L= LucidWorks:

LucidWorks Search System
Configuration Guide

2.9 Documentation

Created: 05-Aug-2014

LucidWorks Search Documentation 05-Aug-2014
Table of Contents
Getting Started 5
LucidWorks Search User Interface Help 9
System Configuration Guide 10
Understanding LucidWorks Search 11
Collections and Indexes 41
Crawling Content 92
Query and Search Configuration 163
Security and User Management 263
Solr Direct Access 303
Performance Tips 306
Expanding Capacity 308
Integrating Monitoring Services 330
© 2014 Find this documentation online at Page 2 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

LucidWorks Search Documentation

©@ This documentation covers LucidWorks Search v2.9.

The LucidWorks Search Documentation is organized into several guides that cover
all aspects of using and implementing a search application with LucidWorks
Search, whether on-premise or hosted on AWS or Azure.

Installation & Upgrade Guide

Installing LucidWorks Search
System Directories and Logs
® Upgrade instructions for v2.9
Review changes in LucidWorks v2.9

System Configuration Guide

Troubleshooting crawl issues

Alerts configuration

Query options

Custom fields, field types, and other index customizations
Performance considerations and system monitoring
Distributed search and indexing

Security options

© 2014 Find this documentation online at Page 3 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Lucid Query Parser

® How the default query parser handles user requests
® Customization options

LucidWorks REST API Reference

Configure data sources and administer crawls
Set system settings

Manage fields, field types, and collections
Example clients in C#, Perl and Python

Custom Connector Guide

® Introduction to Lucid Connector Framework
® How To Create A Connector

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 4 of
347

LucidWorks Search Documentation 05-Aug-2014

Getting Started

The steps to get started with LucidWorks Search are not very different from
getting started with any new search platform. One needs to consider the nature of
the documents to be indexed, how users expect to find them, and how results will
be presented to users. This section outlines those activities and points to parts of
documentation to help you understand how to accomplish the necessary tasks for
a successful search application.

If you are new to search applications, these sections may be helpful:

® How Search Engines Work
® Indexing Documents
® Overview of Crawling

_1 The obvious first step is to install the application (if you
are using LucidWorks Search On-Premise; LucidWorks Search on AWS or Azure, of
course, is already installed).

® Installation

In general, LucidWorks Search provides two modes of interacting with the system:
the Admin UI or the REST API. When just starting out, it's easier to use the Admin
UI, but when developing your search application, you may want to use the API,
depending on your needs. LucidWorks Search is split into three components, and
it's worth getting a sense for what each one does before diving too deep into
application development.

® Working With LucidWorks Search Components

© 2014 Find this documentation online at Page 5 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Before any user can send queries to your search applications, you need to index
data. LucidWorks Search requires configuring data sources for each content
repository that will be added to the index and several types of repositories are
supported. These can be created via the Admin UI or with the REST API.

® Creating Data Sources with the Admin UI
® Creating Data Sources with the REST API

To help you get started quickly, you can use "Quick Start" from the UI Landing
Page found at http://localhost:8989 (be sure to adjust the host and port to the
LWE-UI component as needed). It will allow you to quickly configure a website or
local file system as a data source and start indexing content immediately.

When first starting out, it's best to use a small set of documents and test that they
are being indexed according to the needs of your users. The built-in Search UI was
designed to be used during implementation. Queries can also be sent directly to
Solr using the standard Solr syntax.

® Using the Search UI
® Getting Search Results
® Query and Response Examples

Once you see the results of initial crawls, you may realize that some of your
documents don't appear as expected, or facets important to you are not appearing
as you'd like.

Raw documents are broken up into various fields during the crawling and indexing
processes, and the fields contained in your documents may vary from the default
fields provided by LucidWorks Search through a file called schema. xm . While
we've tried to anticipate the needs of most customers, you may find tweaks are
required for your content.

In addition, LucidWorks Search provides the ability to separate indexed content
into collections, that each have their own field definitions, data sources, synonym
lists, activity schedules, query settings and other configurations. It's worth
considering if you need to break up your content in this way, and create new
collections as needed.

® Understanding Collections
® Creating Collections with the Admin UI

© 2014 Find this documentation online at Page 6 of
LucidWorks http://docs.lucidworks.com/ 347

http://localhost:8989

LucidWorks Search Documentation 05-Aug-2014
® Creating Collections with the REST API
® Customizing the Field Schema
® Managing Fields with the Admin UI
® Managing Fields with the REST API

Once the content is being indexed as you expect, you can modify the way user
queries are handled and how results are shown to users. There are many features
available, such as synonyms, auto-complete, alerting users of new results,
boosting documents based on user clicks among other features.

® Synonyms

® Stop Words

® Using User Clicks to Boost Results

® Modifying Query Settings with the Admin UI
® Modifying Query Settings with the REST API
® Lucid Query Parser Guide

® Spell Check

® Auto-Complete

® User Alerts

Before going live with your search application, you'll want to consider user
authentication and system security issues. LucidWorks can integrate with LDAP
and supports SSL. Additionally, Access Control List information from Windows
Shares can be incorporated to restrict result sets to only those documents users
are allowed to see. You may also want to integrate with a JMX client, Zabbix or
Nagios to monitor system performance.

LDAP Integration

Restricting Access to Content
Enabling SSL

Securing LucidWorks
Integrating Monitoring Services

© 2014 Find this documentation online at Page 7 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Finally, those using (or hoping to use) the SolrCloud features of LucidWorks
Search will want to review the section on Using SolrCloud in LucidWorks.

© 2014 Find this documentation online at Page 8 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

LucidWorks Search User Interface Help

Help for the LucidWorks Search User Interface is located at
http://docs.lucidworks.com/display/help.

© 2014 Find this documentation online at Page 9 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

System Configuration Guide

The System Configuration Guide provides detailed information about many of the
features included with LucidWorks Search. It describes the layout of a LucidWorks
Search installation and how to work with many of the configuration options
included with the system. It contains the following sections:

Understanding LucidWorks Search: Introduction, location of logs, working
with components

Collections and Indexes: Setting up collections, designing the index structure
Crawling Content: Crawling content of different filetypes and in different
repositories

Query and Search Configuration: Configuring the user experience and how to
get search results to your application

Security and User Management: SSL communication between components
and user authentication

Solr Direct Access: Using Solr

Performance Tips: How to judge performance and strategies for
improvement

Expanding Capacity: SolrCloud, index replication and distributed search
Integrating Monitoring Services: Using JMX, MBeans, and integrating with
Zabbix or Nagios

Information for LucidWorks Search in the Cloud Users

While nearly all of the features described in this section are available to
LucidWorks Search customers hosted on AWS or Azure, some of the advanced
configuration options are not. When editing a setting requires direct access to
a configuration file, instead of accessing the setting via the UI or an API,
contact your support representative for information about how you might
tweak that setting for your needs.

© 2014 Find this documentation online at Page 10 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Understanding LucidWorks Search

This section covers the architecture of LucidWorks Search and nitty-gritty details
like where log files and important directories can be found.

We also cover some introductory material: if you're not familiar with search
engines, there's a section How Search Engines Work and we continue that with
some more information about How LucidWorks Search Works.

Then we get into the details with these sections:

Working With LucidWorks Search Components
System Directories and Logs

Starting and Stopping LucidWorks Search
Configuring Default Settings

LucidWorks System Usage Monitor

© 2014 Find this documentation online at Page 11 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

How Search Engines Work

In its simplest form, a search engine is an application that enables a user to query
a data set and get a list of documents in response. Most people are familiar with
search engines that search the internet, but search engines are also built for more
specific purposes. Enterprise documents or websites are not available to the public
at large, so they can't be searched with internet search engines such as Google or
Yahoo. An organization may have an online store and wish to customize their site
to allow customers to find products.

In LucidWorks Search, each unit of text to be searched is a "document", whether it
is an article, a website, a product description, or a phone book entry. In an
enterprise environment, the administrator determines which of these documents
make up the data set to be searched.

This graphic shows the basic operation of a search engine:

Basic Operation of a
Search Engine

User Query
lucidworks enterprise Saarch
Result List
Search Index _ |
: g
© 2014 Find this documentation online at Page 12 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Indexing

For a user to search a set of documents, the search engine needs to know what is
in them. The process a search engine uses to find out what is in a document is
called "indexing". Essentially, an administrator tells the search engine where to
find the document or documents, or feeds them to the search engine by way of an
uploading process. The search engine then creates an index of all the words it
finds, along with a pointer to the document in which it found them. Most
information within documents is organized into "fields." Fields contain information
that serves a specific, important purpose in the document, such as Title, Author,
or Creation Date. Good search engines are able to identify these fields and create
an index for each one.

Once the search engine creates an index, lots of interesting features can be added
to aid users in their search experience, such as a spelling checker, automatic
query completion, faceting of results, and "find similar" functionality.

Searching

Once the search engine has created an index of available content, it is ready to
accept a search. This happens when the user enters a keyword or phrase, and the
search engine compares that keyword or phrase against the index, returning
pointers to any documents that are associated with them.

Of course, people are surprisingly different in the way in which they approach a
topic, so search engines need to take these variations into account. The goal of a
search engine is to match words entered by a user to words found in a document,
so one technique it uses is to "normalize" both the user's query and terms that
have been indexed as much as possible to find the best possible match, similar to
the way in which you might convert both a target string and the text you are
matching to uppercase in order to eliminate case-sensitivity.

© 2014 Find this documentation online at Page 13 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Full-text Searching and Challenges

Several inherent challenges complicate full-text search. First, there is currently no
way to guarantee the searcher will find the "best" results because there is often no
agreement on what the "best" result is for a particular search. That's because
evaluating results can be very subjective. Also, users generally enter only a few
terms into a search engine, and there is no way for the search system to
understand the user's intention for a search. In fact, if the user is doing an initial
exploration of a topic area, the user may not even be aware of his or her intention.

A system that understands natural language (that is, the way people speak or
write) perfectly is usually considered the ultimate goal in search engine
technology, in that it would do as good a job as a person in finding answers. But
even that is not perfect, as variations in human communication and
comprehension mean that even a person is not guaranteed to find the "right"
answer, especially in situations where there may not even be a single "right"
answer for a particular question.

Some search engines, such as LucidWorks Search, are built with features that try
to solve, or at least mitigate, these challenges. This System Configuration Guide
will introduce you to many of these features and describe how to configure them.

© 2014 Find this documentation online at Page 14 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

How LucidWorks Search Works

Like any other search engine, LucidWorks Search works by indexing several kinds
of documents and providing a way for a user to search them. It uses Lucene and
Solr to handle the core indexing and query processing tasks, and leverages the
latest advancements in those projects. LucidWorks also builds on the work of the
open-source community by adding crawling features, a robust REST API, an
easy-to-use administration interface, and other features.

The Apache Solr/Lucene core provides the indexing and searching functionality on
which LucidWorks is built. As an application developer using LucidWorks Search,
you can access this functionality in the same way that you access a traditional Solr
installation. This includes field definition, document analysis, faceting, and basic
query interpretation. Customers with LucidWorks Search installed on their own
servers can work with the Apache Solr/Lucene core directly if they choose.
Customers who use LucidWorks Search on AWS or Azure access much of the same
functionality through the Admin UL.

On top of the Apache Solr/Lucene core is LucidWorks Search, which provides
programmatic and GUI access to features that are normally difficult to work with
directly, such as field definition or data source creation and scheduling.

® The LucidWorks Search Admin User Interface provides configuration and
management tools for almost every feature of LucidWorks, including
document acquisition, security, and field definitions.

® The REST API provides programmatic access to almost all configuration and
management functions within LucidWorks.

Most of the functionality provided by LucidWorks comes from the LWE-Core and
LWE-Connectors components, which manage all of these processes and features
so administrators can concentrate on building and managing their own applications
rather than the underlying search engine.

Related Topics

® Working With LucidWorks Search Components
® Indexing Documents
® Getting Started

© 2014 Find this documentation online at Page 15 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Working With LucidWorks Search Components

LucidWorks Search has three main components that can each be run together on a
single server or deployed on separate servers if desired. While LucidWorks Search
customers on AWS or Azure will not often need to interact with these components,
an understanding of how they work is helpful for a deeper understanding of the
system as a whole.

® About the Components

¢ LWE-Core

® |WE-UI

® LWE-Connectors

® Default Installation URLs
® Configuring the Components
® Related Topics

About the Components

Each component is a single JVM process. The system properties for each JVM can
be modified with the mast er. conf file found in the $SLWS_HOVE/ conf directory.

LWE-Core

The LucidWorks Search Core component is the main engine of the application. It
contains the search index, the index definitions, the query parser, the embedded
Solr application and Lucene libraries, as well as serves the REST API (with the
exception of Alerts).

LWE-UI

The UI component includes all web-based graphical interfaces for administering
the application, a sample search interface, Relevancy Workbench and the
enterprise alerts feature.

Through the Admin UI, you can modify index fields, configure data sources for
content collection, define aspects of the search experience, and monitor system
performance.

The Search UI provides a front-end for users to submit queries to LucidWorks
Search and review results. It is not intended as a production-grade user interface,
rather as a sample interface to use while configuring and testing the system.

© 2014 Find this documentation online at Page 16 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Relevancy Workbench is a tool to model possible changes to how user query terms
are interpreted in order to improve relevancy. More information about this tool is
available at Relevance Workbench.

Enterprise Alerts provide a way for users of the front-end Search UI to save
searches and receive notifications when new results match their query terms.
There is a user interface piece with forms and screens for users to configure and
review their alerts, as well as a REST API for programmatic access to the Alerts
features.

LWE-Connectors

The Connectors component performs all the crawler functions, which include
crawling data sources on demand or at a specific schedule, maintaining a crawl
history (as applicable; each crawler varies in their behavior), and saving data
source configuration information for use by the crawlers. The Connectors
component also manages the LucidWorks Logs crawler.

Default Installation URLs

This guide will refer to example URLs that will reference the default installation
URLs for each component. These defaults are:

Component Default URL Web Interfaces

LWE-Core http://127.0.0.1:8888/ This URL is used as the
base for accessing most
of the REST APIs, and
also for accessing Solr
Admin UI at
http://127.0.0.1:8888/solr

© 2014 Find this documentation online at Page 17 of
LucidWorks http://docs.lucidworks.com/ 347

http://127.0.0.1:8888
http://127.0.0.1:8888/solr

LucidWorks Search Documentation 05-Aug-2014

Component Default URL Web Interfaces

LWE-UI http://127.0.0.1:8989/ There are multiple
front-ends at this URL.
This base URL will access
the Landing Page, which
will provide access to the
Quick Start, the
LucidWorks Search Admin
UI, Relevancy
Workbench, and also a
link to the Solr Admin UI.

LWE-Connectors http://127.0.0.1:8765/ There is no web front-end
at this URL, it is used by
the LWE-Core and
LWE-UI components to
communicate with the
Connectors component.

These URLs are used by the installer for two purposes:

1. When the various components communicate with each other, or link to one
another, they specify which URL will be used.

2. If the "Enable" check box is selected for a component when using the
installer, then that component will be run locally, using the port specified in
the URL.

The default LucidWorks start scripts start all components at the same
time. However, it is possible to restart or stop a single component. See
the section Starting and Stopping LucidWorks Search for details.

Back to Top

© 2014 Find this documentation online at Page 18 of
LucidWorks http://docs.lucidworks.com/ 347

http://127.0.0.1:8989
http://127.0.0.1:8765/

LucidWorks Search Documentation 05-Aug-2014

Configuring the Components

If all components are run on the same machine, they must be defined with
different ports. They can also be configured to run on different servers.

There are three possible ways to configure the components:

1. All components run on the same machine and they are started and stopped
together. This is the default for the standalone installer, which automatically
prompts for default ports that are different for each component. To use this
mode, you only need to run the installer once and follow through the process
completely.

2. All components run on the same machine but they are started and stopped
separately. This would require running the installer three times on the same
machine. See Installing Components on Different Servers for detailed
instructions on how to do this.

3. Each component is on a different machine and started and stopped
separately. This requires running the installer on each machine. See
Installing Components on Different Servers below for detailed instructions on
how to do this.

Back to Top
Related Topics

® Expanding Capacity

© 2014 Find this documentation online at Page 19 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

System Directories and Logs

This functionality is
not available with
LucidWorks Search
on AWS or Azure

There are several important directories in the
LucidWorks Search installation. System activities are recorded in several log files.
Knowing where files and logs are located will make system configuration and
troubleshooting easier.

® |ocating Files and Directories
® Configuring LucidWorks Search Directories
® Temporary Files

® System Logs
® Log Properties

® |ucidWorksLogs Collection

® Related Topics

Locating Files and Directories

The following table shows the default location of some directories that may be
needed to effectively work with LucidWorks Search. These paths are all relative to
the LucidWorks Search installation path (referred to as $LWS_HOVE) which is
specified during installation.

What Path
Configuration Files $LWS HOVE/ conf/

Documentation $LWS_HOWVE/ app/ docs/ (PDF) or
http://docs.lucidworks.com (Online)

Examples $LWS _HOVE/ app/ exanpl es/
Jetty Libraries $SLWS _HOVE/ app/jetty/lib/
Licenses $LWS_HOVE/ app/ | egal /
© 2014 Find this documentation online at Page 20 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

What Path
Logs $LWS _HOWVE/ dat a/ | ogs/ (See below for
log file list)
LucidWorks Indexes $LWS_HOWE/ dat a/ sol r/ cor es/

col | ecti on/ dat a/

LucidWorks Logs $LWS_HOWE/ dat a/ sol r/ cor es/ Luci dWr |
Solr Home $LWS _HOVE/ conf/sol r/
Solr Configuration Files $LWS_HOVE/ conf/ sol r/ cor es/

col | ecti on/ conf/
Solr Source Code $LWS_HOWE/ app/ sol r-src/

Start/Stop Scripts $LWS_HOWE/ app/ bi n/

~ Editing Configuration Files on Windows

LucidWorks Search holds configuration files open after reading them,
which may cause problems on Windows systems that do not allow editing
open files. In this case, stop LucidWorks Search before editing files on
Windows to be sure the edits are saved properly.

Configuring LucidWorks Search Directories

After you have installed LucidWorks Search, you can configure the location of of
the app, conf, dat a, and | ogs directories by passing these parameters to the start
script (start.sh orstart. bat):

® -lwe_app_dir
® -|lwe_conf _dir
® -|we data dir
® -Iwe_log dir

For example, to change the location of the dat a directory, pass the following
parameter to your start script:

© 2014 Find this documentation online at Page 21 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

start.sh -lwe_data_dir /var/data

See the section on Starting and Stopping LucidWorks Search for more information
about the start scripts.

Temporary Files

By default, LucidWorks Search uses standard system directories (as detected by
the JVM) for creating temporary files. This can be changed by adding a system
property to the mast er. conf forjava.io.tnpdir in the section that controls each
JVM for the system. For example, to change the location of temporary files for the
LucidWorks Core component, you would follow these steps:

1. Shut down LucidWorks using the instructions found in the section on Starting
and Stopping LucidWorks Search.

2. Open mast er. conf with a text editor (found in $LWS_HQOVE/ conf .

3. Find the section for | wecore. j vm par ans and add
-Djava.io.tnpdir=/tnp/files/.

4, Start LucidWorks.

The directory chosen as the location for temporary files should exist before
starting LucidWorks Search, and must be writable by the user running LucidWorks.

Back to Top

System Logs

LucidWorks Search records system activities to rolling log files located in the
$LWS HOVE/ dat a/ | ogs directory of the installation by default. The table below
describes the main purpose of the various log files.

Log Name Name Pattern Function

Connector component log connect ors. <YYYY_MM DD>Qasmectors component
operations, including the
output of all crawling
operations.

© 2014 Find this documentation online at Page 22 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Log Name Name Pattern Function

Connector request log connect ors. request . <YYYRaguddbs .tbddne
connectors component.
These usually come from
the Core component.

Core component log core. <YYYY_MM DD>. | og LucidWorks Core
component operations,
such as indexing.

Core request log core. request . <YYYY_MV DReduasts to the core
component. These could
come from either the
Connectors or the UI

component.

Core standard error log core-stderr. | og Errors from Jetty startup
(if any).

Core standard output log core-stdout. | og Messages from Jetty

startup (if any).

UI component log ui . <YYYY_MM DD>. | og Information from the
Rails application, which
runs the Search, Admin
and Alerts components.

UI request log ui . request . <YYYY_MM DD>Reumgiests to the UI
component.

Ruby standard error log ruby-stderr. | og Errors from Ruby startup
(if any).

Ruby standard output log ruby-stdout. | og Messages from Ruby
startup (if any).

Click log click-<coll ecti onNane>. lUsgr click data, for use in
relevance boosting (if
enabled).

© 2014 Find this documentation online at Page 23 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Log Name Name Pattern Function

SharePoint crawl log googl e_connect ors. f eed. StmrePoint crawling
operations. Note, this file
can also include a
number in the name,
such as
googl e_connect ors. f eed(
, etc.

Log files are available through the Admin UI, by going to the Server Logs page for
a collection and clicking the link at the bottom of the page. If for some reason the
Admin UI is not available, log files can be downloaded with a curl command to the
Core component such as:

curl http://1ocal host: 8888/ ogs/ <l og_fil e _name>

Note, however, if the LucidWorks Search Core component is down, that curl
command will not work.

Log Properties

The LucidWorks Search Core log is configured by the

$LWS_HOVE/ conf /1 og4j - core. xm properties file. The default is to create a distinct
log per date (server time).

The LucidWorks Search UI log is configured by the $LW5 HOVE/ conf /| og4j - ui . xmi
properties file. The default is to create a distinct log per date (server time).

The LucidWorks Search Connector log is configured by the
$LWS _HOVE/ conf /| 0og4j - connect ors. xm properties file. The default is to create a
distinct log per date (server time).

© 2014 Find this documentation online at Page 24 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

The LucidWorks Search Connectors log includes information about crawl
activities such as attempts to access a file or URL and the results of those
attempts. By default, the log does not record the collection or data source
associated with crawl activities. However, if you would like to record that
information for later review, you can edit the

$LWS _HOVE/ conf /| og4j - connect ors. xm file.

In the file, find the section that begins with a comment to "Use the pattern
below to log additional context info...", as below:

<l-- Use the pattern below to | og additional context info |ike
coll ection and data source nane -->
<I--
<par am val ue="%l{1S08601} % %{2} - %X %Pm"
name="Conver si onPattern"/>
-->

Uncomment <par am val ue="%{1 SC8601} % %{2} - %X %Pn"
name="Conver si onPat t ern"/ > and save the file. You should restart
LucidWorks Search after making this change.

More information on how to modify log4j settings for the Core and Ul log files is
available at http://logging.apache.org/log4j/1.2/manual.html.

Back to Top

LucidWorksLogs Collection

LucidWorks Search records log files for your Solr indexes in a collection called
LucidWorksLogs, which contains a pre-configured data source also called

| uci dwor ksl ogs. You can view the data for the LucidWorksLogs collection as you
would for any other collection. You can also access the log files directly in the
$LWS_HOWE/ dat a/ sol r/ cor es/ Luci dWbr ksLogs/ directory.

The LucidWorksLogs collection powers the error log and all statistics about recent
query and indexing activity that is shown in the Admin UI.

© 2014 Find this documentation online at Page 25 of
LucidWorks http://docs.lucidworks.com/ 347

http://logging.apache.org/log4j/1.2/manual.html

LucidWorks Search Documentation 05-Aug-2014

The log files on a LWE-Core server are accessible via HTTP at the URL

"http://server:port/logs". This URL lists all files currently in the logs directory,

and provides links for downloading them individually. This can be useful in

situations where you do not have direct shell access to the LWE-Core machine, but

would like to review the log files for troubleshooting purposes.

If you are using LucidWorks Search in SolrCloud mode or with each component
installed on a different server, please see the section Log Indexing with Separated
Components for details on how to make sure your logs are fully indexed.

When securing the HTTP Port of LWE-Core installation, consideration should be
taken as to whether the "/logs" directory should be secured or not.

Deleting the LucidWorksLogs Collection

It is possible to delete the LucidWorksLogs collection if desired; however,
this will disable the server log page within other collections, all activity
graphing, and all calculations of Most Popular and Most Recent queries.

If the collection was deleted in error, or if you'd like to restore it at a later
time, go to the Server log page within any collection and click Recreate
the log collection.

It is also possible to remove the LucidWorksLogs data source from the
LucidWorksLogs collection (i.e., retain the collection for possible later use,
but remove the mechanism that indexes the logs). However, at the
current time it will automatically be re-created and re-scheduled on server
restart. If you wish to disable log crawling, you must either remove the
entire LucidWorksLogs collection, or modify the LucidWorksLogs data
source so that the schedule is not active (you can modify the schedule
with the Data Source Schedules API or in the Schedules screen of the
Admin UI.

Related Topics

® Working With LucidWorks Search Components
® Starting and Stopping LucidWorks Search

© 2014 Find this documentation online at Page 26 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Back to Top

© 2014 Find this documentation online at Page 27 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Starting and Stopping LucidWorks Search

LucidWorks Search can be started and stopped using start and stop scripts
provided with the application. These scripts are described below.

© Windows users who have configured LucidWorks Search to run as a
service should use the Services panel in Windows to manage start and
stop.

® Starting a Standalone LucidWorks Search Instance

® Starting SolrCloud-enabled LucidWorks Search Instances
® Passing SolrCloud parameters at Start
® Updating master.conf

Stopping LucidWorks Search (all modes)

Starting or Stopping Components Separately

Starting a Standalone LucidWorks Search Instance

If you did not allow the installer to start LucidWorks Search, or if shortcuts were
not installed, you can still start or stop the system manually from the command
line. This will start all components:

1. Open a command shell, and make sure Java 1.6 or greater is in your path.

2. Change directories to the LucidWorks installation directory, then to the
$LWS_HOVE/ app/ bi n directory.

3. Invoke start.sh for UNIX/Mac/Cygwin or start. bat for Windows systems.

~ If you are using LucidWorks Search in SolrCloud mode, please refer to the
section Starting LucidWorks Search in the documentation for Using
SolrCloud in LucidWorks Search.

© 2014 Find this documentation online at Page 28 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Starting SolrCloud-enabled LucidWorks Search Instances

If you are using LucidWorks Search in SolrCloud mode, you must start the
application in a way that the underlying Solr instances are aware of where
ZooKeeper is. If you used the LucidWorks Search installer, the required
parameters have been added to the conf/ mast er. conf file for each instance.

However, if you bootstrapped LucidWorks Search manually, or installed without
the all of the SolrCloud installer steps, you will need to pass the required
parameters on the command line. You can also manually update

conf/ mast er. conf file.

Passing SolrCloud parameters at Start

As long as the initial bootstrap has been completed (if not, please see Starting
LucidWorks Search), the only parameter that is required on future startup is the
zkHost parameter. This parameter points to each of the ZooKeeper instances and
the root directory for the configurations that are stored in ZooKeeper. This
example commmand starts LucidWorks Search and points to an external
ZooKeeper:

$./start.sh -lwe_core_java_opts
"-DzkHost =10. 0. 1. 7: 5001, 10. 0. 1. 9: 5001, 10. 0. 1. 11: 5001/ | ws"

If you are using the embedded ZooKeeper instance, then you may alternately
need to start ZooKeeper while starting LucidWorks Search with the zkRun
parameter on one of the instances. Subsequent instances would require the
zkHost parameter to point to the instance with the running ZooKeeper. For
example, to start the first instance:

$./start.sh -lwe_core_java_opts "-DzkRun"

Then all subsequent instances are started:

$./start.sh -lwe_core_java_opts "-DzkHost: 10.0.1.7:9988"

Note when using the embedded ZooKeeper that the port is the LWE-Core
component port + 1000.

© 2014 Find this documentation online at Page 29 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Updating master.conf

If you don't want to have to pass the ZooKeeper parameters each time you
restart, you can modify the conf/ mast er. conf file for each instance. Simply add
the - DzkHost parameters to the section JVM Setti ngs of LWE- Core and they'll
be passed to the start script. For example, here is a sample where:

COVWPONENT LWE-Core - LWE-Solr + LWE REST API.

| wecor e. enabl ed=t rue
| wecore. address=http://10.0.1.5: 8888

JVM Settings for LWE-Core

| wecore. jvm parans=- Xns512M - Xmx1024M - XX: MaxPer n5i ze=256M
- Duser. | anguage=en -Duser.country=US -Duser.timezone=UTC
-Dfil e.encodi ng=UTF-8 -Dcom sun. nanagenent . j nxrenot e

- DzkHost =10. 0. 1. 7: 5001, 10. 0. 1. 9: 5001, 10. 0. 1. 11: 5001/ | ws

If using the embedded ZooKeeper instance, the same approach can be taken to
add the - DzkRun parameter to one instance, with - DzkHost being added to the
other instances.

These parameters only need to be added to the LWE-Core component for each
instance that runs the LWE-Core component; so if you have an instance that is
only running the UI or the Connectors, the parameters don't need to be added at
all.

Stopping LucidWorks Search (all modes)

To stop LucidWorks Search, use the stop scripts at the command line. This will
stop all components and any running processes.

1. Open a command shell, and make sure Java 1.6 or greater is in your path.

2. Change directories to the LucidWorks installation directory, then to the
$LWS_HOVE/ app/ bi n directory.

3. Invoke st op. sh for UNIX/Mac/Cygwin or st op. bat for Windows systems.

© 2014 Find this documentation online at Page 30 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

© Restarting LucidWorks Search

To restart LucidWorks Search, first stop the servers and start them again
using the processes outlined above.

Starting or Stopping Components Separately

To start or stop any of the components without starting or stopping the other
components, you can use the start.sh/start. bat or stop. sh/stop. bat scripts

with the - onl y parameter, followed by the component name.

® Core component: | we-core
® UI component: | we- ui
® Connectors component: connect ors

For example, this would start only the connectors using the start. sh script:

start.sh -only connectors

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 31 of

347

LucidWorks Search Documentation 05-Aug-2014

Configuring Default Settings

This functionality is
not available with
LucidWorks Search

on AWS or Azure

You can configure many default settings in
LucidWorks Search in the def aul ts. ynml file located in the

$LWS _Horre/ conf /| we- cor e directory. You must restart LucidWorks after editing
this file for your changes to take effect.

Some of the default settings you can configure include:

Default crawl depth

Default field mappings for crawlers

Batch crawling of data sources

Enabling or restricting data sources by crawler
Default HTTP proxy settings

For example, to set the default crawl depth to 3 (which means that the crawler will
follow links/sub-directories up to three steps away from the initial target), set
dat asour ce. craw _depth: 3.

Here is an example def aul ts. ynl file with comments that explain the various
default settings (your default.yml file may vary):

file: defaults.ym
initCalled: true
| ocati on: CONF
val ues:
Set to true to block index updates
control. bl ockUpdates: false
A whitespace-separated list of synmbolic crawl er nanes to enable; all
crawlers are enabled if this list is enpty
craw ers. enabl ed. craw ers:
Absolute path that will be used to resolve relative path of local file
systemcraw s
crawl ers.fil esystem craw . hone: null
Per-crawl er list of enabl ed datasource types, whitespace-separated.

© 2014 Find this documentation online at Page 32 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Al'l available types are enabled if this list is enpty.

crawl ers. |l uci d. aperture. enabl ed. dat asources: "'
Per-crawl er whitespace-separated list of restricted datasource types;
all enabled types are unrestricted if this list is enpty

crawl ers.lucid. aperture.restricted. datasources: "'

craw ers. |l uci d. ext ernal . enabl ed. dat asour ces:
craw ers.lucid.external .restricted. dat asour ces:

craw ers. |l ucid. fs. enabl ed. dat asour ces:
craw ers.lucid.fs.restricted. dat asour ces:
crawl ers. | uci d. gcm enabl ed. dat asources: "'
crawl ers.lucid.gcmrestricted. dat asour ces:
crawl ers. |l uci d.jdbc. enabl ed. dat asources: "'
crawl ers.lucid.jdbc.restricted. dat asources:
crawl ers. |l uci d. | ogs. enabl ed. dat asources: "'
crawl ers.lucid.logs.restricted. dat asources:
craw ers. | ucid. sol rxm . enabl ed. dat asour ces:
craw ers.lucid.solrxm .restricted. dat asour ces:
Default data source bounds: choose none or tree
dat asour ce. bounds: none
Batch processing; caching of crawl ed raw content
dat asour ce. caching: false
Explicitly conmit when craw is finished
dat asource.comrit _on_finish: true
Solr's conmtWthin setting, in nmlliseconds
dat asource. comrit_within: 900000
Default crawl depth: the nunber of cycles or hops fromthe root
URL/directory. Set to -1 for unlimted crawl depth
dat asource.craw _depth: -1
dat asource. foll ow |inks: true
Set to true to ignore the rules defined in /robots.txt for all craw ed
sites
dat asource.ignore robots: false
Performindexing at the sanme tinme as crawing
dat asource. i ndexi ng: true
d obal exclude regul ar expression patterns for different craw ers
whi ch al | ow excl udi ng specific docurment types or paths for all data
source types
that use the defined cramer. Miultiple patterns can be defined by
separating regular expressions with a 'pipe" (])
or with the YAML |ist format as shown in the exanpl es bel ow.
datasource.lucid. aperture.file.exclude_paths: '.*\.xls|.*\.ppt'
dat asource. | uci d. apert ure. web. excl ude_pat hs:

© 2014 Find this documentation online at Page 33 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

- '.*domainl. *'
- '".*domai n2. *'
dat asource. luci d.fs.exclude_paths: []
dat asource. | uci d. gcm shar epoi nt. excl uded_urls: []
Default field mapping for Aperture-based craw ers.
baseline, the field napping for each data source can
dat asour ce. mappi ng. aperture: & d001
I'''com | uci d. admi n. col | ecti on. dat asour ce. Fi el dMappi ng
dat asourceFi el d: data _source
def aul t Fi el d:

dynam cField: attr

{}

nul

literals:
mappi ngs:
slide-count:
content -t ype:
body: body
slides: pageCount
subj ect: subj ect
pl ai nt ext messagecont ent: body
| astnodi fied: | astMdified
| ast nodi fi edby: aut hor
cont ent - encodi ng:
type:
dat e:
creator:
aut hor: aut hor
title: title
m netype: m neType
created: dateCreated
pl ai nt ext cont ent: body
pagecount : pageCount
contentcreated: dateCreated
description: description
contributor: author

pageCount
m nmeType

char act er Set
nul |

nul

creator

nane: title

filelastnodified: |astMdified
ful I name: aut hor

fulltext: body

nmessagesubject: title

| ast-nodified: |astMdified

acl : acl
keywor d: keywords

This is the
be custom zed.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 34 of
347

LucidWorks Search Documentation 05-Aug-2014

contentl astnodified: |astMdified
last-printed: null

i nks: nul

url: wurl

batch_id: batch_id

crawl _uri: craw _uri

filesize: fileSize

page- count: pageCount
content-length: fileSize
filename: fileNane

mul tiVal :
fileSize: fal se
body: false

aut hor: true
title: false
acl: true
description: fal se
dat eCreated: false
types:
filesize: LONG
| ast modi fied: DATE
dat ecr eat ed: DATE
date: DATE
uni quekKey: id
Default field mapping for crawl ers that use Tika parsers
dat asource. mappi ng. ti ka: *id0o01
Maxi mum si ze of content to be fetched
dat asource. max_bytes: 10485760
Maxi mum nunber of docunments to collect; set to -1 for unlimted
docunent s
dat asour ce. max_docs: -1
The maxi mum nunber of concurrent requests processed by a data source
crawl, for those crawers that support multi-threaded craw ing.
As of v2.1, this is only the lucid.fs craw er, which supports the
Hadoop, S3 and SMB data source types.
dat asource. max_t hreads: 1
Set to true to apply content parsers to the retrieved raw docunents
dat asource. parsing: true
Defines the host nane of an HTTP proxy server to use for web crawing;
| eave blank if you are not using a proxy server
dat asour ce. proxy_host :
HTTP proxy password, if you are using an HTTP proxy server

© 2014 Find this documentation online at Page 35 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014

dat asour ce. pr oxy_passwor d:
proxyPort for an HITP proxy server, if you are using one

dat asource. proxy_port: -1
Username to authenticate with HTTP proxy server

dat asour ce. pr oxy_user nane:
If true, text extracted froma conmpound docunent (one which has ot her
enbedded docunents and resources, such as emails with attachnments
or Ofice docunents with OLE attachments, but not .zip, .jar., or
simlar) will be appended to the text of the container docunent.
|f false, each enbedded resource is treated as a separate docunent
with a URL in the formof the container docunent URL plus ! and
the enbedded document's nanme or identifier. If documents are treated
as separate docunments (when this setting is fal se),
the URL of the container docunment is added to the field
"bel ongsToCont ai ner".

dat asource. tika. parsers. flatten. conpound: true
If false, docunents with mnme types that start with "imge/" are
ignored. If true, the docunents are sent to Tika for parsing,
which may result in useful netadata being extracted fromthem but may
also result in a large nunber of fields and terns.

dat asource. ti ka. parsers.include.imges: false
If true, and Luci dWorks runs in the sane JVM as Solr, then crawl ers
will first try using direct calls to SolrCore for updates,
which may result in performance inprovenents. If false (the default),
the SolrJ APl is used for updates.

dat asource. use_direct_solr: false
If true, datasources will attenpt to verify access to the renote
repositories.

dat asource. verify_access: true
HTTP-specific preferences sent in HITP headers during craw i ng.

http. accept.charset: utf-8,1S0O 8859-1;q9=0.7,*;q9=0.7

htt p. agent. browser: Mzilla/5.0

http.agent.email: craw er at exanple dot com

htt p. agent. name: Luci dWorks
The agent.string will allow a conpletely custom http.agent identifier.
If this is not enpty, it will be used verbatiminstead of all other
"http.agent.*' settings.

http.agent.string:
http.agent.url: "'
htt p. agent. versi on:
http.craw . del ay: 2000

Maxi mum nunber of redirections in a redirection chain.

© 2014 Find this documentation online at Page 36 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

http. max.redirects: 10
Nunmber of threads for HTTP craw i ng.
http. numthreads: 1
Socket timeout in mlliseconds.
http.tinmeout: 10000
Specify the HTTP version: HITP/1.1 if true; HITP/1.0 if false.
http. use. httpll: true
ssl.auth _require_authorization: fal se
ssl.auth_require_secure: false

Related Topics

® Overview of Crawling

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 37 of
347

LucidWorks Search Documentation 05-Aug-2014

LucidWorks System Usage Monitor

The LucidWorks System Usage Monitor is a voluntary program to allow LucidWorks
Search users to anonymously send basic information about their system to
LucidWorks. We use this information to analyze the types of systems in use by our
customers and how they are used so we can improve our product. At no point
does the system collect information that could identify you, your organization, the
documents indexed, or the type of content indexed.

Information Collected

The System Usage Monitor collects the following information for LucidWorks
Search installations:

® QOperating System version and type

® Java version and type

® LucidWorks Search version and type

® Number of LucidWorks Search collections created

® Number of LucidWorks Search data sources created
® Number of LucidWorks Search documents indexed
® JVM memory free, available, and used

® Number of LucidWorks Search queries

® Number of documents added since last submission

How the System Usage Monitor Works

When Information is Sent

The System Usage Monitor sends information at each LucidWorks startup (using
the start.sh or start. bat scripts) and once per week on Saturdays.

How Information is Sent

When LucidWorks Search is started, the System Usage Monitor will transmit data
about your system to a server hosted by LucidWorks with two HTTP requests. The
first request contains system-level information and if that is successful, the second
request will send LucidWorks-specific information, as listed above.

© 2014 Find this documentation online at Page 38 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

The information is sent via an encrypted POST request to
https://heartbeat.demo.lucidworks.io. Each request includes a unique identifier,
which is anonymous and can't be used to identify the sender. The IP that sent the
request is not stored with the request.

The requests are logged in the LucidWorks Search core log (core. YYYY_MM DD. | og
). The requests will appear similar to this:

2012- 10- 23 19: 05: 56,618 | NFO heartbeat. Luci dSt at sPubl i sher - Sendi ng
heartbeat stats:

uui d=' 3532f 7e9- 4280- 4714- 9e83- ea0a95f e90bd' , dat a=' { pr oduct =l we,

current _product_version=0.0Enif, is_cloudy=fal se,

I we_git_sha=7568ce8c35a394c4b987e3al7cb5elb5ae5dac25, j ava_versi on=1. 6. 0_35
(Apple Inc.), numcpu_cores=4, os_version=Mac OS X (x86_64)}' 2012- 10- 23
19: 05: 58,831 | NFO publish. MonitorRegi stryMetricPoller - cache refreshed,
8 nmonitors matched filter, previous age 1351019158 seconds

2012- 10- 23 19: 05: 58,865 | NFO heartbeat. Luci dSt at sPubl i sher - Sendi ng
heartbeat stats:

uui d=' 3532f 7e9- 4280- 4714- 9e83- ea0a95f e90bd' , dat a=' { num docs=0,

num col | ections=1, num datasources=0, jvmnenory_ free=506720952,

jvm nmenory max=1065025536, jvm nenory total =534708224, num adds=0,

num sear ch_request s=0}"

Subsequent weekly updates are sent as a single request, including only the
LucidWorks Search-specific information like humber of documents, number of data
sources, etc.

How to Opt-In or Opt-Out

During Installation

During installation of LucidWorks Search, you will be presented with an option to
opt-in to the System Usage Monitor program. This option will appear after defining
the installation path for the system. With the graphical installer, the box is
checked by default and un-checking the box will opt-out of the program. If using
the console installer, choose '0' as a response to opt-out of the program.

Post-Installation

Opting-in to the program will insert a line at the beginning of the
$LWS_HOVE/ conf/ mast er . conf file, as so:

© 2014 Find this documentation online at Page 39 of
LucidWorks http://docs.lucidworks.com/ 347

https://heartbeat.demo.lucidworks.io

LucidWorks Search Documentation 05-Aug-2014

Luci dWor ks System Usage Monitor (coment the next line to disable this
feature)

usagesSt at sServer | d=3532f 7e€9- 4280- 4714- 9e83- ea0a95f e90bd

To opt-out:

1. Stop LucidWorks Search

2. Open mast er. conf found in $LW5_HOVE/ conf

3. Comment out the line containing the usagesSt at sServer | D by adding a hash
mark (#) at the beginning of the line

4. Start LucidWorks Search

The same process can be followed to opt-in if the service was previously disabled,
by removing the hash mark instead of inserting it.

More Information

For more information, including details of our commitment to protecting the
privacy of your data, please see our website at
http://www.lucidworks.com/lucidworks-system-usage-monitor.

© 2014 Find this documentation online at Page 40 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.lucidworks.com/lucidworks-system-usage-monitor

LucidWorks Search Documentation 05-Aug-2014

Collections and Indexes

This section covers how to configure LucidWorks Search for your data.

Content in LucidWorks is indexed into a collection, which can have different
documents, data sources, fields, field types and settings from other collections.
Before starting to work with LucidWorks, review the section Working with
Collections. Once one collection is configured as you like, it can be used as a
template, as described in Using Collection Templates.

Once the collections are considered, then you can think about how to configure
LucidWorks Search to index your content. These sections describe the options for
setting up the indexes:

Indexing Documents

Storing Indexes in HDFS

How Documents Map to Fields
Customizing the Field Schema
Reindexing Content

Multilingual Indexing and Search
Lucid Plural Stemming Rules
Deleting the Index

© 2014 Find this documentation online at Page 41 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Working with Collections

A single installation of LucidWorks Search may be used to index multiple types of
content, serve multiple user constituencies, or accommodate multiple overlapping
security rules. It does this by supporting the creation and use of multiple
"collections". A collection is a set of documents that are grouped together with the
same indexing and query rules. Each collection in LucidWorks has its own index
and configuration files and is logically separate from all other collections.

For those familiar with Solr, the concept of collections in LucidWorks is very similar
to the concept of cores in Solr.

Default Collections

By default, each LucidWorks Search installation includes two collections out of the
box: "collection1" and "LucidWorksLogs".

Collectionl is the primary collection used by LucidWorks Search to store indexes
and define query settings. It can be used as-is immediately after installation to
start indexing documents and using the default Search UI. However, a collection
cannot be renamed once created (nor can content be moved from one collection to
another without indexing it all from scratch). So, if you think you'll use multiple
collections and want to name each one based on what it contains or what it will be
used for, you would probably create a new collection and start from there.

The LucidWorksLogs collection is a special collection, used to index logs for easier
troubleshooting. It is discussed in more detail in the section on the
LucidWorksLogs collection. It can be deleted at any time and recreated later, if
desired.

If you want to delete collectionl, you can do so after you've created at least one
other standard collection, as there must always be at least one collection (not
including the LucidWorksLogs collection).

A collection that has been customized can also be used as the basis for future
collections; see the section on Collection Templates for more information.

Per-Collection Features

You can configure the following items for each collection individually:

© 2014 Find this documentation online at Page 42 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/CoreAdmin

LucidWorks Search Documentation 05-Aug-2014
® Data sources

Fields

Query settings

Search UI

Search Filters

Schedules

Solr Admin

After you have created additional collections, you should pay special attention to
the collection name you are working with so you edit the proper configuration files
or make the correct API calls. This is particularly true when using the REST API or
several of the advanced configuration options discussed later in this Guide, but it
also applies to the various screens of the Admin UI. Modifying the wrong collection
out of context may have unexpected consequences including poorly indexed
content or an inconsistent search experience for users.

System-Wide Features

The following items are system-wide and can only be configured for the entire
LucidWorks Search installation or instance:

Collection definition

Access to user interfaces

® Users

Alerts (although these take the collection as a parameter to limit the query)

Related Topics

® Creating a collection with the Collections API
® Creating a collection with the Admin UI
® System Directories and Logs

© 2014 Find this documentation online at Page 43 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Using Collection Templates

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Collection templates allow you to copy the
configuration files from a collection and use it as the basis for future templates.
Creating a template is as simple as creating a . zi p file from configuration files in
the base collection and explicitly specifying that . zi p file during new collection
creation either via the Admin UI or the REST API.

Included Templates

Several templates are included with LucidWorks out of the box. They can be found
in $LWS_HOMVE/ app/ col | ecti on_t enpl at es.

® default.zip: This has the same default options and out-of-the-box fields as
the standard "collection1" that exists by default after LucidWorks Search
installation.

® essential. zip: This is a stripped-down version of the LucidWorks default
configuration that includes only the few fields that are absolutely essential
for the system to run (see Customizing the Field Schema for more details on
the default field set).

® hadoop. zi p: provides the basic configuration for storing the Solr indexes for
a collection in a Hadoop Filesystem (HDFS). For more details, see Storing
Indexes in HDFS.

® | uci dwor ksl ogs: provides the configuration for the LucidWorksLogs
collection only. This is a system collection with a very specific configuration
and this template should not be used for any other collection.

© 2014 Find this documentation online at Page 44 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Creating a Template

& app
¥ i conf
F i gom
¥ i solr
B cores
B collectionl_0
Il bin
il conf
> L jdbclib
il LucidWorksLogs
@ solr.xm
® roo.cfg

> W dawa To make a custom template, create a new
collection and configure it as needed, whether that is via the user interface, using
the REST API, or manual editing of configuration files. All of the configuration files
for a collection reside in the i nst ance_di r for the collection, which is found under
$LWS HOVE/ conf/sol r/ cores/ col |l ection, where col | ecti on is the name of the
collection that is being used as the basis for the template.

Then create a . zi p file from the i nst ance_di r. The .zip file can have any name,
including def aul t . zi p, although using the same name would overwrite the
system default template, meaning it would not be available at a later time if
needed. All templates must be placed in $L\W5_HOVE/ conf/ col | ecti on_t enpl at es
to be available during collection creation.

~ We recommend that you use all the sub-directories from the
i nst ance_di r even if some of the files have not been customized in the
base collection.

Related Topics

® Working with Collections

© 2014 Find this documentation online at Page 45 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Indexing Documents

The first step to being able to search is to create an index. The index stores all the
terms from documents in such a way that results for user queries can be returned
as quickly as possible.

Indexes are created by breaking a document into individual words and saving the
word list. At the same time, documents are not solely lists of sentences and words,
but instead usually contain some sort of structure - an email will likely have "to"
and "from" information; Word and PDF documents may have "title" and "author"
information, in addition to the main "body"; product descriptions may have "price",
"description" or "color" information. These are known as fields within each
document. Adding field information to the word list facilitates a user's ability to
search for emails from a specific person, or shoes that come in a particular color.

Fields can contain different types of data. A title field, for example, is usually text
(character data). A price contains a mix of digits and special characters (such as $
or €). Dates are generally Defining the type of data that a field will contain is a
critical first step in defining the fields for the index.

Defining Fields

There are several things to consider when configuring fields. The primary one is
whether to store the field or not. Stored fields take up space in the index, but they
allow the field to then be indexed (that is, made searchable) or available to users
for display. It may be preferable to store a field and use it for display in a results
list, but not allow it to be searchable. Alternately, a field can be designated for use
in a facet, so it would be stored and indexed, but perhaps not searchable. A
careful analysis of documents should occur before indexing to be able to anticipate
how it will be indexed. If fields are not correctly configured before a document is
indexed, documents will need to be re-indexed at a later time. If that is required,
the existing index can be deleted and documents can be added to it from scratch.

Indexing Data Sources

In order for users to be able to search, LucidWorks Search needs to have indexed
documents. LucidWorks Search supports two main approaches for document
discovery:

© 2014 Find this documentation online at Page 46 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
® Documents can be pushed directly into the system. Users who are familiar
with Solr may already have processes and systems in place to push
documents into the index. This is also an option if LucidWorks Search is not
able to connect to the repository to pull documents from it.

® Documents can be pulled from remote repositories. LucidWorks Search has
several pre-defined types of repositories that it is able to connect to; you
configure these connections by creating "data sources" and selecting options
appropriate for your needs.

Each of these approaches has several options and caveats to consider, which are
covered in more detail Overview of Crawling.

Related Topics

® Customizing the Field Schema

© 2014 Find this documentation online at Page 47 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Storing Indexes in HDFS

As of LucidWorks Search v2.6.3, it is possible to store the Solr indexes in your
Hadoop Filesystem (HDFS). The benefits of this are to distribute the indexes and
Solr's transaction logs across a Hadoop cluster. Note that this does not use
MapReduce for index processing, but instead uses Hadoop for transaction log and
index file storage. LucidWorks Search (and Solr) support doing this with Hadoop
2.0.x versions only.

In LucidWorks Search, this is enabled with a new collection template named
"hadoop" which defines the configuration required to store Solr indexes on
Hadoop. This template can be used to create new collections whose indexes will be
stored in the HDFS specified with the parameters.

Defining the HdfsDirectoryFactory in solrconfig.xml

The main configuration changes are defined in sol rconfi g. xm . The

di rect oryFact ory needs to be set to use the Hdf sDi rect oryFact ory and two
parameters are defined for sol r. hdf s. hone, which points to a directory accessible
to the LWE-Core and Connectors components that contains the Hadoop binaries,
and sol r. hdf s. conf di r, which is the location of the hadoop configuration files.

The sol rconfi g. xm supplied with the 'hadoop' collection template includes this
section:

<di rect oryFact ory nane="Di rect oryFact ory"
cl ass="org. apache. sol r. core. Hdf sDi rect oryFactory">
<str name="sol r. hdfs. home">${sol r. hdf s. hone: } </ str>
<str nanme="sol r. hdfs.confdir">${solr.hdfs.confdir:}</str>
</ directoryFactory>

Updating master.conf

Note that the two required parameters are defined as system properties. To supply
the values for the system properties, you should modify

$LWS _HOVE/ conf / mast er. conf for the installation to add them. The values must
be supplied for the LWE-Core component as in this example:

© 2014 Find this documentation online at Page 48 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

JVM Settings for LWE-Core

| wecore. jvm parans=- Xme512M - Xnx1024M - XX: MaxPer nSi ze=256M
- Duser. | anguage=en -Duser. country=US -Duser.timezone=UTC
-Dfi | e. encodi ng=UTF-8 - Dcom sun. managenent . j nxr enot e

- Dsol r. hdf s. honme=/ pat h/ t o/ hadoop/ hone

-Dsol r. hdf s. conf di r=/ mt / hadoop/ hadoop2x/ et ¢/ hadoop

The sol r. hdf s. hone directory will be appended to the / usr directory in HDFS.
You must also ensure that the / usr directory has write permissions so LucidWorks
Search can write to it.

If you have modified mast er. conf after starting LucidWorks Search, you will need
to restart it.

© If you are running LucidWorks Search in SolrCloud mode, you should
update master.conf on each node that is running the LWE-Core
component.

Defining the values in mast er. conf has the benefit of allowing you to define the
HDFS location once. However, if you have multiple HDFS locations, you could

instead define the values within the sol rconfi g. xm file for each collection that
will be stored in HDFS. In that case, do not also add the values to nast er. conf .

Note the parameters described here are the basic parameters to allow LucidWorks
to store the Solr indexes on HDFS. There are other available parameters, however,
described in the Apache Solr Reference Guide section Running Solr on HDFS.

Related Topics

® Using Collection Templates
® Running Solr on HDFS from the Apache Solr Reference Guide

© 2014 Find this documentation online at Page 49 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS
https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS

LucidWorks Search Documentation 05-Aug-2014

How Documents Map To Fields

When LucidWorks Search crawls a data source, it extracts the target data and
stores it in fields in the index. The specific mapping from the source data to the
indexed fields is determined by the crawler you are using, which is in turn
determined by the data source type. For a list of file types supported by LWE, see
Supported Filetypes. Let us consider two common file types, both processed by the
Aperture crawler: a website and a Microsoft Word document.

For the website, consider a case where you have crawled
http://www.lucidworks.com with a crawl depth of zero, which means that only the
first page is indexed. The Aperture crawler maps the web page as follows (note
that this example is not complete or exhaustive):

Data Source Field Mapping Field Content

url url http://lucidworks.com

content-type mimeType html/text

title title Lucid Imagination LucidWorks
iSs now
LucidWorks.

body body The Future Of
Search

And so on.

For the Microsoft Word document, consider this document, included here in its
entirety:

© 2014 Find this documentation online at Page 50 of
LucidWorks http://docs.lucidworks.com/ 347

http://aperture.sourceforge.net/
http://www.lucidworks.com
http://lucidworks.com

LucidWorks Search Documentation 05-Aug-2014

This Is The Heading

This is some text. It is very interesting.

L.F'I.-h e W i S

Data Source Field Mapping Field Content
mimetype mimeType application/vnd.openxmlfor
title title Example Word Doc
author author Drew Wheeler
body body This Is The Heading This

is some text. It is very
interesting.

For information on which crawlers handle which data source types, see the
Overview of Crawling. If using the Admin UI, you don't need to worry about the
crawler type. The UI also includes screens for modifying how documents are
mapped to fields, or the Data Sources API can be used. For more information on
fields in LucidWorks Search, see the Table of Fields in the section Customizing the

Field Schema.

Related Topics

® QOverview of Crawling
® Indexing Documents
® Editing Field Mapping

© 2014 Find this documentation online at Page 51 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Customizing the Field Schema

When indexing documents, LucidWorks Search doesn't merely generate a list of all
the words found on the page. It also tries to recognize the structure of the
document, and remember some of that structure in the index. The structure of
indexed documents is represented by the fields defined for the LucidWorks Search
index. When terms are saved in the index, they are saved with information about
the field in which they were found in the document.

Field definitions are stored in a schena. xm file for each collection. Users familiar
with Solr will recognize this file, since it is the same schema. xnml file that is used

with a Solr installation. Instead of editing this file by hand, however, LucidWorks
Search allows modifying the field and field type definitions with the Admin UI or

with the REST API.

By default, LucidWorks Search contains field definitions to support various features
of LucidWorks (such as crawling documents and Click Scoring) and to make it
easier for users to get up and running. Not all users will need all fields, however,
SO you may want to add fields unique to your search application or just to trim the
default set of fields so the list is easier to work with. This section describes the
default fields, how they are used by LucidWorks Search, and if they can be
removed for local installations.

One of the primary added values of LucidWorks Search is the integration of
content crawlers for web sites, filesystems and other repositories of content. Many
of the default fields are for this purpose and should be retained. In many cases, if
they are removed from the schema, they will be recreated the next time a crawler
needs them. However, if not using the LucidWorks crawlers, they can generally be
safely removed. They will be added based on a dynamic rule ("*" rule) in the
schema. xm file that should be retained to avoid unexpected failures of the
crawlers. If this rule is left in place, nearly any field in the schema can be removed
as it will be added back if it is needed.

© 2014 Find this documentation online at Page 52 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Only delete the "*" rule if you are absolutely positive other deleted fields
will not be needed in your specific implementation. Deleting this rule may
also complicate future upgrades, as it is not possible to predict when
LucidWorks Search will add new fields to the schema. xnl file to support
future functionality.

® Guidelines for Removing Fields from the Schema
® Essential Fields
® Built-In Search UI Fields
® Fields to Support Specific Features
® Crawler Fields
® Other Dynamic Fields
® Table of Fields

Guidelines for Removing Fields from the Schema

Essential Fields

There are two fields that must be retained in schenma. xnl . The Admin UI and the
Fields API will not allow deleting them:

* id
® timestamp

There are three additional fields that are considered essential to LucidWorks
Search.

data_source
data_source_name
data_source_type
text_all

The three data source-related fields are considered essential for the Admin UI and
APIs to know the source of the content that has been indexed. If not using the
Admin UI nor the LucidWorks REST APIs, they could be deleted.

© 2014 Find this documentation online at Page 53 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
The text_all field is required because schema. xm declares it as the default search
field for the Lucene RequestHandler (query parser), which is also the default for
the basic Solr query parser. If you are using | uci d or Di sMax, however, and will
never use the Lucene or Solr query parsers, the field could be deleted. However, it
may be best to retain it.

© We have created a sample schema that includes only the essential fields
listed above that can be used for collection creation. See Using Collection
Templates for more information.

Built-In Search UI Fields

LucidWorks includes a default search UI that can be used as-is or replaced with a
fully local interface. If using it as-is, even for testing or during initial
implementation, the following fields must also be retained in schema. xni :

® author

® author_display
® body

® dateCreated
® description

® keywords

® keywords_display
® |astModified

®* mimeType

® pageCount

® title

® url

The Search UI includes these fields for results display and default faceting, so for it
to work properly, these fields should be retained.

Fields to Support Specific Features

Several fields are included in schema. xm in support of specific LucidWorks
features. They can be removed if those features are disabled or not in use. In
some cases, however, they will be added back to the schema if the feature is
enabled in the future.

© 2014 Find this documentation online at Page 54 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Feature Fields
Click Scoring Relevance Framework click
click_terms
click_val
ACL acl
Spell Check spell
Auto Completion autocomplete
Enterprise Alerts timestamp
SolrCloud and Near Realtime Search _version_
De-duplication signatureField

Crawler Fields

The crawlers included with LucidWorks create fields in schema. xml that begin with
attr_ and are used to store document-specific metadata during crawl processes.
They are not generally used otherwise by LucidWorks (such as in search results or
other computations). Due to the dynamic "*" rule, they will be added back to
schena. xm if not in place. If not using the LucidWorks crawlers, they can be
removed, but it is recommended to retain them if possible.

Other Dynamic Fields

Several other dynamic fields (all including an '*', such as *_i, *_s, *_|, etc.) are
defined in schema. xnl . These can be removed if they will not be used - the only
two we recommend that you retain are the "*" rule and the attr_* fields.

Table of Fields

The table below notes whether a field will be indexed, stored, used for
facets or included in results. This is default behavior, and can be modified
locally. After customization, this table may not reflect the state of your
schema. xm file.

© 2014 Find this documentation online at Page 55 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field Type
Name

for in
Facets Results

Indexed Stored Used Included Used

for

Can Be
Deleted

version long X DocumentOnly if
version not
control, using
used Near
with Realtime
Near Search
Realtime or
Search SolrCloud
and features.
SolrCloud

acl string X Storing Only if
Access never
Control using
List Access
informatioQontrol

List

(ACL)

query-tim

document

security.
attr_* string X Created Yes, but

(any by the automatic

field crawlers created

starting and by

with used for LucidWor

‘attr_") a wide crawlers,
array of so will
documen! be
metadata recreated
Not
specificall

© 2014 Find this documentation online at Page 56 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field Type
Name

author text_en

author_disgtidpg

Indexed Stored Used Included Used Can Be

for in
Facets Results

for Deleted

declared at next
in the crawl
schema.x run.
file, but
dynamica
created

during

crawls.

Raw Only if
author never
pulled using
from built-in
documentsSearch
Used by UI.
default

in the

built-in

Search

UI.

Used for Only if
display never

of using
authors built-in
in Search
facets. UI.
Used by
default
in the
built-in
Search
UI.
© 2014 Find this documentation online at Page 57 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted

Facets Results
autocomplegrtSpell X X Stores Only if
terms never
for the using
auto-compbetié-in
index. auto-com,
By functional
default,
itis
created
by
copying
terms
from the
title,
body,
description
and
author
fields.
batch_id string X X Identifies Yes.
the
batch
that
added
the
document.
bcc text_en X X Used in Yes. Will
processin be
email added
messages dynamica
if an
indexed
© 2014 Find this documentation online at Page 58 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

document
contains
this
field.
belongsToCGexitagnmer X X Used to Yes.
store
the URL
of the
archive
file
(.zip,
.mbox,
etc.)
which
contains
the file.
body text_en X X The Only if
body of never
a using

document built-in
(generally Search
the UI.
main

text).

Used by

default

for

display

in the

built-in

Search

UI.

© 2014 Find this documentation online at Page 59 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field Indexed Stored

Name

Type

byteSize int X

cC text en X X

character string X

Can Be

Used Included Used
i Deleted

for in for
Facets Results

The size Yes. Will

of the be

document.added
dynamical
if an
indexed
document
contains
this field
and was
crawled
by the
lucid.aper
crawler
(local
file
systems
and web
sites).

Used in Yes. Will

processingbe

email added

messages.dynamical
if an
indexed
document
contains
this
field.

The Yes. Will
character be
set used added

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 60 of
347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

for the dynamica
document if an

Only indexed
populatec documeni
if itis contains
declared this
in the field.
document
(most
commonl
with
HTML
files).

click string X X Used Only if
with the Click

Click Scoring

Scoring will not

Relevancebe used.
Framework

and

contains

the

boost

value.

click_tern text_ws X X Used Only if
with the Click
Click Scoring
Scoring will not
Relevance be used.
Framewol
and
contains

© 2014 Find this documentation online at Page 61 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

the top
terms
associate
with the
document

click_val string X X Used Only if
with the Click
Click Scoring
Scoring will not
Relevancebe used.
Framework
and
contains
a string
representation
for the
boost
value
for the
document.
The
format
allows it
to be
used for
processing
function
queries.

contentCr date X X The Yes. Will
creation be
date for added
the dynamica

© 2014 Find this documentation online at Page 62 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

document if an

if indexed

available. document
contains
this
field.
However,
it will
not be
added
as a
date,
but a
string,
which
may
cause
sorting
issues if
the field
is used
again
later.

crawl_uri string X A copy Yes.
of the
URL for
the
document.

creator text_en X X The Yes. Will
creator be
of the added
documeni dynamica

© 2014 Find this documentation online at Page 63 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

if if an
available. indexed
document
contains
this
field.
data_sourstring X X The ID No.
of the Field is
data essential.
source
that
crawled
this
document.
data_sourstringme X X X The No.

name of Field is
the data essential.
source

that

crawled

this

document.

data_sourstringpe X X X The type No.
of data Field is
source essential.
that
crawled
this
document.

dateCreal date X X X The Only if
date the never

© 2014 Find this documentation online at Page 64 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted

Facets Results
content using
was built-in
created, Search
if UI.
available.
descriptiortext_en X X X The Only if
descriptiomever
from a using
document,built-in
if it Search
exists in UI.
the
document.
For
example,
Microsoft
Office
document
properties
contains
a
description
field
that can
be filled
in by
the
user.
email text_en X X Not Yes. Will
currently be
used by added
any dynamica
© 2014 Find this documentation online at Page 65 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field
Name

Type

Indexed Stored

for in
Facets Results

Used Included Used

Can Be

for Deleted

LucidWor if an

crawlers. indexed
document
contains
this
field.
fileName text_en X X The Yes.
name of
the file.
fileSize int X X The size Yes.
of the
file.
from text en X X Used in Yes. Will
processingbe
email created
messages.dynamical
if
indexing
a
document
that
contains
this
field.
fullname text_en X X Datain Yes.
this field
is
mapped
to
"author".
© 2014 Find this documentation online at Page 66 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

generator text_en X X The Yes.
name of
the
software
that
generated
the
document,
if
available.

id string X X X Unique No.
ID for Field is
the essential.
document.

id_highlightext_en X X No Yes.
longer
used by
LucidWorks
and will
be
removed
in a
later
version.

incubationdate_dt X X Used in Yes.
older
Solr
example
documents.

keywords text_en X X X The Only if
keyword never

© 2014 Find this documentation online at Page 67 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

list from using
a built-in
Microsoft Search
Office UL.
document

keywords_aispiag-sefarated X Terms Only if
from the never
keyword using

field built-in

formatted Search

for UI.

display

to

users.
lastModifiedate X X X Date the Only if

content never
was last using
modified. built-in

Search

UI.
mimeTypestring X X X X The type Only if
of never

document using
(PDF, built-in
Microsoft Search

Office, UL.
etc.).
name text_en X X Datain Yes.
this field
is
mapped
© 2014 Find this documentation online at Page 68 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

to
"title".

otherDateglate X X Dates Yes.
other
than
dateCreated
or
lastModified
would
be
mapped
to this
field.

pageCountint X X X The Only if
number never
of pages using
ina built-in
Microsoft Search
Office UL.
document
such as
Word or
PowerPoint.

partOf string X X Typically
used for
an email
attachme
this
points
to the
larger

© 2014 Find this documentation online at Page 69 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field Type
Name

price float

retrievalDatate

rootElem«¢ text_en

Indexed Stored

X

X

X

for in
Facets Results

Used Included Used

for

Can Be
Deleted

document

of which
this

document

is a
part.

Example
field
that
could be
used for

Yes.

processing
e-commerce

data.

Not
currently
used,
but
could be
used for
the date
a web

Yes.

document

was
retrieved
from its
server.

Populatec Yes.

only for
the root
or initial

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 70 of
347

LucidWorks Search Documentation 05-Aug-2014
Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted

Facets Results
document
of a
crawl.
sighatureFgthing X X Used Yes,
with the however
de-duplicatfion
feature. de-duplice
is
enabled,
the field
will be
added
back to
your
schema.
spell textSpell X Stores Only if
the never
terms to using
be used built-in
in spelling
creating checker.
the spell
check
index.
Created
by
copying
terms
from the
title,
body,
descriptic
© 2014 Find this documentation online at Page 71 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

and
author
fields.

text_all text. en X Used to No.
combine Field is
text essential.
fields for
faster
searching.
Created
by
copying
terms
from the
id, url,
title,
description,
keywords,
author
and
body
fields.

text_meditext_ en X X Not Yes.
currently
used.

text_smalltext_en X X Not Yes.
currently
used.

timestam date X X X X Time No, field
the is
document

© 2014 Find this documentation online at Page 72 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

was considere
crawled essential.
and

used for
date
faceting
and
display
of
activities
in the
LucidWor
Admin
UI. Also
used for
Enterprise
Alerts to
know
when

the
document
was
added

to the
index

for

alerts
processin

title text en X X The title Only if
of the never
documeni using

built-in

© 2014 Find this documentation online at Page 73 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results

Search
Ul.
to text en X X Used in Yes. Will
processingbe
email created
messages.dynamical
if
indexing
a
document
that
contains
this
field.
type text._ en X X Used by Yes.
the
lucid.aperture
crawler
to store
Aperture's
classification
of an
information
object,
separate
from its
MIME
type.
url string X X The URL Only if
to never

access using

© 2014 Find this documentation online at Page 74 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field Type Indexed Stored Used Included Used Can Be
Name for in for Deleted
Facets Results
the built-in
documeni Search
UI.
usernametext_en X X No Yes.
longer
used
and may
be
removed
ina
later
version.
weight float X X Example Yes.
field
that
could be
used for
processing
e-commerce
data.
© 2014 Find this documentation online at Page 75 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Reindexing Content

It is considered a best practice to fully design your index (i.e., define all the fields
you'll need and their attributes) before indexing large amounts of content.
However, the reality is that things change - you have new requirements, new
content, or you'd like to give users new options for searching.

As tolerant as LucidWorks Search is to changes, there are certain changes that
cannot be made without fully reindexing, by which we mean deleting content from
the indexes and re-processing it from scratch. Adding a field or changing field
mapping options for an existing data source, as examples, require indexing the
content again to get the new field information from the document or change the
way the incoming content was processed into the index.

In addition, changes to the following attributes of a field require some degree of
re-index:

Field Type value

If it is Indexed

If it is Stored

If it is Multi-valued
Short Field Boost value

Below are the options for re-indexing content.
Re-crawl the Content

All of the crawlers store information about what documents it has previously
processed, and uses that information for future crawls, usually only adding
documents that are new (have never been indexed before), removed from the
content repository (and should be removed from the index), or changed (and
should be replaced in the index with the new copy). This means that documents
already in the index are not re-processed and may be skipped, which may create a
mis-match between existing content and new content being indexed.

Empty the Data Source

The Admin UI includes a button to Empty a data source. This button only deletes
the documents from the data source, but does not reset any of the crawl history

© 2014 Find this documentation online at Page 76 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

information, which keeps track of content that were previously found and uses that
information to understand if content is new, has been deleted (and should be
removed from the index), or has been updated (and should be removed and
replaced with the new content). The associated API is the Collection Index Delete
API, which has an option to specify deleting documents from the index associated
with a data source.

If changes to a collection's field list or field type list have been made, emptying
the documents from the data source may not be sufficient to fully re-crawl the
content to update the fields because the next time a crawl is run it will be
executed incrementally, using the crawl history information that it has stored. This
means that if a document has not changed it will not be re-added to the index
because the crawl history registers it as unchanged.

There is, however, a REST API to delete the crawl history called Data Source Crawl
Data Delete which can be used if necessary.

Delete the Data Source

Deleting the data source deletes the metadata for the data source (the
configuration details for LucidWorks Search to access the content repository), and
any of the content from the index and the crawl history. It can be done with either
the Admin UI Delete button or the Data Sources API. This might be the easiest
way to clear the content so it can be re-crawled and re-indexed with the new field
attributes.

Empty the Collection

Emptying the collection stops any running data sources, deletes the entire search
index for the collection, and removes all crawl history for each data source. It is a
good option if you have a number of data sources that you configured during initial
implementation and would like to start fresh with production data. Emptying the
collection can be done with either the Empty this Collection button in the Admin or
the Collection Index Delete API.

Delete the Collection

© 2014 Find this documentation online at Page 77 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Deleting the entire collection will delete all the data sources, stop any running
jobs, delete all associated content, and remove all collection-related settings for
the index. It can be done with the Delete this Collection button in the Admin UI or

the Collections API.

Related Topics

® Indexing Documents
® OQOverview of Crawling

© 2014 Find this documentation online at Page 78 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Multilingual Indexing and Search

LucidWorks Search has a number of capabilities designed to make working with
multilingual data straightforward. By default, it includes support for most European
languages, Japanese, Korean and Chinese. Multilingual capabilities are provided by
Lucene's analysis process (see the Language Analysis section of the Solr Reference
Guide for more details). Since Lucene is built on Java, which is Unicode enabled,
many multilingual issues are handled automatically by LucidWorks and Solr. In
fact, the main issues with multilingual search are mostly the same issues for
working with any language: how to analyze content, configure fields, define search
defaults, and so on.

Approaches to Multilingual Search

Besides the normal language issues, multilingual search does require decisions
about whether to use a single field for each language, a field for each language or
even a separate indexes for each language. Each of these three approaches has
pros and cons.

Single Field Approach

Pros

® Simple to search across all languages
® Fast to search

Cons

® Requires Language Detection software, which is not included in LucidWorks,
and which will slow down indexing

® Requires the query language to be specified beforehand, since language
detection on queries is often inaccurate

® May return irrelevant results, since words may have same spelling but
different meanings in different languages

® May skew relevancy statistics

® Hard to filter/search by language

Multiple Field Approach

Pros

© 2014 Find this documentation online at Page 79 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 05-Aug-2014
® No language detection required
® Easy to search and/or filter by language
® Relevancy is clear since there is no noise from other languages with common
spellings (minor)

Cons

® Many languages = many fields = more difficult to know what to search
® Slower to search across all languages

Multiple Indexes Approach
Pros

® Easy to bring one language off-line for maintenance without effecting other
languages

® (Can easily partition data and searches across machines by language

® Easy to search and filter by language

Cons

® More complex administration
® Slower and more difficult to search across all languages

Currently, LucidWorks supports the multiple field and multiple index approach out
of the box, but the single field approach is still possible with some additional work
that requires intermediate level Solr expertise.

Open Source Multilingual Capabilities

The crux of multilingual handling is applying analysis techniques to the content to
be indexed. These techniques are specified in the Solr's schema. xm by the

<fi el dType> declarations. Out of the box, LucidWorks comes configured with
numerous predefined field types designed to make indexing and searching
multilingual content easy to do.

Note that most of the supported languages (especially the European languages)
are designed to use Dr. Martin Porter's Snowball stemmers along with stop word
filters, synonym filters and various other filters.

(i)
© 2014 Find this documentation online at Page 80 of
LucidWorks http://docs.lucidworks.com/ 347

http://snowball.tartarus.org/

LucidWorks Search Documentation 05-Aug-2014
Multiple Languages May Require Customization

Although LucidWorks ships with default analysis and filter techniques, they
may need customization for your search application. Consider the included
language configurations to be good starting points for support of any given
language and make adjustments as needed. For information on relevance
tuning and debugging for additional tools and techniques to improve
results, see Understanding and Improving Relevance.

By setting up the appropriate fields per language, it is possible to simply point
LucidWorks at the given data source and have it index the content.

Adding Support for Other Languages

While there are a wide variety of languages available "out of the box", there may
come a time where support for a new language is needed. There are a few
possibilities:

® Try out the language with the StandardAnalyzer, since it often does the right
thing as far as tokenization and basic analysis goes. Note that the analyzer
doesn't do stemming or perform more advanced language translation.

® Write an Analyzer, Tokenizer or TokenFilter and the associated Solr classes
as described on the Solr Wiki page at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

® Use an n-gram character-based approach that chunks characters into
n-grams and indexes them. Accuracy will be limited, but it may be better
than nothing.

If choosing the second option, the new capability can be brought into LucidWorks
as described in the Solr wiki section on SolrPlugins.

Related Topics

® |anguage Analysis from the Solr Reference Guide
® AnalyzersTokenizersTokenFilters from the Apache Solr Wiki

© 2014 Find this documentation online at Page 81 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

LucidWorks Search Documentation 05-Aug-2014

Lucid Plural Stemming Rules

The purpose of stemming is to translate different forms of similar words to a
common form so that a query for one form of a word will also match the other
forms. The most common difference between word forms is singular words versus
their plurals. Another variation in form is the variety of conjugations of a word.
Although the administrator can select what stemming filter or options are enabled
for each field type, by default all text fields will have a stemming filter that
converts most plural words to singular.

Stemming is not a perfect process, so some plurals may be missed and some
singular words may be mistakenly translated to some other singular or possibly
even a non-word. Non-words, such as jargon, names, and acronyms can also be
mistakenly stemmed. But, since stemming usually occurs at both document
indexing time and at query time, improper stemming is frequently not even
detectable. The default rules try to avoid removing "s" endings that are not plural
(or verb conjugations), such as "alias" or "business."

If stemming proves problematic for a given application, the administrator can
always turn it off or select an alternative stemming filter.

The Lucid plural stemmer is designed to focus on stemming of plural words into
their singular forms. It is rule-based, so the rules can be supplemented and tuned
to handle a wide range of exceptions. Individual words can be protected from
stemming and can be given special-case stem words. Usually, general patterns
cover wide classes of words.

The input token does not need to be lower case, but the stemming change will be
lower case.

The Stemming Rules File

The default rules file is named Luci dSt enRul es_en. t xt and found in

$LWS HOVE/ conf/sol r/ cores/ col | ection/ conf. The rules file can be defined by
changing the "rules" parameter in schema. xm for

com | uci d. anal ysi s. Luci dPl ural StenFil ter Fact ory. These rules files are
specified per text field type. It is expected that each natural language will have its
own stemming rules file. This file is also specific to each collection.

© 2014 Find this documentation online at Page 82 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

If you wish to edit the stemming rules file, adhere to the following format
guidelines.

An exclamation point (!) indicates a comment or comment line to be

ignored.
White space is extraneous and ignored.
Blank lines ignored.

Rules are evaluated in the order that they appear in the rules file, except that
whole protected words and replacement words are processed before examining
suffixes.

To restrict the minimum word length that is to be stemmed, simply create rules
consisting of only question marks ('?') to match and protect words of those
lengths. For example, to protect words of less than four characters in length, add
three rules, before any other rules:

?7?

| Protects 1-char words.
| Protects 2-char words.

2?7 | Protects 3-char words.

Types of Stemming Rules

Protected Word
Just write the word itself, it will not be changed.

wor d

Replacement Word

Word will always be changed to a replacement word.

word => new word
word -> new word
word --> new word
word = new word

Protected Suffixes

Any matching word will be protected.

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 83 of
347

LucidWorks Search Documentation 05-Aug-2014

® pattern suffix

Pattern may start with an asterisk to indicate variable length. Use zero or more
question marks to indicate that a character is required. Use a trailing slash if a
consonant is required.

Examples:

® 7?ass
® *97ass
® *777?/ass

Translation Suffix

The suffix of a matching word will be replaced with new suffix.
® pattern suffix => new suffix

Pattern rules are the same as for protected suffixes. The pattern may be repeated
before the replacement suffix for readability.

Examples:

® *ses => se

® *ses -> *se
® *?/uses => se
® *9?7s =>

® *9?7s => *

The latter two examples show no new suffix, meaning that the existing suffix is
simply removed.

Example Stemming Rules File

Here is the default Luci dSt enRul es_en. t xt file that ships with LucidWorks
Search, found in $SLWS_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf (unique to each
collection):

? ! Mnimum of four characters before any stenm ng.
??
?7?7?

© 2014 Find this documentation online at Page 84 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
*ss | No change : business
*'s | No change : cat's - Handled in other filters.
*elves => *elf | selves => self, elves, thensel ves, shelves
appendi ces => appendi X
*indices => *index ! indices => index, subindices - NOT jaundices
*theses => *thesis ! hypotheses => hypothesis, parentheses, theses
*aderies => aderie ! camaraderie
*ies => *y | countries => country, flies, fries, ponies, phonies,
queri es, synphonies
*hes => *h | dishes => dish, ashes, snmashes, matches, batches
*??7?0es => *0 . potatoes => potato, avocadoes, tonatoes, zeroes
goes => go
does => do
?0es => *oe ! toes => toe, foes, hoes, joes, npbes - NOT does, goes - but
"does" is also plural for "doe"
??0es => ??0e ! floes => floe
*sses => *ss | passes => pass, bosses, classes, presses, tosses
*jgases => *igase ! |ligases => |igase
*gases => *gas ! outgases => outgas, gases, degases
*mases => *mas ! Christmases => Chri stnas, Thonmses
*?vases => *vas ! canvases => canvas - NOI vases
*jases => *jas ! aliases => alias, bias, Eliases
*abuses => *abuse ! di sabuses => di sabuse, abuses
*cuses => *cuse | accuses => accuse, recuses, excuses
*fuses => *fuse ! diffuses => diffuse, fuses, refuses
*/uses => *us buses => bus, airbuses, viruses; NOT houses, nouses,
causes
*xes => *x | indexes => index, axes, taxes
*zes => *z | buzzes => buzz
*es => *e | spaces => space, files, planes, bases, cases, races, paces
*ras => *ra ! zebras => zebra, agoras, al gebras
*us
*/s => * | cats => cat (require consonant (not "s") or "o" before "s")
*oci => *ocus ! foci => focus
*cti => *ctus ! cacti => cactus
pl usses => plus
gasses => gas
cl asses => cl ass
m ce => nouse
data => datum
I bases => basis
anebi ases => anebi asi s
© 2014 Find this documentation online at Page 85 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

atl ases => atl as
Eli ases => Elias
nol asses

feet => foot
backhoes => backhoe

calories => calorie

I Sone plurals that don't nmake sense as singul ar
sal es

news

j eans

© 2014 Find this documentation online at Page 86 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Choosing an Alternate Stemmer

Out of the box, the Lucid query parser comes with a basic plural stemmer that
translates most plural words to their singular form. This should be sufficient for
most applications. The stemming rules are all rule-based in an easy to read and
write text file format that permits the addition of new rules and permits words to
be protected or mapped specially. This permits flexibility for many more
specialized applications.

If for some reason the administrator wishes to use an alternative stemmer, the
change can be made manually in the scherma. xm file or by using the FieldTypes
API. Any stemming filter can be specified, but Lucid KStem is a typical alternative.

Information for LucidWorks Search in the Cloud Users
The instructions below refer to editing schema. xm to modify the stemmer
used for each field type. Manual editing of the schema. xnml file cannot be done
by customers using LucidWorks Search hosted on AWS or Azure, but the same
results can be achieved with the FieldTypes API.

Be sure to use the same stemmer class for both the index and query analyzers. If
the stemmer classes do not match, the result can be that some queries can fail if
terms were indexed according to different rules than those used by the Lucid
query parser.

In general, it is best to delete the index and do a full re-indexing of the data
collection whenever an index analyzer is radically changed, such as is the case
when stemming filters or rules are changed. See Reindexing Content for more
information about the options to reindex.

Other alternative stemming filters, such as Snowball and Porter, can be used
instead of Lucid KStem if desired.

Using the FieldTypes API
The FieldTypes API is covered in depth in the section on the FieldTypes API.

The stemming rules are defined in the "analyzers" section for the field type. The
analyzers section is considered an individual attribute as a whole, and it's not

© 2014 Find this documentation online at Page 87 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

possible to update a single part of the analyzers rules without updating the entire
section.

The com | uci d. anal ysi s. Luci dPl ural Stenfi |l t er Fact ory class represents the
default plural stemmer and will be shown in an API call in both the i ndex and
query section of the anal yzer s attribute. The rul es parameter specifies the name
of the text file that contains the plural stemming rules.

The com | uci d. anal ysi s. Luci dKSt enFi | t er Fact ory class represents the Lucid
KStem stemmer. To switch to this stemmer (or any other), make an API PUT call
to the appropriate field type and update the anal yzer s attribute (in both the

i ndex and query sections).

For example, changing to the Lucid KStem stemmer for the t ext _en field type
would require the following API call:

curl -X PUT -H 'Content-type: application/json
-d ' {"analyzers": {
"index": {
"char_filters": [],
"token filters": |
{
"catenateAll": "0",
"cat enat eNunbers": "1",
"cat enat eWords": "1",
"class": "solr.WrdDelimterFilterFactory"
"gener at eNunber Parts": "1",
"generateWrdParts": "1",
"splitOnCaseChange": "1"
H
{
"class": "solr.LowerCaseFilterFactory"
|
{
"class": "solr.ASCl | Fol di ngFil terFactory"
H
{
"class": "comlucid. anal ysis. Luci dKSt enti | t er Fact ory"
}
1,
© 2014 Find this documentation online at Page 88 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

"tokeni zer": {
"class": "solr.WitespaceTokeni zer Fact ory"
}
1
"query": {
"char _filters": [],
"token_filters": [
{
"class": "solr.SynonynfilterFactory",
"expand": "true",
"ignoreCase": "true"
"synonyns": "synonyns.txt"
},
{
"class": "solr. StopFilterFactory”
"ignoreCase": "true"
"words": "stopwords.txt"
1
{
"catenateA l": "0",
"cat enat eNunbers": "0",
"cat enat eWbrds": "0",
"class": "solr.WrdDelimterFilterFactory"
"gener at eNunber Parts": "1",
"generateWwrdParts": "1",
"splitOnCaseChange": "1"
},
{
"class": "solr.LowerCaseFilterFactory"
1
{
"class": "solr.ASCl | Fol di ngFil terFactory"
},
{
"class": "comlucid. anal ysis. Luci dKSt enti | t er Fact ory"
}
1,
"t okeni zer": {
"class": "solr.WitespaceTokeni zer Fact ory"
}
}
Y
© 2014 Find this documentation online at Page 89 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014
http://1ocal host: 8888/ api/coll ections/ TestCollection/fieldtypes/text_en

Editing schema.xml

If you edit schema. xm , and search for the t ext _en field type, you should see that
both its index and query analyzers have XML entries for the stemming filter that
appear as follows:

<filter class="solr.|SOLatinlAccentFilterFactory"/>

<l-- <filter class="com |l ucid. anal ysis. Luci dKStenFilterFactory"/> -->
<filter class="com |l ucid. anal ysis. Luci dPl ural StenFilterFactory"

rul es="Luci dStenmRul es_en. txt"/>

The com | uci d. anal ysi s. Luci dPl ural Stenfi |l t er Fact ory class represents the
default plural stemmer. The rul es parameter specifies the name of the text file
that contains the plural stemming rules.

The com | uci d. anal ysi s. Luci dKSt enFi | t er Fact ory class represents the Lucid
KStem stemmer, which is disabled by default using the standard <! - and - >
comment markers.

To disable the default plural stemmer and enable Lucid KStem, simply remove the
comment markers from the latter and add them to the former. Do this same thing
for both the index and query analyzers. The edited lines should now appear as
follows:

<filter class="solr.|SOLatinlAccentFilterFactory"/>

<filter class="com |l ucid. anal ysis. Luci dKSt enFi |t er Factory"/ >

<I-- <filter class="com |l ucid.anal ysis.LucidPlural StenfilterFactory"
rul es="Luci dStenRul es_en.txt"/> -->

© 2014 Find this documentation online at Page 90 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Deleting the Index

During application development, you might use sample data that is inappropriate
for the production system. To remove this data, you can delete the entire index or
just delete the content and crawl history for a single data source.

The easiest way to do this is to use the Admin UI to delete documents from a
specific data source or an entire collection.

Another way to do this is to issue an API command using the Collections Index API
. This API provides two methods to stop all running indexing tasks, clear the index,
and clear any persistent crawl data (crawl history) for either the entire collection
or a single data source.

@ This Will Delete ALL of Your Data

The following procedure to delete a collection should only be used if you
are sure you want to delete all documents in your index. Once this
command has been executed, there is no way to retrieve the content. If
only some documents should be deleted, use the method to delete
documents for a specific data source.

If you only want to clear the crawl history, the Data Source Crawl Data API
provides a way to delete only the history for a data source, but not the content.

An alternative approach would be to issue a delete command directly to Solr with
the following syntax. However, this will not stop running tasks nor clear persistent
crawl data.

http://1ocal host: 8888/ sol r/ updat e?stream body=<del et e><query>i d:\[* TO
*\] </ query></del et e>

Related Topics

® Reindexing Content
® Qverview of Crawling

© 2014 Find this documentation online at Page 91 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Crawling Content

This section describes how to configure crawling with LucidWorks Search, to get
the content to put in the indexes.

For the most part, crawling only requires configuring a data source with the UI or
the API and starting the crawl. However, if using batch crawling, Access Control
Lists, databases containing binary data, or an "external" crawler, there may be
additional configuration you'll want to do.

Start with the Overview of Crawling to understand how the crawlers work.

Then dive into the detailed sections as needed:

® Supported Filetypes

® Troubleshooting Document Crawling

® Pushing Content to LucidWorks

® Indexing Documents Directly to Solr

® Crawling Windows Shares with Access Control Lists

Indexing Binary Data Stored in a Database
Using the Hadoop Crawlers

Integrating Nutch

Processing Documents in Batches

© 2014 Find this documentation online at Page 92 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Overview of Crawling

LucidWorks Search has integrated several crawlers to make adding content to the
index easier and more straightforward.

A crawler is a program which understands how to connect to a remote repository
(or several types of repositories), find documents within the repository, and
retrieve the documents for indexing by the system. A synonym in some contexts is
a connector, but there are differences between the terms. A crawler discovers new
documents on its own and makes decisions about which documents to retrieve,
based on rules provided to it by its own code or by configuration. A connector is
more passive - it connects to a repository and pulls all the documents, without the
ability to make decisions; interpreting rules and making decisions would be up to
the crawler which controls the connector.

As each repository is different, each crawler needs information to connect to a
specific repository, such as the network address of the repository and any required
authentication information. This information is provided to the crawler by creating
a data source.

The data source is the central way in which you interact with the crawlers. There is
one defined per repository, filesystem, website, etc. So, for example, if you want
to index three websites, you'll create three Web Data Sources. Three S3 buckets,
then you'll create three S3 Data Sources.

For the most part, we've tried to make each data source consistent in terms of the
options provided, but there are differences between the crawlers and their
capabilities. This leads to differences when configuring data sources of different
types, and differences in performance and behavior of the crawlers themselves
while retrieving documents and passing them along the indexing process.

Topics covered in this section:

® The Crawl Process

® Re-Crawling Documents
® Data Source Options

® |ogging

® Scheduling

© 2014 Find this documentation online at Page 93 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
® Field Mapping
® Data Source Types
® Related Topics

The Crawl Process

When starting a crawl, the crawler associated with a specific data source uses the
information saved in the data source configuration to connect to the repository and
find documents. Most of the data sources support inclusion or exclusion
parameters to define the types of documents (or paths to documents) that should
be indexed. The crawlers use that information to know what pages to retrieve for
eventual indexing.

The crawlers do not actually index content. A crawler retrieves the pages, and
passes them to a parser, which prepares the documents for the indexing process.
The parser handles breaking the documents into their parts, identifying fields
within the documents and normalizing data so it can be more easily consumed in
the index. In most cases, the crawlers use Apache Tika for parsing.

@ The exception to this is the Aperture crawler, which has its own parser
embedded within it. In cases where the Aperture parser fails to parse a
document, Tika is used as a fall-back. However, documents that were
successfully parsed by the Aperture crawler do not get another pass
through Tika. There is no way to change this behavior at this time.

Once documents have been retrieved and parsed, they are passed to the
UpdateController which pushes them into the index using Solr], a common client
used for indexing content in Solr. This process also performs field mapping, where
the extracted fields from a document can be mapped to other fields.

Re-Crawling Documents

When working with data sources and their content, it helps to understand how
content is handled during the initial crawl and in subsequent re-crawls to update
the index with new, updated, or removed content.

© 2014 Find this documentation online at Page 94 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Some of the crawlers keep track of documents that have been "seen" which helps
speed later crawls by not processing unchanged content, but it can be confusing if
the configuration settings change between crawls. In some cases, you may need
to remove the crawl history in order to get the results you want; an example of
this would be the add_f ai | ed_docs setting: if it is not set for the initial crawl of a
repository, it will be skipped on subsequent crawls unless it has been modified in
some way. Other examples include (but aren't limited to) settings to map fields
from the incoming documents to another field, options to add LucidWorks-specific
fields to the documents, as well as changes to fields themselves and any dynamic
field rules.

If making changes to a data source configuration after content has already been
crawled and indexed, review the options in the section on Reindexing Content for
possible approaches.

Back to Top

Data Source Options

Logging

The crawlers log information about attempts to access documents and the results
of those attempts. The log is kept in $LW5_HOVE/ dat a/ | ogs in a file named
connect ors. <YYYY_MM DD>. | og.

In general, the crawlers will:

® print one line to the log with the document ID when it has successfully
accessed a document, describing the status (New, Updated, Deleted, etc.).
In cases where the document could not even be accessed, this may lead to
the attempt not being recorded in the logs.

® not log documents of unknown type that cannot be processed as plain text.

® not log documents that fail parsing.

® not add documents that fail parsing.

Each of these behaviors can be changed in most crawlers, which would allow more
information to be added to the log or more documents added to the index. With
some crawlers, however, the default behaviors are the only options. More
information for each data source type is available in the documentation for the
Admin UI and the REST API.

© 2014 Find this documentation online at Page 95 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Scheduling

Each data source can be scheduled to run at regular intervals. Using the Admin UI,
it is only possible to schedule crawling at specific intervals (hourly, daily, weekly),
but using the REST API, more complex schedules can be constructed. It is,

however, only possible to have a single schedule for each data source.

Field Mapping

Field Mapping provides the ability to map fields in documents to fields or dynamic
field rules already defined in LucidWorks or add fields to incoming documents. This
can be done generically when an unexpected field is introduced or specifically for
known incoming fields. The mapping rules can be manipulated via the Admin Ul
from the Data Source Details screen, or with either the Data Sources API or the

Field Mapping API.

Some explicit field mappings are defined by default. This table shows the

LucidWorks Search default mappings:

From Crawler Metadata To Field

acl acl

author author

batch_id batch_id

body body

content-encoding characterSet

content-length fileSize

contentcreated dateCreated

contentlastmodified lastModified

contributor author

crawl_uri crawl_uri

created dateCreated

creator creator
© 2014 Find this documentation online at Page 96 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
From Crawler Metadata To Field

date null

description description

filelastmodified lastModified

filename fileName

filesize fileSize

fullname author

fulltext body

keyword keywords

last-modified lastModified

last-printed null

lastmodified lastModified

lastmodifiedby author

links null

messagesubject title

mimetype mimeType

name title

page-count pageCount

pagecount pageCount

plaintextcontent body

plaintextmessagecontent body

slide-count pageCount

slides pageCount

subject subject
© 2014 Find this documentation online at Page 97 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

From Crawler Metadata To Field
title title
type null
url url

When the mapping is created or updated, LucidWorks checks the mappings against
the schema. xnl for the collection and verifies that the target fields exist in the
schema.

During indexing, the field mapping process performs the following steps:

1. The mappings are checked for the existence of the source field name. If it
exists, it will be mapped to the target field.

2. If the source field name does not exist in the mappings, the schema. xnml for
the collection is checked. If the source field name exists in the schema, it
will be indexed to that field.

3. If adynam c_fi el d has been defined, a dynamic field will be created
according to the dynamic field rule.

4. Ifadefault field has been defined, the source field will be mapped to the
defined default field.

5. If none of these steps has produced a match, the field will be discarded.
Back to Top

Data Source Types

LucidWorks Search currently supports 8 crawlers and 13 types of data sources.
When using the Admin UI, the selection of a crawler is hidden; when using the
REST API, the selection of a crawler is a required attribute.

The table summarizes the types of content repositories that can be crawled:

© 2014 Find this documentation online at Page 98 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
Aperture
® Websites Can crawl ® The Aperture
® Filesystems websites and crawler is
filesystems. not designed
Stores a for
history of large-scale
documents crawls of
that have more than
been seen about
before. 10,000
Indexes data pages or
contained in files in a
<META> tags. single crawl.
Web Itisa
crawling will single-threade
respect process,
robots.txt meaning
rules or can that one
be data source
configured will only use
to ignore a single
them. server
process to
crawl sites.
This can
make a long
crawl take a
long period
of time to
complete.
© 2014 Find this documentation online at Page 99 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler

Data Source Capabilities
Types Supported

Limitations (not
comprehensive;

see

documentation
for each type for
full details)

® Multiple data

sources all
use the

same
"triple-store",
which is a
database
inside
Aperture
that keeps
track of web
pages
visited. If
multiple data
sources are
running at
the same
time, the
triple-store
can get
easily
corrupted.
It's highly
recommendec
to avoid
running
multiple
Aperture-base
crawls at the
same time.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 100 of
347

LucidWorks Search Documentation 05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see

documentation
for each type for
full details)

® Doesn't use
Apache Tika
for
document
parsing and
may not be
as accurate
with some
documents
as Tika
(however, if
it cannot
parse a
document at
all, it will
pass that
document to
Tika for
parsing).

JDBC
® Databases ® Allows ® The

indexing of LucidWorks
databases. Search

® Supports implementatic
nested is based on
queries for the
complex DatalmportHe
data which can be
environments difficult to

© 2014 Find this documentation online at Page 101 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
® Supports precisely
delta queries configure in
to limit unique
subsequent environments
crawls on Requires
only new or uploading a
changed driver before
table rows. it can be
used.
Converting
date types
can be
problematic.
Google Connector
Manager ® SharePoint ¢ Indexes all Must install
Repositories content in additional
the Web services
SharePoint to work
repository properly.
(files, Security
discussion options can
boards, be complex
calendars, to configure.
contacts,
sites,
images,
etc.).
® Support
SharePoint
© 2014 Find this documentation online at Page 102 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see

documentation
for each type for
full details)

security
configuration.
® Can add new
connectors
supported by
the Google
Connector
Manager
framework.

SolrXML

® SolrXML files Easy to ® Not a
understand generic XML
XML indexer;
structure. documents
® Many users must be

already have structured in

documents a very

in this specific way.

format due

to prior use

of Solr.
® Can point it

to a

directory of

files instead

of one at a

time.
® Can add a

unique

© 2014 Find this documentation online at Page 103 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
identifier to
each
document as
it's indexed
if it doesn't
have one
already.
Filesystem
Amazon S3 Provides ® Must allow
buckets access to the
SMB/Windows multiple LucidWorks
Shares remote server
Hadoop filesystems. access to the
Distributed Allows remote
Filesystems multi-threaded systems.
(HDFS) crawls. Hadoop
Hadoop over crawls are
S3 throttled to
FTP servers prevent
Local overloading
Filesystems the system.
MongoDB
MongoDB Supports MongoDB
multiple collections
databases indexed
and tables restricted by
within a username
single and
© 2014 Find this documentation online at Page 104 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
MongoDB password
installation provided to
the crawler.
Crawling all
databases
and
collections
requires
allowing the
crawler to
have
"admin”
access to the
database.
Azure Blob
® Azure Blob ® Indexes all Can only
storage content specify a
found in an single
Azure Blob container.
storage
container.
Azure Table
® Azure Table ® Indexes all Does not
instances content support
found in an incremental
Azure Table crawling
instance. (i.e., delta
queries). All
© 2014 Find this documentation online at Page 105 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
documents
are retrieved
with every
crawl.
Twitter Search
® Twitter ® Allows Does not
Search API indexing continuously
tweets that crawl to get
match a tweets that
specific match the
query. query
parameters.
Twitter Stream
® Twitter ® Allows Will continue
Stream API filtering to crawl
indexed indefinitely
tweets by unless
userlD, manually
location, or stopped or
keywords. controlled
with a
parameter
that's only
available via
the REST
API.
Hadoop crawlers
© 2014 Find this documentation online at Page 106 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see
documentation
for each type for
full details)
® Hadoop ® Allows ® Must design
filesystems unthrottled your
crawling of LucidWorks
HDFS cluster
systems. appropriately
Supports all to take full
of the major advantage of
Hadoop the speed
distributions capabilities.
(Apache, ® Field
Cloudera, mapping is
Intel, MapR, not
and Pivotal). supported.
Supports ® Defining the
several Hadoop job
types of has a lot of
documents parameters.
(SequencefFile
CSV files,)
Push
® Push to Can use ® The
LucidWorks Solr] or any documents
update or processes
requestHandle for crawling
to get must be
documents prepared in
into advance.
LucidWorks. ® A Jetty port
must remain
© 2014 Find this documentation online at Page 107 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Crawler Data Source Capabilities Limitations (not
Types Supported comprehensive;
see

documentation
for each type for

full details)
® Full access open to
to field "listen" for
mapping the pushed
capabilities documents.
that other
crawlers
use.
Related Topics
® Data Sources in the Admin UI
® Data Sources with the REST API
® Custom Connector Guide
Back to Top
© 2014 Find this documentation online at Page 108 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Supported Filetypes

LucidWorks Search crawlers can identify many different file formats (MIME types),
and can extract text and metadata from the MIME types listed in the table below.
Even if the crawlers cannot extract data from a file, it can often at least recognize
the file type and index basic information about the file, such as the filename and
its metadata. Many of the crawlers have settings that allow how to handle the
situation where the MIME type is not supported.

Note that extracting data from third party proprietary file formats is often difficult
and may result in irregular text being extracted and indexed. If you encounter a
format that is supported, but does not get properly extracted, please share the
information with Lucid Support, including the file, if possible.

Supported File Formats

Name MIME Type(s) Notes

HTML text/html

Images image/jpeg, image/png, Metadata Only
image/tiff

Mail message/rfc822 and Some mime based mail
message/news attachments can be

extracted.

MP3 Metadata audio/mpeg Metadata only

Microsoft Office Word, PowerPoint, Excel, All applications are
MS Publisher, Visio trademarks of the

Microsoft Corporation

Open Office OpenDocument and
StarOffice documents

OpenXML Microsoft's latest Office
format
Adobe Portable Document application/pdf PDF is a trademark of
Format Adobe
© 2014 Find this documentation online at Page 109 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Name MIME Type(s) Notes
Plain Text text/plain
Quattro application/x-quattropro, Trademark of Corel

application/wb2
Rich Text Format text/rtf

eXtensible Markup text/xml
Language (XML)

Archives application/zip,
application/gzip,
application/x-tar

© 2014 Find this documentation online at Page 110 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Troubleshooting Document Crawling

LucidWorks Search crawling events are logged to the
connect ors. <YYYY_MM DD>. | og file, found in the $LWS_HOWVE/ dat a/ | ogs directory.

Serious exceptions will be reported to the LucidWorksLogs collection, which you
can search as you can any other collection through the default Search UI. In
addition, the Admin UI provides some visibility into errors during crawling by
showing them on the Server Log page, found under the Status menu. That page
also allows access to browse all the log files without having to access the server.

Problems such as a document not being found or access denied will not be
reported the the LucidWorksLogs collection, but will show in the Admin UI and in
the Data Source Status/History APIs as "not found". This may make it difficult to
find which documents were skipped, but a review of the log file may yield further
information.

In general, the crawlers will:

® print one line to the log with the document ID when it has successfully
accessed a document, describing the status (New, Updated, Deleted, etc.).
In cases where the document could not even be accessed, this may lead to
the attempt not being recorded in the logs. This can be changed by
modifying the setting "Log Extra Detail" in crawlers that support it.

® not log documents of unknown type that cannot be processed as plain text.
This can be changed by modifying the setting "Log warnings for unknown
mime types" in crawlers that support it.

® not log documents that fail parsing. This can be changed by modifying the
setting "Fail unsupported file types" in crawlers that support it.

® not add documents that fail parsing. This can be changed by modifying the
setting "Add failed docs" in crawlers that support it.

@
By default, the LucidWorks Search Connectors log does not record the
collection or data source associated with crawl activities. However, if you
would like to record that information to make troubleshooting simpler, you
can edit the $LW5_HOVE/ conf /| og4j - connect ors. xm file.
© 2014 Find this documentation online at Page 111 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
In the file, find the section that begins with a comment to "Use the pattern
below to log additional context info...", as below:

<l-- Use the pattern belowto |log additional context info Iike
coll ection and data source nanme -->
<I--
<par am val ue="%l{1S08601} % %{2} - X %Pm"
nane="Conversi onPattern"/>
-->

Uncomment <par am val ue="%{1 SC8601} % %{2} - %X %?n"
name="Conver si onPat t ern"/ > and save the file. You should restart
LucidWorks Search after making this change.

Errors Creating Data Sources

Path or URL Errors

By default, all data sources try to verify that the repository to be crawled is
accessible to the Connectors component with the information provided. In most
cases, the data source will not be created unless the data source is accessible.

Most of the crawlers support disabling the verification step during data source
creation with a parameter in the API (the Admin UI has no ability to skip
verification). However, if the Connectors component cannot access the repository,
it will not be able to crawl it.

MapR-related Errors

Before using either MapR data source, you must first have the MapR client
installed at a filesystem location accessible by the LucidWorks Connector
component. For information about the MapR client, please see the MapR
documentation Setting Up the Client.

The Connector component looks for the client libraries in / opt / mapr by default,
but the location can be modified by editing the | weconnect ors. j vm parans in
$LWS_HOWVE/ conf / mast er. conf . Find the setting - Dmapr . hone and modify the path
as needed.

© 2014 Find this documentation online at Page 112 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 05-Aug-2014

The following errors indicate that either the MapR Client is not installed or not
accessible to the Connectors component:

In core. <date>. | 0g:

® Unprocessable Entity (422) - [{"nmessage":"unknown crawl er type
[uci d. map. reduce. maprfs", "code":"error.invalid.val ue", "key":"craw
® Unprocessable Entity (422) - [{"nmessage":"unknown crawl er type
lucid. mapr","code":"error.invalid.value","key":"crawl er"}]

In connectors. <dat e>. | 0g:

® External library path doesn't exist:

[opt / mapr/ hadoop/ hadoop- 0. 20. 2/ conf
® External library path doesn't exist:

[opt / mapr/ hadoop/ hadoop-0.20. 2/1ib
® External library path doesn't exist:

[opt / mapr/ hadoop/ hadoop- 0. 20. 2/1i b/jsp-2.1
® No valid external paths - skipping mapr-client initialization.
® Dependency 'mapr-client' of

[Luci dWor ks/ 2. 5. 6- 32/ app/ crawl ers/ mapr-crawl er.jar NOT FOUND
® No valid crawler plugins in

file:/Luci dWorks/2.5.6-32/app/craw ers/ mapr-craw er.j ar
® Dependency 'nmapr-client' of

/ Luci dWor ks/ 2. 5. 6- 32/ app/ crawl er s/ mapr - hv-craw er.jar NOT FOUND
® No valid crawler plugins in

file:/Luci dWorks/2.5.6-32/app/craw ers/ mapr-hv-crawl er.jar

Exact paths referenced in these errors will vary depending on how you have
installed LucidWorks Search.

Understanding Crawl Errors

Crawling is dependent on a number of factors. In order for a site to be crawl-able,
several things must be aligned:

® The repository must be supported by one of the crawler and data source
types.

© 2014 Find this documentation online at Page 113 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® The repository must be accessible to the LucidWorks Search server. If
authentication is required to access the repository, the data source must
support the authentication type and the correct credentials supplied.

® The documents must be parseable, so the fields and content can be
extracted.

® The specific data source settings must be configured to include the specific
documents.

For example, if I have a file system with 100 PDF documents, each of which are
OCR scans and 100Mb in size, the PDF documents: a) may not be parseable
because OCR scans are images and, b) may exceed the maximum file size
configured in the data source (the default is 10Mb). In this example, the files
would be skipped by the crawler, which is not considered a serious exception and
is generally only logged when the data source setting to "Log extra detail" is
selected. Then the skipped files would be found in the log file with a format like
this:

| NFO filesystem Fil eSystenCrawm er - File <file-URL> exceeds the
maxi mum si ze specified for this data source. Ski pping.

WARN No extractor for <file format>; Skipping: <docunent-URl >

Possible Errors

This information is provided to help you find the errors in the log file; precise
troubleshooting requires information about the documents and system
environment. If a document causes an error (besides being too large or the
system being out of memory), it may be helpful to try to isolate it and try again to
be sure it is the document causing the problem and not some other system error
that may have occurred at the same time.

In each of the errors below, the document URI will be listed. For files this will be
the path and filename, for websites it would be the URL, and for other data source
types a base document URI will be configured based on how the data source is
configured.

Exception

WARN Exception while crawling: <docunent-URI >
<exception-w th-stack-trace>

© 2014 Find this documentation online at Page 114 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
WARN Doc fail ed: <exception-wth-stack-trace>

WARN Doc failed: <docunent-URI> - cause: <exception-cause-nessage>

PDF files are notorious for causing exceptions in their processing. These errors are
not always fatal, but may cause all or part of the file to be skipped.

WARN uti | . PDFSt reantngi ne - java.io.| CException: Error: expected hex
character and not : 32

WARN uti | . PDFStreantngi ne - java.io.| CException: Error: expected the
end of a dictionary.

Out of memory

WARN Fil e caused an Qut of Menory Exception, skipping: <docunent-URI >
<exception-w th-stack-trace>

WARN Doc failed: <exception-wth-stack-trace>

WARN Doc failed: <docunent-URI> - cause: <OOMW exception-nessage>

SubCrawlerException

WARN Doc fail ed: <exception-w th-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-nessage>

Unknown file type
WARN Doc failed: Could not find extractor: <docunent-URI >

In this case, this warning will be seen in the logs but will not be reported in the
LucidWorksLogs collection.

I/0 error

WARN | O Exception processing: <docunent-URI >

<exception-w th-stack-trace>

WARN Doc failed: <exception-wth-stack-trace>

WARN Doc failed: <docunent-URI> - cause: <exception-nessage>

HTML/XML/XHTML parsing errors

WARN Doc failed: <exception-wth-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-cause-nessage>

© 2014 Find this documentation online at Page 115 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

This is another case where a warning will be seen in the logs but will not be
reported in the LucidWorksLogs collection.

Related Topics

® System Directories and Logs

© 2014 Find this documentation online at Page 116 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Pushing Content to LucidWorks

In some cases, it may not be possible to use the crawlers included with
LucidWorks Search to index content because it is stored in a repository that is not
accessible to the crawlers or has already been prepared for ingestion to Solr.
Instead, another process may be possible, such as using SolrJ, to feed documents
directly to Solr. In that situation, LucidWorks would not normally know about the
documents and would not be able to include information about the data source in
facets or display statistical data about the data source in the Admin UI.

Fortunately, there is a way to create an 'external' data source to add fields to the
document so LucidWorks will treat the documents the same as documents found
via the embedded crawlers. The data source can be created either via the Sources
screen in the Admin UI or with the Data Sources API.

Push Data Sources

In LucidWorks Search, this is called a 'Push' data source. It differs from the other
data source types in that it is the only one where you send content to LucidWorks
(and, by extension, Solr), while the other data source types use a "pull" model to
go and get content for processing. Because the content is being pushed from an
external process, these suggestions will ensure that they are processed
consistently by LucidWorks Search.

@ Prior to LucidWorks Search v2.7, a similar data source called an 'external’
data source was used. That data source type has been replaced with the
'push' data source type. Subsequently, it is no longer required to use the
f m ds parameter, nor configure a callback URL.

This data source type has the benefit of using the field mapping functionality of
Solr, but can also process adds, deletes, and updates to documents in the same
way that Solr can (i.e., using the update requestHandlers for CSV, XML, JSON,
etc.). It can also send the output through any of the available output options
described in the advanced fields section below. Document counts should also be
reflected properly in the Admin UI and data source history APIs.

© 2014 Find this documentation online at Page 117 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/Solrj

LucidWorks Search Documentation 05-Aug-2014

If you are using a smart Solr] client already (i.e., CloudSolrServer), it's worth
weighing the benefits of this data source against the drawback that it is a single
endpoint which may become a bottleneck or single point of failure. However, the
ability to use the LucidWorks Search processing chain may still outweigh this
disadvantage.

The push connector uses the embedded JettySolrRunner to push the documents.
This requires you to only define a port on your system to run the JettySolrRunner
that is not already in use by any other process. The documents can then be sent
to LucidWorks at that port, and they will be consumed by LucidWorks.

Add lucidworks_fields to Incoming Content

When LucidWorks crawlers acquire content, certain fields related to the data
source are added to each document to help identify the documents as belonging to
the data source for use in statistics, faceting, and document deletion (if
necessary). This is done via an attribute called | uci dwor ks_fi el ds (which is
shown as "Create LucidWorks fields" in the Edit Mapping screen of the Admin UI).
The default for this attribute is "true", which means the fields will be added to all
incoming documents, so usually no editing is required to add these fields as long
as the f m ds parameter has been added to the update request.

The fields added to each document are from the data source, but have different
names. This table shows the relationship between the data source attribute name
and the fields added to documents:

Data Source Attribute Field Name (in schenma. xni)
id data_source
type data_source_type
name data_source_name
Examples

Using the Data Sources API, a new data source could be created with these
settings:

curl -H'Content-type: application/json' -d '{"nane":"Content
Push","crawl er": "l uci d. push","type": "push", "port": 8654}"'

© 2014 Find this documentation online at Page 118 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

j son.too

http://1 ocal host: 8888/ api/collections/collectionl/datasources |python -m

The output of this command would be as follows:

"caching": false,
"category": "push",
"collection": "collectionl",
"conmit_on_finish": true,
"conmmit_wthin": 900000,
"craw er": "lucid. push",
"id": "7cb0000448eb4dbc9bb73c6e4097d685",
"indexing": true,
"mappi ng": {
"dat asource_field": "data_source",
"default field": null,
"dynami c_field": "attr",
"l'iterals": {},
"luci dworks_fields": true,
"mappi ngs": {
"acl": "acl"
"aut hor": "author",
"batch_id": "batch_id",
"body": "body",
"content-encodi ng": "characterSet",
"content-length": "fileSize",
"content-type": "m nmeType",
"contentcreated": "dateCreated",
"contentlastnodi fied": "lastMdified",
"contributor": "author",
"craw _uri": "crawl _uri"
"created": "dateCreated",
"creator": "creator",
"date": null
"description": "description”,
"filelastnodified": "l astMdified",
"filenane": "fil eNanme",
"filesize": "fileSize",
"full nane": "author”,
"fulltext": "body",

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 119 of
347

LucidWorks Search Documentation

05-Aug-2014

},

},

I3

},

"name" :
"out put _args": "threads=2, buffer=1",

"keyword": "keywords",
"last-nodified': "l astMdified",
"last-printed": null,

"lastnodi fied': "l astMdified",
"l astnodi fi edby”: "author",
"l'inks": null,

"messagesubject”: "title",

"m nmetype": "mmeType",

"nane": "title",

"page-count": "pageCount"”
"pagecount": "pageCount",

"plai ntextcontent": "body",

"pl ai nt ext mressagecontent”: "body",
"slide-count": "pageCount"
"slides": "pageCount",
"subject": "subject",

"title": "title",

"type": null,

“url": "url"

"mul ti_val": {

"acl": true,
"aut hor": true,
"body": false,

"dateCreated": false,
"description": false,
"fileSize": fal se,
"m nmeType": fal se,
"title": fal se

"original _content”: fal se,
"types": {

"date": "DATE",

"dat ecreat ed": " DATE",
"filesize": "LONG',

"l astnodi fied": "DATE"

"uni que_key": "id",
"verify_schema": true

"Cont ent Push",

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 120 of
347

LucidWorks Search Documentation 05-Aug-2014
"out put _type": "solr",

"parsing": true,

"port": 8654,

"type": "push",

"url": "http://1ocal host: 8654/ sol r"

Then a document such as this could be added directly to Solr:

curl -H'Content-type: text/xm' --data-binary '<add> <doc> <field
name="i d" >t est doc</fiel d> <field name="body">test</fiel d> </doc> </add>
http://10.0.1.7:8654/solr/collectionl/update?comit=true

Here is an example document using SolrJ:

String dsld = "3";

Sol r I nput Docunent doc = new Sol r | nput Docunent () ;
doc. addFi el d("id", "1234");

doc. addFi el d(" body", "test");

Sol r Server server = new

CommonsHt t pSol r Server ("http://1 ocal host: 8654/ solr/coll ectionl");
Updat eRequest req = new Updat eRequest ();

req. add(doc);

req. process(server);

Related Topics

® Solr Direct Access
® Indexing and Basic Data Operations from the Apache Solr Reference Guide.

© 2014 Find this documentation online at Page 121 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 05-Aug-2014

Indexing Documents Directly to Solr

Solr provides many ways to index content, and these can be used in addition to or
instead of the crawlers built into LucidWorks Search. Solr includes several
approaches to indexing content:

® Solr can index XML (in a specific Solr format), CSV files and JSON formats
natively

® Solr Cell (Content Extraction Library) uses Tika to extract documents from a
variety of sources

® Solr] is used by many to connect their Java applications to Solr for indexing
and also querying document once they've been indexed

® The DatalmportHandler (DIH) provides access to structured data in
relational databases (the Database data source in LucidWorks uses DIH
under the hood)

® Crawling can be done with Nutch and then pushed into Solr

This page provides a brief overview of how to index content into Solr; for more
information, including details of the options mentioned above, please see the Solr
Reference Guide section on Indexing and Basic Data Operations.

Solr and the LucidWorks Admin UI

If you push documents directly to Solr without using LucidWorks Search data
sources, the LucidWorks Admin UI will be unable to display statistical information
about those documents. This is because documents crawled via LucidWorks Search
contain a field that includes the data source ID, and the data source ID is used by
the Admin UI to display information such as the number of documents in the index
for that data source, and to know which crawl statistics to display.

The LucidWorks data source type "external" would allow you to integrate
documents pushed directly to Solr with documents indexed from the crawlers and
get statistics such as number of documents per data source in the Admin UI. In
addition, the external data source also allows using LucidWorks data source field
mapping functionality. For more information, see Pushing Content to LucidWorks;
the information contained below is still valid, but would be slightly modified when
using the "External" approach.

© 2014 Find this documentation online at Page 122 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 05-Aug-2014

Indexing Solr XML

One way to integrate LucidWorks with a custom data source is to dump the data
from that data source into XML files formatted in this way, and index them as a
Solr XML data source. LucidWorks has built-in support for indexing a directory tree
of Solr XML files and scheduling periodic re-indexing. Alternatively, the XML files
can easily be posted into LucidWorks and Solr externally using curl, the REST API,
or other tools that can HTTP POST, like this:

curl http://1ocal host: 8888/ solr/collectionl/update --data-binary
@ilename.xm -H'Content-type:text/xm; charset=utf-8'

Solr natively digests a simple XML structure like this:

<add>
<doc>
<field nane="fiel dnamel">field val ueA</fiel d>
<field name="fiel dnane2">field val ueB</fiel d>
</ doc>
<doc>
<field nane="fiel dname3">mul ti val uel</fiel d>
<field name="fi el dnane3" >mul ti val ue2</fiel d>
</ doc>
</ add>

The <add> structure supports multiple <doc> declarations and each <doc> supports
multiple <fi el d> declarations. Fields can be multi- or single-valued, depending on
the schenma. xm configuration. The LucidWorks Search Fields screens provide a
handy user interface for managing field properties, including the multivalued
setting.

Solr's XML format can perform other operations including deleting documents from
the index, committing pending operations, and optimizing an index (a
housekeeping operation). For more information on these operations, as well as
adding documents, refer to Solr's Update XML Messages.

© 2014 Find this documentation online at Page 123 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Documentation 05-Aug-2014

Indexing Column (Comma) Delimited Data

The following section uses an example to illustrate how to index delimited text
with LucidWorks.

1. Save the following simple comma-separated data as sample_data.text:

id, title,categories
1, Exanple Title,"categoryl, cat egory2"
2, Anot her Record Exanple Title, "category?2, category3"

2. Configure the index schema using the Fields editor in the Admin UI as
follows:
® At the bottom of the page, click Add new field to get a blank field
form
® Add a new field with the following settings:
® Name: categories
® Type: string
® Stored: checked
® Multi-valued: checked
® Short Field Boost: none
® Search by Default: checked
® Include in Results: checked
® Facet: checked
3. Save and apply those settings.
4. Now index the CSV data from the command-line using curl:

curl
"http://1ocal host: 8888/ solr/collectionl/update/csv?conmt=true&f.cate
--data-binary @anple_ data.txt -H 'Content-type:text/plain;
charset=utf-8'

5. You can also make the file pipe-delimited, like this:

id/title|categories
3| Three| cat egory3
4| Four | cat egor y4, cat egory5

And then you can index using this command:

© 2014 Find this documentation online at Page 124 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

curl

--data-binary @ipe.txt -H ' Contenttype:text/plain;

"http://1ocal host: 8888/ solr/collectionl/update/csv?conmt=true&f.cate¢

char set =utf-8'

For a full description of all CSV options, see the Solr UpdateCSV documentation.

Related Topics
® Pushing Content to LucidWorks
From our Apache Solr Reference Guide:

® Indexing and Basic Data Operations

® Using Solr]
© 2014 Find this documentation online at Page 125 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/UpdateCSV
http://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
http://cwiki.apache.org/confluence/display/solr/Using+SolrJ

LucidWorks Search Documentation 05-Aug-2014

Crawling Windows Shares with Access Control Lists

LucidWorks Search can crawl Windows Shares (SMB filesystems) and the Access
Control Lists (ACLs) associated with shared files and directories. The ACL
information can then be used to limit users' searches to the content they are
permitted to access. This page describes how to configure using ACLs to control
search results based on the user's permissions

As of LucidWorks Search v2.5, it's possible to configure ACL and Active Directory
connections on a per-data source basis. This means that you can simply create a
Windows Share data source with either the UI or the API, configure the connection
to the Active Directory server, define if you want to trim results based on user
authorizations, and then crawl the content.

When configuring the connection between LucidWorks Search and Active Directory,
keep these requirements in mind:

® Credentials with READ and ACL READ permissions for accessing the Windows
share. We recommend that you create a special user for this purpose.

® Credentials with read-only access to the Active Directory LDAP. This is used
for search-time filtering, and we recommend that you create a special user
for this purpose.

Permissions with Access Control Lists

The following model is implemented as a search filtering component by default:

Group READ Subgroup READ User READ Search Result
Access Access Access Returned?
o (permit) o] o) o
o] x (deny) o] X
0 0 X X
0 X X X
X o 0 X
X X 0 X
© 2014 Find this documentation online at Page 126 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Group READ Subgroup READ User READ Search Result
Access Access Access Returned?
X (0] X X
X X X X
o] - (not set) o] 0
0 0 - 0
0 - - 0
- 0 0 0
- - 0 0
- 0 - 0
- - - X

To understand this table, read the rows left to right. For example, in the first row,
we see that the user's main group, subgroup, and individual permissions all allow
READ access to a shared resource, so the search result is returned. In the second
row, we see that the user's main group and user's individual permissions allow
READ access, but the user's subgroup's permissions do not, so no search result is
returned to the user.

How SMB ACL Information Is Stored In The Index

For each file that is crawled through the SMB data source the acl field is populated
with data that can be used at search time to filter the results so that only people
that have been granted access at the user level or through group membership can
see them. Two kinds of tokens are stored: Allow and Deny. The format used is as
follows:

Allow:
W NA<SI| D>

Deny:
W ND<SI D>

© 2014 Find this documentation online at Page 127 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Where SI D is the security identifier commonly used in Microsoft Windows systems.
There are some well known SIDs that can be used in the acl field to make

documents that are crawled through some other mechanism than by using SMB
data source behave, from the acl pow, the same way as the crawled SMB content:

SID Description
S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system
administrator. By default, it is the only
user account that is given full control
over the system.

S-1-5-domain-512 Domain Admins: a global group whose
members are authorized to administer
the domain. By default, the Domain
Admins group is a member of the
Administrators group on all computers
that have joined a domain.

S-1-5-domain-513 Domain Users.

Note that some of the listed SIDs contain a donmai n token. This means that the
actual SIDs differ from system to system. To find out the SIDs for particular user
in particular system you can use the information provided by the Windows
command line tool whoam by executing command whoam /all.

You can populate the acl field in your documents with these Windows SIDs to
make them searchable in LucidWorks Search. For example, if you wanted to make
some documents available to "Everyone" you would populate the acl field with the
W NAS- 1- 1- 0 token. If you wanted to make all docs from one data source available
to everybody you can use the literal definitions in the data source configuration.

Related Topics

® Filtering API
® Search Handler Components API
® LDAP Integration

© 2014 Find this documentation online at Page 128 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Indexing Binary Data Stored in a Database

This functionality is
not available with
LucidWorks Search
on AWS or Azure

The Database crawler in LucidWorks Search does not automatically discover and
index binary data you may have stored in your database (such as PDF files).
However, you can configure LucidWorks to recognize and extract the binary data
correctly by modifying the data source configuration file (which does not exist until
you create a JDBC data source).

@ For detailed information about working with JDBC data sources, see Create
a New JDBC Data Source or the Database Data Sources API.

After you have created a Database data source, you can find the configuration file
in $LW5_HOMVE/ dat a/ | uci d. j dbc/ dat asour ces/ i d/ conf/ dat aconfi g. xm . The ID
in the path is the ID of the data source created. If you are familiar with Solr, you
will recognize this file as a Data Import Handler configuration file.

Follow these steps to modify the configuration file:

1. Add a nane attribute for the database containing your binary data to the
dat aSour ce entry.

2. Set the convert Type attribute for the dat aSour ce to f al se. This prevents
LucidWorks from treating binary data as strings.

3. Add a Fi el dSt reanDat aSour ce to stream the binary data to the Tika entity
processor.

4. Specify the dat aSour ce hame in the root entity.

5. Add an entity for your Fi el dSt r eanDat aSour ce using the
Ti kaEnti t yProcessor to take the binary data from the
Fi el dSt r eanDat aSour ce, parse it, and specify a field for storing the
processed data.

© 2014 Find this documentation online at Page 129 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 05-Aug-2014

6. Reload the Solr core to apply your configuration changes.

® After you have modified the data source configuration file you should not
modify the data source from the LucidWorks Admin UI because
LucidWorks will automatically overwrite the convert Type attribute, and
indexing for the modified data source will fail.
Example

In this example there is a MySQL database called t est containing a table called
docunent s that contains PDF data in a column called bi nary_cont ent . When the
data source is first created, the data source configuration file (in

$LWS_HOWE/ dat a/ | uci d. j dbc/ dat asour ces/ i d/ conf/ dat aconfi g. xm) looks like
this:

<dat aConfi g>

<dat aSour ce aut oConmi t="true" batchSi ze="-1" convert Type="true"
driver="com nysql.jdbc.Driver" password="adnin"
url ="jdbc: nysql://local host/test" user="root"/>
<docunent name="itens">
<entity nanme="root" prelnportDel et eQuery="data_source: 9"
query="SELECT * FROM docunents"
transf ormer =" Tenpl at eTr ansf or ner " >
<field colum="data_source" tenplate="9"/>
<field colum="data_source_type" tenplate="Jdbc"/>
<field colum="data_source_nanme" tenplate="MWSQ"/>
</entity>
</ document >
</ dat aConfi g>

To modify this data configuration file, follow these steps:

1. Add the nane attribute to the dat aSour ce and set convert Type to f al se:

<dat aSour ce aut oConmi t="true" batchSize="-1" convertType="fal se"
driver="comnysql.jdbc.Driver" password="adni n"
url ="jdbc: nysqgl://1ocal host/test" user="root" name="test"/>

Specify another dat aSour ce called fi el dReader to handle the binary data:

© 2014 Find this documentation online at Page 130 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

<dat aSour ce nane="fi el dReader" type="Fi el dStreanDat aSource" />

2. Specify the data source for the root entity:

<entity nanme="root" prelnportDel et eQuery="data_source: 9"
query="SELECT * FROM docunents"
transformer="Tenpl at eTransf ormer" dat aSource="test">

3. Add an entity for the fi el dReader data source specifying the

Ti kaEnti t yProcessor and a dat aFi el d for storing the processed binary

data:

<entity dataSource="fiel dReader" processor="Ti kaEntityProcessor"
dat aFi el d="root. binary_content” format="text">

<field colum="text" name="body" />
</entity>

4, Restart LucidWorks Search to apply your configuration changes.

For this example, the final configuration file looks like this:

dat aFi

<dat aConfi g>
<dat aSour ce aut oConmi t="true" batchSize="-1" convertType="fal se
driver="comnysql.jdbc.Driver" password="adnin"
url ="jdbc: nysqgl://local host/test" user="root" name="test"/>
<dat aSour ce nane="fi el dReader" type="Fi el dStreanDat aSource" />

<docunent name="itens">
<entity nane="root" prelnportDel et eQuery="data_source: 9"
query="SELECT * FROM docunents”
transf or mer =" Tenpl at eTr ansf or mer "
dat aSour ce="test" >

<field colum="data_source" tenplate="9"/>
<field colum="data_source_type" tenplate="Jdbc"/>
<field colum="data_source_nanme" tenplate="MWSQ"/>

<entity dataSource="fiel dReader" processor="Ti kaEntityProcessor"

el d="root.binary _content" format="text">
<field colum="text" name="body" />
</entity>

© 2014

Find this documentation online at Page 131 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014
</entity>

</ docunent >
</ dat aConfi g>

Related Topics

® Create a New IJDBC Data Source
® Database Data Sources API
® Data Import Handler

© 2014 Find this documentation online at Page 132 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 05-Aug-2014

Using the Hadoop Crawlers

The Hadoop crawlers (which replace the High-Volume HDFS crawlers from
previous versions) are MapReduce-enabled crawlers designed to leverage the
scaling qualities of Apache Hadoop while indexing content into LucidWorks Search.
In conjunction with LucidWorks' usage of SolrCloud, applications should be able to
meet their large scale indexing and search requirements.

To achieve this, the high volume crawlers consist of a series of
MapReduce-enabled Jobs to convert raw content into documents for
MapReduce-ready document conversion via Apache Tika and writing of documents
to LucidWorks.

The information below does not apply to the HDFS or Hadoop over S3 data source
types, because those are simple filesystem crawls and do not use the MapReduce
features described below.

Topics covered on this page:

System Requirements

Using Hadoop Crawlers in LucidWorks
Permission Issues

Related Topics

System Requirements

® One of the following Apache Hadoop distributions:
® Apache Hadoop v1.x

Apache Hadoop v2.x

Cloudera CDH v4.5.x

Hortonworks Data Platform v2.1

MapR M5 (v3.0.2)

Pivotal HD v1.1

® LucidWorks running in SolrCloud mode. The LWE-Connectors component
must be able to access $HADOOP_HOVE/ bi n/ hadoop, so it must either be

© 2014 Find this documentation online at Page 133 of
LucidWorks http://docs.lucidworks.com/ 347

http://hadoop.apache.org
http://tika.apache.org
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://hortonworks.com/hdp/
http://www.mapr.com/
http://gopivotal.com/big-data/pivotal-hd

LucidWorks Search Documentation 05-Aug-2014

installed on one of the nodes of the Hadoop cluster (such as the nameNode),
or a client supported by your specific distribution must be installed on the
same server as the LWE-Connectors component. The Hadoop client must be
configured properly to access the Hadoop cluster so the crawler is able to
access the Hadoop cluster for content processing.

Please note, instructions for setting up any of the supported Hadoop distributions
is beyond the scope of this document. We recommend reading one of the many
tutorials found online or one of the books on Hadoop.

Special Requirements for MapR

® Modify the default DirectoryFactory. If you intend to crawl MapR, you should
use Solr's Nl OFSDi r ect or yFact ory instead of the default
Si npl eFSDi rect ory. You can change this by editing the
| wecore. jvm parans in $LWS_HOWE/ conf/ mast er. conf and adding "
-Dsol r.directoryFactory=sol r. Nl OFSDi r ect or yFact ory" to the end of
the settings already there. More information about the
NI OFSDi r ect or yFact ory is available in the Lucene javadocs documentation.

® MapR Client. The MapR client must be installed at a filesystem location
accessible by the LucidWorks Connector component. For information about
the MapR client, please see the MapR documentation Setting Up the Client.
The Connector component looks for the client libraries in / opt / mapr by
default, but the location can be modified by editing the
| weconnect ors. jvm par ans in $L\W5s_HOVE/ conf / mast er . conf . Find the
setting - Dmapr . honme and modify the path as needed. On Windows, you will
need to include the drive (i.e., c: or d:) and also use two backslashes
following the drive letter, as in c: \\ opt \ napr.

Using Hadoop Crawlers in LucidWorks

Once Hadoop and LucidWorks are ready, configure a data source within
LucidWorks specific to your version of Hadoop. Data sources can be configured in
the Admin UI or using the Data Sources API. A data source type is available for
each supported Hadoop distribution.

The definition of the data source will require defining arguments for the Hadoop
job jar. See the section Job Jar Arguments for details on the options available.

© 2014 Find this documentation online at Page 134 of
LucidWorks http://docs.lucidworks.com/ 347

http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/store/NIOFSDirectory.html
http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 05-Aug-2014
You may also need to ensure you have started LucidWorks Search with a user that
has permissions to write to the hadoop. t np. dir. The /t np directory in HDFS must
also be writable. See also the section below on Permission Issues for other
considerations.

@ Unlike other crawlers in LucidWorks Search, the Hadoop data sources
currently have no way of tracking which content is new, updated, or
deleted. Thus, all content found is reported as "new" with each crawl. It is
also not possible to configure batch operations with the high-volume data
source types.

How the Crawler Works

The Hadoop crawlers work in three stages designed to take in raw content and
output results to LucidWorks Search. These stages are:

1. Create one or more SequenceFiles from the raw content. This can be done in
one of two ways:

a. If the source files are available in a shared Hadoop filesystem, prepare
a list of source files and their locations as a SequenceFile. The raw
contents of each file are not processed until step 2.

b. If the source files are not available, prepare a list of source files and
the raw content. This process is currently done sequentially and can
take a significant amount of time if there is a large number of
documents and/or if they are very large.

2. Run a MapReduce job to extract text and metadata from the raw content
using Apache Tika. This is similar to the LucidWorks approach of extracting
content from crawled documents, except it is done with MapReduce.

3. Run a MapReduce job to send the extracted content from HDFS to
LucidWorks using the Solr] client. This implementation works with Solrl's
CloudServer Java client which is aware of where LucidWorks is running via
Zookeeper.

In LucidWorks 2.8, the way this processing occurs has changed. In prior versions,
we used Behemoth for processing, but now we use a new internal pipeline
developed for release in future versions of LucidWorks. In LucidWorks 2.8, this
pipeline only includes document parsing from Tika and a very simple field mapping

© 2014 Find this documentation online at Page 135 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
to transform Tika's output to fields expected by LucidWorks Search. If you need
more advanced capabilities from the pipeline before the content is indexed in Solr,
please contact LucidWorks Support for options and assistance.

~ The processing approach is currently all or nothing when it comes to
ingesting the raw content and all 3 steps must be completed each time,
regardless of whether the raw content hasn't changed.

The first step of the crawl process converts the input content into a
SequenceFile. In order to do this, the entire contents of that file must be
read into memory so that it can be written out as a PipelineDocument in
the SequenceFile. Thus, you should be careful to ensure that the system
does not load into memory a file that is larger than the Java heap size of
the process.

Differences from Other Hadoop Crawlers in LucidWorks

While the Hadoop, Hadoop File System (HDFS) and Hadoop File System over S3
(S3H) crawlers all use Hadoop to access Hadoop's distributed file system, there is
a big difference in how they utilize those resources. The HDFS and S3H data
sources are designed to be polite and crawl through the content stored in HDFS
just as if they were crawling a web site or any other file system.

The Hadoop crawlers, on the other hand, are designed to take full advantage of
the scaling abilities of the MapReduce architecture. Thus, it runs jobs using all of
the nodes available in the cluster just like any other MapReduce job. This has
significant ramifications for performance since it is designed to move a lot of
content, in parallel, as fast as possible (depending on the system's capabilities),
from its raw state to the LucidWorks Search index. Thus, you will need to design
your LucidWorks Search SolrCloud implementation accordingly and make sure to
provision the appropriate number of nodes. See also the section Planning a Search
Cluster for more details.

Job Jar Arguments

Hadoop job jar arguments allow you to define the type of content in your Hadoop
filesystem and choose "ingest mappers" appropriate for that content. The
arguments also allow you to define parameters for the mappers.

© 2014 Find this documentation online at Page 136 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

The job arguments must conform to the following structure and must be entered

in the proper order, as shown below:

1. The main class must be specified. For all of the mappers available, this is
always defined as com | uci dwor ks. hadoop. i ngest . | ngest Job.System or
Mapper-specific arguments, defined as - Dar gunent =val ue. In many cases,
the arguments needed are only needed for certain Mapper class(es) that is

defined in later in the argument string.
There are several possible arguments:

Argument Value Type Required Default

Value

- Dl ww. conmi t . bootdarse No false

-DcsvDel i mi t estring No , (comma)

- DcsvFi el dva key-value No none
pair

Description

Defines if a
commit
should be
done when
the
connection to
Solr is
complete.

This is the

file delimiter
for CSV
content. It is
used only
when using
the
CsvIngestMapg
(see -cls
below).

This defines
how to map
columns in a
CSV file to
fields in Solr,
in the format

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 137 of
347

LucidWorks Search Documentation

05-Aug-2014

Argument

-DidFi el d

Value Type Required Default
Value

string No none

Description

of 0=i d. The
key is a
zero-based
column
number (so
the first
column
would be
"0"), and the
value is the
name of the
field to use to
store the
value in Solr.
If this is not
set, column 0
is used as
the id, unless
there is a
column
named 'id".
This property
is only used
when using
the
CsvingestMap|
(see -cls
below).

The column
to be used as
an ID. The
field name
used is the

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 138 of
347

LucidWorks Search Documentation 05-Aug-2014

Argument Value Type Required Default Description
Value
name after
any mapping

that occurs
as a result of
the

- DcsvFi el dva
argument. If
there is a
column
named 'id'
and it is
different
from the field
named with
this property,
you will get
an error
because you
have defined
two IDs and
IDs must be
unique.

- Dgrok. uri string No none The path to a
Logstash
configuration
file, which
can be in the
local
filesystem
(file:///path/lo
or in HDFS
(hdfs://path/Ic
This property

© 2014 Find this documentation online at Page 139 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Argument Value Type Required Default Description
Value

is only used
with the
GrokIngestMaj
(see -cls
below).

- Dcom | uci dwostesndpnadoop. i njest . Regex| ngesh&bpper . r egexava
Pattern
compliant
Regex. See
http://docs.ore
- Cannot be
null or
empty. This
parameter is
used only
with the
RegexIngest
Mapper (see
-cl s below).

-Dcom | uci dw key-value No none A

pair comma-separe
mapping
(key=value, ke
between
regular
expression
capturing
groups and
field names.
The key must
be an integer
and the value
must be a

© 2014 Find this documentation online at Page 140 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

LucidWorks Search Documentation

05-Aug-2014

Argument

Value Type

-Dcom | uci dw boolean

Required

No

Default
Value

none

Description

String. For
instance,
O=body, 1=tex
Any
capturing
group not
represented
in the map
will not be
added to the
document.
This
parameter is
used only
with the
RegexIngest
Mapper (see
-cl s below).

If true, the
mapper will
use the Java
Matcher's (
http://docs.or:
) matches
method
instead of
find. In
short, this
means the
regex needs
to match on
the entirety

of the input
© 2014 Find this documentation online at Page 141 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html

LucidWorks Search Documentation

05-Aug-2014

Argument

Value Type

Required

Default
Value

Description

string. This
parameter is
used only
with the
RegexIngest
Mapper (see
-cl s below).

Other arguments not defined here can be supplied as needed and they will
be added to the Hadoop configuration. These arguments should be defined
with the - Dar gunent =val ue syntax.

2. Key-value pair arguments that apply to the ingest job generally. These
arguments are expressed as - ar gunent val ue.
There are several possible arguments:

-cls

- of

Argument

Required

Yes

Yes

Yes

Description

The mapper class. This
class must correspond
to the content being
indexed to ensure
proper parsing of
documents. See the
Mapper Class table
below for details of
each available mapper.

The collection name.
This is the same
collection where you
are creating the data
source, such as

col | ectionl.

The output format. For
all cases, you can use

© 2014
LucidWorks

Find this documentation online at

http://docs.lucidworks.com/

Page 142 of

347

LucidWorks Search Documentation 05-Aug-2014

Argument Required Description

the default
com | uci dwor ks. hadoog

-1 Yes The path to the Hadoop
input data. This path
should point to the
HDFS directory. If the
defined location is not a
specific filename, the
syntax must include a
wildcard expression to
find documents, such
as /datal*.

-s Not if - zk is used. The Solr URL. In
LucidWorks Search, this
would be the URL of
the LWE-Core
component. In a
default installation, this
would be
http://localhost:8888/sol
. Use this parameter if
you are indexing into a
LucidWorks Search
installation that is not
running in SolrCloud
mode. If LucidWorks
Search is running in
SolrCloud mode, you
should use - zk instead.
If not using - s, you
should use - zk.

-zk Not if - s is used.

© 2014 Find this documentation online at Page 143 of
LucidWorks http://docs.lucidworks.com/ 347

http://localhost:8888/solr
http://localhost:8888/solr

LucidWorks Search Documentation 05-Aug-2014

Argument Required Description

A list of ZooKeeper
hosts, followed by the
ZooKeeper root
directory. For example,
10.0.1.1:2181, 10.0. 1.
would be a valid value.
This parameter is used
when running
LucidWorks Search in
SolrCloud mode, and
allows the output of the
crawl to be routed via
ZooKeeper to any
available node. If you
are not running
LucidWorks Search in
SolrCloud mode (and
don't have ZooKeeper),
use the - s argument
instead. If not using

- zk, you should use - s.
If you have installed
LucidWorks Search
using the instructions
at Cluster Installation,
you may not have
defined the root
directory for your
ZooKeeper ensemble.
In that case, the
default is used ("/lws").

-redcl s No The class name of a
custom IngestReducer,
if any. In order for this

© 2014 Find this documentation online at Page 144 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Argument Required Description

to be invoked, you

must also set -ur to a
value higher than 0. If
no value is specified,
then the default

reducer is used, which

is

com | uci dwor ks. hadoor

-ur No The number of reducers
to use when outputting
to the OutputFormat.
Depending on the
output format and your
system resources, you
may wish to have
Hadoop do a reduce
step so the output
resource is not
overwhelmed. The
default is 0, which is to
not use any reducers.

So, the proper order for each element of the argument is as follows:

1. Main ingest class.

2. Mapper arguments, which usually vary depending on the Mapper class
chosen, in the format of - Dar gunent =val ue

3. Ingest arguments, which include the input format and the chosen Mapper
class, in the format of - argunent val ue

Example arguments are shown below in the section Example Arguments.

Mapper Classes

This table defines the available mapper classes and how they can be used.

© 2014 Find this documentation online at Page 145 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Mapper Class Name Description Input File Format

com | uci dwor ks. hadoop. i igdek.|Ggdklesdestdvhppea TextInputFormat
LogStash configuration
file. LogStash filters can
be used (i.e., grok, kv,
date, etc.). The input and
output statements of the
configuration file are
overwritten by the input
and output arguments
from the Hadoop job.

com | uci dwor ks. hadoop. i igdek.fU8¥lingeSYMipper TextInputFormat
format. With this
mapperClass, the
csvFi el dMappi ng
parameter must be set
when creating the data
source (with the
argument
- DcsvFi el dMappi ng).
The delimiter can also be
changed from the default
(a comma ",") with the
-DcsvDelimter
parameter.

com | uci dwor ks. hadoop. i igdek.Ddirectory bhddes Mapper
Tika will be used to
extract content from
these files, so file types
supported by Tika will be
parsed.

com | uci dwor ks. hadoop. i

© 2014 Find this documentation online at Page 146 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Mapper Class Name Description Input File Format

Allows definition of an
regular expression that is
used on the incoming
content.

com | uci dwor ks. hadoop. i igdek.58qqerceEFi eendéstQ@pparceFilelnputFormat
the value is "text", the
string will be used,
otherwise the raw bytes
will be written.

com | uci dwor ks. hadoop. i figdek.S6ile ¥XMIalgeEi Mapp&equenceFileInputFormat
format. The file should be
in a
SequenceFileInputFormat,
where the key is any
Writable and the value is
text in SolrXML. This
mapper requires that the
i dFi el d parameter be
set when creating the
workflow job. This
mapper supports
overriding the default
i nput For mat of
SequenceFileInputFormat
if required.

com | uci dwor ks. hadoop. i igdek. Wabcnebést Kappec WarcFileInputFormat
) files in
WarcFileInputFormat.

com | uci dwor ks. hadoop. i Index . zi p files. Tika will
be used to extract

© 2014 Find this documentation online at Page 147 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Mapper Class Name Description Input File Format

content from these files,
so file types supported by
Tika will be parsed.

Example Arguments

Index CSV files

To index CSV files, you could use the following arguments:

com | uci dwor ks. hadoop. i ngest . | ngest Job - Dl ww. conmmmi t. on. cl ose=true
-DcsvDelimter=| -cls com |l uci dworks. hadoop. i ngest. CSVI ngest Mapper -c
collectionl -i /datal/CSV -of

com | uci dwor ks. hadoop. i 0. LM\WapRedQut put For mat - s

http://1ocal host: 8888/ solr

To explain in more detail, here is a breakdown of each parameter:

® Main Class: com | uci dwor ks. hadoop. i ngest . | ngest Job

® We want to commit the documents when finished:
-Dlww. commi t. on. cl ose=true

® The delimter is a pipe character (|): - DcsvDel i mi ter =

® We have CSV files, so we should use the CSV Mapper Class: -cl s
com | uci dwor ks. hadoop. i ngest . CSVI ngest Mapper

® We want to index the documents to "collection1": -c¢ col |l ecti onl

® The documents are located at this path: -i /dat a/ CSV

® We'll use the default output format: - of
com | uci dwor ks. hadoop. i 0. LWVapRedQut put For mat

® We're not using SolrCloud, so the LucidWorks Solr is found at: -s
http://1 ocal host: 8888/ solr

Index a Directory of Files with SolrCloud

© 2014 Find this documentation online at Page 148 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

com | uci dwor ks. hadoop. i ngest . | ngest Job - DI ww. conmit.on. cl ose=true -cls
com | uci dwor ks. hadoop. i ngest . Di rect oryl ngest Mapper -c col |l ectionl -i
[data/files -of coml uci dworks. hadoop. i o. LMWMapRedQut put For mat - zk
10.0.1.7:2181,10.0.1.8:2181,10.0.1.9: 2181/l ws

In this example, we have defined the job very similarly to the previous example.
We defined that LucidWorks Search should commit the documents when finished,
defined the Mapper Class, specified a collection ("col | ecti onl"), pointed the
crawler to the input directory (/ data/fil es), and defined the output format.

Note that in this case instead of defining the location of Solr, we used the - zk
parameter to define a list of hosts running our ZooKeeper ensemble. We can list
the host:port locations separated by commas, and then finally define the root
directory, which in this case is / | ws, which is the default, but another root
directory may have been defined during installation. See also Cluster Installation
for more details on defining the root directory for your ZooKeeper ensemble during
LucidWorks Search installation.

Permission Issues

Using any flavor of Hadoop, you will need to be aware of the way Hadoop and
systems based on Hadoop (such as CDH, MapR, etc.) handle permissions for
services that communicate with other nodes.

Hadoop services execute under specific user credentials: a quadruplet consisting of
user name, group hame, numeric user id, numeric group id. Installations that
follow the manual usually use user 'mapr' and group 'mapr' (or similar), with
numeric ids assigned by the operating system (e.g., uid=1000, gid=20). When the
system is configured to enforce user permissions (which is the default in some
systems), any client that connects to Hadoop services has to use a quadruplet that
exists on the server. This means that ALL values in this quadruplet must be equal
between the client and the server, i.e., an account with the same user, group, uid,
and gid must exist on both client and server machines.

~ While it's easy to create a user with a given name and group name, it's
less obvious to casual users how to create an account with exactly the
same numeric id-s. On POSIX systems (Linux and Mac) it's possible to do

© 2014 Find this documentation online at Page 149 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
so, on Windows it's probably not possible. For this reason there's a section
of code in Hadoop and MapR to "spoof" user ids on Windows, using the
following properties:

® hadoop. spoof . user : boolean, when true then spoofing will be
attempted

® hadoop. spoof ed. user. user nane: name of the user account to
spoof

® hadoop. spoof ed. user. gr oupnane: group name of the user account
to spoof

® hadoop. spoof ed. user. ui d: numeric user id of the user account to
spoof

® hadoop. spoof ed. user. gi d: numeric group id of the user account to
spoof

These properties will be used ONLY on Windows. Users on other operating
systems will have to create a real account with matching identifiers.

When a client attempts to access a resource on Hadoop filesystems (or the
JobTracker, which also uses this authentication method) it sends its credentials,
which are looked up on the server, and if an exactly matching record is found then
those local permissions will be used to determine read/write access. If no such
account is found then the user is treated as "other" in the sense of the permission
model.

This means that the crawlers for the HDFS data source should be able to crawl
Hadoop or MapR filesystems without any authentication, as long as there is a read
(and execute for directories) access for "other" users granted on the target
resources. Authenticated users will be able to access resources owned by their
equivalent account.

However, the Hadoop data sources described on this page require write access to
a / t mp directory to use as a working directory. In many cases, this directory does
not exist, or if it does, it doesn't have write access to "other" (not authenticated)
users. Therefore users of these data sources should make sure that thereisa /tnp
directory on the target filesystem that is writable using their local user credentials,
be it a recognized user, group, or "other". If a local user is recognized by the
server then it's enough to create a / t np directory that is owned by that user. If

© 2014 Find this documentation online at Page 150 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
there is no such user, then the / t np directory must be modified to have write
permissions for "other" users. The working directory can be modified to be another
directory that can be used for temporary working storage that has the correct
permissions.

Related Topics

® Using SolrCloud in LucidWorks

© 2014 Find this documentation online at Page 151 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Integrating Nutch

LucidWorks Search includes support for "external" data sources (also known as
"push crawlers"). While the built-in LucidWorks crawlers use the "pull" model
(meaning that LucidWorks initiates the crawl and actively discovers new or
updated resources), push crawlers are external processes that manage the
discovery and sending of new and updated documents for indexing outside of the
LucidWorks crawler framework.

Apache Nutch is a framework for building and running large-scale Web crawling
using Hadoop map-reduce clusters (see http://nutch.apache.org/ for more
information). Recent releases of Nutch rely on Solr for indexing and searching.
From the point of view of LucidWorks, Nutch can be integrated as an "external" or
"push" crawler.

The following sections describe step-by-step how to integrate a Nutch 1.4 crawler
(or Nutch trunk) with LucidWorks.

Solr indexer

Nutch comes with a tool for map-reduce indexing to Solr called Sol r | ndexer.
From the command-line, this tool is invoked like this:

nutch sol rindex http://local host:8983/solr/collectionl db -1inkdb |inkdb
[-parans kl=v1, k2=v2] segnentl segnment2 [...]

© Support for the - par ans option exists in Nutch trunk, post 1.4 release, or
if you apply the patch found in NUTCH-1212).

Field mapping in Nutch

Nutch uses indexing plugins to construct the outgoing documents, and these
plugins add various fields with various names. These field names do not
necessarily match the default LucidWorks schema. xml for a collection. Nutch
provides a limited facility to adjust these names (see

© 2014 Find this documentation online at Page 152 of
LucidWorks http://docs.lucidworks.com/ 347

http://nutch.apache.org/
http://www.apache.org/dyn/closer.cgi/nutch/
http://nutch.apache.org/nightly.html
http://issues.apache.org/jira/browse/NUTCH-1213

LucidWorks Search Documentation 05-Aug-2014
$nut ch_home/ conf/ sol ri ndex- mappi ng. xm). This field mapping facility is often

enough in simple cases to re-map field names so that they match the LucidWorks
schema.

However, this solution has some drawbacks:

® This mapping is static for all indexing jobs that use the same job file (or the
same conf directory in the case of a non-distributed Nutch installation) and
changing it requires rebuilding of the job file, which can be cumbersome.

® There is no easy way to add fields that are useful for managing documents
in LucidWorks (such as dat a_source_t ype, dat a_sour ce_nane or
dat a_sour ce), short of implementing a new Nutch indexing plugin.

® the field mapping in sol ri ndex- mappi ng. xml cannot be managed from the
LucidWorks Admin UL.

Fortunately, there is a better solution to this problem which is to use the field
mapping functionality in LucidWorks, defined as part of the External data source
type definition, in combination with the - par ans option for Sol r | ndexer.

Field mapping in LucidWorks

External processes that submit documents to LucidWorks can be integrated using
the External data source type. When you define a new data source in LucidWorks,
one of its properties is fi el d_mappi ng. With the Data Sources API, the JSON
serialization looks similar to this:

"mappi ng": {
"dat asource field": "data_source",
"default _field": null,
"dynam c_field": "attr",

“literals": {},
"l uci dworks_fields": true,

"mappi ngs": {
"acl": "acl",
"aut hor": "author",
"batch_id": "batch_id",
"content": "body",
"content-encoding": "characterSet",
"content-length": "fileSize",
© 2014 Find this documentation online at Page 153 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
"content-type": "mnmeType",
"contentcreated": "dateCreated",
"contentlastnodi fied": "lastMdified",
|
"multi _val": {
"acl": true,

"aut hor": true,
"body": false,
"dat eCreated": false,
"description": false,
"fileSize": fal se,
"m nmeType": fal se,
"title": fal se
|
"types": {
"date": "DATE",
"dat ecreat ed": " DATE",
"filesize": "LONG',
"l astnodi fied": "DATE"
|
"uni que_key": "url",
"verify_schema": true

},

The LucidWorks Admin UI includes a page for each data source to edit field
mapping for that data source which is where you can define, for example, that
"content" should be mapped to "body", or that you allow only a single value for
"title", etc.

In particular, you can define what is the name of the "uniqueKey" field in the
incoming documents. If Nutch produces documents that use "url" as their unique
identifier, then you would specify "uni queKey": "url " . If "verify_schema" is set to
"true" then LucidWorks will automatically define a mapping from "url" to whatever
the current "uniqueKey" field is in the Solr schema for the target collection.

Once the external data source is defined (or updated) LucidWorks sends the
serialized field mapping to the FieldMappingUpdateProcessor, which is a part of the
"lucid-update-chain". This update processor receives the field mapping definition,
and stores it in memory under a specified data source id. This field mapping is

© 2014 Find this documentation online at Page 154 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

then updated each time a user makes some modifications to the data source
definition, either via the Admin UI or using the REST API.

From this point, whenever an update request is received from an external process
and it goes through this update chain, the update processor looks for a Solr
parameter "fm.ds", which indicates the data source ID. If this parameter is
present, and matches an existing defined mapping, then the documents in the
update request are put through the FieldMappingUpdateProcessor, which re-maps
field names, adjusts field multiplicity and adds LucidWorks-specific field names and
values (which, among others, help to manage documents using the LucidWorks
Admin UI).

Putting it all together

Now that we know how the field mapping is configured and processed in
LucidWorks we can make sure that Nutch SolrIndexer uses the correct
parameters, so that the correct field mapping is applied in LucidWorks to
documents arriving from Nutch. Let's say that our external data source in
LucidWorks has a data source id "4", we want to add the documents to
"collection1" and our LucidWorks instance is running on a host
"lucidworks.i0:8888". Then the command-line parameters to SolrIndexer would
look like this:

nutch solrindex http://lucidworks.io:8888/solr/collectionl db -1inkdb
Ii nkdb - parans 'update. chai n=l uci d- updat e-chai n& m ds=4' segnent1l
segment2 [...]

As you can see, we are using the target collection's URL, and we specify "fm.ds=4"
parameter that determines what field mapping needs to be applied to the incoming
documents. Just in case, we explicitly set the update chain in case
"lucid-update-chain" is not the default one (which it is in an out-of-the-box
installation of LucidWorks). Please note that the - par ans option uses a URL-like
syntax for passing Solr parameters, and since ampersand is usually a special shell
character we had to enclose the - par ans string in single quotes to prevent the
shell from interpreting it.

© 2014 Find this documentation online at Page 155 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Summary

Nutch and LucidWorks form a powerful combination. Nutch is a robust crawling
platform that can easily crawl thousands of pages per second while LucidWorks
offers a scalable and robust indexing and search platform.

The way to use the two together is simply to:

® Define an "external" data source in LucidWorks, and adjust its field mapping
to properly map the default Nutch field names to the ones that make sense
in the current LucidWorks schema (e.g., "uniqueKey":"url",
"content":"body", etc.). An external data source can be created by choosing
the "External” type in the Sources page of the Admin UI or with the Data
Sources API, specifying "lucid.external" for the crawl er and "external" for

the t ype.

® Start the Nutch SolrIndexer job with the additional -params option that
specifies the data source id of the "external" data source defined in
LucidWorks.

Related Topics

® Pushing Content to LucidWorks
® Apache Nutch homepage

© 2014 Find this documentation online at Page 156 of
LucidWorks http://docs.lucidworks.com/ 347

http://nutch.apache.org/

LucidWorks Search Documentation 05-Aug-2014

Processing Documents in Batches

By default, LucidWorks Search will crawl as much content as it can (within limits
set on the data source), parse the documents to extract fields, and finally index
the documents in one seamless step. However, there may be times when you
would like to do some processing on the documents before indexing them, perhaps
to add metadata or to modify data in specific fields. In that case, it is possible to
only crawl the content and save it in a batch for later parsing and/or indexing. This
is called Batch Processing and allows you to separate the fetching data from the
process of parsing the rich formats (such as PDFs, Microsoft Office documents, and
so on), as well as the process of indexing the parsed content in Solr.

How a Batch is Constructed

Batches consist of the following two parts:

® a container with raw documents, and the protocol-level metadata per
document
® a container with parsed documents, ready to be indexed.

The exact format of this storage is specific to a crawler controller implementation.
Currently a simple file-based store is used, with a binary format for the raw
content part and a JSON format for the parsed documents. The first container is
created during the fetching phase, and the second container is created during the
parsing phase. A new round of fetching creates a new batch if one or more of the
parameters described above requires it.

Steps to Configure Batch Crawling

It's not possible to configure Batch Crawling with the LucidWorks Search Admin UL.
To work with batches and batch jobs, use the Batch Operations API. The basic
workflow is as follows:

1. Create a data source using the Admin UI or Data Sources API. Don't start
crawling yet.

2. Configure the data source to be saved as a batch by setting the i ndexi ng
parameter to f al se using the Data Sources API. You can also set the
cachi ng and i ndexi ng parameters as described below.

3. Start the crawl and let it finish.

© 2014 Find this documentation online at Page 157 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
4. Get the bat ch_i d for the data source using the Batch Operations API call:
CGET http:/ /1 ocal host: 8888/ api/coll ections/collectionl/batches.
5. Using the Batch Operations API, start the batch job for your data source
using the bat ch_i d obtained in the previous step:

PUT http://1 ocal host: 8888/ api/col | ecti ons/col | ecti onl/ bat ches/
crawl er/job/ batch_id.

More about the Data Source Settings

To instruct LucidWorks Search not to parse or index the crawled documents, set
the i ndexi ng parameter of a data source to f al se using the Data Sources API.
You can also set the par si ng and cachi ng parameters to true or false, depending
on your needs. Batch crawling attributes for data sources are as follows:

Key Type Default Description

parsing boolean true If true, the raw
content fetched
from remote
repositories is
immediately
parsed in order to
extract the plain
text and
metadata. If false,
the content is not
parsed: it is stored
in @ new batch
with its
protocol-level
metadata. New
batches are
created during
each crawl run as
needed.

caching boolean false If true, the raw
content is stored

© 2014 Find this documentation online at Page 158 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Key

indexing

Type Default

boolean true

Description

in a batch even if
immediate parsing
and/or indexing is
requested. You
can use this to
preserve the
intermediate data
in case of crawling
or indexing failure,
or in cases where
full re-indexing is
needed and you
would like to avoid
fetching the raw
content again.

If true, the parsed
content is sent to
Solr for indexing.
If false, the parsed
document is not
indexed: it is
stored in a batch
(either a newly
created one, or
the one where the
corresponding raw
content was
stored). Set this
attribute to f al se
to enable batch
crawling.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 159 of
347

LucidWorks Search Documentation 05-Aug-2014
When you configure a data source to process documents as a batch,
information about crawl attempts will display in the Admin UI for that data
source (even though you cannot configure the batch parameters via the
UI). So, you can use the Data Sources API to enabled cachi ng and/or
disable i ndexi ng, and initiate the crawl through the Admin UI. The UI will
show the number of documents found, updated, deleted, etc.

Not all crawler controllers support all batch processing operations. For example,
the Aperture crawler (I uci d. apert ur e) does not support raw content storage: it
behaves as if the "parsing" parameter is always t r ue and caching is always f al se.
Also, the MapR High Volume Data Sources and High-Volume HDFS Data Sources
do not support any kind of batch processing.

You can also use the Batch Operations to get the status of or stop running batch
jobs as well as delete batches and batch jobs.

Related Topics

® Batch Operations
® Data Sources

© 2014 Find this documentation online at Page 160 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Using the Apache Hive Connector

LucidWorks Search v2.8 add the ability to read and write data to and from Solr
using Apache Hive. Data from Solr can be presented as a Hive table to be joined
with other Hive tables, and can also be a target of an INSERT statement to write
data into Solr from Hive.

Installing LucidWorks to Hive

In order for Hive to work with Solr, the LucidWorks Search Hive connector must be
added to Hive. The file name is hadoop- | ws-j ob. j ar (the copy in your version
may also contain version and release numbers) and is found in the

$LWS _HOVE/ app/ hadoop directory. The command to add it to hive will look like
this:

hi ve> ADD JAR
{usr/local/Luci dWrks2. 8/ app/ hadoop/ hadoop-1ws-job-1.2.0-rc2. 1. 3-0-j avab. j

[2))

Create an External Table

In Hive, you need to create an external table that points to the Solr instance you
are going to use.

hi ve> CREATE EXTERNAL TABLE solr (id string, fieldl string, field2 int)
STORED BY ' com | uci dwor ks. hadoop. hi ve. LW5t or ageHand! er"
LOCATION ' /tnp/solr'
TBLPROPERTI ES("' sol r. server.url' "http://1ocal host: 8888',
"solr.collection' = '"collectionl',

"solr.query' = "'*:*");

The TBLPROPERTIES can take the following properties:

® solr.zkhost - the location of the ZooKeeper quorum if using LucidWorks in
SolrCloud mode. If this property is set along with the 'solr.server.url'
property, the 'solr.server.url' property will take precedence.

® solr.server.url - the location of the Solr instance if not using LucidWorks in
SolrCloud mode. If this property is set along with the 'solr.zkhost' property,
this property will take precedence.

© 2014 Find this documentation online at Page 161 of
LucidWorks http://docs.lucidworks.com/ 347

http://hive.apache.org/

LucidWorks Search Documentation 05-Aug-2014

® solr.collection - the Solr collection for this table. If not defined, a default of
'collection1’ will be used.

® solr.query - the specific Solr query to execute for this table. If not defined, a
default of "*:*' will be used.

® |ww.commit.on.close - if true, inserts will be automatically committed on
close of the connection. If not defined, a default of 'true' will be used.

If the table needs to be dropped at a later time, it can be dropped using the Hive
DROP TABLE command. This only deletes the metadata of the table in Hive; it
does not delete any data in Solr.

Queries and Inserting Tables

Once the table is configured any syntactically correct Hive query will be able to
query the Solr index. For example:

hi ve> SELECT id, fieldl, field2 FROM solr;

or to do a join with a Hive table:

hi ve> SELECT id, fieldl, field2 FROM solr |eft
JO N sonet abl e ri ght
VWHERE left.id = right.id;

To insert data to the table, simply use the Solr table as the target for the Hive
INSERT statement, as in this example:

hi ve> | NSERT | NTO sol r
SELECT id, fieldl, field2 FROM sonetabl e;

© 2014 Find this documentation online at Page 162 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Query and Search Configuration

Once your content is in the index, you and your users will want to query the index
to find the documents they need. This section covers the options and settings to
optimize the search experience for users.

First, there's an overview of how searching works in the section Overview of Query
Processing.

A few features make it easy for users to find documents: Enterprise Alerts allow
them to get email notifications when new documents are added to the index; Spell
Check corrects errors in terms they've entered; Auto-Complete of User Queries
makes suggestions for valid terms while they type, and Synonyms and Stop Words
allows use of similar terms and very common words to improve the search
experience.

While LucidWorks Search includes a Search UI, it's meant to be used during
development and not for a production application. The section Getting Search
Results describes in detail how to query the LucidWorks Search index, and what
responses look like, for use while designing your own search application
customized for your needs.

You may have need to improve the results your users see. The Click Scoring
Relevance Framework provides a way to boost documents that other users have
already clicked on for the same query, with the theory that if other users found it
useful, you might too.

If you have serious business needs for including very specific rules in response to
certain queries (or all queries), the section Business Rules Integration describes
how to plug in those rules with LucidWorks Search.

© 2014 Find this documentation online at Page 163 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Overview of Query Processing

The goal for any search application is to return the correct document while
allowing a user to enter a query however they want. The query may be in the form
of keywords, a natural language question, or snippets of documents. Advanced
queries may be (or may include) date ranges, Boolean operations, searches on
specific document fields, or proximity information to define how close (or how far
apart) terms should be to each other.

Features like spell check and auto-complete can help prompt users to enter terms
that are more likely to retrieve results. In LucidWorks Search, spell check provides
suggestions for terms close to the user's terms, but which definitely exist in the
index (that is the default implementation; a dictionary could be used instead).
Auto-complete also provides suggestions based on terms in the index, but does so
while the user is typing their query, providing real-time feedback to the user. More
details are available in the sections Spell Check and Auto-Complete of User
Queries.

Matching the User's Query to Documents

Once the user hits enter, search engines take the query and transform it to find
the best results. The section Getting Search Results describes how your search
application should send the user's query to LucidWorks Search, and how the
response will be formatted.

Synonyms of the terms entered may be applied to expand the number of possible
document matches (such as looking for "attorney" when a user enters "lawyer"). If
terms are stripped of punctuation and capital letters during indexing, a similar
process should also be applied to the user query to ensure matches in the index.
In LucidWorks Search, much of this is pre-configured but could be modified if
needed.

The system then tries to match the user's transformed terms to terms in
documents in the index. Once it finds documents, it puts the list of matching
documents into some order. They might be ordered by date, by entry to the index,
or, most commonly, by relevance, which is an order based on which the system
thinks are best for the query entered.

© 2014 Find this documentation online at Page 164 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Relevance ranking is one of the most complex components of a search engine, and
this guide covers the topic in more detail later (see Understanding and Improving
Relevance). Most queries are very short (one to three words) and that is usually
not enough information to know the user's full intention. To compensate for this,
several techniques may be employed such as boosting based on the number of
times the user's search terms appear in a document or boosting based on the
location of the user's search terms in a document (in the title, at the beginning,
etc.). Some approaches may drop very small words like "of", or "the" (also called
stop words), so they don't unduly influence the term calculations.

Other techniques used in relevance ranking include considering the date of the
item (documents that are more recent may be considered more relevant to some
users) or where the term matches occur (words in the title of the document may
be more relevant than words at the end). LucidWorks Search includes the option
to use Click Scoring, which uses information about the documents other users
have selected as a factor when calculating relevance.

Search Results

Once the system has compiled a list of matching documents, they need to be
presented to the user with enough information to help them decide which
documents are best. First, the documents should be sorted in some way: the most
common is by how well the documents match the query (relevance), but date may
also be preferred, or another field such as author or manufacturer. Some snippet
of the document should be used to help users figure out if the document is a
match, such as title, author and date. The first few sentences, or a few sentences
around the highlighted occurrence of the user's search term, are also helpful to
give the user some context for why each document was selected as a match.

Document clustering, also called faceting, can help users select from a large list of
results. Facets are documents grouped together by some common element such
as author, type, or subject and are usually displayed with the number of results
that can be found in each group. Providing facets allows users to "drill down" or
further restrict their results and find the documents they are looking for.

Users may also benefit from tools to expand their queries without providing
additional search terms. A "find similar" option allows users to request documents
that are similar to one they consider almost right. Explicit or automatic feedback
allows users to resubmit their search with terms pulled from documents that are

© 2014 Find this documentation online at Page 165 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
considered near matches, in hopes of getting more or better matches. In
LucidWorks Search, unsupervised feedback can be enabled, which automatically
takes the top documents from the preceding results and pulls important terms
from them to use with the user's original query.

Some queries are run on a periodic basis (daily, weekly, etc.). LucidWorks Search
includes a feature to allow users to save their queries and the system will run
them at defined intervals and send a notification if new documents have been
added that match their query. This feature is called Enterprise Alerts.

Result lists may need to be limited to only documents that a user has access to
view. LucidWorks Search has several options for doing this, described in the
section Securing LucidWorks.

© 2014 Find this documentation online at Page 166 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Getting Search Results

LucidWorks Search includes a default search interface that is designed to be used
during development to evaluate and test the performance of crawler and index
configuration. At this time, there are no options to customize the default Search UI
because we expect that you will prefer your own designs and options specifically
tailored to your audience.

What follows is some information about how to start working with search results in
LucidWorks Search.

LucidWorks is built upon Solr and supports it natively. While LucidWorks includes a
REST API for many administrative functions (like creating data sources, updating
fields, etc.), there is no LucidWorks-specific API for search results. In order to get
results from LucidWorks, you'll need to learn a little Solr syntax. To help you with
this, you may find it helpful to review LucidWorks' free Apache Solr Reference
Guide, particularly the section on Searching.

This page is an introduction to Solr searching.
You should also look at these sections:

® Constructing Solr Queries
® Solr Query Responses

Basics of Searching

Searching LucidWorks Search makes a direct connection to Solr, which processes
gueries with a request handler. The request handler defines the logic to be used
for processing the query. Solr supports several different request handlers, and
LucidWorks includes a special Solr search request handler called /| uci d. Details
about this special request handler are in the section Lucid Query Parser.

The /1 uci d handler is pre-selected as the default, but could be changed to
another request handler by editing sol rconfi g. xm for the collection. The
simplest way to do this is to change the def Type parameter from "lucid" to
"edismax", "dismax" or a custom parser you've created.

© 2014 Find this documentation online at Page 167 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 05-Aug-2014

Request Handlers

Each request handler has several settings pre-configured, but these can be
overridden for an individual query by the client application. In some cases, this
may adversely affect the expected search results, so care should be taken when
overriding some parameters.

To process a query, a request handler calls a query parser, which interprets the
terms and parameters of a query. The query parser understands the terms the
user entered (the actual words), any parameters entered for fine-tuning the query
(such as instructions to search a specific field for the terms, to boost terms found
in specific fields to rank them higher in results, and to interpret the syntax for
advanced queries including ranges or boolean operators, etc.), and any
parameters for controlling the presentation of the response (such as the order of
results or the fields of a document to be returned). LucidWorks has created its own
query parser that is used by default, but any other Solr query parser could also be
used (the two most popular are DisMax and ExtendedDisMax).

The request handler also likely has defined many parameters for faceting, spell
check, autocomplete, highlighting, security settings and so on. The /| uci d request
handler has enabled and defined each of those components by default; with other
request handlers those may need to be defined in sol rconfi g. xm or defined with
each search request. Each of these will either help fine-tune the query or control
the presentation of results.

Query Parsers

During query processing, Solr queries specific fields for matches to the user query.
The fields may be a default set configured in advance or specifically defined in the
query request. Each field has a type, and each field type has defined rules for how
to index content of that type, and how to process queries of that content. In
general, rules applied during indexing should be applied during queries to be
confident of expected results. For example, if all fields are modified to lower-case
during indexing, queries should be modified to lower-case to be sure they match
as many terms as possible. These are defined in the field analyzer definitions,
which include tokenizers and filters to be applied to indexing and queries. The
tokenizers and filters will in many cases modify the original query from the user,
perhaps by converting the user's input to lower-case or stripping extra characters
like hyphens or other punctuation. There are several dozen options for tokenizers
and filters and links at the end of this section will take you to more information

© 2014 Find this documentation online at Page 168 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

about them. You can see the defined field analyzers by looking in the schema. xm
file for the collection, or in the Admin UI screens for Field Type.

While all of this may seem quite complicated, LucidWorks can be used out of the
box with pre-set defaults. If the defaults do not match your desired behavior,
however, learning a bit more about how Solr processes content during indexing
and handles query requests may be required.

Related Topics

® Apache Solr Reference Guide
® Tokenizers

® Filter Descriptions

® CharFilterFactories

® Language Analysis

© 2014 Find this documentation online at Page 169 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Tokenizers
http://cwiki.apache.org/confluence/display/solr/Filter+Descriptions
http://cwiki.apache.org/confluence/display/solr/CharFilterFactories
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 05-Aug-2014

Constructing Solr Queries

In basic terms, searches are done with an HTTP GET that specifies the parameters
to use for the search. As noted above, the /| uci d request handler includes several
components by default, which means they do not have to be added to the query.
If using the / sel ect request handler, however, items such as faceting and spell
check suggestions would need to be specifically requested.

To search using the /| uci d request handler, simply point your HTTP client or
browser to http://localhost:8888/solr/collection1/lucid?g=some+query.
LucidWorks returns XML by default. If you would rather have serialized PHP
returned instead of XML, modify the URL to
http://localhost:8888/solr/collection1/lucid?g=some+query&wt=phps and the
response will be formatted in PHP.

(i)
Any request sent to Solr must include the collection name. In the above
example URLs, col | ecti onl refers to the default LucidWorks collection. If
you have configured multiple collections, replace "collection1" with the

appropriate collection name.

Topics covered in this section:

® Solr Query Parameters
® Query Parsers
® Related Topics

Solr Query Parameters

Solr has a tremendous amount of flexibility for controlling how queries are handled
and how results are returned, all of which can be defined as parameters of the
query. Some basic parameters to know, however are discussed below.

© 2014 Find this documentation online at Page 170 of
LucidWorks http://docs.lucidworks.com/ 347

http://localhost:8888/solr/collection1/lucid?q=some+query
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps

LucidWorks Search Documentation 05-Aug-2014
Parameter Name Uses Example Default in
LucidWorks
q query The main g=solr No specific
search request default, but
and keyword the parameter
terms for the g.alt is
query. defined as *. *
, which is to
find all results.
g. alt is used
to define a
query if none
is supplied by
the user.
sort sort The field to sort =dat eCr eat edeascdesc
sort the
results by.
Must also
specify asc or
desc to define
the order.
Multiple values
can be used,
separated by a
comma.
Multi-valued
fields cannot
be used for
sorting.
fl fields The fields to fl=id,title id,url,
return with aut hor,
the response. dat a_sour ce_t
| ast Modi fi ed
© 2014 Find this documentation online at Page 171 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Parameter Name Uses Example Default in
LucidWorks
, M neType,
pageCount ,
title
start start The number of start=20 None defined
results to skip in LucidWorks;
when Solr default is
returning the 0 which is
results. Can employed
be used with instead.
rows to
provide
pagination.
rows rows The number of rows=15 None defined
results to for
return. Can be LucidWorks;
used with Solr default is
start to 10 which is
provide employed
pagination. instead.
wt writer The response w =j son Solr's default
writer that is XML.
Solr should
use, which
defines the
format of the
results.
gt query handler The request wt=/lucid /1 ucid is the
handler to use default
to process the request
query. This handler
can be used
instead of a
© 2014 Find this documentation online at Page 172 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Parameter Name Uses Example Default in
LucidWorks
syntax like
http://localhost
or
http://localhost
shown in the
examples
above, orin
conjunction
with them to
override the
default
request
handler if one
is defined.
debug debug Detailed debug=ti m ng In the
information LucidWorks
about the Search UI, the
query and "explain"
results, for information
debugging (details of how
purposes. documents
There are four have scored)
options for is shown.
this
parameter:
® true: all
of the
debug
informatic
® query:
informatic
about
the
© 2014 Find this documentation online at Page 173 of
LucidWorks http://docs.lucidworks.com/ 347

http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/select?
http://localhost:8888/solr/collection1/select?

LucidWorks Search Documentation 05-Aug-2014

Parameter Name Uses Example Default in
LucidWorks

query
only
® results

informatic
about
the
document
returned
and how
they
scored

® timng:
informatic
about
how
long
each
componer
took to
complete
their
tasks

There are many other parameters that can be employed, but these are the basic
ones that let you submit a query and see some responses. For more detailed
information on Solr's query capabilities (some of which depend on the query
parser used), see the section of the Apache Solr Reference Guide on Query Syntax
and Parsing.

© 2014 Find this documentation online at Page 174 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 05-Aug-2014

To ensure that your query is indexed and shown in the activity graphs in
the LucidWorks Search Admin UI, include the req_t ype=nmai n parameter in
your query URL.

Back to Top

Query Parsers

All of query parsers included with Solr are available for use, in addition to the
enhanced parser included with LucidWorks. This table shows what are considered
the "main" query parsers that are designed for general use. There are also parsers
that can be used for specific purposes, listed below.

Name ID in LucidWorks Description

Lucene or Solr lucene The Lucene Query Parser,
with some Solr
enhancements. In the
Apache Solr Reference
Guide, the section The
Standard Query Parser
has more details about
the options for this
parser.

DisMax dismax Search across multiple
fields, allow +, -, and
phrase queries while
escaping most other
Lucene syntax to avoid
syntax errors. More
information is available in
the Apache Solr
Reference Guide in the
section The DisMax Query
Parser.

Extended DisMax edismax A version of the Extended
DisMax parser developed

© 2014 Find this documentation online at Page 175 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser

LucidWorks Search Documentation 05-Aug-2014

Name ID in LucidWorks Description

by LucidWorks and
donated to the Apache
Software Foundation for
inclusion in Solr. More
information is available in
the Apache Solr
Reference Guide in the
section The Extended
DisMax Query Parser.

Lucid lucid Allows Lucene syntax,
enhanced proximity
boosting, and query time
synonym expansion.
Tolerant of syntax errors.
More information
available in this guide in
the section on the Lucid
Query Parser.

There are also a number of query parsers which can be used on an ad hoc basis.
Each of these are documented in full in the Apache Solr Reference Guide, in the
section Other Query Parsers. A few highlights include:

Name Description

Boost Generates a BoostedQuery which
boosts a Query by a FunctionQuery.

Function Parses a FunctionQuery which
calculates a function over field values.

Field Generates a query on a single field.

Nested Delegates to another query parser,
which can be used to override the
default parser for a specific purpose.

© 2014 Find this documentation online at Page 176 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/Other+Parsers

LucidWorks Search Documentation

05-Aug-2014

Name

Prefix Query Parser

Raw

Spatial Filter

Other query parsers are also available.

Related Topics

Description

Generates a prefix query on a single
field.

Generates a raw unanalyzed term
query.

Generates a query which filters results
by a defined distance from a point in
space.

® Query Syntax and Parsing, with several sub-pages for query parsers and

local parameters

© 2014 Find this documentation online at Page 177 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 05-Aug-2014

Solr Query Responses

® Structure of the Response

® The responseHeader Section
The response Section
The highlighting Section
The facet_counts Section
The spellcheck Section
The debug Section
® Format of Results
® Related Topics

Structure of the Response

All Solr responses have at least two sections, the responseHeader and the
response.

The responseHeader Section

The responseHeader includes the status of the search (st at us), the processing
time (QTi ne), and the parameters (par ans) that were used to process the query.

The response Section

The response includes the documents that matched the query, in doc
sub-sections. The fields return depend on the parameters of the query (and the
defaults of the request handler used). The number of results is also included in this
section.

The highlighting Section

The hi ghl i ghti ng section will show, for each document in the response, the
sections of text in the document that should be highlighted. If using the /| uci d
request handler, they will be shown as snippets of text, with HTML tags
around them. Your client can consume those and you can format them by
specifying the hi ghl i ght class in your CSS however you'd like.

If using another request handler, such as / sel ect, that does not have predefined
configuration options for highlighting, you may need to set the parameters in your
request. There are quite a few Solr parameters to control highlighting and the
output in the response. For more details, see the section of the Apache Solr
Reference Guide for Highlighting.

© 2014 Find this documentation online at Page 178 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Highlighting

LucidWorks Search Documentation 05-Aug-2014

The facet_counts Section

The facet counts shows the facets that have been constructed for the result list,
including the facet fields and facet values (with counts) to populate each field.

The spelicheck Section
The spel | check will include suggestions for possible spelling errors in the user's
query.

The debug Section

The debug section will contain the detailed information about how the query was
processed. This section will only be returned if the debug parameter was used with
the query.

There are many sub-section of this section, including:

® expl ai n: Information about how each document scored according to the in
relevancy ranking algorithm.

® tim ng: Information of how long each component took.

® parsedquery: The query string as submitted to the query parser.

Calculating the debug info, particularly the scores, is expensive in terms of
processing power, so it should only be used when needed to debug query results.

©@ Ack! What Do Those Scores Mean?

The expl ai n sub-section of debug is the section that gives you information
about the relevancy scores of each document returned in the query. It's
the section you'll want to look at if you want to know why one document is
ranked higher than another. But it's pretty complex.

The expl ai n section shows you each factor that went into the final score
and how it was weighted. There may be specific boosts defined
(LucidWorks for example boosts a document when the query terms are
found in the title, among others), the frequency of the term in the
document may be high relative to the frequency of the term in all
documents (a relationship called the "term frequency-inverse document
frequency", or TF-IDF), or the term may have matched a field that is
smaller than others (such as "author" instead of "body").

© 2014 Find this documentation online at Page 179 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Some make the mistake of focusing on the score of a document in
absolute terms instead of looking at a document's score relative to the
other documents returned. This is an error because scoring of a single
document is always relative to other documents in the index, and your
index changes over time. The point of looking at scoring should be instead
to understand why a document is ranked higher or lower than other
document.

More information on expl ai n can be found in the section describing the
Explain Info of the LucidWorks Search UI.

Back to Top

Format of Results

The default format for search results in LucidWorks Search is XML. There are other
options available - such as JSON, PHP, and CSV, among others - and you request
the results in that format when sending the query. This is defined with the wt
parameter.

The data is returned as a standard Solr search data structure, formatted either as
XML, Ruby, Python, PHP, PHPS, and even server-side XSL. For more information,
see the section in the Apache Solr Reference Guide on Response Writers.

Related Topics

® Understanding and Improving Relevance
® Explain Info
® Response Writers

© 2014 Find this documentation online at Page 180 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Response+Writers
http://cwiki.apache.org/confluence/display/help/Explain%20Info
http://cwiki.apache.org/confluence/display/solr/Response+Writers

LucidWorks Search Documentation 05-Aug-2014

Query and Response Examples

LucidWorks Search includes a simple Search UI, but if you are going to build your
own user interface, or your own application to access the data stored in
LucidWorks, you will need to access the underlying engine directly.

LucidWorks is built on Apache Solr, so the techniques necessary for performing a
search against it are the same as those for performing a search against Solr. In
other words, an HTTP call to a URL of:

http://127.0.0. 1: 8888/ solr/col |l ectionl/sel ect/?qg=N ckChase

Would return a result such as this:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<i nt name="status">0</int>
<i nt name="Qrli ne" >99</i nt >
<l st nanme="parans">
<str name="q">Ni ckChase</str>
</|st>
</lst>
<result nanme="response" nunfound="151" start="0">
<doc>
<str nane="geo">none</str>
<str name="id">29059644164939776</str>
<int name="retweet Count">0</int>
<str nanme="source">web</str>
<str name="text">Wdrking on a Twitter app; anybody got a
preferred Java Twitter library?</str>
<arr name="text nedi unt >
<str>Ni ckChase</str>
<str>en</str>
<str/>
<str>web</str>
<str>Working on a Twitter app; anybody got a preferred Java
Twitter library?</str>
<str>2011-01- 23T06: 15: 33. 000Z</ st r>
<str>0</str>

© 2014 Find this documentation online at Page 181 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<farr>
<dat e nane="ti nestanmp">2011-02- 13T14: 06: 53. 191Z</ dat e>
<arr nanme="userld">
<str>99999999</str>
<farr>
<str name="userlLang">en</str>
<str name="user Nanme" >N chol as Chase</str>
<str name="user Scr eenNanme" >N ckChase</str>
</ doc>

</result>
</ response>

You can then consume that XML from within your application.

While XML is the default output format, LucidWorks supports multiple formats,
including JSON, CSV, and even object formats such as PHP, Java, and Python.

In general, to change the output format, use the wt parameter, as in:

http://127.0.0. 1: 8888/ solr/col |l ectionl/sel ect/ ?q=Ni ckChase&m =j son

This provides a response of

"responseHeader":{
"status":0,
"Qlinme": 1,
"parans”:{

"w":"json",
"g": "N ckChase"

}
"response":{
"nunmFound": 151,
"start":0,
"docs": [
{
"id":"29059644164939776"
"user Nane":"Ni chol as Chase",
"user ScreenNane": "N ckChase",

© 2014 Find this documentation online at Page 182 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

"userLang":"en",

"source": "web",

"text":"Working on a Twitter app; anybody got a preferred
Java Twitter |ibrary?"

"retweet Count": 0O,

"tinmestanp":"2011-02-13T14: 06: 53. 1912",

"geo": "none",

"text _mediunm':["N ckChase","en","", "web","Wrking on a
Twitter app; anybody got a preferred Java Twitter library?",

"2011-01-23T06: 15: 33. 000Z", "0"],

"userld":["99999999"]

The structure of the results depends on the options you choose in the request
string. For example, you can specify faceting and highlighting;

http://127.0.0. 1: 8888/ solr/collectionl/select/?q=twitter&f acet=on&f acet.fif

Which gives a result such as this:

<?xm version="1.0" encodi ng="UTF-8""?>
<r esponse>
<l st nanme="responseHeader" >
<int name="status">0</int>
<int name="Qrli me">359</i nt >
<l st nanme="parans">
<str nanme="facet">on</str>
<str nanme="facet.field">userScreenNanme</str>
<str name="hl.fl">text</str>
<str name="hl">true</str>
<str name="q">twtter</str>
</lst>
</|st>
<result nane="response" nunfFound="2190" start="0">
<doc>
<str nanme="geo">none</str>

© 2014 Find this documentation online at Page 183 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<str nanme="id">38402455221829632</str>
<arr name="obj ect Type">
<str>twSt at us</str>

<farr>

<int name="retweet Count">0</int>

<str name="source">& t;a href="http://twitter.com"
rel ="nofollow'> Twitter for iPhone& t;/a></str>

<str name="text">RT @nventive: Really useful Twitter Android
code RT @nbake Devel oping an android twitter

client using twitter4j http://is.gd/ 1YUFyY #a

.<[str>
<arr name="text_ nedi unm' >
<str>t4j news</str>
<str>en</str>
<str/>
<str>&t;a href="http://twitter.com"
rel ="nofollow'> Twitter for iPhone& t;/a></str>
<str>RT @nventive: Really useful Twitter Android code RT
@nbake Devel oping an android twitter
client using twitter4j http://is.gd/ 1YUFyY #a
.<[str>
<str>2011-02-18T01: 00: 33. 000Z</ str >
<str>0</str>
<farr>
<date nane="ti nestanmp">2011-02- 18T01: 45: 05. 527Z</ dat e>
<arr nanme="userld">
<str>88888888</str>
<farr>
<str name="userlLang">en</str>
<str nanme="user Nanme">t 4] news</str>
<str name="user ScreenNanme" >t 4) _news</str>
</ doc>
</result>
<l st name="facet counts">
<l st name="facet queries"/>
<I st name="facet fields">
<l st name="user Scr eenNane" >
<int name="beaker">189</int>
<int name="cl oudexpo" >35</int>
<int name="randybi as">35</int>
<int name="getjavaj ob">26</i nt >

© 2014 Find this documentation online at Page 184 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

</lst>
</lst>
<l st name="facet dates"/>
<l st nanme="facet_ranges"/>
</lst>
<l st nanme="hi ghlighting">
<l st name="38402455221829632" >
<arr name="text">
<str>RT @nventive: Really useful & t;span
class="highlight"> Twitter& t;/span> Android code RT
@nbake Devel oping an android & t;span
class="highlight">twitter& t;/span> client</str>
<farr>
</lst>

</ response>

Notice the structure of the search response: it starts with the r esponseHeader
block, which provides information such as the query, whether you have specified
highlighting, and so on.

Next is the resul t block, which shows the actual documents returned by the
search, along with the nunfFound and st art attributes, which specify the total
number of results and the starting position for the results returned in this
response. For each document, LucidWorks Search returns all fields that are
marked as st or ed=t rue in the field definition.

If you have specified faceting, next you will see facet counts for each field
specified. You can then use that information to build links to your narrowed
search. For example, we started with the query:

http://127.0.0. 1: 8888/ solr/collectionl/select/?q=twitter&f acet=on&f acet.fif

If you then wanted to build a link to results narrowed on the user Scr eenNane
cl oudExpo, it would look like this:

http://127.0.0.1: 8888/ solr/col |l ectionl/sel ect/?q=tw tter&f acet =on&hl =t rueé&h

© 2014 Find this documentation online at Page 185 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

This way you have the same set of results, with the additional filter query of
user Scr eenNane: ¢l oudExpo, which selects only the documents with a

user Scr eenNane field of cl oudExpo.

After the facet information comes the hi ghl i ghti ng block. Highlighting consists of
snippets with the relevant information marked up appropriately. (By default, terms
are marked up as a span with the class hi ghl i ght, so you can use CSS to style
them however you like.) Each snippet is contained in a block that refers back to
the i d value of the original document. So in this case, the nane attribute of
38402455221829632 refers back to doc with an i d of 38402455221829632. You can
then use this information to build your web application.

As far as how to actually use these responses, you can either work with them
directly, or use the Solr API as provided for your programming language. For
example, a Solr] request looks something like this:

Sol r Server server = new
CommonsHt t pSol r Server ("http://1 ocal host: 8888/solr/collectionl");

Sol rQuery query = new Sol r Query();
query.setQuery("twitter");
query. addSortFi el d("timestanp", SolrQuery. ORDER desc);

QueryResponse rsp = server.query(query);
Sol r Docunent Li st docs = rsp. getResults();
for (Sol rDocunent doc : docs){
Systemout.println((String)doc. getFieldvalue("id")+": ");
Systemout.println((String)doc. getFi el dval ue("user ScreenNanme") +" - -
"+(String)doc. getFieldval ue("text"));

Here you are creating a connection to the server, then creating and executing the
request. From there, you can manipulate documents as you see fit.

APIs exist for most programming languages. You can find a list of bindings on the
Solr Wiki.

© 2014 Find this documentation online at Page 186 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/IntegratingSolr

LucidWorks Search Documentation 05-Aug-2014

Related Topics

® Searching chapter from the Apache Solr Reference Guide

© 2014 Find this documentation online at Page 187 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 05-Aug-2014

Understanding and Improving Relevance

Relevance is one of the most complex components of a search engine
implementation, but it has a direct impact on how users perceive the value of the
search system.

One of the reasons relevance is so complex is because two users performing the
same query will likely have differing opinions about which documents best match
their query. In the end, judging relevance has an inherent subjectivity to it.
However, there are some ways to assess relevance and adjust how documents are
scored to improve ranking. This section discusses the various approaches to
analyzing a problem with relevance (real or perceived) and possible solutions.

For more background on how LucidWorks Search approaches relevance, see the
discussion in the section on Overview of Query Processing.

Topics in later sections:

® Indexing and Relevance
® Queries and Relevance
® Relevance Tuning Tools

Relevance Testing

Relevance should always be judged in the context of a specific index and a set of
queries for that index. You should tune your relevance parameters for the types of
queries users submit and the types of content you have indexed. For example, if
you have an e-commerce site where users are accustomed to searching for your
specific product names, and your content includes those names in the title, you
might consider boosting title matches. If, however, your users do not know your
specific product names very well, you might want to boost another field like color,
or size.

When developing a search application, you will likely encounter issues with

relevance during testing. Usually this happens when one or more users run their
favorite query and aren't impressed with the results. This becomes a system bug
that must be dealt with before launch. While the favorite-query approach can be

© 2014 Find this documentation online at Page 188 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

useful, a more systematic approach may be more telling in the long run about how
queries are and aren't being handled by the system.

An empirical approach uses real sample queries gathered from query log analysis.
The top 50 or so queries are extracted from the logs, plus ten to twenty random
queries. Next, one to three users enter each query into the system and then judge
the top ten (or five) results. Judgments may be done on a scale of 1-5, with 1
being "relevant" and 5 being "embarrassing", or using another scale you
determine. The goal of relevancy tuning is to maximize the number of relevant
documents while minimizing the number of irrelevant ones. By recording these
values and repeating the test over time, it becomes possible to see if relevancy is
getting better or worse for the particular system in question.

An alternative method for judging relevance is to use what is commonly referred
to as A/B testing. In this approach, some set of users are shown results using one
version of the index while another set of users is shown the results from a
different version. To judge the success of a particular approach, user clicks are
tracked and analyzed to determine which approach provides better results.

Other approaches include log analysis on a beta site, letting users rate documents
using a star (or similar) system, using third-party evaluation data sets such as
TREC, or using focus groups. These approaches will all yield benefits, and you may
want to adopt a combination of approaches, but empirical testing and A/B testing
are the most comprehensive and give you easily repeatable results and verifiable
results.

Once you have some data in hand about the scope of your problem, you are in a
better position to understand what you want to try to improve and the changes
you may need to make.

After Testing

Once you have identified that you want to make some changes to improve
relevance of results, the next sections will discuss various approaches to doing so.

First, we cover some index-based approaches (things you do to documents as they
are indexed), in the section Indexing and Relevance.

Next, we cover query-based approaches (things you do to user queries), in the
section Queries and Relevance.

© 2014 Find this documentation online at Page 189 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Finally, we'll cover Relevance Tuning Tools.

= Click Scoring Relevance Framework

One important aspect of LucidWorks relevance scoring functionality is the
ability to boost documents that prior users have selected. This
functionality is the Click Scoring Relevance Framework and can be enabled
through the Administrative User Interface.

Related Topics

® Relevance chapter from the Apache Solr Reference Guide
® Debugging Search Application Relevance Issues, by Grant Ingersoll, hosted
at SearchHub.org.

© 2014 Find this documentation online at Page 190 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr/Relevance
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/

LucidWorks Search Documentation 05-Aug-2014

Indexing and Relevance

For the most part, it is easier and more flexible to use query-time approaches to

alter relevance ranking, but there are several techniques can be employed during
indexing. These techniques almost always have to be mirrored on the query side,
so they are only partially index-time approaches.

Stop words

Removing stop words (such as a, the, of, etc.) from the index and stripping them
from queries is a common technique for reducing the size of an index and
improving search results, despite the fact that it throws away information. While
LucidWorks Search can remove stop words at indexing time, it does not do so by
default.

Removing stop words during indexing is now considered an archaic approach in
most search applications. Instead, it is preferred to remove stop words from
queries, except in certain types of queries where they are used to better clarify a
user's intent (such as in phrases). Both the Extended Dismax Query Parser and
the Lucid Query Parser can take advantage of stop words, see the section
Synonyms and Stop Words for more information.

If stop words are removed from the index, you'll want to be sure to remove the
same set of stop words from user queries. Not removing stop words at query-time
when they have been removed from the index may actually reduce relevance by
leading to a high number of unmatched terms from user queries.

Alternate Indexing Fields

When indexing, it is often useful to apply several different analysis techniques to
the same content. For example, providing a default case-insensitive search is often
the best choice for general users, but expert users will often want to do exact
match searches which may additionally require a case-sensitive field. In Solr, this
can be accomplished by using the <copyFi el d> mechanism, as described in the
Apache Solr Reference Guide section on Copying Fields. In LucidWorks Search, this
can be configured in the Fields screen of the Admin UI, with the Fields API, or by
editing the schema. xm file. If you use the Admin UI or the Fields API, you will not
need to restart LucidWorks Search, but if you edit schema. xm by hand, a restart
of LucidWorks Search will be required.

© 2014 Find this documentation online at Page 191 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/Copying+Fields

LucidWorks Search Documentation 05-Aug-2014

Other examples of times when alternate fields may be useful include applying
different stemming approaches, using character-based and word-based n-grams,
or stripping punctuation, accents and other marks. At query-time, you'll want to
make sure to submit user queries to the fields that have had content analyzed the
way you want.

Document and Field Boosting

When indexing using the Solr APIs it is possible to mark one document or field as
being more important than other documents or fields by setting a boost value
during indexing. These boost factors are then multiplied into the scoring weight
during search, thus potentially boosting the result higher up in the result set. This
type of boosting is usually done when knowledge about a document's importance
is known beforehand. However, index time boosting only provides 255 distinct
values of granularity and if a change is needed to the boost value, the document
must be re-indexed.

In general, this type of index-time boosting is somewhat impractical: the field or
document boosts must be included with the document every time the document is
updated. If using one of the LucidWorks Search crawlers, this may be difficult to
achieve without a workflow that includes crawling as a batch, modifying
documents offline, and then indexing the documents. In addition, the query-time
boosting techniques offer much broader control over when and how boosts are
applied.

However, LucidWorks Search also includes a way to boost fields in a document
based on the length of the field. In theory, if a term that the user has searched for
appears in a field that is significantly shorter than other fields (such as the title), it
should be boosted more than if the term appears in a longer field (such as the
body). The short field boost factor provides three approaches: "none", which
provides no boost; "moderate"”, which uses the Luci dSim | arityFactory to
provide a smaller boost than the standard Lucene calculations; and "high", which
uses Lucene's Defaul t Sim | arityFact ory to calculate the boosts. This
functionality is used during indexing - during query time, the standard Lucene
calculations are used.

Stemming and Lemmatization

Stemming is the process of reducing a word to a base or root form. For example,
removing plurals, gerunds ("ing" endings) or "ed" endings are all stemming

© 2014 Find this documentation online at Page 192 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

techniques. Lemmatization is a variation of stemming that leaves a whole word in
place, while stemming need not do that. There are many stemming theories and
techniques. Some are quite aggressive, stripping words down to very small roots,
while others (called light stemmers) are less aggressive.

LucidWorks includes many options for stemming but it is also possible to plug in a
custom analyzer or use other Solr or Lucene analyzers not included. As a general
rule of thumb, it is usually best to start with a light stemming approach that
removes plurals and other basics techniques and then progress to more aggressive
stemming only after performing some relevance testing as described in Judging
Relevance.

Default stemming in LucidWorks uses the Lucid Plural Stemmer for the default
English text analysis Field Type which simply stems plural words into their singular
form, although rules can be added to a rules file to protect and specially translate
words or even add or modify stemming rules as needed (see the section Lucid
Plural Stemming Rules.) More aggressive stemmers are also available, like Dr.
Martin Porter's Snowball stemmers (choose the "text (English Snowball)" Field

Type).

To experiment with different stemmers, there is a well-defined mechanism in Solr
for plugging in stemmers via the Analysis Process. There is also an easy to use
Admin interface for testing the analysis process located in the Solr Admin screens
(access it via the "Advanced" tab of the Admin UI, or by going to
http://localhost:8888/solr/#/collectionl, replacing "localhost:8888" and
"collection1" as needed for your environment).

© 2014 Find this documentation online at Page 193 of
LucidWorks http://docs.lucidworks.com/ 347

http://snowball.tartarus.org/
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://localhost:8888/solr/#%2Fcollection1

LucidWorks Search Documentation 05-Aug-2014

Queries and Relevance

When working with queries to improve relevance ranking, there are a great
number of tweaks and techniques that you can consider. In the section on
Relevance Tuning Tools, we'll discuss those smaller tweaks in more detail. But
here we'll discuss some of the broader approaches you might consider.

One factor that shouldn't be overlooked is the importance of user education. While
the techniques described below can make things much easier for users, educating
users on how to use the proper query syntax, when to use it, and how to refine
gueries can be instrumental in enhancing the relevance of search results.
Obviously, not all users will read manuals or take the time to learn new query
syntax, so the following techniques can be used to achieve better results in many
situations.

Boosting Specific Documents

The QueryElevationComponent in Solr provides a way to force specific documents
to the top of the result list in response to a specific query. In Solr, it is configured
with the el evati ons. xml file, but in LucidWorks Search it can be configured either
with the Search UI or the Settings API.

This approach is useful if you have a few known documents that should always
appear at the top for a query. It's also possible to force documents to not appear
at all in the results for a query (i.e., "blacklisting") if that's required.

Query Term Boosting

Similar to Document/Field boosting, terms in a query can be boosted. Boosting a
query term implies that the term in question is somehow more important than the
other terms in the query. One advantage of query time boosting is an expanded
level of granularity is available for expressing the boost value. Additionally, the
boost value is not "baked in" to the index, so it is easier to change.

You may also decide to give boosts if the user's term appears in specific fields,
such as the title.

Click Scoring Relevance Framework

Available only in LucidWorks Search, this approach stores information about
documents prior users have selected during their searches. The document ID and
the user's query are recorded and then used to calculate boost values for those

© 2014 Find this documentation online at Page 194 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
documents that are applied the next time the same query is submitted. Over time,
the documents that have been clicked on the most will rise in the results list; if
users stop clicking on the document, the algorithm has an aging factor that will
cause them to gradually fall in the results list.

For more details, including how to enable Click Scoring, see the section Click
Scoring Relevance Framework

Synonyms

Synonym expansion is a common technique that looks up each token in the
original query and expands it with synonyms; strictly speaking, synonym
expansion mostly improves the ability to get more documents (also called recall)
rather than improving relevance ranking or excluding irrelevant documents. For
instance, a user query containing "USA" could be expanded to "(USA OR "United
States" OR "United States of America")", which may bring back results that the
user intended to retrieve, but did not fully specify. If the user was looking for
"USA" only, the results may be less relevant to him.

In LucidWorks Search, it is easy to specify a list of synonyms that can be used for
expansion. Synonym lists are best created by analyzing query logs and then
looking up synonyms for common query terms and then testing the results.
Generic synonym lists (like those obtained from WordNet) can be useful, but care
must be taken as too many synonyms can be problematic for users, especially if
they are not appropriate for the genre of the index. It is, however, quite common
to produce synonym lists contain common abbreviations, numbers (for example, 1
-> one, 2 -> two, and so on) and acronyms.

Unsupervised Feedback

Unsupervised feedback is a relevancy tuning technique that executes the user's
query, takes the top five or ten documents from the result, extracts "important"
terms from each of the documents and uses those terms to create a new query.
The expanded query is executed and new results are returned to the user. This is
all done automatically in the background with no interaction required by the end
user. As an example, if the user searches for the word "dog" and the top three
documents are (for the sake of example):

1. Great big brown dogs run through the woods.
2. Dogs don't like cats.
3. A poodle is a type of dog.

© 2014 Find this documentation online at Page 195 of
LucidWorks http://docs.lucidworks.com/ 347

http://wordnet.princeton.edu/

LucidWorks Search Documentation 05-Aug-2014

The feedback query might look something like (dog) OR (great OR big OR
brown OR dog OR run OR woods OR cat OR poodl e).

Since these terms co-occur with the word "dog" in high ranking documents, these
terms may help further define a user's short query. Unsupervised feedback is often
viewed as a helper, but it does rely on the assumption that the top few documents
are highly relevant to the search. If they are not, then the results incorporating
feedback will likely be worse than those without feedback.

Unsupervised feedback is optional in LucidWorks Search and is disabled by default.
It may be enabled by checking the Enable Unsupervised Feedback check box in
the Querying Settings tab of the Admin UI, or with the Settings API.

© supervised Feedback

Supervised feedback is similar to unsupervised feedback except that users
explicitly pick which results are relevant, usually by clicking the result or
checking a box indicating it is relevant. The LucidWorks Search feedback
component does not currently support supervised feedback.

Boosting Documents According to Rules

You may have a complex suite of business rules (i.e., if user A is male, aged
25-35, display XYZ results first) that you'd like to apply. These may be built
around profit or sales goals for the organization, but they may also be built around
a deep knowledge of your users that you'd like to apply. In that case, you may
need to integrate a Business Rues Engine. LucidWorks Search has provided an
integration with Drools, but it's also possible to plug in other options. See the
section Business Rules Integration for more details.

Related Topics

® Options to Tune Documents' Relevance, by Tomas Fernandez Lobbe, hosted
on SearchHub.org

© 2014 Find this documentation online at Page 196 of
LucidWorks http://docs.lucidworks.com/ 347

http://searchhub.org/2011/12/14/options-to-tune-documents-relevance-in-solr/

LucidWorks Search Documentation 05-Aug-2014

Relevance Tuning Tools

Before starting to modify settings that impact how results are ranked, it's best to
have an idea for the outcome you hope to achieve. Too often we have an
emotional response to relevance, choosing a small number of favorite queries as
our tests. However, as discussed in the opening section, you should run tests
using queries that real users have submitted that have been pulled out of query
logs. The scope of these tests is up to you and your available resources, but a
methodical approach is preferred.

If you have done tests with real-world sample queries and had users (or internal
testers) score results of those queries using a common scale, you have a way to
quantify how "bad" the issue is before you make changes. This will allow you to
quantify how much things improve for each proposed change, so you can base
your decisions on data. This will also allow you to understand (and explain to
stakeholders) some of the trade-offs you may need to make if your user's queries
are improved but your CEQ's favorite query is not.

If you do find you want to make changes, here are some tools and tips to assist
you.

Relevancy Workbench

One way to experiment with system changes is to use the Relevancy Workbench, a
new tool included with LucidWorks Search which allows side-by-side comparison of
search results using different query parameters for two queries. This tool allows
you to experiment with changes before making them permanently for all users.

Several parameters are available for experimentation, all of which relate to the
fields that will be searched or the boosts that will be applied. A catch-all field is
available for any parameters that aren't explicitly shown, making it a vital tool for
testing the impact of any change you can think of.

The tool is available through the LucidWorks Search Admin UI, in the Relevance
tab. See the Relevance Help for detailed information.

Explain Scoring

In the default LucidWorks Search UI, links will appear under each search result for
"Explain"; clicking that will show the scoring of each document for the query. The
scores cannot be tweaked here, but you can see the factors that make up the

© 2014 Find this documentation online at Page 197 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

score and understand why the result appears where it does. This information can
provide clues about why documents appear in the order that they do. The scores
themselves are not the most important factor, but the scores of each document
relative to other documents is telling.

More information about how to read explain scores is available in the section
Explain and Document Scoring.

Solr Analysis

Some problems may be deeper within the system, and may only be resolved by
either changing how content is analyzed and transformed before indexing or
changing how the user's query is analyzed and transformed. The field types
defined for each field dictate this analysis and while LucidWorks Search includes
sensible defaults, they are not universal and may need to be tweaked depending
on your content.

The Solr Admin UI, which is available from the LucidWorks Search Admin UI
through the Advanced tab, has a tool to help better visualize the analysis process
which shows the outcome of each analysis step on both the indexing side and the
query side. To use this tool, point a browser at
http://localhost:8888/solr/#/collection1/analysis and enter the text to be
analyzed. By trying out the text with different analysis capabilities (by selecting
different Fields or Field Types), it is possible to better understand why matches
may or may not occur.

More information about analyzers is available in the Apache Solr Reference Guide
in the section Understanding Analyzers, Tokenizers, and Filters.

Using Luke

Another useful tool for evaluating how documents have been indexed is Luke,
which is an easy to use GUI that provides valuable information about the
underlying Lucene index. Its features include document browsing, query testing,
term browsing (including high frequency terms) and statistics about the collection
as a whole. To use Luke with LucidWorks Search, launch it using the script located
in the $LWS_HOVE/ app/ | uke directory.

Once Luke is launched, point it at the LucidWorks Search index directory (such as
$LWS_HOWE/ dat a/ sol r/ cores/ col | ecti onl_0/ dat a/i ndex, replacing
"collection1_0" with the actual collection path you want to look at) and open the

© 2014 Find this documentation online at Page 198 of
LucidWorks http://docs.lucidworks.com/ 347

http://localhost:8888/solr/#%2Fcollection1%2Fanalysis
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://code.google.com/p/luke/

LucidWorks Search Documentation 05-Aug-2014

index. From there, the most useful actions are to view the high frequency terms,
and also particular documents (under the Documents tab) using the "Browse by
term" and "Browse by document number" options. Key items to look for are
missing documents and fields, terms, or words that are not tokenized "correctly".
Incorrect tokenization may not mean the analysis process was wrong, but rather
the output is not what a user would expect.

Again, you probably wouldn't make changes with Luke, but it provides a deeper
look into what is happening so you can make educated decisions about what
should be changed, whether that is the analysis process for incoming content, the
analysis process for user queries, or the default boost factors in play.

© Luke in LucidWorks Search

LucidWorks Search packages a version of Luke, which is provided 'as is'. It
can be found at $SLWS_HOVE/ app/ | uke and launched by running the
| uke. sh script for Linux/Mac or the | uke. bat script for Windows.

External Boost Data

The standard mechanism in Solr for adding external field data (which may affect
ranking) is through the use of Ext er nal Fi | eFi el d type. This mechanism is
sufficient when adding simple string or numeric values to be processed by function
queries, but it's not sufficient to express more complex scoring mechanisms, based
on other regular query types.

More information about external boost data is available in the Apache Solr
Reference Guide in the section Working with External Files and Processes.

Related Topics

® Relevance tab from the Help documentation for the Admin UI screen
® Explain and Document Scoring from the Help documentation
® |Luke

© 2014 Find this documentation online at Page 199 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes
http://code.google.com/p/luke/

LucidWorks Search Documentation 05-Aug-2014

Synonyms and Stop Words

Synonyms are words that are similar in meaning to each other, such as "hat" and
"cap". In the context of a search application, they are another tool for improving
results for users because they provide the opportunity to substitute words and
expand the terms matched in the index.

Stop Words, on the other hand, are used to restrict the results of a search, by
removing very small and very common words (such as "the" and "and") that often
have little bearing on whether a document is a good match or not.

Synonym Expansion

LucidWorks Search manages synonyms with the use of a synonyns. t xt file found
in the $LWS_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf directory (unique for each
collection). Synonyms can be edited in that file, via the Admin UI, or with the
Settings API.

Synonyms can be either single terms or multi-term phrases. There are two ways
to express synonyms:

® A comma-separated list of words (i.e., "lawyer, attorney" or "i-pod, i pod,
ipod"). When the term entered by the user matches a term in the list, all
terms are substituted for the term the user entered, including the matching
term. If "lawyer, attorney" appears in the synonym list, when the user
enters "lawyer", the system will search for documents that include both
"lawyer" and "attorney".

® A mapping of one or more terms to another (i.e., "i-pod => ipod"). When
entered as a mapping, the terms on the left of the "=>" symbol will be
replaced by the terms on the right side of the symbol, which means that the
user's query may not appear in the documents returned for the query. If
"i-pod => ipod" appears in the synonym list, when the user enters "i-pod",
the system will search for documents that contain the term "ipod" only.

There can be an unlimited number of terms and phrases which are defined as
synonyms. However, it's usually not a good idea to add an entire thesaurus as a
synonym file because not all terms are necessarily interchangeable (in some
contexts, yes, but not always). For example, a doctor looking "myocardial
infarction" is likely looking for documents that use the clinical term for the

© 2014 Find this documentation online at Page 200 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

condition (and are thus more advanced) instead of documents written for a
layman which likely uses the phrase "heart attack".

When considering synonyms, you should also consider which fields should be used
for synonym expansion. In LucidWorks Search, the body, description, title and
text _al |l fields are used for synonym expansion by default, meaning that those
are the fields that will be used for the expanded or modified query.

If creating a synonym file manually, make sure to format the file properly. Lines
starting with pound (#) are comments. Explicit mappings are indicated with terms
separated by "=>", where a comma-separated list of terms on the left side will be
replaced with the list of terms on the right side. Equivalent synonyms may be
separated with commas and will give no explicit mapping (that is, the listed terms
are equivalent). This allows the same synonym file to be used in different synonym
handling strategies. For example:

| awyer, attorney

one, 1
two, 2
three, 3
ten, 10

hundr ed, 100
t housand, 1000
tv, television

#mul ti pl e synonym mappi ng entries are nerged.
foo => foo bar

foo => baz

#i s equivalent to

foo => foo bar, baz

If familiar with Solr, the file is formatted the same as the Solr synonyms file.

Stop Words

LucidWorks Search stores stop words in a file called st opwor ds. t xt , found in the
$LWS _HOVE/ conf/sol r/ cores/ col | ection/conf directory (unique for each
collection). The stop words can be edited in that file, via the Admin UI, or with the
Settings API.

© 2014 Find this documentation online at Page 201 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory

LucidWorks Search Documentation 05-Aug-2014
The stop word file is just a list of terms, one per line.

Many common prepositions, pronouns, and adjectives offer little benefit for
matching documents, but can add some value when ranking results. Although it is
possible to remove stop words when documents are indexed, more relevant results
will be achieved by indexing all terms, querying only non-stop words, and then
boosting the results by including the stop words with non-stop words. There is the
special case where a query consists only of stop words (such as the classic, "To be
or not to be"). In that case, all words are included in the query.

All words within quoted phrases are used for the query, even if they are stop
words. The user can also force a stop word to be included in the search by either
preceding it with a plus sign ("+") or enclosing it within double quotation marks.
For example,

User Input Query Interpretation

at a conference "at" and "a" are stop words, so they
will not be included with the query

+at a conference "at" will be included in the query, but
"a" will not

"at" a conference Same

"at a conference" All three words will participate in the
query

thisis it There is no need to override because

all three words are stop words, so all
three will be included in the query

If creating the stop words file manually, the format is one term per line, as in:

an
and
are
as
at

© 2014 Find this documentation online at Page 202 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
This is the same format as the Solr stopwords format.

Related Topics

Suppressing Stop Word Indexing
Settings API

Synonyms in the Admin UI

Stop words in the Admin UI

© 2014 Find this documentation online at Page 203 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory

LucidWorks Search Documentation 05-Aug-2014

Suppressing Stop Word Indexing

This functionality is
not available with
LucidWorks Search

on AWS or Azure

By default, LucidWorks Search indexes all stop words. Modern data storage is very
cheap and even the simplest of stop words provide additional context that boosts
relevancy and enables more precise queries. By default, the Lucid query parser
eliminates stop words from basic queries, including them only when they are used
in quoted phrases, or when the query term list consists only of stop words. In
addition, the Lucid query parser uses query stop words to construct relevancy
boosting phrase terms (bigram and trigram phrases) to supplement the basic
query. Still, there may be applications and environments where the choice is to
suppress the indexing of stop words.

TODO - update this for Field Types in the UI and API

Disabling Stop Word Indexing

Solr field types in the schema XML file control whether stop words will be indexed

for particular fields. A stop word filter may be placed in the tokenizer chain for the
index analyzer for a field type to filter out stop words and assure that they will not
be stored in the index.

Filters are specified at the field type level, not the field level. For example, you
may have ti tl e and body fields, both with the t ext _en field type. A stop word
filter may be specified for the t ext _en field type and will apply to all fields of that
same type, in this case ti tl e and body. If you really need to have a separate filter
for a subset of the fields of a given type, you must create a separate field type to
use for that subset of fields.

The standard stop word filter is named St opFi | t er and is generated by the

St opFi | t er Fact ory Java class. LucidWorks ships with a schema XML file (
schenma. xm) with the t ext _en field type with a commented out entry for this
standard stop word filter. To enable it, simply remove the XML comment markers
around that one filter entry.

© 2014 Find this documentation online at Page 204 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

©@ schemas are Collection Specific

The schema. xm file is specific to each collection and can be found under
$LWS_HOVE/ conf/sol r/ cores/ col | ecti on/ conf. If using multiple
collections, be sure to locate the correct schema. xni file for the collection
to be updated. After editing the schema.xml file, LucidWorks should be
restarted. On some Windows machines, LucidWorks may need to be

stopped before editing the file.

So, starting with the following in schema. xnl :

<fi el dType class="sol r. Text Fi el d" nanme="t ext _en"
posi tionl ncrenment Gap="100">
<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/ >

<filter class="solr.SynonyntilterFactory"
synonynms="i ndex_synonyns. t xt"

i gnor eCase="true" expand="fal se"/>

-->

<l--

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

-->

<filter class="solr.WrdDelimterFilterFactory"
gener at eNunber Part s="1" gener at eWordPart s="1"

spl it OnCaseChange="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.|SOLatinlAccentFilterFactory"/>

rul es="Luci dStenRul es_en.txt"/>
</ anal yzer>

<I-- in this exanple, we will only use synonyns at query tine

catenat eAl | =" 0" cat enat eNunbers="1" cat enat eWords="1"

<filter class="com |l ucid. anal ysis. Luci dPl ural StenFilterFactory"

Edit the stop filter factory entry that is commented out:

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 205 of
347

LucidWorks Search Documentation 05-Aug-2014

<I--

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

And remove the XML comment markers to get:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/ >

Which results in the following analyzer description:

<fi el dType class="sol r. Text Fi el d" name="text _en"
posi ti onl ncr ement Gap="100">
<anal yzer type="index">
<t okeni zer class="sol r. Wit espaceTokeni zer Factory"/>
<l-- in this exanple, we will only use synonyns at query tinme
<filter class="solr.SynonynFilterFactory"
synonynms="i ndex_synonyns. t xt"
i gnoreCase="true" expand="fal se"/>
-->
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>
<filter class="solr.WrdDeliniterFilterFactory"
gener at eNunber Part s="1" gener at eWbrdPart s="1"
catenat eAl | ="0" cat enat eNunbers="1" cat enat eWrds="1"
spl it OnCaseChange="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.|SOLatinlAccentFilterFactory"/>
<filter class="com | ucid.analysis.LucidPlural StenfilterFactory"
rul es="Luci dStenRul es_en. txt"/>
</ anal yzer >

After such a change, be sure to re-index all documents.

Also, make sure that the query analyzer for that field type references the same
stop words file:

© 2014 Find this documentation online at Page 206 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
<anal yzer type="query">

<filter class="solr. StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

Do not change or comment out the query analyzer when making this index
change.

This example only changes the t ext _en field type. If other field types are being
used, or should be changed, find the section of the schema. xml for that field type
and

Position Increment Mode

There are two modes for suppressing stop word indexing:

1. Skip mode: Completely ignore or skip them, as if they were not present.
This is the default when no other option is selected. When skip mode is
selected, the query parser will ignore or skip stop words in quoted phrases.

2. Position increment mode: Do not store them in the index, but increment
the position counter so as to leave a blank at the position of each stop word.
When position increment mode is selected, the query parser will also skip
each stop word, but will increment the position of the next term in the
phrase so as to allow any term to match between the previous term and the
next term after the stop word. This will allow for more precise query
matching than the first mode where stop words are simply discarded.

For example, given these documents:

® Doc #1: Buy the time for the test.
® Doc #2: Buy more time for the test.
® Doc #3: Buy time for test.

A query of Buy the tine regardless of the stop word indexing mode will be
equivalent to Buy AND ti nme and match all three documents.

A query of "buy the tine" in normal indexing mode will match exactly that
phrase and match only the first document. In skip mode it is equivalent to " buy

© 2014 Find this documentation online at Page 207 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
ti me" and will match the first and third documents. In position increment mode
the query is equivalent to "buy * ti nme" which is not a valid query format but
indicates that "ti ne" will match the second word after "buy" regardless of the
intervening word. This will match the first and second documents, but not the third
document.

To enable position increment mode, edit the St opFi | t er Fact ory entry of the
index analyzer (which was un-commented above) in schena. xm to add
enabl ePosi ti onl ncrenment s="true". The section will appear as follows:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. t xt" enabl ePositionl ncrenments="true"/>

Only the index analyzer should be changed. The query analyzer should not be
changed regardless of the indexing mode. The query parser has internal logic that
decides whether and when to call the query stop word filter.

After this change, be sure to re-index all documents.

© 2014 Find this documentation online at Page 208 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Spell Check

Spell check, also known as "Did You Mean?", is the ability of the search application
to make alternate suggestions for queries based on words that are similar to the
terms entered by the user.

Integrated query spell checking is bundled with LucidWorks Search, with the
option to integrate third-party enhanced spell checking capabilities. It is
index-driven, meaning all suggestions are derived from the actual content in an
indexed collection and not from a predefined dictionary of words. In practical
terms, this helps solve problems with messy data written by a variety of authors of
varying quality where one author may spell a word one way, while another author
spells it a different way and the user spells it a third way. An index-derived spell
checker provides suggestions based on the (sometimes incorrect) words in the
dictionary, ensuring that end users still find relevant documents even if they
contain misspellings.

To enable spell checking for specific fields, three steps must be taken:

1. Enable spell checking by accessing the Querying - Settings tab of the Admin
UI and check the box next to "Spell-check". Alternatively, the Settings API
can be used.

2. Ensure there are fields configured for spell checking by accessing the
Indexing - Fields tab and choosing "Index for Spell Checking". The Fields API
could also be used to modify field settings. Be sure to select fields that
contain ample text-based content that end users are going to search against
using word-based queries. For example, the title and body fields are good
candidates, while a "price" field likely isn't.

3. Crawl your content.

4. Perform queries.

~ Spell Check Settings are Per Collection

The indexes created for spell checking are unique to each collection, and
based on the documents indexed for a particular collection. In a
multi-collection environment, the steps to enable spell checking must be
done in each collection.

© 2014 Find this documentation online at Page 209 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

When indexing content, LucidWorks will automatically create an index of terms to
be used for term suggestions. By default, LucidWorks will create this index from
content in the aut hor, body, description, andtitl e fields.

©@
In prior versions of LucidWorks, a separate task needed to be scheduled to
build the spell check index of terms. Starting with v2.0 of LucidWorks
Search, that requirement has been removed and the spel | index will be

created automatically during regular indexing.

Related Topics

® Query Settings
® Settings

© 2014 Find this documentation online at Page 210 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Auto-Complete of User Queries

Query auto-complete shows users suggestions for their queries as they type the
words. In LucidWorks Search, this is an index-driven feature, meaning all
suggestions are derived from the actual content in an indexed collection and not
from a predefined dictionary of words. For users, this means they will see
suggestions for actual terms in documents, not for terms that may not exist in the
content.

Auto-Complete Settings are Per Collection

The indexes created for auto-complete are unique to each collection, and
based on the documents indexed for a particular collection. In a
multi-collection environment, the steps to enable auto-complete must be
done in each collection.

To enable auto-complete of user queries, three steps must be taken:

1. Enable auto-complete by accessing the Query Settings screen of the Admin

UI and check the box next to "Auto complete". Alternatively, the Settings
API can be used.

Ensure there are fields configured for auto-complete by accessing the
Indexing Fields screen and choosing "Index for autocomplete". The Fields
API can be used instead if you prefer. A good auto-complete field is a field
that contains ample text-based content that end users are going to search
against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field probably isn't.

After crawling some content, create the "autocomplete" index by accessing
the Index Settings page and scheduling a time for the "Generate
autocomplete index" job to run. The Activities API can be used instead if
preferred. This must be done before automatic query completion will occur
for users.

© 2014 Find this documentation online at Page 211 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

LucidWorks Search does not create the auto-complete index by default.
Auto-Complete indexing jobs must be scheduled using the Indexing - Settings tab
of the Admin UI (or via the Activities API) before query suggestions will appear for
users.

@
If you enable auto-complete but don't see any suggestions, you may want
to modify the t hr eshol d parameter, which defines the minimum fraction
of documents a term should appear in before being added to the
aut oconpl et e index. The default is "0.05" (or 5%), and a lower humber
will include more terms in the index. A smaller number may be helpful
when just starting out with a small sample set of documents.

To modify this parameter, edit sol rconfi g. xm for each collection (in
$LWS HOWVE/ conf/sol r/ cores/ col |l ection/ conf). Find the section:

<sear chConponent cl ass="sol r. Spel | CheckConponent "
nanme="aut oconpl et e" >

Find the parameter <f| oat nane="t hr eshol d">. 005</ f | oat > and change
it to the desired value. After saving sol rconfi g. xm , restart LucidWorks.

Automatic Creation of Auto-Complete Indexes

This functionality is
not available with
LucidWorks Search
on AWS or Azure

By default, LucidWorks does not build the indexes for auto-complete each time
documents are added to the index because doing so may have performance
implications in a production environment with a large index. However, LucidWorks
can be configured to do this automatically by changing the bui | dOnCommi t setting
in sol rconfig.xm totrue. Usually, it's a better idea to schedule index builds so
that they run on a regular interval rather than doing it on every commit using this
method.

© 2014 Find this documentation online at Page 212 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

If, however, you would like this to happen automatically, find the following section
in the sol rconfi g. xm file for each collection:

<l-- Auto-Conpl ete conponent -->
<sear chConmponent nane="aut oconpl et e"
cl ass="sol r. Spel | CheckConponent " >
<l st name="spel | checker">
<str nanme="name" >aut oconpl ete</str>
<str
nane="cl assnane" >or g. apache. sol r. spel | i ng. suggest . Suggest er </ str>
<str
name="1 ookupl npl " >or g. apache. sol r. spel | i ng. suggest .t st. TSTLookup</str >
<str name="fiel d">aut oconpl ete</str>
<str name="storeDir">aut oconpl ete</str>
<str name="buil dOnConmmit">fal se</str>
<fl oat name="t hreshol d">. 005</f | oat >
<l-- <str nane="sourcelLocation">anerican-english</str> -->
</|st>
</ sear chConponent >

In the section, str nanme="bui | dOnConmi t " >f al se</ str >, change "false" to
"true", and save the file. Restart LucidWorks for the changes to take effect. Repeat
this for each collection that should build the auto-complete index each time
documents are added to the index.

© 2014 Find this documentation online at Page 213 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Enterprise Alerts

The alerts feature of LucidWorks Search allows a user to save a search and receive
notifications when new results are available.

A passive alert acts like a smart saved search. It is smart in the sense that it
keeps track of the last time the user checked for new results to their search and
provides only new results the next time the alert is checked. As the name implies,
a passive alert provides no notification when new documents are indexed. It waits
for a request before it checks for new query results.

An active alert is checked periodically at a user-defined interval (currently every
hour, day or week is available). When new results to the query are discovered, an
active alert sends a notification via email to the email address defined in the alert.
At the current time, only email notifications are possible.

How Alerts Work

1. The user does a search, and clicks the link under the search box to "Create
new alert".

a. The user configures the alert and notification settings, including how
often to run the alert (peri od) and an email address to send alert
notifications.

b. LucidWorks Search automatically saves the timestamp of when the
alert was created (checked_at).

2. Every 60 seconds, a scheduled process within the UI checks to see if it is
time to run any alerts.

3. When the alert is run, the query is executed as entered by the user, on the
collection that the query was initially run on, and the timestamp of the most
recent document is compared to the timestamps of documents in the result
set.

4. If there are new results for the user, a notification is sent, assuming the mail
server has been configured in the Settings page of the UI.

Parameter names in parentheses above refer to the attributes used with the Alerts
API. Alerts can be set up with the default Search UI, but while designing your own
search application, you will likely need to use the Alerts API to integrate the
functionality.

© 2014 Find this documentation online at Page 214 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Enabling Alerts

In order for alert notifications to work with LucidWorks Search, the email server
must be configured via the System Settings page in the Admin UI.

In addition, the LucidWorks Search schema must define a ti mest anp date field.
Both active and passive alerts require that the index define a ti nest anp date field
that is indexed, defaulted to NOW, and used to indicate the time of document
indexing. By default, LucidWorks Search schema already defines this field.
However, if modifying the LucidWorks Search default field set (the "schema"), you
must retain this field for alerts to work properly.

© 2014 Find this documentation online at Page 215 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Click Scoring Relevance Framework

One way to modify how results are ranked for users is to adjust the scoring of
results based on user feedback (either explicitly or implicitly). Query logs provide a
wealth of information that indicates what users were searching for and which
results they found relevant to the query. If certain documents are often selected
as answers to queries, it makes sense to increase their ranking based on their
popularity with users.

LucidWorks Search includes a component that enables administrators to add this
type of information to the index. This component is referred to as the Click Scoring
Relevance Framework (or Click Scoring, for short). The framework includes tools
for query log collection, log processing, and robust calculation of log data to boost
certain documents. It is possible to supply boost data prepared without Click
Scoring tools included with LucidWorks, however the data must be available in a
predefined location and follow a specified text format. More details about how Click
Scoring works and information about advanced configuration parameters are
described in Using Click Scoring Tools.

This component can be enabled in the Query Settings section of the Admin UI or
with the cl i ck-related parameters of the Settings API. Once enabled, a job must
be scheduled to process the click logs and create the data for boosting documents
based on prior clicks.

@
There is currently a known issue where Click Scoring will not properly
process calculated boost information until LucidWorks Search is restarted.
So, when enabling Click Scoring, please also schedule a full LucidWorks
Search restart. For details on how to restart, see the section Starting and
Stopping LucidWorks Search.

Topics covered in this section:

® Functionality of Click Scoring
® (Collection of Query Terms and User Clicks
® Processing Logs

© 2014 Find this documentation online at Page 216 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
® Maintenance of Historical Click Data
® Document Boost Data
® Integration of Boost Data with the Index
® Using Click Scoring information
® Related Topics

Functionality of Click Scoring

When users select a particular document for viewing from a list of search results,
we can interpret this as implicit feedback that the document is more relevant to
the query than other documents in the results list. We can infer a strong
association between the terms of the query and the selected document, because
users have shown through clicks that they believe the selected document matches
their query better than other returned documents.

This graphic gives an overview of how Click Scoring works:

© 2014 Find this documentation online at Page 217 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

1. Enable Click Scoring enabled in Admin Ul
Click ‘
SCDHHQ Click Scoring type enabled in solrconfig.xml

”2. Users search & click on relevant”
results

”3. Clicks and associated queries are”
stored in click_<collection>.log

4. Click Scoring Activity During Click Activity:
is scheduled and run to

create boost file

- Top query terms are analyzed

- Weights are caleulated with number of
clicks per document and positions in
results lists (lower positions get a higher
weight)

- New data is merged with older boost
data; boost values expire if document is
not clicked on again

5. Users do more

searches & Boost values contribute to overall
relevance calculations for a document,
previously clicked but clicks are not the only factor

results are boosted

The reinforcement of ranking and terms is counterbalanced by the "expiration" of
the past history of click-through events, to avoid situations when documents that
are selected many times start to permanently dominate the list of results. Without
expiration of old history, these results may become selected even more often at
the expense of other perhaps more relevant documents that did not enjoy such
popularity over time.

Click Scoring implements several major areas of functionality related to the
processing of click-through events:

® collection of query logs and click-through logs
® maintenance of historical click data to control the expiration of past
click-through events

© 2014 Find this documentation online at Page 218 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® aggregation of log data, calculation of click-induced weights and association
of query terms with target documents
® integration of boost data with the main index data

These areas of functionality are described in the following sections.

Collection of Query Terms and User Clicks

Records of user clicks include two pieces of information: the document ID and the
query term entered by the user.

The default LucidWorks Search UI records user clicks automatically when Click
Scoring has been enabled. When you write your own search application, you will
need to make calls to the Click Scoring API to record user clicks and query events.

Both the queries and the user clicks are logged to the same log file. The default
location of this file is in $LWS_HOME/ dat a/ | ogs/ cl i ck-col | ection. | og, where
col I ecti on is the name of the collection (for example, cli ck-col | ecti onl. | og
contains clicks to the the default LucidWorks collection, collectionl).

When using Index Replication this log data is not replicated to slave nodes. Since
the Click Scoring API points to the LucidWorks Search Core component, which is
only used on a single node, and not directly to the indexes, it is not required to
replicate the log files across shards. The latest version of the calculated boost data
(after the logs have been processed) is replicated together with the main index
files, this allows the slave nodes to perform click-based scoring in the same way as
the master node that calculated the boost data.

Click Scoring is not available in SolrCloud mode.

Processing Logs

Whether generated by the default LucidWorks Search UI or from your own
application with the Click Scoring API, the Click Scoring log files must be processed
to calculate boost values. This processing step can be started with the Activities
API, or scheduled to run periodically using the Admin UI by setting a recurring
activity in the Index Settings screen of the Admin UL.

© 2014 Find this documentation online at Page 219 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

This process results in the creation of calculated click boost data, which is by
default located in
$LWS_HOVE/ dat a/ sol r/ cores/ col | ection/data/click-datal/current.

Maintenance of Historical Click Data

Each time the Click Scoring logs are processed, the system stores a copy of the
current cl i ck-col |l ection. | og (by default, this is in

$LWS_HOVE/ dat a/ sol r/ cores/ col | ection/data/click-data/). Other data
produced during Click processing is also stored in that location.

Over time the amount of data collected could be significant. LucidWorks Search
does not delete this data automatically, because query and click-through logs are
a valuable resource and can be used for other data mining tasks. If the size of this
data becomes a concern, all subdirectories in that location can be removed except
for current/ and previ ous/ directories that preserve the current and previous
boost data.

Document Boost Data

The final boost data file follows a simple text format, so the boost data can be also
supplied by an external process if desired. See Using Click Scoring Tools for more
details about the structure of the boost data file.

Integration of Boost Data with the Index

If Click Scoring is enabled and logs have been processed, the boost data is
integrated on the fly with the main index when new documents are indexed, an
index optimization is run, or a full re-index is executed. Most frequent query terms
are added as a field to respective documents, and weights of these documents are
adjusted.

The field names added by Click Scoring are configurable, but assuming their prefix
is set to the default value of cl i ck the following fields will be created from boost
data and automatically populated:

® click: an indexed, not-stored field with a single term "1", whose purpose is
only to convey a floating-point field boost value. Field boost values have
limited resolution, which means that small differences in boost value may
yield the same value after rounding.

© 2014 Find this documentation online at Page 220 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® click terns: an indexed, stored, and analyzed field that contains a list of
top terms associated with the document (presumably obtained through
analysis of click-through data). This field's Lucene boost is also set to the
boost value for this document obtained from the boost data file.

® click_val : an indexed, stored field that contains a single term: a string
representation of the boost value for this document. This format is suitable
for processing in function queries.

© Using Click Scoring with NearRealTime Search

Enabling Solr's Near RealTime (NRT) search by configuring the

updat e_handl er _aut osof t comm t _* parameters with the Settings API or
the Auto-soft-commit* settings in the Admin UI has some impacts on how
user clicks are processed by LucidWorks.

In order to avoid performance issues with NRT search when Click Scoring
is enabled, documents added between the last "hard" commit and the
current "soft" commit are not augmented with click-through data.

Deletions since the last hard commit are processed as usual (i.e.,
documents deleted are not visible), but their term statistics are still
included in the global term statistics (which includes the fields added by
Click). Added documents since the last hard commit will not get any
click-related fields until the next hard commit, even if a document with the
same unique key was deleted and replaced by a new, updated, version of
the document.

Using Click Scoring information

There are several ways that Click Scoring information can affect ranking of results.
By default, LucidWorks Search is configured to use Click Scoring data as an
additional field in a query parsed by the Lucid Query Parser. Other methods can be
configured manually, and may involve using cl i ck_val field as an input to a
function query. This section describes the | uci d query parser method, which is the
default.

© 2014 Find this documentation online at Page 221 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
When Click Scoring is enabled via the Admin UI, a boost field cli ck_terns”5.0 is

automatically added to the list of fields for the search handler (which uses a | uci d
query parser). This means that query terms will be matched with the click _terns
field using the relative weight of 5.0. This weight can be changed with the Settings
API or by editing sol rconfi g. xm) if you'd like a larger or smaller boost.

The end result of this query processing is that documents that contain in their
click_terns field terms from the query will have a higher ranking, proportionally
higher to the popularity of the document (the number of click-throughs) and the
overlap of query terms with cl i ck_t erns. It may be difficult, however, to see the
effects of integrating Click Scoring boosts from only a few clicks on a document
during testing. This is because the actual boost that occurs The score contribution
of this match will be related to this weight, the term frequency/inverse document
frequency scoring formula for this field, and the usual | uci d (extended di snmax)
scoring rules.

Related Topics

® Using Click Scoring Tools

© 2014 Find this documentation online at Page 222 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Using Click Scoring Tools

This functionality is
not available with
LucidWorks Search

on AWS or Azure

The Click Scoring Tools package is a set of tools for
analyzing query and click-through logs in order to obtain relevance-boosting data.
This boost data can then be used by other Click Scoring components such as

Cl i ckl ndexReader Fact ory and the | uci d query parser to adjust document
ranking based on the click-through rate and common query terms.

File Formats

The Click Scoring Tools package reads and generates files that follow specific
formats, which are summarized below. All files are plain text files with
tab-separated records, one record per line.

Query and Click-through Log Format

Click Scoring tools expect this file to be located in
$LWS_HOVE/ dat a/ | ogs/ cl i ck-<col | ecti onNane>. | og.

Q TAB queryTi mestanp TAB query TAB request| D TAB nunberOfHits
C TAB cli ckTi mestanp TAB request| D TAB docunent| D TAB position

The fields are:

Field Description
QorcC Identifies the type of the record, either
a query log record or a click-through
log record
quer yTi nest anp A long integer representing the time

when the query was executed

query The user query, after basic escaping
(removal of TAB and new-line
characters)
© 2014 Find this documentation online at Page 223 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Field

requesti D

nunberOfH ts

clickTi nmestanp

requesti D

docunent | D

position

Boost File Format

Description

A unique request identifier related to
query and timestamp

The total number of results matching
the query

A long integer representing the time of
the click-through event

The same value as above for the Q
record

The uni queKey of the document that
was selected

The 0-based position of the selected
document on the list of results

This file is usually generated as a result of the Click Scoring processing of log files,
but it could be also supplied by some other external process. Click Scoring expects

this file to be located in

$LWS_HOVE/ dat a/ sol r/ cores/ col | ection/datal/click-data/current.

docurent ID TAB list(topTerns) TAB |ist(boost) TAB li st (updateTi mest anp)

The fields are:

Field
docunent | D

list(topTermns)

I'ist(updateTi mest anp)

Description
The uni queKey of the document

A comma-separated list of pairs in the
format phrase:weight

A comma-separated list of long integer
timestamps, which affect how the
current boost data will be aggregated

© 2014 Find this documentation online at Page 224 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Field Description

with the next version of boost data.
This element is optional and it's for
internal use by Click Scoring Tools

Click-induced Boost Calculation

When Click Scoring tools are run (using the Cl i ckAnal ysi sRequest Handl er) old
boost data (if present) is merged with the new boost data, processed by a

Boost Processor to produce the new numeric boost value per documentID, and a
new list of top-N shingles per documentID. Previous values of the floating-point
boost are preserved in a boost history field, so that they may be considered during
the next round of calculations.

The default configuration uses a Boost Pr ocessor that discounts historical boost
values depending on the passed time by applying an exponential half-life decay
formula. Such discounted historical values are then aggregated with the current
values. This method of aggregation reflects both past history of click-throughs and
also reacts closely to recent click-through events.

ClickAnalysisRequestHandler

The d i ckAnal ysi sRequest Handl er initiates and monitors the click-through
analysis. The tools for Click Scoring processing are available via

com | uci d. handl er. d i ckAnal ysi sRequest Handl er, which can be activated from
the sol rconfi g. xm configuration file the same way as any other request handler.

The configuration that ships with LucidWorks Search already contains a section
that activates this handler, under the relative path / cl i ck.

This handler accepts a r equest parameter, which can take one of the following
values:

STATUS: return the status of the ongoing analysis, if any. Example request:

curl http://1ocal host: 8888/ solr/collectionl/click?request=STATUS

Example response:

© 2014 Find this documentation online at Page 225 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
<?xm version="1.0" encodi ng="UTF- 8" 7>
<r esponse>

<l st name="responseHeader" >

<int name="status">0</int>

<int name="Qrli ne">205</i nt >

</| st é>

<str nanme="logDir">java.io.File:.../logs</str>

<str name="prepDir">ava.io.File:.../click-prepare</str>
<str name="boostDir">java.io.File:.../click-data</str>

<null nane="dictDir"/>
<str nanme="processing">ldle.</str>
</ response>

PROCESS: start the clickthrough processing. If the processing is already running, an
error message will be returned and this request will be ignored.

Example request:

curl http://1ocal host: 8888/ solr/collectionl/click?request=PROCESS

Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<i nt name="status">0</int>
<int name="Qrli me">136</i nt >
</lst>
<str name="result">Cickthrough analysis started.</str>
</ response>

Subsequently, the status returned after all processing is finished will look like this:

<?xm version="1.0" encodi ng="UTF-8""?>
<r esponse>
<l st nanme="responseHeader" >
<i nt name="status">0</int>
<int name="Qrli me">1</int>
</l|st>
<str name="logDir">java.io.File:./logs</str>

© 2014 Find this documentation online at Page 226 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<str name="prepDir">java.io.File:./click-prepare</str>

<str name="boostDir">java.io.File:./click-data</str>

<null nanme="dictDir"/>

<str name="processing">Stopped: Stage 3/3: prepare=finished, ok
aggregat e=fi ni shed, ok boost_cal c=fi ni shed, ok</str>
</ response>

STOP: stop the currently ongoing analysis, if any is running.
Example request:

curl "http://1ocal host:8888/solr/collectionl/click?request=STOP"

Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<i nt name="status">0</int>
<int name="Qrli me">0</int >
</lst>
<str name="result">There is no running analysis to stop -
i gnored. </str>
</ response>

When processing is finished, new versions of boost files will be placed in the
current directory, and previous boost data will be moved to the previ ous
directory. At this point in order to read the new boost values SolrCore needs to be
reloaded (for example, by issuing a <conmi t/ > update request).

In addition to the request parameter this handler supports also the following
parameters:

® commt (default to false) if set to true, then after the processing is finished
the handler will automatically execute a commit operation to reopen the
IndexReader and to load the newly calculated boost data. Please note that
Solr supports only a single global commit, which means that all other open
transactions (such as ongoing indexing) will also be committed at this time.

© 2014 Find this documentation online at Page 227 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
® sync (default to false) if set to true, then the processing will be executed

synchronously, blocking the caller and returning only when all processing is
finished. Default is to run the processing in a separate background thread.

Click Scoring Tools and Index Replication

When LucidWorks Search is configured to use Index Replication the boost data
files (by default, in $LW5_HOVE/ dat a/ sol r/ cores/ col | ecti on/ data/cl i ck-data)
will also be automatically replicated. Due to the internal limitations of Solr's

Repl i cati onHandl er the boost data file will be located inside the main index
directory on the slave nodes, but it will be properly recognized by the Click Scoring
components on the slave nodes.

Click Scoring does not currently work with the SolrCloud functionality
available with Solr 4.

For the replication of boost . dat a to work the sol confi g. xm must contain the
following line in the <mai nl ndex> section:

<mai nl ndex>

<del eti onPolicy class="comlucid.solr.click.dickDeletionPolicy"/>

</ mai nl ndex>

© 2014 Find this documentation online at Page 228 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Business Rules Integration

This functionality is
not available with
LucidWorks Search

on AWS or Azure

LucidWorks Search integrates the Business Rules
Module available for Solr installations in the LucidWorks Marketplace. In v2.6.3,
this replaces the prior implementation of business rules.

About Rules Engines

A rules engine is designed to allow business users to write rules that effect the
processing of search results. For instance, an e-commerce company may wish to
alter the search results to boost particular documents based on a sale, or the HR
department of a company may wish to make sure the document covering 401K
benefits is always at the top of a search for 401K. In essence, a rules engine
integrated with a search engine allows businesses to dynamically impact relevance
of results based on business needs without having to write extensive, low-level
client-server code. Instead, they can express rules in a declarative programming
language that are much simpler to understand without the complexity of logic that
goes into writing code in a programming language like Java or Ruby.

All business rules depend on information from the system to analyze and take
actions. This information is known to the rule processor as facts which will be
present in the knowledge session. LucidWorks Search will add facts to the
knowledge session on each request and the user’s business rules can use and
manipulate those facts.

In a rules engine, users express rules to be matched along with instructions in
case a rule is matched, using simple if-then statements. The rules engine then
figures out which rules should be fired given the facts present in the system. For
example, a set of rules may look like:

i f owner.hasDog then recommend dog food

i f owner.hasCat then reconmend cat food

if owner.gender is female and store is "sporting goods" then discount
gol f clubs 20%

© 2014 Find this documentation online at Page 229 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

The important thing to note in this example is we didn't have to do any complex
logic to tie these rules together. We simply express the conditions and the things
that should happen if a condition is true. The engine is responsible for figuring out
which rules should fire based on the information (facts) it has to work with when
evaluating the rules. It is also important to note that at any given execution of the
engine some, all, or none of the conditions may be met depending on the facts in
the system, thus implying that all of the "then" clauses will be executed.

When Should I Use Business Rules?

There is a time and place for the use of business rules. Generally speaking, they
are most effectively used in situations where non-developers are expected to apply
changes to the search results based on business conditions. They are not a
replacement for code that integrates search into an application, but instead should
be thought of as a way for companies to fine tune user interactions with a system
without the need to go through extensive (and expensive) development cycles. It
also is not a substitute for general relevance tuning across a broad set of queries
nor is it appropriate for ranking modifications that are best done at a lower level in
the search engine.

How to Implement Business Rules in LucidWorks Search

There are two main areas to cover for implementing business rules with
LucidWorks Search:

First, determine how the rules will be implemented. There are a variety of
methods, each described in the section on Configuring Business Rules in
LucidWorks Search.

Second, define the rules themselves. LucidWorks Search has integrated Drools,
and you'll want to look at the section on Writing Rules for information on how to
construct a rules file.

There are Example Rules and Recipes. If you're not using rules at all, you can
disable business rules.

Integrating with your Rules Engine

If you already have a rules engine (such as ILOG's JRules or Fair Isaac's Blaze
Advisor) you can hook them into LucidWorks by implementing a RulesEngine class
that talks to your rules engine. Naturally, you can also implement your own

© 2014 Find this documentation online at Page 230 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

SearchComponent, DocTransformer, UpdateRequestProcessor, etc., if the ones
shipped with LucidWorks do not meet your needs.

© 2014 Find this documentation online at Page 231 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Configuring Business Rules in LucidWorks Search

While business rules in LucidWorks Search is based on the add-on Solr module of
the same name, LucidWorks Search is configured out of the box to use rules files.
There are several points of configuration that can be modified or re-used as
needed, and includes:

® arequestHandler named "/rulesMgr"

® a searchComponent named "landingPage"

® a searchComponent named "firstRulesComp”

® a searchComponent named "lastRulesComp"

® addition of rules to the updateRequestProcessorChain named
"lucid-update-chain”

® a document transformer named "rules”

There are also a few optional requestHandlers that could be configured if desired.

The rest of this section will describe each one, and discuss how to integrate it with
an existing Solr system. If you are not yet familiar with requestHandlers,
searchComponents and similar configurations in a sol rconfi g. xm file, you may
want to review the Solr Reference Guide section RequestHandlers and
SearchComponents in SolrConfig.

Topics discussed in this section:

® RequestHandlers
® /rulesMgr
® Optional RequestHandlers
® SearchComponents
® firstRulesComp
® |astRulesComp
® Rules Component Parameters
® |andingPage
® UpdateRequestProcessorChain
® Document Transformer
® Rules with Index Replication

© 2014 Find this documentation online at Page 232 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig

LucidWorks Search Documentation 05-Aug-2014

RequestHandlers

The Rul esEngi neManager Handl er is the Solr r equest Handl er that holds on to
references to the various rules engine instances specified in the Solr configuration.
The manager maintains a map of engines to their names. Most components are set
up to take in the name of this Request Handl er and then go ask it for the engine
by name.

/rulesMgr

The rulesMgr handles references to rules engine instances. Each of the engines are
defined and used by the searchComponents.

<request Handl er cl ass="com | uci d. rul es. Rul esEngi neManager Handl| er"
name="/rul esMgr" >
<I-- Engi nes can be shared, but they don't have to be. A
Sear chConponent or ot her consunmer can
specify the engi ne they want by nane.
-->
<l st name="engi nes">
<l st nanme="engi ne">
<str name="nanme">first</str>
<str
nanme="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rules/defaultFirst.drl</str>
</lst>
</l|st>
<l st nanme="engi ne">
<str name="nane" >l andi ng</str>
<str
name="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rul es/defaul tLandi ng.drl </str>

[%2)

[%2)

</lst>
</|st>
<l-- Engine is using rules that are designed to be called after

all other components -->
<l st nanme="engi ne">
<str nanme="nane">| ast</str>
<str
nane="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</[

© 2014 Find this documentation online at Page 233 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
<l st name="rul es">

<str name="file">rules/defaultlLast.drl</str>
</lst>
</lst>
<l st name="engi ne">
<str name="nane">docs</str>
<str
nane="cl ass">com | uci d. rul es. dr ool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rul es/defaul tDocs.drl </str>
</lst>
</lst>
</lst>
</ request Handl er >

[92)

Optional RequestHandlers

The following requestHandlers are not included with LucidWorks Search by default,
but could be added to the sol rconfi g. xml for a collection. Much of the same
functionality exists with the default /| uci d requestHandler, but these might be
useful if you would like to have specific handlers for specific purposes. Some of the
example rules files reference these handlers.

/update-with-rules

This is an updateRequestHandler for indexing documents. Note that it calls the
updateRequestProcessorChain, defined later. This allows using rules to alter
documents while they are being indexed, using Solr's standard
updateRequestHandler class.

<request Handl er nanme="/update-wi th-rul es"
cl ass="sol r. Updat eRequest Handl er" >
<l st name="defaul ts">
<str name="updat e. chai n">updat e-wi t h-rul es- chai n</str>
</|st>
</ request Handl er >

The "/update-with-rules" requestHandler works in a similar way to the default
"/update" requestHandler and takes the same parameters when used. As with the
default "/update" requestHandler, in Solr 4.x versions, you can use this one
handler to send documents to Solr as CSV, JSON, and XML files.

© 2014 Find this documentation online at Page 234 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
/update-extract-with-rules

This is another updateRequestHandler for indexing documents with rules, and it
also calls the updateRequestProcessorChain. However, this requestHandler is
based on Solr's ExtractingRequestHandler, which allows you to use Tika to extract
content from complex files such as Word documents, PDF files, and binary files.

<request Handl er nane="/updat e-extract-wi th-rul es"
startup="1azy"
class="sol r.extraction. Extracti ngRequest Handl er" >
<l st name="defaul ts">
<str nanme="update. chai n">updat e-wi t h-rul es- chai n</str>
<str name="I| ower names" >true</str>
<str name="uprefix">i gnored_</str>
<l-- capture link hrefs but ignore div attributes -->
<str nanme="captureAttr">true</str>
<str name="fmap.a">links</str>
<str name="fnmap.di v'>ignored_</str>
</|st>
</ request Handl er >

Because this requestHandler is based on the ExtractingRequestHandler, it allows
the same parameters.

/search-with-rules

This is a requestHandler which provides an example rules-based search. Note in
the configuration below that we have defined two arrays, "first-components" and
"last-components" and named specific searchComponents.

<request Handl er nane="/search-w th-rul es" class="sol r. SearchHandl er">
<l st name="defaul ts">
<str name="echoParans">explicit</str>
<int name="rows">10</int>
<str name="df">text</str>
</lst>
<arr name="first-components">
<str>| andi ngPage</str>
<str>firstRul esComp</str>
</arr>
<arr name="| ast-conponents">
<str>| ast Rul esConp</str>

© 2014 Find this documentation online at Page 235 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<larr>
</ r equest Handl er >

If you want to integrate rules with an existing requestHandler, you can add the
named searchComponents to the handler, in the same way shown in this example.

SearchComponents

The primary mechanism for applying rules at query time (i.e., not a document
indexing request) is via a Solr sear chConponent called Rul esConponent . The

Rul esConponent can be configured to occur anywhere in the searchComponent,
but it is typically best to configure it to be the first item in the chain after the filter
by role component, since it is often the case that you want rules to make decisions
based on the application's input parameters (such as the query, sort, etc.) and you
want the rules to make changes before they get processed by the other
components. For instance, you may have a rule that fires when the user query is
equal to "title:dogs" and you want the rule to change the query to be "title:dogs
AND category:pets". By configuring the component first in the chain, you will be
able to change the query before it is parsed, thus saving extra rule writing
involving re-arranging complex Query objects.

firstRulesComp

The firstRulesComp is a searchComponent which is meant to be placed within the
"first-components" capability of Solr. This allows applying a rule before other
searchComponents have been applied. An example of this might be to limit search
results with parameters not entered by the user (which may be conditional
depending on the user, or other factors). Then other searchComponents, such as
faceting or highlighting, can be applied to the reduced result set.

<sear chConmponent cl ass="com | uci d. rul es. Rul esConponent "
name="first Rul esConmp" >

<str name="request Handl er">/rul esMyr</str>

<str nanme="engine">first</str>

<l-- The handl e can be used to turn on or off explicit rules
conmponents in the

case when you have multiple rules at different stages of the

conmponent ordering-->

<str name="handl e">first</str>

</ sear chConponent >

© 2014 Find this documentation online at Page 236 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

lastRulesComp

The lastRulesComp is a searchComponent which is meant to be placed within the
"last-components" capability of Solr. This allows applying a rule after other
searchComponents have been applied.

<sear chConmponent cl ass="com | uci d. rul es. Rul esConponent "
nane="| ast Rul esConmp" >
<str name="request Handl er">/rul esMyr</str>
<str nanme="engi ne" >l ast</str>
<str name="handl e">l ast </ str>
</ sear chConponent >

Rules Component Parameters

Input Parameters

There is a fair amount of control around exactly when rules will be fired.

Parameter

rules

rules.<handle
name>

rules.prepare

rules.process

Type

boolean

boolean

boolean

boolean

Description

Turn on or off false
the
RulesComponent

Turn on or off true
a specific

Rul esConponent
instance using

the handle

name

Turn off rule true
processing as

part of the

prepare phase

Turn off rule true
processing as

part of the

process phase

Default

Example

& ul es=f al se

& ul es.first=f

&rul es. prepare

&r ul es. process

© 2014
LucidWorks

Find this documentation online at

http://docs.lucidworks.com/

Page 237 of
347

LucidWorks Search Documentation 05-Aug-2014

Parameter Type Description Default Example

rules.finishStageboolean Turn off rule true & ul es. finishs
processing as
part of the
finishStage
phase

The system does not currently allow you to turn off individual phases of an
instance (unless it is the only instance that is configured). In other words, if two
Rul esConponent -s are configured, it is not possible to turn off the process phase
of only one.

Facts Collected for the RulesComponent

The facts collected for the Rul esConponent are:

® The ResponseBui | der object

® The Sol r Quer yRequest object

® The schema for the index

® The context information of the request (including the phase of processing,
like “process” or “prepare)

® The Sol r Quer yResponse object

® The query response NamedList

® The request parameters map as a Modi fi abl eSol r Par ans instance (can be
edited by rules)

® The generated query object, which is the same as the parsed query. In some
cases, clauses of the query will be added to the knowledge session to allow
the rules engine to evaluate any part of the query.

® The filter queries

® Response results (the DoclLi st AndSet instance)

® The sort spec

® The grouping spec

® Facet counts

Some of the items on this list will only be available to the rules engine if the

Rul esConponent is placed after the associated sear chConponent for the fact. For
example, in order to have facet information available to the rules engine, the

Rul esConponent has to be placed after that component in the sear chConponent s
chain for the r equest Handl er.

© 2014 Find this documentation online at Page 238 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Back to Top

landingPage

The landingPage searchComponent is generally used to define a specific result for
conditions that match the rule. For example, you could redirect users to a specific
page of the website in response to a query, or you could highlight specific
documents for a query in combination with other factors such as time of day, or
user attributes.

The Landi ngPageConponent does not turn off other components in the chain, but
it is generally possible for the rules engine to do so. For example, if you wanted to
disable faceting, you would add a rule such as f acet =f al se. For the query, you
could add quer y=f al se. The exact methods you need are dependent on the search
components you have enabled. See also the section Search Components API for
one approach to finding enabled search components for the requestHandler in use.

Placing the landing page in the output is also the responsibility of the rule writer.
In essence, all the LandingPageComponent does is guarantee that it is called as
part of rules and fact preparation and that the rules used can be configured
separately from other rules.

<sear chConmponent cl ass="com | uci d. rul es. Landi ngPageConponent "
name="| andi ngPage" >

<str name="request Handl er">/rul esMyr</str>

<str name="engi ne" >l andi ng</str>

<l-- The handl e can be used to turn on or off explicit rules
conmponents in the

case when you have multiple rules at different stages of the
conponent ordering
-->

<str nane="handl e" >l andi ng</str>

</ sear chConponent >

Input Parameters

Like the Rul esConponent , the Landi ngPageConponent has several parameters.
One thing to note is that the Landi ngPageConponent is only executed in the
prepare phase of rules execution, so other available parameters will likely not be
required for your implementation.

© 2014 Find this documentation online at Page 239 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Parameter Type Description Default Example
landing boolean Turn on or off false &l andi ng=f al s¢

landing.<handle boolean
name>

landing.prepare boolean

landing.process boolean

landing.finishStabeolean

the
LandingPageComponent

Turn on or off true

a specific
LandingPageComponent
instance using

the handle

name

Turn off rule true
processing as
part of the

prepare phase

Turn off rule true
processing as
part of the

process phase

Turn off rule true
processing as

part of the
finishStage

phase

Facts Collected for the LandingPageComponent
The facts collected for the Landi ngPageConponent are:

The ResponseBui | der object
The Sol r Quer yRequest object

The schema for the index

&l andi ng. first

&l andi ng. prep¢
=false

&l andi ng. proce
=false

&l andi ng. fini ¢
=false

The context information of the request (including the phase of processing,

like “process” or “prepare)

The Sol r Quer yResponse object

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 240 of
347

LucidWorks Search Documentation 05-Aug-2014

® The query response NamedList

® The request parameters map as a Modi fi abl eSol r Par ans instance (can be
edited by rules)

® The generated query object, which is the same as the parsed query. In some
cases, clauses of the query will be added to the knowledge session to allow
the rules engine to evaluate any part of the query.

® The filter queries

® Response results (the DoclLi st AndSet instance)

® The sort spec

® The grouping spec

® Facet counts

Some of the items on this list will only be available to the rules engine if the {
Landi ngPageConponent is placed after the associated sear chConponent for the
fact. For example, in order to have facet information, the Landi ngPageConponent
has to be placed after that component in the sear chConponent s chain for the
request Handl er .

Back to Top

UpdateRequestProcessorChain

LucidWorks supplies a custom updateRequestProcessorChain called
"lucid-update-chain". We have added the Rul esUpdat ePr ocessor to the default
chain. This allows you to make transformations to documents while they are being
indexed. Note that the example "/update-with-rules" and
"/update-extract-with-rules" requestHandlers both call this chain definition.

By default, the Rul esUpdat ePr ocessor is configured in the | uci d- updat e- chai n
and can be enabled or disabled by passing in the name of the handle, prefixed by
rul es. . For instance, if the Processor has a handle of docPr oc, then

&r ul es. docPr oc=f al se would disable the processor and processing would
continue down the chain. Rule processing is on by default.

Like the query-related rules processing, altering documents relies on facts during
the knowledge session.

Here is the default configuration for the | uci d- updat e- chai n in the
sol rconfig. xm file for each collection:

I 1
© 2014 Find this documentation online at Page 241 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<updat eRequest Processor Chai n nane="| uci d- updat e- chai n" >
<pr ocessor
class="com | uci d. updat e. Conmi t Wt hi nUpdat ePr ocessor Factory" />
<pr ocessor
class="com | uci d. updat e. Fi el dMappi ngUpdat ePr ocessor Factory" />
<pr ocessor
class="com | uci d. rul es. Rul esUpdat ePr ocessor Factory">
<str nanme="request Handl er">/rul esMgr</str>
<l-- we re-use the engine, but we could have an
i ndependent one-->
<str name="engi ne" >docs</str>
<l-- Each one should have it's own handl e, as you can
have multiple in the chain -->
<str name="handl e">docProc</str>
</ processor >
<pr ocessor
class="com | uci d. updat e. Di stri but edUpdat eProcessor Fact ory" >
<! -- exanple configuration... "shards should be in the *sane*
order for
every server in a cluster. Only "self" should change to
represent what server
this is. <str name="sel f">l ocal host: 8983/solr</str> <arr
nane="shar ds" >
<str>| ocal host: 8983/ sol r</str>
<str>l ocal host: 7574/ sol r</str> </arr> -->
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<i nt name="maxNunTolLog">10</i nt >
</ processor >
<processor class="solr. D stributedUpdateProcessorFactory" />
<processor class="sol r. RunUpdat eProcessor Factory" />
</ updat eRequest Processor Chai n>

To disable rules processing, you can either remove or comment out the section
that defines the com | uci d. rul es. Rul esUpdat ePr ocessor Fact ory parameters.

Facts Collected for the RulesUpdateProcessor

The facts collected for the Rul esUpdat ePr ocessor are:

® The AddUpdat eConmand as received in the
Updat eRequest Processor. processAdd(AddUpdat eConmand) method

© 2014 Find this documentation online at Page 242 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® The Sol r | nput Docunent being added
® The schema for the index
Back to Top

Document Transformer

The document transformer allows applying rules that alter documents during query

time. It is invoked as part of Solr's response and can inject or modify fields before
they are returned.

<transformer nane="rul es"

class="com | uci d. rul es. Rul esDocTr ansf or mer Fact ory" >
<str name="request Handl er">/rul esMyr</str>
<str name="engi ne" >docs</str>
</ transforner>

Note that alterations to documents made with this transformer are not saved to
the documents themselves. If you want to make changes that are saved with
documents, use the UpdateRequestProcessorChain instead.

~ Altering a field will not cause an item to be resorted

If, for example, you are sorting by price and you change one of the
document's prices, this will not cause a re-sort. If you want to do that, we
suggest you use Solr's Sort by Function capability.

Facts Collected for the RulesDocTransformer

The facts collected for the Rul esDocTr ansf or ner are:

The Sol r I nput Docunent being transformed

The docl d of the document being transformed (the Lucene internal docl d,
not Solr’s uni queKey)

® The schema for the index

Back to Top

© 2014 Find this documentation online at Page 243 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Rules with Index Replication

If you are using what is now considered "old-style" replication (i.e., you are not
using SolrCloud), you should add the rules files to the conf Fi | es list of
configuration files that are copied to the slave servers with each update.

<l-- Optional -->
<l-- |If using older v3 style master/slave replication, instead of 4x
Sol r d oud,
add these files to your master confFiles I|ist
<str
nane="confFiles">. .., rules/defaultFirst.drl,rul es/defaultlLast.drl,rul es/def

<request Handl er nane="/replication" class="solr.ReplicationHandl er" >
<l st name="nmaster">
<str name="replicateAfter">conmt</str>
<str name="replicateAfter">startup</str>
<str
nane="conf Fi | es">schema. xm , stopwords. txt,rul es/defaul tFirst.drl,rul es/def
</lst>
<l st name="sl ave">
<str
nanme="master Ul ">http://your-nmaster-hostname: 8983/ sol r</str>
<str name="pollInterval ">00: 00: 60</str>
</l|st>

</ request Handl er >

Back to Top

© 2014 Find this documentation online at Page 244 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Writing Rules

The Business Rules module integrates Drools 5.5 with LucidWorks Search. The
Drools Rule Language Reference provides a much more thorough overview, but
the below can serve as a brief introduction.

In Drools, rules are defined with Java-like declarations. While the software is
meant to be easier for non-programmers to write rules, it is still a heavily technical
syntax and assumes some technical proficiency.

To help you with writing rules, we have provided a Dr ool sHel per. j ava class
which consists of helper functions to make the task easier. You can find this class
in the sol r-busi ness-rul es. jar file (the full name may include version numbers,
but you should only have one . j ar starting with sol r - busi ness-rul es) found in
$LWS _HOVE/ app/ webapps/ | we- core/ | we-core/ EB- I NF/ | i b. It is also included
below.

In this section:

® Rules Files

® Rule Declarations
® rule and Attributes
® when Conditions
® then Actions

® DroolsHelper Class
® |imitations

® Related Topics

Rules Files

A rules file has a file extension of . dr| . For the Business Rules module, we have
placed the rules in the conf directory of each Solr collection, in a sub-directory
called rul es. The example configurations assume this path; if they are located in
another area of the filesystem, the examples will need to be updated.

Before starting the rule declarations, the package is defined, as are any imports
and globals. The import statements are similar to import statements in Java,

© 2014 Find this documentation online at Page 245 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.jboss.org/drools/
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html

LucidWorks Search Documentation 05-Aug-2014
where you specify the fully qualified paths and type names for objects that will be
used with the rules. The global statements allow you to make application objects
available to the rules, such as if there is data or services the rules use.

Rule Declarations

At it's simplest, a rule declaration looks like this:

rul e "nane"

<a set of attributes>

when

<a set of qualifying conditions, in Drools called "Left Hand Side">
t hen

<a set of actions to perform in Drools called "R ght Hand Side">
end

rule and Attributes

The first step is to state you are going to define a rule, simply with rul e and a
name of the rule.

Next, you can define attributes for the rule, which influence the behavior of the
rule. One of the most important of these is no- | oop, which prevents an infinite
loop if a rule modifies a fact that causes the rule to activate again. There are
several other attributes, however, which may be important to your rule. See the
Drools documentation on Rule Attributes for more information.

when Conditions

In Drools language, the conditions that must be met for a rule to fire are also
called "Left Hand Side".

Conditions work on one or more patterns, which include the object and
constraints. For example, a condition like $rb: ResponseBuil der($qStr

req. parans.get ("q") matches "(?i).*ipod.*")) will match queries sent to
Solr containing the term "ipod". What's going on in this example?

First, we've declared that the variable $r b will match the object ResponseBui | der .
The ResponseBui | der is a Solr class that builds the query responses. The rest of
the condition states we want to look at what the value was for Solr's q parameter,
and match queries that contain the term "ipod".

© 2014 Find this documentation online at Page 246 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5150

LucidWorks Search Documentation 05-Aug-2014

There are multiple variations on how to declare the conditions. You can use Java
expressions, booleans, binding variables, maps, and many more. Refer to the
Drools documentation on Left Hand Side (when) syntax for all of the options and
details on how to use them.

then Actions

In Drools language, the actions of a rule are also called "Right Hand Side". These
are the changes that should be made to the "facts" known to the rules engine. In
search, this would be changes to documents, the order of results, or other impacts
on the results of the user's query. Keep in mind that these actions should not be
conditional (as in, "when this, maybe this"), but atomic, meaning all of the stated
actions should be performed (as in, "when this, t hen this"). If you find you need
further conditions, you may want to consider breaking your rule into smaller pieces
to achieve this goal.

As with when conditions, there are multiple variations on how to use t hen actions.
Of particular assistance here is the Dr ool sHel per. cl ass, found in the

sol r- busi ness-rul es-0. 1-solr-4.4.0.j ar, where several methods have been
pre-defined such as addToResponse, which allows adding a key-value pair to the
response, and nodRequest , which modifies the request to Solr.

Refer to the Drools documentation on Right Hand Side (then) for more details.

Back to Top

DroolsHelper Class

The Dr ool sHel per class contains a number of methods that can be invoked by
rules writers to help with common tasks and simplify the "then" part of the rule.
For instance, there is a method that can take in a query and a boost and set the
boost value. There are also methods for helping merge separate facet requests
together (such as a field facet with a facet query). For instance, it has methods
that evaluate what phase the engine is in and returns true or false if it matches an
expected value. This can be useful if you want rules to fire only during certain
phases of the Sear chConponent process (i.e. prepare, process, etc.). To see this in
action, notice the use of the hasPhaseMat ch() method in the example rules
section.

The Dr ool sHel per. cl ass file may not be in your distribution of LucidWorks. For
that reason, we've provided the text of the code below.

© 2014 Find this documentation online at Page 247 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e7386

LucidWorks Search Documentation 05-Aug-2014

package com | uci d. rul es. dr ool s;

public class Drool sHel per extends java.lang. Obj ect
{
/* Fields */
private static transient org.slf4j.Logger |og;
public final static java.lang. String RULES PHASE = "rul esPhase";
public final static java.lang.String RULES HANDLE = "rul esHandl e";

/* Constructors */
publ i c Drool sHel per() {

}

/* Methods */

public static bool ean
hasPhaseMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String) {

}

public static bool ean
hasPhaseMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang.String) {

}

public static bool ean
hasHandl er NaneMat ch(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String) {

}

public static void boost Query(org. apache. | ucene. search. Query, float)

public static void
addToResponse(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang. Object) {

}

public static void
addToResponse(org. apache. sol r. conmon. uti | . NanmedLi st, java.lang. Stri ng,

© 2014 Find this documentation online at Page 248 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

java. l ang. Obj ect) {
}

public static void
nmer geFacet s(or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, int, java.lang. String[]) {

}

public static void
addFacet (or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang.String, int, int) {

}

public static void
nodRequest (or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, java.lang.String[]) {

}

public static void
nodRequest (or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, int) {

}

public static void
nodRequest (or g. apache. sol r. handl er. conponent . ResponseBui | der,
java.lang. String, bool ean) {

}

public static bool ean contains(java.lang.String, java.lang.String) {

}

public static java.util.Collection
anal yze(org. apache. sol r. schena. | ndexSchema, java.lang. String,
java.lang. String) throws java.io. | CException {

}

Limitations

Since the implementation is stateless, there is obviously no way to write rules that
go across requests without implementing your own RulesEngine.

© 2014 Find this documentation online at Page 249 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Back to Top

Related Topics

There are several rules provided as examples, which may help you get started
with the rules language. See Example Rules for a walk-through of two examples,
plus an overview of other included examples.

© 2014 Find this documentation online at Page 250 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Example Rules and Recipes

Several example rules are provided in the $app/ exanpl es/ busi ness_rul es
directory of your LucidWorks Search installation.

In this section we'll pick a couple of the rules and walk through them.

Sample Rule Files

The example rules are designed to be used with the example documents provided
by Solr. Each file includes extensive comments that explain what they are doing
and how to use them with the sample documents that are included with Solr.
Note, however, that LucidWorks Search does not include the same directory of
sample documents, and the default LucidWorks Search schena. xnl is also
different. These rules may need a bit of tweaking to work correctly with your own
content and customized schema.

In most cases, the recommendation is to add new rules to the files in the rul es
directory found in the $LW5_HOVE/ conf/ sol r/ cores/ col | ecti on/ conf directory,
where col | ecti on is the name of the collection where rules will be used.

While it's possible to define multiple rules files in sol rconfi g. xm (in the

/rul esMgr requestHandler section, it is simpler to use a single rules file (when
possible) for each rules engine. This keeps all your rules in one place, making
them easier to manage. You can modify the name of the single file if you'd like,
just be sure to update the / rul esMyr requestHandler appropriately.

The following rules are included as examples:

Filename Rule Type What It Does

def aul t Docs-create-titl éndeking rule Adds title fields to
incoming documents.

def aul t Docs- manuf act ur edndiegirig dule Copies the document ID
field to the manu field on
documents where manu is
blank.

def aul t Fi rst-appl e.drl Query rule

© 2014 Find this documentation online at Page 251 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Filename Rule Type What It Does

Adds a defined manu field
to all searches for a
specific term.

def aul t Fi r st - f acet s- par Quodry. drle First of two steps to
modify a facet; injects a
facet query and alters the
facet limit.

def aul t Last - f acet s- part Znfeydrule Part two of the earlier
rule to modify a facet;
injects the facet to the

response.
def aul t Fi r st -from r eadm§uenyerudel Adds a term to the query.
def aul t Fi r st - nodel - nunb&uehyl rule Defines a method to find

model numbers in a
query, and if found looks
in the ID field for a
match.

def aul t Docs- pri ce- check Qirdry rule Checks the price of an
incoming document and
adds a label when it
matches a specific
criteria. This approach is
designed for times when
using text (i.e., JSON,
XML) codecs for indexing.

def aul t Docs- pri ce- check-Queny- fudem dr | An alternate approach to
price checks. This
approach is designed for
times when using binary
(i.e., Javabin) codecs for
indexing.

© 2014 Find this documentation online at Page 252 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Filename Rule Type What It Does
def aul t Fi r st - show phasefuirdy rule Demonstrates the phases
of filtering.
def aul t Landi ng- bel ki n. dtlnding rule Returns a specific URL in

response to a query,
which can be used by the
front-end to either
redirect the user or
display it a specific way.

Detailed Examples

README Example

This example is included in the file defaul t First-fromreadne-file.drl. The
goal of this rule is to add query terms to a search when the user enters a specific
string.

First, here is the text of the rule (note, this isn't the whole file, just the part that
defines a rule; be sure to look at the whole rule for important comments on how to
run it).

rule "el ectronics"”
no- | oop
when
$rb: ResponseBuil der ($gStr : req.parans.get("q") ==
"text:electronics");

t hen
addToResponse($rb, "origQuery", $qStr);
addToResponse($rb, "nmodQuery", "text:electronics text:apache");
nodRequest ($rb, "qg", "text:electronics text:apache");

end

Let's step through this example in detail.
Line 1 states we are declaring a rule and gives it the name "electronics".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our
when statement looks for the query term "electronics" on the field "text"; after the

© 2014 Find this documentation online at Page 253 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

modifications from the rule, the query will still match the rule, which could make it
fire again. Using no- | oop prevents the rule firing over and over.

Line 3 starts the when conditions.

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the
query (in the g parameters of the request sent to Solr) matches "text:electronics".
Note this line is also setting a variable $qSt r, and assigning it the query and
parameters. This variable will be used again later.

Line 5 starts the t hen actions.

Line 6 defines a key/value pair for the ResponseBuilder of "origQuery" and the
query string variable defined in line 4 ($qStr.

Line 7 defines another key/value pair for the ResponseBuilder of "modQuery", and
the modified query string.

Line 8 modifies the request to the ResponseBuilder with a key/value pair,
modifying the user's entry to include "text:apache" as well as what was initially
entered.

Line 9 ends the rule.

To run this rule, once the rule has been added to rul es/ defaul tFirst.drl, you
can send a request to Solr that looks something like this:

http://1ocal host: 8888/ solr/collectionl/lucid?q=text:electronics& ul es=truef

The request should be customized for your hostname and port, and this example
also assumes you have indexed Solr's sample documents in the
exanpl e/ exanpl edocs directory.

Landing example

This example is included in the file def aul t Landi ng- bel ki n. dr| . The goal of this
rule is to force Solr to return a document first in the list when a specific
manufacturer ("Belkin") is entered by the user.

© 2014 Find this documentation online at Page 254 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
First, here is the text of the rule (note, this isn't the whole file, just the part that
defines a rule; be sure to look at the whole rule for important comments on how to
run it).

rul e "Landi ng Page"
no- | oop
when

$rb: ResponseBuil der($gStr : req.paranms.get("q") == "manu: Bel kin");
t hen

addToResponse((NamedLi st) $rb. rsp. get Val ues() . get ("responseHeader"),
"l andi ngPage", "http://ww. Bel ki n. conl');
end

This rule is quite simple, actually, but let's step through it line-by-line.
Line 1 states we are declaring a rule and gives it the name "Landing Page".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our
when statement looks for the query term "Belkin" on the field "manu"; after the
modifications from the rule, the query will still match the rule, which could make it
fire again. Using no- | oop prevents the rule firing over and over.

Line 3 starts the when conditions.

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the
query (in the g parameters of the request sent to Solr) matches "manu:Belkin".
Note this line is also setting a variable $qSt r, and assigning it the query and
parameters. This variable will be used again later.

Line 5 starts the t hen actions.

Line 6 defines a key/value pair to the NamedList. In this case, inserting "landing
page" and the URL into the responseHeader.

Line 7 ends the rule.

Note that this rule by itself does not magically redirect the user to the Belkin
website - it includes the information to the client, which then must decide what to
do: redirect the user, make it the first result in the list, or some other
transformation as needed.

© 2014 Find this documentation online at Page 255 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
To run this rule, once the rule has been added to rul es/ def aul t Landi ng. drl,
you can send a request to Solr that looks something like this:

http://1 ocal host: 8888/ solr/collectionl/lucid?q=manu: Bel ki n& ul es=true& and

The request should be customized for your hostname and port, and this example
also assumes you have indexed Solr's sample documents in the
exanpl e/ exanpl edocs directory.

© 2014 Find this documentation online at Page 256 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Disabling Business Rules

Business rules are enabled by default. Even if you are not using rules, there should
be no impact on performance, but if you want to simplify your configuration, you
can remove or comment out references to rules in the sol rconfi g. xm file for
each collection.

It would be possible to remove these rules parameters from the default
sol rconfi g. xm file and create a template for future collection creation. To learn
more about this, see the section on Collection Templates.

V]
When removing business rules from the sol rconfi g. xml file, LucidWorks

will need to be either stopped while making the changes, or restarted once
the changes are made.

These are the steps to disabling business rules:

Remove Rules from Update Chain

Remove Rules from the /lucid Request Handler
Remove the Rules Request Handler

Remove Rules Search Components

Remove the RulesDocTransformer

Remove Rules From the Replication Handler

Remove Rules from Update Chain

Comment out the section that defines the Rules Update Processor (<processor
cl ass="com | uci d. rul es. Rul esUpdat ePr ocessor Fact or y" > until the closing
</ processor > tag).

In most cases, this is sufficient to disable business rules. However, the next
sections will assist you in fully removing business rules from your implementation.

<updat eRequest Processor Chai n nane="| uci d- updat e- chai n" >
<pr ocessor
class="com | uci d. updat e. Conmi t Wt hi nUpdat ePr ocessor Factory"/ >
<processor class="com |l ucid.rul es. Rul esUpdat eProcessor Factory">

© 2014 Find this documentation online at Page 257 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<str name="request Handl er">/rul esMgr</str>
<l-- we re-use the engine, but we could have an
i ndependent one-->
<str name="engi ne" >docs</str>
<l-- Each one should have it's own handle, as you can
have multiple in the chain -->
<str nanme="handl e" >docProc</str>
</ processor >
<pr ocessor
class="com | uci d. updat e. Di stri but edUpdat eProcessor Fact ory" >
<l-- exanple configuration... "shards should be in the *sane*
order for
every server in a cluster. Only "self" should change to
represent what server
this is. This is only used for Index Replication.
<str name="sel f" >l ocal host: 8983/solr</str> <arr
name="shar ds" >
<str >l ocal host: 8983/ sol r</str> <str>l ocal host: 7574/ sol r</str>
<farr> -->
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<int name="maxNunifoLog" >10</int >
</ processor >
<processor class="solr. D stribut edUpdat eProcessor Factory"/>
<pr ocessor
class="com | uci d. updat e. Fi el dMappi ngUpdat ePr ocessor Fact ory"/ >
<processor class="sol r. RunUpdat eProcessor Factory"/>
</ updat eRequest Processor Chai n>

The specific section to remove is:

<processor class="com | ucid.rul es. Rul esUpdat eProcessor Factory">

<str nanme="request Handl er">/rul esMyr</str>

<l-- we re-use the engine, but we could have an i ndependent
one- - >

<str name="engi ne">docs</str>

<l -- Each one should have it's own handl e, as you can have
multiple in the chain -->

<str name="handl e">docProc</str>

</ processor >

© 2014 Find this documentation online at Page 258 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014
Back to Top

Remove Rules from the /lucid Request Handler

Find the section as below that defines the /| uci d request handler, and remove the
lines for | andi ngPage and first Rul esConp and | ast Rul esConp.

<request Handl er cl ass="sol r. St andar dRequest Handl er" name="/I uci d">
<arr nanme="conponents">
<str>filterbyrol e</str>
<str>| andi ngPage</ str>
<str>firstRul esConp</str>
<str>query</str>
<str>mt</str>
<str>stats</str>
<str>f eedback</str>
<l-- Note: highlight needs to be after feedback -->
<str>hi ghlight</str>
<!-- Note: facet also needs to be after feedback -->
<str>facet</str>
<str>spel | check</str>
<str>| ast Rul esConp</str>
<str>debug</str>
<farr>

</ request Handl er >

Back to Top

Remove the Rules Request Handler

The rules request handler defines the Rul eEngi ne instances and the rules files.
The entire section copied below can be removed or commented out.

<request Handl er cl ass="com | uci d. rul es. Rul esEngi neManager Handl er "
name="/rul esMgr" >
<l--
Engi nes can be shared, but they don't have to be. A
Sear chConponent or ot her consunmer can
specify the engi ne they want by nane.
-->

<l st name="engi nes" >

© 2014 Find this documentation online at Page 259 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
<l st name="engi ne">

<str name="nane">first</str>

<str
nane="cl ass">com | uci d. rul es. dr ool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">

<str name="file">rules/defaultFirst.drl</str>
</l|st>
<l-- The fact collector defines what facts get injected into the

[92)

rul es engi nes working nenory -->
<l--<lst name="factColl ector">
<str nanme="class">com |l ucid.rul es.drools. Fact Col | ector</str>
</lst>->
</|st>

<l st name="engi ne">
<str name="nane" >l andi ng</str>
<str
nane="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rul es/defaultLanding.drl</str>

[92)

</lst>
</|st>
<l-- Engine is using rules that are designed to be called after

all other components -->
<l st nane="engi ne">
<str nanme="nane">| ast</str>
<str
nane="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rul es/defaultlLast.drl</str>
</lst>
</lst>
<l st nane="engi ne">
<str nanme="nane" >docs</str>
<str
nane="cl ass">com | uci d. rul es. drool s. st at el ess. St at el essDr ool sRul esEngi ne</
<l st name="rul es">
<str name="file">rul es/defaul tDocs.drl</str>
</lst>
</lst>
</lst>

© 2014 Find this documentation online at Page 260 of
LucidWorks http://docs.lucidworks.com/ 347

[92)

[92)

LucidWorks Search Documentation 05-Aug-2014

</ request Handl er >

Back to Top

Remove Rules Search Components

The search components allow the rules to make changes to queries, based on the
rules defined. The entire sections shown below can be removed or commented out.

<sear chConmponent cl ass="com | uci d. rul es. Landi nhgPageConponent "
name="1 andi ngPage" >
<str name="request Handl er">/rul esMyr</str>
<str name="engi ne" >l andi ng</str>
<l-- The handl e can be used to turn on or off explicit rules
conmponents in the
case when you have multiple rules at different stages of the
conponent ordering
-->
<str name="handl e" >l andi ng</str>
</ sear chConponent >
<sear chConmponent cl ass="com | uci d. rul es. Rul esConponent "
name="first Rul esConp" >
<str nanme="request Handl er">/rul esMgr</str>
<str name="engine">first</str>
<l-- The handl e can be used to turn on or off explicit rules
components in the
case when you have multiple rules at different stages of the
component ordering-->
<str name="handl e">first</str>
</ sear chConponent >
<sear chConmponent cl ass="com | uci d. rul es. Rul esConponent "
name="1| ast Rul esComp" >
<str nanme="request Handl er">/rul esMgr</str>
<str name="engi ne" >l ast</str>
<str nanme="handl e">| ast</str>
</ sear chConponent >

Back to Top

© 2014 Find this documentation online at Page 261 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014

Remove the RulesDocTransformer
The Rul esDocTr ansf or mer allows business rules to inject or modify fields in a
document before returning them to a client.

<transformer class="com | ucid.rul es. Rul esDocTransf or mer Fact ory"
nane="rul es" >
<str name="request Handl er">/rul esMyr</str>
<str name="engi ne">docs</str>
</ transforner>

Back to Top

Remove Rules From the Replication Handler
If using Index Replication, remove the rules-related files from the list of conf files
to replicate between servers. In this section:

<request Handl er cl ass="solr.ReplicationHandl er” name="/replication">
<l st name="master">
<str name="replicateAfter">conmt</str>
<str
nanme="conf Fi | es">adm n-extra. ht m , adm n-extra. menu-bottom htm , adm n-extra
</|st>
</ request Handl er >

Specifically, remove rul es/ defaul tFirst.drl, rul es/defaul tLast.drl,
rul es/ def aul t Landi ng. drl, and rul es/ def aul t Docs. drl .

Back to Top

© 2014 Find this documentation online at Page 262 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Security and User Management

Generally, enterprise-level application designers must take into account four main
security considerations for any search application:

® Network access to the various components of the service
® Authentication of users

® Authorization to use various parts of the user interface

® Authorization to view certain documents

Topics described in this section:

® Restricting Access to UIs and APIs
® Network Access
® User Authentication
® User Authorization

® Restricing Access to Documents

Restricting Access to Uls and APIs

Network Access

Because the components of LucidWorks (LWE-Core, LWE-UI and LWE-Connectors)
run on different ports, an administrator can easily secure individual components at
the network level by restricting access to the port in question. For example, if only
the Admin and Search UI services need to be accessible outside the production
network, an administrator can leave those ports open while blocking LWE-Core.

Because it provides access to the REST API, direct access to the LWE-Core
component also provides access to all of Solr's capabilities, including adding and
removing documents, retrieving stored field values for all documents, and
additional LucidWorks Search-enhanced capabilities such as job scheduling and
system status. The LWE-Core component should only be directly HTTP accessible
to other components that need access to Solr or REST API interfaces. If you are
using a single server installation and don't want to expose Solr or REST API
interfaces via the network then you might want to restrict access to LWE-Core to

© 2014 Find this documentation online at Page 263 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

| ocal host only if all components are running on the same machine. You can do
that by adding the socket connector's host attribute for the Jetty container.

If you are running LucidWorks Search components on separate machines, you can
restrict direct access to LucidWorks components by IP address, or by fronting it
with an authenticating firewall. For a production implementation, consider
restricting access to the component HTTP ports to only those required by the
application, just as one would do with a typical relational database. If you are
using the built-in search filters or document-level authentication, you must
prevent access to LucidWorks by any process other than your application in order
to prevent circumvention of these features.

For more information about approaches to user authentication with LucidWorks
Search, see the section User Authentication Options.

Note that if you are using the LucidWorks Search document authorization features
this step is particularly important, as direct access to the underlying Solr
application can circumvent these measures.

In addition, you may want to ensure that the components use SSL for
communication or that users access the Admin UI via HTTPS. The section Enabling
SSL describes how to do that in more detail.

User Authentication

LucidWorks supports four approaches to user authentication:

® 3 built-in user database, where all users are created manually within the
system.

® Jetty-based LDAP authentication, using the roles that already exist in your
LDAP system to control user access to the Admin UI and REST APIs.

® Admin UI LDAP authentication, providing the ability to use group
membership from your LDAP system to control the content users see in their
results.

® a list of users manually maintained in a realm.properties file. This approach
also allows fine-grained control over user access to the Admin UI and REST
APIs.

The section User Authentication Options describes how to work with each of these
options.

© 2014 Find this documentation online at Page 264 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options

LucidWorks Search Documentation 05-Aug-2014

User Authorization

LucidWorks has two built-in authorizations to control user access:

® ADMIN allows users to access any part of the LucidWorks UL.
® SEARCH limits users to only the built-in end user search interface.

As of v2.9, LucidWorks Search supports the creation of roles that control what
users have access to via the Admin UI or the REST APIs. This new approach is only
supported when the Jetty-based authentication is in use. For details on how to
configure roles for your organization, see the section Role Configuration.

Restricing Access to Documents

The privileges of the LucidWorks process and the rights that process has to access
documents for indexing are crucial to its proper operation. Generally, you want
LucidWorks Search to be able to access all documents within a particular folder or
from a particular web site. The built-in LucidWorks Search crawlers will index any
specified document, as long as the LucidWorks process has permissions to do so.
After a document has been indexed, all stored fields are accessible through the
Solr interface.

That said, documents can be excluded from indexing by leveraging operating
system, file, and web-level security capabilities; if the process doesn't have
access, it will not index the content. These document filters then limit what
documents appear in search results for users in those roles. For example, the
administrator can create a filter that enables users in the finance role to see only
documents that satisfy a query of department:finance. You can create these filters
with the Search Filters screen of the Admin UI. LucidWorks also enables the
creation of document-based filtering, in which only the owner (or owners) of a
document are able to see it. The section Restricting Access to Content describes
how to set up your documents to support this functionality.

Some data sources, such as those configured to crawl content in a database or in
SMB, SharePoint, S3 or Hadoop over S3 servers, credentials need to be supplied
for the crawler to access the system. Those credentials determine what documents
the crawler has access to. Other data sources may also require credentials to
access content.

© 2014 Find this documentation online at Page 265 of
LucidWorks http://docs.lucidworks.com/ 347

http://departmentfinance

LucidWorks Search Documentation 05-Aug-2014

User Authentication Options

There are several approaches to user authentication in LucidWorks Search.

The first is to simply create your users manually using the built-in user database.
If you have only a few users, this might be the simplest approach. The drawbacks,
however, are that you are limited to the roles provided by LucidWorks Search
("admin" and "search") and your users will need to use a username and password
that is perhaps different from the authentication credentials they use for other
systems in your organization.

If you would like to use an LDAP system for authentication, there are two options.
The first is the same approach that has been used in LucidWorks Search for many
releases. This LDAP support is built-in to the Admin UI. This approach does not
allow you to secure the REST APIs, and you are limited to using only the two roles
that have been implemented in LucidWorks Search for limiting access to the UI.

Another approach, new for v2.9, is to use Jetty-based authentication with your
LDAP system. You can create multiple roles in LucidWorks Search and map them
to the role assignments in your LDAP system. A drawback of this approach is that
it is only supported if your LDAP system contains role information.

A final approach is to use Basic authentication with Jetty with a list of users,
passwords and roles in a real m properti es file.

~ None of the authentication approaches described below can be used in
conjunction with another approach. They are all mutually exclusive and
you can only use one at a time.

Topics in this section:

® Manual User Management
® Enabling Jetty-based Authentication with LDAP Roles
® Modify master.conf
® Modify jetty.xml
® Modify web.xml
® Modify solr.xml

© 2014 Find this documentation online at Page 266 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® Enable LDAP
® Restart LucidWorks Search
® Admin UI-based LDAP Authentication
® | DAP Configuration File
® Modify Server Settings Page in Admin UI
® Enable LDAP property in master.conf
® Restart LucidWorks
® Jetty-Based Authentication with realm.properties
® Modify Login Configuration jetty.xml
® Create a realm.properties File
® Modify Roles in web.xml

Manual User Management

Users can be created within the system by using the Admin UI or a REST API that
allows creation and authentication of users. With this approach, all user accounts
are managed by LucidWorks Search and stored in the built-in user database.

Note that when using this approach, role authorization for the Admin UI is limited
to the two built-in roles: "admin", granting access to all screens and actions in the
Admin UI; or "search", granting access to the Search screens only. It is, however,
possible to map individual users to be members of a role configured within
LucidWorks Search to control what documents they are allowed to see in search
results.

Enabling Jetty-based Authentication with LDAP Roles

It is possible to require basic authentication before accessing the LucidWorks
Search Uls (Admin and Search UIs) and REST APIs. This uses any Jetty supported
login module, as described in the Jetty documentation on JAAS support. The
examples below use LDAP, but other approaches are also supported.

Note that this approach will bypass the LucidWorks Search Admin UI login page.
Additionally, it is not possible to implement this and continue to use users created
manually in LucidWorks Search.

Because LucidWorks Search components run in separate JVMs, they run in
separate Jetty containers. However, you should secure both the LWE-UI and
LWE-Core components so they can successfully communicate with one another.

© 2014 Find this documentation online at Page 267 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.eclipse.org/jetty/documentation/current/jaas-support.html

LucidWorks Search Documentation 05-Aug-2014

The LWE-Connectors JVM does not need authentication, since it generally only
needs to communicate with the LWE-Core component internally.

There are several steps to enable Jetty-based authentication. In summary, they
are:

® Modify the mast er. conf file for LucidWorks Search.

® Modify the jetty. xm files for the LWE-Core and LWE-UI components.

® Modify the web. xm files for each webapp (LWE-Core, LWE-UI, Flare,
Quickstart, Relevancy Workbench and Silk).

® Modify sol r. xnl .

® Enable LDAP.

If using SolrCloud mode, these changes will need to be made on each node of the
cluster, as appropriate for the components running on each particular cluster.

Once these changes are completed, LucidWorks Search must be restarted.

Modify master.conf
Several variables should be added to $LWS_HOVE/ conf / nast er . conf file for the
installation. The mast er. conf file defines several startup settings for each

component. Some of these settings will heed to be repeated for multiple
components.

Property Component Description Example
-Dj ava. security. LWE-Core & The path to a -Dj ava. security. a
aut h. 1 ogi n. confi g LWE-UI configuration file

with details for
Jetty to connect to
the authentication
system to be used.
You will configure
this file later when
enabling LDAP.

-Dsol r. aut h. user LWE-Core & A user that will be -Dsol r. aut h. user -
LWE-Connector used to
authenticate

© 2014 Find this documentation online at Page 268 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Property Component Description Example

communications
between the
LWE-Core and
LWE-Connector

components.
-Dsol r. aut h. pass LWE-Core & The password for - Dsol r. aut h. pass=
LWE-Connector the user being
used to

authenticate
communications
between the
LWE-Core and
LWE-Connector
components.

-Dcom | uci d. LWE-Connector The class used for -Dcom |l ucid.curre
current | nt er nal Request Fact ory retrieving internal Syst enProperti esA
credentials.

- Dur | Schene LWE-Core Allows overriding - Dur | Schene=htt ps
Solr's default
urlScheme.

Here is an example of the JVM settings for each component configured with these
new parameters.

JVM Settings for LWE-Core

| wecore. jvm paranms=- Xns512M - Xmx1024M - XX: MaxPer nSi ze=256M

- Duser. | anguage=en -Duser.country=US -Duser.timezone=UTC

-Dfil e. encodi ng=UTF- 8 -Dcom sun. nanagenent . j nxrenot e

-0 ava. security. auth. |l ogin. config=/Luci dWrks/2.9/conf/| ogi n. conf
-Dsol r. aut h. user=adm n -Dsol r. aut h. pass=nyPass -Dur| Scheme=htt ps

JVM Settings for LWE-Connectors

© 2014 Find this documentation online at Page 269 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

| weconnect ors. j vm par ans=- Xne512M - Xnx1024M - XX: MaxPer n5i ze=256M

- Duser. | anguage=en -Duser.country=US -Duser.timezone=UTC

-Dfil e. encodi ng=UTF-8 -Dcom sun. nanagenent . j nxrenot e

- Dmapr . hone=/ opt/ mapr -Dsol r. aut h. user=adm n -Dsol r. aut h. pass=nyPass
-Dcom | uci d. current | nt er nal Request Fact or y=or g. apache. sol r. security. Syst enf
JVM Settings for LWE-U

| weui . j vm par ans=- Xns256M - Xnx1024M - Xss2048k - XX: MaxPer n5i ze=256M
- ruby. st ack. max=2048k -Duser.country=US -Duser.tinezone=UTC

-Dfil e. encodi ng=UTF-8 -Dcom sun. nanagenent . j nxrenot e

- ruby. conmpi | e. nrode=CFF

-0 ava. security. auth. |l ogin. config=/Luci dWbrks/ 2.9/ conf/| ogi n. conf

-

Modify jetty.xml

Jetty must be configured to perform authentication. To do this, the jetty. xm
configuration files for the LWE-Core and LWE-UI must be modified. These files are
found in the following locations in your LucidWorks Search installation:

® W5 HOVE/ conf/jetty/lwe-core/etc/jetty.xm
® WS HOMVE/ conf/jetty/lwe-ui/etc/jetty.xm

Three properties will be added to each of these files, in a call named "addBean".
These properties are:

® cl ass: the class of the login service. The value to use is
com | uci d. LVELogi nSer vi ce.

® nane: a name for the login service. It can be any name, but the same name
will be referenced as the r eal m nane when configuring web. xml in the next
step.

® | ogi nMbdul eNane: a name for the login module. It can be any value, but the
same name will be referenced in the login configuration file, the path to
which was defined in the step to configure mast er. conf .

This example would be appropriate for both files:

<Cal | nane="addBean">
<Ar g>
<New cl ass="com | uci d. LVELogi nSer vi ce" >
<Set name="nane">Luci dWbrks Logi n Servi ce</ Set >
<Set name="1ogi nModul eNane" >LVWELdapMdul e</ Set >

© 2014 Find this documentation online at Page 270 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
</ New>
</ Arg>
</Call>

Modify web.xml

The login configuration should next be added to the web. xnml file for each webapp.
This login configuration consists of an auth-method, a realm-name and roles used
as auth-constraints.

The web. xm files for the webapps you will likely want to update are found in these
directories:

® $LWS_HOVE/ app/ webapps/ adm n/ WEB- | NF/ web. xm

® SLWs HOVE/ app/ webapps/ f | ar e/ VEEB- | NF/ web. xm

® $LWS_HOVE/ app/ webapps/ | aunchpad/ VEEB- | NF/ web. xm

® $LWS HOVE/ app/ webapps/ | we- cor e/ | we- cor e/ VEB- | NF/ web. xm
® $LWS_HOVE/ app/ webapps/ qui ckst art/VEB- | NF/ web. xm

® $LWS HOVE/ app/ webapps/ qui ckst art/WEB- | NF/ confi g/ web. xm
® 3LWS HOVE/ app/ webapps/ r el evancy/ WEB- | NF/ web. xm

® $LWS_HOVE/ app/ webapps/ rel evancy/ VEB- | NF/ conf i g/ web. xm

The following lines of configuration should be added for each webapp that will be
secured:

<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
<real m name>LW5 Logi n Servi ce</real m nane>
</l ogi n-confi g>

<security-constraint>
<di spl ay- name>Security Constraint</di spl ay- nane>
<web-resource-col |l ecti on>
<web- r esour ce- nane>Pr ot ect ed Area</web-resour ce- nane>
<url-pattern>/*</url-pattern>
<ht t p- net hod>CET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- net hod>
<ht t p- net hod>PUT</ ht t p- met hod>
<ht t p- met hod>DELETE</ ht t p- net hod>
<ht t p- met hod>l NDEX</ ht t p- et hod>

© 2014 Find this documentation online at Page 271 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

</ web-resource-col | ecti on>
<aut h-constrai nt >
<r ol e- nane>admi n</r ol e- nane>
<r ol e- nane>sear ch</r ol e- nane>
</ aut h-constrai nt >
</security-constraint>

Modify solr.xml

The changes to modify sol r. xm add the new authentication classes for Solr. You
should only have one sol r. xnl file, found in $LWS_HOVE/ conf/sol r/ sol r. xnl .

A section like this needs to be added to the file:

<aut henti cati on>
<subRequest Fact or y>
<str
nane="cl ass" >or g. apache. sol r. security. UseSuper Request Aut hCr edent i al sSubReq
</ subRequest Fact ory>
<i nt er nal Request Fact ory>
<str
nane="cl ass" >or g. apache. sol r. security. SystenProperti esAut hCredenti al sl nterp
</ i nt er nal Request Fact ory>
</ aut henti cati on>

[

Enable LDAP

After making these changes, you will enable LDAP. Using this approach to LDAP
integration, authentication is entirely handled in the Jetty container. In this step,
you will create a file that includes the properties of your LDAP system to allow
Jetty to query it for user credentials.

The name of the file and its location are the same as the name provided in
mast er . conf in the earlier section Modify master.conf.

The first line of the file is the name of the module, which was provided as the
| ogi nModul eNane in the second section Modify jetty.xml, which modified the
various j etty. xm files.

The second line includes the name of the class, which should be
com | uci d. LWELdapLogi nMbdul e requi red as shown in the example below.

© 2014 Find this documentation online at Page 272 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Here is a sample file that can be modified as needed:

LWELdapModul e {
com | uci d. LM\ELdapLogi nModul e required
debug="true"
cont ext Fact ory="com sun. j ndi . | dap. LdapC xFact ory"
host nane="1 dap. exanpl e. cont
port="636"
bi ndDn="cn=user, dc=I uci dwor ks, dc=conf
bi ndPasswor d=" pass"
aut henti cati onMet hod="si npl e"
f or ceBi ndi ngLogi n="t rue"
user BaseDn="ou=peopl e, dc=I uci dwor ks, dc=cont
user RdnAttri but e="ui d"
user | dAttri bute="uid"
user Passwor dattri but e="user Password"
user vj ect G ass="i net Or gPer son”
r ol eBaseDn="ou=Rol es, dc=I uci dwor ks, dc=cont'
rol eNameAttri bute="cn"
rol eMenmber At tri but e="nmenber"
rol eoj ect d ass="gr oupOF Nanes";

Restart LucidWorks Search

After all of the configuration files have been updated, you must restart LucidWorks
Search, as described in the section Starting and Stopping LucidWorks Search.

Back to Top

Admin UI-based LDAP Authentication

With this approach, it is possible to use your LDAP server to authenticate users to
the Admin UI only. With this approach, you can map individual users or
LDAP-stored group memberships to the roles that are included with LucidWorks. It
is not possible to create any other roles using this approach, and it is not possible
to change what each role is authorized to access. Finally, this approach does not
secure the REST APIs from unauthorized access.

© 2014 Find this documentation online at Page 273 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

For standard LDAP integration, the LDAP administrative user only needs
permissions to query the LDAP server for users and groups. We recommend that
you create an LDAP admin user with only the necessary minimal user and group
querying permissions for use with LucidWorks. However, you can also use
queryless authentication if you are not using group mappings.

It is also possible, using standard Java SSL functionality, to use certificate
authentication with a SSL-enabled LDAP server. More information on that is
available here: http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html.

These steps need to be completed to successfully enable LDAP. Each of the steps
described below are required, and must be done in the order documented.

LDAP Configuration File

The main configuration file for configuring LDAP is | dap. ym , found in the

$LWS HOVE/ conf/ directory. The default settings must be modified as needed for
LucidWorks to connect to the LDAP server and query the database for user
authentication. If LDAP is already enabled and this file is edited, you will need to
restart the server for changes to take effect.

Below is the main section of the | dap. ym configuration file that needs to be
edited. Note that the file also includes sample configurations for standard LDAP
authentication, queryless authentication, and Microsoft ActiveDirectory integration
for use with Windows Shares data sources.

~ Lines Must Be Indented

When customizing the | dap. yn file, keep in mind that the attributes must
be indented at least two spaces. So, when removing the hash mark (#),
do not remove the extra spaces. All lines must also be indented the same
number of spaces (so, if some lines are indented three spaces, then all
lines must be indented three spaces).

HHAHBHEH B HAH B HAH B HAH R B RAH R AHHRHHHRTHRHH RHHRHHR

Warning: Al ways restart the application after adjusting
your LDAP config, or unpredictable behavior may result.
RHAMHHAH R HAH A HA A A R R R R R R R R R R R R

© 2014 Find this documentation online at Page 274 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html

LucidWorks Search Documentation 05-Aug-2014

host :
port:
#
base:
#

producti on:

| ocal host

389 # 636 for SSL

attribute: uid

dc=xyz, dc=cor p, dc=com

user _query: '$ATTR=$LOGA N # default query is '$ATTR=$LOE N, set
this if you need sonething nore conpl ex

adm n_user: cn=Manager, dc=xyz, dc=corp,dc=com # |If you don't have an
adm n password, you can disable

adm n_password: secret # admin login in the
U "Settings" page

ssl: false

group_base: ou=groups, dc=xyz, dc=cor p, dc=com

group_nenbership_attribute: uni gueMenber

group_name_attribute: cn

group_query: ' (& objectclass=groupO Uni queNanes) ($ATTR=SUSER))'

default query is '$ATTR=SUSER where $USER is user's DN

The attribute definitions included in the | dap. yn file are as follows:

host

port

attribute

base

user_query

Attribute Definition

The hostname of the LDAP server that
contains the user information.

The port to use while connecting to the
LDAP server that contains the user
information.

The attribute of the user object that
the system will use to search for the
user, or assume when constructing an
explicit DN via query-less
authentication.

Search base for user queries, or suffix
appended to attribute + login for
queryless authentication.

Optional: supplies an arbitrarily
complex query if the default user query

© 2014
LucidWorks

Find this documentation online at Page 275 of
http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Attribute

admin_user

admin_password

ssl

group_base

group_membership_attribute

group_name_attribute

group_query

Definition

is not sufficient. Variable substitutions
are as follows: $ATTR will be
substituted with the value of 'attribute’
from above; $LOGIN will be substituted
with the value the user entered in the
login form in the UL.

Search is performed using 'base' as a
search base.

Administrative login to use for
searching the directory. Not used for
queryless authentication.

Administrative password to use for
searching the directory. Not used for
queryless authentication.

Enable/disable SSL.

Search base for group queries. Not
used with queryless authentication.

The attribute to look for in the group
object that will contain members' user
DNs.

The attribute of the group object that
the system will use to search for the
group.

Optional: supplies an arbitrarily
complex query if the default group
query is not sufficient. Variable
substitutions are as follows: $ATTR will
be substituted with the value of
'group_name_attribute'; $USER will be
substituted with the logged-in user's

© 2014 Find this documentation online at Page 276 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Attribute Definition

fully-qualified LDAP DN. Search is
performed using 'group_base' as a
search base.

@ The default query
($ATTR=3USER) does not
specify the object type for
groups. Several different group
object types are common, such
as group, groupOfNames,
groupOfUniqueNames, and so
on. Therefore, non-group
objects may also match if they
contain a matching attribute.

LucidWorks supports mapping users to groups with the

group_nenbershi p_attri but e setting. This allows LucidWorks Search to do an
additional query while the user is logging in to find all the groups the user is a
member of.

Modify Server Settings Page in Admin UI

Using the Admin UI, map at least one user to have admin permissions using the
LDAP section of the Settings page.

Because the built-in authentication is disabled when LDAP authentication is
enabled, you cannot map a user or group to the Admin authorization after LDAP is
enabled. If no one has Admin authorization, no one will be able to access the
Administration User Interface. So, before enabling LDAP, go to the System
Settings page and map an LDAP username or a group to "Admin UI" by adding it
to the Group or User section of the Admin UI definition.

Enable LDAP property in master.conf

Enable LDAP by setting the environment variable | weui . | dap. enabl ed to true in
the mast er. conf file found in $LWS_HOVE/ conf /.

© 2014 Find this documentation online at Page 277 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Restart LucidWorks

After all of the configuration files have been updated, you must restart LucidWorks
Search, as described in the section Starting and Stopping LucidWorks Search.

Back to Top

Jetty-Based Authentication with realm.properties

It is additionally possible to require HTTP Basic authentication before accessing the
LucidWorks Search UIls (Admin and Search Uls) and REST APIs. This entails
creating a real m properti es file that contains usernames and passwords, then
configuring the jetty. xm files to use real m properti es, and finally modifying
the web. xm file for each interface to be restricted. This does not replace the
built-in user authentication for LucidWorks Search (i.e., the login to access the
Uls), but adds an additional layer of authentication and authorization.

Because LucidWorks Search components run in separate JVMs, they run in
separate Jetty containers. However, you should secure both the LWE-UI and
LWE-Core components so they can successfully communicate with one another.
The LWE-Connectors JVM does not need authentication, since it generally only
needs to communicate with the LWE-Core component internally.

Modify Login Configuration jetty.xml

The jetty. xm file contains a sample configuration that is commented out. This
sample can be used by removing the comment markers and changing the nane
parameter as needed. The default uses "Test Auth" for the name, but in the below
you'll see we have changed that to "Auth". The name can be whatever you'd like it
to be, but it must match the name you use in the web. xm file configuration
(below).

<Cal | nane="addBean">
<Ar g>
<New cl ass="org. eclipse.jetty.security.HashLogi nServi ce">
<Set nanme="nane">Aut h</ Set >
<Set nanme="confi g"><SystenProperty nanme="| uci dwor ksConf Hone"
default="."/>/jetty/ |l we-core/etc/real mproperties</Set>
<Set name="refreshl nterval ">0</ Set >

© 2014 Find this documentation online at Page 278 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
</ New>
</ Arg>
</Call>

This configuration also defines the location of the real m properti es file, which
you will create in the next step. Note that the above example defines a path of
/jettyl/lwe-corel/etc/etc/real mproperties. If the user accounts will be the
same for both the Uls and the APIs, it is fine to refer to the same file for both
components. If, however, the users and/or roles will be different, you need to
change the path to the appropriate r eal ns. properti es file for each component.

These changes need to be done two times: once for the jetty. xm file for the
LWE-UI component, and again for the jetty. xm for the LWE-Core component.
These files are found at the following paths:

® $LW5S HOVE/ conf/jetty/lwe-core/etc/jetty.xm
® $LWS HOVE/ conf/jetty/lwe-ui/etc/jetty.xm

Create a realm.properties File

The real m properti es file contains usernames, passwords and roles of users who
will be allowed to use the Uls and APIs. The passwords can be stored in plain text,
encrypted with an MD5 hash, or obfuscated. In this example, we have just used a
plain text password:

adm n: password, user

If the password is not defined in plain text, you would preface it with "CRYPT:" if
using an MD5 hash or with "OBF:" if obfuscated.

This allows the "admin" user to access the UI and APIs. The role "user" is one that
we'll define in the web. xnl file (described below). If you have multiple roles, they
can be listed for each user separated by commas.

Modify Roles in web.xml

The web. xnl file and we'll use it to define the roles, the URLs roles have access to,
and the realm name. Below is an example:

© 2014 Find this documentation online at Page 279 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<l-- Security Constraints -->
<security-rol e>

<r ol e- nane>user </ r ol e- nane>
</security-rol e>
<l ogi n-confi g>

<r eal m name>Aut h</r eal m nane>
</l ogi n-config>
<security-constraint>

<web-resour ce-col | ecti on>

<web-r esour ce- nane>al | resources</web-resource-nane>
<url-pattern>/*</url-pattern>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<r ol e- nane>user </ r ol e- nane>
</ aut h-constrai nt >
</security-constraint>

In this example, we have defined the security-rol e as "user" and constrained
access to all web resources (via the aut h-const rai nt) to the role "user". This
means users must be defined with the role "user" in real m properti es. Additional
roles can be defined as described in the section Role Configuration.

Note that we have defined the r eal m nane as "Auth", which is the same name we
used in the jetty. xm configuration. Those nhames must match, or Jetty will not
be able to locate the r eal ns. properti es file.

These changes need to be done two times: once for the web. xm file for the
LWE-UI component, and again for the web. xm for the LWE-Core component.
These files are found at the following paths:

® $LWS HOVE/ app/ webapps/ | we- cor e/ | we- cor e/ VEB- | NF/ web. xm
® $LWS_HOVE/ app/ webapps/ | we- ui / EB- | NF/ web. xm

Note that since nearly all of the REST APIs and the Solr Admin UI are powered by
the LWE-Core component, specific restrictions for those APIs and Solr Admin UI
must be defined in the LWE-Core web. xm file. The LWE-UI web. xnm file can be
used to restrict the Admin UI, the Search UI, as well as the Alerts and Users APIs.

© 2014 Find this documentation online at Page 280 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Once these changes are completed, LucidWorks Search must be restarted.
Additional information about using realms and basic auth with Jetty is available
from the Jetty 8 documentation.

Back to Top

© 2014 Find this documentation online at Page 281 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.eclipse.org/Jetty/Feature/Realms

LucidWorks Search Documentation 05-Aug-2014

Role Configuration

As of LucidWorks Search v2.9, there are two ways to configure roles in LucidWorks
Search, depending on how you are authenticating your users.

® If you are manually creating users using the built-in user database or you
are using LDAP authentication for the Admin UI only, you are limited to two
possible authorizations, "Admin" and "Search". The Roles API will allow you
to map users, LDAP groups and search filters to control user access to a
subset of search results if needed.

® If you are using Jetty-based LDAP authentication or you have configured a
realm.properties file, you can use role information in your LDAP system (or
defined in your realm.properties file) to configure multiple roles to control
access to the Admin UI and REST APIs.

The configuration described below is only applicable if you are using
either Jetty-based LDAP authentication or a realm.properties file as
described in the section User Authentication Options. Note that the role names
defined in the configuration files below must match the roles in your LDAP system
if you are using Jetty-based LDAP authentication.

Defining Roles

All roles are defined in a file named rol es_db. j son, a JSON-formatted file that
defines each role and the resources and methods allowed for the role. This file is
found in the directory $LWS_HOVE/ conf/rol es.

Each role definition includes the name of the role and a list of permissions defined
as resource objects and action arrays. For example, this shows a role nhamed
"collectionRole" which allows some access to collection-level information.

{
"name": "collectionRole",
"perm ssions":
{
"Col | ecti onServer Resource":
["GET"],
"Col | ecti onsServer Resource":
["GET", " POST"]
© 2014 Find this documentation online at Page 282 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
}

This defines two resources, which both allow access to collection information, and
allows a GET request for each resource, and also allows a POST (to create a
collection). If other request actions are allowed for the resource, such as POST,
PUT or DELETE, those could be added to this role to provide further access.

The Admin UI uses the role definitions to control access to screens and actions in
the UI. So, a user who does not have POST permissions to create collections with
the REST API will not be able to use the Admin UI to create collections.

In addition to the resources, you can also restrict access to specific Solr
requestHandlers if necessary. This is defined within the permissions section of the
rol es_db. j son file. In this example, we've defined a role to allow access to any
requestHandler:

{
"nane": "readCol |l ection",
"perm ssions":
{
"Col | ecti onServer Resource":
["GET"]
},
{
"request Handl er s":
(") *"]
}
}
Resources

Each REST API has a resource name, and there are a large number of possible
resources, described in the following table.

Resource Name Possible Actions Description

ActivityServerResource GET, DELETE, PUT List, delete or update an
existing activity (such as
Click processing, or

© 2014 Find this documentation online at Page 283 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Resource Name Possible Actions Description

creating the
auto-complete index).

ActivityHistoryServerResourGe&T Retrieve history for a
single activity.
ActivityStatusServerResourceET Get the status of any
activity.
ActivitiesHistoryServerResoGEE Retrieve history for all
activities.
ActivitiesStatusServerResoustd Get the status of all
activities.
ActivitiesServerResource GET, POST Create an activity or list

all existing activities.

CollectionsServerResource GET, POST Get a list of all collections
or create a new one.

CollectionServerResource GET, DELETE Get a single collection or
delete a collection.

CollectionInfoServerResourdeET, DELETE Get statistical information
about a single collection
or all of them.

CollectionIndexResource DELETE Delete the index
associated with a
collection.

CollectionTemplatesServerR@gdurce List available collection

templates. Having this
permission would be
required to be able to use
a collection template to
create a collection.

SecurityTrimmingServerResGéiice List security trimming.

© 2014 Find this documentation online at Page 284 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

Resource Name

Possible Actions

ACLFilteringServerResourceGET, POST, DELETE, PUT

HandlerComponentsServerReEou RidT

RolesServerResource

RoleServerResource

SettingsServerResource

CachesServerResource

CacheServerResource

GET, POST

GET, DELETE, PUT

GET, PUT

GET, POST

GET, DELETE, PUT

DataSourcelobServerResoufsieT, DELETE, PUT

DataSourcelobStatusServer@ESource

DataSourceCrawlDataServeERadsiEce

DataSourcelndexResource DELETE

FieldMappingServerResour GET, DELETE, PUT

Description

Create, list, update or
delete a filter
searchComponent.

List or update
searchComponents for a
defined searchHandler in
sol rconfig. xm .

List or create roles.

List, delete or update a
specific role.

List or update LucidWorks
Search settings.

List all caches or create a
new one.

List, delete, or update a
specific cache.

List status of all jobs,
start or stop all data
sources or a single data
source.

Get status of a specific
data source job.

Remove the crawl
database for a data
source.

Remove all indexed
documents for a data
source.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 285 of
347

LucidWorks Search Documentation

05-Aug-2014

Possible Actions

Resource Name

DataSourcesHistoryServerRé&&durce

DataSourceHistoryServerRe&hlrce

DataSourcesServerResourc&sET, POST

DataSourceValidatorResour&)ST

DataSourceServerResource GET, DELETE, PUT

DataSourceScheduleServeriGsSbubdd ETE, PUT

JDBCDriversClassesServerRé&g&durce

JDBCDriversServerResourceGET, POST

JDBCDriverServerResource GET, DELETE, PUT

RequestHandlerCollectionReG&liyddUT

RequestHandlerResource GET, PUT

Description

List, delete or update
field mappings for a data
source.

Get history of all data
sources.

Get history for a specific
data source.

Get a list of all data
sources, or create a new
one.

Perform validation for a
data source before
saving.

List, delete or update a
specific data source.

List, delete or update the
schedule for a specific
data source.

List all loaded JDBC 4.0
driver classes.

List all drivers or upload
a new one.

List contents, remove or
update a JDBC driver.

List or update
requestHandlers.

List or update
requestHandlers.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 286 of

347

LucidWorks Search Documentation 05-Aug-2014

Resource Name Possible Actions Description
CrawlersServerResource GET, POST List or update available
crawlers.
CrawlersStatusServerResouGET Check the status of each
crawler.
ClickEventServerResource GET, PUT Send a Click Scoring

event to LucidWorks
Search, or see some
basic statistics about
recent Click Scoring

events.
ClickAnalysisServerResourc&ET, DELETE, PUT Start, stop or get status

of a Click Scoring

Analysis job.
SSLConfigServerResource GET, PUT List or update the SSL

configuration.

MasterConfServerResource GET List contents of
mast er. conf .

LockStatusServerResource GET Get lock status.

VersionServerResource GET Get version information.

FieldTypesServerResource GET, POST List all field types or
create a new one.

FieldsServerResource GET, DELETE, POST List, delete or create a
field.

FieldResource GET, DELETE, PUT List, delete or update a
field.

DynamicFieldsServerResourGET, DELETE, POST List all, delete or create a

dynamic field rule.

DynamicFieldResource GET, DELETE, PUT

© 2014 Find this documentation online at Page 287 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Resource Name Possible Actions Description

List, delete, or update an
existing dynamic field
rule.

FieldTypeServerResource GET, DELETE, PUT, POST List, delete, update or
create a single field type.

SchemaResource GET List the contents of
schema. xm , via Solr's
Schema API directly.

FieldCollectionResource GET, POST List or update a field
using Solr's Schema API
directly.

DynamicFieldCollectionResoGE¥ke List a dynamic field rule
using Solr's Schema API
directly.

FieldTypeCollectionResourcesET List a field type using
Solr's Schema API
directly.

FieldTypeResource GET List a field type using
Solr's Schema API
directly.

CopyFieldCollectionResourc&ET, POST List or create a copy field
rule using Solr's Schema
API directly.

SchemaNameResource GET List the schema name
using Solr's Schema API
directly.

SchemaVersionResource GET List the schema version
using Solr's Schema API
directly.

UniqueKeyFieldResource GET

© 2014 Find this documentation online at Page 288 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Resource Name Possible Actions Description

List the unique key using
Solr's Schema API

directly.
DefaultSearchFieldResourceGET List the default search

field using Solr's Schema

API directly.
SchemaSimilarityResource GET List the default similarity

operator using Solr's
Schema API directly.

SolrQueryParserResource GET List a field type using
Solr's Schema API
directly.

SolrQueryParserDefaultOpefaEdrResource List a field type using
Solr's Schema API
directly.

BatchesServerResource GET, DELETE, PUT List, remove or update a
batch.

BatchJobServerResource GET, DELETE, PUT List, remove or update a
batch processing job.

Granting User Access

Once the permissions for each role have been defined, they must be associated
with collections. The collection role definition files are located in

$LWS HOVE/ conf/rol es/ col | ecti ons. The name of the file should include the
collection name, such as col | ecti onl. j son, for the collection named 'collectionl'.

The file is in JSON format, and includes the collection name and an array of the
associated role names. Below is the example col | ecti onl. j son file:

"collection": "collectionl",
"rol eNanes":

© 2014 Find this documentation online at Page 289 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation

05-Aug-2014

[

"search"

Note that the roles allowed for the collection named 'collection1' will also apply to
the 'LucidWorksLogs' and 'quickstart' system collections.

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 290 of
347

LucidWorks Search Documentation 05-Aug-2014

Restricting Access to Content

LucidWorks Search provides three ways to restrict access to content through based
on user identity:

® Search Filters
® Access Control Lists
® Document-based Authorization

Search Filters

Search filters provide the ability to limit the visibility of content only to specific
users or user groups. For example, users in the finance role might be limited only
to documents that satisfy the query departnment: fi nance. The LucidWorks Search
Admin UI allows the creation of search filters that can be appended to all user
queries. Usernames (manually created or supplied by the LDAP system) and/or
groups (supplied by the LDAP system) can be mapped to search filters with the
Search Filters page. You can also configure manual or LDAP search filters using the
Roles API.

By default, LucidWorks comes configured with a default filter called "DEFAULT"
that allows users to see all results for any query. This filter is defined in
sol rconfi g. xm , and could be modified if needed:

<sear chConmponent cl ass="com | uci d. handl er. Rol eBasedFi | t er Conponent "
nanme="filterbyrole">

<l-- Solr filter query that will be applied for users wthout
group/role info -->

<str name="default.filter">-*:*</str>

<l-- Solr filter queries for roles, one role may have multiple filter
queri es.

nane is the role, value is the part of the filterquery that is to be

formed. -->

<I st name="filters">

<str name="DEFAULT">*:*</str>

</lst>

</ sear chConponent >

Note that this has defined that the default filter is - *: *. What this means is that
someone without the DEFAULT role should see no results. However, since queries

© 2014 Find this documentation online at Page 291 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
in LucidWorks Search are handled by the /1 uci d request handler, we have
configured that handler to process searches for users without a role as though
they had the DEFAULT role. This is in a later section of sol rconfi g. xm , where
defaults are defined for the /| uci d request handler (the below is truncated):

<| st nane="defaul ts">

<str nane="rol e">DEFAULT</ str>

</|st>

Access Control Lists

LucidWorks also supports access control lists (ACL) on Windows Share (SMB) and
SharePoint data sources. ACL uses Windows Active Directory to control document
access on a per-user basis. ACL filtering is configured for each data source,
allowing you to have different authorizations depending on the definitions in each
repository. To use this functionality, set up a Windows Share or SharePoint data
source and configure the requisite fields.

If you do not need to configure ACL filtering on a per-data source basis, you can
use the Filtering API to configure a Search Handler to perform the same
functionality. Note that this is only supported for a Windows Share data source
type. The Filtering API will configure the search handler in sol rconfi g. xm like

this:

<sear chConmponent cl ass="com | uci d. security. Acl BasedFi | t er Component "
name="adfil tering">
<str
nanme="provi der. cl ass">com | uci d. security. ad. ADACLTagPr ovi der</str>
<str
nane="filterer.class">com |l ucid. security. WndowsACLQueryFilterer</str>
<l st name="provider.config">
<str name="j ava. nam ng. provi der.url ">l dap://127.0.0. 1</str>
<str name="java. nam ng. security. principal ">adm n</str>
<str name="j ava. nam ng. security.credential s">adm n</str>
</|st>
<I st nanme="filterer.config">
<str name="shoul d_cl ause">*.* -data_source_type:snb</str>

© 2014 Find this documentation online at Page 292 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

</lst>
</ sear chConponent >

In certain circumstances, you may need to add a userFil ter or groupFilter
parameter to the search component to properly implement your ACL filter.

Once created, the search component must be added to the /| uci d request handler
with the Search Components API.

Document-based Authorization

An application can enforce document visibility controls in front of LucidWorks
simply by adding fields to each document that represent usernames, group
membership, or other types of flags that help match a user with the content they
are allowed to see in results. Generally these types of fields would be of type
"string", possibly multi-valued. This technique is best suited to content extracted
from a database or custom data source. The file and web crawling capabilities in
LucidWorks do not index any security related attributes (though the file path itself
may be useful for application-level restrictions).

For example, documents could be indexed with an "owner" field. Here's a Solr XML
file for this example:

<add>
<doc>
<field name="id">1</fiel d>
<field name="text">Bob's Docunment - For his eyes only\!</field>
<fi el d name="owner" >bob</fi el d>

</ doc>
<doc>
<field name="id">2</fiel d>
<field name="text">Jill's Docunent - Only she should find
this</field>
<field name="owner">jill</field>
</ doc>
</ add>

Related Topics

® \Windows Shares Data Sources

© 2014 Find this documentation online at Page 293 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® SharePoint Data Sources
® Filtering Results

© 2014 Find this documentation online at Page 294 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Enabling SSL

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Secure Socket Layer (SSL) encryption can be enabled
in LucidWorks Search with a few modifications to Jetty configuration files.

® Steps to Enable SSL

® C(Certificate Management

® (Client Certificates for LWE-Core and Connectors
® Configuring Mutually Authenticated SSL

® Debugging SSL Configuration

® Related Topics

Steps to Enable SSL

In the steps below, note that LucidWorks Search components run under Jetty, but
have separate configuration files. Each component needs to be enabled separately,
although the process for each component is the same. For more information about
configuring Jetty to use SSL, see also the Jetty documentation on Configuring SSL.

Step 1: Modify master.conf

If you have already installed LucidWorks Search, you can set these values by
modifying the mast er. conf file found in $LW5_HOVE/ conf/ . You should change the
addr ess for each component to include htt ps. If you'd like to change the port for
each component, that is done in nmast er. conf also.

COVWONENT LWE-Core - LWE-Solr + LWE REST API.

| wecor e. enabl ed=t rue
| wecore. address=https://127.0.0.1: 8888

COVPONENT LWE- Connectors.

| weconnect ors. enabl ed=t rue
| weconnect ors. address=https://127.0.0. 1: 8765

© 2014 Find this documentation online at Page 295 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

LucidWorks Search Documentation 05-Aug-2014
COVPONENT LWE-U - Adm n and Search U as well as Alerts

| weui . enabl ed=t rue
| weui . address=https://127.0.0.1: 8989

Alternatively, each component could be set to htt ps:// and the desired port
during the installation process.

Step 2: Modify jetty.xml for LWE-Core Component

Thejetty. xm file found in $LWS_HOVE/ conf/j etty/ | we-core/ et c needs to be
modified to comment out the non-SSL connector. In the file, find the following
section and add comment markers at the beginning and at the end (<!-- and - - >,

respectively):

<Cal | nanme="addConnector">
<Ar g>
<New cl ass="org. eclipse.jetty.server. bi 0. Socket Connector" >
<Set name="port"><SystenProperty nane="jetty.port"
def aul t =" 8888"/ ></ Set >
<Set name="nmaxl dl eTi me" >50000</ Set >
<Set name="| owResour ceMaxl dl eTi ne" >1500</ Set >

</ New>
</ Arg>
</Call>

Step 3: Modify jetty-ssl.xml for LWE-Core Component

In the directory $LW5 HOVE/ conf/jetty/ |l we-core/ etc the filejetty-ssl.xn
should be edited to activate the sample configuration. The configuration is
currently commented out, but the comment tags should be removed and the
keySt or e, keySt or ePasswor d, keyManager Password, t rust St ore and

t rust St or ePasswor d properties should be configured.

<Configure id="Server" class="org.eclipse.jetty.server. Server">

<Cal | nane="addConnector">
<Ar g>

© 2014 Find this documentation online at Page 296 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

class="org. eclipse.jetty.server.ssl. Ssl Sel ect Channel Connect or" >

nane="| uci dwor ksConf Horre" / >/ keyst or e</ Set >

nane="1 uci dwor ksConf Hone"/ >/ t r ust st or e</ Set >

def aul t =" 8888"/ ></ Set >

</ Arg>
</Call>

</ Confi gure>

<New

<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl ContextFactory">
<Set nanme="keySt ore" ><Syst enProperty

<Set nanme="keySt or ePasswor d" >secr et </ Set >
<Set name="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><SystenProperty

<Set nanme="trust St orePasswor d" >secr et 2</ Set >
<Set name="needd i ent Aut h" >f al se</ Set >
</ New>
</ Arg>
<Set name="port"><SystenProperty nane="jetty.port"

<Set nane="nmaxl| dl eTi me" >30000</ Set >
</ New>

The keySt ore and t rust St or e files must be located in the locations specified so
they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the jetty-ssl.xnl file.

Step 4: Modify jetty.xml for LWE-UI Component

The jetty. xnml file found in $LWS_HOVE/ conf/j etty/ | we-ui /et c needs to be
modified to comment out the non-SSL connector. In the file, find the following
section and add comment markers at the beginning and at the end (<!-- and -->,
respectively) so it looks like this:

<Cal | nane="addConnector">

def aul t ="8989"/ ></ Set >

<Ar g>
<New cl ass="org. eclipse.jetty.server. bi 0. Socket Connect or" >
<Set name="port"><SystenProperty nane="jetty.port"

<Set nane="nmax! dl eTi ne" >50000</ Set >

© 2014

Find this documentation online at Page 297 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

<Set nane="| owResour ceMax! dl eTi ne" >1500</ Set >

</ New>
</ Arg>
</Call>

Step 5: Modify jetty-ssl.xml for LWE-UI Component

In the directory $LW5s HOVE/ conf/jetty/ |l we-ui/etc thefilejetty-ssl.xn
should be edited to activate the sample configuration. The configuration is
currently commented out, but the comment tags should be removed and the
keySt or e, keySt or ePasswor d, keyManager Password, t rust St ore and

t rust St or ePasswor d parameters should be configured.

<Configure id="Server" class="org.eclipse.jetty.server. Server">

<Cal | nanme="addConnect or" >
<Ar g>
<New
class="org. eclipse.jetty.server.ssl. Ssl Sel ect Channel Connect or" >
<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl Cont extFactory">
<Set nanme="keySt ore" ><Syst enProperty
nane="| uci dwor ksConf Horre" / >/ keyst or e</ Set >
<Set nanme="keySt or ePasswor d" >secr et </ Set >
<Set name="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><SystenProperty
nane="| uci dwor ksConf Hore"/ >/ t r ust st or e</ Set >
<Set name="trust St or ePasswor d" >secr et 2</ Set >
<Set name="needd i ent Aut h" >f al se</ Set >
</ New>
</ Arg>
<Set name="port"><SystenProperty nane="jetty. port
def aul t ="8989"/ ></ Set >
<Set nane="rmaxl| dl eTi ne" >30000</ Set >
</ New>
</ Arg>
</Call >

</ Confi gur e>

© 2014 Find this documentation online at Page 298 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014
The keySt ore and t rust St or e files must be located in the locations specified so
they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the jetty-ssl.xnl file.

Step 6: Modify jetty.xml for the LWE-Connectors Component

The jetty. xm file found in $LWS_HOVE/ conf/ j etty/ connect or s/ et c needs to be
modified to comment out the non-SSL connector and activate the SSL-connector.
Unlike the LWE-Core and LWE-UI components, the Connectors component only
requires modifying a single file.

In the file, find the following section and add comment markers at the beginning
and at the end (<! -- and - - >, respectively) so it looks like this:

<Cal | nanme="addConnect or">
<Ar g>
<New cl ass="org. eclipse.jetty.server. bi 0. Socket Connect or" >
<Set name="port"><SystenProperty nane="jetty.port"
def aul t ="8765"/ ></ Set >
<Set name="naxl dl eTi me" >50000</ Set >
<Set name="| owResour ceMaxl dl eTi ne" >1500</ Set >

</ New>
</ Arg>
</Call >

In the same file, uncomment the section "To add a HTTPS SSL Listener" to
activate the sample configuration. After the comment tags are removed, configure
the keySt or e, keySt or ePasswor d, keyManager Passwor d, t rust St ore and

t rust St or ePasswor d parameters.

<Cal | nane="addConnector">
<Ar g>
<New
class="org.eclipse.jetty.server.ssl. Ssl Sel ect Channel Connect or" >
<Ar g>
<New cl ass="org. eclipse.jetty. http.ssl.Ssl Cont extFactory">
<Set nanme="keySt ore" ><Syst enProperty
nane="| uci dwor ksConf Horre"/ >/ keyst or e</ Set >

© 2014 Find this documentation online at Page 299 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
<Set name="keySt or ePasswor d" >secr et </ Set >
<Set name="keyManager Passwor d" >secr et </ Set >
<Set nanme="trust Store"><SystenProperty

name="1 uci dwor ksConf Hone"/ >/ t r ust st or e</ Set >

<Set nanme="trust St orePasswor d" >secr et 2</ Set >
<Set name="needd i ent Aut h" >f al se</ Set >
</ New>
</ Arg>
<Set name="port"><SystenProperty nane="jetty.port"
def aul t ="8765"/ ></ Set >
<Set nane="maxl dl eTi ne" >30000</ Set >
</ New>
</ Arg>
</Call>

The keySt ore and t rust St or e files must be located in the locations specified so
they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the file.

Step 7: Restart LucidWorks

After verifying that the keySt or e and trust St or e files are in the locations
specified in each file, LucidWorks Search must be restarted for the changes to take
effect.

Certificate Management

LucidWorks uses standard java jks format in keystores and truststores. Those
stores can be managed using the standard Java keytool.

Currently all certificates are managed outside of LucidWorks. There are no
certificate management tools or admin displays for configuring SSL certificate
related settings. All configuration tasks need to be made manually after installing
LucidWorks and potentially repeated on all nodes where LucidWorks is running.

Client Certificates for LWE-Core and Connectors

It is possible to configure the LWE-Core and Connectors components to use
certificates while communicating.

Prior to LucidWorks v2.5.2, the SSL Configuration API was used to define client
certificates. This is now configured in mast er. conf as Java SSL system properties.

© 2014 Find this documentation online at Page 300 of
LucidWorks http://docs.lucidworks.com/ 347

http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 05-Aug-2014
To use these properties, open nmast er. conf (found in $SLWS_HOVE/ conf and edit
these properties:

- D avax. net. ssl . keySt or e=conf/ keystore.client

- O avax. net. ssl . keySt or ePasswor d=secr et 2

-D avax. net.ssl.trust Store=conf/truststore.client
- avax. net. ssl.trust St orePasswor d=secret 3

The paths to the keySt ore and t rust St or e should be entered as complete paths,
or relative to $LW5s_HOMVE/ app/ bi n.

It is not possible to configure the LWE-UI component in this way

Configuring Mutually Authenticated SSL

LucidWorks supports securing communications to the core APIs with Mutual SSL
authentication. This means the REST API and Solr API can be protected so that
only clients that you trust can access these APIs. The system can also use
mutually authenticated SSL internally to communicate to each Solr node when
using distributed search.

The LucidWorks portions of SSL functionality can be configured by using the SSL
Configuration API.

When configuring LucidWorks to use mutually authenticated SSL the container
must also be configured to require certificates for authentication. In Jetty this is
done by using <set nane="needd i ent Aut h" >t r ue</ Set > in the related SSL
Connector section of the Jetty configuration files (see above).

@
Mutual authentication is not supported for the LWE-UI component, and
thus the Admin UL.
© 2014 Find this documentation online at Page 301 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Debugging SSL Configuration

Reviewing logging events from the LucidWorks log files (either
core. YYYY_MM DD. | og or ui . YYYY_WM DD. | og) may provide some hints about
what is going on if SSL is not working as expected.

Common SSL Problems

Symptom: j avax. net. ssl . SSLHandshakeException: null cert chain

Cause: Client is not sending client certificate. Reconfigure client so that it sends a
client certificate with the request.

Symptom: j avax. net. ssl . SSLExcepti on: Unrecogni zed SSL nessage,
pl ai nt ext connecti on?

Cause: Client is connecting to SSL endpoint without using SSL.

©@
The cURL command line tool can be used to verify the SSL configuration.
For example,:

curl --cacert <ca.crt> --key <host.key> --cert <client.crt>
https://1 ocal host: 8443/ dashboard

The link in this example is to the main LucidWorks Admin UI dashboard.
Since this requires authentication, you should see the HTML indicating you
will be redirected to the login page. If that's what you see, then SSL is
properly set up.

Related Topics

® Jetty doc on configuring SSL
® Java keytool

© 2014 Find this documentation online at Page 302 of
LucidWorks http://docs.lucidworks.com/ 347

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 05-Aug-2014

Solr Direct Access

LucidWorks Search is Solr-powered at its core. Solr, an Apache Software
Foundation project, provides an easy-to-use HTTP interface above and beyond
Lucene, a very fast and scalable Java search engine library. Both Solr and Lucene
are entirely open source, available under the Apache Software License.

LucidWorks Search exposes the Solr interface directly. This means that
applications can leverage both Solr's power and openness and LucidWorks
Search's ease of use.

This guide covers Solr when LucidWorks and Solr intersect but it does not provide
an extensive overview of the inner workings of Solr, and in places assumes some
basic knowledge of Solr. For a good introduction to Solr, the Lucene/Solr
community has produced an Apache Solr Reference Guide which provides a lot of
information about how Solr works "under the hood".

Solr Version

For information about the Solr version included in this release of LucidWorks, see
the SOLR_VERSION.txt file in $LW5_HOVE/ app/ SOLR_VERSI ON. t xt . For LucidWorks
v2.9, we have included Solr version 4.8.1 (the official release). We have also
included the following patch:

® SOLR-5641: REST API to modify requestHandlers

® SOLR-5922: Support Collections API calls in Solr]

® SOLR-4470: Support Basic HTTP authentication in internal Solr requests

® SOLR-5285: Support child documents

® SOLR-6257: Error using two '!" in a document ID with the
CompositeldRouter

You can also get detailed Solr version information for all releases of LucidWorks
Search from our public Github fork here:
https://github.com/lucidimagination/lucene-solr. To see information for a specific
LucidWorks version, select the tag for that version from the "Switch Tags"
drop-down list. Please note, however, that this is not a stand-alone, runnable
Lucene or Solr release; it is intended as a source reference only.

© 2014 Find this documentation online at Page 303 of
LucidWorks http://docs.lucidworks.com/ 347

http://cwiki.apache.org/confluence/display/solr
https://issues.apache.org/browse/SOLR-5641
https://issues.apache.org/jira/browse/SOLR-5922
https://issues.apache.org/jira/browse/SOLR-4470
https://issues.apache.org/jira/browse/SOLR-5285
https://issues.apache.org/jira/browse/SOLR-6257
https://github.com/lucidimagination/lucene-solr

LucidWorks Search Documentation 05-Aug-2014
How the LucidWorks-Bundled Solr is Different

The primary difference between using Solr and LucidWorks is the base URL. Solr's
example application is accessed by default at http://1 ocal host: 8983/ solr/,
whereas the LucidWorks default collection instance of Solr is rooted at

http://1 ocal host: 8888/ sol r/coll ectionl/. If using multiple collections,
replace col | ecti onl with the correct collection name. The Solr URL for each
collection is displayed under each collection listing on the main Collections page in
the Admin UI.

In addition, some of the examples that are usually included with Solr are not
included with LucidWorks. This includes detailed examples and explanations that
are provided in the schema. xm and sol rconfi g. xm files. Those examples will
likely still work with LucidWorks, but would need to be inserted manually into
those files.

Other differences are mentioned specifically in sections that discuss certain
features. If a limitation with Solr is not mentioned, it can be assumed that the Solr
functionality works as you would expect with a stand-alone Solr instance.

Adding Solr Plugins

Generally speaking, most plugins to Solr should work with LucidWorks Search,
provided that they are compatible with the Solr version used with LucidWorks
Search (see #Solr Version above). As described in the Solr Wiki page on Solr

Plugins, there are two options for integrating plugins:

1. "Place your JARs in a | i b directory in the instanceDir of your SolrCore." For
LucidWorks Search, this would mean the | i b directory of your collection
i nst ance_di r. For example, if you wanted to use the plugin with the default
collection, collection1, you would put the relevant JARs in
$LWS_HOWVE/ conf/sol r/ cores/ col |l ectionl_0/bin. You can find the
i nst ance_di r name with the Collections API. The name indicates a directory
name, always relative to $LWS_HOVE/ conf/ sol r/ cores.

2. "Use the li b directive in your sol rconfi g. xm file to specify an arbitrary
JAR path, directory of JAR files, or a directory plus regex that JAR file names
must match." This alternative allows you define the path in sol rconfi g. xn

© 2014 Find this documentation online at Page 304 of
LucidWorks http://docs.lucidworks.com/ 347

http://wiki.apache.org/solr/SolrPlugins
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 05-Aug-2014
for your collection using the <l i b> directive. More information on using this
directive is available in the Apache Solr Reference Guide section on Lib
Directives in SolrConfig.

Either of these approaches will allow integration of a Solr-based plugin with
LucidWorks Search. If the plugin will be used with multiple LucidWorks Search
collections, pick either approach here and configure the use of the plugin for one
collection. Once you've verified that it works successfully with LucidWorks Search,
you can use that single collection to create a Collection Template for use as the
basis for future collections.

If there is configuration to be done in sol rconfi g. xm or schema. xm (or other
configuration files) in order to properly use the plugin, you will need to make those
changes as a separate step and by manually editing the files. If the changes
conflict with or modify the LucidWorks Search defaults, the Admin or Search UI
may behave abnormally. It's best to do thorough testing before moving to
production with any plugin.

More information on how to create a custom plugin is available from the Solr Wiki
at http://wiki.apache.org/solr/SolrPlugins.

Related Topics

Apache Solr Reference Guide
Apache Solr project homepage
Apache Solr Wiki

Solr Plugins from the Solr Wiki

© 2014 Find this documentation online at Page 305 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 05-Aug-2014

Performance Tips

A number of configuration items can be manipulated for better performance when
benchmarking LucidWorks. Implementing some of these optimizations may require
directly configuring Solr via schema. xm and sol rconfi g. xm . See the Apache
Solr Reference Guide for details on Solr customizations that may be right for your
implementation.

® Ensure that you are running the JVM in server mode.

® Allocate only as much memory as needed to the JVM heap. The rest should
be left free to allow the operating system to cache as much of the Lucene
index files as possible.

Improving indexing speed

® Minimize indexing the same content in more than one field. Each field should
be either indexed on its own or Solr's copyField functionality can be used to
copy it to an indexed catch-all field.

® Avoid storing the same content more than once. The target field of copyField
commands should almost never be stored.

® Avoid commits during the indexing process. Turn off Solr auto-commit and
avoid explicitly committing until indexing has completed.

® Disable rules processing if not using business rules as part of your
implementation. See the section on Disabling Business Rules for details on
how to disable rules processing.

Improving Search speed

® Perform a variety of searches before starting any timings. This warms up the
server JVM, and causes parts of the index, commonly used sort fields and
filters to be cached by the operating system.

® Search in as few fields as possible. A single indexed catch-all text field
containing the contents of all the other searchable fields (generated by
copyField commands) will be faster to search than a multi-field query
across many indexed fields.

© 2014 Find this documentation online at Page 306 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr/Copying+Fields

LucidWorks Search Documentation 05-Aug-2014

If necessary, turn off relevancy enhancers such as proximity phrase queries,
date recency boosts, and synonym expansion to generate benchmarks for
comparison with later tests when those features are re-enabled.

Retrieve the minimum number of stored fields that still provide a optimal
search experience for users.

Only retrieve the number of documents that are immediately necessary. The
start and rows query arguments may be used to request pages of results.
Disable rules processing if not using business rules as part of your
implementation. See the section on Disabling Business Rules for details on
how to disable rules processing.

For a large index (on *NIX), force key parts of the indexed portion into
operating system cache by changing to the index directory and executing
cat *.prx *.frq *.tis > /dev/null

Review the section on Wildcards at Start of Terms if leading wildcards have
been enabled for important performance considerations.

Related Topics

Expanding Capacity

© 2014 Find this documentation online at Page 307 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Expanding Capacity

This functionality is
not available with
LucidWorks Search
on AWS or Azure

As your search application grows, you may need to
scale the system to add space for indexes or to increase query responsiveness.
This section discusses advanced deployment options to enhance system
performance and ensure seamless application scaling.

With Solr 4, which is included with LucidWorks Search, the best way to scale is in
SolrCloud mode. How to start LucidWorks in SolrCloud mode is discussed in the
section Using SolrCloud in LucidWorks.

If you only need to extend your index across multiple servers Index Replication
shows how to configure multiple shards for a master-slave environment. Or you
can use Distributed Search and Indexing to distribute search and indexing
processes across multiple servers or shards for peak performance. Note, however,
that distributed search and replication are no longer in active development by the
Solr community.

© 2014 Find this documentation online at Page 308 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Using SolrCloud in LucidWorks

SolrCloud is a set of Solr features that expands the capabilities of Solr's distributed
search, simplifying the creation and management of Solr clusters. SolrCloud is still
under active development, but already supports the following features:

® Central configuration for the entire cluster
® Automatic load balancing and fail-over for queries
® Zookeeper integration for cluster coordination and configuration

For an introduction to SolrCloud, and how it is different from index replication, see
the LucidWorks Knowledgebase article What is SolrCloud?. In addition, the Apache
Solr Reference Guide includes an extensive section on SolrCloud, which includes
background information and configuration instructions. Some changes have been
made for LucidWorks Search, however, which are described below.

LucidWorks Search implements SolrCloud as a purely Solr feature; to manage
SolrCloud shards and replicas, you should refer to and use instructions designed
for a purely Solr installation. There are only a few caveats and modifications for
LucidWorks Search, detailed below, specifically for bootstrapping ZooKeeper and
the cluster nodes.

Topics discussed in this section:

® Enabling SolrCloud Mode
® Using the Embedded ZooKeeper
® Bootstrapping Solr vs. LucidWorks Search
® How SolrCloud Works with LucidWorks
® Replicated Configurations
® Using the Admin UI in SolrCloud Mode
® Feature Limitations
® Collections APIs
® Using a Stand-Alone ZooKeeper Instance or Ensemble
® Related Topics

© 2014 Find this documentation online at Page 309 of
LucidWorks http://docs.lucidworks.com/ 347

https://support.lucidworks.com/entries/24134353-What-is-SolrCloud-And-how-does-it-compare-to-master-slave-
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014

Enabling SolrCloud Mode

LucidWorks Search includes an installer that can install the application on each
node of the planned SolrCloud cluster. For details on using this approach, see the
section SolrCloud Cluster Installation. This approach will allow you to install three
ZooKeeper instances to create a quorum, and then install as many LucidWorks
Search nodes as needed.

The standard instructions for starting SolrCloud are modified slightly for
LucidWorks Search. Commands within the installer take these modifications into
account, but if starting without the installer, refer to the modifications described
below.

While much of the SolrCloud documentation in the Apache Solr Reference Guide
section on SolrCloud can be used, it is important to only start LucidWorks Search
in SolrCloud mode with the instructions included here.

Using the Embedded ZooKeeper

It's possible to make two standalone, or single server, installations communicate
with each other in SolrCloud mode using the ZooKeeper instance embedded with
Lucidworks Search. This can be useful to create a simple two-node cluster when
just starting to learn how this functionality can work for your search application.
With this approach, two separate installations are made (as described in the
section Single Server Installation). Then one installation is started with commands
to bootstrap configurations and start ZooKeeper.

Because we need two servers for this example, we will make two installations of
LucidWorks, one on the server "exanpl e" and the other on the server "exanpl e2".
During installation, do not start LucidWorks Search. Instead, start the two
installations manually, as shown below.

@ We recommend that you only install LucidWorks using the installer
application; copying the Luci dWor ksSear ch directory to another directory
to create another server may cause conflicts with ports. Information on
installing LucidWorks is available in the section on Installation.

© 2014 Find this documentation online at Page 310 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014
The installation in exanpl e should use port 8983 for the LWE-Core component,
which will be changed from the default during the installation process. The
installation on exanpl e2 should use the default port (8888) for the LWE-Core
component. If enabling other components, be sure to modify the ports for each
installation as well. If new to LucidWorks, see the section on Working With
LucidWorks Search Components for more information about the components. Your
port selections might look like this:

Component exanpl e Ports exanpl e2 Ports
LWE-Core 8983 8888
LWE-Connectors 8965 8765
LWE-UI 8889 8989

ZooKeeper will run on the LWE-Core port + 1000, so in this scenario we expect
ZooKeeper to run on port 9983. It's important to keep that in mind while planning
the installation ports so there isn't an inadvertent conflict with LucidWorks Search
ports.

@
SolrCloud uses ZooKeeper to manage nodes, and it's worth taking a look
at the ZooKeeper website to understand how ZooKeeper works before
configuring SolrCloud. Solr can embed ZooKeeper, but for a production
use, it's recommended to run a ZooKeeper ensemble, as described in the
ZooKeeper section of the SolrCloud wiki page.

Starting LucidWorks Search

To start LucidWorks Search in SolrCloud mode, use the usual LucidWorks start
script, but pass some Java options to it. To start exanpl e, you would use a
command like this:

Start 'example'

$LWS_HOVE/ app/ bin/start.sh -l1we_core_java_opts "-Dbootstrap_conf=true
-DzkRun - Dnunthar ds=2"

© 2014 Find this documentation online at Page 311 of
LucidWorks http://docs.lucidworks.com/ 347

http://zookeeper.apache.org/
http://zookeeper.apache.org/

LucidWorks Search Documentation 05-Aug-2014

The boot st rap_conf allows copying of the configuration files for each collection to
the nodes, while zkRun starts ZooKeeper. The nunthar ds value defines how many
nodes there will be in the cluster. Be sure to set this accurately, as Solr cannot yet
easily increase the number of shards without re-bootstrapping the cluster.

We only need to pass boot strap_conf and nunthar ds the first time LucidWorks is
started in SolrCloud mode. In subsequent LucidWorks restarts, start this leader
node with . /start.sh -lwe_core_java opts "-DzkRun". The - DzkRun could be
added to mast er. conf, in which case the st art. sh script alone would start
ZooKeeper each time.

To start the next nodes of the cluster, we still use the start script, but with some
different options. This would start exanpl e2:

Start 'example2'

$LWS_HOVE/ app/ bin/start.sh -1we_core_java_opts "-DzkHost =l ocal host: 9983"

Note that the port defined as the zkHost is the port of the LWE-Core component +
1000. So, if LWE-Core on our exanpl e server was defined at port 8983, ZooKeeper
would be started at port 9983.

(&
The above instructions assume a Linux-based operating system. For
Windows-based systems, use st art. bat as in these examples:

Start exanpl e:

$LWS_HOVE\ app\ bi n\start.bat -lwe_core_java_opts
"-Dbootstrap_conf=true -DzkRun - Dnunthar ds=2"

Start exanpl e2:

$LWS_HOVE\ app\ bi n\start.bat -lwe_core_java_opts
" - DzkHost =l ocal host : 9983"

© 2014 Find this documentation online at Page 312 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
If you have used the installer to install LucidWorks in SolrCloud mode, the required
commands have been added to the mast er. conf for each server, and no special
start or stop instructions are required for restarts. In that case, you would not run
the embedded ZooKeeper; instead you would have installed and configured a
quorum, and the zkHost parameters have been added to the mast er. conf file.

Bootstrapping Solr vs. LucidWorks Search

This table outlines the differences between the Solr instructions for bootstrapping
SolrCloud mode and the LucidWorks Search instructions. It is meant as a summary
if you are already familiar with how SolrCloud works.

SolrCloud LucidWorks Search

Use start.jar Use start.sh orstart. bat with
-l we_core_j ava_opt s defined

Use boot strap_confdir to upload boot st rap_conf =t rue
configuration files to ZooKeeper

Use col | ecti on. confi gNane Not needed with boot strap_conf =true
Default configuration directory is Default configuration directory is
./solr/collectionl/conf $LWS_HOWVE/ conf/sol r/ cores/ col | ecti «

How SolrCloud Works with LucidWorks

There are some caveats to using SolrCloud with LucidWorks Search, as it is so far
only partially integrated with the system. Future releases of LucidWorks Search
will contain more tight integration points with SolrCloud functionality.

Replicated Configurations

When running LucidWorks Search in SolrCloud mode, some LucidWorks
Search-specific features are not yet fault tolerant and highly available. While the
index and configuration files are fully SolrCloud supported, the following are not
currently replicated across shards:

® Data sources and their related metadata (such as crawl history)

® The LucidWorks user database, which stores manually created users (such
as the default "admin" user)

® User alerts

© 2014 Find this documentation online at Page 313 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

® |LDAP configuration files
® SSL configuration

Even though these features aren't replicated, they can still be used with
LucidWorks Search in SolrCloud mode. The files that hold this metadata are in the
$LWS_HOVE/ conf folder and could be copied to the other nodes in the cluster to act
as backup if the main node goes down for any length of time. This is a manual
process and not yet automated by LucidWorks Search.

Using the Admin UI in SolrCloud Mode

To accommodate for the lack of replicated configurations, we recommend that you
do a full LucidWorks Search installation (i.e., all components) on every machine in
your cluster. You should then choose one node to use for the Admin UI. This is the
node that will store your data sources and associated metadata. Another node can
be chosen as the node that does crawling, or you can use the same node used by
the Admin UI. Document updates will still be sent to the nodes, via the index
update processes that make up SolrCloud functionality.

If the node used for the Admin UI goes down, you can choose another node to act
as the Admin UI node, but unless the related configuration files have been copied
to that node you will not have the same user accounts and data sources in the
other nodes. Once you bring the node originally used for the Admin UI back, it
should still have your data sources and other LucidWorks-specific metadata.

You can configure LucidWorks Search to not start the Admin UI by changing
$LWS_HOVE/ conf/ mast er. conf and setting the | weui . enabl ed parameter to

'false’'.

Feature Limitations

The following LucidWorks features may encounter significant problems when
working in SolrCloud mode:

® (Click Scoring cannot be used in SolrCloud mode at this time.

® Auto-complete-related suggestions should be pulled from a single index node
if auto-complete is enabled by adding '&di st ri b=f al se' to any query.
Distributed auto-complete indexing is possible but requires configuration of
the auto-complete indexing on each node and adding a 'query' component to
the autocomplete requestHandler in sol rconfi g. xm .

® De-duplication does not work in SolrCloud due to a bug in Solr (SOLR-3473).

© 2014 Find this documentation online at Page 314 of
LucidWorks http://docs.lucidworks.com/ 347

https://issues.apache.org/jira/browse/SOLR-3473

LucidWorks Search Documentation 05-Aug-2014

® SSL does not work with SolrCloud due to a bug in Solr (SOLR-3854).

® |Log indexing and query statistics in the Admin UI will be inconsistent. If you
are using LucidWorks Search in SolrCloud mode or with each component
installed on a different server, please see the section Log Indexing with
Separated Components for details on how to make sure your logs are fully
indexed.

Collections APIs

LucidWorks Search and Solr both have Collections APIs. They are not duplicates,
even though they share the same parameters. It is important, however, to only
use the LucidWorks Search Collections API to create collections, because of the
issues described in the section #Replicated Configurations. The LucidWorks Search
Admin UI also uses the LucidWorks Collections API to create collections.

When creating a new collection (with either the Admin UI or the API), and you are
working in SolrCloud mode, you can specify the number of shards to break it up
into. This number, however, cannot be higher than the number of shards defined
when LucidWorks Search was bootstrapped.

Behind the scenes, the LucidWorks Search Collections API update LucidWorks
Search-specific collection configuration files and also uses Solr's Collection API to
create the collection in Solr. This has some ramifications for LucidWorks Search:

® Solr's Collection API does not allow defining the instanceDir or the dataDir,
so there is no way for LucidWorks Search to instruct Solr to create the new
collection directories in the same place on the filesystem as the pre-existing
collections that ship with LucidWorks Search. Solr creates collections by
default with the conf and dat a directories in the same location, but the
LucidWorks Search directory structure separates those directories to
$LWS_HOVE/ conf/sol r/ cores and $LWS_HOVE/ dat a/ sol r/ cor es. Because
Solr's Collection API does not allow setting the path values explicitly, they
are created in Solr's default location. What this means is that new collections
created in SolrCloud mode will be located in a different location from the
pre-existing collections (i.e., they will be located under
$LWS_HOWE/ conf/ sol r and the data directory will not be located under
$LWS HOWVE/ dat a/ sol r). This is normal and will not have any impact on
document indexing or searching.

© 2014 Find this documentation online at Page 315 of
LucidWorks http://docs.lucidworks.com/ 347

https://issues.apache.org/jira/browse/SOLR-3854

LucidWorks Search Documentation 05-Aug-2014

® Solr's Collection API itself uses Solr's CoreAdmin API to asynchronously
create cores on each node. For this reason, the collection will appear to be
renamed as <col | ecti on>_shard<x>_repl i ca<y>. LucidWorks Search will
mostly display the correct hame, but the directory on the server will show
the core name (and each core on each node will be named differently). The
Solr Admin UI will also display the core name in the Core dropdown list. If
you are accessing the Solr Admin for several different nodes, this may cause
some initial confusion. Essentially, LucidWorks displays information about a
collection, but Solr displays information about the specific core you are
looking at. For more information about the differences between cores and
collections in Solr, also refer to the SolrCloud Glossary and other pages on
SolrCloud in the Apache Solr Reference Guide.

Using a Stand-Alone ZooKeeper Instance or Ensemble

If you review the Solr Reference Guide or any of the Solr documentation about
SolrCloud, you may notice that using the Apache ZooKeeper instance that is
included with Solr is not recommended for real production systems. This is
because the embedded Zookeeper will not provide sufficient failover; the
ZooKeeper instance is dependent on the Solr instance so if one of the Solr
instances is shut down, an associated ZooKeeper instance will also be shut down.

For this reason, the LucidWorks installer includes the ability to install a ZooKeeper
quorum while installing LucidWorks Search.

If you have an existing ZooKeeper, or an existing SolrCloud setup, the Apache Solr
Reference Guide provides information about how to use a stand-alone ZooKeeper
instance at Setting Up an External ZooKeeper Ensemble. That information is worth
reviewing before installing a stand-alone ZooKeeper. The same instructions apply
if used with LucidWorks Search, with the exception of the bootstrapping
instructions as described in the earlier section #Starting LucidWorks Search
(above).

When using stand-alone ZooKeeper with LucidWorks Search, you need to
take care to keep your version of ZooKeeper updated with the latest
version distributed with Solr and LucidWorks Search. Since you are using
it as a stand-alone application, it does not get upgraded when you
upgrade LucidWorks Search.

© 2014 Find this documentation online at Page 316 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary
https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble

LucidWorks Search Documentation 05-Aug-2014

Solr 4.0 and LucidWorks 2.5.0 and 2.5.1 use Apache ZooKeeper v3.3.6.

Solr 4.1 and higher, and LucidWorks 2.5.2 and higher, use Apache
ZooKeeper v3.4.5.

Related Topics

® Getting Started with SolrCloud from the Apache Solr Reference Guide
® SolrCloud Wiki page

© 2014 Find this documentation online at Page 317 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014

Index Replication

This functionality is
not available with
LucidWorks Search
on AWS or Azure

~ As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for
redundancy, failover, and improved performance. Index Replication and
Distributed Search are considered obsolete technologies; while still
supported, they are not in active development. See the section on Using
SolrCloud in LucidWorks for more information on using SolrCloud with
LucidWorks Search.

Index Replication distributes complete copies of a master index to one or more
slave servers. The master server continues to manage updates to the index. All
querying is handled by the slaves. This division of labor enables Solr to scale to
provide adequate responsiveness to queries against large search volumes. The
master server's index is replicated on the slaves, which then process requests such
as queries.

LucidWorks Search supports index replication, but it is not configured through the
Admin UI. Instead, replication configuration requires editing XML configuration files
in the Solr release included with LucidWorks Search. This section explains how
replication works and how to edit the configuration files. Detailed examples are
provided, so even if you're new to XML and Solr configuration, you should be able
to set up and configure master/slave replication servers with ease.

]
When the Click Scoring Relevance Framework is enabled, LucidWorks
ensures that also the click boost data is replicated together with index
files. See the section on Click Scoring Tools and Index Replication for more
information.
© 2014 Find this documentation online at Page 318 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Configuring Replication on the Master Server

To set up replication, you will need to edit the sol rconfi g. xm file on the master
server. To edit the file, you can use an XML editor or even a simpler tool such as
Notepad on a PC or TextEdit on a Mac.

Within the sol rconfi g. xm file, you will edit the definition for a Request Handler.
A Request Handler is a Solr process that responds to requests. In this case, you
will be configuring the Replication RequestHandler, which processes requests
specific to replication.

The example below shows how to configure the Replication RequestHandler on a
master server.

<request Handl er nane="/replication" class="solr. ReplicationHandl er">
<l st name="nmaster">
<l-- Replicate on 'optimze'. Other values can be 'comrit', 'startup'.
It is possible to have nultiple entries of this config string -->
<str name="replicateAfter">optimnm ze</str>
<l-- Create a backup after 'optimze'. Oher values can be 'commt',
"startup'.
It is possible to have nultiple entries of this config string.
Note that this is just for backup, replication does not require
this.
-->
<l-- <str nane="backupAfter">optim ze</str> -->
<l-- |f configuration files need to be replicated give the nanmes here,
separated by comm -->
<str name="confFil es">schema. xm , stopwords. txt, el evate. xnl </str>
<l-- The default value of reservation is 10 secs. See the
docunent ati on
bel ow. Nornmally, you should not need to specify this -->
<str name="conmnit ReserveDuration">00: 00: 10</str >
</lst>
</ r equest Handl er >

Operations that Trigger Replication

The value of the repl i cat eAft er parameter in the ReplicationHandler
configuration determines which types of events should trigger the creation of
snapshots for use in replication.

© 2014 Find this documentation online at Page 319 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

The repl i cat eAft er parameter can accept multiple arguments.

replicat eAfter Setting Description

startup Triggers replication whenever the
master index starts up.

conmm t Triggers replication whenever a commit

is performed on the master index.

optim ze Triggers replication whenever the
master index is optimized.

If you are using st art up setting for repl i cat eAfter, you'll also need a conmi t

or

opti m ze if you want to trigger replication on future commits/optimizes as well. If
only the st art up option is given, replication will not be triggered on subsequent

commits/optimizes after it is done for the first time at the start.

Configuring Replication on Slave Servers

The code below shows how to configure a ReplicationHandler on a slave server.

<request Handl er nane="/replication" class="solr. ReplicationHandl er">
<l st name="sl ave">
<l-- fully qualified url for the replication handl er of naster.
It is possible to pass on this as a request paramfor the
f et chi ndex conmand
-->

<str

<l-- Interval in which the slave should poll naster. Format is HH nm ss
If this is absent slave does not poll autonatically.
But a fetchindex can be triggered fromthe admin or the http API
-->

<str name="pollInterval ">00: 00: 20</str>

<!-- THE FOLLOWN NG PARAMETERS ARE USUALLY NOT REQUI RED - - >

<l-- To use conpression while transferring the index files.
The possible values are internal | external
if the value is "external' nmke sure that your master Solr
has the settings to honor the accept-encodi ng header.

nane="nmasterUrl ">http:// master. sol r. conpany. com 8983/ sol r/ corenane/ repl i caf

© 2014 Find this documentation online at Page 320 of

LucidWorks http://docs.lucidworks.com/

347

LucidWorks Search Documentation 05-Aug-2014

see here for details
http://w ki.apache. org/sol r/ Sol rHt t pConpr essi on

If it is "internal' everything will be taken care of
automatically.

USE THIS ONLY | F YOUR BANDWDTH IS LOWN
THI' S CAN ACTUALLY SLOW DOMN REPLI CATION IN A LAN -->
<str name="conpression">i nternal </str>
<l-- The follow ng values are used when the slave connects to the
master to downl oad the index files.
Default values inplicitly set as 5000ns and 10000ns respectively.
The user DCOES NOT need to specify these unless the bandw dth
is extrenely lowor if there is an extrenely high |atency
-->
<str name="httpConnTi meout " >5000</ st r>
<str name="htt pReadTi neout ">10000</str>
<l-- If HITP Basic authentication is enabled on the naster,
then the slave can be configured with the following -->
<str nanme="htt pBasi cAut hUser " >user nane</str >
<str name="htt pBasi cAut hPasswor d" >passwor d</ str >
</lst>
</ r equest Handl er >

The master server is unaware of the slaves. Each slave server continuously polls
the master (depending on the pol | I nt erval parameter) to check the current
index version of the master. If the slave finds out that the master has a newer
version of the index it initiates a replication process. The steps are as follows:

1. The slave issues a filelist command to get the list of the files. This command
returns the names of the files as well as some metadata (e.g., size, a
lastmodified timestamp, an alias if any).

2. The slave checks with its own index if it has any of those files in the local
index. It then runs the filecontent command to download the missing files.
This uses a custom format (akin to the HTTP chunked encoding) to download
the full content or a part of each file. If the connection breaks in between,
the download resumes from the point it failed. At any point, the slave tries 5
times before giving up a replication altogether.

3. The files are downloaded into a temp directory, so that if either the slave or
the master crashes during the download process, no files will be corrupted.
Instead, the replication process will simply abort.

© 2014 Find this documentation online at Page 321 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

4. After the download completes, all the new files are 'mv'ed to the live index
directory, and the file's timestamp is set to be identifical to the file's
counterpart on the master master.

5. A commit command is issued on the slave by the Slave's ReplicationHandler,
and the new index is loaded.

Configuring Replication on a Repeater Server

A master may be able to serve only so many slaves without affecting performance.
Some organizations have deployed slave servers across multiple data centers. If
each slave downloads the index from a remote data center, the resulting download
may consume too much network bandwidth. To avoid performance degradation in
cases like this, you can configure one or more slaves as repeaters. A repeater is
simply a node that acts as both a master and a slave. To configure a server as a
repeater, the definition of the Replication requestHandler in the sol rconfi g. xm
file must include file lists of use for both masters and slaves. Be sure to set the
replicateAfter parameter to commit, even if replicateAfter is set to optimize on the
main master. This is because on a repeater (or any slave), a commit is called only
after the index is downloaded. The optimize command is never called on slaves.
Optionally, one can configure the repeater to fetch compressed files from the
master through the compression parameter to reduce the index download time.

Here's an example of a ReplicationHandler configuration for a repeater:

<request Handl er nane="/replication" class="solr. ReplicationHandl er">
<l st name="naster">

<str name="replicateAfter">conmt</str>

<str name="confFil es">schema. xm , st opwords. t xt, synonyns. t xt</str>
</lst>

<l st name="sl ave">

<str
nane="nmasterUrl ">http:// master. sol r. conpany. com 8983/ sol r/ corenane/ repl i caf
<str name="pollInterval ">00: 00: 60</str>
</l st>
</ request Handl er >

© 2014 Find this documentation online at Page 322 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Replicating Configuration Files

To replicate configuration files, list them with the conf Fi | es parameter in the
master's configuration. Only files found in the conf directory of the master's Solr
instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. Even if a
configuration file is changed on the master, that file will be replicated only after
there is a new commit/optimize on master's index.

As a precaution when replicating configuration files, Solr copies configuration files
to a temporary directory before moving them into their ultimate location in the
conf directory. The old configuration files are then renamed and kept in the same
conf/ directory. The ReplicationHandler does not automatically clean up these old
files.

Unlike the index files, where the timestamp is good enough to figure out if they
are identical, configuration files are compared against their checksum. If a
replication involved downloading at least one configuration file with a modified
checksum, the ReplicationHandler issues a core-reload command instead of a
commit command.

Replicating the solrconfig.xml File

To keep the configuration of the master servers and slave servers in sync, you can
configure the replication process to copy configuration files from the master server
to the slave servers. In the sol rconfi g. xm on the master server, include a

conf Fi | es value like the following:

<str
name="conf Fi | es">sol rconfi g_sl ave. xm :sol rconfig.xm , x.xm ,y.xm </str>

This ensures that the local configuration sol rconfi g_sl ave. xml will be saved as
sol rconfi g. xm on the slave. All other files will be saved with their original
names. On the master server, the file name of the slave configuration file can be
anything, as long as the name is correctly identified in the conf Fi | es string; then
it will be saved as whatever file name appears after the colon ':".

© 2014 Find this documentation online at Page 323 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Related Topics

® Using SolrCloud in LucidWorks
® Scaling and Distribution chapter from the Apache Solr Reference Guide

© 2014 Find this documentation online at Page 324 of
LucidWorks http://docs.lucidworks.com/ 347

https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

LucidWorks Search Documentation 05-Aug-2014

Distributed Search and Indexing

This functionality is
not available with
LucidWorks Search
on AWS or Azure

~ As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for
redundancy, failover, and improved performance. Index Replication and
Distributed Search are considered obsolete technologies; while still
supported, they are not in active development. See the section on Using
SolrCloud in LucidWorks for more information on using SolrCloud with
LucidWorks Search.

Consider using distributed search when an index becomes too large to fit on a
single system, or when a single query takes too long to execute. Distributed
search can reduce the latency of a query by splitting the index into multiple shards
and querying across all shards in parallel, merging the results.

Distributed search should not be used if queries to a single index are fast enough
but one simply wishes to expand the capacity (queries per second) of the system.
In this case, standard Index Replication should be used.

Distributed Indexing

To utilize distributed search, the index must be split into shards across multiple
servers. Each shard is a LucidWorks Search server containing a complete index
that can be queried independently, but which only contains a fraction of the
complete search collection.

@
If using distributed indexing with a Solr XML data source type, you may
encounter a situation where the crawl never ends without a restart of
LucidWorks. This is due to a problem in the distributed index processor
and the way Solr XML files are crawled by LucidWorks.
© 2014 Find this documentation online at Page 325 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
There are two possible solutions to this problem:

1. Use SolrCloud. The distributed indexing is handled automatically by
ZooKeeper, and provides automatic failover in case of server failure.

2. Disable the Di stri but edUpdat ePr ocessor on all but the primary,
master, node. It is not really required to be running on slave nodes
since LucidWorks crawlers send their files through only one node
during processing.

Manual Distributed Indexing

One method of splitting the search collection into multiple shards is to index some
documents to each shard instead of sending all documents to a single shard.
Updates to a document should always be sent to the same shard, and documents
should not be duplicated on different shards.

Manual Configuration

A Distributed Update Processor can be enabled to automatically support distributed
indexing by sending update requests to multiple servers (shards).

Enabling distributed indexing is done via the sol rconfi g. xm file, found in
$LWS_HOVE/ sol r/ cores/ col | ecti on/ conf (replace col | ecti on with the name of
the collection that is being configured for distributed indexing). By default it is not
enabled. The sol rconfi g. xm file needs to be installed on each shard, and the
shards should be listed in the same order in each file.

The distributed update processor is controlled by two parameters, shar ds and
sel f, which may either be specified in sol rconfi g. xm , or supplied with a specific
update request to Solr.

® shards lists the servers in the cluster. The list should be exactly the same
(that is, in the same order) in the configuration file for every server in the
cluster.

® sel f should be different for each server in the cluster and should match the
entry in shar ds for the particular server. It is used to allow updates for the
particular server to be directly added rather than going through the HTTP
interface. If it is missing, distributed update will still work, but will be less
efficient.

© 2014 Find this documentation online at Page 326 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

To start using distributed indexing, find the following section in sol rconfi g. xm ,
and uncomment the shard location definitions. Below is an example of shard
definition that is not commented out.

<updat eRequest Processor Chai n nane="| uci d- updat e- chai n" >
<processor class="com | ucid.update. D stribut edUpdat eProcessor Factory">
<l-- exanple configuration..
"shards should be in the *sane* order for every server
in a cluster. Only "self" should change to represent
what server *this* is. -->

<str nanme="sel f">| ocal host: 8983/ solr</str>
<arr name="shards" >
<str>| ocal host: 8983/ sol r</str>
<str >l ocal host: 7574/ sol r</ str>
<farr>
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<int name="maxNunifoLog" >10</int >
</ processor >
<pr ocessor
class="com | uci d. updat e. Fi el dMappi ngUpdat ePr ocessor Fact ory"/ >
<processor class="sol r. RunUpdat eProcessor Factory"/>
</ updat eRequest Processor Chai n>

Indexing Documents

If distributed indexing has been configured as above, then any indexing initiated
from the LucidWorks Search administration user interface, such as crawling
directories, will be appropriately handled by sending some documents to each
server. One can use the distributed update processor in conjunction with any
update handler while directly updating Solr. The / updat e/ xm and / updat e/ csv
update handlers are already configured to use di stri b, the distributed update
processor, by default.

If an update handler has not been configured to use the distributed update
processor, it may be specified in the URL via the updat e. processor parameter:

http://1 ocal host: 8888/ solr/coll ectionl/update?update. processor=distrib

© 2014 Find this documentation online at Page 327 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

If the sel f and shar ds parameters are not configured in solrconfig.xml, then they
may be specified as arguments on the update url.

http://1ocal host: 8888/ solr/collectionl/update?update. processor=di stri b&self

Update commands may be sent to any server with distributed indexing configured
correctly. Document adds and deletes are forwarded to the appropriate
server/shard based on a hash of the unique document id. commit commands and
deleteByQuery commands are sent to every server in shards.

Distributed Search
After a logical index is split across multiple shards, distributed search is used to

make requests to all shards, merging the results to make it appear as if it came
from a single server.

Programmatic Distributed Search
One can use distributed search with Solr request handlers such as st andard,

di smax, or | uci d (the handler used by the LucidWorks Search), or any other
search handler based on or g. apache. sol r. handl er. conponent . Sear chHandl er .

Supported Components
The following Solr components currently support distributed searching:

® The Query component that returns documents matching a query

® The Facet component, for f acet. query and facet. fi el d requests where
facet. sorted=true (the default: return the constraints with the highest
counts)

® The Highlighting component, which highlights results

® The Debug component

The presence of the shar ds parameter in a request will cause that request to be
distributed across all shards in the list. The syntax of shards is
host 1: port 1/ base_url 1, host 2: port 2/ base_url 2, ...

The example below would query across 3 different shards, combining the results:

http://1ocal host: 8888/ solr/collectionl/sel ect ?shards=l ocal host: 8983/ sol r,

[@)

© 2014 Find this documentation online at Page 328 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

As a convenience to clients, a new request handler could be created with shar ds
set as a default like any other ordinary parameter.

The shar ds parameter should not be set as a default in the standard
request handler as this could cause infinite recursion.

Scalability and Fault Tolerance
To provide fault tolerance and increased scalability, standard replication can be

used to provide multiple identical copies of each index shard. Each shard would
have a master and multiple slaves.

Indexing in a Fault Tolerant Distributed Configuration

Only the master for each shard should be configured in distributed indexing or
specified to the distributed update processor. There is no fault tolerance while
indexing - if the master for a shard goes down, indexing should be suspended.

Searching in a Fault Tolerant Distributed Configuration

Each shard will have multiple replicas. A Virtual IP (VIP) should be configured in
the load balancer for each shard, consisting of all replicas. LucidWorks Search
distributed search configuration, and the shar ds parameter for distributed search
requests should use these VIPs.

A single VIP consisting of all the shard VIPs should be configured for all external
systems to use the search service.

© 2014 Find this documentation online at Page 329 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Integrating Monitoring Services

This functionality is
not available with
LucidWorks Search
on AWS or Azure

Monitoring your application always is an important
part of running production system. Most system administrators have used various
tools to ensure everything is ok from the health of server's filesystem to the the
temperature of CPUs. LucidWorks Search provides additional capabilities to
integrate application level statistics information into these monitoring tools.

LucidWorks Search and Solr make available several JMX MBeans which can be
used with stand-alone JMX clients, or integrated with servers that support MBeans,
such as Nagios or Zabbix. More information on all these options is below.

¢ JMX
® Enabling JMX for LucidWorks Search
® JMX Clients

® JMX MBeans

® Integrating with Monitoring Systems
® Zabbix
® Nagios

® Helpful Tips

JMX

JMX is a standard way for managing and monitoring all varieties of software
components for Java applications. JMX uses objects called MBeans (Managed
Beans) to expose data and resources from your application. LucidWorks Search
provides number of read-only monitoring beans that provide useful
statistical/performance information. Combined with JVM (platform JMX MBeans)
and OS level information, it becomes powerful tool for monitoring.

Enabling JMX for LucidWorks Search

By default JMX is enabled in LucidWorks Search for local access only. If you want
to connect and monitor application remotely you need to change

© 2014 Find this documentation online at Page 330 of
LucidWorks http://docs.lucidworks.com/ 347

http://en.wikipedia.org/wiki/Java_Management_Extensions

LucidWorks Search Documentation 05-Aug-2014

| wecor e. j vm par ans parameter in the $LW5_HOVE/ conf / mast er . conf file and add
the following JVM parameters:

| wecore. jvm parans=... -Dcom sun. nanagenent.j mxrenote
- Dcom sun. managenent . j nxr enot e. por t =3000

- Dcom sun. managenent . j nkr enot e. ssl =f al se

- Dcom sun. managenent . j nkr enot e. aut henti cat e=f al se
-Djava. rm . server. host nane=ny. server. name

Where 3000 is an unused TCP port humber.

You might want to secure remote JMX access either by configuring a software or
hardware firewall to allow connections to specified port only from your
hosts/network or by configuring password authentication and/or SSL encryption.
For more information about various security options please refer to the JMX
documentation.

JMX Clients

There are number of various JMX clients you can use to connect to the LucidWorks
Search server and browse available information.

JConsole

JConsole is a standard (part of the JDK) graphical monitoring tool to monitor Java
Virtual Machine (JVM) and Java applications which provides a nice way to display
memory and CPU information as well MBeans from arbitrary applications.

JMXTerm

Jmxterm is an open source command line based interactive JMX client. It allows
you to easily navigate JMX MBeans on remote servers without running a graphical
interface or opening a JMX port. It can also be integrated with script languages
such as Bash, Perl, Python, Ruby, etc. See the following as an example of how it
can be used:

© 2014 Find this documentation online at Page 331 of
LucidWorks http://docs.lucidworks.com/ 347

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation

05-Aug-2014

sh> java -jar jnxterm 1. 0-al pha-4-uber.jar

$>j vis

67183 () - start.jar

[Users/ al exey/ LME/ conf/jetty/rails/etc/jetty.xm

[Users/ al exey/ LME/ conf/jetty/rails/etc/jetty-jnx.xm

[Users/ al exey/ LME/ conf/jetty/rails/etc/jetty-ssl.xm
67182 (m - start.jar

[Users/ al exey/ LME/ conf/jetty/lwe-core/etc/jetty. xm

[Users/ al exey/ LME/ conf/jetty/lwe-core/etc/jetty-jnk. xn
[Users/ al exey/ LME/ conf/jetty/lwe-core/etc/jetty-ssl.xn
93534 () - jmxterm 1. 0-al pha-4-uber.jar

8554 () -

$>open 67182
#Connection to 67182 is opened

$>domai ns

#fol | owi ng dommi ns are avail abl e
JM nmpl enent ati on

com sun. managenent

java.l ang
java.util .l ogging
org.nortbay.jetty

org. nortbay.jetty. handl er
org.nortbay.jetty.security
org.nortbay.jetty. servl et
org. nortbay.jetty.webapp
org. nortbay. | og

org. nortbay. util

sol r/ Luci dWor ksLogs
solr/collectionl

$>domai n solr/collectionl
#domain is set to solr/collectionl

$>beans
#domain = solr/collectionl

Wel cone to JMX terminal. Type "hel p" for avail abl e conmands.

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 332 of
347

LucidWorks Search Documentation 05-Aug-2014

solr/collectionl:id=collectionl,type=core

solr/coll ectionl:id=org. apache. sol r. handl er. St andar dRequest Handl er, t ype=st
t ype=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2

#bean is set to

solr/col |l ectionl:type=updat eHandl er, i d=org. apache. sol r. updat e. Di r ect Updat e}

[2))

solr/col |l ectionl:type=updat eHandl er, i d=org. apache. sol r. updat e. Di r ect Updat e}
nane = org. apache. sol r. core. JnxMoni t or edMap$Sol r Dynam cMBean
attributes

% - adds (java.lang. String, r)

% - autocommit maxTine (java.lang.String, r)

%R - autocommits (java.lang.String, r)

%3 - category (java.lang.String, r)

%l - commits (java.lang.String, r)

% - cumulative_adds (java.lang.String, r)

%6 - cumrul ative_del etesByld (java.lang. String, r)

%’ - cumrul ati ve_del etesByQuery (java.lang. String, r)
%8 - curul ative_errors (java.lang. String, r)

%9 - deletesByld (java.lang. String, r)

%40 - del etesByQuery (java.lang.String, r)
%141 - description (java.lang.String, r)
%42 - docsPending (java.lang.String, r)

%43 - errors (java.lang.String, r)
%4 - expungeDel etes (java.lang. String, r)
%5 - nanme (java.lang.String, r)

%6 - optimzes (java.lang.String, r)
%17 - rollbacks (java.lang.String, r)

%48 - source (java.lang.String, r)

%49 - sourceld (java.lang.String, r)

%0 - version (java.lang.String, r)
#t here's no operations

#there's no notifications

$>get cumul ative_adds

#nbean =

solr/col |l ectionl:type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat €
= 125;

—

© 2014 Find this documentation online at
LucidWorks http://docs.lucidworks.com/

Page 333 of
347

LucidWorks Search Documentation 05-Aug-2014

JMX MBeans

LucidWorks includes a number of useful JMX MBeans, some available through Solr
and some developed in LucidWorks Search itself:

Solr MBeans

Domain

solr/collection

Objects Available Comments
attributes

type=updateHandlercumulative_adds, This MBean
cumulative_deletesBpEdyides

id=org.apache.solr.updrtieative_deletesBgQu@nrghensive
cumulative_errors, information about

DirectUpdateHandlereommits, indexing activity
autocommits, like number of
optimizes, added documents,
rollbacks, number of errors,
docsPending, etc number of

commits,
autocommits and
optimize

operations. It is
really useful to
plot that
information into
graphs in your
monitoring
system. The
cumulative_errors
parameter shows
the number of low

level 10
exceptions.
solr/collection type=/update, request, errors, If using direct Solr
id=org.apache.solr. avgTimePerRequest API, there are
etc separate beans for
© 2014 Find this documentation online at Page 334 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Domain

solr/collection

Objects Available Comments
attributes
all types of
XmlUpdateRequestt handlers you can

use to index
documents into
the system, such
as XML, CSsVv,
JSON request
handlers. It makes
sense to add this
UpdateRequest
Handler
information to
indexing graphs as
well. You might
also setup
monitoring alert
on a number of
errors for
particular update
handler to make
sure LucidWorks
Search clients
don't hit any
errors during
indexing like
invalid fields
names or types,
no required fields
in indexed
documents, etc.

type=/lucid, requests, errors, This MBean
id=org.apache.solr. timeouts, represents the
avgTimePerRequest default LucidWorks

© 2014
LucidWorks

Find this documentation online at Page 335 of
http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Domain Objects Available Comments
attributes

Search request
StandardRequestHa handler and
provides statistics
about number of
search requests,
errors, timeouts
and average
response time for
search requests.
It's pretty useful
to display this
information on
monitoring graphs
as well as setup
monitoring alerts,
such as, "notify
administrator if
average response
time is more than
0.5 second or total
number of errors
and timeouts is
more than 1% of
total requests".

solr/collection type=searcher, numbDocs, numbDocs is the
id=org.apache.solr. warmupTime total number of
documents in the
SolrIndexSearcher index.

warmupTime is
the amount of
time a new
Searcher takes to
warm. When

© 2014 Find this documentation online at Page 336 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Domain Objects Available Comments
attributes

LucidWorks Search
commits new data
into index, a new
Searcher is
opened and
warmed. The
warming operation
regenerates
caches from the
previous Searcher
instance and runs
some predefined
in solrconfig.xml
queries to warm
up IO filesystem
cache and load
Lucene FieldCache
in memory. This
attribute basically
defines how long
does it take to
commit before
new data will be
available to users.
It makes sense to
monitor this
parameter and
setup trigger to
alert the
LucidWorks Search
administrator if it
takes more time
than you expect.

© 2014 Find this documentation online at Page 337 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Domain Objects Available Comments
attributes
solr/collection type=filterCache, cumulative_eviction Solr caches
id=org.apache.solr. cumulative_hitratio, popular filter

LRUCache

cumulative_hits,
cumulative_inserts,
cumulative_lookups
warmupTime, etc

query
(fg=category:IT)
attributes as
unordered sets of
document ids. This
technique
significantly
improves search
filtering/faceting
performance. size
is the current
number of cached
filter queries.
cumulative_hitratio
represents if this
cache is
successfully
utilized by giving
the ratio of
successful cache
hits to overall
number of
lookups. If it's low
(such as < 0.3 or
30%) over long
period of time
then you might
want either
increase cache
size or disable it at

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page 338 of
347

LucidWorks Search Documentation 05-Aug-2014

Domain Objects Available Comments
attributes

all to reduce
performance
overhead.

solr/collection type=queryResultCaduenulative_evictionsThis cache stores
cumulative_hitratio, ordered sets of
id=org.apache.solr.seanahlative_hits, document IDs and
cumulative_inserts, the top N results
LRUCache cumulative_lookups, of a query ordered
warmupTime, etc by some criteria.
It has the same
attributes as
filterCache.

solr/collection type=documentCacheymulative_evictionsThe
cumulative_hitratio, documentCache
id=org.apache.solr.seanahlative_hits, stores Lucene
cumulative_inserts, Document objects
LRUCache cumulative_lookups, that have been
etc fetched from disk.

LucidWorks Search MBeans

Domain Objects Available Comments
attributes
lwe id=crawlers, total_runs, This MBean
name=<data_sourc total_time, displays crawlers
num_total, statistics
type=datasources num_new, information for
num_updated, specific data
num_unchanged, source (like
num_failed, number of
num_deleted processed
documents,
© 2014 Find this documentation online at Page 339 of

LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014
Domain Objects Available Comments
attributes
number of errors,
etc). If you have
periodically or long
running scheduled
data source then
you might want to
monitor and alert
if there's any
problem with the
underlying source
(web site,
SharePoint server,
etc) or how
optimized your
incremental crawl
is (percentage of
num_unchanged
to num_total), for
example.
lwe id=crawlers, total_runs, If you have
name=<collection_naoba>time, multiple data
num_total, sources and don't
type=collections num_new, want to monitor
num_updated, on per data source
num_unchanged, level, but keep an
num_failed, eye on aggregate
num_deleted numbers for the
whole collection
you might want to
use this bean.
lwe id=crawlers, total_runs, You can use this
type=total total_time, MBean if you have
num_total, multiple collections
© 2014 Find this documentation online at Page 340 of
LucidWorks http://docs.lucidworks.com/ 347

LucidWorks Search Documentation 05-Aug-2014

Domain Objects Available Comments
attributes
num_new, (homogeneous
num_updated, collections or
num_unchanged, multi-tenant
num_failed, architecture) to
num_deleted monitor on per

instance level.

Integrating with Monitoring Systems

Using JConsole and JmxTerm tools is a good way to explore information hidden in
JMX, but what you really need is to monitor your application automatically, record
historical information, display it in a graphical form, configure parameters
thresholds as triggers and send alerts in case of denial of service or performance
problems. There are various standard sysadmin tools for that and integrating
LucidWorks with them is no different than with any other Java application. The
idea is that you can retrieve application information and send it to external
monitoring system. In our documentation we provide two examples of integrating
LucidWorks server with popular open source monitoring tools - Zabbix and Nagios.

Zabbix

Zabbix is an enterprise-class open source distributed monitoring solution for
networks and applications. It comes with pre-defined templates for almost all
operating systems as well as various open source applications. It also has a great
template for JVM that contains the most vital statistics of arbitrary Java
application. There are different ways how you can integrate LucidWorks with
Zabbix and the best approach depends on the Zabbix release version.

Pre-2.0 Releases

Zabbix does not contain built-in support for monitoring Java applications prior to
v2.0, but if you are handy with scripting and command line tools then there are
two possible approaches:

UserParameter: You can configure the Zabbix system agent to send custom
monitored items using User Par anet er . For retrieving JMX statistics you can use
either cndline-jmxclient or jmxterm as command line clients.

© 2014 Find this documentation online at Page 341 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.zabbix.com
http://www.zabbix.com/documentation/1.8/manual/config/user_parameters
http://crawler.archive.org/cmdline-jmxclient/
http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation 05-Aug-2014

User Par anet er =j vm maxt hreads, java -jar cndline-jmxclient.jar
| ocal host: 3000 java. |l ang: type=Threadi ng PeakThr eadCount

zabbix_sender utility: If you have a large humber of JMX monitored items, or you
need to monitor some items quite frequently, then spawning a Java Virtual
Machine process to get a single object/attribute can be too expensive. In this case
consider scripting JMX interactions using the JMXTerm command line tool and your
favorite scripting language. The solution below is in Ruby but could be
implemented using any scripting language. The main idea is that you can run a
JMXTerm java application from your script and communicate with it using st di n
and st dout streams using the expect library.

require "open3d"
require 'expect'

run jnxterm java application

stdin, stdout, wait_thr = Open3. popen2e('java -jar
jmxterm 1. 0- al pha-4-uber.jar')

wait for pronpt

result = stdout.expect('$>', 60)

connect to specific jvm
stdin. puts("open #{process_id}")
result = stdout.expect('$>', 60)

stdin.puts('get -d solr/collectionl -b

type=searcher, i d=org. apache. sol r. search. Sol r I ndexSear cher nunDocs")
result = stdout.expect('$>', 60)

parse response from jnxterm command

run zabbi x_sender command to send single itemor save multiple val ues
into file and send as a batch

out put = "zabbi x_sender -z #{ @erver_name} -p #{ &erver_port} -i
file.txt .chonp

parse response and validate that operation is successful

© 2014 Find this documentation online at Page 342 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.zabbix.com/documentation/1.8/manual/processes/zabbix_sender
http://en.wikipedia.org/wiki/Expect

LucidWorks Search Documentation 05-Aug-2014

2.X Releases

Zabbix 2.0 contains built-in support for monitoring Java applications (Zabbix Java
proxy). For more information please see the JMX Monitoring section of the Zabbix
manual.

The following steps describe how to integrate LucidWorks Search with the Zabbix
2.0 release.

1. Download and install the 2.0 release according to the official documentation.
2. In order to build Zabbix JMX proxy you should build Zabbix package with the
- - enabl e- j ava configuration option, such as ./ confi gure
--enabl e-server --wth-nysql --enable-java.

If you intend to run Zabbix on the same server where you installed
LucidWorks, you may want to add the - - enabl e- agent option, such as
./configure --enabl e-server --with-nysqgl --enable-java

- -enabl e- agent ..

3. After make install, copy the exampleinit. d start script from
m sc/init.d/ debi an/ zabbi x-server into the/etc/init.d directory and
edit it to start the JMX proxy daemon by adding
<install _dir>/shin/zabbix_javal/startup.sh and
<install _dir>/sbin/zabbi x_java/ shut down. sh calls to the corresponding
optionsininit.d.

4. Configure JMX proxy in / et c/ zabbi x/ zabbi x_server. conf by editing the
JavaGat eway, JavaGat ewayPort and St art JavaPol | ers parameters. The
JavaGat ewayPort should match the LI STEN_PORT defined in
<install _dir>/sbin/zabbi x_javal/settings.sh. It is also recommended
to enable JMX proxy verbose logging by editing
<instal |l _dir>/sbin/zabbix_javal/lib/logback.xm and changing the
fil e element to point to your log file directory and setting the | evel
attribute to "debug".

5. Import, using the Zabbix UI, the sample templates found in
$LWS_HOVE/ app/ exanpl es/ zabbi x called | we_zabbi x_t enpl at es. xm (there
are 3 in that file).

6. Install the Zabbix agent to the server where LucidWorks Search is installed
and configure it to connect to the Zabbix server.

© 2014 Find this documentation online at Page 343 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/installation/install

LucidWorks Search Documentation 05-Aug-2014

7. Add Zabbix host and assign proper template for the specific operating
system (i.e., linux, freebsd, etc.).

8. Assign the imported templates (Template_JVM, Template_Solr,
Template_LWE) to that host.

9. Enable JMX monitoring in LucidWorks and allow the Zabbix server connect to
JMX interface over the network. Instructions to enable JMX monitoring are in
the #Enabling JMX for LucidWorks Search section of this Guide.

10. Add the JMX interface to the host where LucidWorks is installed. This is done
via the Zabbix UI by creating JMX agents for each counter.

11. Start any activity in LucidWorks (such as, crawling, indexing, or serving
queries) and review the graphs for the monitored host (see screenshots
below).

Example graphs
® Total number of documents in search index

Total Number Of Documents
® Solr index operations (commits, optimizes, rollbacks)

! SECPRET R T L PR LFERET RN BT B
Oahe oqee & & B&E° :
[Fehs trgmmee £ 0 B o

Solr Index Operations
® Solr document operations (adds, deletes by id or query)

}44 _".i'l'l.ll-"ll"'_"__--ﬂ e 1N ‘4“'-'"}.;"' ‘41 .'-_.f ; 'i_. b s
Solr Document Operations

® Crawling activity - number of total documents processed, number of failures
(retrieve, parsing), number of hew documents

AER: & = 48 &
Crawling Activity
® Search activity - number of search requests

© 2014 Find this documentation online at Page 344 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring#configuring_jmx_interfaces_and_items_in_zabbix_gui

LucidWorks Search Documentation 05-Aug-2014

R TR, B
. . oM
: [Fans N
G P AP

Search Activity
® Search Average Response Time

Search Average Response Time
® Searcher Warmup Time (how fast committed docs become
visible/searchable)

Searcher Warmup Time
® Java Heap Memory Usage

BPila. 2 o mii ad e

Java Heap Memory Usage
® Caches stats

Nagios

Nagios is a popular open source computer system and network monitoring
software application. It watches hosts and services, alerting users when things go
wrong and again when they get better. There are different Nagios plugins that
allow you to monitor Java applications using JMX interface. We recommend you to
use Syabru Nagios JMX Plugin as the most mature plugin that supports different
data types (integers, floats, string regular expressions) and advanced Nagios

© 2014 Find this documentation online at Page 345 of
LucidWorks http://docs.lucidworks.com/ 347

http://www.nagios.org/
http://snippets.syabru.ch/nagios-jmx-plugin/

LucidWorks Search Documentation 05-Aug-2014
threshold syntax. In order to install Syabru Nagios JMX Plugin you should copy
check_j nmx and check_j nx. j ar from the downloaded package to Nagios pl ugi ns
directory and add check_jmx command definition to either global commands. cf g
configuration file or put the j nx. cf g file into nagi os_pl ugi ns configuration
directory. The next step is to define Nagios services, as in this example:

LWE searcher warmup tinme is no nore than 1) 1 second - warning state
2) 2 seconds - critical state
define service {

host gr oup_nane al
servi ce_description LVWE_SEARCHER WARMUP_TI ME
check_command check_j nx! 3000! - O

"solr/coll ectionl:type=searcher,id=org. apache. sol r. search. Sol rl ndexSear chey
- A war mupTime -w 1000 -c 2000 -u ns
use generi c-service
notification_interval 0
}
LVE search average response tinme is no nore than 1) 100nms - warning
state 2) 200nms - critical state
define service {

host gr oup_nane al
servi ce_description LWE SEARCHER AVG RSP _TI ME
check_comand check_j nx! 3000! - O

"solr/collectionl:type=/Ilucid,id=org.apache. solr. handl er. St andar dRequest Hah
- A avgTi nePer Request -w 100 -c¢ 200 -u ns
use generic-service
notification_interval 0

After you setup your services and reload the Nagios configuration you can monitor
application state using either the Nagios web UI or receive email notifications.

® Nagios UI screenshot (thresholds on the screenshots are lowered to trigger
critical state as an example)

localhost () LWE SEARCHER AVG RSP TIME _2011-0&22 08:02:21 0d 0h 23m 528 44 JMX CRITICAL - avgTimePerRequest = 3.3344653ms
LWE SEARCHER WARMUP TIME [CRITICAENN 2011-08-22 08:01:56 0d 0h 17m 53s 404 JMX CRITICAL - warmupTime = 1284ms

® Nagios email alert

© 2014 Find this documentation online at Page 346 of
LucidWorks http://docs.lucidworks.com/ 347

http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition

LucidWorks Search Documentation 05-Aug-2014

** PROBLEM Service Alert: localhost/LWE_SEARCHER_WARMUP_TIME is CRITICAL **

Inbox | X

nagios@ip-10-110-235-82.ec.internal to me 11:52 AM (44 minutes agg

Notification Type: PROBLEM

Service: LWE_SEARCHER_WARMUP_TIME
Host: localhost

Address: 127.0.0.1

State: CRITICAL

Date/Time: Mon Aug 22 07:52:01 UTC 2011
Additional Info:

JMX CRITICAL - warmupTime = 1114ms

Helpful Tips

OS file system cache: One of the frequent problems with LucidWorks
Search and Lucene/Solr applications is that if you do not have enough free
memory and a significant index size you might notice performance problems
because there's not enough free memory for the file system cache. IO cache
is a crucial resource for search applications, so it definitely makes sense to
monitor this parameter and display it in graphs with other memory
information like free memory, jvm heap memory, swap, etc. This parameter
is part of the OS level monitoring in Zabbix (name is

vm nenory. si ze[cached]).

File descriptors: Another problem is that sometimes your application can
hit OS or per process file descriptor limits. It is also recommended to
monitor these parameters and set trigger thresholds for these parameters.
CPU usage: Default Zabbix templates have triggers for CPU load average
numbers. You might want to tune thresholds for your server based on
number of CPUs and expected load.

Heap memory usage and garbage collector statistics: Zabbix Java
template contains multiple items and triggers for memory and garbage
collector invocation counts. You should also tune these parameters to match
your scenario.

Solr index size and free disk space: These should be set properly to
avoid "Out Of Disk Space" errors.

© 2014 Find this documentation online at Page 347 of
LucidWorks http://docs.lucidworks.com/ 347

	Getting Started
	LucidWorks Search User Interface Help
	System Configuration Guide
	Understanding LucidWorks Search
	How Search Engines Work
	Indexing
	Searching
	Full-text Searching and Challenges

	How LucidWorks Search Works
	Related Topics

	Working With LucidWorks Search Components
	About the Components
	LWE-Core
	LWE-UI
	LWE-Connectors
	Default Installation URLs

	Configuring the Components
	Related Topics

	System Directories and Logs
	Locating Files and Directories
	Configuring LucidWorks Search Directories
	Temporary Files

	System Logs
	Log Properties

	LucidWorksLogs Collection
	Related Topics

	Starting and Stopping LucidWorks Search
	Starting a Standalone LucidWorks Search Instance
	Starting SolrCloud-enabled LucidWorks Search Instances
	Passing SolrCloud parameters at Start
	Updating master.conf

	Stopping LucidWorks Search (all modes)
	Starting or Stopping Components Separately

	Configuring Default Settings
	Related Topics

	LucidWorks System Usage Monitor
	Information Collected
	How the System Usage Monitor Works
	When Information is Sent
	How Information is Sent

	How to Opt-In or Opt-Out
	During Installation
	Post-Installation

	More Information

	Collections and Indexes
	Working with Collections
	Default Collections
	Per-Collection Features
	System-Wide Features
	Related Topics

	Using Collection Templates
	Included Templates
	Creating a Template
	Related Topics

	Indexing Documents
	Defining Fields
	Indexing Data Sources
	Related Topics

	Storing Indexes in HDFS
	Defining the HdfsDirectoryFactory in solrconfig.xml
	Updating master.conf
	Related Topics

	How Documents Map To Fields
	Related Topics

	Customizing the Field Schema
	Guidelines for Removing Fields from the Schema
	Essential Fields
	Built-In Search UI Fields
	Fields to Support Specific Features
	Crawler Fields
	Other Dynamic Fields

	Table of Fields

	Reindexing Content
	Related Topics

	Multilingual Indexing and Search
	Approaches to Multilingual Search
	Single Field Approach
	Multiple Field Approach
	Multiple Indexes Approach

	Open Source Multilingual Capabilities
	Adding Support for Other Languages
	Related Topics

	Lucid Plural Stemming Rules
	The Stemming Rules File
	Types of Stemming Rules
	Protected Word
	Replacement Word
	Protected Suffixes
	Translation Suffix

	Example Stemming Rules File
	Choosing an Alternate Stemmer
	Using the FieldTypes API
	Editing schema.xml

	Deleting the Index
	Related Topics

	Crawling Content
	Overview of Crawling
	The Crawl Process
	Re-Crawling Documents

	Data Source Options
	Logging
	Scheduling
	Field Mapping

	Data Source Types
	Related Topics

	Supported Filetypes
	Supported File Formats

	Troubleshooting Document Crawling
	Errors Creating Data Sources
	Path or URL Errors
	MapR-related Errors

	Understanding Crawl Errors
	Possible Errors

	Related Topics

	Pushing Content to LucidWorks
	Push Data Sources
	Add lucidworks_fields to Incoming Content
	Examples

	Related Topics

	Indexing Documents Directly to Solr
	Solr and the LucidWorks Admin UI
	Indexing Solr XML
	Indexing Column (Comma) Delimited Data
	Related Topics

	Crawling Windows Shares with Access Control Lists
	Permissions with Access Control Lists
	How SMB ACL Information Is Stored In The Index
	Related Topics

	Indexing Binary Data Stored in a Database
	Example
	Related Topics

	Using the Hadoop Crawlers
	System Requirements
	Special Requirements for MapR

	Using Hadoop Crawlers in LucidWorks
	How the Crawler Works
	Differences from Other Hadoop Crawlers in LucidWorks
	Job Jar Arguments
	Mapper Classes
	Example Arguments

	Permission Issues
	Related Topics

	Integrating Nutch
	Solr indexer
	Field mapping in Nutch
	Field mapping in LucidWorks
	Putting it all together
	Summary
	Related Topics

	Processing Documents in Batches
	How a Batch is Constructed
	Steps to Configure Batch Crawling
	More about the Data Source Settings

	Related Topics

	Using the Apache Hive Connector
	Installing LucidWorks to Hive
	Create an External Table
	Queries and Inserting Tables

	Query and Search Configuration
	Overview of Query Processing
	Matching the User's Query to Documents
	Search Results

	Getting Search Results
	Basics of Searching
	Request Handlers
	Query Parsers

	Related Topics
	Constructing Solr Queries
	Solr Query Parameters
	Query Parsers
	Related Topics

	Solr Query Responses
	Structure of the Response
	The responseHeader Section
	The response Section
	The highlighting Section
	The facet_counts Section
	The spellcheck Section
	The debug Section

	Format of Results
	Related Topics

	Query and Response Examples
	Related Topics

	Understanding and Improving Relevance
	Relevance Testing
	After Testing
	Related Topics
	Indexing and Relevance
	Stop words
	Alternate Indexing Fields
	Document and Field Boosting
	Stemming and Lemmatization

	Queries and Relevance
	Boosting Specific Documents
	Query Term Boosting
	Click Scoring Relevance Framework
	Synonyms
	Unsupervised Feedback
	Boosting Documents According to Rules
	Related Topics

	Relevance Tuning Tools
	Relevancy Workbench
	Explain Scoring
	Solr Analysis
	Using Luke
	External Boost Data
	Related Topics

	Synonyms and Stop Words
	Synonym Expansion
	Stop Words
	Related Topics
	Suppressing Stop Word Indexing
	Disabling Stop Word Indexing
	Position Increment Mode

	Spell Check
	Related Topics

	Auto-Complete of User Queries
	Automatic Creation of Auto-Complete Indexes

	Enterprise Alerts
	How Alerts Work
	Enabling Alerts

	Click Scoring Relevance Framework
	Functionality of Click Scoring
	Collection of Query Terms and User Clicks
	Processing Logs
	Maintenance of Historical Click Data
	Document Boost Data
	Integration of Boost Data with the Index

	Using Click Scoring information
	Related Topics
	Using Click Scoring Tools
	File Formats
	Query and Click-through Log Format
	Boost File Format

	Click-induced Boost Calculation
	ClickAnalysisRequestHandler
	Click Scoring Tools and Index Replication

	Business Rules Integration
	About Rules Engines
	When Should I Use Business Rules?
	How to Implement Business Rules in LucidWorks Search
	Integrating with your Rules Engine

	Configuring Business Rules in LucidWorks Search
	RequestHandlers
	/rulesMgr
	Optional RequestHandlers
	/update-with-rules
	/update-extract-with-rules
	/search-with-rules

	SearchComponents
	firstRulesComp
	lastRulesComp
	Rules Component Parameters
	Input Parameters
	Facts Collected for the RulesComponent

	landingPage
	Input Parameters
	Facts Collected for the LandingPageComponent

	UpdateRequestProcessorChain
	Facts Collected for the RulesUpdateProcessor

	Document Transformer
	Facts Collected for the RulesDocTransformer

	Rules with Index Replication

	Writing Rules
	Rules Files
	Rule Declarations
	rule and Attributes
	when Conditions
	then Actions

	DroolsHelper Class
	Limitations

	Related Topics

	Example Rules and Recipes
	Sample Rule Files
	Detailed Examples
	README Example
	Landing example

	Disabling Business Rules
	Remove Rules from Update Chain
	Remove Rules from the /lucid Request Handler
	Remove the Rules Request Handler
	Remove Rules Search Components
	Remove the RulesDocTransformer
	Remove Rules From the Replication Handler

	Security and User Management
	Restricting Access to UIs and APIs
	Network Access
	User Authentication
	User Authorization

	Restricing Access to Documents
	User Authentication Options
	Manual User Management
	Enabling Jetty-based Authentication with LDAP Roles
	Modify master.conf
	Modify jetty.xml
	Modify web.xml
	Modify solr.xml
	Enable LDAP
	Restart LucidWorks Search

	Admin UI-based LDAP Authentication
	LDAP Configuration File
	Modify Server Settings Page in Admin UI
	Enable LDAP property in master.conf
	Restart LucidWorks

	Jetty-Based Authentication with realm.properties
	Modify Login Configuration jetty.xml
	Create a realm.properties File
	Modify Roles in web.xml

	Role Configuration
	Defining Roles
	Resources

	Granting User Access

	Restricting Access to Content
	Search Filters
	Access Control Lists
	Document-based Authorization
	Related Topics

	Enabling SSL
	Steps to Enable SSL
	Step 1: Modify master.conf
	Step 2: Modify jetty.xml for LWE-Core Component
	Step 3: Modify jetty-ssl.xml for LWE-Core Component
	Step 4: Modify jetty.xml for LWE-UI Component
	Step 5: Modify jetty-ssl.xml for LWE-UI Component
	Step 6: Modify jetty.xml for the LWE-Connectors Component
	Step 7: Restart LucidWorks

	Certificate Management
	Client Certificates for LWE-Core and Connectors
	Configuring Mutually Authenticated SSL
	Debugging SSL Configuration
	Common SSL Problems

	Related Topics

	Solr Direct Access
	Solr Version
	How the LucidWorks-Bundled Solr is Different
	Adding Solr Plugins
	Related Topics

	Performance Tips
	Improving indexing speed
	Improving Search speed
	Related Topics

	Expanding Capacity
	Using SolrCloud in LucidWorks
	Enabling SolrCloud Mode
	Using the Embedded ZooKeeper
	Starting LucidWorks Search

	Bootstrapping Solr vs. LucidWorks Search

	How SolrCloud Works with LucidWorks
	Replicated Configurations
	Using the Admin UI in SolrCloud Mode
	Feature Limitations
	Collections APIs

	Using a Stand-Alone ZooKeeper Instance or Ensemble
	Related Topics

	Index Replication
	Configuring Replication on the Master Server
	Operations that Trigger Replication

	Configuring Replication on Slave Servers
	Configuring Replication on a Repeater Server
	Replicating Configuration Files
	Replicating the solrconfig.xml File

	Related Topics

	Distributed Search and Indexing
	Distributed Indexing
	Manual Distributed Indexing
	Manual Configuration
	Indexing Documents

	Distributed Search
	Programmatic Distributed Search
	Supported Components

	Scalability and Fault Tolerance
	Indexing in a Fault Tolerant Distributed Configuration
	Searching in a Fault Tolerant Distributed Configuration

	Integrating Monitoring Services
	JMX
	Enabling JMX for LucidWorks Search
	JMX Clients
	JConsole
	JMXTerm

	JMX MBeans

	Integrating with Monitoring Systems
	Zabbix
	Pre-2.0 Releases
	2.x Releases
	Example graphs

	Nagios

	Helpful Tips

