard to filter/search by language

Multiple Field Approach

Pros

No language detection required
Easy to search and/or filter by language
Relevancy is clear since there is no noise from other languages with common spellings
(minor)

Cons

Many languages = many fields = more difficult to know what to search
Slower to search across all languages

Multiple Indexes Approach

http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 72 291

Pros

Easy to bring one language off-line for maintenance without effecting other languages
Can easily partition data and searches across machines by language
Easy to search and filter by language

Cons

More complex administration
Slower and more difficult to search across all languages

Currently, LucidWorks supports the multiple field and multiple index approach out of the box, but
the single field approach is still possible with some additional work that requires intermediate level
Solr expertise.

Open Source Multilingual Capabilities
The crux of multilingual handling is applying analysis techniques to the content to be indexed.
These techniques are specified in the Solr's by the declarations. Out ofschema.xml <fieldType>

the box, LucidWorks comes configured with numerous predefined field types designed to make
indexing and searching multilingual content easy to do.

Note that most of the supported languages (especially the European languages) are designed to
use Dr. Martin Porter's along with stop word filters, synonym filters and variousSnowball stemmers
other filters.

Multiple Languages May Require Customization

Although LucidWorks ships with default analysis and filter techniques, they may need
customization for your search application. Consider the included language configurations to
be good starting points for support of any given language and make adjustments as
needed. For information on relevance tuning and debugging for additional tools and
techniques to improve results, see Understanding and Improving Relevance (see page 161
.)

By setting up the appropriate fields per language, it is possible to simply point LucidWorks at the
given data source and have it index the content.

Adding Support for Other Languages
While there are a wide variety of languages available "out of the box", there may come a time
where support for a new language is needed. There are a few possibilities:

Try out the language with the StandardAnalyzer, since it often does the right thing as far as
tokenization and basic analysis goes. Note that the analyzer doesn't do stemming or perform
more advanced language translation.

http://snowball.tartarus.org/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 73 291

Write an Analyzer, Tokenizer or TokenFilter and the associated Solr classes as described on
the Solr Wiki page at .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
Use an n-gram character-based approach that chunks characters into n-grams and indexes
them. Accuracy will be limited, but it may be better than nothing.

If choosing the second option, the new capability can be brought into LucidWorks as described in
the Solr wiki section on .SolrPlugins

Related Topics

Language Analysis from the Solr Reference Guide
AnalyzersTokenizersTokenFilters from the Apache Solr Wiki

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 74 291

Lucid Plural Stemming Rules
The purpose of stemming is to translate different forms of similar words to a common form so that
a query for one form of a word will also match the other forms. The most common difference
between word forms is singular words versus their plurals. Another variation in form is the variety
of conjugations of a word. Although the administrator can select what stemming filter or options
are enabled for each field type, by default all text fields will have a stemming filter that converts
most plural words to singular.

Stemming is not a perfect process, so some plurals may be missed and some singular words may
be mistakenly translated to some other singular or possibly even a non-word. Non-words, such as
jargon, names, and acronyms can also be mistakenly stemmed. But, since stemming usually
occurs at both document indexing time and at query time, improper stemming is frequently not
even detectable. The default rules try to avoid removing "s" endings that are not plural (or verb
conjugations), such as "alias" or "business."

If stemming proves problematic for a given application, the administrator can always turn it off or
select an alternative stemming filter.

The Lucid plural stemmer is designed to focus on stemming of plural words into their singular
forms. It is rule-based, so the rules can be supplemented and tuned to handle a wide range of
exceptions. Individual words can be protected from stemming and can be given special-case stem
words. Usually, general patterns cover wide classes of words.

The input token does not need to be lower case, but the stemming change will be lower case.

The Stemming Rules File
The default rules file is named and found in LucidStemRules_en.txt

. The rules file can be defined by changing the$LWS_HOME/conf/solr/cores/collection/conf

"rules" parameter in for .schema.xml com.lucid.analysis.LucidPluralStemFilterFactory

These rules files are specified per text field type. It is expected that each natural language will
have its own stemming rules file. This file is also specific to each collection.

If you wish to edit the stemming rules file, adhere to the following format guidelines.

An exclamation point (!) indicates a comment or comment line to be ignored.
White space is extraneous and ignored.
Blank lines ignored.

Rules are evaluated in the order that they appear in the rules file, except that whole protected
words and replacement words are processed before examining suffixes.

To restrict the minimum word length that is to be stemmed, simply create rules consisting of only
question marks ('?') to match and protect words of those lengths. For example, to protect words of
less than four characters in length, add three rules, before any other rules:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 75 291

? ! Protects 1-char words.

?? ! Protects 2-char words.

??? ! Protects 3-char words.

Types of Stemming Rules

Protected Word

Just write the word itself, it will not be changed.

word

Replacement Word

Word will always be changed to a replacement word.

word => new-word

word -> new-word

word --> new-word

word = new-word

Protected Suffixes

Any matching word will be protected.

pattern suffix

Pattern may start with an asterisk to indicate variable length. Use zero or more question marks to
indicate that a character is required. Use a trailing slash if a consonant is required.

Examples:

?ass

*??ass

*???/ass

Translation Suffix

The suffix of a matching word will be replaced with new suffix.

pattern suffix => new-suffix

Pattern rules are the same as for protected suffixes. The pattern may be repeated before the
replacement suffix for readability.

Examples:

*ses => se

*ses -> *se

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 76 291

*?/uses => se

*???s =>

*???s => *

The latter two examples show no new suffix, meaning that the existing suffix is simply removed.

Example Stemming Rules File
Here is the default file that ships with LucidWorks Search, found in LucidStemRules_en.txt

 (unique to each collection):$LWS_HOME/conf/solr/cores/collection/conf

? ! Minimum of four characters before any stemming.

??

???

*ss ! No change : business

*'s ! No change : cat's - Handled in other filters.

*elves => *elf ! selves => self, elves, themselves, shelves

appendices => appendix

*indices => *index ! indices => index, subindices - NOT jaundices

*theses => *thesis ! hypotheses => hypothesis, parentheses, theses

*aderies => aderie ! camaraderie

*ies => *y ! countries => country, flies, fries, ponies, phonies, queries, symphonies

*hes => *h ! dishes => dish, ashes, smashes, matches, batches

*???oes => *o : potatoes => potato, avocadoes, tomatoes, zeroes

goes => go

does => do

?oes => *oe ! toes => toe, foes, hoes, joes, moes - NOT does, goes - but "does" is also

plural for "doe"

??oes => ??oe ! floes => floe

*sses => *ss ! passes => pass, bosses, classes, presses, tosses

*igases => *igase ! ligases => ligase

*gases => *gas ! outgases => outgas, gases, degases

*mases => *mas ! Christmases => Christmas, Thomases

*?vases => *vas ! canvases => canvas - NOT vases

*iases => *ias ! aliases => alias, bias, Eliases

*abuses => *abuse ! disabuses => disabuse, abuses

*cuses => *cuse ! accuses => accuse, recuses, excuses

*fuses => *fuse ! diffuses => diffuse, fuses, refuses

*/uses => *us : buses => bus, airbuses, viruses; NOT houses, mouses, causes

*xes => *x ! indexes => index, axes, taxes

*zes => *z ! buzzes => buzz

*es => *e ! spaces => space, files, planes, bases, cases, races, paces

*ras => *ra ! zebras => zebra, agoras, algebras

*us

*/s => * ! cats => cat (require consonant (not "s") or "o" before "s")

*oci => *ocus ! foci => focus

*cti => *ctus ! cacti => cactus

plusses => plus

gasses => gas

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 77 291

classes => class

mice => mouse

data => datum

!bases => basis

amebiases => amebiasis

atlases => atlas

Eliases => Elias

molasses

feet => foot

backhoes => backhoe

calories => calorie

! Some plurals that don't make sense as singular

sales

news

jeans

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 78 291

Choosing an Alternate Stemmer
Out of the box, the Lucid query parser comes with a basic plural stemmer that translates most
plural words to their singular form. This should be sufficient for most applications. The stemming
rules are all rule-based in an easy to read and write text file format that permits the addition of
new rules and permits words to be protected or mapped specially. This permits flexibility for many
more specialized applications.

If for some reason the administrator wishes to use an alternative stemmer, the change can be
made manually in the file or by using the . Any stemming filter can beschema.xml FieldTypes API
specified, but Lucid KStem is a typical alternative.

 Information for LucidWorks Search in the Cloud Users
The instructions below refer to editing to modify the stemmer used for each fieldschema.xml

type. Manual editing of the file cannot be done by customers using LucidWorksschema.xml

Search hosted on AWS or Azure, but the same results can be achieved with the .FieldTypes API

Be sure to use the same stemmer class for both the index and query analyzers. If the stemmer
classes do not match, the result can be that some queries can fail if terms were indexed according
to different rules than those used by the Lucid query parser.

In general, it is best to the index and do a full re-indexing of the data collection wheneverdelete
an analyzer is radically changed, such as is the case when stemming filters or rules areindex
changed. See for more information about the options toReindexing Content (see page 69)
reindex.

Other alternative stemming filters, such as Snowball and Porter, can be used instead of Lucid
KStem if desired.

Using the FieldTypes API

The FieldTypes API is covered in depth in the section on the .FieldTypes API

The stemming rules are defined in the "analyzers" section for the field type. The analyzers section
is considered an individual attribute as a whole, and it's not possible to update a single part of the
analyzers rules without updating the entire section.

The class represents the default pluralcom.lucid.analysis.LucidPluralStemFilterFactory

stemmer and will be shown in an API call in both the and section of the index query analyzers

attribute. The parameter specifies the name of the text file that contains the pluralrules

stemming rules.

The class represents the Lucid KStem stemmer.com.lucid.analysis.LucidKStemFilterFactory

To switch to this stemmer (or any other), make an API PUT call to the appropriate field type and
update the attribute (in both the and sections).analyzers index query

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 79 291

For example, changing to the Lucid KStem stemmer for the field type would require thetext_en

following API call:

curl -X PUT -H 'Content-type: application/json'

-d '{"analyzers": {

 "index": {

 "char_filters": [],

 "token_filters": [

 {

 "catenateAll": "0",

 "catenateNumbers": "1",

 "catenateWords": "1",

 "class": "solr.WordDelimiterFilterFactory",

 "generateNumberParts": "1",

 "generateWordParts": "1",

 "splitOnCaseChange": "1"

 },

 {

 "class": "solr.LowerCaseFilterFactory"

 },

 {

 "class": "solr.ASCIIFoldingFilterFactory"

 },

 {

 "class": "com.lucid.analysis.LucidKStemFilterFactory"

 }

],

 "tokenizer": {

 "class": "solr.WhitespaceTokenizerFactory"

 }

 },

 "query": {

 "char_filters": [],

 "token_filters": [

 {

 "class": "solr.SynonymFilterFactory",

 "expand": "true",

 "ignoreCase": "true",

 "synonyms": "synonyms.txt"

 },

 {

 "class": "solr.StopFilterFactory",

 "ignoreCase": "true",

 "words": "stopwords.txt"

 },

 {

 "catenateAll": "0",

 "catenateNumbers": "0",

 "catenateWords": "0",

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 80 291

 "class": "solr.WordDelimiterFilterFactory",

 "generateNumberParts": "1",

 "generateWordParts": "1",

 "splitOnCaseChange": "1"

 },

 {

 "class": "solr.LowerCaseFilterFactory"

 },

 {

 "class": "solr.ASCIIFoldingFilterFactory"

 },

 {

 "class": "com.lucid.analysis.LucidKStemFilterFactory"

 }

],

 "tokenizer": {

 "class": "solr.WhitespaceTokenizerFactory"

 }

 }

}}' http://localhost:8888/api/collections/TestCollection/fieldtypes/text_en

Editing schema.xml

If you edit , and search for the field type, you should see that both its indexschema.xml text_en

and query analyzers have XML entries for the stemming filter that appear as follows:

<filter class="solr.ISOLatin1AccentFilterFactory"/>

<!-- <filter class="com.lucid.analysis.LucidKStemFilterFactory"/> -->

<filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

rules="LucidStemRules_en.txt"/>

The class represents the default pluralcom.lucid.analysis.LucidPluralStemFilterFactory

stemmer. The parameter specifies the name of the text file that contains the pluralrules

stemming rules.

The class represents the Lucid KStem stemmer,com.lucid.analysis.LucidKStemFilterFactory

which is disabled by default using the standard and comment markers.<!- ->

To disable the default plural stemmer and enable Lucid KStem, simply remove the comment
markers from the latter and add them to the former. Do this same thing for both the index and
query analyzers. The edited lines should now appear as follows:

<filter class="solr.ISOLatin1AccentFilterFactory"/>

<filter class="com.lucid.analysis.LucidKStemFilterFactory"/>

<!-- <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

rules="LucidStemRules_en.txt"/> -->

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 81 291

Deleting the Index
During application development, you might use sample data that is inappropriate for the
production system. To remove this data, you can delete the entire index or just delete the content
and crawl history for a single data source.

The easiest way to do this is to use the to delete documents from a specific data sourceAdmin UI
or an entire collection.

Another way to do this is to issue an API command using the . This APICollections Index API
provides two methods to stop all running indexing tasks, clear the index, and clear any persistent
crawl data (crawl history) for either the entire collection or a single data source.

This Will Delete ALL of Your Data

The following procedure to delete a collection should only be used if you are sure you want
to delete in your index. Once this command has been executed, there is all documents

 to retrieve the content. If only some documents should be deleted, use theno way
method to delete documents for a specific data source.

If you only want to clear the crawl history, the provides a way toData Source Crawl Data API
delete only the history for a data source, but not the content.

An alternative approach would be to issue a delete command directly to Solr with the following
syntax. However, this will not stop running tasks nor clear persistent crawl data.

http://localhost:8888/solr/update?stream.body=<delete><query>id:\[* TO

*\]</query></delete>

Related Topics

Reindexing Content (see page 69)
Overview of Crawling (see page 83)

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 82 291

Crawling Content
This section describes how to configure crawling with LucidWorks Search, to get the content to put
in the indexes.

For the most part, crawling only requires configuring a data source with the UI or the API and
starting the crawl. However, if using batch crawling, Access Control Lists, databases containing
binary data, or an "external" crawler, there may be additional configuration you'll want to do.

Start with the to understand how the crawlers work.Overview of Crawling (see page 83)

Then dive into the detailed sections as needed:

Supported Filetypes (see page 96)
Troubleshooting Document Crawling (see page 98)
Pushing Content to LucidWorks (see page 103)
Indexing Documents Directly to Solr (see page 107)
Crawling Windows Shares with Access Control Lists (see page 110)

Indexing Binary Data Stored in a Database (see page 113)
Using the Hadoop Crawlers (see page 116)
Integrating Nutch (see page 131)
Processing Documents in Batches (see page 136)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 83 291

Overview of Crawling
LucidWorks Search has integrated several crawlers to make adding content to the index easier and
more straightforward.

A is a program which understands how to connect to a remote repository (or several typescrawler
of repositories), find documents within the repository, and retrieve the documents for indexing by
the system. A synonym in some contexts is a , but there are differences between theconnector
terms. A crawler discovers new documents on its own and makes decisions about which documents
to retrieve, based on rules provided to it by its own code or by configuration. A connector is more
passive - it connects to a repository and pulls all the documents, without the ability to make
decisions; interpreting rules and making decisions would be up to the crawler which controls the
connector.

As each repository is different, each crawler needs information to connect to a specific repository,
such as the network address of the repository and any required authentication information. This
information is provided to the crawler by creating a .data source

The data source is the central way in which you interact with the crawlers. There is one defined per
repository, filesystem, website, etc. So, for example, if you want to index three websites, you'll
create three Web Data Sources. Three S3 buckets, then you'll create three S3 Data Sources.

For the most part, we've tried to make each data source consistent in terms of the options
provided, but there are differences between the crawlers and their capabilities. This leads to
differences when configuring data sources of different types, and differences in performance and
behavior of the crawlers themselves while retrieving documents and passing them along the
indexing process.

Topics covered in this section:

The Crawl Process (see page 84)
Re-Crawling Documents (see page 84)

Data Source Options (see page 85)
Logging (see page 85)
Scheduling (see page 85)
Field Mapping (see page 85)

Data Source Types (see page 87)
Related Topics (see page 95)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 84 291

The Crawl Process
When starting a crawl, the crawler associated with a specific data source uses the information
saved in the data source configuration to connect to the repository and find documents. Most of the
data sources support inclusion or exclusion parameters to define the types of documents (or paths
to documents) that should be indexed. The crawlers use that information to know what pages to
retrieve for eventual indexing.

The crawlers do not actually index content. A crawler retrieves the pages, and passes them to a
, which prepares the documents for the indexing process. The parser handles breaking theparser

documents into their parts, identifying fields within the documents and normalizing data so it can
be more easily consumed in the index. In most cases, the crawlers use Apache Tika for parsing.

The exception to this is the Aperture crawler, which has its own parser embedded within it.
In cases where the Aperture parser fails to parse a document, Tika is used as a fall-back.
However, documents that were successfully parsed by the Aperture crawler do not get
another pass through Tika. There is no way to change this behavior at this time.

Once documents have been retrieved and parsed, they are passed to the whichUpdateController
pushes them into the index using SolrJ, a common client used for indexing content in Solr. This
process also performs , where the extracted fields from a document can be mappedfield mapping
to other fields.

Re-Crawling Documents

When working with data sources and their content, it helps to understand how content is handled
during the initial crawl and in subsequent re-crawls to update the index with new, updated, or
removed content.

Some of the crawlers keep track of documents that have been "seen" which helps speed later
crawls by not processing unchanged content, but it can be confusing if the configuration settings
change between crawls. In some cases, you may need to remove the crawl history in order to get
the results you want; an example of this would be the setting: if it is not set foradd_failed_docs

the initial crawl of a repository, it will be skipped on subsequent crawls unless it has been modified
in some way. Other examples include (but aren't limited to) settings to map fields from the
incoming documents to another field, options to add LucidWorks-specific fields to the documents,
as well as changes to fields themselves and any dynamic field rules.

If making changes to a data source configuration after content has already been crawled and
indexed, review the options in the section on for possibleReindexing Content (see page 69)
approaches.

Back to Top (see page)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 85 291

Data Source Options

Logging

The crawlers log information about attempts to access documents and the results of those
attempts. The log is kept in in a file named $LWS_HOME/data/logs connectors.<YYYY_MM_DD>.log

.

In general, the crawlers will:

print one line to the log with the document ID when it has successfully accessed a document,
describing the status (New, Updated, Deleted, etc.). In cases where the document could not
even be accessed, this may lead to the attempt not being recorded in the logs.
not log documents of unknown type that cannot be processed as plain text.
not log documents that fail parsing.
not add documents that fail parsing.

Each of these behaviors can be changed in most crawlers, which would allow more information to
be added to the log or more documents added to the index. With some crawlers, however, the
default behaviors are the only options. More information for each data source type is available in
the documentation for the and the .Admin UI REST API

Scheduling

Each data source can be scheduled to run at regular intervals. Using the Admin UI, it is only
possible to schedule crawling at specific intervals (hourly, daily, weekly), but using the REST API,
more complex schedules can be constructed. It is, however, only possible to have a single schedule
for each data source.

Field Mapping

Field Mapping provides the ability to map fields in documents to fields or dynamic field rules
already defined in LucidWorks or add fields to incoming documents. This can be done generically
when an unexpected field is introduced or specifically for known incoming fields. The mapping rules
can be manipulated via the Admin UI from the screen, or with either the Data Source Details Data

 or the .Sources API Field Mapping API

Some explicit field mappings are defined by default. This table shows the LucidWorks Search
default mappings:

From Crawler Metadata To Field

acl acl

author author

batch_id batch_id

body body

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration
http://docs.lucidworks.com/display/help/Data%20Source%20Details

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 86 291

From Crawler Metadata To Field

content-encoding characterSet

content-length fileSize

contentcreated dateCreated

contentlastmodified lastModified

contributor author

crawl_uri crawl_uri

created dateCreated

creator creator

date null

description description

filelastmodified lastModified

filename fileName

filesize fileSize

fullname author

fulltext body

keyword keywords

last-modified lastModified

last-printed null

lastmodified lastModified

lastmodifiedby author

links null

messagesubject title

mimetype mimeType

name title

page-count pageCount

pagecount pageCount

plaintextcontent body

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 87 291

1.

2.

3.

4.

5.

From Crawler Metadata To Field

plaintextmessagecontent body

slide-count pageCount

slides pageCount

subject subject

title title

type null

url url

When the mapping is created or updated, LucidWorks checks the mappings against the schema.xml
for the collection and verifies that the target fields exist in the schema.

During indexing, the field mapping process performs the following steps:

The mappings are checked for the existence of the source field name. If it exists, it will be
mapped to the target field.
If the source field name does not exist in the mappings, the for the collection isschema.xml

checked. If the source field name exists in the schema, it will be indexed to that field.
If a has been defined, a dynamic field will be created according to thedynamic_field

dynamic field rule.
If a has been defined, the source field will be mapped to the defined defaultdefault_field

field.
If none of these steps has produced a match, the field will be discarded.
Back to Top (see page)

Data Source Types
LucidWorks Search currently supports 8 crawlers and 13 types of data sources. When using the
Admin UI, the selection of a crawler is hidden; when using the REST API, the selection of a crawler
is a required attribute.

The table summarizes the types of content repositories that can be crawled:

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Aperture

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 88 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Websites
Filesystems

Can crawl
websites and
filesystems.
Stores a history
of documents
that have been
seen before.
Indexes data
contained in

 tags.<META>

Web crawling
will respect
robots.txt rules
or can be
configured to
ignore them.

The Aperture
crawler is not
designed for
large-scale
crawls of more
than about
10,000 pages or
files in a single
crawl.
It is a
single-threaded
process,
meaning that
one data source
will only use a
single server
process to crawl
sites. This can
make a long
crawl take a long
period of time to
complete.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 89 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Multiple data
sources all use
the same
"triple-store",
which is a
database inside
Aperture that
keeps track of
web pages
visited. If
multiple data
sources are
running at the
same time, the
triple-store can
get easily
corrupted. It's
highly
recommended to
avoid running
multiple
Aperture-based
crawls at the
same time.
Doesn't use
Apache Tika for
document
parsing and may
not be as
accurate with
some documents
as Tika
(however, if it
cannot parse a
document at all,
it will pass that
document to
Tika for
parsing).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 90 291

details)

JDBC
Databases Allows indexing

of databases.
Supports nested
queries for
complex data
environments.
Supports delta
queries to limit
subsequent
crawls on only
new or changed
table rows.

The LucidWorks
Search
implementation
is based on the
DataImportHandler,
which can be
difficult to
precisely
configure in
unique
environments.
Requires
uploading a
driver before it
can be used.
Converting date
types can be
problematic.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 91 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Google Connector
Manager SharePoint

Repositories
Indexes all
content in the
SharePoint
repository (files,
discussion
boards,
calendars,
contacts, sites,
images, etc.).
Support
SharePoint
security
configuration.
Can add new
connectors
supported by the
Google
Connector
Manager
framework.

Must install
additional Web
services to work
properly.
Security options
can be complex
to configure.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 92 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

SolrXML
SolrXML files Easy to

understand XML
structure.
Many users
already have
documents in
this format due
to prior use of
Solr.
Can point it to a
directory of files
instead of one at
a time.
Can add a
unique identifier
to each
document as it's
indexed if it
doesn't have one
already.

Not a generic
XML indexer;
documents must
be structured in
a very specific
way.

Filesystem
Amazon S3
buckets
SMB/Windows
Shares
Hadoop
Distributed
Filesystems
(HDFS)
Hadoop over S3
FTP servers
Local
Filesystems

Provides access
to multiple
remote
filesystems.
Allows
multi-threaded
crawls.

Must allow the
LucidWorks
server access to
the remote
systems.
Hadoop crawls
are throttled to
prevent
overloading the
system.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 93 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

MongoDB
MongoDB Supports

multiple
databases and
tables within a
single MongoDB
installation

MongoDB
collections
indexed
restricted by
username and
password
provided to the
crawler.
Crawling all
databases and
collections
requires allowing
the crawler to
have "admin"
access to the
database.

Azure Blob
Azure Blob
storage

Indexes all
content found in
an Azure Blob
storage
container.

Can only specify
a single
container.

Azure Table
Azure Table
instances

Indexes all
content found in
an Azure Table
instance.

Does not support
incremental
crawling (i.e.,
delta queries).
All documents
are retrieved
with every crawl.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 94 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Twitter Search
Twitter Search
API

Allows indexing
tweets that
match a specific
query.

Does not
continuously
crawl to get
tweets that
match the query
parameters.

Twitter Stream
Twitter Stream
API

Allows filtering
indexed tweets
by userID,
location, or
keywords.

Will continue to
crawl indefinitely
unless manually
stopped or
controlled with a
parameter that's
only available
via the REST
API.

Hadoop crawlers
Hadoop
filesystems

Allows
unthrottled
crawling of HDFS
systems.
Supports all of
the major
Hadoop
distributions
(Apache,
Cloudera, Intel,
MapR, and
Pivotal).
Supports several
types of
documents
(SequenceFiles,
CSV files,)

Must design your
LucidWorks
cluster
appropriately to
take full
advantage of the
speed
capabilities.
Field mapping is
not supported.
Defining the
Hadoop job has
a lot of
parameters.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 95 291

Crawler Data Source Types
Supported

Capabilities Limitations (not
comprehensive; see
documentation for
each type for full
details)

Push
Push to
LucidWorks

Can use SolrJ or
any update
requestHandler
to get
documents into
LucidWorks.
Full access to
field mapping
capabilities that
other crawlers
use.

The documents
or processes for
crawling must be
prepared in
advance.
A Jetty port
must remain
open to "listen"
for the pushed
documents.

Related Topics

Data Sources in the Admin UI
Data Sources with the REST API
Custom Connector Guide

Back to Top (see page)

http://docs.lucidworks.com/display/help/Data%20Sources%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 96 291

Supported Filetypes
LucidWorks Search crawlers can identify many different file formats (MIME types), and can extract
text and metadata from the MIME types listed in the table below. Even if the crawlers cannot
extract data from a file, it can often at least recognize the file type and index basic information
about the file, such as the filename and its metadata. Many of the crawlers have settings that allow
how to handle the situation where the MIME type is not supported.

Note that extracting data from third party proprietary file formats is often difficult and may result
in irregular text being extracted and indexed. If you encounter a format that is supported, but does
not get properly extracted, please share the information with Lucid Support, including the file, if
possible.

Supported File Formats

Name MIME Type(s) Notes

HTML text/html

Images image/jpeg, image/png,
image/tiff

Metadata Only

Mail message/rfc822 and
message/news

Some mime based mail
attachments can be extracted.

MP3 Metadata audio/mpeg Metadata only

Microsoft Office Word, PowerPoint, Excel, MS
Publisher, Visio

All applications are trademarks
of the Microsoft Corporation

Open Office OpenDocument and StarOffice
documents

OpenXML Microsoft's latest Office format

Adobe Portable Document
Format

application/pdf PDF is a trademark of Adobe

Plain Text text/plain

Quattro application/x-quattropro,
application/wb2

Trademark of Corel

Rich Text Format text/rtf

eXtensible Markup Language
(XML)

text/xml

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 97 291

Name MIME Type(s) Notes

Archives application/zip,
application/gzip,
application/x-tar

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 98 291

Troubleshooting Document Crawling
LucidWorks Search crawling events are logged to the file, found inconnectors.<YYYY_MM_DD>.log

the directory.$LWS_HOME/data/logs

Serious exceptions will be reported to the LucidWorksLogs collection, which you can search as you
can any other collection through the default Search UI. In addition, the Admin UI provides some
visibility into errors during crawling by showing them on the page, found under theServer Log
Status menu. That page also allows access to browse all the log files without having to access the
server.

Problems such as a document not being found or access denied will not be reported the the
LucidWorksLogs collection, but will show in the Admin UI and in the Data Source Status/History
APIs as "not found". This may make it difficult to find which documents were skipped, but a review
of the log file may yield further information.

In general, the crawlers will:

print one line to the log with the document ID when it has successfully accessed a document,
describing the status (New, Updated, Deleted, etc.). In cases where the document could not
even be accessed, this may lead to the attempt not being recorded in the logs. This can be
changed by modifying the setting "Log Extra Detail" in crawlers that support it.
not log documents of unknown type that cannot be processed as plain text. This can be
changed by modifying the setting "Log warnings for unknown mime types" in crawlers that
support it.
not log documents that fail parsing. This can be changed by modifying the setting "Fail
unsupported file types" in crawlers that support it.
not add documents that fail parsing. This can be changed by modifying the setting "Add
failed docs" in crawlers that support it.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 99 291

By default, the LucidWorks Search Connectors log does not record the collection or data
source associated with crawl activities. However, if you would like to record that
information to make troubleshooting simpler, you can edit the

 file.$LWS_HOME/conf/log4j-connectors.xml

In the file, find the section that begins with a comment to "Use the pattern below to log
additional context info...", as below:

<!-- Use the pattern below to log additional context info like collection and

data source name -->

 <!--

 <param value="%d{ISO8601} %p %c{2} - %X %m%n" name="ConversionPattern"/>

 -->

Uncomment <param value="%d{ISO8601} %p %c{2} - %X %m%n"
 and save the file. You should name="ConversionPattern"/> restart (see page 28)

LucidWorks Search after making this change.

Errors Creating Data Sources

Path or URL Errors

By default, all data sources try to verify that the repository to be crawled is accessible to the
Connectors component with the information provided. In most cases, the data source will not be
created unless the data source is accessible.

Most of the crawlers support disabling the verification step during data source creation with a
parameter in the API (the Admin UI has no ability to skip verification). However, if the Connectors
component cannot access the repository, it will not be able to crawl it.

MapR-related Errors

Before using either MapR data source, you must first have the MapR client installed at a filesystem
location accessible by the LucidWorks Connector component. For information about the MapR
client, please see the MapR documentation .Setting Up the Client

The Connector component looks for the client libraries in by default, but the location/opt/mapr

can be modified by editing the in . Findlweconnectors.jvm.params $LWS_HOME/conf/master.conf

the setting and modify the path as needed.-Dmapr.home

The following errors indicate that either the MapR Client is not installed or not accessible to the
Connectors component:

In :core.<date>.log

http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 100 291

Unprocessable Entity (422) - [{"message":"unknown crawler type

lucid.map.reduce.maprfs","code":"error.invalid.value","key":"crawler"}]

Unprocessable Entity (422) - [{"message":"unknown crawler type

lucid.mapr","code":"error.invalid.value","key":"crawler"}]

In :connectors.<date>.log

External library path doesn't exist: /opt/mapr/hadoop/hadoop-0.20.2/conf

External library path doesn't exist: /opt/mapr/hadoop/hadoop-0.20.2/lib

External library path doesn't exist:

/opt/mapr/hadoop/hadoop-0.20.2/lib/jsp-2.1

No valid external paths - skipping mapr-client initialization.

Dependency 'mapr-client' of /LucidWorks/2.5.6-32/app/crawlers/mapr-crawler.jar

NOT FOUND

No valid crawler plugins in

file:/LucidWorks/2.5.6-32/app/crawlers/mapr-crawler.jar

Dependency 'mapr-client' of

/LucidWorks/2.5.6-32/app/crawlers/mapr-hv-crawler.jar NOT FOUND

No valid crawler plugins in

file:/LucidWorks/2.5.6-32/app/crawlers/mapr-hv-crawler.jar

Exact paths referenced in these errors will vary depending on how you have installed LucidWorks
Search.

Understanding Crawl Errors
Crawling is dependent on a number of factors. In order for a site to be crawl-able, several things
must be aligned:

The repository must be supported by one of the crawler and data source types.
The repository must be accessible to the LucidWorks Search server. If authentication is
required to access the repository, the data source must support the authentication type and
the correct credentials supplied.
The documents must be parseable, so the fields and content can be extracted.
The specific data source settings must be configured to include the specific documents.

For example, if I have a file system with 100 PDF documents, each of which are OCR scans and
100Mb in size, the PDF documents: a) may not be parseable because OCR scans are images and,
b) may exceed the maximum file size configured in the data source (the default is 10Mb). In this
example, the files would be skipped by the crawler, which is not considered a serious exception
and is generally only logged when the data source setting to "Log extra detail" is selected. Then
the skipped files would be found in the log file with a format like this:

INFO filesystem.FileSystemCrawler - File <file-URL> exceeds the maximum size

specified for this data source. Skipping.

WARN No extractor for <file format>; Skipping: <document-URI>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 101 291

Possible Errors

This information is provided to help you find the errors in the log file; precise troubleshooting
requires information about the documents and system environment. If a document causes an error
(besides being too large or the system being out of memory), it may be helpful to try to isolate it
and try again to be sure it is the document causing the problem and not some other system error
that may have occurred at the same time.

In each of the errors below, the document URI will be listed. For files this will be the path and
filename, for websites it would be the URL, and for other data source types a base document URI
will be configured based on how the data source is configured.

Exception

WARN Exception while crawling: <document-URI> <exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-cause-message>

PDF files are notorious for causing exceptions in their processing. These errors are not always fatal,
but may cause all or part of the file to be skipped.

WARN util.PDFStreamEngine - java.io.IOException: Error: expected hex character and

not :32

WARN util.PDFStreamEngine - java.io.IOException: Error: expected the end of a

dictionary.

Out of memory

WARN File caused an Out of Memory Exception, skipping: <document-URI>

<exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <OOM-exception-message>

SubCrawlerException

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-message>

Unknown file type

WARN Doc failed: Could not find extractor: <document-URI>

In this case, this warning will be seen in the logs but will not be reported in the LucidWorksLogs
collection.

I/O error

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 102 291

WARN IO Exception processing: <document-URI> <exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-message>

HTML/XML/XHTML parsing errors

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-cause-message>

This is another case where a warning will be seen in the logs but will not be reported in the
LucidWorksLogs collection.

Related Topics

System Directories and Logs (see page 22)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 103 291

Pushing Content to LucidWorks
In some cases, it may not be possible to use the crawlers included with LucidWorks Search to index
content because it is stored in a repository that is not accessible to the crawlers or has already
been prepared for ingestion to Solr. Instead, another process may be possible, such as using ,SolrJ
to feed documents directly to Solr. In that situation, LucidWorks would not normally know about
the documents and would not be able to include information about the data source in facets or
display statistical data about the data source in the Admin UI.

Fortunately, there is a way to create an 'external' data source to add fields to the document so
LucidWorks will treat the documents the same as documents found via the embedded crawlers. The
data source can be created either via the Sources screen in the or with the Admin UI Data Sources

.API

Push Data Sources
In LucidWorks Search, this is called a 'Push' data source. It differs from the other data source types
in that it is the only one where you send content to LucidWorks (and, by extension, Solr), while the
other data source types use a "pull" model to go and get content for processing. Because the
content is being pushed from an external process, these suggestions will ensure that they are
processed consistently by LucidWorks Search.

Prior to LucidWorks Search v2.7, a similar data source called an 'external' data source was
used. That data source type has been replaced with the 'push' data source type.
Subsequently, it is no longer required to use the parameter, nor configure a callbackfm.ds

URL.

This data source type has the benefit of using the field mapping functionality of Solr, but can also
process adds, deletes, and updates to documents in the same way that Solr can (i.e., using the
update requestHandlers for CSV, XML, JSON, etc.). It can also send the output through any of the
available output options described in the advanced fields section below. Document counts should
also be reflected properly in the Admin UI and data source history APIs.

If you are using a smart SolrJ client already (i.e., CloudSolrServer), it's worth weighing the benefits
of this data source against the drawback that it is a single endpoint which may become a
bottleneck or single point of failure. However, the ability to use the LucidWorks Search processing
chain may still outweigh this disadvantage.

The push connector uses the embedded JettySolrRunner to push the documents. This requires you
to only define a port on your system to run the JettySolrRunner that is not already in use by any
other process. The documents can then be sent to LucidWorks at that port, and they will be
consumed by LucidWorks.

http://wiki.apache.org/solr/Solrj
http://docs.lucidworks.com/display/help/Create%20a%20New%20Push%20Data%20Source

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 104 291

Add lucidworks_fields to Incoming Content

When LucidWorks crawlers acquire content, certain fields related to the data source are added to
each document to help identify the documents as belonging to the data source for use in statistics,
faceting, and document deletion (if necessary). This is done via an attribute called

 (which is shown as "Create LucidWorks fields" in the Edit Mapping screen oflucidworks_fields

the Admin UI). The default for this attribute is "true", which means the fields will be added to all
incoming documents, so usually no editing is required to add these fields as long as the fm.ds
parameter has been added to the update request.

The fields added to each document are from the data source, but have different names. This table
shows the relationship between the data source attribute name and the fields added to documents:

Data Source Attribute Field Name (in)schema.xml

id data_source

type data_source_type

name data_source_name

Examples

Using the Data Sources API, a new data source could be created with these settings:

curl -H 'Content-type: application/json' -d '{"name":"Content

Push","crawler":"lucid.push","type":"push","port":8654}'

http://localhost:8888/api/collections/collection1/datasources |python -m json.tool

The output of this command would be as follows:

{

 "caching": false,

 "category": "push",

 "collection": "collection1",

 "commit_on_finish": true,

 "commit_within": 900000,

 "crawler": "lucid.push",

 "id": "7cb0000448eb4dbc9bb73c6e4097d685",

 "indexing": true,

 "mapping": {

 "datasource_field": "data_source",

 "default_field": null,

 "dynamic_field": "attr",

 "literals": {},

 "lucidworks_fields": true,

 "mappings": {

 "acl": "acl",

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 105 291

 "author": "author",

 "batch_id": "batch_id",

 "body": "body",

 "content-encoding": "characterSet",

 "content-length": "fileSize",

 "content-type": "mimeType",

 "contentcreated": "dateCreated",

 "contentlastmodified": "lastModified",

 "contributor": "author",

 "crawl_uri": "crawl_uri",

 "created": "dateCreated",

 "creator": "creator",

 "date": null,

 "description": "description",

 "filelastmodified": "lastModified",

 "filename": "fileName",

 "filesize": "fileSize",

 "fullname": "author",

 "fulltext": "body",

 "keyword": "keywords",

 "last-modified": "lastModified",

 "last-printed": null,

 "lastmodified": "lastModified",

 "lastmodifiedby": "author",

 "links": null,

 "messagesubject": "title",

 "mimetype": "mimeType",

 "name": "title",

 "page-count": "pageCount",

 "pagecount": "pageCount",

 "plaintextcontent": "body",

 "plaintextmessagecontent": "body",

 "slide-count": "pageCount",

 "slides": "pageCount",

 "subject": "subject",

 "title": "title",

 "type": null,

 "url": "url"

 },

 "multi_val": {

 "acl": true,

 "author": true,

 "body": false,

 "dateCreated": false,

 "description": false,

 "fileSize": false,

 "mimeType": false,

 "title": false

 },

 "original_content": false,

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 106 291

 "types": {

 "date": "DATE",

 "datecreated": "DATE",

 "filesize": "LONG",

 "lastmodified": "DATE"

 },

 "unique_key": "id",

 "verify_schema": true

 },

 "name": "Content Push",

 "output_args": "threads=2,buffer=1",

 "output_type": "solr",

 "parsing": true,

 "port": 8654,

 "type": "push",

 "url": "http://localhost:8654/solr"

}

Then a document such as this could be added directly to Solr:

curl -H 'Content-type: text/xml' --data-binary '<add> <doc> <field

name="id">testdoc</field> <field name="body">test</field> </doc> </add>'

http://10.0.1.7:8654/solr/collection1/update?commit=true

Here is an example document using SolrJ:

...

String dsId = "3";

SolrInputDocument doc = new SolrInputDocument();

doc.addField("id", "1234");

doc.addField("body", "test");

SolrServer server = new

CommonsHttpSolrServer("http://localhost:8654/solr/collection1");

UpdateRequest req = new UpdateRequest();

req.add(doc);

req.process(server);

Related Topics

Solr Direct Access (see page 245)
Indexing and Basic Data Operations from the Apache Solr Reference Guide.

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 107 291

Indexing Documents Directly to Solr
Solr provides many ways to index content, and these can be used in addition to or instead of the
crawlers built into LucidWorks Search. Solr includes several approaches to indexing content:

Solr can index XML (in a specific Solr format), CSV files and JSON formats natively
Solr Cell (Content Extraction Library) uses Tika to extract documents from a variety of
sources
SolrJ is used by many to connect their Java applications to Solr for indexing and also
querying document once they've been indexed
The DataImportHandler (DIH) provides access to structured data in relational databases (the
Database data source in LucidWorks uses DIH under the hood)
Crawling can be done with Nutch and then pushed into Solr

This page provides a brief overview of how to index content into Solr; for more information,
including details of the options mentioned above, please see the Solr Reference Guide section on

.Indexing and Basic Data Operations

Solr and the LucidWorks Admin UI
If you push documents directly to Solr without using LucidWorks Search data sources, the
LucidWorks Admin UI will be unable to display statistical information about those documents. This
is because documents crawled via LucidWorks Search contain a field that includes the data source
ID, and the data source ID is used by the Admin UI to display information such as the number of
documents in the index for that data source, and to know which crawl statistics to display.

The LucidWorks data source type "external" would allow you to integrate documents pushed
directly to Solr with documents indexed from the crawlers and get statistics such as number of
documents per data source in the Admin UI. In addition, the external data source also allows using
LucidWorks data source field mapping functionality. For more information, see Pushing Content to

; the information contained below is still valid, but would be slightlyLucidWorks (see page 103)
modified when using the "External" approach.

Indexing Solr XML
One way to integrate LucidWorks with a custom data source is to dump the data from that data
source into XML files formatted in this way, and index them as a . LucidWorksSolr XML data source
has built-in support for indexing a directory tree of Solr XML files and scheduling periodic
re-indexing. Alternatively, the XML files can easily be posted into LucidWorks and Solr externally
using curl, the , or other tools that can HTTP POST, like this:REST API

curl http://localhost:8888/solr/collection1/update --data-binary @filename.xml -H

'Content-type:text/xml; charset=utf-8'

Solr natively digests a simple XML structure like this:

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 108 291

1.

2.

3.

<add>

 <doc>

 <field name="fieldname1">field valueA</field>

 <field name="fieldname2">field valueB</field>

 </doc>

 <doc>

 <field name="fieldname3">multivalue1</field>

 <field name="fieldname3">multivalue2</field>

 </doc>

</add>

The structure supports multiple declarations and each supports multiple <add> <doc> <doc>

 declarations. Fields can be multi- or single-valued, depending on the <field> schema.xml

configuration. The LucidWorks Search provide a handy user interface for managingFields screens
field properties, including the multivalued setting.

Solr's XML format can perform other operations including deleting documents from the index,
committing pending operations, and optimizing an index (a housekeeping operation). For more
information on these operations, as well as adding documents, refer to Solr's Update XML

.Messages

Indexing Column (Comma) Delimited Data
The following section uses an example to illustrate how to index delimited text with LucidWorks.

Save the following simple comma-separated data as sample_data.text:

id,title,categories

1,Example Title,"category1,category2"

2,Another Record Example Title,"category2,category3"

Configure the index schema using the Fields editor in the Admin UI as follows:
At the bottom of the page, click to get a blank field formAdd new field
Add a new field with the following settings:

Name: categories
Type: string
Stored: checked
Multi-valued: checked
Short Field Boost: none
Search by Default: checked
Include in Results: checked
Facet: checked

Save and apply those settings.

http://docs.lucidworks.com/display/help/Field%20Configuration
http://wiki.apache.org/solr/UpdateXmlMessages
http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 109 291

4.

5.

Now index the CSV data from the command-line using curl:

curl

"http://localhost:8888/solr/collection1/update/csv?commit=true&f.categories.split=true"

--data-binary @sample_data.txt -H 'Content-type:text/plain; charset=utf-8'

You can also make the file pipe-delimited, like this:

id|title|categories

3|Three|category3

4|Four|category4,category5

And then you can index using this command:

curl

"http://localhost:8888/solr/collection1/update/csv?commit=true&f.categories.split=true&separator=|"

--data-binary @pipe.txt -H 'Contenttype:text/plain; charset=utf-8'

For a full description of all CSV options, see the documentation.Solr UpdateCSV

Related Topics

Pushing Content to LucidWorks (see page 103)

From our Apache Solr Reference Guide:

Indexing and Basic Data Operations
Using SolrJ

http://wiki.apache.org/solr/UpdateCSV
http://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
http://cwiki.apache.org/confluence/display/solr/Using+SolrJ

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 110 291

Crawling Windows Shares with Access Control Lists
LucidWorks Search can crawl Windows Shares (SMB filesystems) and the Access Control Lists
(ACLs) associated with shared files and directories. The ACL information can then be used to limit
users' searches to the content they are permitted to access. This page describes how to configure
using ACLs to control search results based on the user's permissions

As of LucidWorks Search v2.5, it's possible to configure ACL and Active Directory connections on a
per-data source basis. This means that you can simply create a Windows Share data source with
either the UI or the API, configure the connection to the Active Directory server, define if you want
to trim results based on user authorizations, and then crawl the content.

When configuring the connection between LucidWorks Search and Active Directory, keep these
requirements in mind:

Credentials with READ and ACL READ permissions for accessing the Windows share. We
recommend that you create a special user for this purpose.
Credentials with read-only access to the Active Directory LDAP. This is used for search-time
filtering, and we recommend that you create a special user for this purpose.

Permissions with Access Control Lists
The following model is implemented as a search filtering component by default:

Group READ Access Subgroup READ
Access

User READ Access Search Result
Returned?

o (permit) o o o

o × (deny) o ×

o o × ×

o × × x

× o o ×

× × o ×

× o × ×

× × × ×

o - (not set) o o

o o - o

o - - o

- o o o

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 111 291

Group READ Access Subgroup READ
Access

User READ Access Search Result
Returned?

- - o o

- o - o

- - - ×

To understand this table, read the rows left to right. For example, in the first row, we see that the
user's main group, subgroup, and individual permissions all allow READ access to a shared
resource, so the search result is returned. In the second row, we see that the user's main group
and user's individual permissions allow READ access, but the user's subgroup's permissions do not,
so no search result is returned to the user.

How SMB ACL Information Is Stored In The Index
For each file that is crawled through the SMB data source the field is populated with data thatacl

can be used at search time to filter the results so that only people that have been granted access
at the user level or through group membership can see them. Two kinds of tokens are stored:
Allow and Deny. The format used is as follows:

Allow:
WINA<SID>

Deny:
WIND<SID>

Where is the security identifier commonly used in Microsoft Windows systems. There are someSID

well known SIDs that can be used in the field to make documents that are crawled throughacl

some other mechanism than by using SMB data source behave, from the , the same wayacl pow

as the crawled SMB content:

SID Description

S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system administrator. By
default, it is the only user account that is given
full control over the system.

S-1-5-domain-512 Domain Admins: a global group whose
members are authorized to administer the
domain. By default, the Domain Admins group
is a member of the Administrators group on all
computers that have joined a domain.

S-1-5-domain-513 Domain Users.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 112 291

Note that some of the listed SIDs contain a token. This means that the actual SIDs differdomain

from system to system. To find out the SIDs for particular user in particular system you can use
the information provided by the Windows command line tool by executing command whoami

.whoami /all

You can populate the field in your documents with these Windows SIDs to make themacl

searchable in LucidWorks Search. For example, if you wanted to make some documents available
to "Everyone" you would populate the field with the token. If you wanted toacl WINAS-1-1-0

make all docs from one data source available to everybody you can use the literal definitions in the
data source configuration.

Related Topics

Filtering API
Search Handler Components API
LDAP Integration (see page 240)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 113 291

1.
2.

3.
4.
5.

6.

Indexing Binary Data Stored in a Database

The Database crawler in LucidWorks Search does not automatically discover and index binary data
you may have stored in your database (such as PDF files). However, you can configure LucidWorks
to recognize and extract the binary data correctly by modifying the data source configuration file
(which does not exist until you create a JDBC data source).

For detailed information about working with JDBC data sources, see Create a New JDBC
 or the .Data Source Database Data Sources API

After you have created a Database data source, you can find the configuration file in
. The ID in the path is the$LWS_HOME/data/lucid.jdbc/datasources/id/conf/dataconfig.xml

ID of the data source created. If you are familiar with Solr, you will recognize this file as a Data
 configuration file.Import Handler

Follow these steps to modify the configuration file:

Add a attribute for the database containing your binary data to the entry.name dataSource

Set the attribute for the to . This prevents LucidWorks fromconvertType dataSource false

treating binary data as strings.
Add a to stream the binary data to the Tika entity processor.FieldStreamDataSource

Specify the name in the entity.dataSource root

Add an entity for your using the to take theFieldStreamDataSource TikaEntityProcessor

binary data from the , parse it, and specify a field for storing theFieldStreamDataSource

processed data.
Reload the Solr core to apply your configuration changes.

After you have modified the data source configuration file you should not modify the data
source from the LucidWorks Admin UI because LucidWorks will automatically overwrite the

 attribute, and indexing for the modified data source will fail.convertType

http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://wiki.apache.org/solr/DataImportHandler
http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 114 291

1.

2.

3.

Example
In this example there is a MySQL database called containing a table called thattest documents

contains PDF data in a column called . When the data source is first created, thebinary_content

data source configuration file (in
) looks like this:$LWS_HOME/data/lucid.jdbc/datasources/id/conf/dataconfig.xml

<dataConfig>

 <dataSource autoCommit="true" batchSize="-1" convertType="true"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root"/>

 <document name="items">

 <entity name="root" preImportDeleteQuery="data_source:9" query="SELECT * FROM

documents"

 transformer="TemplateTransformer">

 <field column="data_source" template="9"/>

 <field column="data_source_type" template="Jdbc"/>

 <field column="data_source_name" template="MySQL"/>

 </entity>

 </document>

</dataConfig>

To modify this data configuration file, follow these steps:

Add the attribute to the and set to :name dataSource convertType false

<dataSource autoCommit="true" batchSize="-1" convertType="false"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root" name="test"/>

Specify another called to handle the binary data:dataSource fieldReader

<dataSource name="fieldReader" type="FieldStreamDataSource" />

Specify the data source for the root entity:

<entity name="root" preImportDeleteQuery="data_source:9" query="SELECT * FROM

documents"

 transformer="TemplateTransformer" dataSource="test">

Add an entity for the data source specifying the and a fieldReader TikaEntityProcessor

 for storing the processed binary data:dataField

<entity dataSource="fieldReader" processor="TikaEntityProcessor"

dataField="root.binary_content" format="text">

 <field column="text" name="body" />

</entity>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 115 291

4. Restart LucidWorks Search (see page 28) to apply your configuration changes.

For this example, the final configuration file looks like this:

<dataConfig>

 <dataSource autoCommit="true" batchSize="-1" convertType="false"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root" name="test"/>

 <dataSource name="fieldReader" type="FieldStreamDataSource" />

 <document name="items">

 <entity name="root" preImportDeleteQuery="data_source:9" query="SELECT * FROM

documents"

 transformer="TemplateTransformer"

 dataSource="test">

 <field column="data_source" template="9"/>

 <field column="data_source_type" template="Jdbc"/>

 <field column="data_source_name" template="MySQL"/>

 <entity dataSource="fieldReader" processor="TikaEntityProcessor"

dataField="root.binary_content" format="text">

 <field column="text" name="body" />

 </entity>

 </entity>

 </document>

</dataConfig>

Related Topics

Create a New JDBC Data Source
Database Data Sources API
Data Import Handler

http://docs.lucidworks.com/display/help/Create%20a%20New%20JDBC%20Data%20Source
http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 116 291

Using the Hadoop Crawlers
The Hadoop crawlers (which replace the High-Volume HDFS crawlers from previous versions) are
MapReduce-enabled crawlers designed to leverage the scaling qualities of whileApache Hadoop
indexing content into LucidWorks Search. In conjunction with LucidWorks' usage of SolrCloud (see

, applications should be able to meet their large scale indexing and search requirements.page 250)

To achieve this, the high volume crawlers consist of a series of MapReduce-enabled Jobs to convert
raw content into documents for MapReduce-ready document conversion via andApache Tika
writing of documents to LucidWorks.

The information below does not apply to the HDFS or Hadoop over S3 data source types, because
those are simple filesystem crawls and do not use the MapReduce features described below.

Topics covered on this page:

System Requirements (see page 116)
Using Hadoop Crawlers in LucidWorks (see page 117)
Permission Issues (see page 129)
Related Topics (see page 130)

System Requirements

One of the following Apache Hadoop distributions:
Apache Hadoop v1.x
Apache Hadoop v2.x
Cloudera CDH v4.5.x
Hortonworks Data Platform v2.1
MapR M5 (v3.0.2)
Pivotal HD v1.1

LucidWorks running in . The SolrCloud mode (see page 250) LWE-Connectors component (see
 must be able to access , so it must either be installedpage 19) $HADOOP_HOME/bin/hadoop

on one of the nodes of the Hadoop cluster (such as the nameNode), or a client supported by
your specific distribution must be installed on the same server as the LWE-Connectors
component. The Hadoop client must be configured properly to access the Hadoop cluster so
the crawler is able to access the Hadoop cluster for content processing.

Please note, instructions for setting up any of the supported Hadoop distributions is beyond the
scope of this document. We recommend reading one of the many tutorials found online or one of
the books on Hadoop.

Special Requirements for MapR

http://hadoop.apache.org
http://tika.apache.org
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://hortonworks.com/hdp/
http://www.mapr.com/
http://gopivotal.com/big-data/pivotal-hd

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 117 291

1.

a.

b.

Modify the default DirectoryFactory. If you intend to crawl MapR, you should use Solr's
 instead of the default . You can change this byNIOFSDirectoryFactory SimpleFSDirectory

editing the in and adding "lwecore.jvm.params $LWS_HOME/conf/master.conf

" to the end of the settings-Dsolr.directoryFactory=solr.NIOFSDirectoryFactory

already there. More information about the is available in the NIOFSDirectoryFactory Lucene
.javadocs documentation

MapR Client. The MapR client must be installed at a filesystem location accessible by the
LucidWorks Connector component. For information about the MapR client, please see the
MapR documentation . The Connector component looks for the clientSetting Up the Client
libraries in by default, but the location can be modified by editing the /opt/mapr

 in . Find the setting lweconnectors.jvm.params $LWS_HOME/conf/master.conf -Dmapr.home

and modify the path as needed. On Windows, you will need to include the drive (i.e., c: or
d:) and also use two backslashes following the drive letter, as in .c:\\opt\mapr

Using Hadoop Crawlers in LucidWorks
Once Hadoop and LucidWorks are ready, configure a data source within LucidWorks specific to your
version of Hadoop. Data sources can be configured in the or using the .Admin UI Data Sources API
A data source type is available for each supported Hadoop distribution.

The definition of the data source will require defining arguments for the Hadoop job jar. See the
section for details on the options available.Job Jar Arguments (see page 118)

You may also need to ensure you have started LucidWorks Search with a user that has permissions
to write to the . The directory in HDFS must also be writable. See also thehadoop.tmp.dir /tmp

section below on for other considerations.Permission Issues (see page 129)

Unlike other crawlers in LucidWorks Search, the Hadoop data sources currently have no
way of tracking which content is new, updated, or deleted. Thus, all content found is
reported as "new" with each crawl. It is also not possible to configure batch operations

 with the high-volume data source types.(see page 136)

How the Crawler Works

The Hadoop crawlers work in three stages designed to take in raw content and output results to
LucidWorks Search. These stages are:

Create one or more SequenceFiles from the raw content. This can be done in one of two
ways:

If the source files are available in a shared Hadoop filesystem, prepare a list of source
files and their locations as a SequenceFile. The raw contents of each file are not
processed until step 2.
If the source files are not available, prepare a list of source files and the raw content.
This process is currently done sequentially and can take a significant amount of time if
there is a large number of documents and/or if they are very large.

http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/store/NIOFSDirectory.html
http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/store/NIOFSDirectory.html
http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client
http://docs.lucidworks.com/display/help/Data%20Source%20Details

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 118 291

2.

3.

Run a MapReduce job to extract text and metadata from the raw content using Apache Tika.
This is similar to the LucidWorks approach of extracting content from crawled documents,
except it is done with MapReduce.
Run a MapReduce job to send the extracted content from HDFS to LucidWorks using the SolrJ
client. This implementation works with SolrJ's CloudServer Java client which is aware of
where LucidWorks is running via Zookeeper.

In LucidWorks 2.8, the way this processing occurs has changed. In prior versions, we used
Behemoth for processing, but now we use a new internal pipeline developed for release in future
versions of LucidWorks. In LucidWorks 2.8, this pipeline only includes document parsing from Tika
and a very simple field mapping to transform Tika's output to fields expected by LucidWorks
Search. If you need more advanced capabilities from the pipeline before the content is indexed in
Solr, please contact LucidWorks Support for options and assistance.

The processing approach is currently all or nothing when it comes to ingesting the raw
content and all 3 steps must be completed each time, regardless of whether the raw
content hasn't changed.

The first step of the crawl process converts the input content into a SequenceFile. In order
to do this, the entire contents of that file must be read into memory so that it can be
written out as a PipelineDocument in the SequenceFile. Thus, you should be careful to
ensure that the system does not load into memory a file that is larger than the Java heap
size of the process.

Differences from Other Hadoop Crawlers in LucidWorks

While the Hadoop, Hadoop File System (HDFS) and Hadoop File System over S3 (S3H) crawlers all
use Hadoop to access Hadoop's distributed file system, there is a big difference in how they utilize
those resources. The HDFS and S3H data sources are designed to be polite and crawl through the
content stored in HDFS just as if they were crawling a web site or any other file system.

The Hadoop crawlers, on the other hand, are designed to take full advantage of the scaling abilities
of the MapReduce architecture. Thus, it runs jobs using all of the nodes available in the cluster just
like any other MapReduce job. This has significant ramifications for performance since it is
designed to move a lot of content, in parallel, as fast as possible (depending on the system's
capabilities), from its raw state to the LucidWorks Search index. Thus, you will need to design your
LucidWorks Search SolrCloud implementation accordingly and make sure to provision the
appropriate number of nodes. See also the section for more details.Planning a Search Cluster

Job Jar Arguments

Hadoop job jar arguments allow you to define the type of content in your Hadoop filesystem and
choose "ingest mappers" appropriate for that content. The arguments also allow you to define
parameters for the mappers.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 119 291

1.

The job arguments must conform to the following structure and must be entered in the proper
order, as shown below:

The main class must be specified. For all of the mappers available, this is always defined as
.System or Mapper-specific arguments, definedcom.lucidworks.hadoop.ingest.IngestJob

as . In many cases, the arguments needed are only needed for certain-Dargument=value

Mapper class(es) that is defined in later in the argument string.
There are several possible arguments:

Argument Value Type Required Default Value Description

-Dlww.commit.on.closeboolean No false Defines if a
commit should
be done when
the connection
to Solr is
complete.

-DcsvDelimiter string No , (comma) This is the file
delimiter for
CSV content. It
is used only
when using the
CsvIngestMapper
(see -cls
below).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 120 291

1.

Argument Value Type Required Default Value Description

-DcsvFieldMappingkey-value pair No none This defines how
to map columns
in a CSV file to
fields in Solr, in
the format of

. The key is0=id

a zero-based
column number
(so the first
column would be
"0"), and the
value is the
name of the field
to use to store
the value in
Solr. If this is
not set, column
0 is used as the
id, unless there
is a column
named 'id'.
This property is
only used when
using the
CsvIngestMapper
(see -cls
below).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 121 291

1.

Argument Value Type Required Default Value Description

-DidField string No none The column to
be used as an
ID. The field
name used is
the name after
any mapping
that occurs as a
result of the
-DcsvFieldMapping

argument. If
there is a
column named
'id' and it is
different from
the field named
with this
property, you
will get an error
because you
have defined
two IDs and IDs
must be unique.

-Dgrok.uri string No none The path to a
Logstash
configuration
file, which can
be in the local
filesystem
(file:///path/logStash.conf)
or in HDFS
(hdfs://path/logStash.conf).
This property is
only used with
the
GrokIngestMapper
(see -cls
below).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 122 291

1.

Argument Value Type Required Default Value Description

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.regexstring No none A Java Pattern
compliant
Regex. See
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
– Cannot be null
or empty. This
parameter is
used only with
the RegexIngest
Mapper (see

 below).-cls

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.groups_to_fieldskey-value pair No none A
comma-separated
mapping
(key=value,key=value,...)
between regular
expression
capturing groups
and field names.
The key must be
an integer and
the value must
be a String. For
instance,
0=body,1=text.
Any capturing
group not
represented in
the map will not
be added to the
document. This
parameter is
used only with
the RegexIngest
Mapper (see

 below).-cls

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 123 291

1.

2.

Argument Value Type Required Default Value Description

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.matchboolean No none If true, the
mapper will use
the Java
Matcher's (
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
) matches
method instead
of find. In short,
this means the
regex needs to
match on the
entirety of the
input string. This
parameter is
used only with
the RegexIngest
Mapper (see

 below).-cls

Other arguments not defined here can be supplied as needed and they will be added to the
Hadoop configuration. These arguments should be defined with the -Dargument=value
syntax.
Key-value pair arguments that apply to the ingest job generally. These arguments are
expressed as .-argument value

There are several possible arguments:

Argument Required Description

-cls Yes The mapper class. This class
must correspond to the
content being indexed to
ensure proper parsing of
documents. See the Mapper
Class table below (see page

 for details of each126)
available mapper.

-c Yes The collection name. This is
the same collection where
you are creating the data
source, such as collection1
.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 124 291

2.

Argument Required Description

-of Yes The output format. For all
cases, you can use the
default
com.lucidworks.hadoop.io.LWMapRedOutputFormat

.

-i Yes The path to the Hadoop input
data. This path should point
to the HDFS directory. If the
defined location is not a
specific filename, the syntax
must include a wildcard
expression to find
documents, such as /data/*
.

-s Not if is used.-zk The Solr URL. In LucidWorks
Search, this would be the
URL of the LWE-Core

.component (see page 116)
In a default installation, this
would be

.http://localhost:8888/solr
Use this parameter if you are
indexing into a LucidWorks
Search installation that is not
running in SolrCloud mode.
If LucidWorks Search is
running in SolrCloud mode,
you should use instead.-zk

If not using , you should-s

use .-zk

http://localhost:8888/solr

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 125 291

2.

Argument Required Description

-zk Not if is used.-s A list of ZooKeeper hosts,
followed by the ZooKeeper
root directory. For example,
10.0.1.1:2181,10.0.1.2:2181,10.0.1.3:2181/lws

would be a valid value.
This parameter is used when
running LucidWorks Search
in SolrCloud mode, and
allows the output of the
crawl to be routed via
ZooKeeper to any available
node. If you are not running
LucidWorks Search in
SolrCloud mode (and don't
have ZooKeeper), use the -s
argument instead. If not
using , you should use -zk -s

.
If you have installed
LucidWorks Search using the
instructions at Cluster

,Installation (see page 116)
you may not have defined
the root directory for your
ZooKeeper ensemble. In that
case, the default is used
("/lws").

-redcls No The class name of a custom
IngestReducer, if any. In
order for this to be invoked,
you must also set to a-ur

value higher than 0. If no
value is specified, then the
default reducer is used,
which is
com.lucidworks.hadoop.ingest.IngestReducer

.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 126 291

2.

1.
2.

3.

Argument Required Description

-ur No The number of reducers to
use when outputting to the
OutputFormat. Depending on
the output format and your
system resources, you may
wish to have Hadoop do a
reduce step so the output
resource is not
overwhelmed. The default is

, which is to not use any0
reducers.

So, the proper order for each element of the argument is as follows:

Main ingest class.
Mapper arguments, which usually vary depending on the Mapper class chosen, in the format
of -Dargument=value
Ingest arguments, which include the input format and the chosen Mapper class, in the format
of -argument value

Example arguments are shown below in the section .Example Arguments (see page 128)

Mapper Classes

This table defines the available mapper classes and how they can be used.

Mapper Class Name Description Input File Format

com.lucidworks.hadoop.ingest.GrokIngestMapperIndex log files based on a
LogStash configuration file.
LogStash filters can be used
(i.e., grok, kv, date, etc.). The
input and output statements of
the configuration file are
overwritten by the input and
output arguments from the
Hadoop job.

TextInputFormat

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 127 291

Mapper Class Name Description Input File Format

com.lucidworks.hadoop.ingest.CSVIngestMapperIndex files in CSV file format.
With this mapperClass, the

 parametercsvFieldMapping

must be set when creating the
data source (with the
argument -DcsvFieldMapping
). The delimiter can also be
changed from the default (a
comma ",") with the

 parameter.-DcsvDelimiter

TextInputFormat

com.lucidworks.hadoop.ingest.DirectoryIngestMapperIndex a directory of files. Tika
will be used to extract content
from these files, so file types
supported by Tika will be
parsed.

com.lucidworks.hadoop.ingest.RegexIngestMapperAllows definition of an regular
expression that is used on the
incoming content.

com.lucidworks.hadoop.ingest.SequenceFileIngestMapperIndex a . If theSequenceFile

value is "text", the string will
be used, otherwise the raw
bytes will be written.

SequenceFileInputFormat

com.lucidworks.hadoop.ingest.SolrXMLIngestMapperIndex a file in SolrXML format.
The file should be in a
SequenceFileInputFormat,
where the key is any Writable
and the value is text in
SolrXML. This mapper requires
that the parameter beidField

set when creating the workflow
job. This mapper supports
overriding the default

 ofinputFormat

SequenceFileInputFormat if
required.

SequenceFileInputFormat

com.lucidworks.hadoop.ingest.WarcIngestMapperIndex web archive ().warc

files in WarcFileInputFormat.
WarcFileInputFormat

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 128 291

Mapper Class Name Description Input File Format

com.lucidworks.hadoop.ingest.ZipIngestMapperIndex files. Tika will be.zip

used to extract content from
these files, so file types
supported by Tika will be
parsed.

Example Arguments

Index CSV files

To index CSV files, you could use the following arguments:

com.lucidworks.hadoop.ingest.IngestJob -Dlww.commit.on.close=true -DcsvDelimiter=| -cls

com.lucidworks.hadoop.ingest.CSVIngestMapper -c collection1 -i /data/CSV -of

com.lucidworks.hadoop.io.LWMapRedOutputFormat -s http://localhost:8888/solr

To explain in more detail, here is a breakdown of each parameter:

Main Class: com.lucidworks.hadoop.ingest.IngestJob
We want to commit the documents when finished: -Dlww.commit.on.close=true
The delimter is a pipe character (|): -DcsvDelimiter=|
We have CSV files, so we should use the CSV Mapper Class: -cls
com.lucidworks.hadoop.ingest.CSVIngestMapper

We want to index the documents to "collection1": -c collection1
The documents are located at this path: -i /data/CSV
We'll use the default output format: -of
com.lucidworks.hadoop.io.LWMapRedOutputFormat

We're not using SolrCloud, so the LucidWorks Solr is found at: -s
http://localhost:8888/solr

Index a Directory of Files with SolrCloud

com.lucidworks.hadoop.ingest.IngestJob -Dlww.commit.on.close=true -cls

com.lucidworks.hadoop.ingest.DirectoryIngestMapper -c collection1 -i /data/files -of

com.lucidworks.hadoop.io.LWMapRedOutputFormat -zk

10.0.1.7:2181,10.0.1.8:2181,10.0.1.9:2181/lws

In this example, we have defined the job very similarly to the previous example. We defined that
LucidWorks Search should commit the documents when finished, defined the Mapper Class,
specified a collection (" "), pointed the crawler to the input directory (),collection1 /data/files

and defined the output format.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 129 291

Note that in this case instead of defining the location of Solr, we used the parameter to define-zk

a list of hosts running our ZooKeeper ensemble. We can list the host:port locations separated by
commas, and then finally define the root directory, which in this case is , which is the default,/lws

but another root directory may have been defined during installation. See also Cluster Installation
 for more details on defining the root directory for your ZooKeeper ensemble during(see page 116)

LucidWorks Search installation.

Permission Issues
Using any flavor of Hadoop, you will need to be aware of the way Hadoop and systems based on
Hadoop (such as CDH, MapR, etc.) handle permissions for services that communicate with other
nodes.

Hadoop services execute under specific user credentials: a quadruplet consisting of user name,
group name, numeric user id, numeric group id. Installations that follow the manual usually use
user 'mapr' and group 'mapr' (or similar), with numeric ids assigned by the operating system (e.g.,
uid=1000, gid=20). When the system is configured to enforce user permissions (which is the
default in some systems), any client that connects to Hadoop services has to use a quadruplet that
exists on the server. This means that ALL values in this quadruplet must be equal between the
client and the server, i.e., an account with the same user, group, uid, and gid must exist on both
client and server machines.

While it's easy to create a user with a given name and group name, it's less obvious to
casual users how to create an account with exactly the same numeric id-s. On POSIX
systems (Linux and Mac) it's possible to do so, on Windows it's probably not possible. For
this reason there's a section of code in Hadoop and MapR to "spoof" user ids on Windows,
using the following properties:

hadoop.spoof.user: boolean, when then spoofing will be attemptedtrue
hadoop.spoofed.user.username: name of the user account to spoof
hadoop.spoofed.user.groupname: group name of the user account to spoof
hadoop.spoofed.user.uid: numeric user id of the user account to spoof
hadoop.spoofed.user.gid: numeric group id of the user account to spoof

These properties will be used ONLY on Windows. Users on other operating systems will
have to create a real account with matching identifiers.

When a client attempts to access a resource on Hadoop filesystems (or the JobTracker, which also
uses this authentication method) it sends its credentials, which are looked up on the server, and if
an exactly matching record is found then those local permissions will be used to determine
read/write access. If no such account is found then the user is treated as "other" in the sense of
the permission model.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 130 291

This means that the crawlers for the HDFS data source should be able to crawl Hadoop or MapR
filesystems without any authentication, as long as there is a read (and execute for directories)
access for "other" users granted on the target resources. Authenticated users will be able to access
resources owned by their equivalent account.

However, the Hadoop data sources described on this page require write access to a directory/tmp

to use as a working directory. In many cases, this directory does not exist, or if it does, it doesn't
have write access to "other" (not authenticated) users. Therefore users of these data sources
should make sure that there is a directory on the target filesystem that is writable using their/tmp

local user credentials, be it a recognized user, group, or "other". If a local user is recognized by the
server then it's enough to create a directory that is owned by that user. If there is no such/tmp

user, then the directory must be modified to have write permissions for "other" users. The/tmp

working directory can be modified to be another directory that can be used for temporary working
storage that has the correct permissions.

Related Topics

Using SolrCloud in LucidWorks (see page 250)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 131 291

Integrating Nutch
LucidWorks Search includes support for "external" data sources (also known as "push crawlers").
While the built-in LucidWorks crawlers use the "pull" model (meaning that LucidWorks initiates the
crawl and actively discovers new or updated resources), push crawlers are external processes that
manage the discovery and sending of new and updated documents for indexing outside of the
LucidWorks crawler framework.

Apache Nutch is a framework for building and running large-scale Web crawling using Hadoop
map-reduce clusters (see for more information). Recent releases of Nutchhttp://nutch.apache.org/
rely on Solr for indexing and searching. From the point of view of LucidWorks, Nutch can be
integrated as an "external" or "push" crawler.

The following sections describe step-by-step how to integrate a crawler (or Nutch)Nutch 1.4 trunk
with LucidWorks.

Solr indexer
Nutch comes with a tool for map-reduce indexing to Solr called . From theSolrIndexer

command-line, this tool is invoked like this:

nutch solrindex http://localhost:8983/solr/collection1 db -linkdb linkdb [-params

k1=v1,k2=v2] segment1 segment2 [...]

Support for the option exists in Nutch trunk, post 1.4 release, or if you apply the-params

patch found in).NUTCH-1212

Field mapping in Nutch
Nutch uses indexing plugins to construct the outgoing documents, and these plugins add various
fields with various names. These field names do not necessarily match the default LucidWorks

 for a collection. Nutch provides a limited facility to adjust these names (see schema.xml

). This field mapping facility is often enough in simple$nutch_home/conf/solrindex-mapping.xml

cases to re-map field names so that they match the LucidWorks schema.

However, this solution has some drawbacks:

This mapping is static for all indexing jobs that use the same job file (or the same conf
directory in the case of a non-distributed Nutch installation) and changing it requires
rebuilding of the job file, which can be cumbersome.
There is no easy way to add fields that are useful for managing documents in LucidWorks
(such as , or), short of implementing adata_source_type data_source_name data_source

new Nutch indexing plugin.

http://nutch.apache.org/
http://www.apache.org/dyn/closer.cgi/nutch/
http://nutch.apache.org/nightly.html
http://issues.apache.org/jira/browse/NUTCH-1213

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 132 291

the field mapping in cannot be managed from the LucidWorkssolrindex-mapping.xml

Admin UI.

Fortunately, there is a better solution to this problem which is to use the field mapping
functionality in LucidWorks, defined as part of the External data source type definition, in
combination with the option for .-params SolrIndexer

Field mapping in LucidWorks
External processes that submit documents to LucidWorks can be integrated using the External data
source type. When you define a new data source in LucidWorks, one of its properties is

. With the , the JSON serialization looks similar to this:field_mapping Data Sources API

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 133 291

...

"mapping": {

 "datasource_field": "data_source",

 "default_field": null,

 "dynamic_field": "attr",

 "literals": {},

 "lucidworks_fields": true,

 "mappings": {

 "acl": "acl",

 "author": "author",

 "batch_id": "batch_id",

 "content": "body",

 "content-encoding": "characterSet",

 "content-length": "fileSize",

 "content-type": "mimeType",

 "contentcreated": "dateCreated",

 "contentlastmodified": "lastModified",

 ...

 },

"multi_val": {

 "acl": true,

 "author": true,

 "body": false,

 "dateCreated": false,

 "description": false,

 "fileSize": false,

 "mimeType": false,

 "title": false

 },

"types": {

 "date": "DATE",

 "datecreated": "DATE",

 "filesize": "LONG",

 "lastmodified": "DATE"

 },

"unique_key": "url",

"verify_schema": true

},

...

The LucidWorks Admin UI includes a page for each data source to edit field mapping for that data
source which is where you can define, for example, that "content" should be mapped to "body", or
that you allow only a single value for "title", etc.

In particular, you can define what is the name of the "uniqueKey" field in the incoming documents.
If Nutch produces documents that use "url" as their unique identifier, then you would specify

. If "verify_schema" is set to "true" then LucidWorks will automatically define a"uniqueKey":"url"

mapping from "url" to whatever the current "uniqueKey" field is in the Solr schema for the target
collection.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 134 291

Once the external data source is defined (or updated) LucidWorks sends the serialized field
mapping to the FieldMappingUpdateProcessor, which is a part of the "lucid-update-chain". This
update processor receives the field mapping definition, and stores it in memory under a specified
data source id. This field mapping is then updated each time a user makes some modifications to
the data source definition, either via the Admin UI or using the REST API.

From this point, whenever an update request is received from an external process and it goes
through this update chain, the update processor looks for a Solr parameter "fm.ds", which
indicates the data source ID. If this parameter is present, and matches an existing defined
mapping, then the documents in the update request are put through the
FieldMappingUpdateProcessor, which re-maps field names, adjusts field multiplicity and adds
LucidWorks-specific field names and values (which, among others, help to manage documents
using the LucidWorks Admin UI).

Putting it all together
Now that we know how the field mapping is configured and processed in LucidWorks we can make
sure that Nutch SolrIndexer uses the correct parameters, so that the correct field mapping is
applied in LucidWorks to documents arriving from Nutch. Let's say that our external data source in
LucidWorks has a data source id "4", we want to add the documents to "collection1" and our
LucidWorks instance is running on a host "lucidworks.io:8888". Then the command-line parameters
to SolrIndexer would look like this:

nutch solrindex http://lucidworks.io:8888/solr/collection1 db -linkdb linkdb -params

'update.chain=lucid-update-chain&fm.ds=4' segment1 segment2 [...]

As you can see, we are using the target collection's URL, and we specify "fm.ds=4" parameter that
determines what field mapping needs to be applied to the incoming documents. Just in case, we
explicitly set the update chain in case "lucid-update-chain" is not the default one (which it is in an
out-of-the-box installation of LucidWorks). Please note that the option uses a URL-like-params

syntax for passing Solr parameters, and since ampersand is usually a special shell character we
had to enclose the string in single quotes to prevent the shell from interpreting it.-params

Summary
Nutch and LucidWorks form a powerful combination. Nutch is a robust crawling platform that can
easily crawl thousands of pages per second while LucidWorks offers a scalable and robust indexing
and search platform.

The way to use the two together is simply to:

Define an "external" data source in LucidWorks, and adjust its field mapping to properly map
the default Nutch field names to the ones that make sense in the current LucidWorks schema
(e.g., "uniqueKey":"url", "content":"body", etc.). An external data source can be created by
choosing the "External" type in the Sources page of the Admin UI or with the Data Sources
API, specifying "lucid.external" for the and "external" for the .crawler type

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 135 291

Start the Nutch SolrIndexer job with the additional -params option that specifies the data
source id of the "external" data source defined in LucidWorks.

Related Topics

Pushing Content to LucidWorks (see page 103)
Apache Nutch homepage

http://nutch.apache.org/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 136 291

1.
2.

3.
4.

5.

Processing Documents in Batches
By default, LucidWorks Search will crawl as much content as it can (within limits set on the data
source), parse the documents to extract fields, and finally index the documents in one seamless
step. However, there may be times when you would like to do some processing on the documents
before indexing them, perhaps to add metadata or to modify data in specific fields. In that case, it
is possible to only crawl the content and save it in a batch for later parsing and/or indexing. This is
called Batch Processing and allows you to separate the fetching data from the process of parsing
the rich formats (such as PDFs, Microsoft Office documents, and so on), as well as the process of
indexing the parsed content in Solr.

How a Batch is Constructed
Batches consist of the following two parts:

a container with raw documents, and the protocol-level metadata per document
a container with parsed documents, ready to be indexed.

The exact format of this storage is specific to a crawler controller implementation. Currently a
simple file-based store is used, with a binary format for the raw content part and a JSON format for
the parsed documents. The first container is created during the fetching phase, and the second
container is created during the parsing phase. A new round of fetching creates a new batch if one
or more of the parameters described above requires it.

Steps to Configure Batch Crawling
It's not possible to configure Batch Crawling with the LucidWorks Search Admin UI. To work with
batches and batch jobs, use the API. The basic workflow is as follows:Batch Operations

Create a data source using the or . Don't start crawling yet.Admin UI Data Sources API
Configure the data source to be saved as a batch by setting the parameter to indexing

 using the API. You can also set the and parametersfalse Data Sources caching indexing

as described below.
Start the crawl and let it finish.
Get the for the data source using the API call: batch_id Batch Operations GET

.http://localhost:8888/api/collections/collection1/batches

Using the API, start the batch job for your data source using the Batch Operations batch_id

obtained in the previous step:

 PUT http://localhost:8888/api/collections/collection1/batches/crawler/job/

.batch_id

http://docs.lucidworks.com/display/help/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 137 291

More about the Data Source Settings

To instruct LucidWorks Search not to parse or index the crawled documents, set the indexing
parameter of a data source to using the API. You can also set the andfalse Data Sources parsing

 parameters to true or false, depending on your needs. Batch crawling attributes for datacaching

sources are as follows:

Key Type Default Description

parsing boolean true If true, the raw
content fetched from
remote repositories is
immediately parsed in
order to extract the
plain text and
metadata. If false, the
content is not parsed:
it is stored in a new
batch with its
protocol-level
metadata. New
batches are created
during each crawl run
as needed.

caching boolean false If true, the raw
content is stored in a
batch even if
immediate parsing
and/or indexing is
requested. You can
use this to preserve
the intermediate data
in case of crawling or
indexing failure, or in
cases where full
re-indexing is needed
and you would like to
avoid fetching the raw
content again.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 138 291

Key Type Default Description

indexing boolean true If true, the parsed
content is sent to Solr
for indexing. If false,
the parsed document
is not indexed: it is
stored in a batch
(either a newly
created one, or the
one where the
corresponding raw
content was stored).
Set this attribute to

 to enable batchfalse

crawling.

When you configure a data source to process documents as a batch, information about
crawl attempts will display in the Admin UI for that data source (even though you cannot
configure the batch parameters via the UI). So, you can use the toData Sources API
enabled and/or disable , and initiate the crawl through the Admin UI.caching indexing

The UI will show the number of documents found, updated, deleted, etc.

Not all crawler controllers support all batch processing operations. For example, the Aperture
crawler () does not support raw content storage: it behaves as if the "parsing"lucid.aperture

parameter is always and caching is always . Also, the true false MapR High Volume Data Sources
and do any kind of batch processing.High-Volume HDFS Data Sources not support

You can also use the to get the status of or stop running batch jobs as well asBatch Operations
delete batches and batch jobs.

Related Topics

Batch Operations
Data Sources

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 139 291

Using the Apache Hive Connector
LucidWorks Search v2.8 add the ability to read and write data to and from Solr using .Apache Hive
Data from Solr can be presented as a Hive table to be joined with other Hive tables, and can also
be a target of an INSERT statement to write data into Solr from Hive.

Installing LucidWorks to Hive
In order for Hive to work with Solr, the LucidWorks Search Hive connector must be added to Hive.
The file name is (the copy in your version may also contain version andhadoop-lws-job.jar

release numbers) and is found in the directory. The command to add it to$LWS_HOME/app/hadoop

hive will look like this:

hive> ADD JAR

/usr/local/LucidWorks2.8/app/hadoop/hadoop-lws-job-1.2.0-rc2.1.3-0-java6.jar;

Create an External Table
In Hive, you need to create an external table that points to the Solr instance you are going to use.

hive> CREATE EXTERNAL TABLE solr (id string, field1 string, field2 int)

 STORED BY 'com.lucidworks.hadoop.hive.LWStorageHandler'

 LOCATION '/tmp/solr'

 TBLPROPERTIES('solr.server.url' = 'http://localhost:8888',

 'solr.collection' = 'collection1',

 'solr.query' = '*:*');

The TBLPROPERTIES can take the following properties:

solr.zkhost - the location of the ZooKeeper quorum if using LucidWorks in SolrCloud mode. If
this property is set along with the 'solr.server.url' property, the 'solr.server.url' property will
take precedence.
solr.server.url - the location of the Solr instance if not using LucidWorks in SolrCloud mode.
If this property is set along with the 'solr.zkhost' property, this property will take precedence.
solr.collection - the Solr collection for this table. If not defined, a default of 'collection1' will
be used.
solr.query - the specific Solr query to execute for this table. If not defined, a default of '*:*'
will be used.
lww.commit.on.close - if true, inserts will be automatically committed on close of the
connection. If not defined, a default of 'true' will be used.

If the table needs to be dropped at a later time, it can be dropped using the Hive DROP TABLE
command. This only deletes the metadata of the table in Hive; it does not delete any data in Solr.

http://hive.apache.org/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 140 291

Queries and Inserting Tables
Once the table is configured any syntactically correct Hive query will be able to query the Solr
index. For example:

hive> SELECT id, field1, field2 FROM solr;

or to do a join with a Hive table:

hive> SELECT id, field1, field2 FROM solr left

 JOIN sometable right

 WHERE left.id = right.id;

To insert data to the table, simply use the Solr table as the target for the Hive INSERT statement,
as in this example:

hive> INSERT INTO solr

 SELECT id, field1, field2 FROM sometable;

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 141 291

Query and Search Configuration
Once your content is in the index, you and your users will want to query the index to find the
documents they need. This section covers the options and settings to optimize the search
experience for users.

First, there's an overview of how searching works in the section Overview of Query Processing (see
.page 142)

A few features make it easy for users to find documents: allowEnterprise Alerts (see page 184)
them to get email notifications when new documents are added to the index; Spell Check (see

 corrects errors in terms they've entered; page 179) Auto-Complete of User Queries (see page 181)
makes suggestions for valid terms while they type, and Synonyms and Stop Words (see page 172)
allows use of similar terms and very common words to improve the search experience.

While LucidWorks Search includes a Search UI, it's meant to be used during development and not
for a production application. The section describes in detailGetting Search Results (see page 144)
how to query the LucidWorks Search index, and what responses look like, for use while designing
your own search application customized for your needs.

You may have need to improve the results your users see. The Click Scoring Relevance Framework
 provides a way to boost documents that other users have already clicked on for the(see page 185)

same query, with the theory that if other users found it useful, you might too.

If you have serious business needs for including very specific rules in response to certain queries
(or all queries), the section describes how to plug inBusiness Rules Integration (see page 195)
those rules with LucidWorks Search.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 142 291

Overview of Query Processing
The goal for any search application is to return the correct document while allowing a user to enter
a query however they want. The query may be in the form of , a keywords natural language
question, or snippets of documents. may be (or may include) , Advanced queries date ranges

, searches on specific , or to define howBoolean operations document fields proximity information
close (or how far apart) terms should be to each other.

Features like spell check and auto-complete can help prompt users to enter terms that are more
likely to retrieve results. In LucidWorks Search, spell check provides suggestions for terms close to
the user's terms, but which definitely exist in the index (that is the default implementation; a
dictionary could be used instead). Auto-complete also provides suggestions based on terms in the
index, but does so while the user is typing their query, providing real-time feedback to the user.
More details are available in the sections and Spell Check (see page 179) Auto-Complete of User

.Queries (see page 181)

Matching the User's Query to Documents
Once the user hits enter, search engines take the query and transform it to find the best results.
The section describes how your search application shouldGetting Search Results (see page 144)
send the user's query to LucidWorks Search, and how the response will be formatted.

Synonyms (see page 172) of the terms entered may be applied to expand the number of possible
document matches (such as looking for "attorney" when a user enters "lawyer"). If terms are
stripped of punctuation and capital letters during indexing, a similar process should also be applied
to the user query to ensure matches in the index. In LucidWorks Search, much of this is
pre-configured but could be modified if needed.

The system then tries to match the user's transformed terms to terms in documents in the index
. Once it finds documents, it puts the list of matching documents into some order.(see page 43)

They might be ordered by date, by entry to the index, or, most commonly, by , which isrelevance
an order based on which the system thinks are best for the query entered.

Relevance ranking is one of the most complex components of a search engine, and this guide
covers the topic in more detail later (see).Understanding and Improving Relevance (see page 161)
Most queries are very short (one to three words) and that is usually not enough information to
know the user's full intention. To compensate for this, several techniques may be employed such
as boosting based on the number of times the user's search terms appear in a document or
boosting based on the location of the user's search terms in a document (in the title, at the
beginning, etc.). Some approaches may drop very small words like "of", or "the" (also called stop

), so they don't unduly influence the term calculations.words

Other techniques used in relevance ranking include considering the date of the item (documents
that are more recent may be considered more relevant to some users) or where the term matches
occur (words in the title of the document may be more relevant than words at the end).
LucidWorks Search includes the option to use , which uses informationClick Scoring (see page 185)
about the documents other users have selected as a factor when calculating relevance.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 143 291

Search Results
Once the system has compiled a list of matching documents, they need to be presented to the user
with enough information to help them decide which documents are best. First, the documents
should be sorted in some way: the most common is by how well the documents match the query
(relevance), but date may also be preferred, or another field such as author or manufacturer.
Some snippet of the document should be used to help users figure out if the document is a match,
such as title, author and date. The first few sentences, or a few sentences around the highlighted
occurrence of the user's search term, are also helpful to give the user some context for why each
document was selected as a match.

Document clustering, also called faceting, can help users select from a large list of results. Facets
are documents grouped together by some common element such as author, type, or subject and
are usually displayed with the number of results that can be found in each group. Providing facets
allows users to "drill down" or further restrict their results and find the documents they are looking
for.

Users may also benefit from tools to expand their queries without providing additional search
terms. A "find similar" option allows users to request documents that are similar to one they
consider almost right. Explicit or automatic feedback allows users to resubmit their search with
terms pulled from documents that are considered near matches, in hopes of getting more or better
matches. In LucidWorks Search, can be enabled, whichunsupervised feedback (see page)
automatically takes the top documents from the preceding results and pulls important terms from
them to use with the user's original query.

Some queries are run on a periodic basis (daily, weekly, etc.). LucidWorks Search includes a
feature to allow users to save their queries and the system will run them at defined intervals and
send a notification if new documents have been added that match their query. This feature is called

.Enterprise Alerts (see page 184)

Result lists may need to be limited to only documents that a user has access to view. LucidWorks
Search has several options for doing this, described in the section Securing LucidWorks (see page

.225)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 144 291

Getting Search Results
LucidWorks Search includes a default search interface that is designed to be used during
development to evaluate and test the performance of crawler and index configuration. At this time,
there are no options to customize the default Search UI because we expect that you will prefer
your own designs and options specifically tailored to your audience.

What follows is some information about how to start working with search results in LucidWorks
Search.

LucidWorks is built upon Solr and supports it natively. While LucidWorks includes a REST API for
many administrative functions (like creating data sources, updating fields, etc.), there is no
LucidWorks-specific API for search results. In order to get results from LucidWorks, you'll need to
learn a little Solr syntax. To help you with this, you may find it helpful to review LucidWorks' free

, particularly the section on .Apache Solr Reference Guide Searching

This page is an introduction to Solr searching.

You should also look at these sections:

Constructing Solr Queries (see page 146)
Solr Query Responses (see page 152)

Basics of Searching
Searching LucidWorks Search makes a direct connection to Solr, which processes queries with a

. The request handler defines the logic to be used for processing the query. Solrrequest handler
supports several different request handlers, and LucidWorks includes a special Solr search request
handler called . Details about this special request handler are in the section /lucid Lucid Query

.Parser

The handler is pre-selected as the default, but could be changed to another request handler/lucid

by editing for the collection. The simplest way to do this is to change the solrconfig.xml defType

parameter from "lucid" to "edismax", "dismax" or a custom parser you've created.

Request Handlers

Each request handler has several settings pre-configured, but these can be overridden for an
individual query by the client application. In some cases, this may adversely affect the expected
search results, so care should be taken when overriding some parameters.

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 145 291

To process a query, a request handler calls a , which interprets the terms andquery parser
parameters of a query. The query parser understands the terms the user entered (the actual
words), any parameters entered for fine-tuning the query (such as instructions to search a specific
field for the terms, to boost terms found in specific fields to rank them higher in results, and to
interpret the syntax for advanced queries including ranges or boolean operators, etc.), and any
parameters for controlling the presentation of the response (such as the order of results or the
fields of a document to be returned). LucidWorks has created its own query parser that is used by
default, but any other Solr query parser could also be used (the two most popular are DisMax and
ExtendedDisMax).

The request handler also likely has defined many parameters for faceting, spell check,
autocomplete, highlighting, security settings and so on. The request handler has enabled/lucid

and defined each of those components by default; with other request handlers those may need to
be defined in or defined with each search request. Each of these will either helpsolrconfig.xml

fine-tune the query or control the presentation of results.

Query Parsers

During query processing, Solr queries specific fields for matches to the user query. The fields may
be a default set configured in advance or specifically defined in the query request. Each field has a
type, and each field type has defined rules for how to index content of that type, and how to
process queries of that content. In general, rules applied during indexing should be applied during
queries to be confident of expected results. For example, if all fields are modified to lower-case
during indexing, queries should be modified to lower-case to be sure they match as many terms as
possible. These are defined in the field definitions, which include and analyzer tokenizers filters
to be applied to indexing and queries. The tokenizers and filters will in many cases modify the
original query from the user, perhaps by converting the user's input to lower-case or stripping
extra characters like hyphens or other punctuation. There are several dozen options for tokenizers
and filters and links at the end of this section will take you to more information about them. You
can see the defined field analyzers by looking in the file for the collection, or in theschema.xml

Admin UI .screens for Field Type

While all of this may seem quite complicated, LucidWorks can be used out of the box with pre-set
defaults. If the defaults do not match your desired behavior, however, learning a bit more about
how Solr processes content during indexing and handles query requests may be required.

Related Topics

Apache Solr Reference Guide
Tokenizers
Filter Descriptions
CharFilterFactories
Language Analysis

http://docs.lucidworks.com/display/help/Field%20Type%20Configuration
http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Tokenizers
http://cwiki.apache.org/confluence/display/solr/Filter+Descriptions
http://cwiki.apache.org/confluence/display/solr/CharFilterFactories
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 146 291

Constructing Solr Queries
In basic terms, searches are done with an HTTP GET that specifies the parameters to use for the
search. As noted above, the request handler includes several components by default, which/lucid

means they do not have to be added to the query. If using the request handler, however,/select

items such as faceting and spell check suggestions would need to be specifically requested.

To search using the request handler, simply point your HTTP client or browser to /lucid

. LucidWorks returns XML by default. Ifhttp://localhost:8888/solr/collection1/lucid?q=some+query
you would rather have serialized PHP returned instead of XML, modify the URL to

 and the response will behttp://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps
formatted in PHP.

Any request sent to Solr must include the collection name. In the above example URLs,
 refers to the default LucidWorks collection. If you have configured multiplecollection1

collections, replace "collection1" with the appropriate collection name.

Topics covered in this section:

Solr Query Parameters (see page 146)
Query Parsers (see page 150)
Related Topics (see page 151)

Solr Query Parameters

Solr has a tremendous amount of flexibility for controlling how queries are handled and how results
are returned, all of which can be defined as parameters of the query. Some basic parameters to
know, however are discussed below.

Parameter Name Uses Example Default in
LucidWorks

http://localhost:8888/solr/collection1/lucid?q=some+query
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 147 291

Parameter Name Uses Example Default in
LucidWorks

q query The main search
request and
keyword terms
for the query.

q=solr No specific
default, but the
parameter q.alt
is defined as ,*.*

which is to find all
results. isq.alt

used to define a
query if none is
supplied by the
user.

sort sort The field to sort
the results by.
Must also specify

 or toasc desc

define the order.
Multiple values
can be used,
separated by a
comma.
Multi-valued
fields cannot be
used for sorting.

sort=dateCreated+ascscore desc

fl fields The fields to
return with the
response.

fl=id,title id, , , url author

data_source_type

, , lastModified

, mimeType

, pageCount title

start start The number of
results to skip
when returning
the results. Can
be used with

 to providerows

pagination.

start=20 None defined in
LucidWorks; Solr
default is 0 which
is employed
instead.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 148 291

Parameter Name Uses Example Default in
LucidWorks

rows rows The number of
results to return.
Can be used with

 to providestart

pagination.

rows=15 None defined for
LucidWorks; Solr
default is 10
which is
employed
instead.

wt writer The response
writer that Solr
should use, which
defines the
format of the
results.

wt=json Solr's default is
XML.

qt query handler The request
handler to use to
process the
query. This can
be used instead
of a syntax like
http://localhost:8888/solr/collection1/lucid?
or
http://localhost:8888/solr/collection1/select?
shown in the
examples above,
or in conjunction
with them to
override the
default request
handler if one is
defined.

wt=/lucid /lucid is the
default request
handler

http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/select?
http://localhost:8888/solr/collection1/select?

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 149 291

Parameter Name Uses Example Default in
LucidWorks

debug debug Detailed
information about
the query and
results, for
debugging
purposes. There
are four options
for this
parameter:

true: all of
the debug
information
query:
information
about the
query only
results:
information
about the
documents
returned
and how
they scored
timing:
information
about how
long each
component
took to
complete
their tasks

debug=timing In the LucidWorks
Search UI, the
"explain"
information
(details of how
documents have
scored) is shown.

There are many other parameters that can be employed, but these are the basic ones that let you
submit a query and see some responses. For more detailed information on Solr's query capabilities
(some of which depend on the query parser used), see the section of the Apache Solr Reference
Guide on .Query Syntax and Parsing

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 150 291

To ensure that your query is indexed and shown in the activity graphs in the LucidWorks
Search Admin UI, include the parameter in your query URL.req_type=main

Back to Top (see page)

Query Parsers

All of query parsers included with Solr are available for use, in addition to the enhanced parser
included with LucidWorks. This table shows what are considered the "main" query parsers that are
designed for general use. There are also parsers that can be used for specific purposes, listed
below.

Name ID in LucidWorks Description

Lucene or Solr lucene The Lucene Query Parser, with
some Solr enhancements. In
the Apache Solr Reference
Guide, the section The

 hasStandard Query Parser
more details about the options
for this parser.

DisMax dismax Search across multiple fields,
allow +, -, and phrase queries
while escaping most other
Lucene syntax to avoid syntax
errors. More information is
available in the Apache Solr
Reference Guide in the section

.The DisMax Query Parser

Extended DisMax edismax A version of the Extended
DisMax parser developed by
LucidWorks and donated to the
Apache Software Foundation
for inclusion in Solr. More
information is available in the
Apache Solr Reference Guide
in the section The Extended

.DisMax Query Parser

http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 151 291

Name ID in LucidWorks Description

Lucid lucid Allows Lucene syntax,
enhanced proximity boosting,
and query time synonym
expansion. Tolerant of syntax
errors. More information
available in this guide in the
section on the Lucid Query

.Parser

There are also a number of query parsers which can be used on an ad hoc basis. Each of these are
documented in full in the Apache Solr Reference Guide, in the section . A fewOther Query Parsers
highlights include:

Name Description

Boost Generates a BoostedQuery which boosts a
Query by a FunctionQuery.

Function Parses a FunctionQuery which calculates a
function over field values.

Field Generates a query on a single field.

Nested Delegates to another query parser, which can
be used to override the default parser for a
specific purpose.

Prefix Query Parser Generates a prefix query on a single field.

Raw Generates a raw unanalyzed term query.

Spatial Filter Generates a query which filters results by a
defined distance from a point in space.

Other query parsers are also available.

Related Topics

Query Syntax and Parsing, with several sub-pages for query parsers and local parameters

http://cwiki.apache.org/confluence/display/solr/Other+Parsers
http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 152 291

Solr Query Responses

Structure of the Response (see page 152)
The responseHeader Section (see page 152)
The response Section (see page 152)
The highlighting Section (see page 152)
The facet_counts Section (see page 152)
The spellcheck Section (see page 152)
The debug Section (see page 153)

Format of Results (see page 153)
Related Topics (see page 154)

Structure of the Response

All Solr responses have at least two sections, the and the .responseHeader response

The responseHeader Section

The includes the status of the search (), the processing time (), andresponseHeader status QTime

the parameters () that were used to process the query.params

The response Section

The includes the documents that matched the query, in sub-sections. The fieldsresponse doc

return depend on the parameters of the query (and the defaults of the request handler used). The
number of results is also included in this section.

The highlighting Section

The section will show, for each document in the response, the sections of text in thehighlighting

document that should be highlighted. If using the request handler, they will be shown as/lucid

snippets of text, with HTML tags around them. Your client can consume those and you can

format them by specifying the class in your CSS however you'd like.highlight

If using another request handler, such as , that does not have predefined configuration/select

options for highlighting, you may need to set the parameters in your request. There are quite a few
Solr parameters to control highlighting and the output in the response. For more details, see the
section of the Apache Solr Reference Guide for .Highlighting

The facet_counts Section

The shows the facets that have been constructed for the result list, including thefacet_counts

facet fields and facet values (with counts) to populate each field.

The spellcheck Section

The will include suggestions for possible spelling errors in the user's query.spellcheck

http://cwiki.apache.org/confluence/display/solr/Highlighting

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 153 291

The debug Section

The section will contain the detailed information about how the query was processed. Thisdebug

section will only be returned if the parameter was used with the query.debug

There are many sub-section of this section, including:

explain: Information about how each document scored according to the in relevancy ranking
algorithm.
timing: Information of how long each component took.
parsedquery: The query string as submitted to the query parser.

Calculating the debug info, particularly the scores, is expensive in terms of processing power, so it
should only be used when needed to debug query results.

Ack! What Do Those Scores Mean?

The sub-section of is the section that gives you information about theexplain debug

relevancy scores of each document returned in the query. It's the section you'll want to
look at if you want to know why one document is ranked higher than another. But it's
pretty complex.

The section shows you each factor that went into the final score and how it wasexplain

weighted. There may be specific boosts defined (LucidWorks for example boosts a
document when the query terms are found in the title, among others), the frequency of
the term in the document may be high relative to the frequency of the term in all
documents (a relationship called the "term frequency-inverse document frequency", or
TF-IDF), or the term may have matched a field that is smaller than others (such as
"author" instead of "body").

Some make the mistake of focusing on the score of a document in absolute terms instead
of looking at a document's score relative to the other documents returned. This is an error
because scoring of a single document is always relative to other documents in the index,
and your index changes over time. The point of looking at scoring should be instead to
understand why a document is ranked higher or lower than other document.

More information on can be found in the section describing the of theexplain Explain Info
LucidWorks Search UI.

Back to Top (see page)

Format of Results

The default format for search results in LucidWorks Search is XML. There are other options
available - such as JSON, PHP, and CSV, among others - and you request the results in that format
when sending the query. This is defined with the parameter.wt

http://docs.lucidworks.com/display/help/Explain%20Info

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 154 291

The data is returned as a standard Solr search data structure, formatted either as XML, Ruby,
Python, PHP, PHPS, and even server-side XSL. For more information, see the section in the Apache
Solr Reference Guide on .Response Writers

Related Topics

Understanding and Improving Relevance (see page 161)
Explain Info
Response Writers

http://cwiki.apache.org/confluence/display/solr/Response+Writers
http://cwiki.apache.org/confluence/display/help/Explain%20Info
http://cwiki.apache.org/confluence/display/solr/Response+Writers

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 155 291

Query and Response Examples
LucidWorks Search includes a simple Search UI, but if you are going to build your own user
interface, or your own application to access the data stored in LucidWorks, you will need to access
the underlying engine directly.

LucidWorks is built on Apache Solr, so the techniques necessary for performing a search against it
are the same as those for performing a search against Solr. In other words, an HTTP call to a URL
of:

http://127.0.0.1:8888/solr/collection1/select/?q=NickChase

Would return a result such as this:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 156 291

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">99</int>

 <lst name="params">

 <str name="q">NickChase</str>

 </lst>

 </lst>

 <result name="response" numFound="151" start="0">

 <doc>

 <str name="geo">none</str>

 <str name="id">29059644164939776</str>

 <int name="retweetCount">0</int>

 <str name="source">web</str>

 <str name="text">Working on a Twitter app; anybody got a preferred Java

Twitter library?</str>

 <arr name="text_medium">

 <str>NickChase</str>

 <str>en</str>

 <str/>

 <str>web</str>

 <str>Working on a Twitter app; anybody got a preferred Java Twitter

library?</str>

 <str>2011-01-23T06:15:33.000Z</str>

 <str>0</str>

 </arr>

 <date name="timestamp">2011-02-13T14:06:53.191Z</date>

 <arr name="userId">

 <str>99999999</str>

 </arr>

 <str name="userLang">en</str>

 <str name="userName">Nicholas Chase</str>

 <str name="userScreenName">NickChase</str>

 </doc>

 ...

 </result>

</response>

You can then consume that XML from within your application.

While XML is the default output format, LucidWorks supports multiple formats, including JSON,
CSV, and even object formats such as PHP, Java, and Python.

In general, to change the output format, use the parameter, as in:wt

http://127.0.0.1:8888/solr/collection1/select/?q=NickChase&wt=json

This provides a response of

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 157 291

{

 "responseHeader":{

 "status":0,

 "QTime":1,

 "params":{

 "wt":"json",

 "q":"NickChase"

 }

 },

 "response":{

 "numFound":151,

 "start":0,

 "docs":[

 {

 "id":"29059644164939776",

 "userName":"Nicholas Chase",

 "userScreenName":"NickChase",

 "userLang":"en",

 "source":"web",

 "text":"Working on a Twitter app; anybody got a preferred Java Twitter

library?",

 "retweetCount":0,

 "timestamp":"2011-02-13T14:06:53.191Z",

 "geo":"none",

 "text_medium":["NickChase","en","","web","Working on a Twitter app;

anybody got a preferred Java Twitter library?",

 "2011-01-23T06:15:33.000Z","0"],

 "userId":["99999999"]

 }

 ...

]

 }

}

The structure of the results depends on the options you choose in the request string. For example,
you can specify faceting and highlighting;

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&facet.field=userScreenName&hl=true&hl.fl=text

Which gives a result such as this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">359</int>

 <lst name="params">

 <str name="facet">on</str>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 158 291

 <str name="facet.field">userScreenName</str>

 <str name="hl.fl">text</str>

 <str name="hl">true</str>

 <str name="q">twitter</str>

 </lst>

 </lst>

 <result name="response" numFound="2190" start="0">

 <doc>

 <str name="geo">none</str>

 <str name="id">38402455221829632</str>

 <arr name="objectType">

 <str>twStatus</str>

 </arr>

 <int name="retweetCount">0</int>

 <str name="source">Twitter

for iPhone</str>

 <str name="text">RT @Onventive: Really useful Twitter Android code RT @enbake

Developing an android twitter

 client using twitter4j http://is.gd/1YUFyY #a ...</str>

 <arr name="text_medium">

 <str>t4j_news</str>

 <str>en</str>

 <str/>

 <str>Twitter for

iPhone</str>

 <str>RT @Onventive: Really useful Twitter Android code RT @enbake

Developing an android twitter

 client using twitter4j http://is.gd/1YUFyY #a ...</str>

 <str>2011-02-18T01:00:33.000Z</str>

 <str>0</str>

 </arr>

 <date name="timestamp">2011-02-18T01:45:05.52Z</date>

 <arr name="userId">

 <str>88888888</str>

 </arr>

 <str name="userLang">en</str>

 <str name="userName">t4j_news</str>

 <str name="userScreenName">t4j_news</str>

 </doc>

 ...

 </result>

 <lst name="facet_counts">

 <lst name="facet_queries"/>

 <lst name="facet_fields">

 <lst name="userScreenName">

 <int name="beaker">189</int>

 <int name="cloudexpo">35</int>

 <int name="randybias">35</int>

 <int name="getjavajob">26</int>

 ...

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 159 291

 </lst>

 </lst>

 <lst name="facet_dates"/>

 <lst name="facet_ranges"/>

 </lst>

 <lst name="highlighting">

 <lst name="38402455221829632">

 <arr name="text">

 <str>RT @Onventive: Really useful <span

class="highlight">Twitter Android code RT

 @enbake Developing an android <span

class="highlight">twitter client</str>

 </arr>

 </lst>

 ...

</response>

Notice the structure of the search response: it starts with the block, whichresponseHeader

provides information such as the query, whether you have specified highlighting, and so on.

Next is the block, which shows the actual documents returned by the search, along withresult

the and attributes, which specify the total number of results and the startingnumFound start

position for the results returned in this response. For each document, LucidWorks Search returns
all fields that are marked as in the field definition.stored=true

If you have specified faceting, next you will see facet counts for each field specified. You can then
use that information to build links to your narrowed search. For example, we started with the
query:

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&facet.field=userScreenName&hl=true&hl.fl=text

If you then wanted to build a link to results narrowed on the , it woulduserScreenName cloudExpo

look like this:

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&hl=true&hl.fl=text&fq=userScreenName:cloudExpo

This way you have the same set of results, with the additional filter query of
, which selects only the documents with a field of userScreenName:cloudExpo userScreenName

.cloudExpo

After the facet information comes the block. Highlighting consists of snippets withhighlighting

the relevant information marked up appropriately. (By default, terms are marked up as a withspan

the class , so you can use CSS to style them however you like.) Each snippet ishighlight

contained in a block that refers back to the value of the original document. So in this case, the id

 attribute of refers back to with an of . Youname 38402455221829632 doc id 38402455221829632

can then use this information to build your web application.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 160 291

As far as how to actually use these responses, you can either work with them directly, or use the
Solr API as provided for your programming language. For example, a SolrJ request looks
something like this:

SolrServer server = new

CommonsHttpSolrServer("http://localhost:8888/solr/collection1");

SolrQuery query = new SolrQuery();

query.setQuery("twitter");

query.addSortField("timestamp", SolrQuery.ORDER.desc);

QueryResponse rsp = server.query(query);

SolrDocumentList docs = rsp.getResults();

for (SolrDocument doc : docs){

 System.out.println((String)doc.getFieldValue("id")+": ");

 System.out.println((String)doc.getFieldValue("userScreenName")+" --

"+(String)doc.getFieldValue("text"));

}

Here you are creating a connection to the server, then creating and executing the request. From
there, you can manipulate documents as you see fit.

APIs exist for most programming languages. You can find a list of bindings on the .Solr Wiki

Related Topics

Searching chapter from the Apache Solr Reference Guide

http://wiki.apache.org/solr/IntegratingSolr
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 161 291

Understanding and Improving Relevance
Relevance is one of the most complex components of a search engine implementation, but it has a
direct impact on how users perceive the value of the search system.

One of the reasons relevance is so complex is because two users performing the same query will
likely have differing opinions about which documents best match their query. In the end, judging
relevance has an inherent subjectivity to it. However, there are some ways to assess relevance and
adjust how documents are scored to improve ranking. This section discusses the various
approaches to analyzing a problem with relevance (real or perceived) and possible solutions.

For more background on how LucidWorks Search approaches relevance, see the discussion in the
section on .Overview of Query Processing (see page 142)

Topics in later sections:

Indexing and Relevance (see page 163)
Queries and Relevance (see page 166)
Relevance Tuning Tools (see page 169)

Relevance Testing
Relevance should always be judged in the context of a specific index and a set of queries for that
index. You should tune your relevance parameters for the types of queries users submit and the
types of content you have indexed. For example, if you have an e-commerce site where users are
accustomed to searching for your specific product names, and your content includes those names
in the title, you might consider boosting title matches. If, however, your users do not know your
specific product names very well, you might want to boost another field like color, or size.

When developing a search application, you will likely encounter issues with relevance during
testing. Usually this happens when one or more users run their favorite query and aren't impressed
with the results. This becomes a system bug that must be dealt with before launch. While the
favorite-query approach can be useful, a more systematic approach may be more telling in the long
run about how queries are and aren't being handled by the system.

An empirical approach uses real sample queries gathered from query log analysis. The top 50 or so
queries are extracted from the logs, plus ten to twenty random queries. Next, one to three users
enter each query into the system and then judge the top ten (or five) results. Judgments may be
done on a scale of 1-5, with 1 being "relevant" and 5 being "embarrassing", or using another scale
you determine. The goal of relevancy tuning is to maximize the number of relevant documents
while minimizing the number of irrelevant ones. By recording these values and repeating the test
over time, it becomes possible to see if relevancy is getting better or worse for the particular
system in question.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 162 291

An alternative method for judging relevance is to use what is commonly referred to as A/B testing.
In this approach, some set of users are shown results using one version of the index while another
set of users is shown the results from a different version. To judge the success of a particular
approach, user clicks are tracked and analyzed to determine which approach provides better
results.

Other approaches include log analysis on a beta site, letting users rate documents using a star (or
similar) system, using third-party evaluation data sets such as TREC, or using focus groups. These
approaches will all yield benefits, and you may want to adopt a combination of approaches, but
empirical testing and A/B testing are the most comprehensive and give you easily repeatable
results and verifiable results.

Once you have some data in hand about the scope of your problem, you are in a better position to
understand what you want to try to improve and the changes you may need to make.

After Testing
Once you have identified that you want to make some changes to improve relevance of results, the
next sections will discuss various approaches to doing so.

First, we cover some index-based approaches (things you do to documents as they are indexed), in
the section .Indexing and Relevance (see page 163)

Next, we cover query-based approaches (things you do to user queries), in the section Queries and
.Relevance (see page 166)

Finally, we'll cover .Relevance Tuning Tools (see page 169)

Click Scoring Relevance Framework

One important aspect of LucidWorks relevance scoring functionality is the ability to boost
documents that prior users have selected. This functionality is the Click Scoring Relevance

 and can be enabled through the Administrative User Interface.Framework (see page 185)

Related Topics

Relevance chapter from the Apache Solr Reference Guide
Debugging Search Application Relevance Issues, by Grant Ingersoll, hosted at
SearchHub.org.

http://cwiki.apache.org/confluence/display/solr/Relevance
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 163 291

Indexing and Relevance
For the most part, it is easier and more flexible to use query-time approaches to alter relevance
ranking, but there are several techniques can be employed during indexing. These techniques
almost always have to be mirrored on the query side, so they are only partially index-time
approaches.

Stop words

Removing (such as a, the, of, etc.) from the index and stripping themstop words (see page 172)
from queries is a common technique for reducing the size of an index and improving search results,
despite the fact that it throws away information. While LucidWorks Search can remove stop words
at , it does not do so by default.indexing time (see page 175)

Removing stop words during indexing is now considered an archaic approach in most search
applications. Instead, it is preferred to remove stop words from queries, except in certain types of
queries where they are used to better clarify a user's intent (such as in phrases). Both the

 and the can take advantage of stop words, seeExtended Dismax Query Parser Lucid Query Parser
the section for more information.Synonyms and Stop Words (see page 172)

If stop words are removed from the index, you'll want to be sure to remove the same set of stop
words from user queries. Not removing stop words at query-time when they have been removed
from the index may actually reduce relevance by leading to a high number of unmatched terms
from user queries.

Alternate Indexing Fields

When indexing, it is often useful to apply several different analysis techniques to the same content.
For example, providing a default case-insensitive search is often the best choice for general users,
but expert users will often want to do exact match searches which may additionally require a
case-sensitive field. In Solr, this can be accomplished by using the mechanism, as<copyField>

described in the Apache Solr Reference Guide section on . In LucidWorks Search, thisCopying Fields
can be configured in the , with the , or by editing the Fields screen of the Admin UI Fields API

 file. If you use the Admin UI or the Fields API, you will not need to restart LucidWorksschema.xml

Search, but if you edit by hand, a restart of will beschema.xml LucidWorks Search (see page 28)
required.

Other examples of times when alternate fields may be useful include applying different stemming
approaches, using character-based and word-based n-grams, or stripping punctuation, accents and
other marks. At query-time, you'll want to make sure to submit user queries to the fields that have
had content analyzed the way you want.

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/Copying+Fields
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 164 291

Document and Field Boosting

When indexing using the Solr APIs it is possible to mark one document or field as being more
important than other documents or fields by setting a boost value during indexing. These boost
factors are then multiplied into the scoring weight during search, thus potentially boosting the
result higher up in the result set. This type of boosting is usually done when knowledge about a
document's importance is known beforehand. However, index time boosting only provides 255
distinct values of granularity and if a change is needed to the boost value, the document must be
re-indexed.

In general, this type of index-time boosting is somewhat impractical: the field or document boosts
must be included with the document every time the document is updated. If using one of the
LucidWorks Search crawlers, this may be difficult to achieve without a workflow that includes

, modifying documents offline, and then indexing thecrawling as a batch (see page 136)
documents. In addition, the query-time boosting techniques offer much broader control over when
and how boosts are applied.

However, LucidWorks Search also includes a way to boost fields in a document based on the length
of the field. In theory, if a term that the user has searched for appears in a field that is significantly
shorter than other fields (such as the title), it should be boosted more than if the term appears in a
longer field (such as the body). The short field boost factor provides three approaches: "none",
which provides no boost; "moderate", which uses the to provide aLucidSimilarityFactory

smaller boost than the standard Lucene calculations; and "high", which uses Lucene's
 to calculate the boosts. This functionality is used during indexing -DefaultSimilarityFactory

during query time, the standard Lucene calculations are used.

Stemming and Lemmatization

Stemming is the process of reducing a word to a base or root form. For example, removing plurals,
gerunds ("ing" endings) or "ed" endings are all stemming techniques. Lemmatization is a variation
of stemming that leaves a whole word in place, while stemming need not do that. There are many
stemming theories and techniques. Some are quite aggressive, stripping words down to very small
roots, while others (called light stemmers) are less aggressive.

LucidWorks includes many options for stemming but it is also possible to plug in a custom analyzer
or use other Solr or Lucene analyzers not included. As a general rule of thumb, it is usually best to
start with a light stemming approach that removes plurals and other basics techniques and then
progress to more aggressive stemming only after performing some relevance testing as described
in .Judging Relevance (see page)

Default stemming in LucidWorks uses the Lucid Plural Stemmer for the default English text analysis
Field Type which simply stems plural words into their singular form, although rules can be added to
a rules file to protect and specially translate words or even add or modify stemming rules as
needed (see the section .) More aggressive stemmersLucid Plural Stemming Rules (see page 74)
are also available, like Dr. Martin Porter's stemmers (choose the "text (English Snowball)"Snowball
Field Type).

http://snowball.tartarus.org/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 165 291

To experiment with different stemmers, there is a well-defined mechanism in Solr for plugging in
stemmers via the . There is also an easy to use Admin interface for testing theAnalysis Process
analysis process located in the Solr Admin screens (access it via the "Advanced" tab of the Admin
UI, or by going to , replacing "localhost:8888" andhttp://localhost:8888/solr/#/collection1
"collection1" as needed for your environment).

https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://localhost:8888/solr/#%2Fcollection1

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 166 291

Queries and Relevance
When working with queries to improve relevance ranking, there are a great number of tweaks and
techniques that you can consider. In the section on , we'llRelevance Tuning Tools (see page 169)
discuss those smaller tweaks in more detail. But here we'll discuss some of the broader approaches
you might consider.

One factor that shouldn't be overlooked is the importance of user education. While the techniques
described below can make things much easier for users, educating users on how to use the proper
query syntax, when to use it, and how to refine queries can be instrumental in enhancing the
relevance of search results. Obviously, not all users will read manuals or take the time to learn new
query syntax, so the following techniques can be used to achieve better results in many situations.

Boosting Specific Documents

The QueryElevationComponent in Solr provides a way to force specific documents to the top of the
result list in response to a specific query. In Solr, it is configured with the file, butelevations.xml

in LucidWorks Search it can be configured either with the or the .Search UI Settings API

This approach is useful if you have a few known documents that should always appear at the top
for a query. It's also possible to force documents to not appear at all in the results for a query (i.e.,
"blacklisting") if that's required.

Query Term Boosting

Similar to , terms in a query can be boosted. Boosting aDocument/Field boosting (see page 164)
query term implies that the term in question is somehow more important than the other terms in
the query. One advantage of query time boosting is an expanded level of granularity is available
for expressing the boost value. Additionally, the boost value is not "baked in" to the index, so it is
easier to change.

You may also decide to give boosts if the user's term appears in specific fields, such as the title.

Click Scoring Relevance Framework

Available only in LucidWorks Search, this approach stores information about documents prior users
have selected during their searches. The document ID and the user's query are recorded and then
used to calculate boost values for those documents that are applied the next time the same query
is submitted. Over time, the documents that have been clicked on the most will rise in the results
list; if users stop clicking on the document, the algorithm has an aging factor that will cause them
to gradually fall in the results list.

For more details, including how to enable Click Scoring, see the section Click Scoring Relevance
Framework (see page 185)

http://docs.lucidworks.com/display/help/Searching#Searching-ElevatingorExcludingResults

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 167 291

1.
2.
3.

Synonyms

Synonym expansion is a common technique that looks up each token in the original query and
expands it with synonyms; strictly speaking, synonym expansion mostly improves the ability to get
more documents (also called recall) rather than improving relevance ranking or excluding
irrelevant documents. For instance, a user query containing "USA" could be expanded to "(USA OR
"United States" OR "United States of America")", which may bring back results that the user
intended to retrieve, but did not fully specify. If the user was looking for "USA" only, the results
may be less relevant to him.

In LucidWorks Search, it is easy to specify a list of that can be used forsynonyms (see page 172)
expansion. Synonym lists are best created by analyzing query logs and then looking up synonyms
for common query terms and then testing the results. Generic synonym lists (like those obtained
from) can be useful, but care must be taken as too many synonyms can be problematicWordNet
for users, especially if they are not appropriate for the genre of the index. It is, however, quite
common to produce synonym lists contain common abbreviations, numbers (for example, 1 ->
one, 2 -> two, and so on) and acronyms.

Unsupervised Feedback

Unsupervised feedback is a relevancy tuning technique that executes the user's query, takes the
top five or ten documents from the result, extracts "important" terms from each of the documents
and uses those terms to create a new query. The expanded query is executed and new results are
returned to the user. This is all done automatically in the background with no interaction required
by the end user. As an example, if the user searches for the word "dog" and the top three
documents are (for the sake of example):

Great big brown dogs run through the woods.
Dogs don't like cats.
A poodle is a type of dog.

The feedback query might look something like (dog) OR (great OR big OR brown OR dog OR
.run OR woods OR cat OR poodle)

Since these terms co-occur with the word "dog" in high ranking documents, these terms may help
further define a user's short query. Unsupervised feedback is often viewed as a helper, but it does
rely on the assumption that the top few documents are highly relevant to the search. If they are
not, then the results incorporating feedback will likely be worse than those without feedback.

Unsupervised feedback is optional in LucidWorks Search and is disabled by default. It may be
enabled by checking the check box in the Enable Unsupervised Feedback Querying Settings tab
of the Admin UI, or with the .Settings API

http://wordnet.princeton.edu/
http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 168 291

Supervised Feedback

Supervised feedback is similar to unsupervised feedback except that users explicitly pick
which results are relevant, usually by clicking the result or checking a box indicating it is
relevant. The LucidWorks Search feedback component does not currently support
supervised feedback.

Boosting Documents According to Rules

You may have a complex suite of business rules (i.e., if user A is male, aged 25-35, display XYZ
results first) that you'd like to apply. These may be built around profit or sales goals for the
organization, but they may also be built around a deep knowledge of your users that you'd like to
apply. In that case, you may need to integrate a Business Rues Engine. LucidWorks Search has
provided an integration with Drools, but it's also possible to plug in other options. See the section

 for more details.Business Rules Integration (see page 195)

Related Topics

Options to Tune Documents' Relevance, by Tomàs Fernàndez Löbbe, hosted on
SearchHub.org

http://searchhub.org/2011/12/14/options-to-tune-documents-relevance-in-solr/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 169 291

Relevance Tuning Tools
Before starting to modify settings that impact how results are ranked, it's best to have an idea for
the outcome you hope to achieve. Too often we have an emotional response to relevance, choosing
a small number of favorite queries as our tests. However, as discussed in the opening section, you
should run tests using queries that real users have submitted that have been pulled out of query
logs. The scope of these tests is up to you and your available resources, but a methodical approach
is preferred.

If you have done tests with real-world sample queries and had users (or internal testers) score
results of those queries using a common scale, you have a way to quantify how "bad" the issue is
before you make changes. This will allow you to quantify how much things improve for each
proposed change, so you can base your decisions on data. This will also allow you to understand
(and explain to stakeholders) some of the trade-offs you may need to make if your user's queries
are improved but your CEO's favorite query is not.

If you do find you want to make changes, here are some tools and tips to assist you.

Relevancy Workbench

One way to experiment with system changes is to use the Relevancy Workbench, a new tool
included with LucidWorks Search which allows side-by-side comparison of search results using
different query parameters for two queries. This tool allows you to experiment with changes before
making them permanently for all users.

Several parameters are available for experimentation, all of which relate to the fields that will be
searched or the boosts that will be applied. A catch-all field is available for any parameters that
aren't explicitly shown, making it a vital tool for testing the impact of any change you can think of.

The tool is available through the LucidWorks Search Admin UI, in the Relevance tab. See the
 for detailed information.Relevance Help

Explain Scoring

In the default LucidWorks Search UI, links will appear under each search result for "Explain";
clicking that will show the scoring of each document for the query. The scores cannot be tweaked
here, but you can see the factors that make up the score and understand why the result appears
where it does. This information can provide clues about why documents appear in the order that
they do. The scores themselves are not the most important factor, but the scores of each
document relative to other documents is telling.

More information about how to read explain scores is available in the section Explain and
.Document Scoring

http://docs.lucidworks.com/display/help/Relevancy%20Workbench
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 170 291

Solr Analysis

Some problems may be deeper within the system, and may only be resolved by either changing
how content is analyzed and transformed before indexing or changing how the user's query is
analyzed and transformed. The field types defined for each field dictate this analysis and while
LucidWorks Search includes sensible defaults, they are not universal and may need to be tweaked
depending on your content.

The Solr Admin UI, which is available from the LucidWorks Search Admin UI through the Advanced
tab, has a tool to help better visualize the analysis process which shows the outcome of each
analysis step on both the indexing side and the query side. To use this tool, point a browser at

 and enter the text to be analyzed. By trying outhttp://localhost:8888/solr/#/collection1/analysis
the text with different analysis capabilities (by selecting different Fields or Field Types), it is
possible to better understand why matches may or may not occur.

More information about analyzers is available in the Apache Solr Reference Guide in the section
.Understanding Analyzers, Tokenizers, and Filters

Using Luke

Another useful tool for evaluating how documents have been indexed is , which is an easy toLuke
use GUI that provides valuable information about the underlying Lucene index. Its features include
document browsing, query testing, term browsing (including high frequency terms) and statistics
about the collection as a whole. To use Luke with LucidWorks Search, launch it using the script
located in the directory.$LWS_HOME/app/luke

Once Luke is launched, point it at the LucidWorks Search index directory (such as
, replacing "collection1_0" with the$LWS_HOME/data/solr/cores/collection1_0/data/index

actual collection path you want to look at) and open the index. From there, the most useful actions
are to view the high frequency terms, and also particular documents (under the Documents tab)
using the "Browse by term" and "Browse by document number" options. Key items to look for are
missing documents and fields, terms, or words that are not tokenized "correctly". Incorrect
tokenization may not mean the analysis process was wrong, but rather the output is not what a
user would expect.

Again, you probably wouldn't make changes with Luke, but it provides a deeper look into what is
happening so you can make educated decisions about what should be changed, whether that is the
analysis process for incoming content, the analysis process for user queries, or the default boost
factors in play.

Luke in LucidWorks Search

LucidWorks Search packages a version of Luke, which is provided 'as is'. It can be found at
 and launched by running the script for Linux/Mac or the $LWS_HOME/app/luke luke.sh

 script for Windows.luke.bat

http://localhost:8888/solr/#%2Fcollection1%2Fanalysis
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://code.google.com/p/luke/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 171 291

External Boost Data

The standard mechanism in Solr for adding external field data (which may affect ranking) is
through the use of type. This mechanism is sufficient when adding simpleExternalFileField

string or numeric values to be processed by function queries, but it's not sufficient to express more
complex scoring mechanisms, based on other regular query types.

More information about external boost data is available in the Apache Solr Reference Guide in the
section .Working with External Files and Processes

Related Topics

Relevance tab from the Help documentation for the Admin UI screen
Explain and Document Scoring from the Help documentation
Luke

https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes
http://docs.lucidworks.com/display/help/Relevancy%20Workbench
http://docs.lucidworks.com/display/help/Explain%20and%20Document%20Scoring
http://code.google.com/p/luke/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 172 291

Synonyms and Stop Words
Synonyms are words that are similar in meaning to each other, such as "hat" and "cap". In the
context of a search application, they are another tool for improving results for users because they
provide the opportunity to substitute words and expand the terms matched in the index.

Stop Words, on the other hand, are used to restrict the results of a search, by removing very small
and very common words (such as "the" and "and") that often have little bearing on whether a
document is a good match or not.

Synonym Expansion
LucidWorks Search manages synonyms with the use of a file found in the synonyms.txt

 directory (unique for each collection). Synonyms$LWS_HOME/conf/solr/cores/collection/conf

can be edited in that file, via the Admin UI, or with the Settings API.

Synonyms can be either single terms or multi-term phrases. There are two ways to express
synonyms:

A comma-separated list of words (i.e., "lawyer, attorney" or "i-pod, i pod, ipod"). When the
term entered by the user matches a term in the list, all terms are substituted for the term
the user entered, including the matching term. If "lawyer, attorney" appears in the synonym
list, when the user enters "lawyer", the system will search for documents that include both
"lawyer" and "attorney".
A mapping of one or more terms to another (i.e., "i-pod => ipod"). When entered as a
mapping, the terms on the left of the "=>" symbol will be replaced by the terms on the right
side of the symbol, which means that the user's query may not appear in the documents
returned for the query. If "i-pod => ipod" appears in the synonym list, when the user enters
"i-pod", the system will search for documents that contain the term "ipod" only.

There can be an unlimited number of terms and phrases which are defined as synonyms. However,
it's usually not a good idea to add an entire thesaurus as a synonym file because not all terms are
necessarily interchangeable (in some contexts, yes, but not always). For example, a doctor looking
"myocardial infarction" is likely looking for documents that use the clinical term for the condition
(and are thus more advanced) instead of documents written for a layman which likely uses the
phrase "heart attack".

When considering synonyms, you should also consider which fields should be used for synonym
expansion. In LucidWorks Search, the , , and fields are used forbody description title text_all

synonym expansion by default, meaning that those are the fields that will be used for the
expanded or modified query.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 173 291

If creating a synonym file manually, make sure to format the file properly. Lines starting with
pound (#) are comments. Explicit mappings are indicated with terms separated by "=>", where a
comma-separated list of terms on the left side will be replaced with the list of terms on the right
side. Equivalent synonyms may be separated with commas and will give no explicit mapping (that
is, the listed terms are equivalent). This allows the same synonym file to be used in different
synonym handling strategies. For example:

lawyer, attorney

one, 1

two, 2

three, 3

ten, 10

hundred, 100

thousand, 1000

tv, television

#multiple synonym mapping entries are merged.

foo => foo bar

foo => baz

#is equivalent to

foo => foo bar, baz

If familiar with Solr, the file is formatted the same as the file.Solr synonyms

Stop Words
LucidWorks Search stores stop words in a file called , found in the stopwords.txt

 directory (unique for each collection). The stop$LWS_HOME/conf/solr/cores/collection/conf

words can be edited in that file, via the Admin UI, or with the Settings API.

The stop word file is just a list of terms, one per line.

Many common prepositions, pronouns, and adjectives offer little benefit for matching documents,
but can add some value when ranking results. Although it is possible to remove stop words when

, more relevant results will be achieved by indexing alldocuments are indexed (see page 175)
terms, querying only non-stop words, and then boosting the results by including the stop words
with non-stop words. There is the special case where a query consists only of stop words (such as
the classic, "To be or not to be"). In that case, all words are included in the query.

All words within quoted phrases are used for the query, even if they are stop words. The user can
also force a stop word to be included in the search by either preceding it with a plus sign ("+") or
enclosing it within double quotation marks. For example,

User Input Query Interpretation

at a conference "at" and "a" are stop words, so they will not be
included with the query

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 174 291

User Input Query Interpretation

+at a conference "at" will be included in the query, but "a" will
not

"at" a conference Same

"at a conference" All three words will participate in the query

this is it There is no need to override because all three
words are stop words, so all three will be
included in the query

If creating the stop words file manually, the format is one term per line, as in:

a

an

and

are

as

at

This is the same format as the .Solr stopwords format

Related Topics

Suppressing Stop Word Indexing (see page 175)
Settings API
Synonyms in the Admin UI
Stop words in the Admin UI

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory
http://docs.lucidworks.com/display/help/Synonyms
http://docs.lucidworks.com/display/help/Stop%20Words

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 175 291

Suppressing Stop Word Indexing

By default, LucidWorks Search indexes all . Modern data storage is verystop words (see page 172)
cheap and even the simplest of stop words provide additional context that boosts relevancy and
enables more precise queries. By default, the eliminates stop words from basicLucid query parser
queries, including them only when they are used in quoted phrases, or when the query term list
consists only of stop words. In addition, the Lucid query parser uses query stop words to construct
relevancy boosting phrase terms (bigram and trigram phrases) to supplement the basic query.
Still, there may be applications and environments where the choice is to suppress the indexing of
stop words.
TODO - update this for Field Types in the UI and API

Disabling Stop Word Indexing

Solr field types in the schema XML file control whether stop words will be indexed for particular
fields. A stop word filter may be placed in the tokenizer chain for the index analyzer for a field type
to filter out stop words and assure that they will not be stored in the index.

Filters are specified at the field level, not the field level. For example, you may have type title

and fields, both with the field type. A stop word filter may be specified for the body text_en

 field type and will apply to all fields of that same type, in this case and . If youtext_en title body

really need to have a separate filter for a subset of the fields of a given type, you must create a
separate field type to use for that subset of fields.

The standard stop word filter is named and is generated by the StopFilter StopFilterFactory

Java class. LucidWorks ships with a schema XML file () with the field type withschema.xml text_en

a commented out entry for this standard stop word filter. To enable it, simply remove the XML
comment markers around that one filter entry.

Schemas are Collection Specific

The file is specific to each collection and can be found under schema.xml

. If using multiple collections, be sure to$LWS_HOME/conf/solr/cores/collection/conf

locate the correct file for the collection to be updated. After editing theschema.xml

schema.xml file, LucidWorks should be . On some Windowsrestarted (see page 28)
machines, LucidWorks may need to be stopped before editing the file.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 176 291

So, starting with the following in :schema.xml

<fieldType class="solr.TextField" name="text_en" positionIncrementGap="100">

 <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <!-- in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt"

 ignoreCase="true" expand="false"/>

 -->

 <!--

 <filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

 -->

 <filter class="solr.WordDelimiterFilterFactory"

 generateNumberParts="1" generateWordParts="1"

 catenateAll="0" catenateNumbers="1" catenateWords="1"

 splitOnCaseChange="0"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ISOLatin1AccentFilterFactory"/>

 <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

 rules="LucidStemRules_en.txt"/>

 </analyzer>

 ...

Edit the stop filter factory entry that is commented out:

<!--

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

-->

And remove the XML comment markers to get:

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

Which results in the following analyzer description:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 177 291

1.

<fieldType class="solr.TextField" name="text_en" positionIncrementGap="100">

 <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <!-- in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt"

 ignoreCase="true" expand="false"/>

 -->

 <filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

 <filter class="solr.WordDelimiterFilterFactory"

 generateNumberParts="1" generateWordParts="1"

 catenateAll="0" catenateNumbers="1" catenateWords="1"

 splitOnCaseChange="0"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ISOLatin1AccentFilterFactory"/>

 <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

 rules="LucidStemRules_en.txt"/>

 </analyzer>

 ...

After such a change, be sure to .re-index all documents (see page 69)

Also, make sure that the query analyzer for that field type references the same stop words file:

<analyzer type="query">

 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"/>

Do not change or comment out the query analyzer when making this index change.

This example only changes the field type. If other field types are being used, or should betext_en

changed, find the section of the for that field type andschema.xml

Position Increment Mode

There are two modes for suppressing stop word indexing:

Skip mode: Completely ignore or skip them, as if they were not present. This is the default
when no other option is selected. When skip mode is selected, the query parser will ignore or
skip stop words in quoted phrases.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 178 291

2. Position increment mode: Do not store them in the index, but increment the position
counter so as to leave a blank at the position of each stop word. When position increment
mode is selected, the query parser will also skip each stop word, but will increment the
position of the next term in the phrase so as to allow any term to match between the
previous term and the next term after the stop word. This will allow for more precise query
matching than the first mode where stop words are simply discarded.

For example, given these documents:

Doc #1: Buy the time for the test.
Doc #2: Buy more time for the test.
Doc #3: Buy time for test.

A query of regardless of the stop word indexing mode will be equivalent to Buy the time Buy AND

 and match all three documents.time

A query of in normal indexing mode will match exactly that phrase and match"buy the time"

only the first document. In skip mode it is equivalent to and will match the first and"buy time"

third documents. In position increment mode the query is equivalent to which is not"buy * time"

a valid query format but indicates that will match the second word after regardless"time" "buy"

of the intervening word. This will match the first and second documents, but not the third
document.

To enable position increment mode, edit the entry of the index analyzerStopFilterFactory

(which was un-commented above) in to add . Theschema.xml enablePositionIncrements="true"

section will appear as follows:

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt" enablePositionIncrements="true"/>

Only the index analyzer should be changed. The query analyzer should not be changed regardless
of the indexing mode. The query parser has internal logic that decides whether and when to call
the query stop word filter.

After this change, be sure to .re-index all documents (see page 69)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 179 291

1.

2.

3.
4.

Spell Check
Spell check, also known as "Did You Mean?", is the ability of the search application to make
alternate suggestions for queries based on words that are similar to the terms entered by the user.

Integrated query spell checking is bundled with LucidWorks Search, with the option to integrate
third-party enhanced spell checking capabilities. It is index-driven, meaning all suggestions are
derived from the actual content in an indexed collection and not from a predefined dictionary of
words. In practical terms, this helps solve problems with messy data written by a variety of
authors of varying quality where one author may spell a word one way, while another author spells
it a different way and the user spells it a third way. An index-derived spell checker provides
suggestions based on the (sometimes incorrect) words in the dictionary, ensuring that end users
still find relevant documents even if they contain misspellings.

To enable spell checking for specific fields, three steps must be taken:

Enable spell checking by accessing the tab of the Admin UI and check theQuerying - Settings
box next to "Spell-check". Alternatively, the can be used.Settings API
Ensure there are fields configured for spell checking by accessing the tabIndexing - Fields
and choosing "Index for Spell Checking". The could also be used to modify fieldFields API
settings. Be sure to select fields that contain ample text-based content that end users are
going to search against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field likely isn't.
Crawl your content.
Perform queries.

Spell Check Settings are Per Collection

The indexes created for spell checking are unique to each collection, and based on the
documents indexed for a particular collection. In a multi-collection environment, the steps
to enable spell checking must be done in each collection.

When indexing content, LucidWorks will automatically create an index of terms to be used for term
suggestions. By default, LucidWorks will create this index from content in the , , author body

, and fields.description title

In prior versions of LucidWorks, a separate task needed to be scheduled to build the spell
check index of terms. Starting with v2.0 of LucidWorks Search, that requirement has been
removed and the index will be created automatically during regular indexing.spell

http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 180 291

Related Topics

Query Settings
Settings

http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 181 291

1.

2.

3.

Auto-Complete of User Queries
Query auto-complete shows users suggestions for their queries as they type the words. In
LucidWorks Search, this is an index-driven feature, meaning all suggestions are derived from the
actual content in an indexed collection and not from a predefined dictionary of words. For users,
this means they will see suggestions for actual terms in documents, not for terms that may not
exist in the content.

Auto-Complete Settings are Per Collection

The indexes created for auto-complete are unique to each collection, and based on the
documents indexed for a particular collection. In a multi-collection environment, the steps
to enable auto-complete must be done in each collection.

To enable auto-complete of user queries, three steps must be taken:

Enable auto-complete by accessing the screen of the Admin UI and check theQuery Settings
box next to "Auto complete". Alternatively, the can be used.Settings API
Ensure there are fields configured for auto-complete by accessing the screenIndexing Fields
and choosing "Index for autocomplete". The can be used instead if you prefer. AFields API
good auto-complete field is a field that contains ample text-based content that end users are
going to search against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field probably isn't.
After crawling some content, create the "autocomplete" index by accessing the Index

 page and scheduling a time for the "Generate autocomplete index" job to run. The Settings
 can be used instead if preferred. This be done before automatic queryActivities API must

completion will occur for users.

LucidWorks Search does not create the auto-complete index by default. Auto-Complete indexing
jobs must be scheduled using the of the Admin UI (or via the)Indexing - Settings tab Activities API
before query suggestions will appear for users.

http://docs.lucidworks.com/display/help/Query%20Settings
http://docs.lucidworks.com/display/help/Field%20Configuration
http://docs.lucidworks.com/display/help/Indexing%20Settings
http://docs.lucidworks.com/display/help/Indexing%20Settings
http://docs.lucidworks.com/display/help/Indexing%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 182 291

If you enable auto-complete but don't see any suggestions, you may want to modify the
 parameter, which defines the minimum fraction of documents a term shouldthreshold

appear in before being added to the index. The default is "0.05" (or 5%),autocomplete

and a lower number will include more terms in the index. A smaller number may be helpful
when just starting out with a small sample set of documents.

To modify this parameter, edit for each collection (in solrconfig.xml

). Find the section:$LWS_HOME/conf/solr/cores/collection/conf

<searchComponent class="solr.SpellCheckComponent" name="autocomplete">

Find the parameter and change it to the desired<float name="threshold">.005</float>

value. After saving , .solrconfig.xml restart LucidWorks (see page 28)

Automatic Creation of Auto-Complete Indexes

By default, LucidWorks does not build the indexes for auto-complete each time documents are
added to the index because doing so may have performance implications in a production
environment with a large index. However, LucidWorks can be configured to do this automatically by
changing the setting in to . Usually, it's a better idea tobuildOnCommit solrconfig.xml true

schedule index builds so that they run on a regular interval rather than doing it on every commit
using this method.
If, however, you would like this to happen automatically, find the following section in the

 file for each collection:solrconfig.xml

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 183 291

<!-- Auto-Complete component -->

 <searchComponent name="autocomplete" class="solr.SpellCheckComponent">

 <lst name="spellchecker">

 <str name="name">autocomplete</str>

 <str name="classname">org.apache.solr.spelling.suggest.Suggester</str>

 <str name="lookupImpl">org.apache.solr.spelling.suggest.tst.TSTLookup</str>

 <str name="field">autocomplete</str>

 <str name="storeDir">autocomplete</str>

 <str name="buildOnCommit">false</str>

 <float name="threshold">.005</float>

 <!-- <str name="sourceLocation">american-english</str> -->

 </lst>

 </searchComponent>

In the section, , change "false" to "true", and save thestr name="buildOnCommit">false</str>

file. for the changes to take effect. Repeat this for eachRestart LucidWorks (see page 28)
collection that should build the auto-complete index each time documents are added to the index.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 184 291

1.
a.

b.

2.

3.

4.

Enterprise Alerts
The alerts feature of LucidWorks Search allows a user to save a search and receive notifications
when new results are available.

A acts like a smart saved search. It is smart in the sense that it keeps track of thepassive alert
last time the user checked for new results to their search and provides only new results the next
time the alert is checked. As the name implies, a passive alert provides no notification when new
documents are indexed. It waits for a request before it checks for new query results.

An is checked periodically at a user-defined interval (currently every hour, day or weekactive alert
is available). When new results to the query are discovered, an active alert sends a notification via
email to the email address defined in the alert. At the current time, only email notifications are
possible.

How Alerts Work

The user does a search, and clicks the link under the search box to "Create new alert".
The user configures the alert and notification settings, including how often to run the
alert () and an email address to send alert notifications.period

LucidWorks Search automatically saves the timestamp of when the alert was created (
).checked_at

Every 60 seconds, a scheduled process within the UI checks to see if it is time to run any
alerts.
When the alert is run, the query is executed as entered by the user, on the collection that the
query was initially run on, and the timestamp of the most recent document is compared to
the timestamps of documents in the result set.
If there are new results for the user, a notification is sent, assuming the mail server has been
configured in the page of the UI.Settings

Parameter names in parentheses above refer to the attributes used with the . Alerts canAlerts API
be set up with the default Search UI, but while designing your own search application, you will
likely need to use the Alerts API to integrate the functionality.

Enabling Alerts
In order for alert notifications to work with LucidWorks Search, the email server must be
configured via the page in the Admin UI.System Settings

In addition, the LucidWorks Search schema must define a date field. Both active andtimestamp

passive alerts require that the index define a date field that is indexed, defaulted totimestamp

NOW, and used to indicate the time of document indexing. By default, LucidWorks Search schema
already defines this field. However, if modifying the LucidWorks Search default field set (the
"schema"), you must retain this field for alerts to work properly.

http://docs.lucidworks.com/display/help/System%20Settings
http://docs.lucidworks.com/display/help/System%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 185 291

Click Scoring Relevance Framework
One way to modify how results are ranked for users is to adjust the scoring of results based on
user feedback (either explicitly or implicitly). Query logs provide a wealth of information that
indicates what users were searching for and which results they found relevant to the query. If
certain documents are often selected as answers to queries, it makes sense to increase their
ranking based on their popularity with users.

LucidWorks Search includes a component that enables administrators to add this type of
information to the index. This component is referred to as the Click Scoring Relevance Framework
(or Click Scoring, for short). The framework includes tools for query log collection, log processing,
and robust calculation of log data to boost certain documents. It is possible to supply boost data
prepared without Click Scoring tools included with LucidWorks, however the data must be available
in a predefined location and follow a specified text format. More details about how Click Scoring
works and information about advanced configuration parameters are described in Using Click

.Scoring Tools (see page 190)

This component can be enabled in the section of the Admin UI or with the Query Settings click

-related parameters of the . Once enabled, a job must be scheduled to process theSettings API
click logs and create the data for boosting documents based on prior clicks.

There is currently a known issue where Click Scoring will not properly process calculated
boost information until LucidWorks Search is restarted. So, when enabling Click Scoring,
please also schedule a full LucidWorks Search restart. For details on how to restart, see the
section .Starting and Stopping LucidWorks Search (see page 28)

Topics covered in this section:

Functionality of Click Scoring (see page 186)
Collection of Query Terms and User Clicks (see page 187)
Processing Logs (see page 187)
Maintenance of Historical Click Data (see page 188)
Document Boost Data (see page 188)
Integration of Boost Data with the Index (see page 188)

Using Click Scoring information (see page 189)
Related Topics (see page 189)

http://docs.lucidworks.com/display/help/Query%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 186 291

Functionality of Click Scoring
When users select a particular document for viewing from a list of search results, we can interpret
this as implicit feedback that the document is more relevant to the query than other documents in
the results list. We can infer a strong association between the terms of the query and the selected
document, because users have shown through clicks that they believe the selected document
matches their query better than other returned documents.

This graphic gives an overview of how Click Scoring works:

The reinforcement of ranking and terms is counterbalanced by the "expiration" of the past history
of click-through events, to avoid situations when documents that are selected many times start to
permanently dominate the list of results. Without expiration of old history, these results may
become selected even more often at the expense of other perhaps more relevant documents that
did not enjoy such popularity over time.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 187 291

Click Scoring implements several major areas of functionality related to the processing of
click-through events:

collection of query logs and click-through logs
maintenance of historical click data to control the expiration of past click-through events
aggregation of log data, calculation of click-induced weights and association of query terms
with target documents
integration of boost data with the main index data

These areas of functionality are described in the following sections.

Collection of Query Terms and User Clicks

Records of user clicks include two pieces of information: the document ID and the query term
entered by the user.

The default LucidWorks Search UI records user clicks automatically when Click Scoring has been
enabled. When you write your own search application, you will need to make calls to the Click

 to record user clicks and query events.Scoring API

Both the queries and the user clicks are logged to the same log file. The default location of this file
is in , where is the name of the$LWS_HOME/data/logs/click-collection.log collection

collection (for example, contains clicks to the the default LucidWorksclick-collection1.log

collection, collection1).

When using this log data is not replicated to slave nodes. SinceIndex Replication (see page 257)
the Click Scoring API points to the LucidWorks Search Core component, which is only used on a
single node, and not directly to the indexes, it is not required to replicate the log files across
shards. The latest version of the calculated boost data (after the logs have been processed) is
replicated together with the main index files, this allows the slave nodes to perform click-based
scoring in the same way as the master node that calculated the boost data.

Click Scoring is not available in SolrCloud mode.

Processing Logs

Whether generated by the default LucidWorks Search UI or from your own application with the
Click Scoring API, the Click Scoring log files must be processed to calculate boost values. This
processing step can be started with the , or scheduled to run periodically using theActivities API
Admin UI by setting a recurring activity in the screen of the Admin UI.Index Settings

This process results in the creation of calculated click boost data, which is by default located in
.$LWS_HOME/data/solr/cores/collection/data/click-data/current

http://docs.lucidworks.com/display/help/Indexing%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 188 291

Maintenance of Historical Click Data

Each time the Click Scoring logs are processed, the system stores a copy of the current
 (by default, this is in click-collection.log

). Other data produced during Click$LWS_HOME/data/solr/cores/collection/data/click-data/

processing is also stored in that location.

Over time the amount of data collected could be significant. LucidWorks Search does not delete
this data automatically, because query and click-through logs are a valuable resource and can be
used for other data mining tasks. If the size of this data becomes a concern, all subdirectories in
that location can be removed except for and directories that preserve thecurrent/ previous/

current and previous boost data.

Document Boost Data

The final boost data file follows a simple text format, so the boost data can be also supplied by an
external process if desired. See for more details about theUsing Click Scoring Tools (see page 190)
structure of the boost data file.

Integration of Boost Data with the Index

If Click Scoring is enabled and logs have been processed, the boost data is integrated on the fly
with the main index when new documents are indexed, an index optimization is run, or a full
re-index is executed. Most frequent query terms are added as a field to respective documents, and
weights of these documents are adjusted.

The field names added by Click Scoring are configurable, but assuming their prefix is set to the
default value of the following fields will be created from boost data and automaticallyclick

populated:

click: an indexed, not-stored field with a single term "1", whose purpose is only to convey a
floating-point field boost value. Field boost values have limited resolution, which means that
small differences in boost value may yield the same value after rounding.

click_terms: an indexed, stored, and analyzed field that contains a list of top terms
associated with the document (presumably obtained through analysis of click-through data).
This field's Lucene boost is also set to the boost value for this document obtained from the
boost data file.

click_val: an indexed, stored field that contains a single term: a string representation of
the boost value for this document. This format is suitable for processing in function queries.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 189 291

Using Click Scoring with NearRealTime Search

Enabling Solr's Near RealTime (NRT) search by configuring the
 parameters with the or theupdate_handler_autosoftcommit_* Settings API

Auto-soft-commit* settings in the has some impacts on how user clicks areAdmin UI
processed by LucidWorks.

In order to avoid performance issues with NRT search when Click Scoring is enabled,
documents added between the last "hard" commit and the current "soft" commit are not
augmented with click-through data.

Deletions since the last hard commit are processed as usual (i.e., documents deleted are
not visible), but their term statistics are still included in the global term statistics (which
includes the fields added by Click). Added documents since the last hard commit will not
get any click-related fields until the next hard commit, even if a document with the same
unique key was deleted and replaced by a new, updated, version of the document.

Using Click Scoring information
There are several ways that Click Scoring information can affect ranking of results. By default,
LucidWorks Search is configured to use Click Scoring data as an additional field in a query parsed
by the Lucid Query Parser. can be configured manually, and mayOther methods (see page 190)
involve using field as an input to a function query. This section describes the click_val lucid

query parser method, which is the default.

When is enabled via the Admin UI, a boost field is automaticallyClick Scoring click_terms^5.0

added to the list of fields for the search handler (which uses a query parser). This meanslucid

that query terms will be matched with the field using the relative weight of 5.0. Thisclick_terms

weight can be changed with the or by editing) if you'd like a larger orSettings API solrconfig.xml

smaller boost.

The end result of this query processing is that documents that contain in their fieldclick_terms

terms from the query will have a higher ranking, proportionally higher to the popularity of the
document (the number of click-throughs) and the overlap of query terms with . Itclick_terms

may be difficult, however, to see the effects of integrating Click Scoring boosts from only a few
clicks on a document during testing. This is because the actual boost that occurs The score
contribution of this match will be related to this weight, the term frequency/inverse document
frequency scoring formula for this field, and the usual (extended) scoring rules.lucid dismax

Related Topics

Using Click Scoring Tools (see page 190)

http://docs.lucidworks.com/display/help/Indexing%20Settings
http://docs.lucidworks.com/display/help/Click%20Scoring

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 190 291

Using Click Scoring Tools

 The Click Scoring Tools package is a set of tools for analyzing
query and click-through logs in order to obtain relevance-boosting data. This boost data can then
be used by other Click Scoring components such as and the ClickIndexReaderFactory lucid

query parser to adjust document ranking based on the click-through rate and common query
terms.

File Formats

The Click Scoring Tools package reads and generates files that follow specific formats, which are
summarized below. All files are plain text files with tab-separated records, one record per line.

Query and Click-through Log Format

Click Scoring tools expect this file to be located in
.$LWS_HOME/data/logs/click-<collectionName>.log

Q TAB queryTimestamp TAB query TAB requestID TAB numberOfHits

C TAB clickTimestamp TAB requestID TAB documentID TAB position

The fields are:

Field Description

Q or C Identifies the type of the record, either a query
log record or a click-through log record

queryTimestamp A long integer representing the time when the
query was executed

query The user query, after basic escaping (removal
of TAB and new-line characters)

requestID A unique request identifier related to query and
timestamp

numberOfHits The total number of results matching the query

clickTimestamp A long integer representing the time of the
click-through event

requestID The same value as above for the recordQ

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 191 291

Field Description

documentID The of the document that wasuniqueKey

selected

position The 0-based position of the selected document
on the list of results

Boost File Format

This file is usually generated as a result of the Click Scoring processing of log files, but it could be
also supplied by some other external process. Click Scoring expects this file to be located in

.$LWS_HOME/data/solr/cores/collection/data/click-data/current

documentID TAB list(topTerms) TAB list(boost) TAB list(updateTimestamp)

The fields are:

Field Description

documentID The of the documentuniqueKey

list(topTerms) A comma-separated list of pairs in the format
phrase:weight

list(updateTimestamp) A comma-separated list of long integer
timestamps, which affect how the current boost
data will be aggregated with the next version of
boost data. This element is optional and it's for
internal use by Click Scoring Tools

Click-induced Boost Calculation

When Click Scoring tools are run (using the) oldClickAnalysisRequestHandler (see page 192)
boost data (if present) is merged with the new boost data, processed by a toBoostProcessor

produce the new numeric boost value per documentID, and a new list of top-N shingles per
documentID. Previous values of the floating-point boost are preserved in a boost history field, so
that they may be considered during the next round of calculations.

The default configuration uses a that discounts historical boost values dependingBoostProcessor

on the passed time by applying an exponential half-life decay formula. Such discounted historical
values are then aggregated with the current values. This method of aggregation reflects both past
history of click-throughs and also reacts closely to recent click-through events.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 192 291

ClickAnalysisRequestHandler

The initiates and monitors the click-through analysis. The tools forClickAnalysisRequestHandler

Click Scoring processing are available via ,com.lucid.handler.ClickAnalysisRequestHandler

which can be activated from the configuration file the same way as any othersolrconfig.xml

request handler.

The configuration that ships with LucidWorks Search already contains a section that activates this
handler, under the relative path ./click

This handler accepts a parameter, which can take one of the following values:request

STATUS: return the status of the ongoing analysis, if any. Example request:

curl http://localhost:8888/solr/collection1/click?request=STATUS

Example response:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">205</int>

 </lst>

 <str name="logDir">java.io.File:.../logs</str>

 <str name="prepDir">java.io.File:.../click-prepare</str>

 <str name="boostDir">java.io.File:.../click-data</str>

 <null name="dictDir"/>

 <str name="processing">Idle.</str>

</response>

PROCESS: start the clickthrough processing. If the processing is already running, an error message
will be returned and this request will be ignored.

Example request:

curl http://localhost:8888/solr/collection1/click?request=PROCESS

Example response:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 193 291

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">136</int>

 </lst>

 <str name="result">Clickthrough analysis started.</str>

</response>

Subsequently, the status returned after all processing is finished will look like this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">1</int>

 </lst>

 <str name="logDir">java.io.File:./logs</str>

 <str name="prepDir">java.io.File:./click-prepare</str>

 <str name="boostDir">java.io.File:./click-data</str>

 <null name="dictDir"/>

 <str name="processing">Stopped: Stage 3/3: prepare=finished, ok aggregate=finished, ok

boost_calc=finished, ok</str>

</response>

STOP: stop the currently ongoing analysis, if any is running.
Example request:

curl "http://localhost:8888/solr/collection1/click?request=STOP"

Example response:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">0</int>

 </lst>

 <str name="result">There is no running analysis to stop - ignored.</str>

</response>

When processing is finished, new versions of boost files will be placed in the directory, andcurrent

previous boost data will be moved to the directory. At this point in order to read the newprevious

boost values SolrCore needs to be reloaded (for example, by issuing a update request).<commit/>

In addition to the parameter this handler supports also the following parameters:request

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 194 291

commit (default to false) if set to true, then after the processing is finished the handler will
automatically execute a commit operation to reopen the IndexReader and to load the newly
calculated boost data. Please note that Solr supports only a single global commit, which
means that all other open transactions (such as ongoing indexing) will also be committed at
this time.

sync (default to false) if set to true, then the processing will be executed synchronously,
blocking the caller and returning only when all processing is finished. Default is to run the
processing in a separate background thread.

Click Scoring Tools and Index Replication

When LucidWorks Search is configured to use the boost data filesIndex Replication (see page 257)
(by default, in) will also be$LWS_HOME/data/solr/cores/collection/data/click-data

automatically replicated. Due to the internal limitations of Solr's the boostReplicationHandler

data file will be located the main index directory on the slave nodes, but it will be properlyinside
recognized by the Click Scoring components on the slave nodes.

Click Scoring does not currently work with the functionalitySolrCloud (see page 250)
available with Solr 4.

For the replication of to work the must contain the following line in theboost.data solconfig.xml

 section:<mainIndex>

<mainIndex>

 ...

 <deletionPolicy class="com.lucid.solr.click.ClickDeletionPolicy"/>

 ...

 </mainIndex>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 195 291

Business Rules Integration

 LucidWorks Search integrates the Business Rules Module
available for Solr installations in the LucidWorks Marketplace. In v2.6.3, this replaces the prior
implementation of business rules.

About Rules Engines
A is designed to allow business users to write rules that effect the processing of searchrules engine
results. For instance, an e-commerce company may wish to alter the search results to boost
particular documents based on a sale, or the HR department of a company may wish to make sure
the document covering 401K benefits is always at the top of a search for 401K. In essence, a rules
engine integrated with a search engine allows businesses to dynamically impact relevance of
results based on business needs without having to write extensive, low-level client-server code.
Instead, they can express rules in a declarative programming language that are much simpler to
understand without the complexity of logic that goes into writing code in a programming language
like Java or Ruby.

All business rules depend on information from the system to analyze and take actions. This
information is known to the rule processor as which will be present in the .facts knowledge session
LucidWorks Search will add facts to the knowledge session on each request and the user’s business
rules can use and manipulate those facts.

In a rules engine, users express rules to be matched along with instructions in case a rule is
matched, using simple if-then statements. The rules engine then figures out which rules should be
fired given the facts present in the system. For example, a set of rules may look like:

if owner.hasDog then recommend dog food

if owner.hasCat then recommend cat food

if owner.gender is female and store is "sporting goods" then discount golf clubs 20%

The important thing to note in this example is we didn't have to do any complex logic to tie these
rules together. We simply express the conditions and the things that should happen if a condition is
true. The engine is responsible for figuring out which rules should fire based on the information
(facts) it has to work with when evaluating the rules. It is also important to note that at any given
execution of the engine some, all, or none of the conditions may be met depending on the facts in
the system, thus implying that all of the "then" clauses will be executed.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 196 291

When Should I Use Business Rules?
There is a time and place for the use of business rules. Generally speaking, they are most
effectively used in situations where non-developers are expected to apply changes to the search
results based on business conditions. They are not a replacement for code that integrates search
into an application, but instead should be thought of as a way for companies to fine tune user
interactions with a system without the need to go through extensive (and expensive) development
cycles. It also is not a substitute for general relevance tuning across a broad set of queries nor is it
appropriate for ranking modifications that are best done at a lower level in the search engine.

How to Implement Business Rules in LucidWorks Search
There are two main areas to cover for implementing business rules with LucidWorks Search:

First, determine how the rules will be implemented. There are a variety of methods, each described
in the section on .Configuring Business Rules in LucidWorks Search (see page 197)

Second, define the rules themselves. LucidWorks Search has integrated Drools, and you'll want to
look at the section on for information on how to construct a rules file.Writing Rules (see page 208)

There are . If you're not using rules at all, you can Example Rules and Recipes (see page 213)
.disable business rules (see page 218)

Integrating with your Rules Engine

If you already have a rules engine (such as ILOG's JRules or Fair Isaac's Blaze Advisor) you can
hook them into LucidWorks by implementing a RulesEngine class that talks to your rules engine.
Naturally, you can also implement your own SearchComponent, DocTransformer,
UpdateRequestProcessor, etc., if the ones shipped with LucidWorks do not meet your needs.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 197 291

Configuring Business Rules in LucidWorks Search
While business rules in LucidWorks Search is based on the add-on Solr module of the same name,
LucidWorks Search is configured out of the box to use rules files. There are several points of
configuration that can be modified or re-used as needed, and includes:

a requestHandler named "/rulesMgr" (see page)
a searchComponent named "landingPage" (see page)
a searchComponent named "firstRulesComp" (see page)
a searchComponent named "lastRulesComp" (see page)
addition of rules to the updateRequestProcessorChain named "lucid-update-chain" (see page
204)
a document transformer named "rules" (see page 205)

There are also a few that could be configured if desired.optional requestHandlers (see page 199)

The rest of this section will describe each one, and discuss how to integrate it with an existing Solr
system. If you are not yet familiar with requestHandlers, searchComponents and similar
configurations in a file, you may want to review the Solr Reference Guide section solrconfig.xml

.RequestHandlers and SearchComponents in SolrConfig

Topics discussed in this section:

RequestHandlers (see page 197)
/rulesMgr (see page 198)
Optional RequestHandlers (see page 199)

SearchComponents (see page 200)
firstRulesComp (see page 200)
lastRulesComp (see page 201)
Rules Component Parameters (see page 201)
landingPage (see page 202)

UpdateRequestProcessorChain (see page 204)
Document Transformer (see page 205)
Rules with Index Replication (see page 206)

RequestHandlers

The is the Solr that holds on to references to theRulesEngineManagerHandler requestHandler

various rules engine instances specified in the Solr configuration. The manager maintains a map of
engines to their names. Most components are set up to take in the name of this RequestHandler
and then go ask it for the engine by name.

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 198 291

/rulesMgr

The rulesMgr handles references to rules engine instances. Each of the engines are defined and
used by the searchComponents.

<requestHandler class="com.lucid.rules.RulesEngineManagerHandler" name="/rulesMgr">

 <!-- Engines can be shared, but they don't have to be. A SearchComponent or other

consumer can

 specify the engine they want by name.

 -->

 <lst name="engines">

 <lst name="engine">

 <str name="name">first</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultFirst.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">landing</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultLanding.drl</str>

 </lst>

 </lst>

 <!-- Engine is using rules that are designed to be called after all other

components -->

 <lst name="engine">

 <str name="name">last</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultLast.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">docs</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultDocs.drl</str>

 </lst>

 </lst>

 </lst>

 </requestHandler>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 199 291

Optional RequestHandlers

The following requestHandlers are not included with LucidWorks Search by default, but could be
added to the for a collection. Much of the same functionality exists with thesolrconfig.xml

default requestHandler, but these might be useful if you would like to have specific/lucid

handlers for specific purposes. Some of the example rules files reference these handlers.

/update-with-rules
This is an updateRequestHandler for indexing documents. Note that it calls the
updateRequestProcessorChain, defined later. This allows using rules to alter documents while they
are being indexed, using Solr's standard updateRequestHandler class.

<requestHandler name="/update-with-rules" class="solr.UpdateRequestHandler">

 <lst name="defaults">

 <str name="update.chain">update-with-rules-chain</str>

 </lst>

</requestHandler>

The "/update-with-rules" requestHandler works in a similar way to the default "/update"
requestHandler and takes the same parameters when used. As with the default "/update"
requestHandler, in Solr 4.x versions, you can use this one handler to send documents to Solr as
CSV, JSON, and XML files.
/update-extract-with-rules
This is another updateRequestHandler for indexing documents with rules, and it also calls the
updateRequestProcessorChain. However, this requestHandler is based on Solr's
ExtractingRequestHandler, which allows you to use Tika to extract content from complex files such
as Word documents, PDF files, and binary files.

<requestHandler name="/update-extract-with-rules"

 startup="lazy"

 class="solr.extraction.ExtractingRequestHandler" >

 <lst name="defaults">

 <str name="update.chain">update-with-rules-chain</str>

 <str name="lowernames">true</str>

 <str name="uprefix">ignored_</str>

 <!-- capture link hrefs but ignore div attributes -->

 <str name="captureAttr">true</str>

 <str name="fmap.a">links</str>

 <str name="fmap.div">ignored_</str>

 </lst>

</requestHandler>

Because this requestHandler is based on the ExtractingRequestHandler, it allows the same
parameters.
/search-with-rules

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 200 291

This is a requestHandler which provides an example rules-based search. Note in the configuration
below that we have defined two arrays, "first-components" and "last-components" and named
specific searchComponents.

<requestHandler name="/search-with-rules" class="solr.SearchHandler">

 <lst name="defaults">

 <str name="echoParams">explicit</str>

 <int name="rows">10</int>

 <str name="df">text</str>

 </lst>

 <arr name="first-components">

 <str>landingPage</str>

 <str>firstRulesComp</str>

 </arr>

 <arr name="last-components">

 <str>lastRulesComp</str>

 </arr>

</requestHandler>

If you want to integrate rules with an existing requestHandler, you can add the named
searchComponents to the handler, in the same way shown in this example.

SearchComponents

The primary mechanism for applying rules at query time (i.e., not a document indexing request) is
via a Solr called . The can be configured tosearchComponent RulesComponent RulesComponent

occur anywhere in the searchComponent, but it is typically best to configure it to be the first item
in the chain after the filter by role component, since it is often the case that you want rules to
make decisions based on the application's input parameters (such as the query, sort, etc.) and you
want the rules to make changes before they get processed by the other components. For instance,
you may have a rule that fires when the user query is equal to "title:dogs" and you want the rule
to change the query to be "title:dogs AND category:pets". By configuring the component first in
the chain, you will be able to change the query before it is parsed, thus saving extra rule writing
involving re-arranging complex Query objects.

firstRulesComp

The firstRulesComp is a searchComponent which is meant to be placed within the
"first-components" capability of Solr. This allows applying a rule before other searchComponents
have been applied. An example of this might be to limit search results with parameters not entered
by the user (which may be conditional depending on the user, or other factors). Then other
searchComponents, such as faceting or highlighting, can be applied to the reduced result set.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 201 291

<searchComponent class="com.lucid.rules.RulesComponent" name="firstRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">first</str>

 <!-- The handle can be used to turn on or off explicit rules components in the

 case when you have multiple rules at different stages of the component

ordering-->

 <str name="handle">first</str>

 </searchComponent>

lastRulesComp

The lastRulesComp is a searchComponent which is meant to be placed within the
"last-components" capability of Solr. This allows applying a rule after other searchComponents
have been applied.

<searchComponent class="com.lucid.rules.RulesComponent" name="lastRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">last</str>

 <str name="handle">last</str>

 </searchComponent>

Rules Component Parameters

Input Parameters
There is a fair amount of control around exactly when rules will be fired.

Parameter Type Description Default Example

rules boolean Turn on or off the
RulesComponent

false &rules=false

rules.<handle
name>

boolean Turn on or off a
specific
RulesComponent

instance using
the handle name

true &rules.first=false

rules.prepare boolean Turn off rule
processing as
part of the
prepare phase

true &rules.prepare=false

rules.process boolean Turn off rule
processing as
part of the
process phase

true &rules.process=false

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 202 291

Parameter Type Description Default Example

rules.finishStage boolean Turn off rule
processing as
part of the
finishStage phase

true &rules.finishStage=false

The system does not currently allow you to turn off individual phases of an instance (unless it is
the only instance that is configured). In other words, if two -s are configured, it isRulesComponent

not possible to turn off the process phase of only one.
Facts Collected for the RulesComponent
The facts collected for the are:RulesComponent

The objectResponseBuilder

The objectSolrQueryRequest

The schema for the index
The context information of the request (including the phase of processing, like “process” or
“prepare)
The objectSolrQueryResponse

The query response NamedList
The request parameters map as a instance (can be edited by rules)ModifiableSolrParams

The generated query object, which is the same as the parsed query. In some cases, clauses
of the query will be added to the knowledge session to allow the rules engine to evaluate any
part of the query.
The filter queries
Response results (the instance)DocListAndSet

The sort spec
The grouping spec
Facet counts

Some of the items on this list will only be available to the rules engine if the isRulesComponent

placed after the associated for the fact. For example, in order to have facetsearchComponent

information available to the rules engine, the has to be placed after thatRulesComponent

component in the chain for the .searchComponents requestHandler

Back to Top (see page)

landingPage

The landingPage searchComponent is generally used to define a specific result for conditions that
match the rule. For example, you could redirect users to a specific page of the website in response
to a query, or you could highlight specific documents for a query in combination with other factors
such as time of day, or user attributes.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 203 291

The does not turn off other components in the chain, but it is generallyLandingPageComponent

possible for the rules engine to do so. For example, if you wanted to disable faceting, you would
add a rule such as . For the query, you could add . The exact methodsfacet=false query=false

you need are dependent on the search components you have enabled. See also the section Search
 for one approach to finding enabled search components for the requestHandler inComponents API

use.

Placing the landing page in the output is also the responsibility of the rule writer. In essence, all
the LandingPageComponent does is guarantee that it is called as part of rules and fact preparation
and that the rules used can be configured separately from other rules.

<searchComponent class="com.lucid.rules.LandingPageComponent" name="landingPage">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">landing</str>

 <!-- The handle can be used to turn on or off explicit rules components in the

 case when you have multiple rules at different stages of the component

ordering

 -->

 <str name="handle">landing</str>

</searchComponent>

Input Parameters
Like the , the has several parameters. One thing to note isRulesComponent LandingPageComponent

that the is only executed in the prepare phase of rules execution, so otherLandingPageComponent

available parameters will likely not be required for your implementation.

Parameter Type Description Default Example

landing boolean Turn on or off the
LandingPageComponent

false &landing=false

landing.<handle
name>

boolean Turn on or off a
specific
LandingPageComponent
instance using
the handle name

true &landing.first=false

landing.prepare boolean Turn off rule
processing as
part of the
prepare phase

true &landing.prepare

=false

landing.process boolean Turn off rule
processing as
part of the
process phase

true &landing.process

=false

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 204 291

Parameter Type Description Default Example

landing.finishStage boolean Turn off rule
processing as
part of the
finishStage phase

true &landing.finishStage

=false

Facts Collected for the LandingPageComponent
The facts collected for the are:LandingPageComponent

The objectResponseBuilder

The objectSolrQueryRequest

The schema for the index
The context information of the request (including the phase of processing, like “process” or
“prepare)
The objectSolrQueryResponse

The query response NamedList
The request parameters map as a instance (can be edited by rules)ModifiableSolrParams

The generated query object, which is the same as the parsed query. In some cases, clauses
of the query will be added to the knowledge session to allow the rules engine to evaluate any
part of the query.
The filter queries
Response results (the instance)DocListAndSet

The sort spec
The grouping spec
Facet counts

Some of the items on this list will only be available to the rules engine if the {
 is placed after the associated for the fact. For example,LandingPageComponent searchComponent

in order to have facet information, the has to be placed after thatLandingPageComponent

component in the chain for the .searchComponents requestHandler

Back to Top (see page)

UpdateRequestProcessorChain

LucidWorks supplies a custom updateRequestProcessorChain called "lucid-update-chain". We have
added the to the default chain. This allows you to make transformations toRulesUpdateProcessor

documents while they are being indexed. Note that the example "/update-with-rules" and
"/update-extract-with-rules" requestHandlers both call this chain definition.

By default, the is configured in the and can beRulesUpdateProcessor lucid-update-chain

enabled or disabled by passing in the name of the handle, prefixed by . For instance, if therules.

Processor has a handle of , then would disable the processor anddocProc &rules.docProc=false

processing would continue down the chain. Rule processing is on by default.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 205 291

Like the query-related rules processing, altering documents relies on facts during the knowledge
session.

Here is the default configuration for the in the file for eachlucid-update-chain solrconfig.xml

collection:

<updateRequestProcessorChain name="lucid-update-chain">

 <processor class="com.lucid.update.CommitWithinUpdateProcessorFactory" />

 <processor class="com.lucid.update.FieldMappingUpdateProcessorFactory" />

 <processor class="com.lucid.rules.RulesUpdateProcessorFactory">

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an independent one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can have multiple

in the chain -->

 <str name="handle">docProc</str>

 </processor>

 <processor class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration... "shards should be in the *same* order for

 every server in a cluster. Only "self" should change to represent what

server

 this is. <str name="self">localhost:8983/solr</str> <arr name="shards">

 <str>localhost:8983/solr</str> <str>localhost:7574/solr</str> </arr> -->

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor class="solr.DistributedUpdateProcessorFactory" />

 <processor class="solr.RunUpdateProcessorFactory" />

 </updateRequestProcessorChain>

To disable rules processing, you can either remove or comment out the section that defines the
 parameters.com.lucid.rules.RulesUpdateProcessorFactory

Facts Collected for the RulesUpdateProcessor

The facts collected for the are:RulesUpdateProcessor

The as received in the AddUpdateCommand

 methodUpdateRequestProcessor.processAdd(AddUpdateCommand)

The being addedSolrInputDocument

The schema for the index
Back to Top (see page)

Document Transformer

The document transformer allows applying rules that alter documents during query time. It is
invoked as part of Solr's response and can inject or modify fields before they are returned.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 206 291

<transformer name="rules" class="com.lucid.rules.RulesDocTransformerFactory">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">docs</str>

 </transformer>

Note that alterations to documents made with this transformer are not saved to the documents
themselves. If you want to make changes that are saved with documents, use the
UpdateRequestProcessorChain instead.

Altering a field will not cause an item to be resorted

If, for example, you are sorting by price and you change one of the document's prices, this
will not cause a re-sort. If you want to do that, we suggest you use Solr's Sort by Function
capability.

Facts Collected for the RulesDocTransformer

The facts collected for the are:RulesDocTransformer

The being transformedSolrInputDocument

The of the document being transformed (the Lucene internal , not Solr’s docId docId

)uniqueKey

The schema for the index
Back to Top (see page)

Rules with Index Replication

If you are using what is now considered "old-style" replication (i.e., you are not using SolrCloud),
you should add the rules files to the list of configuration files that are copied to theconfFiles

slave servers with each update.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 207 291

<!-- Optional -->

<!-- If using older v3 style master/slave replication, instead of 4x SolrCloud,

 add these files to your master confFiles list

 <str

name="confFiles">...,rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>
-->

<requestHandler name="/replication" class="solr.ReplicationHandler" >

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str name="replicateAfter">startup</str>

 <str

name="confFiles">schema.xml,stopwords.txt,rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>

</lst>

 <lst name="slave">

 <str name="masterUrl">http://your-master-hostname:8983/solr</str>

 <str name="pollInterval">00:00:60</str>

 </lst>

 </requestHandler>

Back to Top (see page)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 208 291

Writing Rules
The Business Rules module integrates with LucidWorks Search. The Drools Drools 5.5 Rule

 provides a much more thorough overview, but the below can serve as a briefLanguage Reference
introduction.

In Drools, rules are defined with Java-like declarations. While the software is meant to be easier for
non-programmers to write rules, it is still a heavily technical syntax and assumes some technical
proficiency.

To help you with writing rules, we have provided a class which consists ofDroolsHelper.java

helper functions to make the task easier. You can find this class in the solr-business-rules.jar
file (the full name may include version numbers, but you should only have one starting with .jar

) found in . It issolr-business-rules $LWS_HOME/app/webapps/lwe-core/lwe-core/WEB-INF/lib

also included below.

In this section:

Rules Files (see page 208)
Rule Declarations (see page 208)

rule and Attributes (see page 209)
when Conditions (see page 209)
then Actions (see page 209)

DroolsHelper Class (see page 210)
Limitations (see page 211)

Related Topics (see page 212)

Rules Files

A rules file has a file extension of . For the Business Rules module, we have placed the rules in.drl

the directory of each Solr collection, in a sub-directory called . The exampleconf rules

configurations assume this path; if they are located in another area of the filesystem, the examples
will need to be updated.

Before starting the rule declarations, the package is defined, as are any imports and globals. The
import statements are similar to import statements in Java, where you specify the fully qualified
paths and type names for objects that will be used with the rules. The global statements allow you
to make application objects available to the rules, such as if there is data or services the rules use.

Rule Declarations

At it's simplest, a rule declaration looks like this:

http://www.jboss.org/drools/
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 209 291

rule "name"

<a set of attributes>

when

<a set of qualifying conditions, in Drools called "Left Hand Side">

then

<a set of actions to perform, in Drools called "Right Hand Side">

end

rule and Attributes

The first step is to state you are going to define a rule, simply with and a name of the rule.rule

Next, you can define attributes for the rule, which influence the behavior of the rule. One of the
most important of these is , which prevents an infinite loop if a rule modifies a fact thatno-loop

causes the rule to activate again. There are several other attributes, however, which may be
important to your rule. See the Drools documentation on for more information.Rule Attributes

when Conditions

In Drools language, the conditions that must be met for a rule to fire are also called "Left Hand
Side".

Conditions work on one or more patterns, which include the object and constraints. For example, a
condition like $rb: ResponseBuilder($qStr : req.params.get("q") matches "(?i).*ipod.*"

 will match queries sent to Solr containing the term "ipod". What's going on in this example?))

First, we've declared that the variable will match the object . The $rb ResponseBuilder

 is a Solr class that builds the query responses. The rest of the condition statesResponseBuilder

we want to look at what the value was for Solr's parameter, and match queries that contain theq

term "ipod".

There are multiple variations on how to declare the conditions. You can use Java expressions,
booleans, binding variables, maps, and many more. Refer to the Drools documentation on Left

 for all of the options and details on how to use them.Hand Side (when) syntax

then Actions

In Drools language, the actions of a rule are also called "Right Hand Side". These are the changes
that should be made to the "facts" known to the rules engine. In search, this would be changes to
documents, the order of results, or other impacts on the results of the user's query. Keep in mind
that these actions should not be conditional (as in, " this, maybe this"), but atomic, meaningwhen

all of the stated actions should be performed (as in, " this, this"). If you find you needwhen then

further conditions, you may want to consider breaking your rule into smaller pieces to achieve this
goal.

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5150
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 210 291

As with conditions, there are multiple variations on how to use actions. Of particularwhen then

assistance here is the , found in the DroolsHelper.class

, where several methods have been pre-defined suchsolr-business-rules-0.1-solr-4.4.0.jar

as , which allows adding a key-value pair to the response, and , whichaddToResponse modRequest

modifies the request to Solr.

Refer to the Drools documentation on for more details.Right Hand Side (then)

Back to Top (see page)

DroolsHelper Class

The class contains a number of methods that can be invoked by rules writers to helpDroolsHelper

with common tasks and simplify the "then" part of the rule. For instance, there is a method that
can take in a query and a boost and set the boost value. There are also methods for helping merge
separate facet requests together (such as a field facet with a facet query). For instance, it has
methods that evaluate what phase the engine is in and returns true or false if it matches an
expected value. This can be useful if you want rules to fire only during certain phases of the

 process (i.e. prepare, process, etc.). To see this in action, notice the use of the SearchComponent

 method in the .hasPhaseMatch() example rules section (see page 213)

The file may not be in your distribution of LucidWorks. For that reason, we'veDroolsHelper.class

provided the text of the code below.

package com.lucid.rules.drools;

public class DroolsHelper extends java.lang.Object

{

 /* Fields */

 private static transient org.slf4j.Logger log;

 public final static java.lang.String RULES_PHASE = "rulesPhase";

 public final static java.lang.String RULES_HANDLE = "rulesHandle";

 /* Constructors */

 public DroolsHelper() {

 }

 /* Methods */

 public static boolean

hasPhaseMatch(org.apache.solr.handler.component.ResponseBuilder, java.lang.String) {

 }

 public static boolean

hasPhaseMatch(org.apache.solr.handler.component.ResponseBuilder, java.lang.String,

java.lang.String) {

 }

 public static boolean

hasHandlerNameMatch(org.apache.solr.handler.component.ResponseBuilder,

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e7386

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 211 291

java.lang.String) {

 }

 public static void boostQuery(org.apache.lucene.search.Query, float) {

 }

 public static void addToResponse(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.Object) {

 }

 public static void addToResponse(org.apache.solr.common.util.NamedList,

java.lang.String, java.lang.Object) {

 }

 public static void mergeFacets(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, int, java.lang.String[]) {

 }

 public static void addFacet(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.String, int, int) {

 }

 public static void modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.String[]) {

 }

 public static void modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, int) {

 }

 public static void modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, boolean) {

 }

 public static boolean contains(java.lang.String, java.lang.String) {

 }

 public static java.util.Collection analyze(org.apache.solr.schema.IndexSchema,

java.lang.String, java.lang.String) throws java.io.IOException {

 }

}

Limitations

Since the implementation is stateless, there is obviously no way to write rules that go across
requests without implementing your own RulesEngine.

Back to Top (see page)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 212 291

Related Topics

There are several rules provided as examples, which may help you get started with the rules
language. See for a walk-through of two examples, plus an overview of otherExample Rules
included examples.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 213 291

Example Rules and Recipes
Several example rules are provided in the directory of your$app/examples/business_rules

LucidWorks Search installation.

In this section we'll pick a couple of the rules and walk through them.

Sample Rule Files

The example rules are designed to be used with the example documents provided by Solr. Each file
includes extensive comments that explain what they are doing and how to use them with the
sample documents that are included with Solr. Note, however, that LucidWorks Search does not
include the same directory of sample documents, and the default LucidWorks Search isschema.xml

also different. These rules may need a bit of tweaking to work correctly with your own content and
customized schema.

In most cases, the recommendation is to add new rules to the files in the directory found inrules

the directory, where is the name of$LWS_HOME/conf/solr/cores/collection/conf collection

the collection where rules will be used.

While it's possible to define multiple rules files in (in the solrconfig.xml /rulesMgr

 section, it is simpler to use a single rules file (when possible) forrequestHandler (see page)
each rules engine. This keeps all your rules in one place, making them easier to manage. You can
modify the name of the single file if you'd like, just be sure to update the /rulesMgr
requestHandler appropriately.

The following rules are included as examples:

Filename Rule Type What It Does

defaultDocs-create-title.drlIndexing rule Adds title fields to incoming
documents.

defaultDocs-manufacturer-check.drlIndexing rule Copies the document ID field
to the field on documentsmanu

where is blank.manu

defaultFirst-apple.drl Query rule Adds a defined field to allmanu

searches for a specific term.

defaultFirst-facets-part1of2.drlQuery rule First of two steps to modify a
facet; injects a facet query and
alters the facet limit.

defaultLast-facets-part2of2.drlQuery rule Part two of the earlier rule to
modify a facet; injects the
facet to the response.

defaultFirst-from-readme-file.drlQuery rule Adds a term to the query.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 214 291

Filename Rule Type What It Does

defaultFirst-model-number.drlQuery rule Defines a method to find
model numbers in a query, and
if found looks in the ID field for
a match.

defaultDocs-price-check.drl Query rule Checks the price of an
incoming document and adds a
label when it matches a
specific criteria. This approach
is designed for times when
using text (i.e., JSON, XML)
codecs for indexing.

defaultDocs-price-check-long-form.drlQuery rule An alternate approach to price
checks. This approach is
designed for times when using
binary (i.e., Javabin) codecs
for indexing.

defaultFirst-show-phases.drlQuery rule Demonstrates the phases of
filtering.

defaultLanding-belkin.drl Landing rule Returns a specific URL in
response to a query, which can
be used by the front-end to
either redirect the user or
display it a specific way.

Detailed Examples

README Example

This example is included in the file . The goal of this rule isdefaultFirst-from-readme-file.drl

to add query terms to a search when the user enters a specific string.

First, here is the text of the rule (note, this isn't the whole file, just the part that defines a rule; be
sure to look at the whole rule for important comments on how to run it).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 215 291

rule "electronics"

no-loop

when

 $rb: ResponseBuilder($qStr : req.params.get("q") == "text:electronics");

then

 addToResponse($rb, "origQuery", $qStr);

 addToResponse($rb, "modQuery", "text:electronics text:apache");

 modRequest($rb, "q", "text:electronics text:apache");

end

Let's step through this example in detail.

Line 1 states we are declaring a rule and gives it the name "electronics".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our statementwhen

looks for the query term "electronics" on the field "text"; after the modifications from the rule, the
query will still match the rule, which could make it fire again. Using prevents the ruleno-loop

firing over and over.

Line 3 starts the conditions.when

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the query (in the q
parameters of the request sent to Solr) matches "text:electronics". Note this line is also setting a
variable , and assigning it the query and parameters. This variable will be used again later.$qStr

Line 5 starts the actions.then

Line 6 defines a key/value pair for the ResponseBuilder of "origQuery" and the query string
variable defined in line 4 (.$qStr

Line 7 defines another key/value pair for the ResponseBuilder of "modQuery", and the modified
query string.

Line 8 modifies the request to the ResponseBuilder with a key/value pair, modifying the user's
entry to include "text:apache" as well as what was initially entered.

Line 9 ends the rule.

To run this rule, once the rule has been added to , you can send arules/defaultFirst.drl

request to Solr that looks something like this:

http://localhost:8888/solr/collection1/lucid?q=text:electronics&rules=true&rules.first=true

The request should be customized for your hostname and port, and this example also assumes you
have indexed Solr's sample documents in the directory.example/exampledocs

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 216 291

Landing example

This example is included in the file . The goal of this rule is to forcedefaultLanding-belkin.drl

Solr to return a document first in the list when a specific manufacturer ("Belkin") is entered by the
user.

First, here is the text of the rule (note, this isn't the whole file, just the part that defines a rule; be
sure to look at the whole rule for important comments on how to run it).

rule "Landing Page"

no-loop

when

 $rb: ResponseBuilder($qStr : req.params.get("q") == "manu:Belkin");

then

 addToResponse((NamedList)$rb.rsp.getValues().get("responseHeader"), "landingPage",

"http://www.Belkin.com");

end

This rule is quite simple, actually, but let's step through it line-by-line.

Line 1 states we are declaring a rule and gives it the name "Landing Page".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our statementwhen

looks for the query term "Belkin" on the field "manu"; after the modifications from the rule, the
query will still match the rule, which could make it fire again. Using prevents the ruleno-loop

firing over and over.

Line 3 starts the conditions.when

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the query (in the q
parameters of the request sent to Solr) matches "manu:Belkin". Note this line is also setting a
variable , and assigning it the query and parameters. This variable will be used again later.$qStr

Line 5 starts the actions.then

Line 6 defines a key/value pair to the NamedList. In this case, inserting "landing page" and the URL
into the responseHeader.

Line 7 ends the rule.

Note that this rule by itself does not magically redirect the user to the Belkin website - it includes
the information to the client, which then must decide what to do: redirect the user, make it the
first result in the list, or some other transformation as needed.

To run this rule, once the rule has been added to , you can send arules/defaultLanding.drl

request to Solr that looks something like this:

http://localhost:8888/solr/collection1/lucid?q=manu:Belkin&rules=true&landing=true

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 217 291

The request should be customized for your hostname and port, and this example also assumes you
have indexed Solr's sample documents in the directory.example/exampledocs

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 218 291

Disabling Business Rules
Business rules are enabled by default. Even if you are not using rules, there should be no impact
on performance, but if you want to simplify your configuration, you can remove or comment out
references to rules in the file for each collection.solrconfig.xml

It would be possible to remove these rules parameters from the default file andsolrconfig.xml

create a template for future collection creation. To learn more about this, see the section on
.Collection Templates

When removing business rules from the file, LucidWorks will need to besolrconfig.xml

either stopped while making the changes, or restarted once the changes are made.

These are the steps to disabling business rules:

Remove Rules from Update Chain (see page 218)
Remove Rules from the /lucid Request Handler (see page 219)
Remove the Rules Request Handler (see page 220)
Remove Rules Search Components (see page 222)
Remove the RulesDocTransformer (see page 222)
Remove Rules From the Replication Handler (see page 222)

Remove Rules from Update Chain

Comment out the section that defines the Rules Update Processor (<processor
 until the closing tag).class="com.lucid.rules.RulesUpdateProcessorFactory"> </processor>

In most cases, this is sufficient to disable business rules. However, the next sections will assist you
in fully removing business rules from your implementation.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 219 291

<updateRequestProcessorChain name="lucid-update-chain">

 <processor class="com.lucid.update.CommitWithinUpdateProcessorFactory"/>

 <processor class="com.lucid.rules.RulesUpdateProcessorFactory">

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an independent one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can have multiple in

the chain -->

 <str name="handle">docProc</str>

 </processor>

 <processor class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration... "shards should be in the *same* order for

 every server in a cluster. Only "self" should change to represent what server

 this is. This is only used for Index Replication.

 <str name="self">localhost:8983/solr</str> <arr name="shards">

 <str>localhost:8983/solr</str> <str>localhost:7574/solr</str> </arr> -->

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor class="solr.DistributedUpdateProcessorFactory"/>

 <processor class="com.lucid.update.FieldMappingUpdateProcessorFactory"/>

 <processor class="solr.RunUpdateProcessorFactory"/>

</updateRequestProcessorChain>

The specific section to remove is:

<processor class="com.lucid.rules.RulesUpdateProcessorFactory">

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an independent one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can have multiple in the

chain -->

 <str name="handle">docProc</str>

 </processor>

Back to Top (see page)

Remove Rules from the /lucid Request Handler

Find the section as below that defines the request handler, and remove the lines for /lucid

 and and .landingPage firstRulesComp lastRulesComp

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 220 291

<requestHandler class="solr.StandardRequestHandler" name="/lucid">

 <arr name="components">

 <str>filterbyrole</str>

 <str>landingPage</str>

 <str>firstRulesComp</str>

 <str>query</str>

 <str>mlt</str>

 <str>stats</str>

 <str>feedback</str>

 <!-- Note: highlight needs to be after feedback -->

 <str>highlight</str>

 <!-- Note: facet also needs to be after feedback -->

 <str>facet</str>

 <str>spellcheck</str>

 <str>lastRulesComp</str>

 <str>debug</str>

 </arr>

 ...

</requestHandler>

Back to Top (see page)

Remove the Rules Request Handler

The rules request handler defines the instances and the rules files. The entire sectionRuleEngine

copied below can be removed or commented out.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 221 291

<requestHandler class="com.lucid.rules.RulesEngineManagerHandler" name="/rulesMgr">

 <!--

 Engines can be shared, but they don't have to be. A SearchComponent or other

consumer can

 specify the engine they want by name.

 -->

 <lst name="engines">

 <lst name="engine">

 <str name="name">first</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultFirst.drl</str>

 </lst>

 <!-- The fact collector defines what facts get injected into the rules engines

working memory -->

 <!--<lst name="factCollector">

 <str name="class">com.lucid.rules.drools.FactCollector</str>

 </lst>-->

 </lst>

 <lst name="engine">

 <str name="name">landing</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultLanding.drl</str>

 </lst>

 </lst>

 <!-- Engine is using rules that are designed to be called after all other

components -->

 <lst name="engine">

 <str name="name">last</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultLast.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">docs</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

 <lst name="rules">

 <str name="file">rules/defaultDocs.drl</str>

 </lst>

 </lst>

 </lst>

 </requestHandler>

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 222 291

Back to Top (see page)

Remove Rules Search Components

The search components allow the rules to make changes to queries, based on the rules defined.
The entire sections shown below can be removed or commented out.

<searchComponent class="com.lucid.rules.LandingPageComponent" name="landingPage">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">landing</str>

 <!-- The handle can be used to turn on or off explicit rules components in the

 case when you have multiple rules at different stages of the component ordering

 -->

 <str name="handle">landing</str>

 </searchComponent>

 <searchComponent class="com.lucid.rules.RulesComponent" name="firstRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">first</str>

 <!-- The handle can be used to turn on or off explicit rules components in the

 case when you have multiple rules at different stages of the component ordering-->

 <str name="handle">first</str>

 </searchComponent>

 <searchComponent class="com.lucid.rules.RulesComponent" name="lastRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">last</str>

 <str name="handle">last</str>

 </searchComponent>

Back to Top (see page)

Remove the RulesDocTransformer

The allows business rules to inject or modify fields in a document beforeRulesDocTransformer

returning them to a client.

<transformer class="com.lucid.rules.RulesDocTransformerFactory" name="rules">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">docs</str>

 </transformer>

Back to Top (see page)

Remove Rules From the Replication Handler

If using Index Replication, remove the rules-related files from the list of files to replicateconf

between servers. In this section:

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 223 291

<requestHandler class="solr.ReplicationHandler" name="/replication">

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str

name="confFiles">admin-extra.html,admin-extra.menu-bottom.html,admin-extra.menu-top.html,elevate.xml,LucidStemRules_en.txt,
protwords.txt,schema.xml,solrconfig.xml,stopwords.txt,stopwords_ar.txt,stopwords_cjk.txt,stopwords_cs.txt,stopwords_da.txt,stopwords_de.txt,
stopwords_el.txt,stopwords_es.txt,stopwords_fa.txt,stopwords_fi.txt,stopwords_fr.txt,stopwords_hu.txt,stopwords_it.txt,stopwords_ja.txt,
stopwords_ko.txt,stopwords_nl.txt,stopwords_pl.txt,stopwords_pt.txt,stopwords_ru.txt,stopwords_se.txt,stopwords_tr.txt,stopwords_ur.txt,
stopwords_zh.txt,synonyms.txt,contractions_fr.txt,contractions_it.txt,stoptags_ja.txt,mapping-japanese.txt,stemdict_nl.txt,
rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>

</lst>

 </requestHandler>

Specifically, remove , , rules/defaultFirst.drl rules/defaultLast.drl

, and .rules/defaultLanding.drl rules/defaultDocs.drl

Back to Top (see page)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 224 291

Security and User Management
Generally, enterprise-level application designers must take into account four main security
considerations for any search application:

Network access to the various components of the service
Authentication of users
Authorization to use various parts of the user interface
Authorization to view certain documents

LucidWorks Search implements security for each of these as follows:

Network access: Because the (LWE-Core, LWE-UI andcomponents of LucidWorks (see page 19)
LWE-Connectors) run on different ports, an administrator can easily secure individual components
at the network level by restricting access to the port in question. For example, if only the Admin
and Search UI services need to be accessible outside the production network, an administrator can
leave those ports open while blocking LWE-Core. The chapter Securing LucidWorks (see page 225)
describes this process in more detail. Note that if you are using the LucidWorks Search document
authorization features this step is particularly important, as direct access to the underlying Solr
application can circumvent these measures.

In addition, you may want to ensure that the components use SSL for communication or that users
access the Admin UI via HTTPS. The chapter describes how to do thatEnabling SSL (see page 230)
in more detail.

User authentication: LucidWorks supports LDAP binding for user authentication, so an
administrator can create roles or groups on an external LDAP server, then use them to control
access to UI functionality or sets of documents. The chapter LDAP Integration (see page 240)
describes how to configure LDAP for LucidWorks.

UI authorization: LucidWorks controls access to the Admin UI and the Search UI. The chapter
 discusses how to configure these access levels in order to giveLDAP Integration (see page 240)

different LDAP users and groups authorization to use these different functions.

Document authorization: LucidWorks allows the administrator to configure document filters for
different roles. These document filters then limit what documents appear in search results for users
in those roles. For example, the administrator can create a filter that enables users in the finance
role to see only documents that satisfy a query of . You can create these filtersdepartment:finance
with the Search Filters screen of the Admin UI. LucidWorks also enables the creation of
document-based filtering, in which only the owner (or owners) of a document are able to see it.
The section describes how to set up your documentsRestricting Access to Content (see page 237)
to support this functionality.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 225 291

Securing LucidWorks
There are several approaches to securing access to LucidWorks Search: by requiring authentication
to access the UIs and APIs, by restricting users to specific roles within the system, and finally by
restricting access to certain documents in results lists.

Restricting Access
LucidWorks Search consists of : LWE-Core, LWE-UI, andthree components (see page 19)
LWE-Connectors.

Because it provides access to the REST API, direct access to the LWE-Core component provides
access to all of Solr's capabilities, including adding and removing documents, retrieving stored field
values for all documents, and additional LucidWorks Search-enhanced capabilities such as job
scheduling and system status. The LWE-Core component should only be directly HTTP accessible to
other components that need access to Solr or REST API interfaces. If you are using a single server
installation and don't want to expose Solr or REST API interfaces via the network then you might
want to restrict access to LWE-Core to localhost only. You can do that by adding the socket

.connector's attribute for the Jetty containerhost

Topics covered in this section:

Restricting Access (see page 225)
Enabling Basic Auth for UIs and APIs (see page 226)

Restricting Access to LucidWorks Search User Interfaces (see page 228)
Hiding Documents by Restricting Access (see page 228)
Related Topics (see page 229)

You can also restrict direct access to LucidWorks components by IP address, or by fronting it with
an authenticating firewall. For a production implementation, consider restricting access to the
component HTTP ports to only those required by the application, just as one would do with a
typical relational database. If you are using the built-in search filters or document-level
authentication, you prevent access to LucidWorks by any process other than your applicationmust
in order to prevent circumvention of these features.

Implementing SSL

Each of the components can be implemented with SSL. See the chapter Enabling SSL (see
 for more details.page 230)

http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options
http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 226 291

Enabling Basic Auth for UIs and APIs

It is additionally possible to require basic authentication before accessing the LucidWorks Search
UIs (Admin and Search UIs) and REST APIs. This entails creating a file thatrealm.properties

contains usernames and passwords, then configuring the files to use jetty.xml realm.properties

, and finally modifying the file for each interface to be restricted. This does not replace theweb.xml

built-in user authentication for LucidWorks Search (i.e., the login to access the UIs), but adds an
additional layer of authentication and authorization.

Because LucidWorks Search components run in separate JVMs, they run in separate Jetty
containers. However, you should secure both the LWE-UI and LWE-Core components so they can
successfully communicate with one another. The LWE-Connectors JVM does not need
authentication, since it generally only needs to communicate with the LWE-Core component
internally.

Modify jetty.xml

The file contains a sample configuration that is commented out. This sample can bejetty.xml

used by removing the comment markers and changing the parameter as needed. The defaultname

uses "Test Auth" for the name, but in the below you'll see we have changed that to "Auth". The
name can be whatever you'd like it to be, but it must match the name you use in the fileweb.xml

configuration (below).

<Call name="addBean">

 <Arg>

 <New class="org.eclipse.jetty.security.HashLoginService">

 <Set name="name">Auth</Set>

 <Set name="config"><SystemProperty name="lucidworksConfHome"

default="."/>/jetty/lwe-core/etc/realm.properties</Set>

 <Set name="refreshInterval">0</Set>

 </New>

 </Arg>

</Call>

This configuration also defines the location of the file, which you will create inrealm.properties

the next step. Note that the above example defines a path of
. If the user accounts will be the same for both the/jetty/lwe-core/etc/etc/realm.properties

UIs and the APIs, it is fine to refer to the same file for both components. If, however, the users
and/or roles will be different, you need to change the path to the appropriate realms.properties
file for each component.

These changes need to be done two times: once for the file for the LWE-UI component,jetty.xml

and again for the for the LWE-Core component. These files are found at the followingjetty.xml

paths:

$LWS_HOME/conf/jetty/lwe-core/etc/jetty.xml

$LWS_HOME/conf/jetty/lwe-ui/etc/jetty.xml

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 227 291

Create a realm.properties File

The file contains usernames, passwords and roles of users who will be allowedrealm.properties

to use the UIs and APIs. The passwords can be stored in plain text, encrypted with an MD5 hash,
or obfuscated. In this example, we have just used a plain text password:

admin: password,user

If the password is not defined in plain text, you would preface it with "CRYPT:" if using an MD5
hash or with "OBF:" if obfuscated.

This allows the "admin" user to access the UI and APIs. The role "user" is one that we'll define in
the file (described below). If you have multiple roles, they can be listed for each userweb.xml

separated by commas.

Modify web.xml

The file and we'll use it to define the roles, the URLs roles have access to, and the realmweb.xml

name. Below is an example:

<!-- Security Constraints -->

<security-role>

 <role-name>user</role-name>

</security-role>

<login-config>

 <realm-name>Auth</realm-name>

</login-config>

<security-constraint>

 <web-resource-collection>

 <web-resource-name>all resources</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

</security-constraint>

In this example, we have defined the as "user" and constrained access to all websecurity-role

resources (via the) to the role "user". This means users must be defined with theauth-constraint

role "user" in . Additional roles could be defined if needed, but LucidWorksrealms.properties

Search already supports "admin" and "search" users (see below), so it may not be necessary to
duplicate that functionality.

However, there may be room for roles that restrict access to the APIs. The could alsourl-pattern

be modified to support several roles, restricting certain roles to only certain parts of UIs or APIs.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 228 291

Note that we have defined the as "Auth", which is the same name we used in the realm-name

 configuration. Those names must match, or Jetty will not be able to locate the jetty.xml

 file.realms.properties

These changes need to be done two times: once for the file for the LWE-UI component,web.xml

and again for the for the LWE-Core component. These files are found at the followingweb.xml

paths:

$LWS_HOME/app/webapps/lwe-core/lwe-core/WEB-INF/web.xml

$LWS_HOME/app/webapps/lwe-ui/WEB-INF/web.xml

Note that since nearly all of the REST APIs and the Solr Admin UI are powered by the LWE-Core
component, specific restrictions for those APIs and Solr Admin UI must be defined in the LWE-Core

 file. The LWE-UI file can be used to restrict the Admin UI, the Search UI, as wellweb.xml web.xml

as the Alerts and Users APIs.

Once these changes are completed, LucidWorks Search must be .restarted (see page 28)
Additional information about using realms and basic auth with Jetty is available from the Jetty 8

.documentation

Restricting Access to LucidWorks Search User Interfaces
LucidWorks has two built-in authorizations to control user access:

ADMIN allows users to access any part of the LucidWorks UI.
SEARCH limits users to only the built-in end user search interface.

You can restrict a user's access to specific parts of the application by mapping manually created or
LDAP-supplied usernames and/or LDAP-supplied groups to the appropriate authorization. There are
two ways to do this: via the on via the .Users API User screen in the Admin UI

Hiding Documents by Restricting Access
The privileges of the LucidWorks process and the rights that process has to access documents for
indexing are crucial to its proper operation. Generally, you want LucidWorks Search to be able to
access all documents within a particular folder or from a particular web site. The built-in
LucidWorks Search crawlers will index any specified document, as long as the LucidWorks process
has permissions to do so. After a document has been indexed, all stored fields are accessible
through the Solr interface.

That said, documents can be excluded from indexing by leveraging operating system, file, and
web-level security capabilities; if the process doesn't have access, it will not index the content.

Some data sources, such as those configured to crawl content in a or in , ,database SMB SharePoint
 or servers, credentials need to be supplied for the crawler to access theS3 Hadoop over S3

system. Those credentials determine what documents the crawler has access to. Other data
sources may also require credentials to access content.

http://wiki.eclipse.org/Jetty/Feature/Realms
http://wiki.eclipse.org/Jetty/Feature/Realms
http://docs.lucidworks.com/display/help/User%20Management
http://docs.lucidworks.com/display/help/Create%20a%20New%20Database%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Windows%20Share%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20SharePoint%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Amazon%20S3%20Data%20Source
http://docs.lucidworks.com/display/help/Create%20a%20New%20Hadoop%20File%20System%20over%20S3%20File%20Data%20Source

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 229 291

Related Topics

Restricting Access to Content (see page 237)
Enabling SSL (see page 230)
LDAP Integration (see page 240)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 230 291

Enabling SSL

 Secure Socket Layer (SSL) encryption can be enabled in
LucidWorks Search with a few modifications to Jetty configuration files.

Steps to Enable SSL (see page 230)
Certificate Management (see page 235)
Client Certificates for LWE-Core and Connectors (see page 235)
Configuring Mutually Authenticated SSL (see page 235)
Debugging SSL Configuration (see page 236)
Related Topics (see page 236)

Steps to Enable SSL
In the steps below, note that LucidWorks Search components run under Jetty, but have separate
configuration files. Each component needs to be enabled separately, although the process for each
component is the same. For more information about configuring Jetty to use SSL, see also the Jetty
documentation on .Configuring SSL

Step 1: Modify master.conf

If you have already installed LucidWorks Search, you can set these values by modifying the
 file found in . You should change the for each componentmaster.conf $LWS_HOME/conf/ address

to include . If you'd like to change the port for each component, that is done in https master.conf

also.

COMPONENT LWE-Core - LWE-Solr + LWE REST API.

lwecore.enabled=true

lwecore.address=https://127.0.0.1:8888

 ...

COMPONENT LWE-Connectors.

lweconnectors.enabled=true

lweconnectors.address=https://127.0.0.1:8765

 ...

COMPONENT LWE-UI - Admin and Search UI as well as Alerts

lweui.enabled=true

lweui.address=https://127.0.0.1:8989

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 231 291

Alternatively, each component could be set to and the desired port during the https:// installation
.process

Step 2: Modify jetty.xml for LWE-Core Component

The file found in needs to be modified tojetty.xml $LWS_HOME/conf/jetty/lwe-core/etc

comment out the non-SSL connector. In the file, find the following section and add comment
markers at the beginning and at the end (and , respectively):<!-- -->

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port" default="8888"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

Step 3: Modify jetty-ssl.xml for LWE-Core Component

In the directory the file should be edited to$LWS_HOME/conf/jetty/lwe-core/etc jetty-ssl.xml

activate the sample configuration. The configuration is currently commented out, but the comment
tags should be removed and the , , , keyStore keyStorePassword keyManagerPassword trustStore

and properties should be configured.trustStorePassword

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 232 291

<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port" default="8888"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

</Configure>

The and files must be located in the locations specified so they can be foundkeyStore trustStore

on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the file.jetty-ssl.xml

Step 4: Modify jetty.xml for LWE-UI Component

The file found in needs to be modified to commentjetty.xml $LWS_HOME/conf/jetty/lwe-ui/etc

out the non-SSL connector. In the file, find the following section and add comment markers at the
beginning and at the end (and , respectively) so it looks like this:<!-- -->

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port" default="8989"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 233 291

Step 5: Modify jetty-ssl.xml for LWE-UI Component

In the directory the file should be edited to$LWS_HOME/conf/jetty/lwe-ui/etc jetty-ssl.xml

activate the sample configuration. The configuration is currently commented out, but the comment
tags should be removed and the , , , keyStore keyStorePassword keyManagerPassword trustStore

and parameters should be configured.trustStorePassword

<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port" default="8989"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

</Configure>

The and files must be located in the locations specified so they can be foundkeyStore trustStore

on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the file.jetty-ssl.xml

Step 6: Modify jetty.xml for the LWE-Connectors Component

The file found in needs to be modified tojetty.xml $LWS_HOME/conf/jetty/connectors/etc

comment out the non-SSL connector and activate the SSL-connector. Unlike the LWE-Core and
LWE-UI components, the Connectors component only requires modifying a single file.

In the file, find the following section and add comment markers at the beginning and at the end (
 and , respectively) so it looks like this:<!-- -->

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 234 291

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port" default="8765"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

In the same file, uncomment the section "To add a HTTPS SSL Listener" to activate the sample
configuration. After the comment tags are removed, configure the , , keyStore keyStorePassword

, and parameters.keyManagerPassword trustStore trustStorePassword

<Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port" default="8765"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

The and files must be located in the locations specified so they can be foundkeyStore trustStore

on Jetty startup. They can be located anywhere on the server, as long as the correct locations are
defined in the file.

Step 7: Restart LucidWorks

After verifying that the and files are in the locations specified in each file,keyStore trustStore

LucidWorks Search for the changes to take effect.must be restarted (see page 28)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 235 291

Certificate Management
LucidWorks uses standard java jks format in keystores and truststores. Those stores can be
managed using the standard Java .keytool

Currently all certificates are managed outside of LucidWorks. There are no certificate management
tools or admin displays for configuring SSL certificate related settings. All configuration tasks need
to be made manually after installing LucidWorks and potentially repeated on all nodes where
LucidWorks is running.

Client Certificates for LWE-Core and Connectors
It is possible to configure the LWE-Core and Connectors components to use certificates while
communicating.

Prior to LucidWorks v2.5.2, the was used to define client certificates. This isSSL Configuration API
now configured in as Java SSL system properties. To use these properties, open master.conf

 (found in and edit these properties:master.conf $LWS_HOME/conf

-Djavax.net.ssl.keyStore=conf/keystore.client

-Djavax.net.ssl.keyStorePassword=secret2

-Djavax.net.ssl.trustStore=conf/truststore.client

-Djavax.net.ssl.trustStorePassword=secret3

The paths to the and should be entered as complete paths, or relative to keyStore trustStore

.$LWS_HOME/app/bin

It is not possible to configure the LWE-UI component in this way

Configuring Mutually Authenticated SSL
LucidWorks supports securing communications to the core APIs with Mutual SSL authentication.
This means the and Solr API can be protected so that only clients that you trust canREST API
access these APIs. The system can also use mutually authenticated SSL internally to communicate
to each Solr node when using distributed search.

The LucidWorks portions of SSL functionality can be configured by using the API.SSL Configuration

When configuring LucidWorks to use mutually authenticated SSL the container must also be
configured to require certificates for authentication. In Jetty this is done by using <set

 in the related SSL Connector section of the Jettyname="needClientAuth">true</Set>

configuration files (see above).

http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 236 291

Mutual authentication is not supported for the LWE-UI component, and thus the Admin UI.

Debugging SSL Configuration
Reviewing logging events from the (either LucidWorks log files (see page 22)

 or) may provide some hints about what is going on ifcore.YYYY_MM_DD.log ui.YYYY_MM_DD.log

SSL is not working as expected.

Common SSL Problems

Symptom: javax.net.ssl.SSLHandshakeException: null cert chain

Cause: Client is not sending client certificate. Reconfigure client so that it sends a client certificate
with the request.

Symptom: javax.net.ssl.SSLException: Unrecognized SSL message, plaintext
connection?

Cause: Client is connecting to SSL endpoint without using SSL.

The cURL command line tool can be used to verify the SSL configuration. For example,:

curl --cacert <ca.crt> --key <host.key> --cert <client.crt>
https://localhost:8443/dashboard

The link in this example is to the main LucidWorks Admin UI dashboard. Since this requires
authentication, you should see the HTML indicating you will be redirected to the login page.
If that's what you see, then SSL is properly set up.

Related Topics

Jetty doc on configuring SSL
Java keytool

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 237 291

Restricting Access to Content
LucidWorks Search provides three ways to restrict access to content through based on user
identity:

#Search Filters (see page 237)
#Access Control Lists (see page 238)
#Document-based Authorization (see page 239)

 Information for LucidWorks Search in the Cloud Users
Some sections following refer to editing the file, which is not possible forsolrconfig.xml

LucidWorks Search customers hosted in AWS or Azure.

Search Filters
Search filters provide the ability to limit the visibility of content only to specific users or user
groups. For example, users in the finance role might be limited only to documents that satisfy the
query . The LucidWorks Search Admin UI allows the creation of search filtersdepartment:finance

that can be appended to all user queries. Usernames (manually created or supplied by the LDAP
system) and/or groups (supplied by the LDAP system) can be mapped to search filters with the
Search Filters page. You can also configure manual or LDAP search filters using the API.Roles

By default, LucidWorks comes configured with a default filter called "DEFAULT" that allows users to
see all results for any query. This filter is defined in , and could be modified ifsolrconfig.xml

needed:

<searchComponent class="com.lucid.handler.RoleBasedFilterComponent"

name="filterbyrole">

 <!-- Solr filter query that will be applied for users without group/role info -->

 <str name="default.filter">-*:*</str>

 <!-- Solr filter queries for roles, one role may have multiple filter queries.

 name is the role, value is the part of the filterquery that is to be formed. -->

 <lst name="filters">

 <str name="DEFAULT">*:*</str>

 </lst>

</searchComponent>

Note that this has defined that the default filter is . What this means is that someone without-*:*

the DEFAULT role should see no results. However, since queries in LucidWorks Search are handled
by the request handler, we have configured that handler to process searches for users/lucid

without a role as though they had the DEFAULT role. This is in a later section of ,solrconfig.xml

where defaults are defined for the request handler (the below is truncated):/lucid

http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 238 291

<lst name="defaults">

...

 <str name="role">DEFAULT</str>

...

 </lst>

Access Control Lists
LucidWorks also supports (ACL) on Windows Share (SMB) andaccess control lists (see page 110)
SharePoint data sources. ACL uses Windows Active Directory to control document access on a
per-user basis. ACL filtering is configured for each data source, allowing you to have different
authorizations depending on the definitions in each repository. To use this functionality, set up a
Windows Share or SharePoint data source and configure the requisite fields.

If you do not need to configure ACL filtering on a per-data source basis, you can use the Filtering
 to configure a Search Handler to perform the same functionality. Note that this is onlyAPI

supported for a Windows Share data source type. The Filtering API will configure the search
handler in like this:solrconfig.xml

<searchComponent class="com.lucid.security.AclBasedFilterComponent" name="adfiltering">

 <str name="provider.class">com.lucid.security.ad.ADACLTagProvider</str>

 <str name="filterer.class">com.lucid.security.WindowsACLQueryFilterer</str>

 <lst name="provider.config">

 <str name="java.naming.provider.url">ldap://127.0.0.1</str>

 <str name="java.naming.security.principal">admin</str>

 <str name="java.naming.security.credentials">admin</str>

 </lst>

 <lst name="filterer.config">

 <str name="should_clause">*:* -data_source_type:smb</str>

 </lst>

</searchComponent>

In certain circumstances, you may need to add a or parameter to theuserFilter groupFilter

search component to properly implement your ACL filter.

Once created, the search component must be added to the request handler with the /lucid Search
.Components API

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 239 291

Document-based Authorization
An application can enforce document visibility controls in front of LucidWorks simply by adding
fields to each document that represent usernames, group membership, or other types of flags that
help match a user with the content they are allowed to see in results. Generally these types of
fields would be of type "string", possibly multi-valued. This technique is best suited to content
extracted from a database or custom data source. The file and web crawling capabilities in
LucidWorks do not index any security related attributes (though the file path itself may be useful
for application-level restrictions).

For example, documents could be indexed with an "owner" field. Here's a Solr XML file for this
example:

<add>

 <doc>

 <field name="id">1</field>

 <field name="text">Bob's Document - For his eyes only\!</field>

 <field name="owner">bob</field>

 </doc>

 <doc>

 <field name="id">2</field>

 <field name="text">Jill's Document - Only she should find this</field>

 <field name="owner">jill</field>

 </doc>

</add>

Related Topics

Windows Shares Data Sources
SharePoint Data Sources
Filtering Results

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 240 291

1.
2.

1.

LDAP Integration

 LucidWorks Search supports integrating user authentication with
an existing LDAP system.

Two LDAP features are currently supported:

Authentication and Authorization of users (prerequisite for any other LDAP functionality)
User-to-group mapping (optional)

LDAP and built-in (API-based) user authentication are mutually exclusive. If LDAP is enabled,
built-in authentication is not, and the reverse.

For standard LDAP integration, the LDAP administrative user only needs permissions to query the
LDAP server for users and groups. We recommend that you create an LDAP admin user with only
the necessary minimal user and group querying permissions for use with LucidWorks.

LucidWorks also allows you to authenticate users without LDAP administrative credentials. This
method is called "queryless" authentication, because LucidWorks does not query the LDAP directory
for user information. Rather, LucidWorks uses the attribute value plus the user's login and the base
suffix as the user's DN. This method only works if the exact location of your LDAP user data is
known and is the same for all relevant users. Another limitation of queryless authentication is that
LucidWorks cannot find members of a group, only individual users.

It is also possible, using standard Java SSL functionality, to use certificate authentication with a
SSL-enabled LDAP server. More information on that is available here:

.http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html

For information about filtering search results based on LDAP permissions, see Restricting Access to
 and .Content (see page 237) Search Filters

Enabling LDAP
These steps need to be completed to successfully enable LDAP. Each step is required and should be
done in this order:

Configure the with the instructions below.#LDAP Configuration File (see page 241)

http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html
http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 241 291

2.

3.

4.

Map at least one user to have admin permissions using the LDAP section of the Settings page
. Because the built-in authentication is disabled when LDAP authentication is enabled, you
cannot map a user or group to the Admin authorization after LDAP is enabled. If no one has
Admin authorization, no one will be able to access the Administration User Interface. So,
before enabling LDAP, go to the page and map an LDAP username or aSystem Settings
group to "Admin UI" by adding it to the Group or User section of the Admin UI definition.
Enable LDAP by setting the environment variable to in the lweui.ldap.enabled true

 file found in .master.conf $LWS_HOME/conf/

Restart LucidWorks (see page 28).

LDAP Configuration File
The main configuration file for configuring LDAP is , found in the ldap.yml $LWS_HOME/conf/

directory. The default settings must be modified as needed for LucidWorks to connect to the LDAP
server and query the database for user authentication. If LDAP is already enabled and this file is
edited, you will need to for changes to take effect.restart the server (see page 28)

Below is the main section of the configuration file that needs to be edited. Note that theldap.yml

file also includes sample configurations for standard LDAP authentication, queryless authentication,
and Microsoft ActiveDirectory integration for use with Windows Shares data sources (see page 110)
.

Lines Must Be Indented

When customizing the file, keep in mind that the attributes must be indented atldap.yml

least two spaces. So, when removing the hash mark (#), do not remove the extra spaces.
All lines must also be indented the same number of spaces (so, if some lines are indented
three spaces, then all lines must be indented three spaces).

http://docs.lucidworks.com/display/help/System%20Settings
http://docs.lucidworks.com/display/help/System%20Settings

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 242 291

##

Warning: Always restart the application after adjusting

your LDAP config, or unpredictable behavior may result.

##

production:

host: localhost

port: 389 # 636 for SSL

attribute: uid

base: dc=xyz,dc=corp,dc=com

user_query: '$ATTR=$LOGIN' # default query is '$ATTR=$LOGIN', set this if you

need something more complex

admin_user: cn=Manager,dc=xyz,dc=corp,dc=com # If you don't have an admin

password, you can disable

admin_password: secret # admin login in the UI "Settings"

page

ssl: false

group_base: ou=groups,dc=xyz,dc=corp,dc=com

group_membership_attribute: uniqueMember

group_name_attribute: cn

group_query: '(&(objectclass=groupOfUniqueNames)($ATTR=$USER))' # default query

is '$ATTR=$USER' where $USER is user's DN

The attribute definitions included in the file are as follows:ldap.yml

Attribute Definition

host The hostname of the LDAP server that contains
the user information.

port The port to use while connecting to the LDAP
server that contains the user information.

attribute The attribute of the user object that the system
will use to search for the user, or assume when
constructing an explicit DN via query-less
authentication.

base Search base for user queries, or suffix
appended to attribute + login for queryless
authentication.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 243 291

Attribute Definition

user_query Optional: supplies an arbitrarily complex query
if the default user query is not sufficient.
Variable substitutions are as follows: $ATTR will
be substituted with the value of 'attribute' from
above; $LOGIN will be substituted with the
value the user entered in the login form in the
UI.

Search is performed using 'base' as a search
base.

admin_user Administrative login to use for searching the
directory. Not used for queryless
authentication.

admin_password Administrative password to use for searching
the directory. Not used for queryless
authentication.

ssl Enable/disable SSL.

group_base Search base for group queries. Not used with
queryless authentication.

group_membership_attribute The attribute to look for in the group object
that will contain members' user DNs.

group_name_attribute The attribute of the group object that the
system will use to search for the group.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 244 291

Attribute Definition

group_query Optional: supplies an arbitrarily complex query
if the default group query is not sufficient.
Variable substitutions are as follows: will$ATTR

be substituted with the value of
'group_name_attribute'; will be$USER

substituted with the logged-in user's
fully-qualified LDAP DN. Search is performed
using 'group_base' as a search base.

The default query does($ATTR=$USER)

not specify the object type for groups.
Several different group object types
are common, such as group,
groupOfNames, groupOfUniqueNames,
and so on. Therefore, non-group
objects may also match if they contain
a matching attribute.

User to Group Mappings

LucidWorks supports mapping users to groups with the setting. Thisgroup_membership_attribute

allows LucidWorks to do an additional query while the user is logging in to find all the groups the
user is a member of.

Manual User Management
LucidWorks also includes a REST API that allows creation and authentication of . Using thisusers
API and the provided with the application, users can be created, passwords reset,Perl Examples
and accounts deleted. As mentioned previously, API-based user management and LDAP
authentication are mutually exclusive: you can only use one user management method.

Related Topics

Restricting Access to Content (see page 237)
Search Filters

http://docs.lucidworks.com/display/help/Search%20Filters%20for%20Access%20Control

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 245 291

Solr Direct Access
LucidWorks Search is Solr-powered at its core. Solr, an Apache Software Foundation project,
provides an easy-to-use HTTP interface above and beyond Lucene, a very fast and scalable Java
search engine library. Both Solr and Lucene are entirely open source, available under the Apache
Software License.

LucidWorks Search exposes the Solr interface directly. This means that applications can leverage
both Solr's power and openness and LucidWorks Search's ease of use.

This guide covers Solr when LucidWorks and Solr intersect but it does not provide an extensive
overview of the inner workings of Solr, and in places assumes some basic knowledge of Solr. For a
good introduction to Solr, the Lucene/Solr community has produced an Apache Solr Reference

 which provides a lot of information about how Solr works "under the hood".Guide

Solr Version
For information about the Solr version included in this release of LucidWorks, see the
SOLR_VERSION.txt file in . For LucidWorks v2.7, we have$LWS_HOME/app/SOLR_VERSION.txt

included Solr version 4.6.1 (the official release). We have also included the following patch:

SOLR-5641: REST API to modify requestHandlers

You can also get detailed Solr version information for all releases of LucidWorks Search from our
public Github fork here: . To see information for ahttps://github.com/lucidimagination/lucene-solr
specific LucidWorks version, select the tag for that version from the "Switch Tags" drop-down list.
Please note, however, that this is not a stand-alone, runnable Lucene or Solr release; it is intended
as a source reference only.

How the LucidWorks-Bundled Solr is Different
The primary difference between using Solr and LucidWorks is the base URL. Solr's example
application is accessed by default at , whereas the LucidWorkshttp://localhost:8983/solr/

default collection instance of Solr is rooted at . Ifhttp://localhost:8888/solr/collection1/

using multiple collections, replace with the correct collection name. The Solr URL forcollection1

each collection is displayed under each collection listing on the main page in the AdminCollections
UI.

In addition, some of the examples that are usually included with Solr are not included with
LucidWorks. This includes detailed examples and explanations that are provided in the schema.xml
and files. Those examples will likely still work with LucidWorks, but would need tosolrconfig.xml

be inserted manually into those files.

Other differences are mentioned specifically in sections that discuss certain features. If a limitation
with Solr is not mentioned, it can be assumed that the Solr functionality works as you would expect
with a stand-alone Solr instance.

http://cwiki.apache.org/confluence/display/solr
http://cwiki.apache.org/confluence/display/solr
https://issues.apache.org/browse/SOLR-5641
https://github.com/lucidimagination/lucene-solr
http://docs.lucidworks.com/display/help/Collections

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 246 291

1.

2.

Adding Solr Plugins
Generally speaking, most plugins to Solr should work with LucidWorks Search, provided that they
are compatible with the Solr version used with LucidWorks Search (see #Solr Version (see page

 above). As described in the , there are two options for245) Solr Wiki page on Solr Plugins
integrating plugins:

"Place your JARs in a directory in the instanceDir of your SolrCore." For LucidWorkslib

Search, this would mean the directory of your collection . For example, iflib instance_dir

you wanted to use the plugin with the default collection, collection1, you would put the
relevant JARs in . You can find the $LWS_HOME/conf/solr/cores/collection1_0/bin

 name with the . The name indicates a directory name, alwaysinstance_dir Collections API
relative to .$LWS_HOME/conf/solr/cores

"Use the directive in your file to specify an arbitrary JAR path, directorylib solrconfig.xml

of JAR files, or a directory plus regex that JAR file names must match." This alternative
allows you define the path in for your collection using the directive.solrconfig.xml <lib>

More information on using this directive is available in the Apache Solr Reference Guide
section on .Lib Directives in SolrConfig

Either of these approaches will allow integration of a Solr-based plugin with LucidWorks Search. If
the plugin will be used with multiple LucidWorks Search collections, pick either approach here and
configure the use of the plugin for one collection. Once you've verified that it works successfully
with LucidWorks Search, you can use that single collection to create a Collection Template (see

 for use as the basis for future collections.page 41)

If there is configuration to be done in or (or other configuration files)solrconfig.xml schema.xml

in order to properly use the plugin, you will need to make those changes as a separate step and by
manually editing the files. If the changes conflict with or modify the LucidWorks Search defaults,
the Admin or Search UI may behave abnormally. It's best to do thorough testing before moving to
production with any plugin.

More information on how to create a custom plugin is available from the Solr Wiki at
.http://wiki.apache.org/solr/SolrPlugins

Related Topics

Apache Solr Reference Guide
Apache Solr project homepage
Apache Solr Wiki
Solr Plugins from the Solr Wiki

http://wiki.apache.org/solr/SolrPlugins
https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 247 291

Performance Tips
A number of configuration items can be manipulated for better performance when benchmarking
LucidWorks. Implementing some of these optimizations may require directly configuring Solr via

 and . See the for details on Solrschema.xml solrconfig.xml Apache Solr Reference Guide
customizations that may be right for your implementation.

Ensure that you are running the JVM in server mode.
Allocate only as much memory as needed to the JVM heap. The rest should be left free to
allow the operating system to cache as much of the Lucene index files as possible.

Improving indexing speed

Minimize indexing the same content in more than one field. Each field should be either
indexed on its own or Solr's functionality can be used to copy it to an indexedcopyField
catch-all field.
Avoid storing the same content more than once. The target field of copyField commands
should almost never be stored.
Avoid commits during the indexing process. Turn off Solr auto-commit and avoid explicitly
committing until indexing has completed.
Disable rules processing if not using business rules as part of your implementation. See the
section on for details on how to disable rulesDisabling Business Rules (see page 218)
processing.

Improving Search speed

Perform a variety of searches before starting any timings. This warms up the server JVM, and
causes parts of the index, commonly used sort fields and filters to be cached by the
operating system.
Search in as few fields as possible. A single indexed catch-all text field containing the
contents of all the other searchable fields (generated by commands) will be fastercopyField
to search than a multi-field query across many indexed fields.
If necessary, turn off relevancy enhancers such as proximity phrase queries, date recency
boosts, and synonym expansion to generate benchmarks for comparison with later tests
when those features are re-enabled.
Retrieve the minimum number of that still provide a optimal search experiencestored fields
for users.
Only retrieve the number of documents that are immediately necessary. The and start rows
query arguments may be used to request pages of results.
Disable rules processing if not using business rules as part of your implementation. See the
section on for details on how to disable rulesDisabling Business Rules (see page 218)
processing.

https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr/Copying+Fields
http://docs.lucidworks.com/display/help/Field%20Configuration

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 248 291

For a large index (on *NIX), force key parts of the indexed portion into operating system
cache by changing to the index directory and executing cat *.prx *.frq *.tis >
/dev/null

Review the section on if leading wildcards have been enabled forWildcards at Start of Terms
important performance considerations.

Related Topics

Expanding Capacity (see page 249)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 249 291

Expanding Capacity

 As your search application grows, you may need to scale the
system to add space for indexes or to increase query responsiveness. This section discusses
advanced deployment options to enhance system performance and ensure seamless application
scaling.

With Solr 4, which is included with LucidWorks Search, the best way to scale is in SolrCloud mode.
How to start LucidWorks in SolrCloud mode is discussed in the section Using SolrCloud in

.LucidWorks (see page 250)

If you only need to extend your index across multiple servers Index Replication (see page 257)
shows how to configure multiple shards for a master-slave environment. Or you can use

 to distribute search and indexing processesDistributed Search and Indexing (see page 262)
across multiple servers or shards for peak performance. Note, however, that distributed search and
replication are no longer in active development by the Solr community.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 250 291

Using SolrCloud in LucidWorks
SolrCloud is a set of Solr features that expands the capabilities of Solr's distributed search,
simplifying the creation and management of Solr clusters. SolrCloud is still under active
development, but already supports the following features:

Central configuration for the entire cluster
Automatic load balancing and fail-over for queries
Zookeeper integration for cluster coordination and configuration

For an introduction to SolrCloud, and how it is different from index replication, see the LucidWorks
Knowledgebase article . In addition, the Apache Solr Reference Guide includesWhat is SolrCloud?
an extensive , which includes background information and configurationsection on SolrCloud
instructions. Some changes have been made for LucidWorks Search, however, which are described
below.

LucidWorks Search implements SolrCloud as a ; to manage SolrCloud shardspurely Solr feature
and replicas, you should refer to and use instructions designed for a purely Solr installation. There
are only a few caveats and modifications for LucidWorks Search, detailed below, specifically for
bootstrapping ZooKeeper and the cluster nodes.

Topics discussed in this section:

Enabling SolrCloud Mode (see page 250)
Using the Embedded ZooKeeper (see page 251)
Bootstrapping Solr vs. LucidWorks Search (see page 253)

How SolrCloud Works with LucidWorks (see page 253)
Replicated Configurations (see page 254)
Using the Admin UI in SolrCloud Mode (see page 254)
Feature Limitations (see page 254)
Collections APIs (see page 255)

Using a Stand-Alone ZooKeeper Instance or Ensemble (see page 256)
Related Topics (see page 256)

Enabling SolrCloud Mode
LucidWorks Search includes an installer that can install the application on each node of the planned
SolrCloud cluster. For details on using this approach, see the section .SolrCloud Cluster Installation
This approach will allow you to install three ZooKeeper instances to create a quorum, and then
install as many LucidWorks Search nodes as needed.

The standard instructions for starting SolrCloud are modified slightly for LucidWorks Search.
Commands within the installer take these modifications into account, but if starting without the
installer, refer to the modifications described below.

https://support.lucidworks.com/entries/24134353-What-is-SolrCloud-And-how-does-it-compare-to-master-slave-
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 251 291

While much of the SolrCloud documentation in the Apache Solr Reference Guide section on
 can be used, it is important to only start LucidWorks Search in SolrCloud mode with theSolrCloud

instructions included here.

Using the Embedded ZooKeeper

It's possible to make two standalone, or single server, installations communicate with each other in
SolrCloud mode using the ZooKeeper instance embedded with Lucidworks Search. This can be
useful to create a simple two-node cluster when just starting to learn how this functionality can
work for your search application. With this approach, two separate installations are made (as
described in the section). Then one installation is started with commandsSingle Server Installation
to bootstrap configurations and start ZooKeeper.

Because we need two servers for this example, we will make two installations of LucidWorks, one
on the server " " and the other on the server " ". During installation, do not startexample example2

LucidWorks Search. Instead, start the two installations manually, as shown below.

We recommend that you only install LucidWorks using the installer application; copying the
 directory to another directory to create another server may causeLucidWorksSearch

conflicts with ports. Information on installing LucidWorks is available in the section on
.Installation

The installation in should use port 8983 for the LWE-Core component, which will beexample

changed from the default during the installation process. The installation on should useexample2

the default port (8888) for the LWE-Core component. If enabling other components, be sure to
modify the ports for each installation as well. If new to LucidWorks, see the section on Working

 for more information about the components.With LucidWorks Search Components (see page 19)
Your port selections might look like this:

Component example Ports example2 Ports

LWE-Core 8983 8888

LWE-Connectors 8965 8765

LWE-UI 8889 8989

ZooKeeper will run on the LWE-Core port + 1000, so in this scenario we expect ZooKeeper to run
on port 9983. It's important to keep that in mind while planning the installation ports so there isn't
an inadvertent conflict with LucidWorks Search ports.

https://cwiki.apache.org/confluence/display/solr/SolrCloud
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 252 291

SolrCloud uses ZooKeeper to manage nodes, and it's worth taking a look at the ZooKeeper
 to understand how ZooKeeper works before configuring SolrCloud. Solr can embedwebsite

ZooKeeper, but for a production use, it's recommended to run a ZooKeeper ensemble, as
described in the of the SolrCloud wiki page.ZooKeeper section

Starting LucidWorks Search

To start LucidWorks Search in SolrCloud mode, use the usual LucidWorks start script, but pass
some Java options to it. To start , you would use a command like this:example

Start 'example'

$LWS_HOME/app/bin/start.sh -lwe_core_java_opts "-Dbootstrap_conf=true -DzkRun

-DnumShards=2"

The allows copying of the configuration files for each collection to the nodes, whilebootstrap_conf

 starts ZooKeeper. The value defines how many nodes there will be in the cluster.zkRun numShards

Be sure to set this accurately, as Solr cannot yet easily increase the number of shards without
re-bootstrapping the cluster.

We only need to pass and the first time LucidWorks is started inbootstrap_conf numShards

SolrCloud mode. In subsequent LucidWorks restarts, start this leader node with ./start.sh
. The could be added to , in which case the-lwe_core_java_opts "-DzkRun" -DzkRun master.conf

 script alone would start ZooKeeper each time.start.sh

To start the next nodes of the cluster, we still use the start script, but with some different options.
This would start :example2

Start 'example2'

$LWS_HOME/app/bin/start.sh -lwe_core_java_opts "-DzkHost=localhost:9983"

Note that the port defined as the is the port of the LWE-Core component + 1000. So, ifzkHost

LWE-Core on our server was defined at port 8983, ZooKeeper would be started at portexample

9983.

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 253 291

The above instructions assume a Linux-based operating system. For Windows-based
systems, use as in these examples:start.bat

Start :example

$LWS_HOME\app\bin\start.bat -lwe_core_java_opts "-Dbootstrap_conf=true -DzkRun

-DnumShards=2"

Start :example2

$LWS_HOME\app\bin\start.bat -lwe_core_java_opts "-DzkHost=localhost:9983"

If you have used the installer to install LucidWorks in SolrCloud mode, the required commands
have been added to the for each server, and no special start or stop instructions aremaster.conf

required for restarts. In that case, you would not run the embedded ZooKeeper; instead you would
have installed and configured a quorum, and the parameters have been added to the zkHost

 file.master.conf

Bootstrapping Solr vs. LucidWorks Search

This table outlines the differences between the Solr instructions for bootstrapping SolrCloud mode
and the LucidWorks Search instructions. It is meant as a summary if you are already familiar with
how SolrCloud works.

SolrCloud LucidWorks Search

Use start.jar Use or with start.sh start.bat

 defined-lwe_core_java_opts

Use to uploadbootstrap_confdir

configuration files to ZooKeeper
bootstrap_conf=true

Use collection.configName Not needed with bootstrap_conf=true

Default configuration directory is
./solr/collection1/conf

Default configuration directory is
$LWS_HOME/conf/solr/cores/collection1_0/conf

How SolrCloud Works with LucidWorks
There are some caveats to using SolrCloud with LucidWorks Search, as it is so far only partially
integrated with the system. Future releases of LucidWorks Search will contain more tight
integration points with SolrCloud functionality.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 254 291

Replicated Configurations

When running LucidWorks Search in SolrCloud mode, some LucidWorks Search-specific features
are not yet fault tolerant and highly available. While the index and configuration files are fully
SolrCloud supported, the following are not currently replicated across shards:

Data sources and their related metadata (such as crawl history)
The LucidWorks user database, which stores manually created users (such as the default
"admin" user)
User alerts
LDAP configuration files
SSL configuration

Even though these features aren't replicated, they can still be used with LucidWorks Search in
SolrCloud mode. The files that hold this metadata are in the folder and could be$LWS_HOME/conf

copied to the other nodes in the cluster to act as backup if the main node goes down for any length
of time. This is a manual process and not yet automated by LucidWorks Search.

Using the Admin UI in SolrCloud Mode

To accommodate for the lack of replicated configurations, we recommend that you do a full
LucidWorks Search (i.e.,) on every machine in yourinstallation all components (see page 19)
cluster. You should then choose one node to use for the Admin UI. This is the node that will store
your data sources and associated metadata. Another node can be chosen as the node that does
crawling, or you can use the same node used by the Admin UI. Document updates will still be sent
to the nodes, via the index update processes that make up SolrCloud functionality.

If the node used for the Admin UI goes down, you can choose another node to act as the Admin UI
node, but unless the related configuration files have been copied to that node you will not have the
same user accounts and data sources in the other nodes. Once you bring the node originally used
for the Admin UI back, it should still have your data sources and other LucidWorks-specific
metadata.

You can configure LucidWorks Search to not start the Admin UI by changing
 and setting the parameter to 'false'.$LWS_HOME/conf/master.conf lweui.enabled

Feature Limitations

The following LucidWorks features may encounter significant problems when working in SolrCloud
mode:

Click Scoring cannot be used in SolrCloud mode at this time.
Auto-complete-related suggestions should be pulled from a single index node if
auto-complete is enabled by adding ' ' to any query. Distributed&distrib=false

auto-complete indexing is possible but requires configuration of the auto-complete indexing
on each node and adding a ' ' component to the autocomplete requestHandler in query

.solrconfig.xml

De-duplication does not work in SolrCloud due to a bug in Solr ().SOLR-3473
SSL does not work with SolrCloud due to a bug in Solr ().SOLR-3854

https://issues.apache.org/jira/browse/SOLR-3473
https://issues.apache.org/jira/browse/SOLR-3854

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 255 291

Log indexing and query statistics in the Admin UI will be inconsistent. If you are using
LucidWorks Search in SolrCloud mode or with each component installed on a different server,
please see the section for details on how to makeLog Indexing with Separated Components
sure your logs are fully indexed.

Collections APIs

LucidWorks Search and Solr both have Collections APIs. They are not duplicates, even though they
share the same parameters. It is important, however, to only use the LucidWorks Search

 to create collections, because of the issues described in the section Collections API #Replicated
. The LucidWorks Search Admin UI also uses the LucidWorksConfigurations (see page 254)

Collections API to create collections.

When creating a new collection (with either the Admin UI or the API), and you are working in
SolrCloud mode, you can specify the number of shards to break it up into. This number, however,
cannot be higher than the number of shards defined when LucidWorks Search was bootstrapped.

Behind the scenes, the LucidWorks Search Collections API update LucidWorks Search-specific
collection configuration files and also uses Solr's Collection API to create the collection in Solr. This
has some ramifications for LucidWorks Search:

Solr's Collection API does not allow defining the instanceDir or the dataDir, so there is no way
for LucidWorks Search to instruct Solr to create the new collection directories in the same
place on the filesystem as the pre-existing collections that ship with LucidWorks Search. Solr
creates collections by default with the and directories in the same location, but theconf data

LucidWorks Search directory structure separates those directories to
 and . Because Solr's Collection$LWS_HOME/conf/solr/cores $LWS_HOME/data/solr/cores

API does not allow setting the path values explicitly, they are created in Solr's default
location. What this means is that new collections created in SolrCloud mode will be located in
a different location from the pre-existing collections (i.e., they will be located under

 and the data directory will not be located under $LWS_HOME/conf/solr

). This is normal and will not have any impact on document indexing$LWS_HOME/data/solr

or searching.

Solr's Collection API itself uses Solr's CoreAdmin API to asynchronously create cores on each
node. For this reason, the collection will appear to be renamed as

. LucidWorks Search will mostly display the correct<collection>_shard<x>_replica<y>

name, but the directory on the server will show the core name (and each core on each node
will be named differently). The Solr Admin UI will also display the core name in the Core
dropdown list. If you are accessing the Solr Admin for several different nodes, this may cause
some initial confusion. Essentially, LucidWorks displays information about a collection, but
Solr displays information about the specific core you are looking at. For more information
about the differences between cores and collections in Solr, also refer to the SolrCloud

 and other pages on SolrCloud in the Apache Solr Reference Guide.Glossary

https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary
https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 256 291

Using a Stand-Alone ZooKeeper Instance or Ensemble
If you review the Solr Reference Guide or any of the Solr documentation about SolrCloud, you may
notice that using the Apache ZooKeeper instance that is included with Solr is not recommended for
real production systems. This is because the embedded Zookeeper will not provide sufficient
failover; the ZooKeeper instance is dependent on the Solr instance so if one of the Solr instances is
shut down, an associated ZooKeeper instance will also be shut down.

For this reason, the LucidWorks installer includes the ability to install a ZooKeeper quorum while
installing LucidWorks Search.

If you have an existing ZooKeeper, or an existing SolrCloud setup, the Apache Solr Reference
Guide provides information about how to use a stand-alone ZooKeeper instance at Setting Up an

. That information is worth reviewing before installing a stand-aloneExternal ZooKeeper Ensemble
ZooKeeper. The same instructions apply if used with LucidWorks Search, with the exception of the
bootstrapping instructions as described in the earlier section #Starting LucidWorks Search (see

 (above).page 252)

When using stand-alone ZooKeeper with LucidWorks Search, you need to take care to keep
your version of ZooKeeper updated with the latest version distributed with Solr and
LucidWorks Search. Since you are using it as a stand-alone application, it does not get
upgraded when you upgrade LucidWorks Search.

Solr 4.0 and LucidWorks 2.5.0 and 2.5.1 use Apache ZooKeeper v3.3.6.

Solr 4.1 and higher, and LucidWorks 2.5.2 and higher, use Apache ZooKeeper v3.4.5.

Related Topics

Getting Started with SolrCloud from the Apache Solr Reference Guide
SolrCloud Wiki page

https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble
https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble
https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 257 291

Index Replication

As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for redundancy,
failover, and improved performance. Index Replication and Distributed Search are
considered obsolete technologies; while still supported, they are not in active development.
See the section on for more information onUsing SolrCloud in LucidWorks (see page 250)
using SolrCloud with LucidWorks Search.

Index Replication distributes complete copies of a master index to one or more slave servers. The
master server continues to manage updates to the index. All querying is handled by the slaves.
This division of labor enables Solr to scale to provide adequate responsiveness to queries against
large search volumes. The master server's index is replicated on the slaves, which then process
requests such as queries.

LucidWorks Search supports index replication, but it is not configured through the Admin UI.
Instead, replication configuration requires editing XML configuration files in the Solr release
included with LucidWorks Search. This section explains how replication works and how to edit the
configuration files. Detailed examples are provided, so even if you're new to XML and Solr
configuration, you should be able to set up and configure master/slave replication servers with
ease.

When the is enabled, LucidWorksClick Scoring Relevance Framework (see page 185)
ensures that also the click boost data is replicated together with index files. See the
section on for more information.Click Scoring Tools and Index Replication (see page 194)

Configuring Replication on the Master Server
To set up replication, you will need to edit the file on the master server. To editsolrconfig.xml

the file, you can use an XML editor or even a simpler tool such as Notepad on a PC or TextEdit on a
Mac.

Within the file, you will edit the definition for a Request Handler. A Requestsolrconfig.xml

Handler is a Solr process that responds to requests. In this case, you will be configuring the
Replication RequestHandler, which processes requests specific to replication.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 258 291

The example below shows how to configure the Replication RequestHandler on a master server.

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="master">

 <!-- Replicate on 'optimize'. Other values can be 'commit', 'startup'.

 It is possible to have multiple entries of this config string -->

 <str name="replicateAfter">optimize</str>

 <!-- Create a backup after 'optimize'. Other values can be 'commit', 'startup'.

 It is possible to have multiple entries of this config string.

 Note that this is just for backup, replication does not require this.

 -->

 <!-- <str name="backupAfter">optimize</str> -->

 <!-- If configuration files need to be replicated give the names here,

 separated by comma -->

 <str name="confFiles">schema.xml,stopwords.txt,elevate.xml</str>

 <!-- The default value of reservation is 10 secs. See the documentation

 below. Normally, you should not need to specify this -->

 <str name="commitReserveDuration">00:00:10</str>

 </lst>

</requestHandler>

Operations that Trigger Replication

The value of the parameter in the ReplicationHandler configuration determinesreplicateAfter

which types of events should trigger the creation of snapshots for use in replication.

The parameter can accept multiple arguments.replicateAfter

replicateAfter Setting Description

startup Triggers replication whenever the master index
starts up.

commit Triggers replication whenever a commit is
performed on the master index.

optimize Triggers replication whenever the master index
is optimized.

If you are using setting for , you'll also need a or if youstartup replicateAfter commit optimize

want to trigger replication on future commits/optimizes as well. If only the option is given,startup

replication will not be triggered on subsequent commits/optimizes after it is done for the first time
at the start.

Configuring Replication on Slave Servers
The code below shows how to configure a ReplicationHandler on a slave server.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 259 291

1.

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="slave">

 <!-- fully qualified url for the replication handler of master.

 It is possible to pass on this as a request param for the

 fetchindex command

 -->

 <str

name="masterUrl">http://master.solr.company.com:8983/solr/corename/replication</str>

 <!-- Interval in which the slave should poll master. Format is HH:mm:ss.

 If this is absent slave does not poll automatically.

 But a fetchindex can be triggered from the admin or the http API

 -->

 <str name="pollInterval">00:00:20</str>

 <!-- THE FOLLOWING PARAMETERS ARE USUALLY NOT REQUIRED -->

 <!-- To use compression while transferring the index files.

 The possible values are internal|external

 if the value is 'external' make sure that your master Solr

 has the settings to honor the accept-encoding header.

 see here for details http://wiki.apache.org/solr/SolrHttpCompression

 If it is 'internal' everything will be taken care of automatically.

 USE THIS ONLY IF YOUR BANDWIDTH IS LOW.

 THIS CAN ACTUALLY SLOW DOWN REPLICATION IN A LAN -->

 <str name="compression">internal</str>

 <!-- The following values are used when the slave connects to the

 master to download the index files.

 Default values implicitly set as 5000ms and 10000ms respectively.

 The user DOES NOT need to specify these unless the bandwidth

 is extremely low or if there is an extremely high latency

 -->

 <str name="httpConnTimeout">5000</str>

 <str name="httpReadTimeout">10000</str>

 <!-- If HTTP Basic authentication is enabled on the master,

 then the slave can be configured with the following -->

 <str name="httpBasicAuthUser">username</str>

 <str name="httpBasicAuthPassword">password</str>

 </lst>

</requestHandler>

The master server is unaware of the slaves. Each slave server continuously polls the master
(depending on the parameter) to check the current index version of the master. IfpollInterval

the slave finds out that the master has a newer version of the index it initiates a replication
process. The steps are as follows:

The slave issues a filelist command to get the list of the files. This command returns the
names of the files as well as some metadata (e.g., size, a lastmodified timestamp, an alias if
any).

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 260 291

2.

3.

4.

5.

The slave checks with its own index if it has any of those files in the local index. It then runs
the filecontent command to download the missing files. This uses a custom format (akin to
the HTTP chunked encoding) to download the full content or a part of each file. If the
connection breaks in between, the download resumes from the point it failed. At any point,
the slave tries 5 times before giving up a replication altogether.
The files are downloaded into a temp directory, so that if either the slave or the master
crashes during the download process, no files will be corrupted. Instead, the replication
process will simply abort.
After the download completes, all the new files are 'mv'ed to the live index directory, and the
file's timestamp is set to be identifical to the file's counterpart on the master master.
A commit command is issued on the slave by the Slave's ReplicationHandler, and the new
index is loaded.

Configuring Replication on a Repeater Server
A master may be able to serve only so many slaves without affecting performance. Some
organizations have deployed slave servers across multiple data centers. If each slave downloads
the index from a remote data center, the resulting download may consume too much network
bandwidth. To avoid performance degradation in cases like this, you can configure one or more
slaves as repeaters. A repeater is simply a node that acts as both a master and a slave. To
configure a server as a repeater, the definition of the Replication requestHandler in the

 file must include file lists of use for both masters and slaves. Be sure to set thesolrconfig.xml

replicateAfter parameter to commit, even if replicateAfter is set to optimize on the main master.
This is because on a repeater (or any slave), a commit is called only after the index is downloaded.
The optimize command is never called on slaves. Optionally, one can configure the repeater to
fetch compressed files from the master through the compression parameter to reduce the index
download time.

Here's an example of a ReplicationHandler configuration for a repeater:

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str name="confFiles">schema.xml,stopwords.txt,synonyms.txt</str>

 </lst>

 <lst name="slave">

 <str

name="masterUrl">http://master.solr.company.com:8983/solr/corename/replication</str>

 <str name="pollInterval">00:00:60</str>

 </lst>

</requestHandler>

Replicating Configuration Files
To replicate configuration files, list them with the parameter in the master'sconfFiles

configuration. Only files found in the conf directory of the master's Solr instance will be replicated.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 261 291

Solr replicates configuration files only when the index itself is replicated. Even if a configuration file
is changed on the master, that file will be replicated only after there is a new commit/optimize on
master's index.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary
directory before moving them into their ultimate location in the conf directory. The old
configuration files are then renamed and kept in the same directory. The ReplicationHandlerconf/

does not automatically clean up these old files.

Unlike the index files, where the timestamp is good enough to figure out if they are identical,
configuration files are compared against their checksum. If a replication involved downloading at
least one configuration file with a modified checksum, the ReplicationHandler issues a core-reload
command instead of a commit command.

Replicating the solrconfig.xml File

To keep the configuration of the master servers and slave servers in sync, you can configure the
replication process to copy configuration files from the master server to the slave servers. In the

 on the master server, include a value like the following:solrconfig.xml confFiles

<str name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>

This ensures that the local configuration will be saved as solrconfig_slave.xml solrconfig.xml

on the slave. All other files will be saved with their original names. On the master server, the file
name of the slave configuration file can be anything, as long as the name is correctly identified in
the string; then it will be saved as whatever file name appears after the colon ':'.confFiles

Related Topics

Using SolrCloud in LucidWorks (see page 250)
Scaling and Distribution chapter from the Apache Solr Reference Guide

https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 262 291

Distributed Search and Indexing

As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for redundancy,
failover, and improved performance. Index Replication and Distributed Search are
considered obsolete technologies; while still supported, they are not in active development.
See the section on for more information onUsing SolrCloud in LucidWorks (see page 250)
using SolrCloud with LucidWorks Search.

Consider using distributed search when an index becomes too large to fit on a single system, or
when a single query takes too long to execute. Distributed search can reduce the latency of a
query by splitting the index into multiple shards and querying across all shards in parallel, merging
the results.

Distributed search should not be used if queries to a single index are fast enough but one simply
wishes to expand the capacity (queries per second) of the system. In this case, standard Index

 should be used.Replication (see page 257)

Distributed Indexing
To utilize distributed search, the index must be split into shards across multiple servers. Each
shard is a LucidWorks Search server containing a complete index that can be queried
independently, but which only contains a fraction of the complete search collection.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 263 291

1.

2.

If using distributed indexing with a Solr XML data source type, you may encounter a
situation where the crawl never ends without a restart of LucidWorks. This is due to a
problem in the distributed index processor and the way Solr XML files are crawled by
LucidWorks.

There are two possible solutions to this problem:

Use . The distributed indexing is handled automatically bySolrCloud (see page 250)
ZooKeeper, and provides automatic failover in case of server failure.
Disable the on all but the primary, master, node. It isDistributedUpdateProcessor

not really required to be running on slave nodes since LucidWorks crawlers send their
files through only one node during processing.

Manual Distributed Indexing

One method of splitting the search collection into multiple shards is to index some documents to
each shard instead of sending all documents to a single shard. Updates to a document should
always be sent to the same shard, and documents should not be duplicated on different shards.

Manual Configuration

A Distributed Update Processor can be enabled to automatically support distributed indexing by
sending update requests to multiple servers (shards).

Enabling distributed indexing is done via the file, found in solrconfig.xml

 (replace with the name of the collection$LWS_HOME/solr/cores/collection/conf collection

that is being configured for distributed indexing). By default it is not enabled. The solrconfig.xml
file needs to be installed on each shard, and the shards should be listed in the same order in each
file.

The distributed update processor is controlled by two parameters, and , which mayshards self

either be specified in , or supplied with a specific update request to Solr.solrconfig.xml

shards lists the servers in the cluster. The list should be exactly the same (that is, in the
same order) in the configuration file for every server in the cluster.
self should be different for each server in the cluster and should match the entry in shards
for the particular server. It is used to allow updates for the particular server to be directly
added rather than going through the HTTP interface. If it is missing, distributed update will
still work, but will be less efficient.

To start using distributed indexing, find the following section in , and uncommentsolrconfig.xml

the shard location definitions. Below is an example of shard definition that is not commented out.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 264 291

<updateRequestProcessorChain name="lucid-update-chain">

 <processor class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration...

 "shards should be in the *same* order for every server

 in a cluster. Only "self" should change to represent

 what server *this* is. -->

 <str name="self">localhost:8983/solr</str>

 <arr name="shards">

 <str>localhost:8983/solr</str>

 <str>localhost:7574/solr</str>

 </arr>

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor class="com.lucid.update.FieldMappingUpdateProcessorFactory"/>

 <processor class="solr.RunUpdateProcessorFactory"/>

</updateRequestProcessorChain>

Indexing Documents

If distributed indexing has been configured as above, then any indexing initiated from the
LucidWorks Search administration user interface, such as crawling directories, will be appropriately
handled by sending some documents to each server. One can use the distributed update processor
in conjunction with any update handler while directly updating Solr. The and /update/xml

 update handlers are already configured to use , the distributed update/update/csv distrib

processor, by default.

If an update handler has not been configured to use the distributed update processor, it may be
specified in the URL via the parameter:update.processor

http://localhost:8888/solr/collection1/update?update.processor=distrib

If the and parameters are not configured in solrconfig.xml, then they may beself shards

specified as arguments on the update url.

http://localhost:8888/solr/collection1/update?update.processor=distrib&self=localhost:8888/solr&shards=localhost:8983/solr,localhost:7574/solr,localhost:8888/solr

Update commands may be sent to any server with distributed indexing configured correctly.
Document adds and deletes are forwarded to the appropriate server/shard based on a hash of the
unique document id. commands and commands are sent to every servercommit deleteByQuery
in .shards

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 265 291

Distributed Search
After a logical index is split across multiple shards, distributed search is used to make requests to
all shards, merging the results to make it appear as if it came from a single server.

Programmatic Distributed Search

One can use distributed search with Solr request handlers such as , , or (thestandard dismax lucid

handler used by the LucidWorks Search), or any other search handler based on
.org.apache.solr.handler.component.SearchHandler

Supported Components

The following Solr components currently support distributed searching:

The Query component that returns documents matching a query
The Facet component, for and requests where facet.query facet.field

 (the default: return the constraints with the highest counts)facet.sorted=true

The Highlighting component, which highlights results
The Debug component

The presence of the parameter in a request will cause that request to be distributed acrossshards

all shards in the list. The syntax of is shards

host1:port1/base_url1,host2:port2/base_url2,...

The example below would query across 3 different shards, combining the results:

http://localhost:8888/solr/collection1/select?shards=localhost:8983/solr,localhost:7574/solr,localhost:8888/solr&q=super

As a convenience to clients, a new request handler could be created with set as a defaultshards

like any other ordinary parameter.

The parameter should not be set as a default in the standard request handler asshards

this could cause infinite recursion.

Scalability and Fault Tolerance
To provide fault tolerance and increased scalability, standard can bereplication (see page 257)
used to provide multiple identical copies of each index shard. Each shard would have a master and
multiple slaves.

Indexing in a Fault Tolerant Distributed Configuration

Only the master for each shard should be configured in distributed indexing or specified to the
distributed update processor. There is no fault tolerance while indexing - if the master for a shard
goes down, indexing should be suspended.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 266 291

Searching in a Fault Tolerant Distributed Configuration

Each shard will have multiple replicas. A Virtual IP (VIP) should be configured in the load balancer
for each shard, consisting of all replicas. LucidWorks Search distributed search configuration, and
the parameter for distributed search requests should use these VIPs.shards

A single VIP consisting of all the shard VIPs should be configured for all external systems to use the
search service.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 267 291

Integrating Monitoring Services

 Monitoring your application always is an important part of
running production system. Most system administrators have used various tools to ensure
everything is ok from the health of server's filesystem to the the temperature of CPUs. LucidWorks
Search provides additional capabilities to integrate application level statistics information into these
monitoring tools.

LucidWorks Search and Solr make available several JMX MBeans which can be used with
stand-alone JMX clients, or integrated with servers that support MBeans, such as Nagios or Zabbix.
More information on all these options is below.

JMX (see page 267)
Enabling JMX for LucidWorks Search (see page 267)
JMX Clients (see page 268)
JMX MBeans (see page 271)

Integrating with Monitoring Systems (see page 278)
Zabbix (see page 278)
Nagios (see page 284)

Helpful Tips (see page 285)

JMX
JMX is a standard way for managing and monitoring all varieties of software components for Java
applications. JMX uses objects called MBeans (Managed Beans) to expose data and resources from
your application. LucidWorks Search provides number of read-only monitoring beans that provide
useful statistical/performance information. Combined with JVM (platform JMX MBeans) and OS
level information, it becomes powerful tool for monitoring.

Enabling JMX for LucidWorks Search
By default JMX is enabled in LucidWorks Search for local access only. If you want to connect and
monitor application remotely you need to change parameter in the lwecore.jvm.params

 file and add the following JVM parameters:$LWS_HOME/conf/master.conf

lwecore.jvm.params=... -Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.port=3000 -Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.authenticate=false

-Djava.rmi.server.hostname=my.server.name

http://en.wikipedia.org/wiki/Java_Management_Extensions

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 268 291

Where 3000 is an unused TCP port number.

You might want to secure remote JMX access either by configuring a software or hardware firewall
to allow connections to specified port only from your hosts/network or by configuring password
authentication and/or SSL encryption. For more information about various security options please
refer to the .JMX documentation

JMX Clients
There are number of various JMX clients you can use to connect to the LucidWorks Search server
and browse available information.

JConsole

JConsole is a standard (part of the JDK) graphical monitoring tool to monitor Java Virtual Machine
(JVM) and Java applications which provides a nice way to display memory and CPU information as
well MBeans from arbitrary applications.

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 269 291

JMXTerm

Jmxterm is an open source command line based interactive JMX client. It allows you to easily
navigate JMX MBeans on remote servers without running a graphical interface or opening a JMX
port. It can also be integrated with script languages such as Bash, Perl, Python, Ruby, etc. See the
following as an example of how it can be used:

sh> java -jar jmxterm-1.0-alpha-4-uber.jar

Welcome to JMX terminal. Type "help" for available commands.

$>jvms

http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 270 291

67183 () - start.jar /Users/alexey/LWE/conf/jetty/rails/etc/jetty.xml

/Users/alexey/LWE/conf/jetty/rails/etc/jetty-jmx.xml

/Users/alexey/LWE/conf/jetty/rails/etc/jetty-ssl.xml

67182 (m) - start.jar /Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty.xml

/Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty-jmx.xml

/Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty-ssl.xml

93534 () - jmxterm-1.0-alpha-4-uber.jar

8554 () -

$>open 67182

#Connection to 67182 is opened

$>domains

#following domains are available

JMImplementation

com.sun.management

java.lang

java.util.logging

org.mortbay.jetty

org.mortbay.jetty.handler

org.mortbay.jetty.security

org.mortbay.jetty.servlet

org.mortbay.jetty.webapp

org.mortbay.log

org.mortbay.util

solr/LucidWorksLogs

solr/collection1

$>domain solr/collection1

#domain is set to solr/collection1

$>beans

#domain = solr/collection1:

...

solr/collection1:id=collection1,type=core

solr/collection1:id=org.apache.solr.handler.StandardRequestHandler,type=standard

...

solr/collection1:id=org.apache.solr.search.FastLRUCache,type=fieldValueCache

solr/collection1:id=org.apache.solr.search.LRUCache,type=documentCache

solr/collection1:id=org.apache.solr.search.LRUCache,type=filterCache

solr/collection1:id=org.apache.solr.search.LRUCache,type=queryResultCache

solr/collection1:id=org.apache.solr.search.SolrFieldCacheMBean,type=fieldCache

...

solr/collection1:id=org.apache.solr.search.SolrIndexSearcher,type=searcher

solr/collection1:id=org.apache.solr.update.DirectUpdateHandler2,type=updateHandler

$>bean type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

#bean is set to

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 271 291

$>info

#mbean =

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

#class name = org.apache.solr.core.JmxMonitoredMap$SolrDynamicMBean

attributes

 %0 - adds (java.lang.String, r)

 %1 - autocommit maxTime (java.lang.String, r)

 %2 - autocommits (java.lang.String, r)

 %3 - category (java.lang.String, r)

 %4 - commits (java.lang.String, r)

 %5 - cumulative_adds (java.lang.String, r)

 %6 - cumulative_deletesById (java.lang.String, r)

 %7 - cumulative_deletesByQuery (java.lang.String, r)

 %8 - cumulative_errors (java.lang.String, r)

 %9 - deletesById (java.lang.String, r)

 %10 - deletesByQuery (java.lang.String, r)

 %11 - description (java.lang.String, r)

 %12 - docsPending (java.lang.String, r)

 %13 - errors (java.lang.String, r)

 %14 - expungeDeletes (java.lang.String, r)

 %15 - name (java.lang.String, r)

 %16 - optimizes (java.lang.String, r)

 %17 - rollbacks (java.lang.String, r)

 %18 - source (java.lang.String, r)

 %19 - sourceId (java.lang.String, r)

 %20 - version (java.lang.String, r)

#there's no operations

#there's no notifications

$>get cumulative_adds

#mbean =

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2:

cumulative_adds = 125;

JMX MBeans
LucidWorks includes a number of useful JMX MBeans, some available through Solr and some
developed in LucidWorks Search itself:

Solr MBeans

Domain Objects Available attributes Comments

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 272 291

Domain Objects Available attributes Comments

solr/collection type=updateHandler,
id=org.apache.solr.update.

DirectUpdateHandler2

cumulative_adds,
cumulative_deletesById,
cumulative_deletesByQuery,
cumulative_errors,
commits,
autocommits,
optimizes, rollbacks,
docsPending, etc

This MBean provides
comprehensive
information about
indexing activity like
number of added
documents, number of
errors, number of
commits, autocommits
and optimize
operations. It is really
useful to plot that
information into
graphs in your
monitoring system.
The cumulative_errors
parameter shows the
number of low level IO
exceptions.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 273 291

Domain Objects Available attributes Comments

solr/collection type=/update,
id=org.apache.solr.handler.

XmlUpdateRequestHandler

request, errors,
avgTimePerRequest,
etc

If using direct Solr
API, there are
separate beans for all
types of handlers you
can use to index
documents into the
system, such as XML,
CSV, JSON request
handlers. It makes
sense to add this
UpdateRequest
Handler information to
indexing graphs as
well. You might also
setup monitoring alert
on a number of errors
for particular update
handler to make sure
LucidWorks Search
clients don't hit any
errors during indexing
like invalid fields
names or types, no
required fields in
indexed documents,
etc.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 274 291

Domain Objects Available attributes Comments

solr/collection type=/lucid,
id=org.apache.solr.handler.

StandardRequestHandler

requests, errors,
timeouts,
avgTimePerRequest

This MBean represents
the default LucidWorks
Search request
handler and provides
statistics about
number of search
requests, errors,
timeouts and average
response time for
search requests. It's
pretty useful to display
this information on
monitoring graphs as
well as setup
monitoring alerts, such
as, "notify
administrator if
average response time
is more than 0.5
second or total
number of errors and
timeouts is more than
1% of total requests".

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 275 291

Domain Objects Available attributes Comments

solr/collection type=searcher,
id=org.apache.solr.search.

SolrIndexSearcher

numDocs,
warmupTime

numDocs is the total
number of documents
in the index.

 is thewarmupTime
amount of time a new
Searcher takes to
warm. When
LucidWorks Search
commits new data into
index, a new Searcher
is opened and
warmed. The warming
operation regenerates
caches from the
previous Searcher
instance and runs
some predefined in

 queriessolrconfig.xml
to warm up IO
filesystem cache and
load Lucene
FieldCache in memory.
This attribute basically
defines how long does
it take to commit
before new data will
be available to users.
It makes sense to
monitor this parameter
and setup trigger to
alert the LucidWorks
Search administrator if
it takes more time
than you expect.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 276 291

Domain Objects Available attributes Comments

solr/collection type=filterCache,
id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

Solr caches popular
filter query
(fq=category:IT)
attributes as
unordered sets of
document ids. This
technique significantly
improves search
filtering/faceting
performance. issize
the current number of
cached filter queries.
cumulative_hitratio
represents if this
cache is successfully
utilized by giving the
ratio of successful
cache hits to overall
number of lookups. If
it's low (such as < 0.3
or 30%) over long
period of time then
you might want either
increase cache size or
disable it at all to
reduce performance
overhead.

solr/collection type=queryResultCache,

id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

This cache stores
ordered sets of
document IDs and the
top N results of a
query ordered by
some criteria. It has
the same attributes as
filterCache.

solr/collection type=documentCache,
id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
etc

The documentCache
stores Lucene
Document objects that
have been fetched
from disk.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 277 291

LucidWorks Search MBeans

Domain Objects Available attributes Comments

lwe id=crawlers,
name=<data_source_id>,

type=datasources

total_runs, total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

This MBean displays
crawlers statistics
information for specific
data source (like
number of processed
documents, number of
errors, etc). If you
have periodically or
long running
scheduled data source
then you might want
to monitor and alert if
there's any problem
with the underlying
source (web site,
SharePoint server, etc)
or how optimized your
incremental crawl is
(percentage of
num_unchanged to
num_total), for
example.

lwe id=crawlers,
name=<collection_name>,

type=collections

total_runs, total_time,
num_total, num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

If you have multiple
data sources and don't
want to monitor on per
data source level, but
keep an eye on
aggregate numbers for
the whole collection
you might want to use
this bean.

lwe id=crawlers,
type=total

total_runs, total_time,
num_total, num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

You can use this
MBean if you have
multiple collections
(homogeneous
collections or
multi-tenant
architecture) to
monitor on per
instance level.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 278 291

Integrating with Monitoring Systems
Using JConsole and JmxTerm tools is a good way to explore information hidden in JMX, but what
you really need is to monitor your application automatically, record historical information, display it
in a graphical form, configure parameters thresholds as triggers and send alerts in case of denial of
service or performance problems. There are various standard sysadmin tools for that and
integrating LucidWorks with them is no different than with any other Java application. The idea is
that you can retrieve application information and send it to external monitoring system. In our
documentation we provide two examples of integrating LucidWorks server with popular open
source monitoring tools - and .Zabbix (see page 278) Nagios (see page 284)

Zabbix
Zabbix is an enterprise-class open source distributed monitoring solution for networks and
applications. It comes with pre-defined templates for almost all operating systems as well as
various open source applications. It also has a great template for JVM that contains the most vital
statistics of arbitrary Java application. There are different ways how you can integrate LucidWorks
with Zabbix and the best approach depends on the Zabbix release version.

Pre-2.0 Releases

Zabbix does not contain built-in support for monitoring Java applications prior to v2.0, but if you
are handy with scripting and command line tools then there are two possible approaches:

UserParameter: You can configure the Zabbix system agent to send custom monitored items
using . For retrieving JMX statistics you can use either or UserParameter cmdline-jmxclient

 as command line clients.jmxterm

UserParameter=jvm.maxthreads, java -jar cmdline-jmxclient.jar localhost:3000

java.lang:type=Threading PeakThreadCount

zabbix_sender utility: If you have a large number of JMX monitored items, or you need to monitor
some items quite frequently, then spawning a Java Virtual Machine process to get a single
object/attribute can be too expensive. In this case consider scripting JMX interactions using the

 command line tool and your favorite scripting language. The solutionJMXTerm (see page 269)
below is in Ruby but could be implemented using any scripting language. The main idea is that you
can run a JMXTerm java application from your script and communicate with it using and stdin

 streams using the library.stdout expect

http://www.zabbix.com
http://www.zabbix.com/documentation/1.8/manual/config/user_parameters
http://crawler.archive.org/cmdline-jmxclient/
http://wiki.cyclopsgroup.org/jmxterm
http://www.zabbix.com/documentation/1.8/manual/processes/zabbix_sender
http://en.wikipedia.org/wiki/Expect

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 279 291

1.
2.

3.

require "open3"

require 'expect'

....

run jmxterm java application

stdin, stdout, wait_thr = Open3.popen2e('java -jar jmxterm-1.0-alpha-4-uber.jar')

wait for prompt

result = stdout.expect('$>', 60)

...

connect to specific jvm

stdin.puts("open #{process_id}")

result = stdout.expect('$>', 60)

...

stdin.puts('get -d solr/collection1 -b

type=searcher,id=org.apache.solr.search.SolrIndexSearcher numDocs')

result = stdout.expect('$>', 60)

parse response from jmxterm command

...

run zabbix_sender command to send single item or save multiple values into file and

send as a batch

output = `zabbix_sender -z #{@server_name} -p #{@server_port} -i file.txt`.chomp

parse response and validate that operation is successful

...

2.x Releases

Zabbix 2.0 contains built-in support for monitoring Java applications (Zabbix Java proxy). For more
information please see the .JMX Monitoring section of the Zabbix manual

The following steps describe how to integrate LucidWorks Search with the Zabbix 2.0 release.

Download and install the 2.0 release according to the official .documentation
In order to build Zabbix JMX proxy you should build Zabbix package with the --enable-java
configuration option, such as ./configure --enable-server --with-mysql --enable-java
.

If you intend to run Zabbix on the same server where you installed LucidWorks, you may
want to add the option, such as --enable-agent ./configure --enable-server

.--with-mysql --enable-java --enable-agent

After , copy the example start script from make install init.d

 into the directory and edit it to start themisc/init.d/debian/zabbix-server /etc/init.d

JMX proxy daemon by adding and <install_dir>/sbin/zabbix_java/startup.sh

 calls to the corresponding options in <install_dir>/sbin/zabbix_java/shutdown.sh

.init.d

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/installation/install

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 280 291

4.

5.

6.

7.

8.
9.

10.

11.

Configure JMX proxy in by editing the , /etc/zabbix/zabbix_server.conf JavaGateway

 and parameters. The should matchJavaGatewayPort StartJavaPollers JavaGatewayPort

the defined in . It is alsoLISTEN_PORT <install_dir>/sbin/zabbix_java/settings.sh

recommended to enable JMX proxy verbose logging by editing
 and changing the element to<install_dir>/sbin/zabbix_java/lib/logback.xml file

point to your log file directory and setting the attribute to "debug".level

Import, using the Zabbix UI, the sample templates found in
 called (there are 3 in that$LWS_HOME/app/examples/zabbix lwe_zabbix_templates.xml

file).
Install the Zabbix agent to the server where LucidWorks Search is installed and configure it
to connect to the Zabbix server.
Add Zabbix host and assign proper template for the specific operating system (i.e., linux,
freebsd, etc.).
Assign the imported templates (Template_JVM, Template_Solr, Template_LWE) to that host.
Enable JMX monitoring in LucidWorks and allow the Zabbix server connect to JMX interface
over the network. Instructions to enable JMX monitoring are in the #Enabling JMX for

 section of this Guide.LucidWorks Search (see page 267)
Add the JMX interface to the host where LucidWorks is installed. This is done via the Zabbix
UI by creating JMX agents for each counter.
Start any activity in LucidWorks (such as, crawling, indexing, or serving queries) and review
the graphs for the monitored host (see screenshots below).

Example graphs

Total number of documents in search index

Total Number Of Documents
Solr index operations (commits, optimizes, rollbacks)

Solr Index Operations

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring#configuring_jmx_interfaces_and_items_in_zabbix_gui

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 281 291

Solr document operations (adds, deletes by id or query)

Solr Document Operations
Crawling activity - number of total documents processed, number of failures (retrieve,
parsing), number of new documents

Crawling Activity
Search activity - number of search requests

Search Activity
Search Average Response Time

Search Average Response Time
Searcher Warmup Time (how fast committed docs become visible/searchable)

Searcher Warmup Time

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 282 291

Java Heap Memory Usage

Java Heap Memory Usage

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 283 291

Caches stats

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 284 291

Nagios
Nagios is a popular open source computer system and network monitoring software application. It
watches hosts and services, alerting users when things go wrong and again when they get better.
There are different Nagios plugins that allow you to monitor Java applications using JMX interface.
We recommend you to use as the most mature plugin that supportsSyabru Nagios JMX Plugin
different data types (integers, floats, string regular expressions) and advanced Nagios threshold
syntax. In order to install Syabru Nagios JMX Plugin you should copy and check_jmx

 from the downloaded package to Nagios directory and add check_jmx.jar plugins check_jmx
 to either global configuration file or put the file into command definition commands.cfg jmx.cfg

 configuration directory. The next step is to define Nagios services, as in thisnagios_plugins

example:

LWE searcher warmup time is no more than 1) 1 second - warning state 2) 2 seconds -

critical state

define service {

 hostgroup_name all

 service_description LWE_SEARCHER_WARMUP_TIME

 check_command check_jmx!3000!-O

"solr/collection1:type=searcher,id=org.apache.solr.search.SolrIndexSearcher" -A

warmupTime -w 1000 -c 2000 -u ms

 use generic-service

 notification_interval 0

}

LWE search average response time is no more than 1) 100ms - warning state 2) 200ms -

critical state

define service {

 hostgroup_name all

 service_description LWE_SEARCHER_AVG_RSP_TIME

 check_command check_jmx!3000!-O

"solr/collection1:type=/lucid,id=org.apache.solr.handler.StandardRequestHandler" -A

avgTimePerRequest -w 100 -c 200 -u ms

 use generic-service

 notification_interval 0

}

After you setup your services and reload the Nagios configuration you can monitor application state
using either the Nagios web UI or receive email notifications.

Nagios UI screenshot (thresholds on the screenshots are lowered to trigger critical state as
an example)

http://www.nagios.org/
http://snippets.syabru.ch/nagios-jmx-plugin/
http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition
http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 285 291

Nagios email alert

Helpful Tips

OS file system cache: One of the frequent problems with LucidWorks Search and
Lucene/Solr applications is that if you do not have enough free memory and a significant
index size you might notice performance problems because there's not enough free memory
for the file system cache. IO cache is a crucial resource for search applications, so it
definitely makes sense to monitor this parameter and display it in graphs with other memory
information like free memory, jvm heap memory, swap, etc. This parameter is part of the OS
level monitoring in Zabbix (name is).vm.memory.size[cached]

File descriptors: Another problem is that sometimes your application can hit OS or per
process file descriptor limits. It is also recommended to monitor these parameters and set
trigger thresholds for these parameters.
CPU usage: Default Zabbix templates have triggers for CPU load average numbers. You
might want to tune thresholds for your server based on number of CPUs and expected load.
Heap memory usage and garbage collector statistics: Zabbix Java template contains
multiple items and triggers for memory and garbage collector invocation counts. You should
also tune these parameters to match your scenario.
Solr index size and free disk space: These should be set properly to avoid "Out Of Disk
Space" errors.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 286 291

Glossary of Terms
Where possible, terms are linked to relevant parts of the documentation for more information.

Jump to a letter:

A (see page 286) E G H B (see page 286) C (see page 286) D (see page 287) F (see page 287) I
 J K L O P (see page 288) M (see page 288) N (see page 288) Q (see page 288) R (see page 289) S
 U V X Y Z(see page 289) T (see page 290) W (see page 290)

A

Alerts
An alert allows a user to save searches. There are two types: , which will send notificationsactive
when new results are found, and , which do not send notifications.passive

Auto-Complete (see page 181)
A way to provide users suggestions for possible matching queries before they have finished typing.
In LucidWorks Search, this relies on an index of terms to be created on a regular basis by
scheduling it as an activity.

B

Boolean Operators
These control the inclusion or exclusion of keywords in a query by using operators such as AND,
OR, and NOT.

C

Click Scoring Relevance Framework (see page 185)
A method of changing the relevance ranking of a document based on the number of times other
users have clicked on the same document.

Collection
One or more documents grouped together for the purposes of searching. See also Document (see

.page 287)

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 287 291

Component (see page 19)
A part of LucidWorks Search that has been designed to stand alone or can be run independently
from other components. LucidWorks Search has three main components: , which runsLWE-Core
Solr, indexing, and other critical application functions, , which handles all crawlingLWE-Connectors
activities, and , which runs the Administrative UI, the front-end search interface, and theLWE-UI
alerting functionality.

Connector
A connector is a program or piece of code that allows a connection to be made to a data source
and content to be extracted from it.

Crawler
Also known as a "spider", this is a program that is able to retrieve documents internal or external
servers.

D

Data Source (see page 43)
Defines the metadata required to connect to a location containing content to be indexed. It could
be a file system path, a Web URL, a JDBC connection, or some other set of values.

Distributed Index (see page 262)
A distributed index is one where the search index for a is spread acrosscollection (see page)
more than one .shard (see page)

Distributed Search (see page 262)
Distributed search is one where queries are processed across more than one .shard (see page)

Document
One or more Fields. See also .Field (see page 287)

F

Field
The content to be indexed/searched along with metadata defining how the content should be
processed by LucidWorks Search.

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 288 291

I

Inverse Document Frequency (IDF)
A measure of the general importance of a term. It is calculated as the number of total Documents
divided by the number of Documents that a particular word occurs in the collection. See

 and http://en.wikipedia.org/wiki/Tf-idf
 for more info onhttp://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

TF-IDF based scoring and Lucene scoring in particular. See also .Term Frequency (see page 290)

Inverted Index
A way of creating a searchable index that lists every word and the documents that contain those
words, similar to an index in the back of a book which lists words and the pages on which they can
be found. When performing keyword searches, this method is considered more efficient than the
alternative, which would be to create a list of documents paired with every word used in each
document. Since users search using terms they expect to be in documents, finding the term before
the document saves processing resources and time.

M

Metadata
Literally, . Metadata is information about a document, such as it's title, author, ordata about data
location.

N

Natural Language Query
A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Q

Query Parser
A query parser processes the terms entered by a user.

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 289 291

R

Recall
The ability of a search engine to retrieve of the possible matches to a user's query.all

Relevance (see page 161)
The appropriateness of a document to the search conducted by the user.

Replication (see page 257)
A method of copying a master index from one server to one or more "slave" or "child" servers. In
LucidWorks Search, the master continues to manage updates to the index, while queries are
handled by the slaves. This approach enables LucidWorks Search to properly manage query load
and ensure responsiveness.

REST API
An alternative way of controlling LucidWorks Search without accessing the user interface.

S

Shard
A method of partitioning a database or search engine to maximize performance and efficiency.

SolrCloud (see page 250)
 within the Solr community to improve Solr's ability to operate in a cloudOngoing work

environment.

Solr Schema (schema.xml)
The Apache Solr index schema. The schema defines the fields to be indexed and the type for the
field (text, integers, etc.) The schema is stored in schema.xml and is located in the Solr home conf
directory.

Solr Config (solrconfig.xml)
The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting,
spellchecking and various other configurations. The file, solrconfig.xml is located in the Solr home
conf directory.

http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 290 291

Spell Check (see page 179)
The ability to suggest alternative spellings of search terms to a user, as a check against spelling
errors causing few or zero results. In LucidWorks Search, when spell-checking is enabled, a parallel
"spell" index is created as documents are indexed.

Stopwords (see page 172)
Generally, words that have little meaning to a user's search but which may have been entered as
part of a query. Stopwords are generally very small pronouns,natural language (see page 288)
conjunctions and prepositions (such as, "the", "with", or "and")

Synonyms (see page 172)
Synonyms generally are terms which are near to each other in meaning and may substitute for one
another. In a search engine implementation, synonyms may be abbreviations as well as words, or
terms that are not consistently hyphenated. Examples of synonyms in this context would be "Inc."
and "Incorporated" or "iPod" and "i-pod".

T

Term Frequency
The number of times a word occurs in a given document. See http://en.wikipedia.org/wiki/Tf-idf
and for more info on TF-IDF based scoring andhttp://lucene.apache.org/java/2_3_2/scoring.html
Lucene scoring in particular.
See also .Inverse Document Frequency (IDF) (see page 288)

W

Wildcard
A wildcard allows a substitution of one or more letters of a word to account for possible variations
in spelling or tenses. In LucidWorks Search, there are two ways to use them. One is to use an
asterisk (*) at the end of a term to find all documents that contain words that start with that
pattern. For example, would find , and . A second way is to use apaint* paint painter painting

question mark (?) in the middle of a term to substitute for one character in that term. Such as, c?t
would find , and . It's also possible to use wildcards at the start of a term in the samecat cot cut

way - either to replace a single letter (using the ? symbol) or to find documents that contain words
that end with a pattern using a *. For example, would find and .*sphere ecosphere stratosphere

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

LucidWorks Search Documentation 03-Jun-2014

© 2013
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 291 291

About LucidWorks
LucidWorks (formerly known as Lucid Imagination) is the trusted name in Search, Discovery and
Analytics, delivering the only enterprise-grade embedded search development solution built on the
power of the Apache Lucene/Solr open source search project. Founded in 2008, the company
initially provided support, consulting services, documentation and training for the Apache
Lucene/Solr open source search project.

Within a few years, the LucidWorks team realized the need to add value to the open source search
platform by developing an extensive layer of services which made Lucene/Solr secure and easier to
use and manage. The company shipped the first version of its flagship product, LucidWorks Search,
in 2011, followed by LucidWorks Big Data in May 2012. LucidWorks continues to offer support,
documentation, consulting services and training products for Lucene/Solr.

LucidWorks remains committed to giving back to the Apache Lucene/Solr community. Out of the 37
Core Committers to the Apache Lucene/Solr project, 9 individuals work for LucidWorks, making the
company the largest supporter of open source search in the industry. Further, LucidWorks hosts
the Lucene Revolution, a conference dedicated to sharing ideas and promoting the Apache
Lucene/Solr open source search project.

For more information on product and support options for LucidWorks Search, please write to:
 or visit our . Support inquiries can be submitted to our sales@lucidworks.com website Support

.group

LucidWorks
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.525.1365

http://www.lucidworks.com
http://www.lucidworks.com

	How to Use this Documentation
	Audience and Scope
	Conventions
	Paths
	Notes
	REST API Conventions

	Customers of LucidWorks Search on AWS or Azure
	Configuration Options
	API Conventions for LucidWorks Search on AWS or Azure

	Getting Support & Training

	Getting Started
	LucidWorks Search User Interface Help
	System Configuration Guide
	Understanding LucidWorks Search
	How Search Engines Work
	Indexing
	Searching
	Full-text Searching and Challenges

	How LucidWorks Search Works
	Related Topics

	Working With LucidWorks Search Components
	About the Components
	LWE-Core
	LWE-UI
	LWE-Connectors
	Default Installation URLs

	Configuring the Components
	Related Topics

	System Directories and Logs
	Locating Files and Directories
	Configuring LucidWorks Search Directories
	Temporary Files

	System Logs
	Log Properties

	LucidWorksLogs Collection
	Related Topics

	Starting and Stopping LucidWorks Search
	Starting a Standalone LucidWorks Search Instance
	Starting SolrCloud-enabled LucidWorks Search Instances
	Passing SolrCloud parameters at Start
	Updating master.conf

	Stopping LucidWorks Search (all modes)
	Starting or Stopping Components Separately

	Configuring Default Settings
	Related Topics

	LucidWorks System Usage Monitor
	Information Collected
	How the System Usage Monitor Works
	When Information is Sent
	How Information is Sent

	How to Opt-In or Opt-Out
	During Installation
	Post-Installation

	More Information

	Collections and Indexes
	Working with Collections
	Default Collections
	Per-Collection Features
	System-Wide Features
	Related Topics

	Using Collection Templates
	Included Templates
	Creating a Template
	Related Topics

	Indexing Documents
	Defining Fields
	Indexing Data Sources
	Related Topics

	Storing Indexes in HDFS
	Defining the HdfsDirectoryFactory in solrconfig.xml
	Updating master.conf
	Related Topics

	How Documents Map To Fields
	Related Topics

	Customizing the Field Schema
	Guidelines for Removing Fields from the Schema
	Essential Fields
	Built-In Search UI Fields
	Fields to Support Specific Features
	Crawler Fields
	Other Dynamic Fields

	Table of Fields

	Reindexing Content
	Related Topics

	Multilingual Indexing and Search
	Approaches to Multilingual Search
	Single Field Approach
	Multiple Field Approach
	Multiple Indexes Approach

	Open Source Multilingual Capabilities
	Adding Support for Other Languages
	Related Topics

	Lucid Plural Stemming Rules
	The Stemming Rules File
	Types of Stemming Rules
	Protected Word
	Replacement Word
	Protected Suffixes
	Translation Suffix

	Example Stemming Rules File
	Choosing an Alternate Stemmer
	Using the FieldTypes API
	Editing schema.xml

	Deleting the Index
	Related Topics

	Crawling Content
	Overview of Crawling
	The Crawl Process
	Re-Crawling Documents

	Data Source Options
	Logging
	Scheduling
	Field Mapping

	Data Source Types
	Related Topics

	Supported Filetypes
	Supported File Formats

	Troubleshooting Document Crawling
	Errors Creating Data Sources
	Path or URL Errors
	MapR-related Errors

	Understanding Crawl Errors
	Possible Errors

	Related Topics

	Pushing Content to LucidWorks
	Push Data Sources
	Add lucidworks_fields to Incoming Content
	Examples

	Related Topics

	Indexing Documents Directly to Solr
	Solr and the LucidWorks Admin UI
	Indexing Solr XML
	Indexing Column (Comma) Delimited Data
	Related Topics

	Crawling Windows Shares with Access Control Lists
	Permissions with Access Control Lists
	How SMB ACL Information Is Stored In The Index
	Related Topics

	Indexing Binary Data Stored in a Database
	Example
	Related Topics

	Using the Hadoop Crawlers
	System Requirements
	Special Requirements for MapR

	Using Hadoop Crawlers in LucidWorks
	How the Crawler Works
	Differences from Other Hadoop Crawlers in LucidWorks
	Job Jar Arguments
	Mapper Classes
	Example Arguments

	Permission Issues
	Related Topics

	Integrating Nutch
	Solr indexer
	Field mapping in Nutch
	Field mapping in LucidWorks
	Putting it all together
	Summary
	Related Topics

	Processing Documents in Batches
	How a Batch is Constructed
	Steps to Configure Batch Crawling
	More about the Data Source Settings

	Related Topics

	Using the Apache Hive Connector
	Installing LucidWorks to Hive
	Create an External Table
	Queries and Inserting Tables

	Query and Search Configuration
	Overview of Query Processing
	Matching the User's Query to Documents
	Search Results

	Getting Search Results
	Basics of Searching
	Request Handlers
	Query Parsers

	Related Topics
	Constructing Solr Queries
	Solr Query Parameters
	Query Parsers
	Related Topics

	Solr Query Responses
	Structure of the Response
	The responseHeader Section
	The response Section
	The highlighting Section
	The facet_counts Section
	The spellcheck Section
	The debug Section

	Format of Results
	Related Topics

	Query and Response Examples
	Related Topics

	Understanding and Improving Relevance
	Relevance Testing
	After Testing
	Related Topics
	Indexing and Relevance
	Stop words
	Alternate Indexing Fields
	Document and Field Boosting
	Stemming and Lemmatization

	Queries and Relevance
	Boosting Specific Documents
	Query Term Boosting
	Click Scoring Relevance Framework
	Synonyms
	Unsupervised Feedback
	Boosting Documents According to Rules
	Related Topics

	Relevance Tuning Tools
	Relevancy Workbench
	Explain Scoring
	Solr Analysis
	Using Luke
	External Boost Data
	Related Topics

	Synonyms and Stop Words
	Synonym Expansion
	Stop Words
	Related Topics
	Suppressing Stop Word Indexing
	Disabling Stop Word Indexing
	Position Increment Mode

	Spell Check
	Related Topics

	Auto-Complete of User Queries
	Automatic Creation of Auto-Complete Indexes

	Enterprise Alerts
	How Alerts Work
	Enabling Alerts

	Click Scoring Relevance Framework
	Functionality of Click Scoring
	Collection of Query Terms and User Clicks
	Processing Logs
	Maintenance of Historical Click Data
	Document Boost Data
	Integration of Boost Data with the Index

	Using Click Scoring information
	Related Topics
	Using Click Scoring Tools
	File Formats
	Query and Click-through Log Format
	Boost File Format

	Click-induced Boost Calculation
	ClickAnalysisRequestHandler
	Click Scoring Tools and Index Replication

	Business Rules Integration
	About Rules Engines
	When Should I Use Business Rules?
	How to Implement Business Rules in LucidWorks Search
	Integrating with your Rules Engine

	Configuring Business Rules in LucidWorks Search
	RequestHandlers
	/rulesMgr
	Optional RequestHandlers
	/update-with-rules
	/update-extract-with-rules
	/search-with-rules

	SearchComponents
	firstRulesComp
	lastRulesComp
	Rules Component Parameters
	Input Parameters
	Facts Collected for the RulesComponent

	landingPage
	Input Parameters
	Facts Collected for the LandingPageComponent

	UpdateRequestProcessorChain
	Facts Collected for the RulesUpdateProcessor

	Document Transformer
	Facts Collected for the RulesDocTransformer

	Rules with Index Replication

	Writing Rules
	Rules Files
	Rule Declarations
	rule and Attributes
	when Conditions
	then Actions

	DroolsHelper Class
	Limitations

	Related Topics

	Example Rules and Recipes
	Sample Rule Files
	Detailed Examples
	README Example
	Landing example

	Disabling Business Rules
	Remove Rules from Update Chain
	Remove Rules from the /lucid Request Handler
	Remove the Rules Request Handler
	Remove Rules Search Components
	Remove the RulesDocTransformer
	Remove Rules From the Replication Handler

	Security and User Management
	Securing LucidWorks
	Restricting Access
	Enabling Basic Auth for UIs and APIs
	Modify jetty.xml
	Create a realm.properties File
	Modify web.xml

	Restricting Access to LucidWorks Search User Interfaces
	Hiding Documents by Restricting Access
	Related Topics

	Enabling SSL
	Steps to Enable SSL
	Step 1: Modify master.conf
	Step 2: Modify jetty.xml for LWE-Core Component
	Step 3: Modify jetty-ssl.xml for LWE-Core Component
	Step 4: Modify jetty.xml for LWE-UI Component
	Step 5: Modify jetty-ssl.xml for LWE-UI Component
	Step 6: Modify jetty.xml for the LWE-Connectors Component
	Step 7: Restart LucidWorks

	Certificate Management
	Client Certificates for LWE-Core and Connectors
	Configuring Mutually Authenticated SSL
	Debugging SSL Configuration
	Common SSL Problems

	Related Topics

	Restricting Access to Content
	Search Filters
	Access Control Lists
	Document-based Authorization
	Related Topics

	LDAP Integration
	Enabling LDAP
	LDAP Configuration File
	User to Group Mappings

	Manual User Management
	Related Topics

	Solr Direct Access
	Solr Version
	How the LucidWorks-Bundled Solr is Different
	Adding Solr Plugins
	Related Topics

	Performance Tips
	Improving indexing speed
	Improving Search speed
	Related Topics

	Expanding Capacity
	Using SolrCloud in LucidWorks
	Enabling SolrCloud Mode
	Using the Embedded ZooKeeper
	Starting LucidWorks Search

	Bootstrapping Solr vs. LucidWorks Search

	How SolrCloud Works with LucidWorks
	Replicated Configurations
	Using the Admin UI in SolrCloud Mode
	Feature Limitations
	Collections APIs

	Using a Stand-Alone ZooKeeper Instance or Ensemble
	Related Topics

	Index Replication
	Configuring Replication on the Master Server
	Operations that Trigger Replication

	Configuring Replication on Slave Servers
	Configuring Replication on a Repeater Server
	Replicating Configuration Files
	Replicating the solrconfig.xml File

	Related Topics

	Distributed Search and Indexing
	Distributed Indexing
	Manual Distributed Indexing
	Manual Configuration
	Indexing Documents

	Distributed Search
	Programmatic Distributed Search
	Supported Components

	Scalability and Fault Tolerance
	Indexing in a Fault Tolerant Distributed Configuration
	Searching in a Fault Tolerant Distributed Configuration

	Integrating Monitoring Services
	JMX
	Enabling JMX for LucidWorks Search
	JMX Clients
	JConsole
	JMXTerm

	JMX MBeans

	Integrating with Monitoring Systems
	Zabbix
	Pre-2.0 Releases
	2.x Releases
	Example graphs

	Nagios

	Helpful Tips

	Glossary of Terms
	A
	B
	C
	D
	F
	I
	M
	N
	Q
	R
	S
	T
	W

	About LucidWorks

