
Created: 05-Aug-2014

LucidWorks Search System
Configuration Guide
2.9 Documentation

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 2
347

Table of Contents

Getting Started ___ 5
LucidWorks Search User Interface Help _________________________________ 9
System Configuration Guide __ 10

Understanding LucidWorks Search __________________________________ 11
Collections and Indexes ___ 41
Crawling Content __ 92
Query and Search Configuration ___________________________________ 163
Security and User Management ____________________________________ 263
Solr Direct Access __ 303
Performance Tips ___ 306
Expanding Capacity ___ 308
Integrating Monitoring Services ___________________________________ 330

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 3
347

LucidWorks Search Documentation

This documentation covers LucidWorks Search v2.9.

The LucidWorks Search Documentation is organized into several guides that cover
all aspects of using and implementing a search application with LucidWorks
Search, whether on-premise or hosted on AWS or Azure.

Installation & Upgrade Guide

Installing LucidWorks Search
System Directories and Logs
Upgrade instructions for v2.9
Review changes in LucidWorks v2.9

System Configuration Guide

Troubleshooting crawl issues
Alerts configuration
Query options
Custom , field types, and other fields index customizations
Performance considerations and system monitoring
Distributed search and indexing
Security options

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 4
347

Lucid Query Parser

How the default query parser handles user requests
Customization options

LucidWorks REST API Reference

Configure and data sources administer crawls
Set system settings
Manage , , and fields field types collections
Example clients in , and C# Perl Python

Custom Connector Guide

Introduction to Lucid Connector Framework
How To Create A Connector

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 5
347

Getting Started
The steps to get started with LucidWorks Search are not very different from
getting started with any new search platform. One needs to consider the nature of
the documents to be indexed, how users expect to find them, and how results will
be presented to users. This section outlines those activities and points to parts of
documentation to help you understand how to accomplish the necessary tasks for
a successful search application.

If you are new to search applications, these sections may be helpful:

How Search Engines Work
Indexing Documents
Overview of Crawling

 The obvious first step is to install the application (if you
are using LucidWorks Search On-Premise; LucidWorks Search on AWS or Azure, of
course, is already installed).

Installation

In general, LucidWorks Search provides two modes of interacting with the system:
the Admin UI or the REST API. When just starting out, it's easier to use the Admin
UI, but when developing your search application, you may want to use the API,
depending on your needs. LucidWorks Search is split into three components, and
it's worth getting a sense for what each one does before diving too deep into
application development.

Working With LucidWorks Search Components

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 6
347

Before any user can send queries to your search applications, you need to index
data. LucidWorks Search requires configuring data sources for each content
repository that will be added to the index and several types of repositories are
supported. These can be created via the Admin UI or with the REST API.

Creating Data Sources with the Admin UI
Creating Data Sources with the REST API

To help you get started quickly, you can use "Quick Start" from the UI Landing
Page found at (be sure to adjust the host and port to thehttp://localhost:8989
LWE-UI component as needed). It will allow you to quickly configure a website or
local file system as a data source and start indexing content immediately.

When first starting out, it's best to use a small set of documents and test that they
are being indexed according to the needs of your users. The built-in Search UI was
designed to be used during implementation. Queries can also be sent directly to
Solr using the standard Solr syntax.

Using the Search UI
Getting Search Results
Query and Response Examples

Once you see the results of initial crawls, you may realize that some of your
documents don't appear as expected, or facets important to you are not appearing
as you'd like.

Raw documents are broken up into various fields during the crawling and indexing
processes, and the fields contained in your documents may vary from the default
fields provided by LucidWorks Search through a file called . Whileschema.xml

we've tried to anticipate the needs of most customers, you may find tweaks are
required for your content.

In addition, LucidWorks Search provides the ability to separate indexed content
into collections, that each have their own field definitions, data sources, synonym
lists, activity schedules, query settings and other configurations. It's worth
considering if you need to break up your content in this way, and create new
collections as needed.

Understanding Collections
Creating Collections with the Admin UI

http://localhost:8989

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 7
347

Creating Collections with the REST API
Customizing the Field Schema
Managing Fields with the Admin UI
Managing Fields with the REST API

Once the content is being indexed as you expect, you can modify the way user
queries are handled and how results are shown to users. There are many features
available, such as synonyms, auto-complete, alerting users of new results,
boosting documents based on user clicks among other features.

Synonyms
Stop Words
Using User Clicks to Boost Results
Modifying Query Settings with the Admin UI
Modifying Query Settings with the REST API
Lucid Query Parser Guide
Spell Check
Auto-Complete
User Alerts

Before going live with your search application, you'll want to consider user
authentication and system security issues. LucidWorks can integrate with LDAP
and supports SSL. Additionally, Access Control List information from Windows
Shares can be incorporated to restrict result sets to only those documents users
are allowed to see. You may also want to integrate with a JMX client, Zabbix or
Nagios to monitor system performance.

LDAP Integration
Restricting Access to Content
Enabling SSL
Securing LucidWorks
Integrating Monitoring Services

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 8
347

Finally, those using (or hoping to use) the SolrCloud features of LucidWorks
Search will want to review the section on .Using SolrCloud in LucidWorks

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 9
347

LucidWorks Search User Interface Help

Help for the LucidWorks Search User Interface is located at
.http://docs.lucidworks.com/display/help

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 10
347

System Configuration Guide
The System Configuration Guide provides detailed information about many of the
features included with LucidWorks Search. It describes the layout of a LucidWorks
Search installation and how to work with many of the configuration options
included with the system. It contains the following sections:

Understanding LucidWorks Search: Introduction, location of logs, working
with components
Collections and Indexes: Setting up collections, designing the index structure
Crawling Content: Crawling content of different filetypes and in different
repositories
Query and Search Configuration: Configuring the user experience and how to
get search results to your application

Security and User Management: SSL communication between components
and user authentication
Solr Direct Access: Using Solr
Performance Tips: How to judge performance and strategies for
improvement
Expanding Capacity: SolrCloud, index replication and distributed search
Integrating Monitoring Services: Using JMX, MBeans, and integrating with
Zabbix or Nagios

 Information for LucidWorks Search in the Cloud Users
While nearly all of the features described in this section are available to
LucidWorks Search customers hosted on AWS or Azure, some of the advanced
configuration options are not. When editing a setting requires direct access to
a configuration file, instead of accessing the setting via the UI or an API,
contact your support representative for information about how you might
tweak that setting for your needs.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 11
347

Understanding LucidWorks Search
This section covers the architecture of LucidWorks Search and nitty-gritty details
like where log files and important directories can be found.

We also cover some introductory material: if you're not familiar with search
engines, there's a section and we continue that withHow Search Engines Work
some more information about .How LucidWorks Search Works

Then we get into the details with these sections:

Working With LucidWorks Search Components
System Directories and Logs
Starting and Stopping LucidWorks Search
Configuring Default Settings
LucidWorks System Usage Monitor

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 12
347

How Search Engines Work
In its simplest form, a search engine is an application that enables a user to query
a data set and get a list of documents in response. Most people are familiar with
search engines that search the internet, but search engines are also built for more
specific purposes. Enterprise documents or websites are not available to the public
at large, so they can't be searched with internet search engines such as Google or
Yahoo. An organization may have an online store and wish to customize their site
to allow customers to find products.

In LucidWorks Search, each unit of text to be searched is a "document", whether it
is an article, a website, a product description, or a phone book entry. In an
enterprise environment, the administrator determines which of these documents
make up the data set to be searched.

This graphic shows the basic operation of a search engine:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 13
347

Indexing
For a user to search a set of documents, the search engine needs to know what is
in them. The process a search engine uses to find out what is in a document is
called " ". Essentially, an administrator tells the search engine where toindexing
find the document or documents, or feeds them to the search engine by way of an
uploading process. The search engine then creates an index of all the words it
finds, along with a pointer to the document in which it found them. Most
information within documents is organized into " ." Fields contain informationfields
that serves a specific, important purpose in the document, such as Title, Author,
or Creation Date. Good search engines are able to identify these fields and create
an index for each one.

Once the search engine creates an index, lots of interesting features can be added
to aid users in their search experience, such as a spelling checker, automatic
query completion, faceting of results, and "find similar" functionality.

Searching
Once the search engine has created an index of available content, it is ready to
accept a search. This happens when the user enters a keyword or phrase, and the
search engine compares that keyword or phrase against the index, returning
pointers to any documents that are associated with them.

Of course, people are surprisingly different in the way in which they approach a
topic, so search engines need to take these variations into account. The goal of a
search engine is to match words entered by a user to words found in a document,
so one technique it uses is to "normalize" both the user's query and terms that
have been indexed as much as possible to find the best possible match, similar to
the way in which you might convert both a target string and the text you are
matching to uppercase in order to eliminate case-sensitivity.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 14
347

Full-text Searching and Challenges
Several inherent challenges complicate full-text search. First, there is currently no
way to guarantee the searcher will find the "best" results because there is often no
agreement on what the "best" result is for a particular search. That's because
evaluating results can be very subjective. Also, users generally enter only a few
terms into a search engine, and there is no way for the search system to
understand the user's intention for a search. In fact, if the user is doing an initial
exploration of a topic area, the user may not even be aware of his or her intention.

A system that understands (that is, the way people speak ornatural language
write) perfectly is usually considered the ultimate goal in search engine
technology, in that it would do as good a job as a person in finding answers. But
even that is not perfect, as variations in human communication and
comprehension mean that even a person is not guaranteed to find the "right"
answer, especially in situations where there may not even be a single "right"
answer for a particular question.

Some search engines, such as LucidWorks Search, are built with features that try
to solve, or at least mitigate, these challenges. This System Configuration Guide
will introduce you to many of these features and describe how to configure them.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 15
347

How LucidWorks Search Works
Like any other search engine, LucidWorks Search works by indexing several kinds
of documents and providing a way for a user to search them. It uses Lucene and
Solr to handle the core indexing and query processing tasks, and leverages the
latest advancements in those projects. LucidWorks also builds on the work of the
open-source community by adding , a robust , ancrawling features REST API
easy-to-use administration interface, and other features.

The Apache Solr/Lucene core provides the indexing and searching functionality on
which LucidWorks is built. As an application developer using LucidWorks Search,
you can access this functionality in the same way that you access a traditional Solr
installation. This includes field definition, document analysis, faceting, and basic
query interpretation. Customers with LucidWorks Search installed on their own
servers can work with the Apache Solr/Lucene core directly if they choose.
Customers who use LucidWorks Search on AWS or Azure access much of the same
functionality through the .Admin UI

On top of the Apache Solr/Lucene core is LucidWorks Search, which provides
programmatic and GUI access to features that are normally difficult to work with
directly, such as field definition or data source creation and scheduling.

The provides configuration andLucidWorks Search Admin User Interface
management tools for almost every feature of LucidWorks, including
document acquisition, security, and field definitions.
The provides programmatic access to almost all configuration andREST API
management functions within LucidWorks.

Most of the functionality provided by LucidWorks comes from the LWE-Core and
, which manage all of these processes and featuresLWE-Connectors components

so administrators can concentrate on building and managing their own applications
rather than the underlying search engine.

Related Topics

Working With LucidWorks Search Components
Indexing Documents
Getting Started

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 16
347

Working With LucidWorks Search Components
LucidWorks Search has three main components that can each be run together on a
single server or deployed on separate servers if desired. While LucidWorks Search
customers on AWS or Azure will not often need to interact with these components,
an understanding of how they work is helpful for a deeper understanding of the
system as a whole.

About the Components
LWE-Core
LWE-UI
LWE-Connectors
Default Installation URLs

Configuring the Components
Related Topics

About the Components
Each component is a single JVM process. The system properties for each JVM can
be modified with the file found in the directory.master.conf $LWS_HOME/conf

LWE-Core

The LucidWorks Search Core component is the main engine of the application. It
contains the search index, the index definitions, the , the embedded query parser

 application and Lucene libraries, as well as serves the (with theSolr REST API
exception of Alerts).

LWE-UI

The UI component includes all web-based graphical interfaces for administering
the application, a sample search interface, Relevancy Workbench and the
enterprise alerts feature.

Through the Admin UI, you can modify index fields, configure data sources for
content collection, define aspects of the search experience, and monitor system
performance.

The Search UI provides a front-end for users to submit queries to LucidWorks
Search and review results. It is not intended as a production-grade user interface,
rather as a sample interface to use while configuring and testing the system.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 17
347

Relevancy Workbench is a tool to model possible changes to how user query terms
are interpreted in order to improve relevancy. More information about this tool is
available at .Relevance Workbench

Enterprise Alerts provide a way for users of the front-end Search UI to save
searches and receive notifications when new results match their query terms.
There is a piece with forms and screens for users to configure anduser interface
review their alerts, as well as a for programmatic access to the AlertsREST API
features.

LWE-Connectors

The Connectors component performs all the crawler functions, which include
crawling data sources on demand or at a specific schedule, maintaining a crawl
history (as applicable; each crawler varies in their behavior), and saving data
source configuration information for use by the crawlers. The Connectors
component also manages the crawler.LucidWorks Logs

Default Installation URLs

This guide will refer to example URLs that will reference the default installation
URLs for each component. These defaults are:

Component Default URL Web Interfaces

LWE-Core http://127.0.0.1:8888/ This URL is used as the
base for accessing most
of the REST APIs, and
also for accessing Solr
Admin UI at
http://127.0.0.1:8888/solr

.

http://127.0.0.1:8888
http://127.0.0.1:8888/solr

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 18
347

1.

2.

Component Default URL Web Interfaces

LWE-UI http://127.0.0.1:8989/ There are multiple
front-ends at this URL.
This base URL will access
the Landing Page, which
will provide access to the
Quick Start, the
LucidWorks Search Admin
UI, Relevancy
Workbench, and also a
link to the Solr Admin UI.

LWE-Connectors http://127.0.0.1:8765/ There is no web front-end
at this URL, it is used by
the LWE-Core and
LWE-UI components to
communicate with the
Connectors component.

These URLs are used by the installer for two purposes:

When the various components communicate with each other, or link to one
another, they specify which URL will be used.
If the "Enable" check box is selected for a component when using the
installer, then that component will be run locally, using the port specified in
the URL.

The default LucidWorks start scripts start all components at the same
time. However, it is possible to restart or stop a single component. See
the section for details.Starting and Stopping LucidWorks Search

Back to Top

http://127.0.0.1:8989
http://127.0.0.1:8765/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 19
347

1.

2.

3.

Configuring the Components
If all components are run on the same machine, they must be defined with
different ports. They can also be configured to run on different servers.

There are three possible ways to configure the components:

All components run on the same machine and they are started and stopped
together. This is the default for the , which automaticallystandalone installer
prompts for default ports that are different for each component. To use this
mode, you only need to run the installer once and follow through the process
completely.
All components run on the same machine but they are started and stopped
separately. This would require running the installer three times on the same
machine. See for detailedInstalling Components on Different Servers
instructions on how to do this.
Each component is on a different machine and started and stopped
separately. This requires running the installer on each machine. See

 below for detailed instructions onInstalling Components on Different Servers
how to do this.

Back to Top

Related Topics

Expanding Capacity

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 20
347

System Directories and Logs

 There are several important directories in the
LucidWorks Search installation. System activities are recorded in several log files.
Knowing where files and logs are located will make system configuration and
troubleshooting easier.

Locating Files and Directories
Configuring LucidWorks Search Directories
Temporary Files

System Logs
Log Properties

LucidWorksLogs Collection
Related Topics

Locating Files and Directories
The following table shows the default location of some directories that may be
needed to effectively work with LucidWorks Search. These paths are all relative to
the LucidWorks Search installation path (referred to as) which is$LWS_HOME

specified .during installation

What Path

Configuration Files $LWS_HOME/conf/

Documentation $LWS_HOME/app/docs/ (PDF) or
 (Online)http://docs.lucidworks.com

Examples $LWS_HOME/app/examples/

Jetty Libraries $LWS_HOME/app/jetty/lib/

Licenses $LWS_HOME/app/legal/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 21
347

What Path

Logs $LWS_HOME/data/logs/ (See forbelow
log file list)

LucidWorks Indexes $LWS_HOME/data/solr/cores/

collection/data/

LucidWorks Logs $LWS_HOME/data/solr/cores/LucidWorksLogs/data/

Solr Home $LWS_HOME/conf/solr/

Solr Configuration Files $LWS_HOME/conf/solr/cores/

collection/conf/

Solr Source Code $LWS_HOME/app/solr-src/

Start/Stop Scripts $LWS_HOME/app/bin/

Editing Configuration Files on Windows

LucidWorks Search holds configuration files open after reading them,
which may cause problems on Windows systems that do not allow editing
open files. In this case, stop LucidWorks Search before editing files on
Windows to be sure the edits are saved properly.

Configuring LucidWorks Search Directories

After you have installed LucidWorks Search, you can configure the location of of
the , , , and directories by passing these parameters to the startapp conf data logs

script (or):start.sh start.bat

-lwe_app_dir

-lwe_conf_dir

-lwe_data_dir

-lwe_log_dir

For example, to change the location of the directory, pass the followingdata

parameter to your start script:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 22
347

1.

2.
3.

4.

start.sh -lwe_data_dir /var/data

See the section on for more informationStarting and Stopping LucidWorks Search
about the start scripts.

Temporary Files

By default, LucidWorks Search uses standard system directories (as detected by
the JVM) for creating temporary files. This can be changed by adding a system
property to the for in the section that controls eachmaster.conf java.io.tmpdir

JVM for the system. For example, to change the location of temporary files for the
LucidWorks Core component, you would follow these steps:

Shut down LucidWorks using the instructions found in the section on Starting
.and Stopping LucidWorks Search

Open with a text editor (found in .master.conf $LWS_HOME/conf

Find the section for and add lwecore.jvm.params

.-Djava.io.tmpdir=/tmp/files/

Start LucidWorks.

The directory chosen as the location for temporary files should exist before
starting LucidWorks Search, and must be writable by the user running LucidWorks.

Back to Top

System Logs
LucidWorks Search records system activities to rolling log files located in the

 directory of the installation by default. The table below$LWS_HOME/data/logs

describes the main purpose of the various log files.

Log Name Name Pattern Function

Connector component log connectors.<YYYY_MM_DD>.logConnectors component
operations, including the
output of all crawling
operations.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 23
347

Log Name Name Pattern Function

Connector request log connectors.request.<YYYY_MM_DD>.logRequests to the
connectors component.
These usually come from
the Core component.

Core component log core.<YYYY_MM_DD>.log LucidWorks Core
component operations,
such as indexing.

Core request log core.request.<YYYY_MM_DD>.logRequests to the core
component. These could
come from either the
Connectors or the UI
component.

Core standard error log core-stderr.log Errors from Jetty startup
(if any).

Core standard output log core-stdout.log Messages from Jetty
startup (if any).

UI component log ui.<YYYY_MM_DD>.log Information from the
Rails application, which
runs the Search, Admin
and Alerts components.

UI request log ui.request.<YYYY_MM_DD>.logRequests to the UI
component.

Ruby standard error log ruby-stderr.log Errors from Ruby startup
(if any).

Ruby standard output log ruby-stdout.log Messages from Ruby
startup (if any).

Click log click-<collectionName>.logUser click data, for use in
 (ifrelevance boosting

enabled).

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 24
347

Log Name Name Pattern Function

SharePoint crawl log google_connectors.feed.logSharePoint crawling
operations. Note, this file
can also include a
number in the name,
such as
google_connectors.feed0.log

, etc.

Log files are available through the Admin UI, by going to the Server Logs page for
a collection and clicking the link at the bottom of the page. If for some reason the
Admin UI is not available, log files can be downloaded with a curl command to the
Core component such as:

curl http://localhost:8888/logs/<log_file_name>

Note, however, if the LucidWorks Search Core component is down, that curl
command will not work.

Log Properties

The LucidWorks Search Core log is configured by the
 properties file. The default is to create a distinct$LWS_HOME/conf/log4j-core.xml

log per date (server time).

The LucidWorks Search UI log is configured by the $LWS_HOME/conf/log4j-ui.xml
properties file. The default is to create a distinct log per date (server time).

The LucidWorks Search Connector log is configured by the
 properties file. The default is to create a$LWS_HOME/conf/log4j-connectors.xml

distinct log per date (server time).

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 25
347

The LucidWorks Search Connectors log includes information about crawl
activities such as attempts to access a file or URL and the results of those
attempts. By default, the log does not record the collection or data source
associated with crawl activities. However, if you would like to record that
information for later review, you can edit the

 file.$LWS_HOME/conf/log4j-connectors.xml

In the file, find the section that begins with a comment to "Use the pattern
below to log additional context info...", as below:

<!-- Use the pattern below to log additional context info like

collection and data source name -->

 <!--

 <param value="%d{ISO8601} %p %c{2} - %X %m%n"

name="ConversionPattern"/>

 -->

Uncomment <param value="%d{ISO8601} %p %c{2} - %X %m%n"
 and save the file. You should restartname="ConversionPattern"/>

LucidWorks Search after making this change.

More information on how to modify log4j settings for the Core and UI log files is
available at .http://logging.apache.org/log4j/1.2/manual.html

Back to Top

LucidWorksLogs Collection
LucidWorks Search records log files for your Solr indexes in a collection called
LucidWorksLogs, which contains a pre-configured data source also called

. You can view the data for the LucidWorksLogs collection as youlucidworkslogs

would for any other collection. You can also access the log files directly in the
 directory.$LWS_HOME/data/solr/cores/LucidWorksLogs/

The LucidWorksLogs collection powers the error log and all statistics about recent
query and indexing activity that is shown in the Admin UI.

http://logging.apache.org/log4j/1.2/manual.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 26
347

The log files on a LWE-Core server are accessible via HTTP at the URL
. This URL lists all files currently in the logs directory,"http://server:port/logs"

and provides links for downloading them individually. This can be useful in
situations where you do not have direct shell access to the LWE-Core machine, but
would like to review the log files for troubleshooting purposes.

If you are using LucidWorks Search in SolrCloud mode or with each component
installed on a different server, please see the section Log Indexing with Separated

 for details on how to make sure your logs are fully indexed.Components

When securing the HTTP Port of LWE-Core installation, consideration should be
taken as to whether the "/logs" directory should be secured or not.

Deleting the LucidWorksLogs Collection

It is possible to delete the LucidWorksLogs collection if desired; however,
this will disable the server log page within other collections, all activity
graphing, and all calculations of Most Popular and Most Recent queries.

If the collection was deleted in error, or if you'd like to restore it at a later
time, go to the Server log page within any collection and click Recreate

.the log collection

It is also possible to remove the LucidWorksLogs data source from the
LucidWorksLogs collection (i.e., retain the collection for possible later use,
but remove the mechanism that indexes the logs). However, at the
current time it will automatically be re-created and re-scheduled on server
restart. If you wish to disable log crawling, you must either remove the
entire LucidWorksLogs collection, or modify the LucidWorksLogs data
source so that the schedule is not active (you can modify the schedule
with the API or in the Schedules screen of theData Source Schedules
Admin UI.

Related Topics

Working With LucidWorks Search Components
Starting and Stopping LucidWorks Search

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 27
347

Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 28
347

1.
2.

3.

Starting and Stopping LucidWorks Search
LucidWorks Search can be started and stopped using start and stop scripts
provided with the application. These scripts are described below.

Windows users who have configured LucidWorks Search to run as a
service should use the Services panel in Windows to manage start and
stop.

Starting a Standalone LucidWorks Search Instance
Starting SolrCloud-enabled LucidWorks Search Instances

Passing SolrCloud parameters at Start
Updating master.conf

Stopping LucidWorks Search (all modes)
Starting or Stopping Components Separately

Starting a Standalone LucidWorks Search Instance
If you did not allow the installer to start LucidWorks Search, or if shortcuts were
not installed, you can still start or stop the system manually from the command
line. This will start all components:

Open a command shell, and make sure Java 1.6 or greater is in your path.
Change directories to the LucidWorks installation directory, then to the

 directory.$LWS_HOME/app/bin

Invoke for UNIX/Mac/Cygwin or for Windows systems.start.sh start.bat

If you are using LucidWorks Search in SolrCloud mode, please refer to the
section in the documentation for UsingStarting LucidWorks Search
SolrCloud in LucidWorks Search.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 29
347

Starting SolrCloud-enabled LucidWorks Search Instances
If you are using LucidWorks Search in SolrCloud mode, you must start the
application in a way that the underlying Solr instances are aware of where
ZooKeeper is. If you used the LucidWorks Search installer, the required
parameters have been added to the file for each instance.conf/master.conf

However, if you bootstrapped LucidWorks Search manually, or installed without
the all of the SolrCloud installer steps, you will need to pass the required
parameters on the command line. You can also manually update

 file.conf/master.conf

Passing SolrCloud parameters at Start

As long as the initial bootstrap has been completed (if not, please see Starting
), the only parameter that is required on future startup is the LucidWorks Search

 parameter. This parameter points to each of the ZooKeeper instances andzkHost

the root directory for the configurations that are stored in ZooKeeper. This
example commmand starts LucidWorks Search and points to an external
ZooKeeper:

$./start.sh -lwe_core_java_opts

"-DzkHost=10.0.1.7:5001,10.0.1.9:5001,10.0.1.11:5001/lws"

If you are using the embedded ZooKeeper instance, then you may alternately
need to start ZooKeeper while starting LucidWorks Search with the zkRun
parameter on one of the instances. Subsequent instances would require the

 parameter to point to the instance with the running ZooKeeper. ForzkHost

example, to start the first instance:

$./start.sh -lwe_core_java_opts "-DzkRun"

Then all subsequent instances are started:

$./start.sh -lwe_core_java_opts "-DzkHost:10.0.1.7:9988"

Note when using the embedded ZooKeeper that the port is the LWE-Core
component port + 1000.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 30
347

1.
2.

3.

Updating master.conf

If you don't want to have to pass the ZooKeeper parameters each time you
restart, you can modify the file for each instance. Simply addconf/master.conf

the parameters to the section and they'll-DzkHost JVM Settings of LWE-Core

be passed to the start script. For example, here is a sample where:

COMPONENT LWE-Core - LWE-Solr + LWE REST API.

lwecore.enabled=true

lwecore.address=http://10.0.1.5:8888

JVM Settings for LWE-Core

lwecore.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M

-Duser.language=en -Duser.country=US -Duser.timezone=UTC

-Dfile.encoding=UTF-8 -Dcom.sun.management.jmxremote

-DzkHost=10.0.1.7:5001,10.0.1.9:5001,10.0.1.11:5001/lws

If using the embedded ZooKeeper instance, the same approach can be taken to
add the parameter to one instance, with being added to the-DzkRun -DzkHost

other instances.

These parameters only need to be added to the LWE-Core component for each
instance that runs the LWE-Core component; so if you have an instance that is
only running the UI or the Connectors, the parameters don't need to be added at
all.

Stopping LucidWorks Search (all modes)
To stop LucidWorks Search, use the stop scripts at the command line. This will
stop all components and any running processes.

Open a command shell, and make sure Java 1.6 or greater is in your path.
Change directories to the LucidWorks installation directory, then to the

 directory.$LWS_HOME/app/bin

Invoke for UNIX/Mac/Cygwin or for Windows systems.stop.sh stop.bat

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 31
347

Restarting LucidWorks Search

To restart LucidWorks Search, first stop the servers and start them again
using the processes outlined above.

Starting or Stopping Components Separately
To start or stop any of the components without starting or stopping the other
components, you can use the / or / scriptsstart.sh start.bat stop.sh stop.bat

with the parameter, followed by the component name.-only

Core component: lwe-core
UI component: lwe-ui
Connectors component: connectors

For example, this would start only the connectors using the script:start.sh

start.sh -only connectors

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 32
347

Configuring Default Settings

 You can configure many default settings in
LucidWorks Search in the file located in the defaults.yml

 directory. You must after editing$LWS_Home/conf/lwe-core restart LucidWorks
this file for your changes to take effect.

Some of the default settings you can configure include:

Default crawl depth
Default field mappings for crawlers
Batch crawling of data sources
Enabling or restricting data sources by crawler
Default HTTP proxy settings

For example, to set the default crawl depth to 3 (which means that the crawler will
follow links/sub-directories up to three steps away from the initial target), set

.datasource.crawl_depth: 3

Here is an example file with comments that explain the variousdefaults.yml

default settings (your default.yml file may vary):

file: defaults.yml

initCalled: true

location: CONF

values:

Set to true to block index updates

 control.blockUpdates: false

A whitespace-separated list of symbolic crawler names to enable; all

crawlers are enabled if this list is empty

 crawlers.enabled.crawlers: ''

Absolute path that will be used to resolve relative path of local file

system crawls

 crawlers.filesystem.crawl.home: null

Per-crawler list of enabled datasource types, whitespace-separated.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 33
347

All available types are enabled if this list is empty.

 crawlers.lucid.aperture.enabled.datasources: ''

Per-crawler whitespace-separated list of restricted datasource types;

all enabled types are unrestricted if this list is empty

 crawlers.lucid.aperture.restricted.datasources: ''

 crawlers.lucid.external.enabled.datasources: ''

 crawlers.lucid.external.restricted.datasources: ''

 crawlers.lucid.fs.enabled.datasources: ''

 crawlers.lucid.fs.restricted.datasources: ''

 crawlers.lucid.gcm.enabled.datasources: ''

 crawlers.lucid.gcm.restricted.datasources: ''

 crawlers.lucid.jdbc.enabled.datasources: ''

 crawlers.lucid.jdbc.restricted.datasources: ''

 crawlers.lucid.logs.enabled.datasources: ''

 crawlers.lucid.logs.restricted.datasources: ''

 crawlers.lucid.solrxml.enabled.datasources: ''

 crawlers.lucid.solrxml.restricted.datasources: ''

Default data source bounds: choose none or tree

 datasource.bounds: none

Batch processing; caching of crawled raw content

 datasource.caching: false

Explicitly commit when crawl is finished

 datasource.commit_on_finish: true

Solr's commitWithin setting, in milliseconds

 datasource.commit_within: 900000

Default crawl depth: the number of cycles or hops from the root

URL/directory. Set to -1 for unlimited crawl depth

 datasource.crawl_depth: -1

 datasource.follow_links: true

Set to true to ignore the rules defined in /robots.txt for all crawled

sites

 datasource.ignore_robots: false

Perform indexing at the same time as crawling

 datasource.indexing: true

Global exclude regular expression patterns for different crawlers

which allow excluding specific document types or paths for all data

source types

that use the defined crawler. Multiple patterns can be defined by

separating regular expressions with a 'pipe' (|)

or with the YAML list format as shown in the examples below.

 datasource.lucid.aperture.file.exclude_paths: '.*\.xls|.*\.ppt'

 datasource.lucid.aperture.web.exclude_paths:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 34
347

 - '.*domain1.*'

 - '.*domain2.*'

 datasource.lucid.fs.exclude_paths: []

 datasource.lucid.gcm.sharepoint.excluded_urls: []

Default field mapping for Aperture-based crawlers. This is the

baseline, the field mapping for each data source can be customized.

 datasource.mapping.aperture: &id001

!!com.lucid.admin.collection.datasource.FieldMapping

 datasourceField: data_source

 defaultField: null

 dynamicField: attr

 literals: {}

 mappings:

 slide-count: pageCount

 content-type: mimeType

 body: body

 slides: pageCount

 subject: subject

 plaintextmessagecontent: body

 lastmodified: lastModified

 lastmodifiedby: author

 content-encoding: characterSet

 type: null

 date: null

 creator: creator

 author: author

 title: title

 mimetype: mimeType

 created: dateCreated

 plaintextcontent: body

 pagecount: pageCount

 contentcreated: dateCreated

 description: description

 contributor: author

 name: title

 filelastmodified: lastModified

 fullname: author

 fulltext: body

 messagesubject: title

 last-modified: lastModified

 acl: acl

 keyword: keywords

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 35
347

 contentlastmodified: lastModified

 last-printed: null

 links: null

 url: url

 batch_id: batch_id

 crawl_uri: crawl_uri

 filesize: fileSize

 page-count: pageCount

 content-length: fileSize

 filename: fileName

 multiVal:

 fileSize: false

 body: false

 author: true

 title: false

 acl: true

 description: false

 dateCreated: false

 types:

 filesize: LONG

 lastmodified: DATE

 datecreated: DATE

 date: DATE

 uniqueKey: id

Default field mapping for crawlers that use Tika parsers

 datasource.mapping.tika: *id001

Maximum size of content to be fetched

 datasource.max_bytes: 10485760

Maximum number of documents to collect; set to -1 for unlimited

documents

 datasource.max_docs: -1

The maximum number of concurrent requests processed by a data source

crawl, for those crawlers that support multi-threaded crawling.

As of v2.1, this is only the lucid.fs crawler, which supports the

Hadoop, S3 and SMB data source types.

 datasource.max_threads: 1

Set to true to apply content parsers to the retrieved raw documents

 datasource.parsing: true

Defines the host name of an HTTP proxy server to use for web crawling;

leave blank if you are not using a proxy server

 datasource.proxy_host: ''

HTTP proxy password, if you are using an HTTP proxy server

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 36
347

 datasource.proxy_password: ''

proxyPort for an HTTP proxy server, if you are using one

 datasource.proxy_port: -1

Username to authenticate with HTTP proxy server

 datasource.proxy_username: ''

If true, text extracted from a compound document (one which has other

embedded documents and resources, such as emails with attachments

or Office documents with OLE attachments, but not .zip, .jar., or

similar) will be appended to the text of the container document.

If false, each embedded resource is treated as a separate document

with a URL in the form of the container document URL plus ! and

the embedded document's name or identifier. If documents are treated

as separate documents (when this setting is false),

the URL of the container document is added to the field

"belongsToContainer".

 datasource.tika.parsers.flatten.compound: true

If false, documents with mime types that start with "image/" are

ignored. If true, the documents are sent to Tika for parsing,

which may result in useful metadata being extracted from them but may

also result in a large number of fields and terms.

 datasource.tika.parsers.include.images: false

If true, and LucidWorks runs in the same JVM as Solr, then crawlers

will first try using direct calls to SolrCore for updates,

which may result in performance improvements. If false (the default),

the SolrJ API is used for updates.

 datasource.use_direct_solr: false

If true, datasources will attempt to verify access to the remote

repositories.

 datasource.verify_access: true

HTTP-specific preferences sent in HTTP headers during crawling.

 http.accept.charset: utf-8,ISO-8859-1;q=0.7,*;q=0.7

 http.agent.browser: Mozilla/5.0

 http.agent.email: crawler at example dot com

 http.agent.name: LucidWorks

The agent.string will allow a completely custom http.agent identifier.

If this is not empty, it will be used verbatim instead of all other

'http.agent.*' settings.

 http.agent.string: ''

 http.agent.url: ''

 http.agent.version: ''

 http.crawl.delay: 2000

Maximum number of redirections in a redirection chain.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 37
347

 http.max.redirects: 10

Number of threads for HTTP crawling.

 http.num.threads: 1

Socket timeout in milliseconds.

 http.timeout: 10000

Specify the HTTP version: HTTP/1.1 if true; HTTP/1.0 if false.

 http.use.http11: true

 ssl.auth_require_authorization: false

 ssl.auth_require_secure: false

Related Topics

Overview of Crawling

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 38
347

LucidWorks System Usage Monitor
The LucidWorks System Usage Monitor is a voluntary program to allow LucidWorks
Search users to anonymously send basic information about their system to
LucidWorks. We use this information to analyze the types of systems in use by our
customers and how they are used so we can improve our product. At no point
does the system collect information that could identify you, your organization, the
documents indexed, or the type of content indexed.

Information Collected
The System Usage Monitor collects the following information for LucidWorks
Search installations:

Operating System version and type
Java version and type
LucidWorks Search version and type
Number of LucidWorks Search collections created
Number of LucidWorks Search data sources created
Number of LucidWorks Search documents indexed
JVM memory free, available, and used
Number of LucidWorks Search queries
Number of documents added since last submission

How the System Usage Monitor Works

When Information is Sent

The System Usage Monitor sends information at each LucidWorks startup (using
the or scripts) and once per week on Saturdays.start.sh start.bat

How Information is Sent

When LucidWorks Search is started, the System Usage Monitor will transmit data
about your system to a server hosted by LucidWorks with two HTTP requests. The
first request contains system-level information and if that is successful, the second
request will send LucidWorks-specific information, as listed above.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 39
347

The information is sent via an encrypted POST request to
. Each request includes a unique identifier,https://heartbeat.demo.lucidworks.io

which is anonymous and can't be used to identify the sender. The IP that sent the
request is not stored with the request.

The requests are logged in the LucidWorks Search core log (core.YYYY_MM_DD.log
). The requests will appear similar to this:

2012-10-23 19:05:56,618 INFO heartbeat.LucidStatsPublisher - Sending

heartbeat stats:

uuid='3532f7e9-4280-4714-9e83-ea0a95fe90bd',data='{product=lwe,

current_product_version=0.0Enif, is_cloudy=false,

lwe_git_sha=7568ce8c35a394c4b987e3a17cb5e1b5ae5dac25,java_version=1.6.0_35

(Apple Inc.), num_cpu_cores=4, os_version=Mac OS X (x86_64)}'2012-10-23

19:05:58,831 INFO publish.MonitorRegistryMetricPoller - cache refreshed,

8 monitors matched filter, previous age 1351019158 seconds

2012-10-23 19:05:58,865 INFO heartbeat.LucidStatsPublisher - Sending

heartbeat stats:

uuid='3532f7e9-4280-4714-9e83-ea0a95fe90bd',data='{num_docs=0,

num_collections=1, num_datasources=0, jvm_memory_free=506720952,

jvm_memory_max=1065025536, jvm_memory_total=534708224,num_adds=0,

num_search_requests=0}'

Subsequent weekly updates are sent as a single request, including only the
LucidWorks Search-specific information like number of documents, number of data
sources, etc.

How to Opt-In or Opt-Out

During Installation

During installation of LucidWorks Search, you will be presented with an option to
opt-in to the System Usage Monitor program. This option will appear after defining
the installation path for the system. With the graphical installer, the box is
checked by default and un-checking the box will opt-out of the program. If using
the console installer, choose '0' as a response to opt-out of the program.

Post-Installation

Opting-in to the program will insert a line at the beginning of the
 file, as so:$LWS_HOME/conf/master.conf

https://heartbeat.demo.lucidworks.io

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 40
347

1.
2.
3.

4.

LucidWorks System Usage Monitor (comment the next line to disable this

feature)

usageStatsServerId=3532f7e9-4280-4714-9e83-ea0a95fe90bd

To opt-out:

Stop LucidWorks Search
Open found in master.conf $LWS_HOME/conf

Comment out the line containing the by adding a hashusageStatsServerID

mark (#) at the beginning of the line
Start LucidWorks Search

The same process can be followed to opt-in if the service was previously disabled,
by removing the hash mark instead of inserting it.

More Information
For more information, including details of our commitment to protecting the
privacy of your data, please see our website at

.http://www.lucidworks.com/lucidworks-system-usage-monitor

http://www.lucidworks.com/lucidworks-system-usage-monitor

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 41
347

Collections and Indexes
This section covers how to configure LucidWorks Search for your data.

Content in LucidWorks is indexed into a collection, which can have different
documents, data sources, fields, field types and settings from other collections.
Before starting to work with LucidWorks, review the section Working with

. Once one collection is configured as you like, it can be used as aCollections
template, as described in .Using Collection Templates

Once the collections are considered, then you can think about how to configure
LucidWorks Search to index your content. These sections describe the options for
setting up the indexes:

Indexing Documents
Storing Indexes in HDFS
How Documents Map to Fields
Customizing the Field Schema
Reindexing Content
Multilingual Indexing and Search
Lucid Plural Stemming Rules
Deleting the Index

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 42
347

Working with Collections
A single installation of LucidWorks Search may be used to index multiple types of
content, serve multiple user constituencies, or accommodate multiple overlapping
security rules. It does this by supporting the creation and use of multiple
"collections". A collection is a set of documents that are grouped together with the
same indexing and query rules. Each collection in LucidWorks has its own index
and configuration files and is logically separate from all other collections.

For those familiar with Solr, the concept of collections in LucidWorks is very similar
to the concept of in Solr.cores

Default Collections
By default, each LucidWorks Search installation includes two collections out of the
box: "collection1" and "LucidWorksLogs".

Collection1 is the primary collection used by LucidWorks Search to store indexes
and define query settings. It can be used as-is immediately after installation to
start indexing documents and using the default Search UI. However, a collection
cannot be renamed once created (nor can content be moved from one collection to
another without indexing it all from scratch). So, if you think you'll use multiple
collections and want to name each one based on what it contains or what it will be
used for, you would probably create a new collection and start from there.

The LucidWorksLogs collection is a special collection, used to index logs for easier
troubleshooting. It is discussed in more detail in the section on the

. It can be deleted at any time and recreated later, ifLucidWorksLogs collection
desired.

If you want to delete collection1, you can do so after you've created at least one
other standard collection, as there must always be at least one collection (not
including the LucidWorksLogs collection).

A collection that has been customized can also be used as the basis for future
collections; see the section on for more information.Collection Templates

Per-Collection Features
You can configure the following items for each collection individually:

http://wiki.apache.org/solr/CoreAdmin

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 43
347

Data sources
Fields
Query settings
Search UI
Search Filters
Schedules
Solr Admin

After you have created additional collections, you should pay special attention to
the collection name you are working with so you edit the proper configuration files
or make the correct API calls. This is particularly true when using the orREST API
several of the advanced configuration options discussed later in this Guide, but it
also applies to the various screens of the . Modifying the wrong collectionAdmin UI
out of context may have unexpected consequences including poorly indexed
content or an inconsistent search experience for users.

System-Wide Features
The following items are system-wide and can only be configured for the entire
LucidWorks Search installation or instance:

Collection definition
Access to user interfaces
Users
Alerts (although these take the collection as a parameter to limit the query)

Related Topics

Creating a collection with the Collections API
Creating a collection with the Admin UI
System Directories and Logs

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 44
347

Using Collection Templates

 Collection templates allow you to copy the
configuration files from a collection and use it as the basis for future templates.
Creating a template is as simple as creating a file from configuration files in.zip

the base collection and explicitly specifying that file during new collection.zip

creation either via the or the .Admin UI REST API

Included Templates
Several templates are included with LucidWorks out of the box. They can be found
in .$LWS_HOME/app/collection_templates

default.zip: This has the same default options and out-of-the-box fields as
the standard "collection1" that exists by default after LucidWorks Search
installation.
essential.zip: This is a stripped-down version of the LucidWorks default
configuration that includes only the few fields that are absolutely essential
for the system to run (see for more details onCustomizing the Field Schema
the default field set).
hadoop.zip: provides the basic configuration for storing the Solr indexes for
a collection in a Hadoop Filesystem (HDFS). For more details, see Storing

.Indexes in HDFS
lucidworkslogs: provides the configuration for the LucidWorksLogs
collection only. This is a system collection with a very specific configuration
and this template should not be used for any other collection.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 45
347

Creating a Template

 To make a custom template, create a new
collection and configure it as needed, whether that is via the user interface, using
the REST API, or manual editing of configuration files. All of the configuration files
for a collection reside in the for the collection, which is found under instance_dir

, where is the name of the$LWS_HOME/conf/solr/cores/collection collection

collection that is being used as the basis for the template.

Then create a file from the . The .zip file can have any name,.zip instance_dir

including , although using the same name would overwrite thedefault.zip

system default template, meaning it would not be available at a later time if
needed. All templates must be placed in $LWS_HOME/conf/collection_templates
to be available during collection creation.

We recommend that you use all the sub-directories from the
 even if some of the files have not been customized in theinstance_dir

base collection.

Related Topics

Working with Collections

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 46
347

Indexing Documents
The first step to being able to search is to create an index. The index stores all the
terms from documents in such a way that results for user queries can be returned
as quickly as possible.

Indexes are created by breaking a document into individual words and saving the
word list. At the same time, documents are not solely lists of sentences and words,
but instead usually contain some sort of structure - an email will likely have "to"
and "from" information; Word and PDF documents may have "title" and "author"
information, in addition to the main "body"; product descriptions may have "price",
"description" or "color" information. These are known as within eachfields
document. Adding field information to the word list facilitates a user's ability to
search for emails from a specific person, or shoes that come in a particular color.

Fields can contain different types of data. A title field, for example, is usually text
(character data). A price contains a mix of digits and special characters (such as $
or €). Dates are generally Defining the type of data that a field will contain is a
critical first step in defining the fields for the index.

Defining Fields
There are several things to consider when configuring fields. The primary one is
whether to store the field or not. Stored fields take up space in the index, but they
allow the field to then be indexed (that is, made searchable) or available to users
for display. It may be preferable to store a field and use it for display in a results
list, but not allow it to be searchable. Alternately, a field can be designated for use
in a facet, so it would be stored and indexed, but perhaps not searchable. A
careful analysis of documents should occur before indexing to be able to anticipate
how it will be indexed. If fields are not correctly configured before a document is
indexed, documents will need to be re-indexed at a later time. If that is required,
the existing index can be and documents can be added to it from scratch.deleted

Indexing Data Sources
In order for users to be able to search, LucidWorks Search needs to have indexed
documents. LucidWorks Search supports two main approaches for document
discovery:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 47
347

Documents can be pushed directly into the system. Users who are familiar
with Solr may already have processes and systems in place to push
documents into the index. This is also an option if LucidWorks Search is not
able to connect to the repository to pull documents from it.

Documents can be pulled from remote repositories. LucidWorks Search has
several pre-defined types of repositories that it is able to connect to; you
configure these connections by creating "data sources" and selecting options
appropriate for your needs.

Each of these approaches has several options and caveats to consider, which are
covered in more detail .Overview of Crawling

Related Topics

Customizing the Field Schema

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 48
347

Storing Indexes in HDFS
As of LucidWorks Search v2.6.3, it is possible to store the Solr indexes in your
Hadoop Filesystem (HDFS). The benefits of this are to distribute the indexes and
Solr's transaction logs across a Hadoop cluster. Note that this does not use
MapReduce for index processing, but instead uses Hadoop for transaction log and
index file storage. LucidWorks Search (and Solr) support doing this with Hadoop
2.0.x versions only.

In LucidWorks Search, this is enabled with a new namedcollection template
"hadoop" which defines the configuration required to store Solr indexes on
Hadoop. This template can be used to create new collections whose indexes will be
stored in the HDFS specified with the parameters.

Defining the HdfsDirectoryFactory in solrconfig.xml
The main configuration changes are defined in . The solrconfig.xml

 needs to be set to use the and twodirectoryFactory HdfsDirectoryFactory

parameters are defined for , which points to a directory accessiblesolr.hdfs.home

to the LWE-Core and Connectors components that contains the Hadoop binaries,
and , which is the location of the hadoop configuration files.solr.hdfs.confdir

The supplied with the 'hadoop' collection template includes thissolrconfig.xml

section:

<directoryFactory name="DirectoryFactory"

class="org.apache.solr.core.HdfsDirectoryFactory">

 <str name="solr.hdfs.home">${solr.hdfs.home:}</str>

 <str name="solr.hdfs.confdir">${solr.hdfs.confdir:}</str>

 </directoryFactory>

Updating master.conf
Note that the two required parameters are defined as system properties. To supply
the values for the system properties, you should modify

 for the installation to add them. The values must$LWS_HOME/conf/master.conf

be supplied for the as in this example:LWE-Core component

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 49
347

JVM Settings for LWE-Core

lwecore.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M

-Duser.language=en -Duser.country=US -Duser.timezone=UTC

-Dfile.encoding=UTF-8 -Dcom.sun.management.jmxremote

-Dsolr.hdfs.home=/path/to/hadoop/home

-Dsolr.hdfs.confdir=/mnt/hadoop/hadoop2x/etc/hadoop

The directory will be appended to the directory in HDFS.solr.hdfs.home /usr

You must also ensure that the directory has write permissions so LucidWorks/usr

Search can write to it.

If you have modified after starting LucidWorks Search, you will needmaster.conf

to .restart it

If you are running LucidWorks Search in SolrCloud mode, you should
update master.conf on each node that is running the LWE-Core
component.

Defining the values in has the benefit of allowing you to define themaster.conf

HDFS location once. However, if you have multiple HDFS locations, you could
instead define the values within the file for each collection thatsolrconfig.xml

will be stored in HDFS. In that case, do not also add the values to .master.conf

Note the parameters described here are the basic parameters to allow LucidWorks
to store the Solr indexes on HDFS. There are other available parameters, however,
described in the Apache Solr Reference Guide section .Running Solr on HDFS

Related Topics

Using Collection Templates
Running Solr on HDFS from the Apache Solr Reference Guide

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS
https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 50
347

How Documents Map To Fields
When LucidWorks Search crawls a data source, it extracts the target data and
stores it in fields in the index. The specific mapping from the source data to the
indexed fields is determined by the crawler you are using, which is in turn
determined by the data source type. For a list of file types supported by LWE, see

. Let us consider two common file types, both processed by theSupported Filetypes
 crawler: a website and a Microsoft Word document.Aperture

For the , consider a case where you have crawled website
 with a crawl depth of zero, which means that only thehttp://www.lucidworks.com

first page is indexed. The Aperture crawler maps the web page as follows (note
that this example is not complete or exhaustive):

Data Source Field Mapping Field Content

url url http://lucidworks.com

content-type mimeType html/text

title title Lucid Imagination
is now
LucidWorks.

LucidWorks

body body The Future Of
Search

And so on.

For the , consider this document, included here in itsMicrosoft Word document
entirety:

http://aperture.sourceforge.net/
http://www.lucidworks.com
http://lucidworks.com

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 51
347

Data Source Field Mapping Field Content

mimetype mimeType application/vnd.openxmlformats-officedocument.wordprocessingml

title title Example Word Doc

author author Drew Wheeler

body body This Is The Heading This
is some text. It is very
interesting.

For information on which crawlers handle which data source types, see the
. If using the , you don't need to worry about theOverview of Crawling Admin UI

crawler type. The UI also includes screens for modifying how documents are
mapped to fields, or the Data Sources API can be used. For more information on
fields in LucidWorks Search, see the Table of Fields in the section Customizing the

.Field Schema

Related Topics

Overview of Crawling
Indexing Documents
Editing Field Mapping

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 52
347

Customizing the Field Schema
When indexing documents, LucidWorks Search doesn't merely generate a list of all
the words found on the page. It also tries to recognize the structure of the
document, and remember some of that structure in the index. The structure of
indexed documents is represented by the fields defined for the LucidWorks Search
index. When terms are saved in the index, they are saved with information about
the field in which they were found in the document.

Field definitions are stored in a file for each collection. Users familiarschema.xml

with Solr will recognize this file, since it is the same file that is usedschema.xml

with a Solr installation. Instead of editing this file by hand, however, LucidWorks
Search allows modifying the field and field type definitions with the Admin UI or
with the REST API.

By default, LucidWorks Search contains field definitions to support various features
of LucidWorks (such as crawling documents and Click Scoring) and to make it
easier for users to get up and running. Not all users will need all fields, however,
so you may want to add fields unique to your search application or just to trim the
default set of fields so the list is easier to work with. This section describes the
default fields, how they are used by LucidWorks Search, and if they can be
removed for local installations.

One of the primary added values of LucidWorks Search is the integration of
content crawlers for web sites, filesystems and other repositories of content. Many
of the default fields are for this purpose and should be retained. In many cases, if
they are removed from the schema, they will be recreated the next time a crawler
needs them. However, if not using the LucidWorks crawlers, they can generally be
safely removed. They will be added based on a dynamic rule ("*" rule) in the

 file that should be retained to avoid unexpected failures of theschema.xml

crawlers. If this rule is left in place, nearly any field in the schema can be removed
as it will be added back if it is needed.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 53
347

Only delete the "*" rule if you are absolutely positive other deleted fields
will not be needed in your specific implementation. Deleting this rule may
also complicate future upgrades, as it is not possible to predict when
LucidWorks Search will add new fields to the file to supportschema.xml

future functionality.

Guidelines for Removing Fields from the Schema
Essential Fields
Built-In Search UI Fields
Fields to Support Specific Features
Crawler Fields
Other Dynamic Fields

Table of Fields

Guidelines for Removing Fields from the Schema

Essential Fields

There are two fields that must be retained in . The Admin UI and theschema.xml

Fields API will not allow deleting them:

id
timestamp

There are three additional fields that are considered essential to LucidWorks
Search.

data_source
data_source_name
data_source_type
text_all

The three data source-related fields are considered essential for the Admin UI and
APIs to know the source of the content that has been indexed. If not using the
Admin UI nor the LucidWorks REST APIs, they could be deleted.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 54
347

The text_all field is required because declares it as the default searchschema.xml

field for the Lucene RequestHandler (query parser), which is also the default for
the basic Solr query parser. If you are using or , however, and willlucid DisMax

never use the Lucene or Solr query parsers, the field could be deleted. However, it
may be best to retain it.

We have created a sample schema that includes only the essential fields
listed above that can be used for collection creation. See Using Collection

 for more information.Templates

Built-In Search UI Fields

LucidWorks includes a default search UI that can be used as-is or replaced with a
fully local interface. If using it as-is, even for testing or during initial
implementation, the following fields must also be retained in :schema.xml

author
author_display
body
dateCreated
description
keywords
keywords_display
lastModified
mimeType
pageCount
title
url

The Search UI includes these fields for results display and default faceting, so for it
to work properly, these fields should be retained.

Fields to Support Specific Features

Several fields are included in in support of specific LucidWorksschema.xml

features. They can be removed if those features are disabled or not in use. In
some cases, however, they will be added back to the schema if the feature is
enabled in the future.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 55
347

Feature Fields

Click Scoring Relevance Framework click
click_terms
click_val

ACL acl

Spell Check spell

Auto Completion autocomplete

Enterprise Alerts timestamp

SolrCloud and Near Realtime Search _version_

De-duplication signatureField

Crawler Fields

The crawlers included with LucidWorks create fields in that begin withschema.xml

attr_ and are used to store document-specific metadata during crawl processes.
They are not generally used otherwise by LucidWorks (such as in search results or
other computations). Due to the dynamic "*" rule, they will be added back to

 if not in place. If not using the LucidWorks crawlers, they can beschema.xml

removed, but it is recommended to retain them if possible.

Other Dynamic Fields

Several other dynamic fields (all including an '*', such as *_i, *_s, *_l, etc.) are
defined in . These can be removed if they will not be used - the onlyschema.xml

two we recommend that you retain are the "*" rule and the attr_* fields.

Table of Fields

The table below notes whether a field will be indexed, stored, used for
facets or included in results. This is default behavior, and can be modified
locally. After customization, this table may not reflect the state of your

 file.schema.xml

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 56
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

version long X X Document
version
control,
used
with
Near
Realtime
Search
and
SolrCloud
.

Only if
not
using
Near
Realtime
Search
or
SolrCloud
features.

acl string X X Storing
Access
Control
List
information.

Only if
never
using
Access
Control
List
(ACL)
query-time
document
security.

attr_*
(any
field
starting
with
'attr_')

string X X Created
by the
crawlers
and
used for
a wide
array of
document-specific
metadata.
Not
specifically

Yes, but
automatically
created
by
LucidWorks
crawlers,
so will
be
recreated

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 57
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

declared
in the
schema.xml
file, but
dynamically
created
during
crawls.

at next
crawl
run.

author text_en X X X Raw
author
pulled
from
documents.
Used by
default
in the
built-in
Search
UI.

Only if
never
using
built-in
Search
UI.

author_displaystring X X Used for
display
of
authors
in
facets.
Used by
default
in the
built-in
Search
UI.

Only if
never
using
built-in
Search
UI.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 58
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

autocompletetextSpell X X Stores
terms
for the
auto-complete
index.
By
default,
it is
created
by
copying
terms
from the
title,
body,
description
and
author
fields.

Only if
never
using
built-in
auto-complete
functionality.

batch_id string X X Identifies
the
batch
that
added
the
document.

Yes.

bcc text_en X X Used in
processing
email
messages.

Yes. Will
be
added
dynamically
if an
indexed

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 59
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

document
contains
this
field.

belongsToContainertext_en X X Used to
store
the URL
of the
archive
file
(.zip,
.mbox,
etc.)
which
contains
the file.

Yes.

body text_en X X The
body of
a
document
(generally,
the
main
text).
Used by
default
for
display
in the
built-in
Search
UI.

Only if
never
using
built-in
Search
UI.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 60
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

byteSize int X The size
of the
document.

Yes. Will
be
added
dynamically
if an
indexed
document
contains
this field
and was
crawled
by the
lucid.aperture
crawler
(local
file
systems
and web
sites).

cc text_en X X Used in
processing
email
messages.

Yes. Will
be
added
dynamically
if an
indexed
document
contains
this
field.

characterSetstring X The
character
set used

Yes. Will
be
added

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 61
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

for the
document.
Only
populated
if it is
declared
in the
document
(most
commonly
with
HTML
files).

dynamically
if an
indexed
document
contains
this
field.

click string X X Used
with the
Click
Scoring
Relevance
Framework
and
contains
the
boost
value.

Only if
Click
Scoring
will not
be used.

click_termstext_ws X X Used
with the
Click
Scoring
Relevance
Framework
and
contains

Only if
Click
Scoring
will not
be used.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 62
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

the top
terms
associated
with the
document.

click_val string X X Used
with the
Click
Scoring
Relevance
Framework
and
contains
a string
representation
for the
boost
value
for the
document.
The
format
allows it
to be
used for
processing
function
queries.

Only if
Click
Scoring
will not
be used.

contentCreateddate X X The
creation
date for
the

Yes. Will
be
added
dynamically

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 63
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

document,
if
available.

if an
indexed
document
contains
this
field.
However,
it will
not be
added
as a
date,
but a
string,
which
may
cause
sorting
issues if
the field
is used
again
later.

crawl_uri string X A copy
of the
URL for
the
document.

Yes.

creator text_en X X The
creator
of the
document,

Yes. Will
be
added
dynamically

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 64
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

if
available.

if an
indexed
document
contains
this
field.

data_sourcestring X X The ID
of the
data
source
that
crawled
this
document.

No.
Field is
essential.

data_source_namestring X X X The
name of
the data
source
that
crawled
this
document.

No.
Field is
essential.

data_source_typestring X X X The type
of data
source
that
crawled
this
document.

No.
Field is
essential.

dateCreateddate X X X The
date the

Only if
never

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 65
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

content
was
created,
if
available.

using
built-in
Search
UI.

descriptiontext_en X X X The
description
from a
document,
if it
exists in
the
document.
For
example,
Microsoft
Office
document
properties
contains
a
description
field
that can
be filled
in by
the
user.

Only if
never
using
built-in
Search
UI.

email text_en X X Not
currently
used by
any

Yes. Will
be
added
dynamically

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 66
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

LucidWorks
crawlers.

if an
indexed
document
contains
this
field.

fileName text_en X X The
name of
the file.

Yes.

fileSize int X X The size
of the
file.

Yes.

from text_en X X Used in
processing
email
messages.

Yes. Will
be
created
dynamically
if
indexing
a
document
that
contains
this
field.

fullname text_en X X Data in
this field
is
mapped
to
"author".

Yes.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 67
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

generator text_en X X The
name of
the
software
that
generated
the
document,
if
available.

Yes.

id string X X X Unique
ID for
the
document.

No.
Field is
essential.

id_highlighttext_en X X No
longer
used by
LucidWorks
and will
be
removed
in a
later
version.

Yes.

incubationdate_dtdate X X Used in
older
Solr
example
documents.

Yes.

keywords text_en X X X The
keyword

Only if
never

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 68
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

list from
a
Microsoft
Office
document.

using
built-in
Search
UI.

keywords_displaycomma-separatedX X Terms
from the
keyword
field
formatted
for
display
to
users.

Only if
never
using
built-in
Search
UI.

lastModifieddate X X X Date the
content
was last
modified.

Only if
never
using
built-in
Search
UI.

mimeTypestring X X X X The type
of
document
(PDF,
Microsoft
Office,
etc.).

Only if
never
using
built-in
Search
UI.

name text_en X X Data in
this field
is
mapped

Yes.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 69
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

to
"title".

otherDatesdate X X Dates
other
than
dateCreated
or
lastModified
would
be
mapped
to this
field.

Yes.

pageCountint X X X The
number
of pages
in a
Microsoft
Office
document
such as
Word or
PowerPoint.

Only if
never
using
built-in
Search
UI.

partOf string X X Typically
used for
an email
attachment,
this
points
to the
larger

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 70
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

document
of which
this
document
is a
part.

price float X X Example
field
that
could be
used for
processing
e-commerce
data.

Yes.

retrievalDatedate X X Not
currently
used,
but
could be
used for
the date
a web
document
was
retrieved
from its
server.

Yes.

rootElementOftext_en X X Populated
only for
the root
or initial

Yes.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 71
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

document
of a
crawl.

signatureFieldstring X X Used
with the
de-duplication
feature.

Yes,
however
if
de-duplication
is
enabled,
the field
will be
added
back to
your
schema.

spell textSpell X Stores
the
terms to
be used
in
creating
the spell
check
index.
Created
by
copying
terms
from the
title,
body,
description

Only if
never
using
built-in
spelling
checker.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 72
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

and
author
fields.

text_all text_en X Used to
combine
text
fields for
faster
searching.
Created
by
copying
terms
from the
id, url,
title,
description,
keywords,
author
and
body
fields.

No.
Field is
essential.

text_mediumtext_en X X Not
currently
used.

Yes.

text_smalltext_en X X Not
currently
used.

Yes.

timestampdate X X X X Time
the
document

No, field
is

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 73
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

was
crawled
and
used for
date
faceting
and
display
of
activities
in the
LucidWorks
Admin
UI. Also
used for
Enterprise
Alerts to
know
when
the
document
was
added
to the
index
for
alerts
processing.

considered
essential.

title text_en X X The title
of the
document.

Only if
never
using
built-in

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 74
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

Search
UI.

to text_en X X Used in
processing
email
messages.

Yes. Will
be
created
dynamically
if
indexing
a
document
that
contains
this
field.

type text_en X X Used by
the
lucid.aperture
crawler
to store
Aperture's
classification
of an
information
object,
separate
from its
MIME
type.

Yes.

url string X X The URL
to
access

Only if
never
using

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 75
347

Field
Name

Type Indexed Stored Used
for

Facets

Included
in

Results

Used
for

Can Be
Deleted

the
document.

built-in
Search
UI.

username text_en X X No
longer
used
and may
be
removed
in a
later
version.

Yes.

weight float X X Example
field
that
could be
used for
processing
e-commerce
data.

Yes.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 76
347

Reindexing Content
It is considered a best practice to fully design your index (i.e., define all the fields
you'll need and their attributes) before indexing large amounts of content.
However, the reality is that things change - you have new requirements, new
content, or you'd like to give users new options for searching.

As tolerant as LucidWorks Search is to changes, there are certain changes that
cannot be made without fully reindexing, by which we mean deleting content from
the indexes and re-processing it from scratch. Adding a field or changing field
mapping options for an existing data source, as examples, require indexing the
content again to get the new field information from the document or change the
way the incoming content was processed into the index.

In addition, changes to the following attributes of a field require some degree of
re-index:

Field Type value
If it is Indexed
If it is Stored
If it is Multi-valued
Short Field Boost value

Below are the options for re-indexing content.

Re-crawl the Content

All of the crawlers store information about what documents it has previously
processed, and uses that information for future crawls, usually only adding
documents that are new (have never been indexed before), removed from the
content repository (and should be removed from the index), or changed (and
should be replaced in the index with the new copy). This means that documents
already in the index are not re-processed and may be skipped, which may create a
mis-match between existing content and new content being indexed.

Empty the Data Source

The includes a button to Empty a data source. This button only deletesAdmin UI
the documents from the data source, but does not reset any of the crawl history

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 77
347

information, which keeps track of content that were previously found and uses that
information to understand if content is new, has been deleted (and should be
removed from the index), or has been updated (and should be removed and
replaced with the new content). The associated API is the Collection Index Delete
API, which has an option to specify deleting documents from the index associated
with a data source.

If changes to a collection's field list or field type list have been made, emptying
the documents from the data source may not be sufficient to fully re-crawl the
content to update the fields because the next time a crawl is run it will be
executed incrementally, using the crawl history information that it has stored. This
means that if a document has not changed it will not be re-added to the index
because the crawl history registers it as unchanged.

There is, however, a REST API to delete the crawl history called Data Source Crawl
 which can be used if necessary.Data Delete

Delete the Data Source

Deleting the data source deletes the metadata for the data source (the
configuration details for LucidWorks Search to access the content repository), and
any of the content from the index and the crawl history. It can be done with either
the or the API. This might be the easiestAdmin UI Delete button Data Sources
way to clear the content so it can be re-crawled and re-indexed with the new field
attributes.

Empty the Collection

Emptying the collection stops any running data sources, deletes the entire search
index for the collection, and removes all crawl history for each data source. It is a
good option if you have a number of data sources that you configured during initial
implementation and would like to start fresh with production data. Emptying the
collection can be done with either the in the Admin orEmpty this Collection button
the API.Collection Index Delete

Delete the Collection

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 78
347

Deleting the entire collection will delete all the data sources, stop any running
jobs, delete all associated content, and remove all collection-related settings for
the index. It can be done with the in the Admin UI orDelete this Collection button
the API.Collections

Related Topics

Indexing Documents
Overview of Crawling

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 79
347

Multilingual Indexing and Search
LucidWorks Search has a number of capabilities designed to make working with
multilingual data straightforward. By default, it includes support for most European
languages, Japanese, Korean and Chinese. Multilingual capabilities are provided by
Lucene's analysis process (see the section of the Solr ReferenceLanguage Analysis
Guide for more details). Since Lucene is built on Java, which is Unicode enabled,
many multilingual issues are handled automatically by LucidWorks and Solr. In
fact, the main issues with multilingual search are mostly the same issues for
working with any language: how to analyze content, configure fields, define search
defaults, and so on.

Approaches to Multilingual Search
Besides the normal language issues, multilingual search does require decisions
about whether to use a single field for each language, a field for each language or
even a separate indexes for each language. Each of these three approaches has
pros and cons.

Single Field Approach

Pros

Simple to search across all languages
Fast to search

Cons

Requires Language Detection software, which is not included in LucidWorks,
and which will slow down indexing
Requires the query language to be specified beforehand, since language
detection on queries is often inaccurate
May return irrelevant results, since words may have same spelling but
different meanings in different languages
May skew relevancy statistics
Hard to filter/search by language

Multiple Field Approach

Pros

http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 80
347

No language detection required
Easy to search and/or filter by language
Relevancy is clear since there is no noise from other languages with common
spellings (minor)

Cons

Many languages = many fields = more difficult to know what to search
Slower to search across all languages

Multiple Indexes Approach

Pros

Easy to bring one language off-line for maintenance without effecting other
languages
Can easily partition data and searches across machines by language
Easy to search and filter by language

Cons

More complex administration
Slower and more difficult to search across all languages

Currently, LucidWorks supports the multiple field and multiple index approach out
of the box, but the single field approach is still possible with some additional work
that requires intermediate level Solr expertise.

Open Source Multilingual Capabilities
The crux of multilingual handling is applying analysis techniques to the content to
be indexed. These techniques are specified in the Solr's by the schema.xml

 declarations. Out of the box, LucidWorks comes configured with<fieldType>

numerous predefined field types designed to make indexing and searching
multilingual content easy to do.

Note that most of the supported languages (especially the European languages)
are designed to use Dr. Martin Porter's along with stop wordSnowball stemmers
filters, synonym filters and various other filters.

http://snowball.tartarus.org/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 81
347

Multiple Languages May Require Customization

Although LucidWorks ships with default analysis and filter techniques, they
may need customization for your search application. Consider the included
language configurations to be good starting points for support of any given
language and make adjustments as needed. For information on relevance
tuning and debugging for additional tools and techniques to improve
results, see .Understanding and Improving Relevance

By setting up the appropriate fields per language, it is possible to simply point
LucidWorks at the given data source and have it index the content.

Adding Support for Other Languages
While there are a wide variety of languages available "out of the box", there may
come a time where support for a new language is needed. There are a few
possibilities:

Try out the language with the StandardAnalyzer, since it often does the right
thing as far as tokenization and basic analysis goes. Note that the analyzer
doesn't do stemming or perform more advanced language translation.
Write an Analyzer, Tokenizer or TokenFilter and the associated Solr classes
as described on the Solr Wiki page at

.http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
Use an n-gram character-based approach that chunks characters into
n-grams and indexes them. Accuracy will be limited, but it may be better
than nothing.

If choosing the second option, the new capability can be brought into LucidWorks
as described in the Solr wiki section on .SolrPlugins

Related Topics

Language Analysis from the Solr Reference Guide
AnalyzersTokenizersTokenFilters from the Apache Solr Wiki

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 82
347

Lucid Plural Stemming Rules
The purpose of stemming is to translate different forms of similar words to a
common form so that a query for one form of a word will also match the other
forms. The most common difference between word forms is singular words versus
their plurals. Another variation in form is the variety of conjugations of a word.
Although the administrator can select what stemming filter or options are enabled
for each field type, by default all text fields will have a stemming filter that
converts most plural words to singular.

Stemming is not a perfect process, so some plurals may be missed and some
singular words may be mistakenly translated to some other singular or possibly
even a non-word. Non-words, such as jargon, names, and acronyms can also be
mistakenly stemmed. But, since stemming usually occurs at both document
indexing time and at query time, improper stemming is frequently not even
detectable. The default rules try to avoid removing "s" endings that are not plural
(or verb conjugations), such as "alias" or "business."

If stemming proves problematic for a given application, the administrator can
always turn it off or select an alternative stemming filter.

The Lucid plural stemmer is designed to focus on stemming of plural words into
their singular forms. It is rule-based, so the rules can be supplemented and tuned
to handle a wide range of exceptions. Individual words can be protected from
stemming and can be given special-case stem words. Usually, general patterns
cover wide classes of words.

The input token does not need to be lower case, but the stemming change will be
lower case.

The Stemming Rules File
The default rules file is named and found in LucidStemRules_en.txt

. The rules file can be defined by$LWS_HOME/conf/solr/cores/collection/conf

changing the "rules" parameter in for schema.xml

. These rules files arecom.lucid.analysis.LucidPluralStemFilterFactory

specified per text field type. It is expected that each natural language will have its
own stemming rules file. This file is also specific to each collection.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 83
347

If you wish to edit the stemming rules file, adhere to the following format
guidelines.

An exclamation point (!) indicates a comment or comment line to be
ignored.
White space is extraneous and ignored.
Blank lines ignored.

Rules are evaluated in the order that they appear in the rules file, except that
whole protected words and replacement words are processed before examining
suffixes.

To restrict the minimum word length that is to be stemmed, simply create rules
consisting of only question marks ('?') to match and protect words of those
lengths. For example, to protect words of less than four characters in length, add
three rules, before any other rules:

? ! Protects 1-char words.

?? ! Protects 2-char words.

??? ! Protects 3-char words.

Types of Stemming Rules

Protected Word

Just write the word itself, it will not be changed.

word

Replacement Word

Word will always be changed to a replacement word.

word => new-word

word -> new-word

word --> new-word

word = new-word

Protected Suffixes

Any matching word will be protected.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 84
347

pattern suffix

Pattern may start with an asterisk to indicate variable length. Use zero or more
question marks to indicate that a character is required. Use a trailing slash if a
consonant is required.

Examples:

?ass

*??ass

*???/ass

Translation Suffix

The suffix of a matching word will be replaced with new suffix.

pattern suffix => new-suffix

Pattern rules are the same as for protected suffixes. The pattern may be repeated
before the replacement suffix for readability.

Examples:

*ses => se

*ses -> *se

*?/uses => se

*???s =>

*???s => *

The latter two examples show no new suffix, meaning that the existing suffix is
simply removed.

Example Stemming Rules File
Here is the default file that ships with LucidWorksLucidStemRules_en.txt

Search, found in (unique to each$LWS_HOME/conf/solr/cores/collection/conf

collection):

? ! Minimum of four characters before any stemming.

??

???

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 85
347

*ss ! No change : business

*'s ! No change : cat's - Handled in other filters.

*elves => *elf ! selves => self, elves, themselves, shelves

appendices => appendix

*indices => *index ! indices => index, subindices - NOT jaundices

*theses => *thesis ! hypotheses => hypothesis, parentheses, theses

*aderies => aderie ! camaraderie

*ies => *y ! countries => country, flies, fries, ponies, phonies,

queries, symphonies

*hes => *h ! dishes => dish, ashes, smashes, matches, batches

*???oes => *o : potatoes => potato, avocadoes, tomatoes, zeroes

goes => go

does => do

?oes => *oe ! toes => toe, foes, hoes, joes, moes - NOT does, goes - but

"does" is also plural for "doe"

??oes => ??oe ! floes => floe

*sses => *ss ! passes => pass, bosses, classes, presses, tosses

*igases => *igase ! ligases => ligase

*gases => *gas ! outgases => outgas, gases, degases

*mases => *mas ! Christmases => Christmas, Thomases

*?vases => *vas ! canvases => canvas - NOT vases

*iases => *ias ! aliases => alias, bias, Eliases

*abuses => *abuse ! disabuses => disabuse, abuses

*cuses => *cuse ! accuses => accuse, recuses, excuses

*fuses => *fuse ! diffuses => diffuse, fuses, refuses

*/uses => *us : buses => bus, airbuses, viruses; NOT houses, mouses,

causes

*xes => *x ! indexes => index, axes, taxes

*zes => *z ! buzzes => buzz

*es => *e ! spaces => space, files, planes, bases, cases, races, paces

*ras => *ra ! zebras => zebra, agoras, algebras

*us

*/s => * ! cats => cat (require consonant (not "s") or "o" before "s")

*oci => *ocus ! foci => focus

*cti => *ctus ! cacti => cactus

plusses => plus

gasses => gas

classes => class

mice => mouse

data => datum

!bases => basis

amebiases => amebiasis

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 86
347

atlases => atlas

Eliases => Elias

molasses

feet => foot

backhoes => backhoe

calories => calorie

! Some plurals that don't make sense as singular

sales

news

jeans

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 87
347

Choosing an Alternate Stemmer
Out of the box, the Lucid query parser comes with a basic plural stemmer that
translates most plural words to their singular form. This should be sufficient for
most applications. The stemming rules are all rule-based in an easy to read and
write text file format that permits the addition of new rules and permits words to
be protected or mapped specially. This permits flexibility for many more
specialized applications.

If for some reason the administrator wishes to use an alternative stemmer, the
change can be made manually in the file or by using the schema.xml FieldTypes

. Any stemming filter can be specified, but Lucid KStem is a typical alternative.API

 Information for LucidWorks Search in the Cloud Users
The instructions below refer to editing to modify the stemmerschema.xml

used for each field type. Manual editing of the file cannot be doneschema.xml

by customers using LucidWorks Search hosted on AWS or Azure, but the same
results can be achieved with the .FieldTypes API

Be sure to use the same stemmer class for both the index and query analyzers. If
the stemmer classes do not match, the result can be that some queries can fail if
terms were indexed according to different rules than those used by the Lucid
query parser.

In general, it is best to the index and do a full re-indexing of the datadelete
collection whenever an analyzer is radically changed, such as is the caseindex
when stemming filters or rules are changed. See for moreReindexing Content
information about the options to reindex.

Other alternative stemming filters, such as Snowball and Porter, can be used
instead of Lucid KStem if desired.

Using the FieldTypes API

The FieldTypes API is covered in depth in the section on the .FieldTypes API

The stemming rules are defined in the "analyzers" section for the field type. The
analyzers section is considered an individual attribute as a whole, and it's not

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 88
347

possible to update a single part of the analyzers rules without updating the entire
section.

The class represents thecom.lucid.analysis.LucidPluralStemFilterFactory

default plural stemmer and will be shown in an API call in both the and index

 section of the attribute. The parameter specifies the namequery analyzers rules

of the text file that contains the plural stemming rules.

The class represents the Lucidcom.lucid.analysis.LucidKStemFilterFactory

KStem stemmer. To switch to this stemmer (or any other), make an API PUT call
to the appropriate field type and update the attribute (in both the analyzers

 and sections).index query

For example, changing to the Lucid KStem stemmer for the field typetext_en

would require the following API call:

curl -X PUT -H 'Content-type: application/json'

-d '{"analyzers": {

 "index": {

 "char_filters": [],

 "token_filters": [

 {

 "catenateAll": "0",

 "catenateNumbers": "1",

 "catenateWords": "1",

 "class": "solr.WordDelimiterFilterFactory",

 "generateNumberParts": "1",

 "generateWordParts": "1",

 "splitOnCaseChange": "1"

 },

 {

 "class": "solr.LowerCaseFilterFactory"

 },

 {

 "class": "solr.ASCIIFoldingFilterFactory"

 },

 {

 "class": "com.lucid.analysis.LucidKStemFilterFactory"

 }

],

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 89
347

 "tokenizer": {

 "class": "solr.WhitespaceTokenizerFactory"

 }

 },

 "query": {

 "char_filters": [],

 "token_filters": [

 {

 "class": "solr.SynonymFilterFactory",

 "expand": "true",

 "ignoreCase": "true",

 "synonyms": "synonyms.txt"

 },

 {

 "class": "solr.StopFilterFactory",

 "ignoreCase": "true",

 "words": "stopwords.txt"

 },

 {

 "catenateAll": "0",

 "catenateNumbers": "0",

 "catenateWords": "0",

 "class": "solr.WordDelimiterFilterFactory",

 "generateNumberParts": "1",

 "generateWordParts": "1",

 "splitOnCaseChange": "1"

 },

 {

 "class": "solr.LowerCaseFilterFactory"

 },

 {

 "class": "solr.ASCIIFoldingFilterFactory"

 },

 {

 "class": "com.lucid.analysis.LucidKStemFilterFactory"

 }

],

 "tokenizer": {

 "class": "solr.WhitespaceTokenizerFactory"

 }

 }

}}'

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 90
347

http://localhost:8888/api/collections/TestCollection/fieldtypes/text_en

Editing schema.xml

If you edit , and search for the field type, you should see thatschema.xml text_en

both its index and query analyzers have XML entries for the stemming filter that
appear as follows:

<filter class="solr.ISOLatin1AccentFilterFactory"/>

<!-- <filter class="com.lucid.analysis.LucidKStemFilterFactory"/> -->

<filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

rules="LucidStemRules_en.txt"/>

The class represents thecom.lucid.analysis.LucidPluralStemFilterFactory

default plural stemmer. The parameter specifies the name of the text filerules

that contains the plural stemming rules.

The class represents the Lucidcom.lucid.analysis.LucidKStemFilterFactory

KStem stemmer, which is disabled by default using the standard and <!- ->

comment markers.

To disable the default plural stemmer and enable Lucid KStem, simply remove the
comment markers from the latter and add them to the former. Do this same thing
for both the index and query analyzers. The edited lines should now appear as
follows:

<filter class="solr.ISOLatin1AccentFilterFactory"/>

<filter class="com.lucid.analysis.LucidKStemFilterFactory"/>

<!-- <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

rules="LucidStemRules_en.txt"/> -->

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 91
347

Deleting the Index
During application development, you might use sample data that is inappropriate
for the production system. To remove this data, you can delete the entire index or
just delete the content and crawl history for a single data source.

The easiest way to do this is to use the to delete documents from aAdmin UI
specific data source or an entire collection.

Another way to do this is to issue an API command using the Collections Index API
. This API provides two methods to stop all running indexing tasks, clear the index,
and clear any persistent crawl data (crawl history) for either the entire collection
or a single data source.

This Will Delete ALL of Your Data

The following procedure to delete a collection should only be used if you
are sure you want to delete in your index. Once thisall documents
command has been executed, there is to retrieve the content. Ifno way
only some documents should be deleted, use the method to delete
documents for a specific data source.

If you only want to clear the crawl history, the Data Source Crawl Data API
provides a way to delete only the history for a data source, but not the content.

An alternative approach would be to issue a delete command directly to Solr with
the following syntax. However, this will not stop running tasks nor clear persistent
crawl data.

http://localhost:8888/solr/update?stream.body=<delete><query>id:\[* TO

*\]</query></delete>

Related Topics

Reindexing Content
Overview of Crawling

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 92
347

Crawling Content
This section describes how to configure crawling with LucidWorks Search, to get
the content to put in the indexes.

For the most part, crawling only requires configuring a data source with the UI or
the API and starting the crawl. However, if using batch crawling, Access Control
Lists, databases containing binary data, or an "external" crawler, there may be
additional configuration you'll want to do.

Start with the to understand how the crawlers work.Overview of Crawling

Then dive into the detailed sections as needed:

Supported Filetypes
Troubleshooting Document Crawling
Pushing Content to LucidWorks
Indexing Documents Directly to Solr
Crawling Windows Shares with Access Control Lists

Indexing Binary Data Stored in a Database
Using the Hadoop Crawlers
Integrating Nutch
Processing Documents in Batches

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 93
347

Overview of Crawling
LucidWorks Search has integrated several crawlers to make adding content to the
index easier and more straightforward.

A is a program which understands how to connect to a remote repositorycrawler
(or several types of repositories), find documents within the repository, and
retrieve the documents for indexing by the system. A synonym in some contexts is
a , but there are differences between the terms. A crawler discovers newconnector
documents on its own and makes decisions about which documents to retrieve,
based on rules provided to it by its own code or by configuration. A connector is
more passive - it connects to a repository and pulls all the documents, without the
ability to make decisions; interpreting rules and making decisions would be up to
the crawler which controls the connector.

As each repository is different, each crawler needs information to connect to a
specific repository, such as the network address of the repository and any required
authentication information. This information is provided to the crawler by creating
a .data source

The data source is the central way in which you interact with the crawlers. There is
one defined per repository, filesystem, website, etc. So, for example, if you want
to index three websites, you'll create three Web Data Sources. Three S3 buckets,
then you'll create three S3 Data Sources.

For the most part, we've tried to make each data source consistent in terms of the
options provided, but there are differences between the crawlers and their
capabilities. This leads to differences when configuring data sources of different
types, and differences in performance and behavior of the crawlers themselves
while retrieving documents and passing them along the indexing process.

Topics covered in this section:

The Crawl Process
Re-Crawling Documents

Data Source Options
Logging
Scheduling

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 94
347

Field Mapping
Data Source Types
Related Topics

The Crawl Process
When starting a crawl, the crawler associated with a specific data source uses the
information saved in the data source configuration to connect to the repository and
find documents. Most of the data sources support inclusion or exclusion
parameters to define the types of documents (or paths to documents) that should
be indexed. The crawlers use that information to know what pages to retrieve for
eventual indexing.

The crawlers do not actually index content. A crawler retrieves the pages, and
passes them to a , which prepares the documents for the indexing process.parser
The parser handles breaking the documents into their parts, identifying fields
within the documents and normalizing data so it can be more easily consumed in
the index. In most cases, the crawlers use Apache Tika for parsing.

The exception to this is the Aperture crawler, which has its own parser
embedded within it. In cases where the Aperture parser fails to parse a
document, Tika is used as a fall-back. However, documents that were
successfully parsed by the Aperture crawler do not get another pass
through Tika. There is no way to change this behavior at this time.

Once documents have been retrieved and parsed, they are passed to the
 which pushes them into the index using SolrJ, a common clientUpdateController

used for indexing content in Solr. This process also performs , wherefield mapping
the extracted fields from a document can be mapped to other fields.

Re-Crawling Documents

When working with data sources and their content, it helps to understand how
content is handled during the initial crawl and in subsequent re-crawls to update
the index with new, updated, or removed content.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 95
347

Some of the crawlers keep track of documents that have been "seen" which helps
speed later crawls by not processing unchanged content, but it can be confusing if
the configuration settings change between crawls. In some cases, you may need
to remove the crawl history in order to get the results you want; an example of
this would be the setting: if it is not set for the initial crawl of aadd_failed_docs

repository, it will be skipped on subsequent crawls unless it has been modified in
some way. Other examples include (but aren't limited to) settings to map fields
from the incoming documents to another field, options to add LucidWorks-specific
fields to the documents, as well as changes to fields themselves and any dynamic
field rules.

If making changes to a data source configuration after content has already been
crawled and indexed, review the options in the section on forReindexing Content
possible approaches.

Back to Top

Data Source Options

Logging

The crawlers log information about attempts to access documents and the results
of those attempts. The log is kept in in a file named $LWS_HOME/data/logs

.connectors.<YYYY_MM_DD>.log

In general, the crawlers will:

print one line to the log with the document ID when it has successfully
accessed a document, describing the status (New, Updated, Deleted, etc.).
In cases where the document could not even be accessed, this may lead to
the attempt not being recorded in the logs.
not log documents of unknown type that cannot be processed as plain text.
not log documents that fail parsing.
not add documents that fail parsing.

Each of these behaviors can be changed in most crawlers, which would allow more
information to be added to the log or more documents added to the index. With
some crawlers, however, the default behaviors are the only options. More
information for each data source type is available in the documentation for the

 and the .Admin UI REST API

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 96
347

Scheduling

Each data source can be scheduled to run at regular intervals. Using the Admin UI,
it is only possible to schedule crawling at specific intervals (hourly, daily, weekly),
but using the REST API, more complex schedules can be constructed. It is,
however, only possible to have a single schedule for each data source.

Field Mapping

Field Mapping provides the ability to map fields in documents to fields or dynamic
field rules already defined in LucidWorks or add fields to incoming documents. This
can be done generically when an unexpected field is introduced or specifically for
known incoming fields. The mapping rules can be manipulated via the Admin UI
from the screen, or with either the or the Data Source Details Data Sources API

.Field Mapping API

Some explicit field mappings are defined by default. This table shows the
LucidWorks Search default mappings:

From Crawler Metadata To Field

acl acl

author author

batch_id batch_id

body body

content-encoding characterSet

content-length fileSize

contentcreated dateCreated

contentlastmodified lastModified

contributor author

crawl_uri crawl_uri

created dateCreated

creator creator

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 97
347

From Crawler Metadata To Field

date null

description description

filelastmodified lastModified

filename fileName

filesize fileSize

fullname author

fulltext body

keyword keywords

last-modified lastModified

last-printed null

lastmodified lastModified

lastmodifiedby author

links null

messagesubject title

mimetype mimeType

name title

page-count pageCount

pagecount pageCount

plaintextcontent body

plaintextmessagecontent body

slide-count pageCount

slides pageCount

subject subject

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 98
347

1.

2.

3.

4.

5.

From Crawler Metadata To Field

title title

type null

url url

When the mapping is created or updated, LucidWorks checks the mappings against
the for the collection and verifies that the target fields exist in theschema.xml

schema.

During indexing, the field mapping process performs the following steps:

The mappings are checked for the existence of the source field name. If it
exists, it will be mapped to the target field.
If the source field name does not exist in the mappings, the forschema.xml

the collection is checked. If the source field name exists in the schema, it
will be indexed to that field.
If a has been defined, a dynamic field will be createddynamic_field

according to the dynamic field rule.
If a has been defined, the source field will be mapped to thedefault_field

defined default field.
If none of these steps has produced a match, the field will be discarded.
Back to Top

Data Source Types
LucidWorks Search currently supports 8 crawlers and 13 types of data sources.
When using the Admin UI, the selection of a crawler is hidden; when using the
REST API, the selection of a crawler is a required attribute.

The table summarizes the types of content repositories that can be crawled:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 99
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Aperture
Websites
Filesystems

Can crawl
websites and
filesystems.
Stores a
history of
documents
that have
been seen
before.
Indexes data
contained in

 tags.<META>

Web
crawling will
respect
robots.txt
rules or can
be
configured
to ignore
them.

The Aperture
crawler is
not designed
for
large-scale
crawls of
more than
about
10,000
pages or
files in a
single crawl.
It is a
single-threaded
process,
meaning
that one
data source
will only use
a single
server
process to
crawl sites.
This can
make a long
crawl take a
long period
of time to
complete.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 100
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Multiple data
sources all
use the
same
"triple-store",
which is a
database
inside
Aperture
that keeps
track of web
pages
visited. If
multiple data
sources are
running at
the same
time, the
triple-store
can get
easily
corrupted.
It's highly
recommended
to avoid
running
multiple
Aperture-based
crawls at the
same time.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 101
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Doesn't use
Apache Tika
for
document
parsing and
may not be
as accurate
with some
documents
as Tika
(however, if
it cannot
parse a
document at
all, it will
pass that
document to
Tika for
parsing).

JDBC
Databases Allows

indexing of
databases.
Supports
nested
queries for
complex
data
environments.

The
LucidWorks
Search
implementation
is based on
the
DataImportHandler,
which can be
difficult to

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 102
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Supports
delta queries
to limit
subsequent
crawls on
only new or
changed
table rows.

precisely
configure in
unique
environments.
Requires
uploading a
driver before
it can be
used.
Converting
date types
can be
problematic.

Google Connector
Manager SharePoint

Repositories
Indexes all
content in
the
SharePoint
repository
(files,
discussion
boards,
calendars,
contacts,
sites,
images,
etc.).
Support
SharePoint

Must install
additional
Web services
to work
properly.
Security
options can
be complex
to configure.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 103
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

security
configuration.
Can add new
connectors
supported by
the Google
Connector
Manager
framework.

SolrXML
SolrXML files Easy to

understand
XML
structure.
Many users
already have
documents
in this
format due
to prior use
of Solr.
Can point it
to a
directory of
files instead
of one at a
time.
Can add a
unique

Not a
generic XML
indexer;
documents
must be
structured in
a very
specific way.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 104
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

identifier to
each
document as
it's indexed
if it doesn't
have one
already.

Filesystem
Amazon S3
buckets
SMB/Windows
Shares
Hadoop
Distributed
Filesystems
(HDFS)
Hadoop over
S3
FTP servers
Local
Filesystems

Provides
access to
multiple
remote
filesystems.
Allows
multi-threaded
crawls.

Must allow
the
LucidWorks
server
access to the
remote
systems.
Hadoop
crawls are
throttled to
prevent
overloading
the system.

MongoDB
MongoDB Supports

multiple
databases
and tables
within a
single

MongoDB
collections
indexed
restricted by
username
and

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 105
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

MongoDB
installation

password
provided to
the crawler.
Crawling all
databases
and
collections
requires
allowing the
crawler to
have
"admin"
access to the
database.

Azure Blob
Azure Blob
storage

Indexes all
content
found in an
Azure Blob
storage
container.

Can only
specify a
single
container.

Azure Table
Azure Table
instances

Indexes all
content
found in an
Azure Table
instance.

Does not
support
incremental
crawling
(i.e., delta
queries). All

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 106
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

documents
are retrieved
with every
crawl.

Twitter Search
Twitter
Search API

Allows
indexing
tweets that
match a
specific
query.

Does not
continuously
crawl to get
tweets that
match the
query
parameters.

Twitter Stream
Twitter
Stream API

Allows
filtering
indexed
tweets by
userID,
location, or
keywords.

Will continue
to crawl
indefinitely
unless
manually
stopped or
controlled
with a
parameter
that's only
available via
the REST
API.

Hadoop crawlers

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 107
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Hadoop
filesystems

Allows
unthrottled
crawling of
HDFS
systems.
Supports all
of the major
Hadoop
distributions
(Apache,
Cloudera,
Intel, MapR,
and Pivotal).
Supports
several
types of
documents
(SequenceFiles,
CSV files,)

Must design
your
LucidWorks
cluster
appropriately
to take full
advantage of
the speed
capabilities.
Field
mapping is
not
supported.
Defining the
Hadoop job
has a lot of
parameters.

Push
Push to
LucidWorks

Can use
SolrJ or any
update
requestHandler
to get
documents
into
LucidWorks.

The
documents
or processes
for crawling
must be
prepared in
advance.
A Jetty port
must remain

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 108
347

Crawler Data Source
Types Supported

Capabilities Limitations (not
comprehensive;

see
documentation

for each type for
full details)

Full access
to field
mapping
capabilities
that other
crawlers
use.

open to
"listen" for
the pushed
documents.

Related Topics

Data Sources in the Admin UI
Data Sources with the REST API
Custom Connector Guide

Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 109
347

Supported Filetypes
LucidWorks Search crawlers can identify many different file formats (MIME types),
and can extract text and metadata from the MIME types listed in the table below.
Even if the crawlers cannot extract data from a file, it can often at least recognize
the file type and index basic information about the file, such as the filename and
its metadata. Many of the crawlers have settings that allow how to handle the
situation where the MIME type is not supported.

Note that extracting data from third party proprietary file formats is often difficult
and may result in irregular text being extracted and indexed. If you encounter a
format that is supported, but does not get properly extracted, please share the
information with Lucid Support, including the file, if possible.

Supported File Formats

Name MIME Type(s) Notes

HTML text/html

Images image/jpeg, image/png,
image/tiff

Metadata Only

Mail message/rfc822 and
message/news

Some mime based mail
attachments can be
extracted.

MP3 Metadata audio/mpeg Metadata only

Microsoft Office Word, PowerPoint, Excel,
MS Publisher, Visio

All applications are
trademarks of the
Microsoft Corporation

Open Office OpenDocument and
StarOffice documents

OpenXML Microsoft's latest Office
format

Adobe Portable Document
Format

application/pdf PDF is a trademark of
Adobe

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 110
347

Name MIME Type(s) Notes

Plain Text text/plain

Quattro application/x-quattropro,
application/wb2

Trademark of Corel

Rich Text Format text/rtf

eXtensible Markup
Language (XML)

text/xml

Archives application/zip,
application/gzip,
application/x-tar

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 111
347

Troubleshooting Document Crawling
LucidWorks Search crawling events are logged to the

 file, found in the directory.connectors.<YYYY_MM_DD>.log $LWS_HOME/data/logs

Serious exceptions will be reported to the LucidWorksLogs collection, which you
can search as you can any other collection through the default Search UI. In
addition, the Admin UI provides some visibility into errors during crawling by
showing them on the page, found under the Status menu. That pageServer Log
also allows access to browse all the log files without having to access the server.

Problems such as a document not being found or access denied will not be
reported the the LucidWorksLogs collection, but will show in the Admin UI and in
the Data Source Status/History APIs as "not found". This may make it difficult to
find which documents were skipped, but a review of the log file may yield further
information.

In general, the crawlers will:

print one line to the log with the document ID when it has successfully
accessed a document, describing the status (New, Updated, Deleted, etc.).
In cases where the document could not even be accessed, this may lead to
the attempt not being recorded in the logs. This can be changed by
modifying the setting "Log Extra Detail" in crawlers that support it.
not log documents of unknown type that cannot be processed as plain text.
This can be changed by modifying the setting "Log warnings for unknown
mime types" in crawlers that support it.
not log documents that fail parsing. This can be changed by modifying the
setting "Fail unsupported file types" in crawlers that support it.
not add documents that fail parsing. This can be changed by modifying the
setting "Add failed docs" in crawlers that support it.

By default, the LucidWorks Search Connectors log does not record the
collection or data source associated with crawl activities. However, if you
would like to record that information to make troubleshooting simpler, you
can edit the file.$LWS_HOME/conf/log4j-connectors.xml

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 112
347

In the file, find the section that begins with a comment to "Use the pattern
below to log additional context info...", as below:

<!-- Use the pattern below to log additional context info like

collection and data source name -->

 <!--

 <param value="%d{ISO8601} %p %c{2} - %X %m%n"

name="ConversionPattern"/>

 -->

Uncomment <param value="%d{ISO8601} %p %c{2} - %X %m%n"
 and save the file. You should name="ConversionPattern"/> restart

LucidWorks Search after making this change.

Errors Creating Data Sources

Path or URL Errors

By default, all data sources try to verify that the repository to be crawled is
accessible to the Connectors component with the information provided. In most
cases, the data source will not be created unless the data source is accessible.

Most of the crawlers support disabling the verification step during data source
creation with a parameter in the API (the Admin UI has no ability to skip
verification). However, if the Connectors component cannot access the repository,
it will not be able to crawl it.

MapR-related Errors

Before using either MapR data source, you must first have the MapR client
installed at a filesystem location accessible by the LucidWorks Connector
component. For information about the MapR client, please see the MapR
documentation .Setting Up the Client

The Connector component looks for the client libraries in by default,/opt/mapr

but the location can be modified by editing the in lweconnectors.jvm.params

. Find the setting and modify the path$LWS_HOME/conf/master.conf -Dmapr.home

as needed.

http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 113
347

The following errors indicate that either the MapR Client is not installed or not
accessible to the Connectors component:

In :core.<date>.log

Unprocessable Entity (422) - [{"message":"unknown crawler type

lucid.map.reduce.maprfs","code":"error.invalid.value","key":"crawler"}]

Unprocessable Entity (422) - [{"message":"unknown crawler type

lucid.mapr","code":"error.invalid.value","key":"crawler"}]

In :connectors.<date>.log

External library path doesn't exist:

/opt/mapr/hadoop/hadoop-0.20.2/conf

External library path doesn't exist:

/opt/mapr/hadoop/hadoop-0.20.2/lib

External library path doesn't exist:

/opt/mapr/hadoop/hadoop-0.20.2/lib/jsp-2.1

No valid external paths - skipping mapr-client initialization.

Dependency 'mapr-client' of

/LucidWorks/2.5.6-32/app/crawlers/mapr-crawler.jar NOT FOUND

No valid crawler plugins in

file:/LucidWorks/2.5.6-32/app/crawlers/mapr-crawler.jar

Dependency 'mapr-client' of

/LucidWorks/2.5.6-32/app/crawlers/mapr-hv-crawler.jar NOT FOUND

No valid crawler plugins in

file:/LucidWorks/2.5.6-32/app/crawlers/mapr-hv-crawler.jar

Exact paths referenced in these errors will vary depending on how you have
installed LucidWorks Search.

Understanding Crawl Errors
Crawling is dependent on a number of factors. In order for a site to be crawl-able,
several things must be aligned:

The repository must be supported by one of the crawler and data source
types.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 114
347

The repository must be accessible to the LucidWorks Search server. If
authentication is required to access the repository, the data source must
support the authentication type and the correct credentials supplied.
The documents must be parseable, so the fields and content can be
extracted.
The specific data source settings must be configured to include the specific
documents.

For example, if I have a file system with 100 PDF documents, each of which are
OCR scans and 100Mb in size, the PDF documents: a) may not be parseable
because OCR scans are images and, b) may exceed the maximum file size
configured in the data source (the default is 10Mb). In this example, the files
would be skipped by the crawler, which is not considered a serious exception and
is generally only logged when the data source setting to "Log extra detail" is
selected. Then the skipped files would be found in the log file with a format like
this:

INFO filesystem.FileSystemCrawler - File <file-URL> exceeds the

maximum size specified for this data source. Skipping.

WARN No extractor for <file format>; Skipping: <document-URI>

Possible Errors

This information is provided to help you find the errors in the log file; precise
troubleshooting requires information about the documents and system
environment. If a document causes an error (besides being too large or the
system being out of memory), it may be helpful to try to isolate it and try again to
be sure it is the document causing the problem and not some other system error
that may have occurred at the same time.

In each of the errors below, the document URI will be listed. For files this will be
the path and filename, for websites it would be the URL, and for other data source
types a base document URI will be configured based on how the data source is
configured.

Exception

WARN Exception while crawling: <document-URI>

<exception-with-stack-trace>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 115
347

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-cause-message>

PDF files are notorious for causing exceptions in their processing. These errors are
not always fatal, but may cause all or part of the file to be skipped.

WARN util.PDFStreamEngine - java.io.IOException: Error: expected hex

character and not :32

WARN util.PDFStreamEngine - java.io.IOException: Error: expected the

end of a dictionary.

Out of memory

WARN File caused an Out of Memory Exception, skipping: <document-URI>

<exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <OOM-exception-message>

SubCrawlerException

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-message>

Unknown file type

WARN Doc failed: Could not find extractor: <document-URI>

In this case, this warning will be seen in the logs but will not be reported in the
LucidWorksLogs collection.

I/O error

WARN IO Exception processing: <document-URI>

<exception-with-stack-trace>

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-message>

HTML/XML/XHTML parsing errors

WARN Doc failed: <exception-with-stack-trace>

WARN Doc failed: <document-URI> - cause: <exception-cause-message>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 116
347

This is another case where a warning will be seen in the logs but will not be
reported in the LucidWorksLogs collection.

Related Topics

System Directories and Logs

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 117
347

Pushing Content to LucidWorks
In some cases, it may not be possible to use the crawlers included with
LucidWorks Search to index content because it is stored in a repository that is not
accessible to the crawlers or has already been prepared for ingestion to Solr.
Instead, another process may be possible, such as using , to feed documentsSolrJ
directly to Solr. In that situation, LucidWorks would not normally know about the
documents and would not be able to include information about the data source in
facets or display statistical data about the data source in the Admin UI.

Fortunately, there is a way to create an 'external' data source to add fields to the
document so LucidWorks will treat the documents the same as documents found
via the embedded crawlers. The data source can be created either via the Sources
screen in the or with the .Admin UI Data Sources API

Push Data Sources
In LucidWorks Search, this is called a 'Push' data source. It differs from the other
data source types in that it is the only one where you send content to LucidWorks
(and, by extension, Solr), while the other data source types use a "pull" model to
go and get content for processing. Because the content is being pushed from an
external process, these suggestions will ensure that they are processed
consistently by LucidWorks Search.

Prior to LucidWorks Search v2.7, a similar data source called an 'external'
data source was used. That data source type has been replaced with the
'push' data source type. Subsequently, it is no longer required to use the

 parameter, nor configure a callback URL.fm.ds

This data source type has the benefit of using the field mapping functionality of
Solr, but can also process adds, deletes, and updates to documents in the same
way that Solr can (i.e., using the update requestHandlers for CSV, XML, JSON,
etc.). It can also send the output through any of the available output options
described in the advanced fields section below. Document counts should also be
reflected properly in the Admin UI and data source history APIs.

http://wiki.apache.org/solr/Solrj

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 118
347

If you are using a smart SolrJ client already (i.e., CloudSolrServer), it's worth
weighing the benefits of this data source against the drawback that it is a single
endpoint which may become a bottleneck or single point of failure. However, the
ability to use the LucidWorks Search processing chain may still outweigh this
disadvantage.

The push connector uses the embedded JettySolrRunner to push the documents.
This requires you to only define a port on your system to run the JettySolrRunner
that is not already in use by any other process. The documents can then be sent
to LucidWorks at that port, and they will be consumed by LucidWorks.

Add lucidworks_fields to Incoming Content

When LucidWorks crawlers acquire content, certain fields related to the data
source are added to each document to help identify the documents as belonging to
the data source for use in statistics, faceting, and document deletion (if
necessary). This is done via an attribute called (which islucidworks_fields

shown as "Create LucidWorks fields" in the Edit Mapping screen of the Admin UI).
The default for this attribute is "true", which means the fields will be added to all
incoming documents, so usually no editing is required to add these fields as long
as the parameter has been added to the update request.fm.ds

The fields added to each document are from the data source, but have different
names. This table shows the relationship between the data source attribute name
and the fields added to documents:

Data Source Attribute Field Name (in)schema.xml

id data_source

type data_source_type

name data_source_name

Examples

Using the Data Sources API, a new data source could be created with these
settings:

curl -H 'Content-type: application/json' -d '{"name":"Content

Push","crawler":"lucid.push","type":"push","port":8654}'

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 119
347

http://localhost:8888/api/collections/collection1/datasources |python -m

json.tool

The output of this command would be as follows:

{

 "caching": false,

 "category": "push",

 "collection": "collection1",

 "commit_on_finish": true,

 "commit_within": 900000,

 "crawler": "lucid.push",

 "id": "7cb0000448eb4dbc9bb73c6e4097d685",

 "indexing": true,

 "mapping": {

 "datasource_field": "data_source",

 "default_field": null,

 "dynamic_field": "attr",

 "literals": {},

 "lucidworks_fields": true,

 "mappings": {

 "acl": "acl",

 "author": "author",

 "batch_id": "batch_id",

 "body": "body",

 "content-encoding": "characterSet",

 "content-length": "fileSize",

 "content-type": "mimeType",

 "contentcreated": "dateCreated",

 "contentlastmodified": "lastModified",

 "contributor": "author",

 "crawl_uri": "crawl_uri",

 "created": "dateCreated",

 "creator": "creator",

 "date": null,

 "description": "description",

 "filelastmodified": "lastModified",

 "filename": "fileName",

 "filesize": "fileSize",

 "fullname": "author",

 "fulltext": "body",

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 120
347

 "keyword": "keywords",

 "last-modified": "lastModified",

 "last-printed": null,

 "lastmodified": "lastModified",

 "lastmodifiedby": "author",

 "links": null,

 "messagesubject": "title",

 "mimetype": "mimeType",

 "name": "title",

 "page-count": "pageCount",

 "pagecount": "pageCount",

 "plaintextcontent": "body",

 "plaintextmessagecontent": "body",

 "slide-count": "pageCount",

 "slides": "pageCount",

 "subject": "subject",

 "title": "title",

 "type": null,

 "url": "url"

 },

 "multi_val": {

 "acl": true,

 "author": true,

 "body": false,

 "dateCreated": false,

 "description": false,

 "fileSize": false,

 "mimeType": false,

 "title": false

 },

 "original_content": false,

 "types": {

 "date": "DATE",

 "datecreated": "DATE",

 "filesize": "LONG",

 "lastmodified": "DATE"

 },

 "unique_key": "id",

 "verify_schema": true

 },

 "name": "Content Push",

 "output_args": "threads=2,buffer=1",

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 121
347

 "output_type": "solr",

 "parsing": true,

 "port": 8654,

 "type": "push",

 "url": "http://localhost:8654/solr"

}

Then a document such as this could be added directly to Solr:

curl -H 'Content-type: text/xml' --data-binary '<add> <doc> <field

name="id">testdoc</field> <field name="body">test</field> </doc> </add>'

http://10.0.1.7:8654/solr/collection1/update?commit=true

Here is an example document using SolrJ:

...

String dsId = "3";

SolrInputDocument doc = new SolrInputDocument();

doc.addField("id", "1234");

doc.addField("body", "test");

SolrServer server = new

CommonsHttpSolrServer("http://localhost:8654/solr/collection1");

UpdateRequest req = new UpdateRequest();

req.add(doc);

req.process(server);

Related Topics

Solr Direct Access
Indexing and Basic Data Operations from the Apache Solr Reference Guide.

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 122
347

Indexing Documents Directly to Solr
Solr provides many ways to index content, and these can be used in addition to or
instead of the crawlers built into LucidWorks Search. Solr includes several
approaches to indexing content:

Solr can index XML (in a specific Solr format), CSV files and JSON formats
natively
Solr Cell (Content Extraction Library) uses Tika to extract documents from a
variety of sources
SolrJ is used by many to connect their Java applications to Solr for indexing
and also querying document once they've been indexed
The DataImportHandler (DIH) provides access to structured data in
relational databases (the Database data source in LucidWorks uses DIH
under the hood)
Crawling can be done with Nutch and then pushed into Solr

This page provides a brief overview of how to index content into Solr; for more
information, including details of the options mentioned above, please see the Solr
Reference Guide section on .Indexing and Basic Data Operations

Solr and the LucidWorks Admin UI
If you push documents directly to Solr without using LucidWorks Search data
sources, the LucidWorks Admin UI will be unable to display statistical information
about those documents. This is because documents crawled via LucidWorks Search
contain a field that includes the data source ID, and the data source ID is used by
the Admin UI to display information such as the number of documents in the index
for that data source, and to know which crawl statistics to display.

The LucidWorks data source type "external" would allow you to integrate
documents pushed directly to Solr with documents indexed from the crawlers and
get statistics such as number of documents per data source in the Admin UI. In
addition, the external data source also allows using LucidWorks data source field
mapping functionality. For more information, see ;Pushing Content to LucidWorks
the information contained below is still valid, but would be slightly modified when
using the "External" approach.

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 123
347

Indexing Solr XML
One way to integrate LucidWorks with a custom data source is to dump the data
from that data source into XML files formatted in this way, and index them as a

. LucidWorks has built-in support for indexing a directory treeSolr XML data source
of Solr XML files and scheduling periodic re-indexing. Alternatively, the XML files
can easily be posted into LucidWorks and Solr externally using curl, the ,REST API
or other tools that can HTTP POST, like this:

curl http://localhost:8888/solr/collection1/update --data-binary

@filename.xml -H 'Content-type:text/xml; charset=utf-8'

Solr natively digests a simple XML structure like this:

<add>

 <doc>

 <field name="fieldname1">field valueA</field>

 <field name="fieldname2">field valueB</field>

 </doc>

 <doc>

 <field name="fieldname3">multivalue1</field>

 <field name="fieldname3">multivalue2</field>

 </doc>

</add>

The structure supports multiple declarations and each supports<add> <doc> <doc>

multiple declarations. Fields can be multi- or single-valued, depending on<field>

the configuration. The LucidWorks Search provide aschema.xml Fields screens
handy user interface for managing field properties, including the multivalued
setting.

Solr's XML format can perform other operations including deleting documents from
the index, committing pending operations, and optimizing an index (a
housekeeping operation). For more information on these operations, as well as
adding documents, refer to .Solr's Update XML Messages

http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 124
347

1.

2.

3.
4.

5.

Indexing Column (Comma) Delimited Data
The following section uses an example to illustrate how to index delimited text
with LucidWorks.

Save the following simple comma-separated data as sample_data.text:

id,title,categories

1,Example Title,"category1,category2"

2,Another Record Example Title,"category2,category3"

Configure the index schema using the Fields editor in the Admin UI as
follows:

At the bottom of the page, click to get a blank fieldAdd new field
form
Add a new field with the following settings:

Name: categories
Type: string
Stored: checked
Multi-valued: checked
Short Field Boost: none
Search by Default: checked
Include in Results: checked
Facet: checked

Save and apply those settings.
Now index the CSV data from the command-line using curl:

curl

"http://localhost:8888/solr/collection1/update/csv?commit=true&f.categories.split=true"

--data-binary @sample_data.txt -H 'Content-type:text/plain;

charset=utf-8'

You can also make the file pipe-delimited, like this:

id|title|categories

3|Three|category3

4|Four|category4,category5

And then you can index using this command:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 125
347

5.

curl

"http://localhost:8888/solr/collection1/update/csv?commit=true&f.categories.split=true&separator=|"

--data-binary @pipe.txt -H 'Contenttype:text/plain; charset=utf-8'

For a full description of all CSV options, see the documentation.Solr UpdateCSV

Related Topics

Pushing Content to LucidWorks

From our Apache Solr Reference Guide:

Indexing and Basic Data Operations
Using SolrJ

http://wiki.apache.org/solr/UpdateCSV
http://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
http://cwiki.apache.org/confluence/display/solr/Using+SolrJ

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 126
347

Crawling Windows Shares with Access Control Lists
LucidWorks Search can crawl Windows Shares (SMB filesystems) and the Access
Control Lists (ACLs) associated with shared files and directories. The ACL
information can then be used to limit users' searches to the content they are
permitted to access. This page describes how to configure using ACLs to control
search results based on the user's permissions

As of LucidWorks Search v2.5, it's possible to configure ACL and Active Directory
connections on a per-data source basis. This means that you can simply create a
Windows Share data source with either the UI or the API, configure the connection
to the Active Directory server, define if you want to trim results based on user
authorizations, and then crawl the content.

When configuring the connection between LucidWorks Search and Active Directory,
keep these requirements in mind:

Credentials with READ and ACL READ permissions for accessing the Windows
share. We recommend that you create a special user for this purpose.
Credentials with read-only access to the Active Directory LDAP. This is used
for search-time filtering, and we recommend that you create a special user
for this purpose.

Permissions with Access Control Lists
The following model is implemented as a search filtering component by default:

Group READ
Access

Subgroup READ
Access

User READ
Access

Search Result
Returned?

o (permit) o o o

o × (deny) o ×

o o × ×

o × × x

× o o ×

× × o ×

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 127
347

Group READ
Access

Subgroup READ
Access

User READ
Access

Search Result
Returned?

× o × ×

× × × ×

o - (not set) o o

o o - o

o - - o

- o o o

- - o o

- o - o

- - - ×

To understand this table, read the rows left to right. For example, in the first row,
we see that the user's main group, subgroup, and individual permissions all allow
READ access to a shared resource, so the search result is returned. In the second
row, we see that the user's main group and user's individual permissions allow
READ access, but the user's subgroup's permissions do not, so no search result is
returned to the user.

How SMB ACL Information Is Stored In The Index
For each file that is crawled through the SMB data source the field is populatedacl

with data that can be used at search time to filter the results so that only people
that have been granted access at the user level or through group membership can
see them. Two kinds of tokens are stored: Allow and Deny. The format used is as
follows:

Allow:
WINA<SID>

Deny:
WIND<SID>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 128
347

Where is the security identifier commonly used in Microsoft Windows systems.SID

There are some well known SIDs that can be used in the field to makeacl

documents that are crawled through some other mechanism than by using SMB
data source behave, from the , the same way as the crawled SMB content:acl pow

SID Description

S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system
administrator. By default, it is the only
user account that is given full control
over the system.

S-1-5-domain-512 Domain Admins: a global group whose
members are authorized to administer
the domain. By default, the Domain
Admins group is a member of the
Administrators group on all computers
that have joined a domain.

S-1-5-domain-513 Domain Users.

Note that some of the listed SIDs contain a token. This means that thedomain

actual SIDs differ from system to system. To find out the SIDs for particular user
in particular system you can use the information provided by the Windows
command line tool by executing command .whoami whoami /all

You can populate the field in your documents with these Windows SIDs toacl

make them searchable in LucidWorks Search. For example, if you wanted to make
some documents available to "Everyone" you would populate the field with theacl

 token. If you wanted to make all docs from one data source availableWINAS-1-1-0

to everybody you can use the literal definitions in the data source configuration.

Related Topics

Filtering API
Search Handler Components API
LDAP Integration

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 129
347

1.

2.

3.

4.
5.

6.

Indexing Binary Data Stored in a Database

The Database crawler in LucidWorks Search does not automatically discover and
index binary data you may have stored in your database (such as PDF files).
However, you can configure LucidWorks to recognize and extract the binary data
correctly by modifying the data source configuration file (which does not exist until
you create a JDBC data source).

For detailed information about working with JDBC data sources, see Create
 or the .a New JDBC Data Source Database Data Sources API

After you have created a Database data source, you can find the configuration file
in . The ID$LWS_HOME/data/lucid.jdbc/datasources/id/conf/dataconfig.xml

in the path is the ID of the data source created. If you are familiar with Solr, you
will recognize this file as a configuration file.Data Import Handler

Follow these steps to modify the configuration file:

Add a attribute for the database containing your binary data to the name

 entry.dataSource

Set the attribute for the to . This preventsconvertType dataSource false

LucidWorks from treating binary data as strings.
Add a to stream the binary data to the Tika entityFieldStreamDataSource

processor.
Specify the name in the entity.dataSource root

Add an entity for your using the FieldStreamDataSource

 to take the binary data from the TikaEntityProcessor

, parse it, and specify a field for storing theFieldStreamDataSource

processed data.

http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 130
347

6.

1.

Reload the Solr core to apply your configuration changes.

After you have modified the data source configuration file you should not
modify the data source from the LucidWorks Admin UI because
LucidWorks will automatically overwrite the attribute, andconvertType

indexing for the modified data source will fail.

Example
In this example there is a MySQL database called containing a table called test

 that contains PDF data in a column called . When thedocuments binary_content

data source is first created, the data source configuration file (in
) looks like$LWS_HOME/data/lucid.jdbc/datasources/id/conf/dataconfig.xml

this:

<dataConfig>

 <dataSource autoCommit="true" batchSize="-1" convertType="true"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root"/>

 <document name="items">

 <entity name="root" preImportDeleteQuery="data_source:9"

query="SELECT * FROM documents"

 transformer="TemplateTransformer">

 <field column="data_source" template="9"/>

 <field column="data_source_type" template="Jdbc"/>

 <field column="data_source_name" template="MySQL"/>

 </entity>

 </document>

</dataConfig>

To modify this data configuration file, follow these steps:

Add the attribute to the and set to :name dataSource convertType false

<dataSource autoCommit="true" batchSize="-1" convertType="false"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root" name="test"/>

Specify another called to handle the binary data:dataSource fieldReader

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 131
347

1.

2.

3.

4.

<dataSource name="fieldReader" type="FieldStreamDataSource" />

Specify the data source for the root entity:

<entity name="root" preImportDeleteQuery="data_source:9"

query="SELECT * FROM documents"

 transformer="TemplateTransformer" dataSource="test">

Add an entity for the data source specifying the fieldReader

 and a for storing the processed binaryTikaEntityProcessor dataField

data:

<entity dataSource="fieldReader" processor="TikaEntityProcessor"

dataField="root.binary_content" format="text">

 <field column="text" name="body" />

</entity>

Restart LucidWorks Search to apply your configuration changes.

For this example, the final configuration file looks like this:

<dataConfig>

 <dataSource autoCommit="true" batchSize="-1" convertType="false"

driver="com.mysql.jdbc.Driver" password="admin"

 url="jdbc:mysql://localhost/test" user="root" name="test"/>

 <dataSource name="fieldReader" type="FieldStreamDataSource" />

 <document name="items">

 <entity name="root" preImportDeleteQuery="data_source:9"

query="SELECT * FROM documents"

 transformer="TemplateTransformer"

 dataSource="test">

 <field column="data_source" template="9"/>

 <field column="data_source_type" template="Jdbc"/>

 <field column="data_source_name" template="MySQL"/>

 <entity dataSource="fieldReader" processor="TikaEntityProcessor"

dataField="root.binary_content" format="text">

 <field column="text" name="body" />

 </entity>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 132
347

 </entity>

 </document>

</dataConfig>

Related Topics

Create a New JDBC Data Source
Database Data Sources API
Data Import Handler

http://wiki.apache.org/solr/DataImportHandler

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 133
347

Using the Hadoop Crawlers
The Hadoop crawlers (which replace the High-Volume HDFS crawlers from
previous versions) are MapReduce-enabled crawlers designed to leverage the
scaling qualities of while indexing content into LucidWorks Search.Apache Hadoop
In conjunction with LucidWorks' usage of , applications should be able toSolrCloud
meet their large scale indexing and search requirements.

To achieve this, the high volume crawlers consist of a series of
MapReduce-enabled Jobs to convert raw content into documents for
MapReduce-ready document conversion via and writing of documentsApache Tika
to LucidWorks.

The information below does not apply to the HDFS or Hadoop over S3 data source
types, because those are simple filesystem crawls and do not use the MapReduce
features described below.

Topics covered on this page:

System Requirements
Using Hadoop Crawlers in LucidWorks
Permission Issues
Related Topics

System Requirements

One of the following Apache Hadoop distributions:
Apache Hadoop v1.x
Apache Hadoop v2.x
Cloudera CDH v4.5.x
Hortonworks Data Platform v2.1
MapR M5 (v3.0.2)
Pivotal HD v1.1

LucidWorks running in . The SolrCloud mode LWE-Connectors component
must be able to access , so it must either be$HADOOP_HOME/bin/hadoop

http://hadoop.apache.org
http://tika.apache.org
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://hortonworks.com/hdp/
http://www.mapr.com/
http://gopivotal.com/big-data/pivotal-hd

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 134
347

installed on one of the nodes of the Hadoop cluster (such as the nameNode),
or a client supported by your specific distribution must be installed on the
same server as the LWE-Connectors component. The Hadoop client must be
configured properly to access the Hadoop cluster so the crawler is able to
access the Hadoop cluster for content processing.

Please note, instructions for setting up any of the supported Hadoop distributions
is beyond the scope of this document. We recommend reading one of the many
tutorials found online or one of the books on Hadoop.

Special Requirements for MapR

Modify the default DirectoryFactory. If you intend to crawl MapR, you should
use Solr's instead of the default NIOFSDirectoryFactory

. You can change this by editing the SimpleFSDirectory

 in and adding "lwecore.jvm.params $LWS_HOME/conf/master.conf

" to the end of-Dsolr.directoryFactory=solr.NIOFSDirectoryFactory

the settings already there. More information about the
 is available in the .NIOFSDirectoryFactory Lucene javadocs documentation

MapR Client. The MapR client must be installed at a filesystem location
accessible by the LucidWorks Connector component. For information about
the MapR client, please see the MapR documentation .Setting Up the Client
The Connector component looks for the client libraries in by/opt/mapr

default, but the location can be modified by editing the
 in . Find thelweconnectors.jvm.params $LWS_HOME/conf/master.conf

setting and modify the path as needed. On Windows, you will-Dmapr.home

need to include the drive (i.e., c: or d:) and also use two backslashes
following the drive letter, as in .c:\\opt\mapr

Using Hadoop Crawlers in LucidWorks
Once Hadoop and LucidWorks are ready, configure a data source within
LucidWorks specific to your version of Hadoop. Data sources can be configured in
the or using the . A data source type is available forAdmin UI Data Sources API
each supported Hadoop distribution.

The definition of the data source will require defining arguments for the Hadoop
job jar. See the section for details on the options available.Job Jar Arguments

http://lucene.apache.org/core/4_4_0/core/org/apache/lucene/store/NIOFSDirectory.html
http://www.mapr.com/doc/display/MapR/Setting+Up+the+Client#SettingUptheClient-client

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 135
347

1.

a.

b.

2.

3.

You may also need to ensure you have started LucidWorks Search with a user that
has permissions to write to the . The directory in HDFS musthadoop.tmp.dir /tmp

also be writable. See also the section below on for otherPermission Issues
considerations.

Unlike other crawlers in LucidWorks Search, the Hadoop data sources
currently have no way of tracking which content is new, updated, or
deleted. Thus, all content found is reported as "new" with each crawl. It is
also not possible to configure with the high-volume databatch operations
source types.

How the Crawler Works

The Hadoop crawlers work in three stages designed to take in raw content and
output results to LucidWorks Search. These stages are:

Create one or more SequenceFiles from the raw content. This can be done in
one of two ways:

If the source files are available in a shared Hadoop filesystem, prepare
a list of source files and their locations as a SequenceFile. The raw
contents of each file are not processed until step 2.
If the source files are not available, prepare a list of source files and
the raw content. This process is currently done sequentially and can
take a significant amount of time if there is a large number of
documents and/or if they are very large.

Run a MapReduce job to extract text and metadata from the raw content
using Apache Tika. This is similar to the LucidWorks approach of extracting
content from crawled documents, except it is done with MapReduce.
Run a MapReduce job to send the extracted content from HDFS to
LucidWorks using the SolrJ client. This implementation works with SolrJ's
CloudServer Java client which is aware of where LucidWorks is running via
Zookeeper.

In LucidWorks 2.8, the way this processing occurs has changed. In prior versions,
we used Behemoth for processing, but now we use a new internal pipeline
developed for release in future versions of LucidWorks. In LucidWorks 2.8, this
pipeline only includes document parsing from Tika and a very simple field mapping

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 136
347

to transform Tika's output to fields expected by LucidWorks Search. If you need
more advanced capabilities from the pipeline before the content is indexed in Solr,
please contact LucidWorks Support for options and assistance.

The processing approach is currently all or nothing when it comes to
ingesting the raw content and all 3 steps must be completed each time,
regardless of whether the raw content hasn't changed.

The first step of the crawl process converts the input content into a
SequenceFile. In order to do this, the entire contents of that file must be
read into memory so that it can be written out as a PipelineDocument in
the SequenceFile. Thus, you should be careful to ensure that the system
does not load into memory a file that is larger than the Java heap size of
the process.

Differences from Other Hadoop Crawlers in LucidWorks

While the Hadoop, Hadoop File System (HDFS) and Hadoop File System over S3
(S3H) crawlers all use Hadoop to access Hadoop's distributed file system, there is
a big difference in how they utilize those resources. The HDFS and S3H data
sources are designed to be polite and crawl through the content stored in HDFS
just as if they were crawling a web site or any other file system.

The Hadoop crawlers, on the other hand, are designed to take full advantage of
the scaling abilities of the MapReduce architecture. Thus, it runs jobs using all of
the nodes available in the cluster just like any other MapReduce job. This has
significant ramifications for performance since it is designed to move a lot of
content, in parallel, as fast as possible (depending on the system's capabilities),
from its raw state to the LucidWorks Search index. Thus, you will need to design
your LucidWorks Search SolrCloud implementation accordingly and make sure to
provision the appropriate number of nodes. See also the section Planning a Search

 for more details.Cluster

Job Jar Arguments

Hadoop job jar arguments allow you to define the type of content in your Hadoop
filesystem and choose "ingest mappers" appropriate for that content. The
arguments also allow you to define parameters for the mappers.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 137
347

1.

The job arguments must conform to the following structure and must be entered
in the proper order, as shown below:

The main class must be specified. For all of the mappers available, this is
always defined as .System orcom.lucidworks.hadoop.ingest.IngestJob

Mapper-specific arguments, defined as . In many cases,-Dargument=value

the arguments needed are only needed for certain Mapper class(es) that is
defined in later in the argument string.
There are several possible arguments:

Argument Value Type Required Default
Value

Description

-Dlww.commit.on.closeboolean No false Defines if a
commit
should be
done when
the
connection to
Solr is
complete.

-DcsvDelimiterstring No , (comma) This is the
file delimiter
for CSV
content. It is
used only
when using
the
CsvIngestMapper
(see -cls
below).

-DcsvFieldMappingkey-value
pair

No none This defines
how to map
columns in a
CSV file to
fields in Solr,
in the format

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 138
347

1.

Argument Value Type Required Default
Value

Description

of . The0=id

key is a
zero-based
column
number (so
the first
column
would be
"0"), and the
value is the
name of the
field to use to
store the
value in Solr.
If this is not
set, column 0
is used as
the id, unless
there is a
column
named 'id'.
This property
is only used
when using
the
CsvIngestMapper
(see -cls
below).

-DidField string No none The column
to be used as
an ID. The
field name
used is the

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 139
347

1.

Argument Value Type Required Default
Value

Description

name after
any mapping
that occurs
as a result of
the
-DcsvFieldMapping

argument. If
there is a
column
named 'id'
and it is
different
from the field
named with
this property,
you will get
an error
because you
have defined
two IDs and
IDs must be
unique.

-Dgrok.uri string No none The path to a
Logstash
configuration
file, which
can be in the
local
filesystem
(file:///path/logStash.conf)
or in HDFS
(hdfs://path/logStash.conf).
This property

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 140
347

1.

Argument Value Type Required Default
Value

Description

is only used
with the
GrokIngestMapper
(see -cls
below).

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.regexstring No none A Java
Pattern
compliant
Regex. See
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
– Cannot be
null or
empty. This
parameter is
used only
with the
RegexIngest
Mapper (see

 below).-cls

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.groups_to_fieldskey-value
pair

No none A
comma-separated
mapping
(key=value,key=value,...)
between
regular
expression
capturing
groups and
field names.
The key must
be an integer
and the value
must be a

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 141
347

1.

Argument Value Type Required Default
Value

Description

String. For
instance,
0=body,1=text.
Any
capturing
group not
represented
in the map
will not be
added to the
document.
This
parameter is
used only
with the
RegexIngest
Mapper (see

 below).-cls

-Dcom.lucidworks.hadoop.ingest.RegexIngestMapper.matchboolean No none If true, the
mapper will
use the Java
Matcher's (
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
) matches
method
instead of
find. In
short, this
means the
regex needs
to match on
the entirety
of the input

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Matcher.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 142
347

1.

2.

Argument Value Type Required Default
Value

Description

string. This
parameter is
used only
with the
RegexIngest
Mapper (see

 below).-cls

Other arguments not defined here can be supplied as needed and they will
be added to the Hadoop configuration. These arguments should be defined
with the syntax.-Dargument=value

Key-value pair arguments that apply to the ingest job generally. These
arguments are expressed as .-argument value

There are several possible arguments:

Argument Required Description

-cls Yes The mapper class. This
class must correspond
to the content being
indexed to ensure
proper parsing of
documents. See the
Mapper Class table

 for details ofbelow
each available mapper.

-c Yes The collection name.
This is the same
collection where you
are creating the data
source, such as

.collection1

-of Yes The output format. For
all cases, you can use

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 143
347

2.

Argument Required Description

the default
com.lucidworks.hadoop.io.LWMapRedOutputFormat

.

-i Yes The path to the Hadoop
input data. This path
should point to the
HDFS directory. If the
defined location is not a
specific filename, the
syntax must include a
wildcard expression to
find documents, such
as ./data/*

-s Not if is used.-zk The Solr URL. In
LucidWorks Search, this
would be the URL of
the LWE-Core

. In acomponent
default installation, this
would be
http://localhost:8888/solr
. Use this parameter if
you are indexing into a
LucidWorks Search
installation that is not
running in SolrCloud
mode. If LucidWorks
Search is running in
SolrCloud mode, you
should use instead.-zk

If not using , you-s

should use .-zk

-zk Not if is used.-s

http://localhost:8888/solr
http://localhost:8888/solr

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 144
347

2.

Argument Required Description

A list of ZooKeeper
hosts, followed by the
ZooKeeper root
directory. For example,
10.0.1.1:2181,10.0.1.2:2181,10.0.1.3:2181/lws

would be a valid value.
This parameter is used
when running
LucidWorks Search in
SolrCloud mode, and
allows the output of the
crawl to be routed via
ZooKeeper to any
available node. If you
are not running
LucidWorks Search in
SolrCloud mode (and
don't have ZooKeeper),
use the argument-s

instead. If not using
, you should use .-zk -s

If you have installed
LucidWorks Search
using the instructions
at ,Cluster Installation
you may not have
defined the root
directory for your
ZooKeeper ensemble.
In that case, the
default is used ("/lws").

-redcls No The class name of a
custom IngestReducer,
if any. In order for this

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 145
347

2.

1.
2.

3.

Argument Required Description

to be invoked, you
must also set to a-ur

value higher than 0. If
no value is specified,
then the default
reducer is used, which
is
com.lucidworks.hadoop.ingest.IngestReducer

.

-ur No The number of reducers
to use when outputting
to the OutputFormat.
Depending on the
output format and your
system resources, you
may wish to have
Hadoop do a reduce
step so the output
resource is not
overwhelmed. The
default is , which is to0
not use any reducers.

So, the proper order for each element of the argument is as follows:

Main ingest class.
Mapper arguments, which usually vary depending on the Mapper class
chosen, in the format of -Dargument=value
Ingest arguments, which include the input format and the chosen Mapper
class, in the format of -argument value

Example arguments are shown below in the section .Example Arguments

Mapper Classes

This table defines the available mapper classes and how they can be used.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 146
347

Mapper Class Name Description Input File Format

com.lucidworks.hadoop.ingest.GrokIngestMapperIndex log files based on a
LogStash configuration
file. LogStash filters can
be used (i.e., grok, kv,
date, etc.). The input and
output statements of the
configuration file are
overwritten by the input
and output arguments
from the Hadoop job.

TextInputFormat

com.lucidworks.hadoop.ingest.CSVIngestMapperIndex files in CSV file
format. With this
mapperClass, the
csvFieldMapping

parameter must be set
when creating the data
source (with the
argument

).-DcsvFieldMapping

The delimiter can also be
changed from the default
(a comma ",") with the
-DcsvDelimiter

parameter.

TextInputFormat

com.lucidworks.hadoop.ingest.DirectoryIngestMapperIndex a directory of files.
Tika will be used to
extract content from
these files, so file types
supported by Tika will be
parsed.

com.lucidworks.hadoop.ingest.RegexIngestMapper

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 147
347

Mapper Class Name Description Input File Format

Allows definition of an
regular expression that is
used on the incoming
content.

com.lucidworks.hadoop.ingest.SequenceFileIngestMapperIndex a . IfSequenceFile

the value is "text", the
string will be used,
otherwise the raw bytes
will be written.

SequenceFileInputFormat

com.lucidworks.hadoop.ingest.SolrXMLIngestMapperIndex a file in SolrXML
format. The file should be
in a
SequenceFileInputFormat,
where the key is any
Writable and the value is
text in SolrXML. This
mapper requires that the

 parameter beidField

set when creating the
workflow job. This
mapper supports
overriding the default

 ofinputFormat

SequenceFileInputFormat
if required.

SequenceFileInputFormat

com.lucidworks.hadoop.ingest.WarcIngestMapperIndex web archive (.warc
) files in
WarcFileInputFormat.

WarcFileInputFormat

com.lucidworks.hadoop.ingest.ZipIngestMapperIndex files. Tika will.zip

be used to extract

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 148
347

Mapper Class Name Description Input File Format

content from these files,
so file types supported by
Tika will be parsed.

Example Arguments

Index CSV files

To index CSV files, you could use the following arguments:

com.lucidworks.hadoop.ingest.IngestJob -Dlww.commit.on.close=true

-DcsvDelimiter=| -cls com.lucidworks.hadoop.ingest.CSVIngestMapper -c

collection1 -i /data/CSV -of

com.lucidworks.hadoop.io.LWMapRedOutputFormat -s

http://localhost:8888/solr

To explain in more detail, here is a breakdown of each parameter:

Main Class: com.lucidworks.hadoop.ingest.IngestJob
We want to commit the documents when finished:
-Dlww.commit.on.close=true

The delimter is a pipe character (|): -DcsvDelimiter=|
We have CSV files, so we should use the CSV Mapper Class: -cls
com.lucidworks.hadoop.ingest.CSVIngestMapper

We want to index the documents to "collection1": -c collection1
The documents are located at this path: -i /data/CSV
We'll use the default output format: -of
com.lucidworks.hadoop.io.LWMapRedOutputFormat

We're not using SolrCloud, so the LucidWorks Solr is found at: -s
http://localhost:8888/solr

Index a Directory of Files with SolrCloud

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 149
347

com.lucidworks.hadoop.ingest.IngestJob -Dlww.commit.on.close=true -cls

com.lucidworks.hadoop.ingest.DirectoryIngestMapper -c collection1 -i

/data/files -of com.lucidworks.hadoop.io.LWMapRedOutputFormat -zk

10.0.1.7:2181,10.0.1.8:2181,10.0.1.9:2181/lws

In this example, we have defined the job very similarly to the previous example.
We defined that LucidWorks Search should commit the documents when finished,
defined the Mapper Class, specified a collection (" "), pointed thecollection1

crawler to the input directory (), and defined the output format./data/files

Note that in this case instead of defining the location of Solr, we used the -zk
parameter to define a list of hosts running our ZooKeeper ensemble. We can list
the host:port locations separated by commas, and then finally define the root
directory, which in this case is , which is the default, but another root/lws

directory may have been defined during installation. See also Cluster Installation
for more details on defining the root directory for your ZooKeeper ensemble during
LucidWorks Search installation.

Permission Issues
Using any flavor of Hadoop, you will need to be aware of the way Hadoop and
systems based on Hadoop (such as CDH, MapR, etc.) handle permissions for
services that communicate with other nodes.

Hadoop services execute under specific user credentials: a quadruplet consisting of
user name, group name, numeric user id, numeric group id. Installations that
follow the manual usually use user 'mapr' and group 'mapr' (or similar), with
numeric ids assigned by the operating system (e.g., uid=1000, gid=20). When the
system is configured to enforce user permissions (which is the default in some
systems), any client that connects to Hadoop services has to use a quadruplet that
exists on the server. This means that ALL values in this quadruplet must be equal
between the client and the server, i.e., an account with the same user, group, uid,
and gid must exist on both client and server machines.

While it's easy to create a user with a given name and group name, it's
less obvious to casual users how to create an account with exactly the
same numeric id-s. On POSIX systems (Linux and Mac) it's possible to do

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 150
347

so, on Windows it's probably not possible. For this reason there's a section
of code in Hadoop and MapR to "spoof" user ids on Windows, using the
following properties:

hadoop.spoof.user: boolean, when then spoofing will betrue
attempted
hadoop.spoofed.user.username: name of the user account to
spoof
hadoop.spoofed.user.groupname: group name of the user account
to spoof
hadoop.spoofed.user.uid: numeric user id of the user account to
spoof
hadoop.spoofed.user.gid: numeric group id of the user account to
spoof

These properties will be used ONLY on Windows. Users on other operating
systems will have to create a real account with matching identifiers.

When a client attempts to access a resource on Hadoop filesystems (or the
JobTracker, which also uses this authentication method) it sends its credentials,
which are looked up on the server, and if an exactly matching record is found then
those local permissions will be used to determine read/write access. If no such
account is found then the user is treated as "other" in the sense of the permission
model.

This means that the crawlers for the HDFS data source should be able to crawl
Hadoop or MapR filesystems without any authentication, as long as there is a read
(and execute for directories) access for "other" users granted on the target
resources. Authenticated users will be able to access resources owned by their
equivalent account.

However, the Hadoop data sources described on this page require write access to
a directory to use as a working directory. In many cases, this directory does/tmp

not exist, or if it does, it doesn't have write access to "other" (not authenticated)
users. Therefore users of these data sources should make sure that there is a /tmp
directory on the target filesystem that is writable using their local user credentials,
be it a recognized user, group, or "other". If a local user is recognized by the
server then it's enough to create a directory that is owned by that user. If/tmp

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 151
347

there is no such user, then the directory must be modified to have write/tmp

permissions for "other" users. The working directory can be modified to be another
directory that can be used for temporary working storage that has the correct
permissions.

Related Topics

Using SolrCloud in LucidWorks

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 152
347

Integrating Nutch
LucidWorks Search includes support for "external" data sources (also known as
"push crawlers"). While the built-in LucidWorks crawlers use the "pull" model
(meaning that LucidWorks initiates the crawl and actively discovers new or
updated resources), push crawlers are external processes that manage the
discovery and sending of new and updated documents for indexing outside of the
LucidWorks crawler framework.

Apache Nutch is a framework for building and running large-scale Web crawling
using Hadoop map-reduce clusters (see for morehttp://nutch.apache.org/
information). Recent releases of Nutch rely on Solr for indexing and searching.
From the point of view of LucidWorks, Nutch can be integrated as an "external" or
"push" crawler.

The following sections describe step-by-step how to integrate a crawlerNutch 1.4
(or Nutch) with LucidWorks.trunk

Solr indexer
Nutch comes with a tool for map-reduce indexing to Solr called .SolrIndexer

From the command-line, this tool is invoked like this:

nutch solrindex http://localhost:8983/solr/collection1 db -linkdb linkdb

[-params k1=v1,k2=v2] segment1 segment2 [...]

Support for the option exists in Nutch trunk, post 1.4 release, or-params

if you apply the patch found in).NUTCH-1212

Field mapping in Nutch
Nutch uses indexing plugins to construct the outgoing documents, and these
plugins add various fields with various names. These field names do not
necessarily match the default LucidWorks for a collection. Nutchschema.xml

provides a limited facility to adjust these names (see

http://nutch.apache.org/
http://www.apache.org/dyn/closer.cgi/nutch/
http://nutch.apache.org/nightly.html
http://issues.apache.org/jira/browse/NUTCH-1213

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 153
347

). This field mapping facility is often$nutch_home/conf/solrindex-mapping.xml

enough in simple cases to re-map field names so that they match the LucidWorks
schema.

However, this solution has some drawbacks:

This mapping is static for all indexing jobs that use the same job file (or the
same directory in the case of a non-distributed Nutch installation) andconf

changing it requires rebuilding of the job file, which can be cumbersome.
There is no easy way to add fields that are useful for managing documents
in LucidWorks (such as , or data_source_type data_source_name

), short of implementing a new Nutch indexing plugin.data_source

the field mapping in cannot be managed from thesolrindex-mapping.xml

LucidWorks Admin UI.

Fortunately, there is a better solution to this problem which is to use the field
mapping functionality in LucidWorks, defined as part of the External data source
type definition, in combination with the option for .-params SolrIndexer

Field mapping in LucidWorks
External processes that submit documents to LucidWorks can be integrated using
the External data source type. When you define a new data source in LucidWorks,
one of its properties is . With the , the JSONfield_mapping Data Sources API
serialization looks similar to this:

...

"mapping": {

 "datasource_field": "data_source",

 "default_field": null,

 "dynamic_field": "attr",

 "literals": {},

 "lucidworks_fields": true,

 "mappings": {

 "acl": "acl",

 "author": "author",

 "batch_id": "batch_id",

 "content": "body",

 "content-encoding": "characterSet",

 "content-length": "fileSize",

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 154
347

 "content-type": "mimeType",

 "contentcreated": "dateCreated",

 "contentlastmodified": "lastModified",

 ...

 },

"multi_val": {

 "acl": true,

 "author": true,

 "body": false,

 "dateCreated": false,

 "description": false,

 "fileSize": false,

 "mimeType": false,

 "title": false

 },

"types": {

 "date": "DATE",

 "datecreated": "DATE",

 "filesize": "LONG",

 "lastmodified": "DATE"

 },

"unique_key": "url",

"verify_schema": true

},

...

The LucidWorks Admin UI includes a page for each data source to edit field
mapping for that data source which is where you can define, for example, that
"content" should be mapped to "body", or that you allow only a single value for
"title", etc.

In particular, you can define what is the name of the "uniqueKey" field in the
incoming documents. If Nutch produces documents that use "url" as their unique
identifier, then you would specify . If "verify_schema" is set to"uniqueKey":"url"

"true" then LucidWorks will automatically define a mapping from "url" to whatever
the current "uniqueKey" field is in the Solr schema for the target collection.

Once the external data source is defined (or updated) LucidWorks sends the
serialized field mapping to the FieldMappingUpdateProcessor, which is a part of the
"lucid-update-chain". This update processor receives the field mapping definition,
and stores it in memory under a specified data source id. This field mapping is

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 155
347

then updated each time a user makes some modifications to the data source
definition, either via the Admin UI or using the REST API.

From this point, whenever an update request is received from an external process
and it goes through this update chain, the update processor looks for a Solr
parameter "fm.ds", which indicates the data source ID. If this parameter is
present, and matches an existing defined mapping, then the documents in the
update request are put through the FieldMappingUpdateProcessor, which re-maps
field names, adjusts field multiplicity and adds LucidWorks-specific field names and
values (which, among others, help to manage documents using the LucidWorks
Admin UI).

Putting it all together
Now that we know how the field mapping is configured and processed in
LucidWorks we can make sure that Nutch SolrIndexer uses the correct
parameters, so that the correct field mapping is applied in LucidWorks to
documents arriving from Nutch. Let's say that our external data source in
LucidWorks has a data source id "4", we want to add the documents to
"collection1" and our LucidWorks instance is running on a host
"lucidworks.io:8888". Then the command-line parameters to SolrIndexer would
look like this:

nutch solrindex http://lucidworks.io:8888/solr/collection1 db -linkdb

linkdb -params 'update.chain=lucid-update-chain&fm.ds=4' segment1

segment2 [...]

As you can see, we are using the target collection's URL, and we specify "fm.ds=4"
parameter that determines what field mapping needs to be applied to the incoming
documents. Just in case, we explicitly set the update chain in case
"lucid-update-chain" is not the default one (which it is in an out-of-the-box
installation of LucidWorks). Please note that the option uses a URL-like-params

syntax for passing Solr parameters, and since ampersand is usually a special shell
character we had to enclose the string in single quotes to prevent the-params

shell from interpreting it.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 156
347

Summary
Nutch and LucidWorks form a powerful combination. Nutch is a robust crawling
platform that can easily crawl thousands of pages per second while LucidWorks
offers a scalable and robust indexing and search platform.

The way to use the two together is simply to:

Define an "external" data source in LucidWorks, and adjust its field mapping
to properly map the default Nutch field names to the ones that make sense
in the current LucidWorks schema (e.g., "uniqueKey":"url",
"content":"body", etc.). An external data source can be created by choosing
the "External" type in the Sources page of the Admin UI or with the Data

 API, specifying "lucid.external" for the and "external" forSources crawler

the .type

Start the Nutch SolrIndexer job with the additional -params option that
specifies the data source id of the "external" data source defined in
LucidWorks.

Related Topics

Pushing Content to LucidWorks
Apache Nutch homepage

http://nutch.apache.org/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 157
347

1.

2.

3.

4.

Processing Documents in Batches
By default, LucidWorks Search will crawl as much content as it can (within limits
set on the data source), parse the documents to extract fields, and finally index
the documents in one seamless step. However, there may be times when you
would like to do some processing on the documents before indexing them, perhaps
to add metadata or to modify data in specific fields. In that case, it is possible to
only crawl the content and save it in a batch for later parsing and/or indexing. This
is called Batch Processing and allows you to separate the fetching data from the
process of parsing the rich formats (such as PDFs, Microsoft Office documents, and
so on), as well as the process of indexing the parsed content in Solr.

How a Batch is Constructed
Batches consist of the following two parts:

a container with raw documents, and the protocol-level metadata per
document
a container with parsed documents, ready to be indexed.

The exact format of this storage is specific to a crawler controller implementation.
Currently a simple file-based store is used, with a binary format for the raw
content part and a JSON format for the parsed documents. The first container is
created during the fetching phase, and the second container is created during the
parsing phase. A new round of fetching creates a new batch if one or more of the
parameters described above requires it.

Steps to Configure Batch Crawling
It's not possible to configure Batch Crawling with the LucidWorks Search Admin UI.
To work with batches and batch jobs, use the API. The basicBatch Operations
workflow is as follows:

Create a data source using the or . Don't startAdmin UI Data Sources API
crawling yet.
Configure the data source to be saved as a batch by setting the indexing
parameter to using the API. You can also set the false Data Sources

 and parameters as described below.caching indexing

Start the crawl and let it finish.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 158
347

4.

5.

Get the for the data source using the API call: batch_id Batch Operations
 .GET http://localhost:8888/api/collections/collection1/batches

Using the API, start the batch job for your data sourceBatch Operations
using the obtained in the previous step:batch_id

 PUT http://localhost:8888/api/collections/collection1/batches/

.crawler/job/batch_id

More about the Data Source Settings

To instruct LucidWorks Search not to parse or index the crawled documents, set
the parameter of a data source to using the API.indexing false Data Sources
You can also set the and parameters to true or false, dependingparsing caching

on your needs. Batch crawling attributes for data sources are as follows:

Key Type Default Description

parsing boolean true If true, the raw
content fetched
from remote
repositories is
immediately
parsed in order to
extract the plain
text and
metadata. If false,
the content is not
parsed: it is stored
in a new batch
with its
protocol-level
metadata. New
batches are
created during
each crawl run as
needed.

caching boolean false If true, the raw
content is stored

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 159
347

Key Type Default Description

in a batch even if
immediate parsing
and/or indexing is
requested. You
can use this to
preserve the
intermediate data
in case of crawling
or indexing failure,
or in cases where
full re-indexing is
needed and you
would like to avoid
fetching the raw
content again.

indexing boolean true If true, the parsed
content is sent to
Solr for indexing.
If false, the parsed
document is not
indexed: it is
stored in a batch
(either a newly
created one, or
the one where the
corresponding raw
content was
stored). Set this
attribute to false
to enable batch
crawling.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 160
347

When you configure a data source to process documents as a batch,
information about crawl attempts will display in the Admin UI for that data
source (even though you cannot configure the batch parameters via the
UI). So, you can use the to enabled and/orData Sources API caching

disable , and initiate the crawl through the Admin UI. The UI willindexing

show the number of documents found, updated, deleted, etc.

Not all crawler controllers support all batch processing operations. For example,
the Aperture crawler () does not support raw content storage: itlucid.aperture

behaves as if the "parsing" parameter is always and caching is always .true false

Also, the and MapR High Volume Data Sources High-Volume HDFS Data Sources
do any kind of batch processing.not support

You can also use the to get the status of or stop running batchBatch Operations
jobs as well as delete batches and batch jobs.

Related Topics

Batch Operations
Data Sources

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 161
347

Using the Apache Hive Connector
LucidWorks Search v2.8 add the ability to read and write data to and from Solr
using . Data from Solr can be presented as a Hive table to be joinedApache Hive
with other Hive tables, and can also be a target of an INSERT statement to write
data into Solr from Hive.

Installing LucidWorks to Hive
In order for Hive to work with Solr, the LucidWorks Search Hive connector must be
added to Hive. The file name is (the copy in your versionhadoop-lws-job.jar

may also contain version and release numbers) and is found in the
 directory. The command to add it to hive will look like$LWS_HOME/app/hadoop

this:

hive> ADD JAR

/usr/local/LucidWorks2.8/app/hadoop/hadoop-lws-job-1.2.0-rc2.1.3-0-java6.jar;

Create an External Table
In Hive, you need to create an external table that points to the Solr instance you
are going to use.

hive> CREATE EXTERNAL TABLE solr (id string, field1 string, field2 int)

 STORED BY 'com.lucidworks.hadoop.hive.LWStorageHandler'

 LOCATION '/tmp/solr'

 TBLPROPERTIES('solr.server.url' = 'http://localhost:8888',

 'solr.collection' = 'collection1',

 'solr.query' = '*:*');

The TBLPROPERTIES can take the following properties:

solr.zkhost - the location of the ZooKeeper quorum if using LucidWorks in
SolrCloud mode. If this property is set along with the 'solr.server.url'
property, the 'solr.server.url' property will take precedence.
solr.server.url - the location of the Solr instance if not using LucidWorks in
SolrCloud mode. If this property is set along with the 'solr.zkhost' property,
this property will take precedence.

http://hive.apache.org/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 162
347

solr.collection - the Solr collection for this table. If not defined, a default of
'collection1' will be used.
solr.query - the specific Solr query to execute for this table. If not defined, a
default of '*:*' will be used.
lww.commit.on.close - if true, inserts will be automatically committed on
close of the connection. If not defined, a default of 'true' will be used.

If the table needs to be dropped at a later time, it can be dropped using the Hive
DROP TABLE command. This only deletes the metadata of the table in Hive; it
does not delete any data in Solr.

Queries and Inserting Tables
Once the table is configured any syntactically correct Hive query will be able to
query the Solr index. For example:

hive> SELECT id, field1, field2 FROM solr;

or to do a join with a Hive table:

hive> SELECT id, field1, field2 FROM solr left

 JOIN sometable right

 WHERE left.id = right.id;

To insert data to the table, simply use the Solr table as the target for the Hive
INSERT statement, as in this example:

hive> INSERT INTO solr

 SELECT id, field1, field2 FROM sometable;

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 163
347

Query and Search Configuration
Once your content is in the index, you and your users will want to query the index
to find the documents they need. This section covers the options and settings to
optimize the search experience for users.

First, there's an overview of how searching works in the section Overview of Query
.Processing

A few features make it easy for users to find documents: allowEnterprise Alerts
them to get email notifications when new documents are added to the index; Spell

 corrects errors in terms they've entered; Check Auto-Complete of User Queries
makes suggestions for valid terms while they type, and Synonyms and Stop Words
allows use of similar terms and very common words to improve the search
experience.

While LucidWorks Search includes a Search UI, it's meant to be used during
development and not for a production application. The section Getting Search

 describes in detail how to query the LucidWorks Search index, and whatResults
responses look like, for use while designing your own search application
customized for your needs.

You may have need to improve the results your users see. The Click Scoring
 provides a way to boost documents that other users haveRelevance Framework

already clicked on for the same query, with the theory that if other users found it
useful, you might too.

If you have serious business needs for including very specific rules in response to
certain queries (or all queries), the section describesBusiness Rules Integration
how to plug in those rules with LucidWorks Search.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 164
347

Overview of Query Processing
The goal for any search application is to return the correct document while
allowing a user to enter a query however they want. The query may be in the form
of , a question, or snippets of documents. keywords natural language Advanced

 may be (or may include) , , searches onqueries date ranges Boolean operations
specific , or to define how close (or how fardocument fields proximity information
apart) terms should be to each other.

Features like spell check and auto-complete can help prompt users to enter terms
that are more likely to retrieve results. In LucidWorks Search, spell check provides
suggestions for terms close to the user's terms, but which definitely exist in the
index (that is the default implementation; a dictionary could be used instead).
Auto-complete also provides suggestions based on terms in the index, but does so
while the user is typing their query, providing real-time feedback to the user. More
details are available in the sections and Spell Check Auto-Complete of User

.Queries

Matching the User's Query to Documents
Once the user hits enter, search engines take the query and transform it to find
the best results. The section describes how your searchGetting Search Results
application should send the user's query to LucidWorks Search, and how the
response will be formatted.

Synonyms of the terms entered may be applied to expand the number of possible
document matches (such as looking for "attorney" when a user enters "lawyer"). If
terms are stripped of punctuation and capital letters during indexing, a similar
process should also be applied to the user query to ensure matches in the index.
In LucidWorks Search, much of this is pre-configured but could be modified if
needed.

The system then tries to match the user's transformed terms to terms in
documents in the . Once it finds documents, it puts the list of matchingindex
documents into some order. They might be ordered by date, by entry to the index,
or, most commonly, by , which is an order based on which the systemrelevance
thinks are best for the query entered.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 165
347

Relevance ranking is one of the most complex components of a search engine, and
this guide covers the topic in more detail later (see Understanding and Improving

). Most queries are very short (one to three words) and that is usuallyRelevance
not enough information to know the user's full intention. To compensate for this,
several techniques may be employed such as boosting based on the number of
times the user's search terms appear in a document or boosting based on the
location of the user's search terms in a document (in the title, at the beginning,
etc.). Some approaches may drop very small words like "of", or "the" (also called

), so they don't unduly influence the term calculations.stop words

Other techniques used in relevance ranking include considering the date of the
item (documents that are more recent may be considered more relevant to some
users) or where the term matches occur (words in the title of the document may
be more relevant than words at the end). LucidWorks Search includes the option
to use , which uses information about the documents other usersClick Scoring
have selected as a factor when calculating relevance.

Search Results
Once the system has compiled a list of matching documents, they need to be
presented to the user with enough information to help them decide which
documents are best. First, the documents should be sorted in some way: the most
common is by how well the documents match the query (relevance), but date may
also be preferred, or another field such as author or manufacturer. Some snippet
of the document should be used to help users figure out if the document is a
match, such as title, author and date. The first few sentences, or a few sentences
around the highlighted occurrence of the user's search term, are also helpful to
give the user some context for why each document was selected as a match.

Document clustering, also called faceting, can help users select from a large list of
results. Facets are documents grouped together by some common element such
as author, type, or subject and are usually displayed with the number of results
that can be found in each group. Providing facets allows users to "drill down" or
further restrict their results and find the documents they are looking for.

Users may also benefit from tools to expand their queries without providing
additional search terms. A "find similar" option allows users to request documents
that are similar to one they consider almost right. Explicit or automatic feedback
allows users to resubmit their search with terms pulled from documents that are

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 166
347

considered near matches, in hopes of getting more or better matches. In
LucidWorks Search, can be enabled, which automaticallyunsupervised feedback
takes the top documents from the preceding results and pulls important terms
from them to use with the user's original query.

Some queries are run on a periodic basis (daily, weekly, etc.). LucidWorks Search
includes a feature to allow users to save their queries and the system will run
them at defined intervals and send a notification if new documents have been
added that match their query. This feature is called .Enterprise Alerts

Result lists may need to be limited to only documents that a user has access to
view. LucidWorks Search has several options for doing this, described in the
section .Securing LucidWorks

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 167
347

Getting Search Results
LucidWorks Search includes a default search interface that is designed to be used
during development to evaluate and test the performance of crawler and index
configuration. At this time, there are no options to customize the default Search UI
because we expect that you will prefer your own designs and options specifically
tailored to your audience.

What follows is some information about how to start working with search results in
LucidWorks Search.

LucidWorks is built upon Solr and supports it natively. While LucidWorks includes a
REST API for many administrative functions (like creating data sources, updating
fields, etc.), there is no LucidWorks-specific API for search results. In order to get
results from LucidWorks, you'll need to learn a little Solr syntax. To help you with
this, you may find it helpful to review LucidWorks' free Apache Solr Reference

, particularly the section on .Guide Searching

This page is an introduction to Solr searching.

You should also look at these sections:

Constructing Solr Queries
Solr Query Responses

Basics of Searching
Searching LucidWorks Search makes a direct connection to Solr, which processes
queries with a . The request handler defines the logic to be usedrequest handler
for processing the query. Solr supports several different request handlers, and
LucidWorks includes a special Solr search request handler called . Details/lucid

about this special request handler are in the section .Lucid Query Parser

The handler is pre-selected as the default, but could be changed to/lucid

another request handler by editing for the collection. Thesolrconfig.xml

simplest way to do this is to change the parameter from "lucid" todefType

"edismax", "dismax" or a custom parser you've created.

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 168
347

Request Handlers

Each request handler has several settings pre-configured, but these can be
overridden for an individual query by the client application. In some cases, this
may adversely affect the expected search results, so care should be taken when
overriding some parameters.

To process a query, a request handler calls a , which interprets thequery parser
terms and parameters of a query. The query parser understands the terms the
user entered (the actual words), any parameters entered for fine-tuning the query
(such as instructions to search a specific field for the terms, to boost terms found
in specific fields to rank them higher in results, and to interpret the syntax for
advanced queries including ranges or boolean operators, etc.), and any
parameters for controlling the presentation of the response (such as the order of
results or the fields of a document to be returned). LucidWorks has created its own
query parser that is used by default, but any other Solr query parser could also be
used (the two most popular are DisMax and ExtendedDisMax).

The request handler also likely has defined many parameters for faceting, spell
check, autocomplete, highlighting, security settings and so on. The request/lucid

handler has enabled and defined each of those components by default; with other
request handlers those may need to be defined in or defined withsolrconfig.xml

each search request. Each of these will either help fine-tune the query or control
the presentation of results.

Query Parsers

During query processing, Solr queries specific fields for matches to the user query.
The fields may be a default set configured in advance or specifically defined in the
query request. Each field has a type, and each field type has defined rules for how
to index content of that type, and how to process queries of that content. In
general, rules applied during indexing should be applied during queries to be
confident of expected results. For example, if all fields are modified to lower-case
during indexing, queries should be modified to lower-case to be sure they match
as many terms as possible. These are defined in the field definitions,analyzer
which include and to be applied to indexing and queries. Thetokenizers filters
tokenizers and filters will in many cases modify the original query from the user,
perhaps by converting the user's input to lower-case or stripping extra characters
like hyphens or other punctuation. There are several dozen options for tokenizers
and filters and links at the end of this section will take you to more information

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 169
347

about them. You can see the defined field analyzers by looking in the schema.xml
file for the collection, or in the Admin UI .screens for Field Type

While all of this may seem quite complicated, LucidWorks can be used out of the
box with pre-set defaults. If the defaults do not match your desired behavior,
however, learning a bit more about how Solr processes content during indexing
and handles query requests may be required.

Related Topics

Apache Solr Reference Guide
Tokenizers
Filter Descriptions
CharFilterFactories
Language Analysis

http://cwiki.apache.org/confluence/display/solr/
http://cwiki.apache.org/confluence/display/solr/Tokenizers
http://cwiki.apache.org/confluence/display/solr/Filter+Descriptions
http://cwiki.apache.org/confluence/display/solr/CharFilterFactories
http://cwiki.apache.org/confluence/display/solr/Language+Analysis

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 170
347

Constructing Solr Queries
In basic terms, searches are done with an HTTP GET that specifies the parameters
to use for the search. As noted above, the request handler includes several/lucid

components by default, which means they do not have to be added to the query.
If using the request handler, however, items such as faceting and spell/select

check suggestions would need to be specifically requested.

To search using the request handler, simply point your HTTP client or/lucid

browser to .http://localhost:8888/solr/collection1/lucid?q=some+query
LucidWorks returns XML by default. If you would rather have serialized PHP
returned instead of XML, modify the URL to

 and thehttp://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps
response will be formatted in PHP.

Any request sent to Solr must include the collection name. In the above
example URLs, refers to the default LucidWorks collection. Ifcollection1

you have configured multiple collections, replace "collection1" with the
appropriate collection name.

Topics covered in this section:

Solr Query Parameters
Query Parsers
Related Topics

Solr Query Parameters

Solr has a tremendous amount of flexibility for controlling how queries are handled
and how results are returned, all of which can be defined as parameters of the
query. Some basic parameters to know, however are discussed below.

http://localhost:8888/solr/collection1/lucid?q=some+query
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 171
347

Parameter Name Uses Example Default in
LucidWorks

q query The main
search request
and keyword
terms for the
query.

q=solr No specific
default, but
the parameter

 isq.alt

defined as *.*
, which is to
find all results.

 is usedq.alt

to define a
query if none
is supplied by
the user.

sort sort The field to
sort the
results by.
Must also
specify or asc

 to definedesc

the order.
Multiple values
can be used,
separated by a
comma.
Multi-valued
fields cannot
be used for
sorting.

sort=dateCreated+ascscore desc

fl fields The fields to
return with
the response.

fl=id,title id, , url

, author

data_source_type

,
lastModified

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 172
347

Parameter Name Uses Example Default in
LucidWorks

, , mimeType

, pageCount

title

start start The number of
results to skip
when
returning the
results. Can
be used with

 torows

provide
pagination.

start=20 None defined
in LucidWorks;
Solr default is
0 which is
employed
instead.

rows rows The number of
results to
return. Can be
used with

 tostart

provide
pagination.

rows=15 None defined
for
LucidWorks;
Solr default is
10 which is
employed
instead.

wt writer The response
writer that
Solr should
use, which
defines the
format of the
results.

wt=json Solr's default
is XML.

qt query handler The request
handler to use
to process the
query. This
can be used
instead of a

wt=/lucid /lucid is the
default
request
handler

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 173
347

Parameter Name Uses Example Default in
LucidWorks

syntax like
http://localhost:8888/solr/collection1/lucid?
or
http://localhost:8888/solr/collection1/select?
shown in the
examples
above, or in
conjunction
with them to
override the
default
request
handler if one
is defined.

debug debug Detailed
information
about the
query and
results, for
debugging
purposes.
There are four
options for
this
parameter:

true: all
of the
debug
information
query:
information
about
the

debug=timing In the
LucidWorks
Search UI, the
"explain"
information
(details of how
documents
have scored)
is shown.

http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/lucid?
http://localhost:8888/solr/collection1/select?
http://localhost:8888/solr/collection1/select?

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 174
347

Parameter Name Uses Example Default in
LucidWorks

query
only
results

:
information
about
the
documents
returned
and how
they
scored
timing:
information
about
how
long
each
component
took to
complete
their
tasks

There are many other parameters that can be employed, but these are the basic
ones that let you submit a query and see some responses. For more detailed
information on Solr's query capabilities (some of which depend on the query
parser used), see the section of the Apache Solr Reference Guide on Query Syntax

.and Parsing

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 175
347

To ensure that your query is indexed and shown in the activity graphs in
the LucidWorks Search Admin UI, include the parameter inreq_type=main

your query URL.

Back to Top

Query Parsers

All of query parsers included with Solr are available for use, in addition to the
enhanced parser included with LucidWorks. This table shows what are considered
the "main" query parsers that are designed for general use. There are also parsers
that can be used for specific purposes, listed below.

Name ID in LucidWorks Description

Lucene or Solr lucene The Lucene Query Parser,
with some Solr
enhancements. In the
Apache Solr Reference
Guide, the section The
Standard Query Parser
has more details about
the options for this
parser.

DisMax dismax Search across multiple
fields, allow +, -, and
phrase queries while
escaping most other
Lucene syntax to avoid
syntax errors. More
information is available in
the Apache Solr
Reference Guide in the
section The DisMax Query

.Parser

Extended DisMax edismax A version of the Extended
DisMax parser developed

http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Standard+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 176
347

Name ID in LucidWorks Description

by LucidWorks and
donated to the Apache
Software Foundation for
inclusion in Solr. More
information is available in
the Apache Solr
Reference Guide in the
section The Extended

.DisMax Query Parser

Lucid lucid Allows Lucene syntax,
enhanced proximity
boosting, and query time
synonym expansion.
Tolerant of syntax errors.
More information
available in this guide in
the section on the Lucid

.Query Parser

There are also a number of query parsers which can be used on an ad hoc basis.
Each of these are documented in full in the Apache Solr Reference Guide, in the
section . A few highlights include:Other Query Parsers

Name Description

Boost Generates a BoostedQuery which
boosts a Query by a FunctionQuery.

Function Parses a FunctionQuery which
calculates a function over field values.

Field Generates a query on a single field.

Nested Delegates to another query parser,
which can be used to override the
default parser for a specific purpose.

http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
http://cwiki.apache.org/confluence/display/solr/Other+Parsers

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 177
347

Name Description

Prefix Query Parser Generates a prefix query on a single
field.

Raw Generates a raw unanalyzed term
query.

Spatial Filter Generates a query which filters results
by a defined distance from a point in
space.

Other query parsers are also available.

Related Topics

Query Syntax and Parsing, with several sub-pages for query parsers and
local parameters

http://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 178
347

Solr Query Responses

Structure of the Response
The responseHeader Section
The response Section
The highlighting Section
The facet_counts Section
The spellcheck Section
The debug Section

Format of Results
Related Topics

Structure of the Response

All Solr responses have at least two sections, the and the responseHeader

.response

The responseHeader Section

The includes the status of the search (), the processingresponseHeader status

time (), and the parameters () that were used to process the query.QTime params

The response Section

The includes the documents that matched the query, in response doc

sub-sections. The fields return depend on the parameters of the query (and the
defaults of the request handler used). The number of results is also included in this
section.

The highlighting Section

The section will show, for each document in the response, thehighlighting

sections of text in the document that should be highlighted. If using the /lucid
request handler, they will be shown as snippets of text, with HTML tags

around them. Your client can consume those and you can format them by
specifying the class in your CSS however you'd like.highlight

If using another request handler, such as , that does not have predefined/select

configuration options for highlighting, you may need to set the parameters in your
request. There are quite a few Solr parameters to control highlighting and the
output in the response. For more details, see the section of the Apache Solr
Reference Guide for .Highlighting

http://cwiki.apache.org/confluence/display/solr/Highlighting

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 179
347

The facet_counts Section

The shows the facets that have been constructed for the result list,facet_counts

including the facet fields and facet values (with counts) to populate each field.

The spellcheck Section

The will include suggestions for possible spelling errors in the user'sspellcheck

query.

The debug Section

The section will contain the detailed information about how the query wasdebug

processed. This section will only be returned if the parameter was used withdebug

the query.

There are many sub-section of this section, including:

explain: Information about how each document scored according to the in
relevancy ranking algorithm.
timing: Information of how long each component took.
parsedquery: The query string as submitted to the query parser.

Calculating the debug info, particularly the scores, is expensive in terms of
processing power, so it should only be used when needed to debug query results.

Ack! What Do Those Scores Mean?

The sub-section of is the section that gives you informationexplain debug

about the relevancy scores of each document returned in the query. It's
the section you'll want to look at if you want to know why one document is
ranked higher than another. But it's pretty complex.

The section shows you each factor that went into the final scoreexplain

and how it was weighted. There may be specific boosts defined
(LucidWorks for example boosts a document when the query terms are
found in the title, among others), the frequency of the term in the
document may be high relative to the frequency of the term in all
documents (a relationship called the "term frequency-inverse document
frequency", or TF-IDF), or the term may have matched a field that is
smaller than others (such as "author" instead of "body").

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 180
347

Some make the mistake of focusing on the score of a document in
absolute terms instead of looking at a document's score relative to the
other documents returned. This is an error because scoring of a single
document is always relative to other documents in the index, and your
index changes over time. The point of looking at scoring should be instead
to understand why a document is ranked higher or lower than other
document.

More information on can be found in the section describing the explain

 of the LucidWorks Search UI.Explain Info

Back to Top

Format of Results

The default format for search results in LucidWorks Search is XML. There are other
options available - such as JSON, PHP, and CSV, among others - and you request
the results in that format when sending the query. This is defined with the wt
parameter.

The data is returned as a standard Solr search data structure, formatted either as
XML, Ruby, Python, PHP, PHPS, and even server-side XSL. For more information,
see the section in the Apache Solr Reference Guide on .Response Writers

Related Topics

Understanding and Improving Relevance
Explain Info
Response Writers

http://cwiki.apache.org/confluence/display/solr/Response+Writers
http://cwiki.apache.org/confluence/display/help/Explain%20Info
http://cwiki.apache.org/confluence/display/solr/Response+Writers

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 181
347

Query and Response Examples
LucidWorks Search includes a simple Search UI, but if you are going to build your
own user interface, or your own application to access the data stored in
LucidWorks, you will need to access the underlying engine directly.

LucidWorks is built on Apache Solr, so the techniques necessary for performing a
search against it are the same as those for performing a search against Solr. In
other words, an HTTP call to a URL of:

http://127.0.0.1:8888/solr/collection1/select/?q=NickChase

Would return a result such as this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">99</int>

 <lst name="params">

 <str name="q">NickChase</str>

 </lst>

 </lst>

 <result name="response" numFound="151" start="0">

 <doc>

 <str name="geo">none</str>

 <str name="id">29059644164939776</str>

 <int name="retweetCount">0</int>

 <str name="source">web</str>

 <str name="text">Working on a Twitter app; anybody got a

preferred Java Twitter library?</str>

 <arr name="text_medium">

 <str>NickChase</str>

 <str>en</str>

 <str/>

 <str>web</str>

 <str>Working on a Twitter app; anybody got a preferred Java

Twitter library?</str>

 <str>2011-01-23T06:15:33.000Z</str>

 <str>0</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 182
347

 </arr>

 <date name="timestamp">2011-02-13T14:06:53.191Z</date>

 <arr name="userId">

 <str>99999999</str>

 </arr>

 <str name="userLang">en</str>

 <str name="userName">Nicholas Chase</str>

 <str name="userScreenName">NickChase</str>

 </doc>

 ...

 </result>

</response>

You can then consume that XML from within your application.

While XML is the default output format, LucidWorks supports multiple formats,
including JSON, CSV, and even object formats such as PHP, Java, and Python.

In general, to change the output format, use the parameter, as in:wt

http://127.0.0.1:8888/solr/collection1/select/?q=NickChase&wt=json

This provides a response of

{

 "responseHeader":{

 "status":0,

 "QTime":1,

 "params":{

 "wt":"json",

 "q":"NickChase"

 }

 },

 "response":{

 "numFound":151,

 "start":0,

 "docs":[

 {

 "id":"29059644164939776",

 "userName":"Nicholas Chase",

 "userScreenName":"NickChase",

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 183
347

 "userLang":"en",

 "source":"web",

 "text":"Working on a Twitter app; anybody got a preferred

Java Twitter library?",

 "retweetCount":0,

 "timestamp":"2011-02-13T14:06:53.191Z",

 "geo":"none",

 "text_medium":["NickChase","en","","web","Working on a

Twitter app; anybody got a preferred Java Twitter library?",

 "2011-01-23T06:15:33.000Z","0"],

 "userId":["99999999"]

 }

 ...

]

 }

}

The structure of the results depends on the options you choose in the request
string. For example, you can specify faceting and highlighting;

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&facet.field=userScreenName&hl=true&hl.fl=text

Which gives a result such as this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">359</int>

 <lst name="params">

 <str name="facet">on</str>

 <str name="facet.field">userScreenName</str>

 <str name="hl.fl">text</str>

 <str name="hl">true</str>

 <str name="q">twitter</str>

 </lst>

 </lst>

 <result name="response" numFound="2190" start="0">

 <doc>

 <str name="geo">none</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 184
347

 <str name="id">38402455221829632</str>

 <arr name="objectType">

 <str>twStatus</str>

 </arr>

 <int name="retweetCount">0</int>

 <str name="source"><a href="http://twitter.com/"

rel="nofollow">Twitter for iPhone</str>

 <str name="text">RT @Onventive: Really useful Twitter Android

code RT @enbake Developing an android twitter

 client using twitter4j http://is.gd/1YUFyY #a

...</str>

 <arr name="text_medium">

 <str>t4j_news</str>

 <str>en</str>

 <str/>

 <str><a href="http://twitter.com/"

rel="nofollow">Twitter for iPhone</str>

 <str>RT @Onventive: Really useful Twitter Android code RT

@enbake Developing an android twitter

 client using twitter4j http://is.gd/1YUFyY #a

...</str>

 <str>2011-02-18T01:00:33.000Z</str>

 <str>0</str>

 </arr>

 <date name="timestamp">2011-02-18T01:45:05.52Z</date>

 <arr name="userId">

 <str>88888888</str>

 </arr>

 <str name="userLang">en</str>

 <str name="userName">t4j_news</str>

 <str name="userScreenName">t4j_news</str>

 </doc>

 ...

 </result>

 <lst name="facet_counts">

 <lst name="facet_queries"/>

 <lst name="facet_fields">

 <lst name="userScreenName">

 <int name="beaker">189</int>

 <int name="cloudexpo">35</int>

 <int name="randybias">35</int>

 <int name="getjavajob">26</int>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 185
347

 ...

 </lst>

 </lst>

 <lst name="facet_dates"/>

 <lst name="facet_ranges"/>

 </lst>

 <lst name="highlighting">

 <lst name="38402455221829632">

 <arr name="text">

 <str>RT @Onventive: Really useful <span

class="highlight">Twitter Android code RT

 @enbake Developing an android <span

class="highlight">twitter client</str>

 </arr>

 </lst>

 ...

</response>

Notice the structure of the search response: it starts with the responseHeader
block, which provides information such as the query, whether you have specified
highlighting, and so on.

Next is the block, which shows the actual documents returned by theresult

search, along with the and attributes, which specify the totalnumFound start

number of results and the starting position for the results returned in this
response. For each document, LucidWorks Search returns all fields that are
marked as in the field definition.stored=true

If you have specified faceting, next you will see facet counts for each field
specified. You can then use that information to build links to your narrowed
search. For example, we started with the query:

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&facet.field=userScreenName&hl=true&hl.fl=text

If you then wanted to build a link to results narrowed on the userScreenName
, it would look like this:cloudExpo

http://127.0.0.1:8888/solr/collection1/select/?q=twitter&facet=on&hl=true&hl.fl=text&fq=userScreenName:cloudExpo

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 186
347

This way you have the same set of results, with the additional filter query of
, which selects only the documents with a userScreenName:cloudExpo

 field of .userScreenName cloudExpo

After the facet information comes the block. Highlighting consists ofhighlighting

snippets with the relevant information marked up appropriately. (By default, terms
are marked up as a with the class , so you can use CSS to stylespan highlight

them however you like.) Each snippet is contained in a block that refers back to
the value of the original document. So in this case, the attribute of id name

 refers back to with an of . You can38402455221829632 doc id 38402455221829632

then use this information to build your web application.

As far as how to actually use these responses, you can either work with them
directly, or use the Solr API as provided for your programming language. For
example, a SolrJ request looks something like this:

SolrServer server = new

CommonsHttpSolrServer("http://localhost:8888/solr/collection1");

SolrQuery query = new SolrQuery();

query.setQuery("twitter");

query.addSortField("timestamp", SolrQuery.ORDER.desc);

QueryResponse rsp = server.query(query);

SolrDocumentList docs = rsp.getResults();

for (SolrDocument doc : docs){

 System.out.println((String)doc.getFieldValue("id")+": ");

 System.out.println((String)doc.getFieldValue("userScreenName")+" --

"+(String)doc.getFieldValue("text"));

}

Here you are creating a connection to the server, then creating and executing the
request. From there, you can manipulate documents as you see fit.

APIs exist for most programming languages. You can find a list of bindings on the
.Solr Wiki

http://wiki.apache.org/solr/IntegratingSolr

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 187
347

Related Topics

Searching chapter from the Apache Solr Reference Guide

http://cwiki.apache.org/confluence/display/solr/Searching

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 188
347

Understanding and Improving Relevance
Relevance is one of the most complex components of a search engine
implementation, but it has a direct impact on how users perceive the value of the
search system.

One of the reasons relevance is so complex is because two users performing the
same query will likely have differing opinions about which documents best match
their query. In the end, judging relevance has an inherent subjectivity to it.
However, there are some ways to assess relevance and adjust how documents are
scored to improve ranking. This section discusses the various approaches to
analyzing a problem with relevance (real or perceived) and possible solutions.

For more background on how LucidWorks Search approaches relevance, see the
discussion in the section on .Overview of Query Processing

Topics in later sections:

Indexing and Relevance
Queries and Relevance
Relevance Tuning Tools

Relevance Testing
Relevance should always be judged in the context of a specific index and a set of
queries for that index. You should tune your relevance parameters for the types of
queries users submit and the types of content you have indexed. For example, if
you have an e-commerce site where users are accustomed to searching for your
specific product names, and your content includes those names in the title, you
might consider boosting title matches. If, however, your users do not know your
specific product names very well, you might want to boost another field like color,
or size.

When developing a search application, you will likely encounter issues with
relevance during testing. Usually this happens when one or more users run their
favorite query and aren't impressed with the results. This becomes a system bug
that must be dealt with before launch. While the favorite-query approach can be

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 189
347

useful, a more systematic approach may be more telling in the long run about how
queries are and aren't being handled by the system.

An empirical approach uses real sample queries gathered from query log analysis.
The top 50 or so queries are extracted from the logs, plus ten to twenty random
queries. Next, one to three users enter each query into the system and then judge
the top ten (or five) results. Judgments may be done on a scale of 1-5, with 1
being "relevant" and 5 being "embarrassing", or using another scale you
determine. The goal of relevancy tuning is to maximize the number of relevant
documents while minimizing the number of irrelevant ones. By recording these
values and repeating the test over time, it becomes possible to see if relevancy is
getting better or worse for the particular system in question.

An alternative method for judging relevance is to use what is commonly referred
to as A/B testing. In this approach, some set of users are shown results using one
version of the index while another set of users is shown the results from a
different version. To judge the success of a particular approach, user clicks are
tracked and analyzed to determine which approach provides better results.

Other approaches include log analysis on a beta site, letting users rate documents
using a star (or similar) system, using third-party evaluation data sets such as
TREC, or using focus groups. These approaches will all yield benefits, and you may
want to adopt a combination of approaches, but empirical testing and A/B testing
are the most comprehensive and give you easily repeatable results and verifiable
results.

Once you have some data in hand about the scope of your problem, you are in a
better position to understand what you want to try to improve and the changes
you may need to make.

After Testing
Once you have identified that you want to make some changes to improve
relevance of results, the next sections will discuss various approaches to doing so.

First, we cover some index-based approaches (things you do to documents as they
are indexed), in the section .Indexing and Relevance

Next, we cover query-based approaches (things you do to user queries), in the
section .Queries and Relevance

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 190
347

Finally, we'll cover .Relevance Tuning Tools

Click Scoring Relevance Framework

One important aspect of LucidWorks relevance scoring functionality is the
ability to boost documents that prior users have selected. This
functionality is the and can be enabledClick Scoring Relevance Framework
through the Administrative User Interface.

Related Topics

Relevance chapter from the Apache Solr Reference Guide
Debugging Search Application Relevance Issues, by Grant Ingersoll, hosted
at SearchHub.org.

http://cwiki.apache.org/confluence/display/solr/Relevance
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 191
347

Indexing and Relevance
For the most part, it is easier and more flexible to use query-time approaches to
alter relevance ranking, but there are several techniques can be employed during
indexing. These techniques almost always have to be mirrored on the query side,
so they are only partially index-time approaches.

Stop words

Removing (such as a, the, of, etc.) from the index and stripping themstop words
from queries is a common technique for reducing the size of an index and
improving search results, despite the fact that it throws away information. While
LucidWorks Search can remove stop words at , it does not do so byindexing time
default.

Removing stop words during indexing is now considered an archaic approach in
most search applications. Instead, it is preferred to remove stop words from
queries, except in certain types of queries where they are used to better clarify a
user's intent (such as in phrases). Both the andExtended Dismax Query Parser
the can take advantage of stop words, see the section Lucid Query Parser

 for more information.Synonyms and Stop Words

If stop words are removed from the index, you'll want to be sure to remove the
same set of stop words from user queries. Not removing stop words at query-time
when they have been removed from the index may actually reduce relevance by
leading to a high number of unmatched terms from user queries.

Alternate Indexing Fields

When indexing, it is often useful to apply several different analysis techniques to
the same content. For example, providing a default case-insensitive search is often
the best choice for general users, but expert users will often want to do exact
match searches which may additionally require a case-sensitive field. In Solr, this
can be accomplished by using the mechanism, as described in the<copyField>

Apache Solr Reference Guide section on . In LucidWorks Search, thisCopying Fields
can be configured in the , with the , or byFields screen of the Admin UI Fields API
editing the file. If you use the Admin UI or the Fields API, you will notschema.xml

need to restart LucidWorks Search, but if you edit by hand, a restartschema.xml

of will be required.LucidWorks Search

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/Copying+Fields

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 192
347

Other examples of times when alternate fields may be useful include applying
different stemming approaches, using character-based and word-based n-grams,
or stripping punctuation, accents and other marks. At query-time, you'll want to
make sure to submit user queries to the fields that have had content analyzed the
way you want.

Document and Field Boosting

When indexing using the Solr APIs it is possible to mark one document or field as
being more important than other documents or fields by setting a boost value
during indexing. These boost factors are then multiplied into the scoring weight
during search, thus potentially boosting the result higher up in the result set. This
type of boosting is usually done when knowledge about a document's importance
is known beforehand. However, index time boosting only provides 255 distinct
values of granularity and if a change is needed to the boost value, the document
must be re-indexed.

In general, this type of index-time boosting is somewhat impractical: the field or
document boosts must be included with the document every time the document is
updated. If using one of the LucidWorks Search crawlers, this may be difficult to
achieve without a workflow that includes , modifyingcrawling as a batch
documents offline, and then indexing the documents. In addition, the query-time
boosting techniques offer much broader control over when and how boosts are
applied.

However, LucidWorks Search also includes a way to boost fields in a document
based on the length of the field. In theory, if a term that the user has searched for
appears in a field that is significantly shorter than other fields (such as the title), it
should be boosted more than if the term appears in a longer field (such as the
body). The short field boost factor provides three approaches: "none", which
provides no boost; "moderate", which uses the toLucidSimilarityFactory

provide a smaller boost than the standard Lucene calculations; and "high", which
uses Lucene's to calculate the boosts. ThisDefaultSimilarityFactory

functionality is used during indexing - during query time, the standard Lucene
calculations are used.

Stemming and Lemmatization

Stemming is the process of reducing a word to a base or root form. For example,
removing plurals, gerunds ("ing" endings) or "ed" endings are all stemming

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 193
347

techniques. Lemmatization is a variation of stemming that leaves a whole word in
place, while stemming need not do that. There are many stemming theories and
techniques. Some are quite aggressive, stripping words down to very small roots,
while others (called light stemmers) are less aggressive.

LucidWorks includes many options for stemming but it is also possible to plug in a
custom analyzer or use other Solr or Lucene analyzers not included. As a general
rule of thumb, it is usually best to start with a light stemming approach that
removes plurals and other basics techniques and then progress to more aggressive
stemming only after performing some relevance testing as described in Judging

.Relevance

Default stemming in LucidWorks uses the Lucid Plural Stemmer for the default
English text analysis Field Type which simply stems plural words into their singular
form, although rules can be added to a rules file to protect and specially translate
words or even add or modify stemming rules as needed (see the section Lucid

.) More aggressive stemmers are also available, like Dr.Plural Stemming Rules
Martin Porter's stemmers (choose the "text (English Snowball)" FieldSnowball
Type).

To experiment with different stemmers, there is a well-defined mechanism in Solr
for plugging in stemmers via the . There is also an easy to useAnalysis Process
Admin interface for testing the analysis process located in the Solr Admin screens
(access it via the "Advanced" tab of the Admin UI, or by going to

, replacing "localhost:8888" andhttp://localhost:8888/solr/#/collection1
"collection1" as needed for your environment).

http://snowball.tartarus.org/
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://localhost:8888/solr/#%2Fcollection1

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 194
347

Queries and Relevance
When working with queries to improve relevance ranking, there are a great
number of tweaks and techniques that you can consider. In the section on

, we'll discuss those smaller tweaks in more detail. ButRelevance Tuning Tools
here we'll discuss some of the broader approaches you might consider.

One factor that shouldn't be overlooked is the importance of user education. While
the techniques described below can make things much easier for users, educating
users on how to use the proper query syntax, when to use it, and how to refine
queries can be instrumental in enhancing the relevance of search results.
Obviously, not all users will read manuals or take the time to learn new query
syntax, so the following techniques can be used to achieve better results in many
situations.

Boosting Specific Documents

The QueryElevationComponent in Solr provides a way to force specific documents
to the top of the result list in response to a specific query. In Solr, it is configured
with the file, but in LucidWorks Search it can be configured eitherelevations.xml

with the or the .Search UI Settings API

This approach is useful if you have a few known documents that should always
appear at the top for a query. It's also possible to force documents to not appear
at all in the results for a query (i.e., "blacklisting") if that's required.

Query Term Boosting

Similar to , terms in a query can be boosted. Boosting aDocument/Field boosting
query term implies that the term in question is somehow more important than the
other terms in the query. One advantage of query time boosting is an expanded
level of granularity is available for expressing the boost value. Additionally, the
boost value is not "baked in" to the index, so it is easier to change.

You may also decide to give boosts if the user's term appears in specific fields,
such as the title.

Click Scoring Relevance Framework

Available only in LucidWorks Search, this approach stores information about
documents prior users have selected during their searches. The document ID and
the user's query are recorded and then used to calculate boost values for those

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 195
347

1.
2.
3.

documents that are applied the next time the same query is submitted. Over time,
the documents that have been clicked on the most will rise in the results list; if
users stop clicking on the document, the algorithm has an aging factor that will
cause them to gradually fall in the results list.

For more details, including how to enable Click Scoring, see the section Click
Scoring Relevance Framework

Synonyms

Synonym expansion is a common technique that looks up each token in the
original query and expands it with synonyms; strictly speaking, synonym
expansion mostly improves the ability to get more documents (also called recall)
rather than improving relevance ranking or excluding irrelevant documents. For
instance, a user query containing "USA" could be expanded to "(USA OR "United
States" OR "United States of America")", which may bring back results that the
user intended to retrieve, but did not fully specify. If the user was looking for
"USA" only, the results may be less relevant to him.

In LucidWorks Search, it is easy to specify a list of that can be used forsynonyms
expansion. Synonym lists are best created by analyzing query logs and then
looking up synonyms for common query terms and then testing the results.
Generic synonym lists (like those obtained from) can be useful, but careWordNet
must be taken as too many synonyms can be problematic for users, especially if
they are not appropriate for the genre of the index. It is, however, quite common
to produce synonym lists contain common abbreviations, numbers (for example, 1
-> one, 2 -> two, and so on) and acronyms.

Unsupervised Feedback

Unsupervised feedback is a relevancy tuning technique that executes the user's
query, takes the top five or ten documents from the result, extracts "important"
terms from each of the documents and uses those terms to create a new query.
The expanded query is executed and new results are returned to the user. This is
all done automatically in the background with no interaction required by the end
user. As an example, if the user searches for the word "dog" and the top three
documents are (for the sake of example):

Great big brown dogs run through the woods.
Dogs don't like cats.
A poodle is a type of dog.

http://wordnet.princeton.edu/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 196
347

The feedback query might look something like (dog) OR (great OR big OR
.brown OR dog OR run OR woods OR cat OR poodle)

Since these terms co-occur with the word "dog" in high ranking documents, these
terms may help further define a user's short query. Unsupervised feedback is often
viewed as a helper, but it does rely on the assumption that the top few documents
are highly relevant to the search. If they are not, then the results incorporating
feedback will likely be worse than those without feedback.

Unsupervised feedback is optional in LucidWorks Search and is disabled by default.
It may be enabled by checking the check box inEnable Unsupervised Feedback
the of the Admin UI, or with the .Querying Settings tab Settings API

Supervised Feedback

Supervised feedback is similar to unsupervised feedback except that users
explicitly pick which results are relevant, usually by clicking the result or
checking a box indicating it is relevant. The LucidWorks Search feedback
component does not currently support supervised feedback.

Boosting Documents According to Rules

You may have a complex suite of business rules (i.e., if user A is male, aged
25-35, display XYZ results first) that you'd like to apply. These may be built
around profit or sales goals for the organization, but they may also be built around
a deep knowledge of your users that you'd like to apply. In that case, you may
need to integrate a Business Rues Engine. LucidWorks Search has provided an
integration with Drools, but it's also possible to plug in other options. See the
section for more details.Business Rules Integration

Related Topics

Options to Tune Documents' Relevance, by Tomàs Fernàndez Löbbe, hosted
on SearchHub.org

http://searchhub.org/2011/12/14/options-to-tune-documents-relevance-in-solr/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 197
347

Relevance Tuning Tools
Before starting to modify settings that impact how results are ranked, it's best to
have an idea for the outcome you hope to achieve. Too often we have an
emotional response to relevance, choosing a small number of favorite queries as
our tests. However, as discussed in the opening section, you should run tests
using queries that real users have submitted that have been pulled out of query
logs. The scope of these tests is up to you and your available resources, but a
methodical approach is preferred.

If you have done tests with real-world sample queries and had users (or internal
testers) score results of those queries using a common scale, you have a way to
quantify how "bad" the issue is before you make changes. This will allow you to
quantify how much things improve for each proposed change, so you can base
your decisions on data. This will also allow you to understand (and explain to
stakeholders) some of the trade-offs you may need to make if your user's queries
are improved but your CEO's favorite query is not.

If you do find you want to make changes, here are some tools and tips to assist
you.

Relevancy Workbench

One way to experiment with system changes is to use the Relevancy Workbench, a
new tool included with LucidWorks Search which allows side-by-side comparison of
search results using different query parameters for two queries. This tool allows
you to experiment with changes before making them permanently for all users.

Several parameters are available for experimentation, all of which relate to the
fields that will be searched or the boosts that will be applied. A catch-all field is
available for any parameters that aren't explicitly shown, making it a vital tool for
testing the impact of any change you can think of.

The tool is available through the LucidWorks Search Admin UI, in the Relevance
tab. See the for detailed information.Relevance Help

Explain Scoring

In the default LucidWorks Search UI, links will appear under each search result for
"Explain"; clicking that will show the scoring of each document for the query. The
scores cannot be tweaked here, but you can see the factors that make up the

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 198
347

score and understand why the result appears where it does. This information can
provide clues about why documents appear in the order that they do. The scores
themselves are not the most important factor, but the scores of each document
relative to other documents is telling.

More information about how to read explain scores is available in the section
.Explain and Document Scoring

Solr Analysis

Some problems may be deeper within the system, and may only be resolved by
either changing how content is analyzed and transformed before indexing or
changing how the user's query is analyzed and transformed. The field types
defined for each field dictate this analysis and while LucidWorks Search includes
sensible defaults, they are not universal and may need to be tweaked depending
on your content.

The Solr Admin UI, which is available from the LucidWorks Search Admin UI
through the Advanced tab, has a tool to help better visualize the analysis process
which shows the outcome of each analysis step on both the indexing side and the
query side. To use this tool, point a browser at

 and enter the text to behttp://localhost:8888/solr/#/collection1/analysis
analyzed. By trying out the text with different analysis capabilities (by selecting
different Fields or Field Types), it is possible to better understand why matches
may or may not occur.

More information about analyzers is available in the Apache Solr Reference Guide
in the section .Understanding Analyzers, Tokenizers, and Filters

Using Luke

Another useful tool for evaluating how documents have been indexed is ,Luke
which is an easy to use GUI that provides valuable information about the
underlying Lucene index. Its features include document browsing, query testing,
term browsing (including high frequency terms) and statistics about the collection
as a whole. To use Luke with LucidWorks Search, launch it using the script located
in the directory.$LWS_HOME/app/luke

Once Luke is launched, point it at the LucidWorks Search index directory (such as
, replacing$LWS_HOME/data/solr/cores/collection1_0/data/index

"collection1_0" with the actual collection path you want to look at) and open the

http://localhost:8888/solr/#%2Fcollection1%2Fanalysis
https://cwiki.apache.org/confluence/display/solr/Understanding+Analyzers%2C+Tokenizers%2C+and+Filters
http://code.google.com/p/luke/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 199
347

index. From there, the most useful actions are to view the high frequency terms,
and also particular documents (under the Documents tab) using the "Browse by
term" and "Browse by document number" options. Key items to look for are
missing documents and fields, terms, or words that are not tokenized "correctly".
Incorrect tokenization may not mean the analysis process was wrong, but rather
the output is not what a user would expect.

Again, you probably wouldn't make changes with Luke, but it provides a deeper
look into what is happening so you can make educated decisions about what
should be changed, whether that is the analysis process for incoming content, the
analysis process for user queries, or the default boost factors in play.

Luke in LucidWorks Search

LucidWorks Search packages a version of Luke, which is provided 'as is'. It
can be found at and launched by running the $LWS_HOME/app/luke

 script for Linux/Mac or the script for Windows.luke.sh luke.bat

External Boost Data

The standard mechanism in Solr for adding external field data (which may affect
ranking) is through the use of type. This mechanism isExternalFileField

sufficient when adding simple string or numeric values to be processed by function
queries, but it's not sufficient to express more complex scoring mechanisms, based
on other regular query types.

More information about external boost data is available in the Apache Solr
Reference Guide in the section .Working with External Files and Processes

Related Topics

Relevance tab from the Help documentation for the Admin UI screen
Explain and Document Scoring from the Help documentation
Luke

https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes
http://code.google.com/p/luke/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 200
347

Synonyms and Stop Words
Synonyms are words that are similar in meaning to each other, such as "hat" and
"cap". In the context of a search application, they are another tool for improving
results for users because they provide the opportunity to substitute words and
expand the terms matched in the index.

Stop Words, on the other hand, are used to restrict the results of a search, by
removing very small and very common words (such as "the" and "and") that often
have little bearing on whether a document is a good match or not.

Synonym Expansion
LucidWorks Search manages synonyms with the use of a file foundsynonyms.txt

in the directory (unique for each$LWS_HOME/conf/solr/cores/collection/conf

collection). Synonyms can be edited in that file, via the Admin UI, or with the
Settings API.

Synonyms can be either single terms or multi-term phrases. There are two ways
to express synonyms:

A comma-separated list of words (i.e., "lawyer, attorney" or "i-pod, i pod,
ipod"). When the term entered by the user matches a term in the list, all
terms are substituted for the term the user entered, including the matching
term. If "lawyer, attorney" appears in the synonym list, when the user
enters "lawyer", the system will search for documents that include both
"lawyer" and "attorney".
A mapping of one or more terms to another (i.e., "i-pod => ipod"). When
entered as a mapping, the terms on the left of the "=>" symbol will be
replaced by the terms on the right side of the symbol, which means that the
user's query may not appear in the documents returned for the query. If
"i-pod => ipod" appears in the synonym list, when the user enters "i-pod",
the system will search for documents that contain the term "ipod" only.

There can be an unlimited number of terms and phrases which are defined as
synonyms. However, it's usually not a good idea to add an entire thesaurus as a
synonym file because not all terms are necessarily interchangeable (in some
contexts, yes, but not always). For example, a doctor looking "myocardial
infarction" is likely looking for documents that use the clinical term for the

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 201
347

condition (and are thus more advanced) instead of documents written for a
layman which likely uses the phrase "heart attack".

When considering synonyms, you should also consider which fields should be used
for synonym expansion. In LucidWorks Search, the , , andbody description title

 fields are used for synonym expansion by default, meaning that thosetext_all

are the fields that will be used for the expanded or modified query.

If creating a synonym file manually, make sure to format the file properly. Lines
starting with pound (#) are comments. Explicit mappings are indicated with terms
separated by "=>", where a comma-separated list of terms on the left side will be
replaced with the list of terms on the right side. Equivalent synonyms may be
separated with commas and will give no explicit mapping (that is, the listed terms
are equivalent). This allows the same synonym file to be used in different synonym
handling strategies. For example:

lawyer, attorney

one, 1

two, 2

three, 3

ten, 10

hundred, 100

thousand, 1000

tv, television

#multiple synonym mapping entries are merged.

foo => foo bar

foo => baz

#is equivalent to

foo => foo bar, baz

If familiar with Solr, the file is formatted the same as the file.Solr synonyms

Stop Words
LucidWorks Search stores stop words in a file called , found in the stopwords.txt

 directory (unique for each$LWS_HOME/conf/solr/cores/collection/conf

collection). The stop words can be edited in that file, via the Admin UI, or with the
Settings API.

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 202
347

The stop word file is just a list of terms, one per line.

Many common prepositions, pronouns, and adjectives offer little benefit for
matching documents, but can add some value when ranking results. Although it is
possible to remove stop words , more relevant resultswhen documents are indexed
will be achieved by indexing all terms, querying only non-stop words, and then
boosting the results by including the stop words with non-stop words. There is the
special case where a query consists only of stop words (such as the classic, "To be
or not to be"). In that case, all words are included in the query.

All words within quoted phrases are used for the query, even if they are stop
words. The user can also force a stop word to be included in the search by either
preceding it with a plus sign ("+") or enclosing it within double quotation marks.
For example,

User Input Query Interpretation

at a conference "at" and "a" are stop words, so they
will not be included with the query

+at a conference "at" will be included in the query, but
"a" will not

"at" a conference Same

"at a conference" All three words will participate in the
query

this is it There is no need to override because
all three words are stop words, so all
three will be included in the query

If creating the stop words file manually, the format is one term per line, as in:

a

an

and

are

as

at

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 203
347

This is the same format as the .Solr stopwords format

Related Topics

Suppressing Stop Word Indexing
Settings API
Synonyms in the Admin UI
Stop words in the Admin UI

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 204
347

Suppressing Stop Word Indexing

By default, LucidWorks Search indexes all . Modern data storage is verystop words
cheap and even the simplest of stop words provide additional context that boosts
relevancy and enables more precise queries. By default, the Lucid query parser
eliminates stop words from basic queries, including them only when they are used
in quoted phrases, or when the query term list consists only of stop words. In
addition, the Lucid query parser uses query stop words to construct relevancy
boosting phrase terms (bigram and trigram phrases) to supplement the basic
query. Still, there may be applications and environments where the choice is to
suppress the indexing of stop words.
TODO - update this for Field Types in the UI and API

Disabling Stop Word Indexing

Solr field types in the schema XML file control whether stop words will be indexed
for particular fields. A stop word filter may be placed in the tokenizer chain for the
index analyzer for a field type to filter out stop words and assure that they will not
be stored in the index.

Filters are specified at the field level, not the field level. For example, youtype
may have and fields, both with the field type. A stop wordtitle body text_en

filter may be specified for the field type and will apply to all fields of thattext_en

same type, in this case and . If you really need to have a separate filtertitle body

for a subset of the fields of a given type, you must create a separate field type to
use for that subset of fields.

The standard stop word filter is named and is generated by the StopFilter

 Java class. LucidWorks ships with a schema XML file (StopFilterFactory

) with the field type with a commented out entry for thisschema.xml text_en

standard stop word filter. To enable it, simply remove the XML comment markers
around that one filter entry.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 205
347

Schemas are Collection Specific

The file is specific to each collection and can be found under schema.xml

. If using multiple$LWS_HOME/conf/solr/cores/collection/conf

collections, be sure to locate the correct file for the collectionschema.xml

to be updated. After editing the schema.xml file, LucidWorks should be
. On some Windows machines, LucidWorks may need to berestarted

stopped before editing the file.

So, starting with the following in :schema.xml

<fieldType class="solr.TextField" name="text_en"

positionIncrementGap="100">

 <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <!-- in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory"

synonyms="index_synonyms.txt"

 ignoreCase="true" expand="false"/>

 -->

 <!--

 <filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

 -->

 <filter class="solr.WordDelimiterFilterFactory"

 generateNumberParts="1" generateWordParts="1"

 catenateAll="0" catenateNumbers="1" catenateWords="1"

 splitOnCaseChange="0"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ISOLatin1AccentFilterFactory"/>

 <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

 rules="LucidStemRules_en.txt"/>

 </analyzer>

 ...

Edit the stop filter factory entry that is commented out:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 206
347

<!--

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

-->

And remove the XML comment markers to get:

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

Which results in the following analyzer description:

<fieldType class="solr.TextField" name="text_en"

positionIncrementGap="100">

 <analyzer type="index">

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

 <!-- in this example, we will only use synonyms at query time

 <filter class="solr.SynonymFilterFactory"

synonyms="index_synonyms.txt"

 ignoreCase="true" expand="false"/>

 -->

 <filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt"/>

 <filter class="solr.WordDelimiterFilterFactory"

 generateNumberParts="1" generateWordParts="1"

 catenateAll="0" catenateNumbers="1" catenateWords="1"

 splitOnCaseChange="0"/>

 <filter class="solr.LowerCaseFilterFactory"/>

 <filter class="solr.ISOLatin1AccentFilterFactory"/>

 <filter class="com.lucid.analysis.LucidPluralStemFilterFactory"

 rules="LucidStemRules_en.txt"/>

 </analyzer>

 ...

After such a change, be sure to .re-index all documents

Also, make sure that the query analyzer for that field type references the same
stop words file:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 207
347

1.

2.

<analyzer type="query">

 <filter class="solr.StopFilterFactory" ignoreCase="true"

words="stopwords.txt"/>

Do not change or comment out the query analyzer when making this index
change.

This example only changes the field type. If other field types are beingtext_en

used, or should be changed, find the section of the for that field typeschema.xml

and

Position Increment Mode

There are two modes for suppressing stop word indexing:

Skip mode: Completely ignore or skip them, as if they were not present.
This is the default when no other option is selected. When skip mode is
selected, the query parser will ignore or skip stop words in quoted phrases.
Position increment mode: Do not store them in the index, but increment
the position counter so as to leave a blank at the position of each stop word.
When position increment mode is selected, the query parser will also skip
each stop word, but will increment the position of the next term in the
phrase so as to allow any term to match between the previous term and the
next term after the stop word. This will allow for more precise query
matching than the first mode where stop words are simply discarded.

For example, given these documents:

Doc #1: Buy the time for the test.
Doc #2: Buy more time for the test.
Doc #3: Buy time for test.

A query of regardless of the stop word indexing mode will beBuy the time

equivalent to and match all three documents.Buy AND time

A query of in normal indexing mode will match exactly that"buy the time"

phrase and match only the first document. In skip mode it is equivalent to "buy

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 208
347

 and will match the first and third documents. In position increment modetime"

the query is equivalent to which is not a valid query format but"buy * time"

indicates that will match the second word after regardless of the"time" "buy"

intervening word. This will match the first and second documents, but not the third
document.

To enable position increment mode, edit the entry of theStopFilterFactory

index analyzer (which was un-commented above) in to add schema.xml

. The section will appear as follows:enablePositionIncrements="true"

<filter class="solr.StopFilterFactory" ignoreCase="true"

 words="stopwords.txt" enablePositionIncrements="true"/>

Only the index analyzer should be changed. The query analyzer should not be
changed regardless of the indexing mode. The query parser has internal logic that
decides whether and when to call the query stop word filter.

After this change, be sure to .re-index all documents

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 209
347

1.

2.

3.
4.

Spell Check
Spell check, also known as "Did You Mean?", is the ability of the search application
to make alternate suggestions for queries based on words that are similar to the
terms entered by the user.

Integrated query spell checking is bundled with LucidWorks Search, with the
option to integrate third-party enhanced spell checking capabilities. It is
index-driven, meaning all suggestions are derived from the actual content in an
indexed collection and not from a predefined dictionary of words. In practical
terms, this helps solve problems with messy data written by a variety of authors of
varying quality where one author may spell a word one way, while another author
spells it a different way and the user spells it a third way. An index-derived spell
checker provides suggestions based on the (sometimes incorrect) words in the
dictionary, ensuring that end users still find relevant documents even if they
contain misspellings.

To enable spell checking for specific fields, three steps must be taken:

Enable spell checking by accessing the tab of the AdminQuerying - Settings
UI and check the box next to "Spell-check". Alternatively, the Settings API
can be used.
Ensure there are fields configured for spell checking by accessing the

 tab and choosing "Index for Spell Checking". The Indexing - Fields Fields API
could also be used to modify field settings. Be sure to select fields that
contain ample text-based content that end users are going to search against
using word-based queries. For example, the title and body fields are good
candidates, while a "price" field likely isn't.
Crawl your content.
Perform queries.

Spell Check Settings are Per Collection

The indexes created for spell checking are unique to each collection, and
based on the documents indexed for a particular collection. In a
multi-collection environment, the steps to enable spell checking must be
done in each collection.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 210
347

When indexing content, LucidWorks will automatically create an index of terms to
be used for term suggestions. By default, LucidWorks will create this index from
content in the , , , and fields.author body description title

In prior versions of LucidWorks, a separate task needed to be scheduled to
build the spell check index of terms. Starting with v2.0 of LucidWorks
Search, that requirement has been removed and the index will bespell

created automatically during regular indexing.

Related Topics

Query Settings
Settings

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 211
347

1.

2.

3.

Auto-Complete of User Queries
Query auto-complete shows users suggestions for their queries as they type the
words. In LucidWorks Search, this is an index-driven feature, meaning all
suggestions are derived from the actual content in an indexed collection and not
from a predefined dictionary of words. For users, this means they will see
suggestions for actual terms in documents, not for terms that may not exist in the
content.

Auto-Complete Settings are Per Collection

The indexes created for auto-complete are unique to each collection, and
based on the documents indexed for a particular collection. In a
multi-collection environment, the steps to enable auto-complete must be
done in each collection.

To enable auto-complete of user queries, three steps must be taken:

Enable auto-complete by accessing the screen of the AdminQuery Settings
UI and check the box next to "Auto complete". Alternatively, the Settings

 can be used.API
Ensure there are fields configured for auto-complete by accessing the

 screen and choosing "Index for autocomplete". The Indexing Fields Fields
 can be used instead if you prefer. A good auto-complete field is a fieldAPI

that contains ample text-based content that end users are going to search
against using word-based queries. For example, the title and body fields are
good candidates, while a "price" field probably isn't.
After crawling some content, create the "autocomplete" index by accessing
the page and scheduling a time for the "GenerateIndex Settings
autocomplete index" job to run. The can be used instead ifActivities API
preferred. This be done before automatic query completion will occurmust
for users.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 212
347

LucidWorks Search does not create the auto-complete index by default.
Auto-Complete indexing jobs must be scheduled using the Indexing - Settings tab
of the Admin UI (or via the) before query suggestions will appear forActivities API
users.

If you enable auto-complete but don't see any suggestions, you may want
to modify the parameter, which defines the minimum fractionthreshold

of documents a term should appear in before being added to the
 index. The default is "0.05" (or 5%), and a lower numberautocomplete

will include more terms in the index. A smaller number may be helpful
when just starting out with a small sample set of documents.

To modify this parameter, edit for each collection (in solrconfig.xml

). Find the section:$LWS_HOME/conf/solr/cores/collection/conf

<searchComponent class="solr.SpellCheckComponent"

name="autocomplete">

Find the parameter and change<float name="threshold">.005</float>

it to the desired value. After saving , .solrconfig.xml restart LucidWorks

Automatic Creation of Auto-Complete Indexes

By default, LucidWorks does not build the indexes for auto-complete each time
documents are added to the index because doing so may have performance
implications in a production environment with a large index. However, LucidWorks
can be configured to do this automatically by changing the settingbuildOnCommit

in to . Usually, it's a better idea to schedule index builds sosolrconfig.xml true

that they run on a regular interval rather than doing it on every commit using this
method.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 213
347

If, however, you would like this to happen automatically, find the following section
in the file for each collection:solrconfig.xml

<!-- Auto-Complete component -->

 <searchComponent name="autocomplete"

class="solr.SpellCheckComponent">

 <lst name="spellchecker">

 <str name="name">autocomplete</str>

 <str

name="classname">org.apache.solr.spelling.suggest.Suggester</str>

 <str

name="lookupImpl">org.apache.solr.spelling.suggest.tst.TSTLookup</str>

 <str name="field">autocomplete</str>

 <str name="storeDir">autocomplete</str>

 <str name="buildOnCommit">false</str>

 <float name="threshold">.005</float>

 <!-- <str name="sourceLocation">american-english</str> -->

 </lst>

 </searchComponent>

In the section, , change "false" tostr name="buildOnCommit">false</str>

"true", and save the file. for the changes to take effect. RepeatRestart LucidWorks
this for each collection that should build the auto-complete index each time
documents are added to the index.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 214
347

1.

a.

b.

2.

3.

4.

Enterprise Alerts
The alerts feature of LucidWorks Search allows a user to save a search and receive
notifications when new results are available.

A acts like a smart saved search. It is smart in the sense that itpassive alert
keeps track of the last time the user checked for new results to their search and
provides only new results the next time the alert is checked. As the name implies,
a passive alert provides no notification when new documents are indexed. It waits
for a request before it checks for new query results.

An is checked periodically at a user-defined interval (currently everyactive alert
hour, day or week is available). When new results to the query are discovered, an
active alert sends a notification via email to the email address defined in the alert.
At the current time, only email notifications are possible.

How Alerts Work

The user does a search, and clicks the link under the search box to "Create
new alert".

The user configures the alert and notification settings, including how
often to run the alert () and an email address to send alertperiod

notifications.
LucidWorks Search automatically saves the timestamp of when the
alert was created ().checked_at

Every 60 seconds, a scheduled process within the UI checks to see if it is
time to run any alerts.
When the alert is run, the query is executed as entered by the user, on the
collection that the query was initially run on, and the timestamp of the most
recent document is compared to the timestamps of documents in the result
set.
If there are new results for the user, a notification is sent, assuming the mail
server has been configured in the page of the UI.Settings

Parameter names in parentheses above refer to the attributes used with the Alerts
. Alerts can be set up with the default Search UI, but while designing your ownAPI

search application, you will likely need to use the Alerts API to integrate the
functionality.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 215
347

Enabling Alerts
In order for alert notifications to work with LucidWorks Search, the email server
must be configured via the page in the Admin UI.System Settings

In addition, the LucidWorks Search schema must define a date field.timestamp

Both active and passive alerts require that the index define a date fieldtimestamp

that is indexed, defaulted to NOW, and used to indicate the time of document
indexing. By default, LucidWorks Search schema already defines this field.
However, if modifying the LucidWorks Search default field set (the "schema"), you
must retain this field for alerts to work properly.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 216
347

Click Scoring Relevance Framework
One way to modify how results are ranked for users is to adjust the scoring of
results based on user feedback (either explicitly or implicitly). Query logs provide a
wealth of information that indicates what users were searching for and which
results they found relevant to the query. If certain documents are often selected
as answers to queries, it makes sense to increase their ranking based on their
popularity with users.

LucidWorks Search includes a component that enables administrators to add this
type of information to the index. This component is referred to as the Click Scoring
Relevance Framework (or Click Scoring, for short). The framework includes tools
for query log collection, log processing, and robust calculation of log data to boost
certain documents. It is possible to supply boost data prepared without Click
Scoring tools included with LucidWorks, however the data must be available in a
predefined location and follow a specified text format. More details about how Click
Scoring works and information about advanced configuration parameters are
described in .Using Click Scoring Tools

This component can be enabled in the section of the Admin UI orQuery Settings
with the -related parameters of the . Once enabled, a job mustclick Settings API
be scheduled to process the click logs and create the data for boosting documents
based on prior clicks.

There is currently a known issue where Click Scoring will not properly
process calculated boost information until LucidWorks Search is restarted.
So, when enabling Click Scoring, please also schedule a full LucidWorks
Search restart. For details on how to restart, see the section Starting and

.Stopping LucidWorks Search

Topics covered in this section:

Functionality of Click Scoring
Collection of Query Terms and User Clicks
Processing Logs

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 217
347

Maintenance of Historical Click Data
Document Boost Data
Integration of Boost Data with the Index

Using Click Scoring information
Related Topics

Functionality of Click Scoring
When users select a particular document for viewing from a list of search results,
we can interpret this as implicit feedback that the document is more relevant to
the query than other documents in the results list. We can infer a strong
association between the terms of the query and the selected document, because
users have shown through clicks that they believe the selected document matches
their query better than other returned documents.

This graphic gives an overview of how Click Scoring works:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 218
347

The reinforcement of ranking and terms is counterbalanced by the "expiration" of
the past history of click-through events, to avoid situations when documents that
are selected many times start to permanently dominate the list of results. Without
expiration of old history, these results may become selected even more often at
the expense of other perhaps more relevant documents that did not enjoy such
popularity over time.

Click Scoring implements several major areas of functionality related to the
processing of click-through events:

collection of query logs and click-through logs
maintenance of historical click data to control the expiration of past
click-through events

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 219
347

aggregation of log data, calculation of click-induced weights and association
of query terms with target documents
integration of boost data with the main index data

These areas of functionality are described in the following sections.

Collection of Query Terms and User Clicks

Records of user clicks include two pieces of information: the document ID and the
query term entered by the user.

The default LucidWorks Search UI records user clicks automatically when Click
Scoring has been enabled. When you write your own search application, you will
need to make calls to the to record user clicks and query events.Click Scoring API

Both the queries and the user clicks are logged to the same log file. The default
location of this file is in , where $LWS_HOME/data/logs/click-collection.log

 is the name of the collection (for example, collection click-collection1.log

contains clicks to the the default LucidWorks collection, collection1).

When using this log data is not replicated to slave nodes. SinceIndex Replication
the Click Scoring API points to the LucidWorks Search Core component, which is
only used on a single node, and not directly to the indexes, it is not required to
replicate the log files across shards. The latest version of the calculated boost data
(after the logs have been processed) is replicated together with the main index
files, this allows the slave nodes to perform click-based scoring in the same way as
the master node that calculated the boost data.

Click Scoring is not available in SolrCloud mode.

Processing Logs

Whether generated by the default LucidWorks Search UI or from your own
application with the Click Scoring API, the Click Scoring log files must be processed
to calculate boost values. This processing step can be started with the Activities

, or scheduled to run periodically using the Admin UI by setting a recurringAPI
activity in the screen of the Admin UI.Index Settings

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 220
347

This process results in the creation of calculated click boost data, which is by
default located in

.$LWS_HOME/data/solr/cores/collection/data/click-data/current

Maintenance of Historical Click Data

Each time the Click Scoring logs are processed, the system stores a copy of the
current (by default, this is in click-collection.log

). Other data$LWS_HOME/data/solr/cores/collection/data/click-data/

produced during Click processing is also stored in that location.

Over time the amount of data collected could be significant. LucidWorks Search
does not delete this data automatically, because query and click-through logs are
a valuable resource and can be used for other data mining tasks. If the size of this
data becomes a concern, all subdirectories in that location can be removed except
for and directories that preserve the current and previouscurrent/ previous/

boost data.

Document Boost Data

The final boost data file follows a simple text format, so the boost data can be also
supplied by an external process if desired. See for moreUsing Click Scoring Tools
details about the structure of the boost data file.

Integration of Boost Data with the Index

If Click Scoring is enabled and logs have been processed, the boost data is
integrated on the fly with the main index when new documents are indexed, an
index optimization is run, or a full re-index is executed. Most frequent query terms
are added as a field to respective documents, and weights of these documents are
adjusted.

The field names added by Click Scoring are configurable, but assuming their prefix
is set to the default value of the following fields will be created from boostclick

data and automatically populated:

click: an indexed, not-stored field with a single term "1", whose purpose is
only to convey a floating-point field boost value. Field boost values have
limited resolution, which means that small differences in boost value may
yield the same value after rounding.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 221
347

click_terms: an indexed, stored, and analyzed field that contains a list of
top terms associated with the document (presumably obtained through
analysis of click-through data). This field's Lucene boost is also set to the
boost value for this document obtained from the boost data file.

click_val: an indexed, stored field that contains a single term: a string
representation of the boost value for this document. This format is suitable
for processing in function queries.

Using Click Scoring with NearRealTime Search

Enabling Solr's Near RealTime (NRT) search by configuring the
 parameters with the orupdate_handler_autosoftcommit_* Settings API

the Auto-soft-commit* settings in the has some impacts on howAdmin UI
user clicks are processed by LucidWorks.

In order to avoid performance issues with NRT search when Click Scoring
is enabled, documents added between the last "hard" commit and the
current "soft" commit are augmented with click-through data.not

Deletions since the last hard commit are processed as usual (i.e.,
documents deleted are not visible), but their term statistics are still
included in the global term statistics (which includes the fields added by
Click). Added documents since the last hard commit will not get any
click-related fields until the next hard commit, even if a document with the
same unique key was deleted and replaced by a new, updated, version of
the document.

Using Click Scoring information
There are several ways that Click Scoring information can affect ranking of results.
By default, LucidWorks Search is configured to use Click Scoring data as an
additional field in a query parsed by the Lucid Query Parser. can beOther methods
configured manually, and may involve using field as an input to aclick_val

function query. This section describes the query parser method, which is thelucid

default.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 222
347

When is enabled via the Admin UI, a boost field isClick Scoring click_terms^5.0

automatically added to the list of fields for the search handler (which uses a lucid
query parser). This means that query terms will be matched with the click_terms
field using the relative weight of 5.0. This weight can be changed with the Settings

 or by editing) if you'd like a larger or smaller boost.API solrconfig.xml

The end result of this query processing is that documents that contain in their
 field terms from the query will have a higher ranking, proportionallyclick_terms

higher to the popularity of the document (the number of click-throughs) and the
overlap of query terms with . It may be difficult, however, to see theclick_terms

effects of integrating Click Scoring boosts from only a few clicks on a document
during testing. This is because the actual boost that occurs The score contribution
of this match will be related to this weight, the term frequency/inverse document
frequency scoring formula for this field, and the usual (extended)lucid dismax

scoring rules.

Related Topics

Using Click Scoring Tools

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 223
347

Using Click Scoring Tools

 The Click Scoring Tools package is a set of tools for
analyzing query and click-through logs in order to obtain relevance-boosting data.
This boost data can then be used by other Click Scoring components such as

 and the query parser to adjust documentClickIndexReaderFactory lucid

ranking based on the click-through rate and common query terms.

File Formats

The Click Scoring Tools package reads and generates files that follow specific
formats, which are summarized below. All files are plain text files with
tab-separated records, one record per line.

Query and Click-through Log Format

Click Scoring tools expect this file to be located in
.$LWS_HOME/data/logs/click-<collectionName>.log

Q TAB queryTimestamp TAB query TAB requestID TAB numberOfHits

C TAB clickTimestamp TAB requestID TAB documentID TAB position

The fields are:

Field Description

Q or C Identifies the type of the record, either
a query log record or a click-through
log record

queryTimestamp A long integer representing the time
when the query was executed

query The user query, after basic escaping
(removal of TAB and new-line
characters)

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 224
347

Field Description

requestID A unique request identifier related to
query and timestamp

numberOfHits The total number of results matching
the query

clickTimestamp A long integer representing the time of
the click-through event

requestID The same value as above for the Q
record

documentID The of the document thatuniqueKey

was selected

position The 0-based position of the selected
document on the list of results

Boost File Format

This file is usually generated as a result of the Click Scoring processing of log files,
but it could be also supplied by some other external process. Click Scoring expects
this file to be located in

.$LWS_HOME/data/solr/cores/collection/data/click-data/current

documentID TAB list(topTerms) TAB list(boost) TAB list(updateTimestamp)

The fields are:

Field Description

documentID The of the documentuniqueKey

list(topTerms) A comma-separated list of pairs in the
format phrase:weight

list(updateTimestamp) A comma-separated list of long integer
timestamps, which affect how the
current boost data will be aggregated

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 225
347

Field Description

with the next version of boost data.
This element is optional and it's for
internal use by Click Scoring Tools

Click-induced Boost Calculation

When Click Scoring tools are run (using the) oldClickAnalysisRequestHandler

boost data (if present) is merged with the new boost data, processed by a
 to produce the new numeric boost value per documentID, and aBoostProcessor

new list of top-N shingles per documentID. Previous values of the floating-point
boost are preserved in a boost history field, so that they may be considered during
the next round of calculations.

The default configuration uses a that discounts historical boostBoostProcessor

values depending on the passed time by applying an exponential half-life decay
formula. Such discounted historical values are then aggregated with the current
values. This method of aggregation reflects both past history of click-throughs and
also reacts closely to recent click-through events.

ClickAnalysisRequestHandler

The initiates and monitors the click-throughClickAnalysisRequestHandler

analysis. The tools for Click Scoring processing are available via
, which can be activated fromcom.lucid.handler.ClickAnalysisRequestHandler

the configuration file the same way as any other request handler.solrconfig.xml

The configuration that ships with LucidWorks Search already contains a section
that activates this handler, under the relative path ./click

This handler accepts a parameter, which can take one of the followingrequest

values:

STATUS: return the status of the ongoing analysis, if any. Example request:

curl http://localhost:8888/solr/collection1/click?request=STATUS

Example response:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 226
347

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">205</int>

 </lst>

 <str name="logDir">java.io.File:.../logs</str>

 <str name="prepDir">java.io.File:.../click-prepare</str>

 <str name="boostDir">java.io.File:.../click-data</str>

 <null name="dictDir"/>

 <str name="processing">Idle.</str>

</response>

PROCESS: start the clickthrough processing. If the processing is already running, an
error message will be returned and this request will be ignored.

Example request:

curl http://localhost:8888/solr/collection1/click?request=PROCESS

Example response:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">136</int>

 </lst>

 <str name="result">Clickthrough analysis started.</str>

</response>

Subsequently, the status returned after all processing is finished will look like this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">1</int>

 </lst>

 <str name="logDir">java.io.File:./logs</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 227
347

 <str name="prepDir">java.io.File:./click-prepare</str>

 <str name="boostDir">java.io.File:./click-data</str>

 <null name="dictDir"/>

 <str name="processing">Stopped: Stage 3/3: prepare=finished, ok

aggregate=finished, ok boost_calc=finished, ok</str>

</response>

STOP: stop the currently ongoing analysis, if any is running.
Example request:

curl "http://localhost:8888/solr/collection1/click?request=STOP"

Example response:

<?xml version="1.0" encoding="UTF-8"?>

<response>

 <lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">0</int>

 </lst>

 <str name="result">There is no running analysis to stop -

ignored.</str>

</response>

When processing is finished, new versions of boost files will be placed in the
 directory, and previous boost data will be moved to the current previous

directory. At this point in order to read the new boost values SolrCore needs to be
reloaded (for example, by issuing a update request).<commit/>

In addition to the parameter this handler supports also the followingrequest

parameters:

commit (default to false) if set to true, then after the processing is finished
the handler will automatically execute a commit operation to reopen the
IndexReader and to load the newly calculated boost data. Please note that
Solr supports only a single global commit, which means that all other open
transactions (such as ongoing indexing) will also be committed at this time.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 228
347

sync (default to false) if set to true, then the processing will be executed
synchronously, blocking the caller and returning only when all processing is
finished. Default is to run the processing in a separate background thread.

Click Scoring Tools and Index Replication

When LucidWorks Search is configured to use the boost dataIndex Replication
files (by default, in)$LWS_HOME/data/solr/cores/collection/data/click-data

will also be automatically replicated. Due to the internal limitations of Solr's
 the boost data file will be located the main indexReplicationHandler inside

directory on the slave nodes, but it will be properly recognized by the Click Scoring
components on the slave nodes.

Click Scoring does not currently work with the functionalitySolrCloud
available with Solr 4.

For the replication of to work the must contain theboost.data solconfig.xml

following line in the section:<mainIndex>

<mainIndex>

 ...

 <deletionPolicy class="com.lucid.solr.click.ClickDeletionPolicy"/>

 ...

 </mainIndex>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 229
347

Business Rules Integration

 LucidWorks Search integrates the Business Rules
Module available for Solr installations in the LucidWorks Marketplace. In v2.6.3,
this replaces the prior implementation of business rules.

About Rules Engines
A is designed to allow business users to write rules that effect therules engine
processing of search results. For instance, an e-commerce company may wish to
alter the search results to boost particular documents based on a sale, or the HR
department of a company may wish to make sure the document covering 401K
benefits is always at the top of a search for 401K. In essence, a rules engine
integrated with a search engine allows businesses to dynamically impact relevance
of results based on business needs without having to write extensive, low-level
client-server code. Instead, they can express rules in a declarative programming
language that are much simpler to understand without the complexity of logic that
goes into writing code in a programming language like Java or Ruby.

All business rules depend on information from the system to analyze and take
actions. This information is known to the rule processor as which will befacts
present in the . LucidWorks Search will add facts to theknowledge session
knowledge session on each request and the user’s business rules can use and
manipulate those facts.

In a rules engine, users express rules to be matched along with instructions in
case a rule is matched, using simple if-then statements. The rules engine then
figures out which rules should be fired given the facts present in the system. For
example, a set of rules may look like:

if owner.hasDog then recommend dog food

if owner.hasCat then recommend cat food

if owner.gender is female and store is "sporting goods" then discount

golf clubs 20%

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 230
347

The important thing to note in this example is we didn't have to do any complex
logic to tie these rules together. We simply express the conditions and the things
that should happen if a condition is true. The engine is responsible for figuring out
which rules should fire based on the information (facts) it has to work with when
evaluating the rules. It is also important to note that at any given execution of the
engine some, all, or none of the conditions may be met depending on the facts in
the system, thus implying that all of the "then" clauses will be executed.

When Should I Use Business Rules?
There is a time and place for the use of business rules. Generally speaking, they
are most effectively used in situations where non-developers are expected to apply
changes to the search results based on business conditions. They are not a
replacement for code that integrates search into an application, but instead should
be thought of as a way for companies to fine tune user interactions with a system
without the need to go through extensive (and expensive) development cycles. It
also is not a substitute for general relevance tuning across a broad set of queries
nor is it appropriate for ranking modifications that are best done at a lower level in
the search engine.

How to Implement Business Rules in LucidWorks Search
There are two main areas to cover for implementing business rules with
LucidWorks Search:

First, determine how the rules will be implemented. There are a variety of
methods, each described in the section on Configuring Business Rules in

.LucidWorks Search

Second, define the rules themselves. LucidWorks Search has integrated Drools,
and you'll want to look at the section on for information on how toWriting Rules
construct a rules file.

There are . If you're not using rules at all, you can Example Rules and Recipes
.disable business rules

Integrating with your Rules Engine

If you already have a rules engine (such as ILOG's JRules or Fair Isaac's Blaze
Advisor) you can hook them into LucidWorks by implementing a RulesEngine class
that talks to your rules engine. Naturally, you can also implement your own

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 231
347

SearchComponent, DocTransformer, UpdateRequestProcessor, etc., if the ones
shipped with LucidWorks do not meet your needs.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 232
347

Configuring Business Rules in LucidWorks Search
While business rules in LucidWorks Search is based on the add-on Solr module of
the same name, LucidWorks Search is configured out of the box to use rules files.
There are several points of configuration that can be modified or re-used as
needed, and includes:

a requestHandler named "/rulesMgr"
a searchComponent named "landingPage"
a searchComponent named "firstRulesComp"
a searchComponent named "lastRulesComp"
addition of rules to the updateRequestProcessorChain named
"lucid-update-chain"
a document transformer named "rules"

There are also a few that could be configured if desired.optional requestHandlers

The rest of this section will describe each one, and discuss how to integrate it with
an existing Solr system. If you are not yet familiar with requestHandlers,
searchComponents and similar configurations in a file, you maysolrconfig.xml

want to review the Solr Reference Guide section RequestHandlers and
.SearchComponents in SolrConfig

Topics discussed in this section:

RequestHandlers
/rulesMgr
Optional RequestHandlers

SearchComponents
firstRulesComp
lastRulesComp
Rules Component Parameters
landingPage

UpdateRequestProcessorChain
Document Transformer
Rules with Index Replication

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 233
347

RequestHandlers

The is the Solr that holds on toRulesEngineManagerHandler requestHandler

references to the various rules engine instances specified in the Solr configuration.
The manager maintains a map of engines to their names. Most components are set
up to take in the name of this and then go ask it for the engineRequestHandler

by name.

/rulesMgr

The rulesMgr handles references to rules engine instances. Each of the engines are
defined and used by the searchComponents.

<requestHandler class="com.lucid.rules.RulesEngineManagerHandler"

name="/rulesMgr">

 <!-- Engines can be shared, but they don't have to be. A

SearchComponent or other consumer can

 specify the engine they want by name.

 -->

 <lst name="engines">

 <lst name="engine">

 <str name="name">first</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultFirst.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">landing</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultLanding.drl</str>

 </lst>

 </lst>

 <!-- Engine is using rules that are designed to be called after

all other components -->

 <lst name="engine">

 <str name="name">last</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 234
347

<lst name="rules">

 <str name="file">rules/defaultLast.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">docs</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultDocs.drl</str>

 </lst>

 </lst>

 </lst>

 </requestHandler>

Optional RequestHandlers

The following requestHandlers are not included with LucidWorks Search by default,
but could be added to the for a collection. Much of the samesolrconfig.xml

functionality exists with the default requestHandler, but these might be/lucid

useful if you would like to have specific handlers for specific purposes. Some of the
example rules files reference these handlers.

/update-with-rules
This is an updateRequestHandler for indexing documents. Note that it calls the
updateRequestProcessorChain, defined later. This allows using rules to alter
documents while they are being indexed, using Solr's standard
updateRequestHandler class.

<requestHandler name="/update-with-rules"

class="solr.UpdateRequestHandler">

 <lst name="defaults">

 <str name="update.chain">update-with-rules-chain</str>

 </lst>

</requestHandler>

The "/update-with-rules" requestHandler works in a similar way to the default
"/update" requestHandler and takes the same parameters when used. As with the
default "/update" requestHandler, in Solr 4.x versions, you can use this one
handler to send documents to Solr as CSV, JSON, and XML files.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 235
347

/update-extract-with-rules
This is another updateRequestHandler for indexing documents with rules, and it
also calls the updateRequestProcessorChain. However, this requestHandler is
based on Solr's ExtractingRequestHandler, which allows you to use Tika to extract
content from complex files such as Word documents, PDF files, and binary files.

<requestHandler name="/update-extract-with-rules"

 startup="lazy"

 class="solr.extraction.ExtractingRequestHandler" >

 <lst name="defaults">

 <str name="update.chain">update-with-rules-chain</str>

 <str name="lowernames">true</str>

 <str name="uprefix">ignored_</str>

 <!-- capture link hrefs but ignore div attributes -->

 <str name="captureAttr">true</str>

 <str name="fmap.a">links</str>

 <str name="fmap.div">ignored_</str>

 </lst>

</requestHandler>

Because this requestHandler is based on the ExtractingRequestHandler, it allows
the same parameters.
/search-with-rules
This is a requestHandler which provides an example rules-based search. Note in
the configuration below that we have defined two arrays, "first-components" and
"last-components" and named specific searchComponents.

<requestHandler name="/search-with-rules" class="solr.SearchHandler">

 <lst name="defaults">

 <str name="echoParams">explicit</str>

 <int name="rows">10</int>

 <str name="df">text</str>

 </lst>

 <arr name="first-components">

 <str>landingPage</str>

 <str>firstRulesComp</str>

 </arr>

 <arr name="last-components">

 <str>lastRulesComp</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 236
347

 </arr>

</requestHandler>

If you want to integrate rules with an existing requestHandler, you can add the
named searchComponents to the handler, in the same way shown in this example.

SearchComponents

The primary mechanism for applying rules at query time (i.e., not a document
indexing request) is via a Solr called . The searchComponent RulesComponent

 can be configured to occur anywhere in the searchComponent,RulesComponent

but it is typically best to configure it to be the first item in the chain after the filter
by role component, since it is often the case that you want rules to make decisions
based on the application's input parameters (such as the query, sort, etc.) and you
want the rules to make changes before they get processed by the other
components. For instance, you may have a rule that fires when the user query is
equal to "title:dogs" and you want the rule to change the query to be "title:dogs
AND category:pets". By configuring the component first in the chain, you will be
able to change the query before it is parsed, thus saving extra rule writing
involving re-arranging complex Query objects.

firstRulesComp

The firstRulesComp is a searchComponent which is meant to be placed within the
"first-components" capability of Solr. This allows applying a rule before other
searchComponents have been applied. An example of this might be to limit search
results with parameters not entered by the user (which may be conditional
depending on the user, or other factors). Then other searchComponents, such as
faceting or highlighting, can be applied to the reduced result set.

<searchComponent class="com.lucid.rules.RulesComponent"

name="firstRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">first</str>

 <!-- The handle can be used to turn on or off explicit rules

components in the

 case when you have multiple rules at different stages of the

component ordering-->

 <str name="handle">first</str>

 </searchComponent>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 237
347

lastRulesComp

The lastRulesComp is a searchComponent which is meant to be placed within the
"last-components" capability of Solr. This allows applying a rule after other
searchComponents have been applied.

<searchComponent class="com.lucid.rules.RulesComponent"

name="lastRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">last</str>

 <str name="handle">last</str>

 </searchComponent>

Rules Component Parameters

Input Parameters
There is a fair amount of control around exactly when rules will be fired.

Parameter Type Description Default Example

rules boolean Turn on or off
the
RulesComponent

false &rules=false

rules.<handle
name>

boolean Turn on or off
a specific
RulesComponent

instance using
the handle
name

true &rules.first=false

rules.prepare boolean Turn off rule
processing as
part of the
prepare phase

true &rules.prepare=false

rules.process boolean Turn off rule
processing as
part of the
process phase

true &rules.process=false

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 238
347

Parameter Type Description Default Example

rules.finishStageboolean Turn off rule
processing as
part of the
finishStage
phase

true &rules.finishStage=false

The system does not currently allow you to turn off individual phases of an
instance (unless it is the only instance that is configured). In other words, if two

-s are configured, it is not possible to turn off the process phaseRulesComponent

of only one.
Facts Collected for the RulesComponent
The facts collected for the are:RulesComponent

The objectResponseBuilder

The objectSolrQueryRequest

The schema for the index
The context information of the request (including the phase of processing,
like “process” or “prepare)
The objectSolrQueryResponse

The query response NamedList
The request parameters map as a instance (can beModifiableSolrParams

edited by rules)
The generated query object, which is the same as the parsed query. In some
cases, clauses of the query will be added to the knowledge session to allow
the rules engine to evaluate any part of the query.
The filter queries
Response results (the instance)DocListAndSet

The sort spec
The grouping spec
Facet counts

Some of the items on this list will only be available to the rules engine if the
 is placed after the associated for the fact. ForRulesComponent searchComponent

example, in order to have facet information available to the rules engine, the
 has to be placed after that component in the RulesComponent searchComponents

chain for the .requestHandler

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 239
347

Back to Top

landingPage

The landingPage searchComponent is generally used to define a specific result for
conditions that match the rule. For example, you could redirect users to a specific
page of the website in response to a query, or you could highlight specific
documents for a query in combination with other factors such as time of day, or
user attributes.

The does not turn off other components in the chain, butLandingPageComponent

it is generally possible for the rules engine to do so. For example, if you wanted to
disable faceting, you would add a rule such as . For the query, youfacet=false

could add . The exact methods you need are dependent on the searchquery=false

components you have enabled. See also the section forSearch Components API
one approach to finding enabled search components for the requestHandler in use.

Placing the landing page in the output is also the responsibility of the rule writer.
In essence, all the LandingPageComponent does is guarantee that it is called as
part of rules and fact preparation and that the rules used can be configured
separately from other rules.

<searchComponent class="com.lucid.rules.LandingPageComponent"

name="landingPage">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">landing</str>

 <!-- The handle can be used to turn on or off explicit rules

components in the

 case when you have multiple rules at different stages of the

component ordering

 -->

 <str name="handle">landing</str>

</searchComponent>

Input Parameters
Like the , the has several parameters.RulesComponent LandingPageComponent

One thing to note is that the is only executed in theLandingPageComponent

prepare phase of rules execution, so other available parameters will likely not be
required for your implementation.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 240
347

Parameter Type Description Default Example

landing boolean Turn on or off
the
LandingPageComponent

false &landing=false

landing.<handle
name>

boolean Turn on or off
a specific
LandingPageComponent
instance using
the handle
name

true &landing.first=false

landing.prepare boolean Turn off rule
processing as
part of the
prepare phase

true &landing.prepare

=false

landing.process boolean Turn off rule
processing as
part of the
process phase

true &landing.process

=false

landing.finishStageboolean Turn off rule
processing as
part of the
finishStage
phase

true &landing.finishStage

=false

Facts Collected for the LandingPageComponent
The facts collected for the are:LandingPageComponent

The objectResponseBuilder

The objectSolrQueryRequest

The schema for the index
The context information of the request (including the phase of processing,
like “process” or “prepare)
The objectSolrQueryResponse

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 241
347

The query response NamedList
The request parameters map as a instance (can beModifiableSolrParams

edited by rules)
The generated query object, which is the same as the parsed query. In some
cases, clauses of the query will be added to the knowledge session to allow
the rules engine to evaluate any part of the query.
The filter queries
Response results (the instance)DocListAndSet

The sort spec
The grouping spec
Facet counts

Some of the items on this list will only be available to the rules engine if the {
 is placed after the associated for theLandingPageComponent searchComponent

fact. For example, in order to have facet information, the LandingPageComponent
has to be placed after that component in the chain for the searchComponents

.requestHandler

Back to Top

UpdateRequestProcessorChain

LucidWorks supplies a custom updateRequestProcessorChain called
"lucid-update-chain". We have added the to the defaultRulesUpdateProcessor

chain. This allows you to make transformations to documents while they are being
indexed. Note that the example "/update-with-rules" and
"/update-extract-with-rules" requestHandlers both call this chain definition.

By default, the is configured in the RulesUpdateProcessor lucid-update-chain

and can be enabled or disabled by passing in the name of the handle, prefixed by
. For instance, if the Processor has a handle of , then rules. docProc

 would disable the processor and processing would&rules.docProc=false

continue down the chain. Rule processing is on by default.

Like the query-related rules processing, altering documents relies on facts during
the knowledge session.

Here is the default configuration for the in the lucid-update-chain

 file for each collection:solrconfig.xml

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 242
347

<updateRequestProcessorChain name="lucid-update-chain">

 <processor

class="com.lucid.update.CommitWithinUpdateProcessorFactory" />

 <processor

class="com.lucid.update.FieldMappingUpdateProcessorFactory" />

 <processor

class="com.lucid.rules.RulesUpdateProcessorFactory">

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an

independent one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can

have multiple in the chain -->

 <str name="handle">docProc</str>

 </processor>

 <processor

class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration... "shards should be in the *same*

order for

 every server in a cluster. Only "self" should change to

represent what server

 this is. <str name="self">localhost:8983/solr</str> <arr

name="shards">

 <str>localhost:8983/solr</str>

<str>localhost:7574/solr</str> </arr> -->

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor class="solr.DistributedUpdateProcessorFactory" />

 <processor class="solr.RunUpdateProcessorFactory" />

 </updateRequestProcessorChain>

To disable rules processing, you can either remove or comment out the section
that defines the parameters.com.lucid.rules.RulesUpdateProcessorFactory

Facts Collected for the RulesUpdateProcessor

The facts collected for the are:RulesUpdateProcessor

The as received in the AddUpdateCommand

 methodUpdateRequestProcessor.processAdd(AddUpdateCommand)

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 243
347

The being addedSolrInputDocument

The schema for the index
Back to Top

Document Transformer

The document transformer allows applying rules that alter documents during query
time. It is invoked as part of Solr's response and can inject or modify fields before
they are returned.

<transformer name="rules"

class="com.lucid.rules.RulesDocTransformerFactory">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">docs</str>

 </transformer>

Note that alterations to documents made with this transformer are not saved to
the documents themselves. If you want to make changes that are saved with
documents, use the UpdateRequestProcessorChain instead.

Altering a field will not cause an item to be resorted

If, for example, you are sorting by price and you change one of the
document's prices, this will not cause a re-sort. If you want to do that, we
suggest you use Solr's Sort by Function capability.

Facts Collected for the RulesDocTransformer

The facts collected for the are:RulesDocTransformer

The being transformedSolrInputDocument

The of the document being transformed (the Lucene internal ,docId docId

not Solr’s)uniqueKey

The schema for the index
Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 244
347

Rules with Index Replication

If you are using what is now considered "old-style" replication (i.e., you are not
using SolrCloud), you should add the rules files to the list ofconfFiles

configuration files that are copied to the slave servers with each update.

<!-- Optional -->

<!-- If using older v3 style master/slave replication, instead of 4x

SolrCloud,

 add these files to your master confFiles list

 <str

name="confFiles">...,rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>
-->

<requestHandler name="/replication" class="solr.ReplicationHandler" >

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str name="replicateAfter">startup</str>

 <str

name="confFiles">schema.xml,stopwords.txt,rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>

</lst>

 <lst name="slave">

 <str

name="masterUrl">http://your-master-hostname:8983/solr</str>

 <str name="pollInterval">00:00:60</str>

 </lst>

 </requestHandler>

Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 245
347

Writing Rules
The Business Rules module integrates with LucidWorks Search. TheDrools 5.5
Drools provides a much more thorough overview, butRule Language Reference
the below can serve as a brief introduction.

In Drools, rules are defined with Java-like declarations. While the software is
meant to be easier for non-programmers to write rules, it is still a heavily technical
syntax and assumes some technical proficiency.

To help you with writing rules, we have provided a classDroolsHelper.java

which consists of helper functions to make the task easier. You can find this class
in the file (the full name may include version numbers,solr-business-rules.jar

but you should only have one starting with) found in .jar solr-business-rules

. It is also included$LWS_HOME/app/webapps/lwe-core/lwe-core/WEB-INF/lib

below.

In this section:

Rules Files
Rule Declarations

rule and Attributes
when Conditions
then Actions

DroolsHelper Class
Limitations

Related Topics

Rules Files

A rules file has a file extension of . For the Business Rules module, we have.drl

placed the rules in the directory of each Solr collection, in a sub-directoryconf

called . The example configurations assume this path; if they are located inrules

another area of the filesystem, the examples will need to be updated.

Before starting the rule declarations, the package is defined, as are any imports
and globals. The import statements are similar to import statements in Java,

http://www.jboss.org/drools/
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 246
347

where you specify the fully qualified paths and type names for objects that will be
used with the rules. The global statements allow you to make application objects
available to the rules, such as if there is data or services the rules use.

Rule Declarations

At it's simplest, a rule declaration looks like this:

rule "name"

<a set of attributes>

when

<a set of qualifying conditions, in Drools called "Left Hand Side">

then

<a set of actions to perform, in Drools called "Right Hand Side">

end

rule and Attributes

The first step is to state you are going to define a rule, simply with and arule

name of the rule.

Next, you can define attributes for the rule, which influence the behavior of the
rule. One of the most important of these is , which prevents an infiniteno-loop

loop if a rule modifies a fact that causes the rule to activate again. There are
several other attributes, however, which may be important to your rule. See the
Drools documentation on for more information.Rule Attributes

when Conditions

In Drools language, the conditions that must be met for a rule to fire are also
called "Left Hand Side".

Conditions work on one or more patterns, which include the object and
constraints. For example, a condition like $rb: ResponseBuilder($qStr :

 will match queries sent toreq.params.get("q") matches "(?i).*ipod.*"))

Solr containing the term "ipod". What's going on in this example?

First, we've declared that the variable will match the object .$rb ResponseBuilder

The is a Solr class that builds the query responses. The rest ofResponseBuilder

the condition states we want to look at what the value was for Solr's parameter,q

and match queries that contain the term "ipod".

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5150

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 247
347

There are multiple variations on how to declare the conditions. You can use Java
expressions, booleans, binding variables, maps, and many more. Refer to the
Drools documentation on for all of the options andLeft Hand Side (when) syntax
details on how to use them.

then Actions

In Drools language, the actions of a rule are also called "Right Hand Side". These
are the changes that should be made to the "facts" known to the rules engine. In
search, this would be changes to documents, the order of results, or other impacts
on the results of the user's query. Keep in mind that these actions should not be
conditional (as in, " this, maybe this"), but atomic, meaning all of the statedwhen

actions should be performed (as in, " this, this"). If you find you needwhen then

further conditions, you may want to consider breaking your rule into smaller pieces
to achieve this goal.

As with conditions, there are multiple variations on how to use actions.when then

Of particular assistance here is the , found in the DroolsHelper.class

, where several methods have beensolr-business-rules-0.1-solr-4.4.0.jar

pre-defined such as , which allows adding a key-value pair to theaddToResponse

response, and , which modifies the request to Solr.modRequest

Refer to the Drools documentation on for more details.Right Hand Side (then)

Back to Top

DroolsHelper Class

The class contains a number of methods that can be invoked byDroolsHelper

rules writers to help with common tasks and simplify the "then" part of the rule.
For instance, there is a method that can take in a query and a boost and set the
boost value. There are also methods for helping merge separate facet requests
together (such as a field facet with a facet query). For instance, it has methods
that evaluate what phase the engine is in and returns true or false if it matches an
expected value. This can be useful if you want rules to fire only during certain
phases of the process (i.e. prepare, process, etc.). To see this inSearchComponent

action, notice the use of the method in the hasPhaseMatch() example rules
.section

The file may not be in your distribution of LucidWorks. ForDroolsHelper.class

that reason, we've provided the text of the code below.

http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e5351
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html#d0e7386

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 248
347

package com.lucid.rules.drools;

public class DroolsHelper extends java.lang.Object

{

 /* Fields */

 private static transient org.slf4j.Logger log;

 public final static java.lang.String RULES_PHASE = "rulesPhase";

 public final static java.lang.String RULES_HANDLE = "rulesHandle";

 /* Constructors */

 public DroolsHelper() {

 }

 /* Methods */

 public static boolean

hasPhaseMatch(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String) {

 }

 public static boolean

hasPhaseMatch(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.String) {

 }

 public static boolean

hasHandlerNameMatch(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String) {

 }

 public static void boostQuery(org.apache.lucene.search.Query, float)

{

 }

 public static void

addToResponse(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.Object) {

 }

 public static void

addToResponse(org.apache.solr.common.util.NamedList, java.lang.String,

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 249
347

java.lang.Object) {

 }

 public static void

mergeFacets(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, int, java.lang.String[]) {

 }

 public static void

addFacet(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.String, int, int) {

 }

 public static void

modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, java.lang.String[]) {

 }

 public static void

modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, int) {

 }

 public static void

modRequest(org.apache.solr.handler.component.ResponseBuilder,

java.lang.String, boolean) {

 }

 public static boolean contains(java.lang.String, java.lang.String) {

 }

 public static java.util.Collection

analyze(org.apache.solr.schema.IndexSchema, java.lang.String,

java.lang.String) throws java.io.IOException {

 }

}

Limitations

Since the implementation is stateless, there is obviously no way to write rules that
go across requests without implementing your own RulesEngine.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 250
347

Back to Top

Related Topics

There are several rules provided as examples, which may help you get started
with the rules language. See for a walk-through of two examples,Example Rules
plus an overview of other included examples.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 251
347

Example Rules and Recipes
Several example rules are provided in the $app/examples/business_rules
directory of your LucidWorks Search installation.

In this section we'll pick a couple of the rules and walk through them.

Sample Rule Files

The example rules are designed to be used with the example documents provided
by Solr. Each file includes extensive comments that explain what they are doing
and how to use them with the sample documents that are included with Solr.
Note, however, that LucidWorks Search does not include the same directory of
sample documents, and the default LucidWorks Search is alsoschema.xml

different. These rules may need a bit of tweaking to work correctly with your own
content and customized schema.

In most cases, the recommendation is to add new rules to the files in the rules
directory found in the directory,$LWS_HOME/conf/solr/cores/collection/conf

where is the name of the collection where rules will be used.collection

While it's possible to define multiple rules files in (in the solrconfig.xml

 section, it is simpler to use a single rules file (when requestHandler/rulesMgr

possible) for each rules engine. This keeps all your rules in one place, making
them easier to manage. You can modify the name of the single file if you'd like,
just be sure to update the requestHandler appropriately./rulesMgr

The following rules are included as examples:

Filename Rule Type What It Does

defaultDocs-create-title.drlIndexing rule Adds title fields to
incoming documents.

defaultDocs-manufacturer-check.drlIndexing rule Copies the document ID
field to the field onmanu

documents where ismanu

blank.

defaultFirst-apple.drl Query rule

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 252
347

Filename Rule Type What It Does

Adds a defined fieldmanu

to all searches for a
specific term.

defaultFirst-facets-part1of2.drlQuery rule First of two steps to
modify a facet; injects a
facet query and alters the
facet limit.

defaultLast-facets-part2of2.drlQuery rule Part two of the earlier
rule to modify a facet;
injects the facet to the
response.

defaultFirst-from-readme-file.drlQuery rule Adds a term to the query.

defaultFirst-model-number.drlQuery rule Defines a method to find
model numbers in a
query, and if found looks
in the ID field for a
match.

defaultDocs-price-check.drlQuery rule Checks the price of an
incoming document and
adds a label when it
matches a specific
criteria. This approach is
designed for times when
using text (i.e., JSON,
XML) codecs for indexing.

defaultDocs-price-check-long-form.drlQuery rule An alternate approach to
price checks. This
approach is designed for
times when using binary
(i.e., Javabin) codecs for
indexing.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 253
347

Filename Rule Type What It Does

defaultFirst-show-phases.drlQuery rule Demonstrates the phases
of filtering.

defaultLanding-belkin.drlLanding rule Returns a specific URL in
response to a query,
which can be used by the
front-end to either
redirect the user or
display it a specific way.

Detailed Examples

README Example

This example is included in the file . ThedefaultFirst-from-readme-file.drl

goal of this rule is to add query terms to a search when the user enters a specific
string.

First, here is the text of the rule (note, this isn't the whole file, just the part that
defines a rule; be sure to look at the whole rule for important comments on how to
run it).

rule "electronics"

no-loop

when

 $rb: ResponseBuilder($qStr : req.params.get("q") ==

"text:electronics");

then

 addToResponse($rb, "origQuery", $qStr);

 addToResponse($rb, "modQuery", "text:electronics text:apache");

 modRequest($rb, "q", "text:electronics text:apache");

end

Let's step through this example in detail.

Line 1 states we are declaring a rule and gives it the name "electronics".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our
 statement looks for the query term "electronics" on the field "text"; after thewhen

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 254
347

modifications from the rule, the query will still match the rule, which could make it
fire again. Using prevents the rule firing over and over.no-loop

Line 3 starts the conditions.when

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the
query (in the parameters of the request sent to Solr) matches "text:electronics".q

Note this line is also setting a variable , and assigning it the query and$qStr

parameters. This variable will be used again later.

Line 5 starts the actions.then

Line 6 defines a key/value pair for the ResponseBuilder of "origQuery" and the
query string variable defined in line 4 (.$qStr

Line 7 defines another key/value pair for the ResponseBuilder of "modQuery", and
the modified query string.

Line 8 modifies the request to the ResponseBuilder with a key/value pair,
modifying the user's entry to include "text:apache" as well as what was initially
entered.

Line 9 ends the rule.

To run this rule, once the rule has been added to , yourules/defaultFirst.drl

can send a request to Solr that looks something like this:

http://localhost:8888/solr/collection1/lucid?q=text:electronics&rules=true&rules.first=true

The request should be customized for your hostname and port, and this example
also assumes you have indexed Solr's sample documents in the

 directory.example/exampledocs

Landing example

This example is included in the file . The goal of thisdefaultLanding-belkin.drl

rule is to force Solr to return a document first in the list when a specific
manufacturer ("Belkin") is entered by the user.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 255
347

First, here is the text of the rule (note, this isn't the whole file, just the part that
defines a rule; be sure to look at the whole rule for important comments on how to
run it).

rule "Landing Page"

no-loop

when

 $rb: ResponseBuilder($qStr : req.params.get("q") == "manu:Belkin");

then

 addToResponse((NamedList)$rb.rsp.getValues().get("responseHeader"),

"landingPage", "http://www.Belkin.com");

end

This rule is quite simple, actually, but let's step through it line-by-line.

Line 1 states we are declaring a rule and gives it the name "Landing Page".

Line 2 says to only run the rule once to prevent an infinite loop. In this case, our
 statement looks for the query term "Belkin" on the field "manu"; after thewhen

modifications from the rule, the query will still match the rule, which could make it
fire again. Using prevents the rule firing over and over.no-loop

Line 3 starts the conditions.when

Line 4 uses Solr's ResponseBuilder to analyze the query, and match when the
query (in the parameters of the request sent to Solr) matches "manu:Belkin".q

Note this line is also setting a variable , and assigning it the query and$qStr

parameters. This variable will be used again later.

Line 5 starts the actions.then

Line 6 defines a key/value pair to the NamedList. In this case, inserting "landing
page" and the URL into the responseHeader.

Line 7 ends the rule.

Note that this rule by itself does not magically redirect the user to the Belkin
website - it includes the information to the client, which then must decide what to
do: redirect the user, make it the first result in the list, or some other
transformation as needed.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 256
347

To run this rule, once the rule has been added to ,rules/defaultLanding.drl

you can send a request to Solr that looks something like this:

http://localhost:8888/solr/collection1/lucid?q=manu:Belkin&rules=true&landing=true

The request should be customized for your hostname and port, and this example
also assumes you have indexed Solr's sample documents in the

 directory.example/exampledocs

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 257
347

Disabling Business Rules
Business rules are enabled by default. Even if you are not using rules, there should
be no impact on performance, but if you want to simplify your configuration, you
can remove or comment out references to rules in the file forsolrconfig.xml

each collection.

It would be possible to remove these rules parameters from the default
 file and create a template for future collection creation. To learnsolrconfig.xml

more about this, see the section on .Collection Templates

When removing business rules from the file, LucidWorkssolrconfig.xml

will need to be either stopped while making the changes, or restarted once
the changes are made.

These are the steps to disabling business rules:

Remove Rules from Update Chain
Remove Rules from the /lucid Request Handler
Remove the Rules Request Handler
Remove Rules Search Components
Remove the RulesDocTransformer
Remove Rules From the Replication Handler

Remove Rules from Update Chain

Comment out the section that defines the Rules Update Processor (<processor
 until the closing class="com.lucid.rules.RulesUpdateProcessorFactory">

 tag).</processor>

In most cases, this is sufficient to disable business rules. However, the next
sections will assist you in fully removing business rules from your implementation.

<updateRequestProcessorChain name="lucid-update-chain">

 <processor

class="com.lucid.update.CommitWithinUpdateProcessorFactory"/>

 <processor class="com.lucid.rules.RulesUpdateProcessorFactory">

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 258
347

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an

independent one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can

have multiple in the chain -->

 <str name="handle">docProc</str>

 </processor>

 <processor

class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration... "shards should be in the *same*

order for

 every server in a cluster. Only "self" should change to

represent what server

 this is. This is only used for Index Replication.

 <str name="self">localhost:8983/solr</str> <arr

name="shards">

 <str>localhost:8983/solr</str> <str>localhost:7574/solr</str>

</arr> -->

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor class="solr.DistributedUpdateProcessorFactory"/>

 <processor

class="com.lucid.update.FieldMappingUpdateProcessorFactory"/>

 <processor class="solr.RunUpdateProcessorFactory"/>

</updateRequestProcessorChain>

The specific section to remove is:

<processor class="com.lucid.rules.RulesUpdateProcessorFactory">

 <str name="requestHandler">/rulesMgr</str>

 <!-- we re-use the engine, but we could have an independent

one-->

 <str name="engine">docs</str>

 <!-- Each one should have it's own handle, as you can have

multiple in the chain -->

 <str name="handle">docProc</str>

 </processor>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 259
347

Back to Top

Remove Rules from the /lucid Request Handler

Find the section as below that defines the request handler, and remove the/lucid

lines for and and .landingPage firstRulesComp lastRulesComp

<requestHandler class="solr.StandardRequestHandler" name="/lucid">

 <arr name="components">

 <str>filterbyrole</str>

 <str>landingPage</str>

 <str>firstRulesComp</str>

 <str>query</str>

 <str>mlt</str>

 <str>stats</str>

 <str>feedback</str>

 <!-- Note: highlight needs to be after feedback -->

 <str>highlight</str>

 <!-- Note: facet also needs to be after feedback -->

 <str>facet</str>

 <str>spellcheck</str>

 <str>lastRulesComp</str>

 <str>debug</str>

 </arr>

 ...

</requestHandler>

Back to Top

Remove the Rules Request Handler

The rules request handler defines the instances and the rules files.RuleEngine

The entire section copied below can be removed or commented out.

<requestHandler class="com.lucid.rules.RulesEngineManagerHandler"

name="/rulesMgr">

 <!--

 Engines can be shared, but they don't have to be. A

SearchComponent or other consumer can

 specify the engine they want by name.

 -->

 <lst name="engines">

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 260
347

 <lst name="engine">

 <str name="name">first</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultFirst.drl</str>

 </lst>

 <!-- The fact collector defines what facts get injected into the

rules engines working memory -->

 <!--<lst name="factCollector">

 <str name="class">com.lucid.rules.drools.FactCollector</str>

 </lst>-->

 </lst>

 <lst name="engine">

 <str name="name">landing</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultLanding.drl</str>

 </lst>

 </lst>

 <!-- Engine is using rules that are designed to be called after

all other components -->

 <lst name="engine">

 <str name="name">last</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultLast.drl</str>

 </lst>

 </lst>

 <lst name="engine">

 <str name="name">docs</str>

 <str

name="class">com.lucid.rules.drools.stateless.StatelessDroolsRulesEngine</str>

<lst name="rules">

 <str name="file">rules/defaultDocs.drl</str>

 </lst>

 </lst>

 </lst>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 261
347

 </requestHandler>

Back to Top

Remove Rules Search Components

The search components allow the rules to make changes to queries, based on the
rules defined. The entire sections shown below can be removed or commented out.

<searchComponent class="com.lucid.rules.LandingPageComponent"

name="landingPage">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">landing</str>

 <!-- The handle can be used to turn on or off explicit rules

components in the

 case when you have multiple rules at different stages of the

component ordering

 -->

 <str name="handle">landing</str>

 </searchComponent>

 <searchComponent class="com.lucid.rules.RulesComponent"

name="firstRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">first</str>

 <!-- The handle can be used to turn on or off explicit rules

components in the

 case when you have multiple rules at different stages of the

component ordering-->

 <str name="handle">first</str>

 </searchComponent>

 <searchComponent class="com.lucid.rules.RulesComponent"

name="lastRulesComp">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">last</str>

 <str name="handle">last</str>

 </searchComponent>

Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 262
347

Remove the RulesDocTransformer

The allows business rules to inject or modify fields in aRulesDocTransformer

document before returning them to a client.

<transformer class="com.lucid.rules.RulesDocTransformerFactory"

name="rules">

 <str name="requestHandler">/rulesMgr</str>

 <str name="engine">docs</str>

 </transformer>

Back to Top

Remove Rules From the Replication Handler

If using Index Replication, remove the rules-related files from the list of filesconf

to replicate between servers. In this section:

<requestHandler class="solr.ReplicationHandler" name="/replication">

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str

name="confFiles">admin-extra.html,admin-extra.menu-bottom.html,admin-extra.menu-top.html,elevate.xml,LucidStemRules_en.txt,
protwords.txt,schema.xml,solrconfig.xml,stopwords.txt,stopwords_ar.txt,stopwords_cjk.txt,stopwords_cs.txt,stopwords_da.txt,stopwords_de.txt,
stopwords_el.txt,stopwords_es.txt,stopwords_fa.txt,stopwords_fi.txt,stopwords_fr.txt,stopwords_hu.txt,stopwords_it.txt,stopwords_ja.txt,
stopwords_ko.txt,stopwords_nl.txt,stopwords_pl.txt,stopwords_pt.txt,stopwords_ru.txt,stopwords_se.txt,stopwords_tr.txt,stopwords_ur.txt,
stopwords_zh.txt,synonyms.txt,contractions_fr.txt,contractions_it.txt,stoptags_ja.txt,mapping-japanese.txt,stemdict_nl.txt,
rules/defaultFirst.drl,rules/defaultLast.drl,rules/defaultLanding.drl,rules/defaultDocs.drl</str>

</lst>

 </requestHandler>

Specifically, remove , , rules/defaultFirst.drl rules/defaultLast.drl

, and .rules/defaultLanding.drl rules/defaultDocs.drl

Back to Top

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 263
347

Security and User Management
Generally, enterprise-level application designers must take into account four main
security considerations for any search application:

Network access to the various components of the service
Authentication of users
Authorization to use various parts of the user interface
Authorization to view certain documents

Topics described in this section:

Restricting Access to UIs and APIs
Network Access
User Authentication
User Authorization

Restricing Access to Documents

Restricting Access to UIs and APIs

Network Access
Because the (LWE-Core, LWE-UI and LWE-Connectors)components of LucidWorks
run on different ports, an administrator can easily secure individual components at
the network level by restricting access to the port in question. For example, if only
the Admin and Search UI services need to be accessible outside the production
network, an administrator can leave those ports open while blocking LWE-Core.

Because it provides access to the REST API, direct access to the LWE-Core
component also provides access to all of Solr's capabilities, including adding and
removing documents, retrieving stored field values for all documents, and
additional LucidWorks Search-enhanced capabilities such as job scheduling and
system status. The LWE-Core component should only be directly HTTP accessible
to other components that need access to Solr or REST API interfaces. If you are
using a single server installation and don't want to expose Solr or REST API
interfaces via the network then you might want to restrict access to LWE-Core to

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 264
347

 only if all components are running on the same machine. You can dolocalhost

that by adding the .socket connector's attribute for the Jetty containerhost

If you are running LucidWorks Search components on separate machines, you can
restrict direct access to LucidWorks components by IP address, or by fronting it
with an authenticating firewall. For a production implementation, consider
restricting access to the component HTTP ports to only those required by the
application, just as one would do with a typical relational database. If you are
using the built-in search filters or document-level authentication, you must
prevent access to LucidWorks by any process other than your application in order
to prevent circumvention of these features.

For more information about approaches to user authentication with LucidWorks
Search, see the section .User Authentication Options

Note that if you are using the LucidWorks Search document authorization features
this step is particularly important, as direct access to the underlying Solr
application can circumvent these measures.

In addition, you may want to ensure that the components use SSL for
communication or that users access the Admin UI via HTTPS. The section Enabling

 describes how to do that in more detail.SSL

User Authentication
LucidWorks supports four approaches to user authentication:

a built-in user database, where all users are created manually within the
system.
Jetty-based LDAP authentication, using the roles that already exist in your
LDAP system to control user access to the Admin UI and REST APIs.
Admin UI LDAP authentication, providing the ability to use group
membership from your LDAP system to control the content users see in their
results.
a list of users manually maintained in a realm.properties file. This approach
also allows fine-grained control over user access to the Admin UI and REST
APIs.

The section describes how to work with each of theseUser Authentication Options
options.

http://wiki.eclipse.org/Jetty/Howto/Configure_Connectors#Configuration_Options

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 265
347

User Authorization
LucidWorks has two built-in authorizations to control user access:

ADMIN allows users to access any part of the LucidWorks UI.
SEARCH limits users to only the built-in end user search interface.

As of v2.9, LucidWorks Search supports the creation of roles that control what
users have access to via the Admin UI or the REST APIs. This new approach is only
supported when the Jetty-based authentication is in use. For details on how to
configure roles for your organization, see the section .Role Configuration

Restricing Access to Documents
The privileges of the LucidWorks process and the rights that process has to access
documents for indexing are crucial to its proper operation. Generally, you want
LucidWorks Search to be able to access all documents within a particular folder or
from a particular web site. The built-in LucidWorks Search crawlers will index any
specified document, as long as the LucidWorks process has permissions to do so.
After a document has been indexed, all stored fields are accessible through the
Solr interface.

That said, documents can be excluded from indexing by leveraging operating
system, file, and web-level security capabilities; if the process doesn't have
access, it will not index the content. These document filters then limit what
documents appear in search results for users in those roles. For example, the
administrator can create a filter that enables users in the role to see onlyfinance
documents that satisfy a query of . You can create these filtersdepartment:finance
with the Search Filters screen of the Admin UI. LucidWorks also enables the
creation of document-based filtering, in which only the owner (or owners) of a
document are able to see it. The section describesRestricting Access to Content
how to set up your documents to support this functionality.

Some data sources, such as those configured to crawl content in a or in database
, , or servers, credentials need to be suppliedSMB SharePoint S3 Hadoop over S3

for the crawler to access the system. Those credentials determine what documents
the crawler has access to. Other data sources may also require credentials to
access content.

http://departmentfinance

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 266
347

User Authentication Options
There are several approaches to user authentication in LucidWorks Search.

The first is to simply create your users manually using the built-in user database.
If you have only a few users, this might be the simplest approach. The drawbacks,
however, are that you are limited to the roles provided by LucidWorks Search
("admin" and "search") and your users will need to use a username and password
that is perhaps different from the authentication credentials they use for other
systems in your organization.

If you would like to use an LDAP system for authentication, there are two options.
The first is the same approach that has been used in LucidWorks Search for many
releases. This LDAP support is built-in to the Admin UI. This approach does not
allow you to secure the REST APIs, and you are limited to using only the two roles
that have been implemented in LucidWorks Search for limiting access to the UI.

Another approach, new for v2.9, is to use Jetty-based authentication with your
LDAP system. You can create multiple roles in LucidWorks Search and map them
to the role assignments in your LDAP system. A drawback of this approach is that
it is only supported if your LDAP system contains role information.

A final approach is to use Basic authentication with Jetty with a list of users,
passwords and roles in a file.realm.properties

None of the authentication approaches described below can be used in
conjunction with another approach. They are all mutually exclusive and
you can only use one at a time.

Topics in this section:

Manual User Management
Enabling Jetty-based Authentication with LDAP Roles

Modify master.conf
Modify jetty.xml
Modify web.xml
Modify solr.xml

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 267
347

Enable LDAP
Restart LucidWorks Search

Admin UI-based LDAP Authentication
LDAP Configuration File
Modify Server Settings Page in Admin UI
Enable LDAP property in master.conf
Restart LucidWorks

Jetty-Based Authentication with realm.properties
Modify Login Configuration jetty.xml
Create a realm.properties File
Modify Roles in web.xml

Manual User Management
Users can be created within the system by using the or a REST API thatAdmin UI
allows creation and authentication of . With this approach, all user accountsusers
are managed by LucidWorks Search and stored in the built-in user database.

Note that when using this approach, role authorization for the Admin UI is limited
to the two built-in roles: "admin", granting access to all screens and actions in the
Admin UI; or "search", granting access to the Search screens only. It is, however,
possible to map individual users to be members of a role configured within
LucidWorks Search to control what documents they are allowed to see in search
results.

Enabling Jetty-based Authentication with LDAP Roles
It is possible to require basic authentication before accessing the LucidWorks
Search UIs (Admin and Search UIs) and REST APIs. This uses any Jetty supported
login module, as described in the . TheJetty documentation on JAAS support
examples below use LDAP, but other approaches are also supported.

Note that this approach will bypass the LucidWorks Search Admin UI login page.
Additionally, it is not possible to implement this and continue to use users created
manually in LucidWorks Search.

Because LucidWorks Search components run in separate JVMs, they run in
separate Jetty containers. However, you should secure both the LWE-UI and
LWE-Core components so they can successfully communicate with one another.

http://www.eclipse.org/jetty/documentation/current/jaas-support.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 268
347

The LWE-Connectors JVM does not need authentication, since it generally only
needs to communicate with the LWE-Core component internally.

There are several steps to enable Jetty-based authentication. In summary, they
are:

Modify the file for LucidWorks Search.master.conf

Modify the files for the LWE-Core and LWE-UI components.jetty.xml

Modify the files for each webapp (LWE-Core, LWE-UI, Flare,web.xml

Quickstart, Relevancy Workbench and Silk).
Modify .solr.xml

Enable LDAP.

If using SolrCloud mode, these changes will need to be made on each node of the
cluster, as appropriate for the components running on each particular cluster.

Once these changes are completed, LucidWorks Search must be .restarted

Modify master.conf

Several variables should be added to file for the$LWS_HOME/conf/master.conf

installation. The file defines several startup settings for eachmaster.conf

component. Some of these settings will need to be repeated for multiple
components.

Property Component Description Example

-Djava.security.

auth.login.config

LWE-Core &
LWE-UI

The path to a
configuration file
with details for
Jetty to connect to
the authentication
system to be used.
You will configure
this file later when
enabling LDAP.

-Djava.security.auth.login.config=/Lucidworks/conf/login.conf

-Dsolr.auth.user LWE-Core &
LWE-Connector

A user that will be
used to
authenticate

-Dsolr.auth.user=admin

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 269
347

Property Component Description Example

communications
between the
LWE-Core and
LWE-Connector
components.

-Dsolr.auth.pass LWE-Core &
LWE-Connector

The password for
the user being
used to
authenticate
communications
between the
LWE-Core and
LWE-Connector
components.

-Dsolr.auth.pass=myPass

-Dcom.lucid.

currentInternalRequestFactory

LWE-Connector The class used for
retrieving internal
credentials.

-Dcom.lucid.currentInternalRequestFactory=org.apache.solr.security.

SystemPropertiesAuthCredentialsInternalRequestFactory

-DurlScheme LWE-Core Allows overriding
Solr's default
urlScheme.

-DurlScheme=https

Here is an example of the JVM settings for each component configured with these
new parameters.

...

JVM Settings for LWE-Core

lwecore.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M

-Duser.language=en -Duser.country=US -Duser.timezone=UTC

-Dfile.encoding=UTF-8 -Dcom.sun.management.jmxremote

-Djava.security.auth.login.config=/LucidWorks/2.9/conf/login.conf

-Dsolr.auth.user=admin -Dsolr.auth.pass=myPass -DurlScheme=https

...

JVM Settings for LWE-Connectors

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 270
347

lweconnectors.jvm.params=-Xms512M -Xmx1024M -XX:MaxPermSize=256M

-Duser.language=en -Duser.country=US -Duser.timezone=UTC

-Dfile.encoding=UTF-8 -Dcom.sun.management.jmxremote

-Dmapr.home=/opt/mapr -Dsolr.auth.user=admin -Dsolr.auth.pass=myPass

-Dcom.lucid.currentInternalRequestFactory=org.apache.solr.security.SystemPropertiesAuthCredentialsInternalRequestFactory

...

#

JVM Settings for LWE-UI

lweui.jvm.params=-Xms256M -Xmx1024M -Xss2048k -XX:MaxPermSize=256M

-Djruby.stack.max=2048k -Duser.country=US -Duser.timezone=UTC

-Dfile.encoding=UTF-8 -Dcom.sun.management.jmxremote

-Djruby.compile.mode=OFF

-Djava.security.auth.login.config=/LucidWorks/2.9/conf/login.conf

Modify jetty.xml

Jetty must be configured to perform authentication. To do this, the jetty.xml
configuration files for the LWE-Core and LWE-UI must be modified. These files are
found in the following locations in your LucidWorks Search installation:

LWS_HOME/conf/jetty/lwe-core/etc/jetty.xml

LWS_HOME/conf/jetty/lwe-ui/etc/jetty.xml

Three properties will be added to each of these files, in a call named "addBean".
These properties are:

class: the class of the login service. The value to use is
.com.lucid.LWELoginService

name: a name for the login service. It can be any name, but the same name
will be referenced as the when configuring in the nextrealm-name web.xml

step.
loginModuleName: a name for the login module. It can be any value, but the
same name will be referenced in the login configuration file, the path to
which was defined in the step to configure .master.conf

This example would be appropriate for both files:

<Call name="addBean">

 <Arg>

 <New class="com.lucid.LWELoginService">

 <Set name="name">LucidWorks Login Service</Set>

 <Set name="loginModuleName">LWELdapModule</Set>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 271
347

 </New>

 </Arg>

 </Call>

Modify web.xml

The login configuration should next be added to the file for each webapp.web.xml

This login configuration consists of an auth-method, a realm-name and roles used
as auth-constraints.

The files for the webapps you will likely want to update are found in theseweb.xml

directories:

$LWS_HOME/app/webapps/admin/WEB-INF/web.xml

$LWS_HOME/app/webapps/flare/WEB-INF/web.xml

$LWS_HOME/app/webapps/launchpad/WEB-INF/web.xml

$LWS_HOME/app/webapps/lwe-core/lwe-core/WEB-INF/web.xml

$LWS_HOME/app/webapps/quickstart/WEB-INF/web.xml

$LWS_HOME/app/webapps/quickstart/WEB-INF/config/web.xml

$LWS_HOME/app/webapps/relevancy/WEB-INF/web.xml

$LWS_HOME/app/webapps/relevancy/WEB-INF/config/web.xml

The following lines of configuration should be added for each webapp that will be
secured:

<login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>LWS Login Service</realm-name>

 </login-config>

 <security-constraint>

 <display-name>Security Constraint</display-name>

 <web-resource-collection>

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 <http-method>PUT</http-method>

 <http-method>DELETE</http-method>

 <http-method>INDEX</http-method>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 272
347

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 <role-name>search</role-name>

 </auth-constraint>

 </security-constraint>

Modify solr.xml

The changes to modify add the new authentication classes for Solr. Yousolr.xml

should only have one file, found in .solr.xml $LWS_HOME/conf/solr/solr.xml

A section like this needs to be added to the file:

<authentication>

 <subRequestFactory>

 <str

name="class">org.apache.solr.security.UseSuperRequestAuthCredentialsSubRequestFactory</str>

</subRequestFactory>

 <internalRequestFactory>

 <str

name="class">org.apache.solr.security.SystemPropertiesAuthCredentialsInternalRequestFactory</str>

</internalRequestFactory>

 </authentication>

Enable LDAP

After making these changes, you will enable LDAP. Using this approach to LDAP
integration, authentication is entirely handled in the Jetty container. In this step,
you will create a file that includes the properties of your LDAP system to allow
Jetty to query it for user credentials.

The name of the file and its location are the same as the name provided in
 in the earlier section .master.conf Modify master.conf

The first line of the file is the name of the module, which was provided as the
 in the second section , which modified theloginModuleName Modify jetty.xml

various files.jetty.xml

The second line includes the name of the class, which should be
 as shown in the example below.com.lucid.LWELdapLoginModule required

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 273
347

Here is a sample file that can be modified as needed:

LWELdapModule {

 com.lucid.LWELdapLoginModule required

 debug="true"

 contextFactory="com.sun.jndi.ldap.LdapCtxFactory"

 hostname="ldap.example.com"

 port="636"

 bindDn="cn=user,dc=lucidworks,dc=com"

 bindPassword="pass"

 authenticationMethod="simple"

 forceBindingLogin="true"

 userBaseDn="ou=people,dc=lucidworks,dc=com"

 userRdnAttribute="uid"

 userIdAttribute="uid"

 userPasswordattribute="userPassword"

 userObjectClass="inetOrgPerson"

 roleBaseDn="ou=Roles,dc=lucidworks,dc=com"

 roleNameAttribute="cn"

 roleMemberAttribute="member"

 roleObjectClass="groupOfNames";

};

Restart LucidWorks Search

After all of the configuration files have been updated, you must restart LucidWorks
Search, as described in the section .Starting and Stopping LucidWorks Search

Back to Top

Admin UI-based LDAP Authentication
With this approach, it is possible to use your LDAP server to authenticate users to
the Admin UI only. With this approach, you can map individual users or
LDAP-stored group memberships to the roles that are included with LucidWorks. It
is not possible to create any other roles using this approach, and it is not possible
to change what each role is authorized to access. Finally, this approach does not
secure the REST APIs from unauthorized access.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 274
347

For standard LDAP integration, the LDAP administrative user only needs
permissions to query the LDAP server for users and groups. We recommend that
you create an LDAP admin user with only the necessary minimal user and group
querying permissions for use with LucidWorks. However, you can also use
queryless authentication if you are not using group mappings.

It is also possible, using standard Java SSL functionality, to use certificate
authentication with a SSL-enabled LDAP server. More information on that is
available here: .http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html

These steps need to be completed to successfully enable LDAP. Each of the steps
described below are required, and must be done in the order documented.

LDAP Configuration File

The main configuration file for configuring LDAP is , found in the ldap.yml

 directory. The default settings must be modified as needed for$LWS_HOME/conf/

LucidWorks to connect to the LDAP server and query the database for user
authentication. If LDAP is already enabled and this file is edited, you will need to

 for changes to take effect.restart the server

Below is the main section of the configuration file that needs to beldap.yml

edited. Note that the file also includes sample configurations for standard LDAP
authentication, queryless authentication, and Microsoft ActiveDirectory integration
for use with .Windows Shares data sources

Lines Must Be Indented

When customizing the file, keep in mind that the attributes mustldap.yml

be indented at least two spaces. So, when removing the hash mark (#),
do not remove the extra spaces. All lines must also be indented the same
number of spaces (so, if some lines are indented three spaces, then all
lines must be indented three spaces).

##

Warning: Always restart the application after adjusting

your LDAP config, or unpredictable behavior may result.

##

http://docs.oracle.com/javase/jndi/tutorial/ldap/security/ssl.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 275
347

production:

host: localhost

port: 389 # 636 for SSL

attribute: uid

base: dc=xyz,dc=corp,dc=com

user_query: '$ATTR=$LOGIN' # default query is '$ATTR=$LOGIN', set

this if you need something more complex

admin_user: cn=Manager,dc=xyz,dc=corp,dc=com # If you don't have an

admin password, you can disable

admin_password: secret # admin login in the

UI "Settings" page

ssl: false

group_base: ou=groups,dc=xyz,dc=corp,dc=com

group_membership_attribute: uniqueMember

group_name_attribute: cn

group_query: '(&(objectclass=groupOfUniqueNames)($ATTR=$USER))'

default query is '$ATTR=$USER' where $USER is user's DN

The attribute definitions included in the file are as follows:ldap.yml

Attribute Definition

host The hostname of the LDAP server that
contains the user information.

port The port to use while connecting to the
LDAP server that contains the user
information.

attribute The attribute of the user object that
the system will use to search for the
user, or assume when constructing an
explicit DN via query-less
authentication.

base Search base for user queries, or suffix
appended to attribute + login for
queryless authentication.

user_query Optional: supplies an arbitrarily
complex query if the default user query

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 276
347

Attribute Definition

is not sufficient. Variable substitutions
are as follows: $ATTR will be
substituted with the value of 'attribute'
from above; $LOGIN will be substituted
with the value the user entered in the
login form in the UI.

Search is performed using 'base' as a
search base.

admin_user Administrative login to use for
searching the directory. Not used for
queryless authentication.

admin_password Administrative password to use for
searching the directory. Not used for
queryless authentication.

ssl Enable/disable SSL.

group_base Search base for group queries. Not
used with queryless authentication.

group_membership_attribute The attribute to look for in the group
object that will contain members' user
DNs.

group_name_attribute The attribute of the group object that
the system will use to search for the
group.

group_query Optional: supplies an arbitrarily
complex query if the default group
query is not sufficient. Variable
substitutions are as follows: will$ATTR

be substituted with the value of
'group_name_attribute'; will be$USER

substituted with the logged-in user's

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 277
347

Attribute Definition

fully-qualified LDAP DN. Search is
performed using 'group_base' as a
search base.

The default query
 does not($ATTR=$USER)

specify the object type for
groups. Several different group
object types are common, such
as group, groupOfNames,
groupOfUniqueNames, and so
on. Therefore, non-group
objects may also match if they
contain a matching attribute.

LucidWorks supports mapping users to groups with the
 setting. This allows LucidWorks Search to do angroup_membership_attribute

additional query while the user is logging in to find all the groups the user is a
member of.

Modify Server Settings Page in Admin UI

Using the Admin UI, map at least one user to have admin permissions using the
LDAP section of the .Settings page

Because the built-in authentication is disabled when LDAP authentication is
enabled, you cannot map a user or group to the Admin authorization after LDAP is
enabled. If no one has Admin authorization, no one will be able to access the
Administration User Interface. So, before enabling LDAP, go to the System

 page and map an LDAP username or a group to "Admin UI" by adding itSettings
to the Group or User section of the Admin UI definition.

Enable LDAP property in master.conf

Enable LDAP by setting the environment variable to inlweui.ldap.enabled true
the file found in .master.conf $LWS_HOME/conf/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 278
347

Restart LucidWorks

After all of the configuration files have been updated, you must restart LucidWorks
Search, as described in the section .Starting and Stopping LucidWorks Search

Back to Top

Jetty-Based Authentication with realm.properties
It is additionally possible to require HTTP Basic authentication before accessing the
LucidWorks Search UIs (Admin and Search UIs) and REST APIs. This entails
creating a file that contains usernames and passwords, thenrealm.properties

configuring the files to use , and finally modifyingjetty.xml realm.properties

the file for each interface to be restricted. This does not replace theweb.xml

built-in user authentication for LucidWorks Search (i.e., the login to access the
UIs), but adds an additional layer of authentication and authorization.

Because LucidWorks Search components run in separate JVMs, they run in
separate Jetty containers. However, you should secure both the LWE-UI and
LWE-Core components so they can successfully communicate with one another.
The LWE-Connectors JVM does not need authentication, since it generally only
needs to communicate with the LWE-Core component internally.

Modify Login Configuration jetty.xml

The file contains a sample configuration that is commented out. Thisjetty.xml

sample can be used by removing the comment markers and changing the name
parameter as needed. The default uses "Test Auth" for the name, but in the below
you'll see we have changed that to "Auth". The name can be whatever you'd like it
to be, but it must match the name you use in the file configurationweb.xml

(below).

<Call name="addBean">

 <Arg>

 <New class="org.eclipse.jetty.security.HashLoginService">

 <Set name="name">Auth</Set>

 <Set name="config"><SystemProperty name="lucidworksConfHome"

default="."/>/jetty/lwe-core/etc/realm.properties</Set>

 <Set name="refreshInterval">0</Set>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 279
347

 </New>

 </Arg>

</Call>

This configuration also defines the location of the file, whichrealm.properties

you will create in the next step. Note that the above example defines a path of
. If the user accounts will be the/jetty/lwe-core/etc/etc/realm.properties

same for both the UIs and the APIs, it is fine to refer to the same file for both
components. If, however, the users and/or roles will be different, you need to
change the path to the appropriate file for each component.realms.properties

These changes need to be done two times: once for the file for thejetty.xml

LWE-UI component, and again for the for the LWE-Core component.jetty.xml

These files are found at the following paths:

$LWS_HOME/conf/jetty/lwe-core/etc/jetty.xml

$LWS_HOME/conf/jetty/lwe-ui/etc/jetty.xml

Create a realm.properties File

The file contains usernames, passwords and roles of users whorealm.properties

will be allowed to use the UIs and APIs. The passwords can be stored in plain text,
encrypted with an MD5 hash, or obfuscated. In this example, we have just used a
plain text password:

admin: password,user

If the password is not defined in plain text, you would preface it with "CRYPT:" if
using an MD5 hash or with "OBF:" if obfuscated.

This allows the "admin" user to access the UI and APIs. The role "user" is one that
we'll define in the file (described below). If you have multiple roles, theyweb.xml

can be listed for each user separated by commas.

Modify Roles in web.xml

The file and we'll use it to define the roles, the URLs roles have access to,web.xml

and the realm name. Below is an example:

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 280
347

<!-- Security Constraints -->

<security-role>

 <role-name>user</role-name>

</security-role>

<login-config>

 <realm-name>Auth</realm-name>

</login-config>

<security-constraint>

 <web-resource-collection>

 <web-resource-name>all resources</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

</security-constraint>

In this example, we have defined the as "user" and constrainedsecurity-role

access to all web resources (via the) to the role "user". Thisauth-constraint

means users must be defined with the role "user" in . Additionalrealm.properties

roles can be defined as described in the section .Role Configuration

Note that we have defined the as "Auth", which is the same name werealm-name

used in the configuration. Those names must match, or Jetty will notjetty.xml

be able to locate the file.realms.properties

These changes need to be done two times: once for the file for theweb.xml

LWE-UI component, and again for the for the LWE-Core component.web.xml

These files are found at the following paths:

$LWS_HOME/app/webapps/lwe-core/lwe-core/WEB-INF/web.xml

$LWS_HOME/app/webapps/lwe-ui/WEB-INF/web.xml

Note that since nearly all of the REST APIs and the Solr Admin UI are powered by
the LWE-Core component, specific restrictions for those APIs and Solr Admin UI
must be defined in the LWE-Core file. The LWE-UI file can beweb.xml web.xml

used to restrict the Admin UI, the Search UI, as well as the Alerts and Users APIs.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 281
347

Once these changes are completed, LucidWorks Search must be .restarted
Additional information about using realms and basic auth with Jetty is available
from the .Jetty 8 documentation

Back to Top

http://wiki.eclipse.org/Jetty/Feature/Realms

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 282
347

Role Configuration
As of LucidWorks Search v2.9, there are two ways to configure roles in LucidWorks
Search, depending on how you are authenticating your users.

If you are manually creating users using the built-in user database or you
are using LDAP authentication for the Admin UI only, you are limited to two
possible authorizations, "Admin" and "Search". The will allow youRoles API
to map users, LDAP groups and search filters to control user access to a
subset of search results if needed.
If you are using Jetty-based LDAP authentication or you have configured a
realm.properties file, you can use role information in your LDAP system (or
defined in your realm.properties file) to configure multiple roles to control
access to the Admin UI and REST APIs.

The configuration described below is only applicable if you are using
either Jetty-based LDAP authentication or a realm.properties file as
described in the section .User Authentication Options Note that the role names
defined in the configuration files below must match the roles in your LDAP system
if you are using Jetty-based LDAP authentication.

Defining Roles
All roles are defined in a file named , a JSON-formatted file thatroles_db.json

defines each role and the resources and methods allowed for the role. This file is
found in the directory .$LWS_HOME/conf/roles

Each role definition includes the name of the role and a list of permissions defined
as resource objects and action arrays. For example, this shows a role named
"collectionRole" which allows some access to collection-level information.

{

 "name": "collectionRole",

 "permissions":

 {

 "CollectionServerResource":

 ["GET"],

 "CollectionsServerResource":

 ["GET","POST"]

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 283
347

 }

}

This defines two resources, which both allow access to collection information, and
allows a GET request for each resource, and also allows a POST (to create a
collection). If other request actions are allowed for the resource, such as POST,
PUT or DELETE, those could be added to this role to provide further access.

The Admin UI uses the role definitions to control access to screens and actions in
the UI. So, a user who does not have POST permissions to create collections with
the REST API will not be able to use the Admin UI to create collections.

In addition to the resources, you can also restrict access to specific Solr
requestHandlers if necessary. This is defined within the permissions section of the

 file. In this example, we've defined a role to allow access to anyroles_db.json

requestHandler:

{

 "name": "readCollection",

 "permissions":

 {

 "CollectionServerResource":

 ["GET"]

 },

 {

 "requestHandlers":

 ["/.*"]

 }

}

Resources

Each REST API has a resource name, and there are a large number of possible
resources, described in the following table.

Resource Name Possible Actions Description

ActivityServerResource GET, DELETE, PUT List, delete or update an
existing activity (such as
Click processing, or

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 284
347

Resource Name Possible Actions Description

creating the
auto-complete index).

ActivityHistoryServerResourceGET Retrieve history for a
single activity.

ActivityStatusServerResourceGET Get the status of any
activity.

ActivitiesHistoryServerResourceGET Retrieve history for all
activities.

ActivitiesStatusServerResourceGET Get the status of all
activities.

ActivitiesServerResource GET, POST Create an activity or list
all existing activities.

CollectionsServerResource GET, POST Get a list of all collections
or create a new one.

CollectionServerResource GET, DELETE Get a single collection or
delete a collection.

CollectionInfoServerResourceGET, DELETE Get statistical information
about a single collection
or all of them.

CollectionIndexResource DELETE Delete the index
associated with a
collection.

CollectionTemplatesServerResourceGET List available collection
templates. Having this
permission would be
required to be able to use
a collection template to
create a collection.

SecurityTrimmingServerResourceGET List security trimming.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 285
347

Resource Name Possible Actions Description

ACLFilteringServerResourceGET, POST, DELETE, PUT Create, list, update or
delete a filter
searchComponent.

HandlerComponentsServerResourceGET, PUT List or update
searchComponents for a
defined searchHandler in

.solrconfig.xml

RolesServerResource GET, POST List or create roles.

RoleServerResource GET, DELETE, PUT List, delete or update a
specific role.

SettingsServerResource GET, PUT List or update LucidWorks
Search settings.

CachesServerResource GET, POST List all caches or create a
new one.

CacheServerResource GET, DELETE, PUT List, delete, or update a
specific cache.

DataSourceJobServerResourceGET, DELETE, PUT List status of all jobs,
start or stop all data
sources or a single data
source.

DataSourceJobStatusServerResourceGET Get status of a specific
data source job.

DataSourceCrawlDataServerResourceDELETE Remove the crawl
database for a data
source.

DataSourceIndexResource DELETE Remove all indexed
documents for a data
source.

FieldMappingServerResourceGET, DELETE, PUT

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 286
347

Resource Name Possible Actions Description

List, delete or update
field mappings for a data
source.

DataSourcesHistoryServerResourceGET Get history of all data
sources.

DataSourceHistoryServerResourceGET Get history for a specific
data source.

DataSourcesServerResourceGET, POST Get a list of all data
sources, or create a new
one.

DataSourceValidatorResourcePOST Perform validation for a
data source before
saving.

DataSourceServerResourceGET, DELETE, PUT List, delete or update a
specific data source.

DataSourceScheduleServerResourceGET, DELETE, PUT List, delete or update the
schedule for a specific
data source.

JDBCDriversClassesServerResourceGET List all loaded JDBC 4.0
driver classes.

JDBCDriversServerResourceGET, POST List all drivers or upload
a new one.

JDBCDriverServerResource GET, DELETE, PUT List contents, remove or
update a JDBC driver.

RequestHandlerCollectionResourceGET, PUT List or update
requestHandlers.

RequestHandlerResource GET, PUT List or update
requestHandlers.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 287
347

Resource Name Possible Actions Description

CrawlersServerResource GET, POST List or update available
crawlers.

CrawlersStatusServerResourceGET Check the status of each
crawler.

ClickEventServerResource GET, PUT Send a Click Scoring
event to LucidWorks
Search, or see some
basic statistics about
recent Click Scoring
events.

ClickAnalysisServerResourceGET, DELETE, PUT Start, stop or get status
of a Click Scoring
Analysis job.

SSLConfigServerResource GET, PUT List or update the SSL
configuration.

MasterConfServerResource GET List contents of
.master.conf

LockStatusServerResource GET Get lock status.

VersionServerResource GET Get version information.

FieldTypesServerResource GET, POST List all field types or
create a new one.

FieldsServerResource GET, DELETE, POST List, delete or create a
field.

FieldResource GET, DELETE, PUT List, delete or update a
field.

DynamicFieldsServerResourceGET, DELETE, POST List all, delete or create a
dynamic field rule.

DynamicFieldResource GET, DELETE, PUT

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 288
347

Resource Name Possible Actions Description

List, delete, or update an
existing dynamic field
rule.

FieldTypeServerResource GET, DELETE, PUT, POST List, delete, update or
create a single field type.

SchemaResource GET List the contents of
, via Solr'sschema.xml

Schema API directly.

FieldCollectionResource GET, POST List or update a field
using Solr's Schema API
directly.

DynamicFieldCollectionResourceGET List a dynamic field rule
using Solr's Schema API
directly.

FieldTypeCollectionResourceGET List a field type using
Solr's Schema API
directly.

FieldTypeResource GET List a field type using
Solr's Schema API
directly.

CopyFieldCollectionResourceGET, POST List or create a copy field
rule using Solr's Schema
API directly.

SchemaNameResource GET List the schema name
using Solr's Schema API
directly.

SchemaVersionResource GET List the schema version
using Solr's Schema API
directly.

UniqueKeyFieldResource GET

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 289
347

Resource Name Possible Actions Description

List the unique key using
Solr's Schema API
directly.

DefaultSearchFieldResourceGET List the default search
field using Solr's Schema
API directly.

SchemaSimilarityResource GET List the default similarity
operator using Solr's
Schema API directly.

SolrQueryParserResource GET List a field type using
Solr's Schema API
directly.

SolrQueryParserDefaultOperatorResourceGET List a field type using
Solr's Schema API
directly.

BatchesServerResource GET, DELETE, PUT List, remove or update a
batch.

BatchJobServerResource GET, DELETE, PUT List, remove or update a
batch processing job.

Granting User Access
Once the permissions for each role have been defined, they must be associated
with collections. The collection role definition files are located in

. The name of the file should include the$LWS_HOME/conf/roles/collections

collection name, such as , for the collection named 'collection1'.collection1.json

The file is in JSON format, and includes the collection name and an array of the
associated role names. Below is the example file:collection1.json

{

 "collection": "collection1",

 "roleNames":

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 290
347

 [

 "search"

]

}

Note that the roles allowed for the collection named 'collection1' will also apply to
the 'LucidWorksLogs' and 'quickstart' system collections.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 291
347

Restricting Access to Content
LucidWorks Search provides three ways to restrict access to content through based
on user identity:

Search Filters
Access Control Lists
Document-based Authorization

Search Filters
Search filters provide the ability to limit the visibility of content only to specific
users or user groups. For example, users in the finance role might be limited only
to documents that satisfy the query . The LucidWorks Searchdepartment:finance

Admin UI allows the creation of search filters that can be appended to all user
queries. Usernames (manually created or supplied by the LDAP system) and/or
groups (supplied by the LDAP system) can be mapped to search filters with the
Search Filters page. You can also configure manual or LDAP search filters using the

 API.Roles

By default, LucidWorks comes configured with a default filter called "DEFAULT"
that allows users to see all results for any query. This filter is defined in

, and could be modified if needed:solrconfig.xml

<searchComponent class="com.lucid.handler.RoleBasedFilterComponent"

name="filterbyrole">

 <!-- Solr filter query that will be applied for users without

group/role info -->

 <str name="default.filter">-*:*</str>

 <!-- Solr filter queries for roles, one role may have multiple filter

queries.

 name is the role, value is the part of the filterquery that is to be

formed. -->

 <lst name="filters">

 <str name="DEFAULT">*:*</str>

 </lst>

</searchComponent>

Note that this has defined that the default filter is . What this means is that-*:*

someone without the DEFAULT role should see no results. However, since queries

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 292
347

in LucidWorks Search are handled by the request handler, we have/lucid

configured that handler to process searches for users without a role as though
they had the DEFAULT role. This is in a later section of , wheresolrconfig.xml

defaults are defined for the request handler (the below is truncated):/lucid

<lst name="defaults">

...

 <str name="role">DEFAULT</str>

...

 </lst>

Access Control Lists
LucidWorks also supports (ACL) on Windows Share (SMB) andaccess control lists
SharePoint data sources. ACL uses Windows Active Directory to control document
access on a per-user basis. ACL filtering is configured for each data source,
allowing you to have different authorizations depending on the definitions in each
repository. To use this functionality, set up a Windows Share or SharePoint data
source and configure the requisite fields.

If you do not need to configure ACL filtering on a per-data source basis, you can
use the to configure a Search Handler to perform the sameFiltering API
functionality. Note that this is only supported for a Windows Share data source
type. The Filtering API will configure the search handler in likesolrconfig.xml

this:

<searchComponent class="com.lucid.security.AclBasedFilterComponent"

name="adfiltering">

 <str

name="provider.class">com.lucid.security.ad.ADACLTagProvider</str>

 <str

name="filterer.class">com.lucid.security.WindowsACLQueryFilterer</str>

 <lst name="provider.config">

 <str name="java.naming.provider.url">ldap://127.0.0.1</str>

 <str name="java.naming.security.principal">admin</str>

 <str name="java.naming.security.credentials">admin</str>

 </lst>

 <lst name="filterer.config">

 <str name="should_clause">*:* -data_source_type:smb</str>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 293
347

 </lst>

</searchComponent>

In certain circumstances, you may need to add a or userFilter groupFilter

parameter to the search component to properly implement your ACL filter.

Once created, the search component must be added to the request handler/lucid

with the .Search Components API

Document-based Authorization
An application can enforce document visibility controls in front of LucidWorks
simply by adding fields to each document that represent usernames, group
membership, or other types of flags that help match a user with the content they
are allowed to see in results. Generally these types of fields would be of type
"string", possibly multi-valued. This technique is best suited to content extracted
from a database or custom data source. The file and web crawling capabilities in
LucidWorks do not index any security related attributes (though the file path itself
may be useful for application-level restrictions).

For example, documents could be indexed with an "owner" field. Here's a Solr XML
file for this example:

<add>

 <doc>

 <field name="id">1</field>

 <field name="text">Bob's Document - For his eyes only\!</field>

 <field name="owner">bob</field>

 </doc>

 <doc>

 <field name="id">2</field>

 <field name="text">Jill's Document - Only she should find

this</field>

 <field name="owner">jill</field>

 </doc>

</add>

Related Topics

Windows Shares Data Sources

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 294
347

SharePoint Data Sources
Filtering Results

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 295
347

Enabling SSL

 Secure Socket Layer (SSL) encryption can be enabled
in LucidWorks Search with a few modifications to Jetty configuration files.

Steps to Enable SSL
Certificate Management
Client Certificates for LWE-Core and Connectors
Configuring Mutually Authenticated SSL
Debugging SSL Configuration
Related Topics

Steps to Enable SSL
In the steps below, note that LucidWorks Search components run under Jetty, but
have separate configuration files. Each component needs to be enabled separately,
although the process for each component is the same. For more information about
configuring Jetty to use SSL, see also the Jetty documentation on .Configuring SSL

Step 1: Modify master.conf

If you have already installed LucidWorks Search, you can set these values by
modifying the file found in . You should change themaster.conf $LWS_HOME/conf/

 for each component to include . If you'd like to change the port foraddress https

each component, that is done in also.master.conf

COMPONENT LWE-Core - LWE-Solr + LWE REST API.

lwecore.enabled=true

lwecore.address=https://127.0.0.1:8888

 ...

COMPONENT LWE-Connectors.

lweconnectors.enabled=true

lweconnectors.address=https://127.0.0.1:8765

 ...

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 296
347

COMPONENT LWE-UI - Admin and Search UI as well as Alerts

lweui.enabled=true

lweui.address=https://127.0.0.1:8989

Alternatively, each component could be set to and the desired porthttps://

during the .installation process

Step 2: Modify jetty.xml for LWE-Core Component

The file found in needs to bejetty.xml $LWS_HOME/conf/jetty/lwe-core/etc

modified to comment out the non-SSL connector. In the file, find the following
section and add comment markers at the beginning and at the end (and ,<!-- -->

respectively):

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port"

default="8888"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

Step 3: Modify jetty-ssl.xml for LWE-Core Component

In the directory the file $LWS_HOME/conf/jetty/lwe-core/etc jetty-ssl.xml

should be edited to activate the sample configuration. The configuration is
currently commented out, but the comment tags should be removed and the

, , , and keyStore keyStorePassword keyManagerPassword trustStore

 properties should be configured.trustStorePassword

<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <Call name="addConnector">

 <Arg>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 297
347

 <New

class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port"

default="8888"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

</Configure>

The and files must be located in the locations specified sokeyStore trustStore

they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the file.jetty-ssl.xml

Step 4: Modify jetty.xml for LWE-UI Component

The file found in needs to bejetty.xml $LWS_HOME/conf/jetty/lwe-ui/etc

modified to comment out the non-SSL connector. In the file, find the following
section and add comment markers at the beginning and at the end (and ,<!-- -->

respectively) so it looks like this:

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port"

default="8989"/></Set>

 <Set name="maxIdleTime">50000</Set>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 298
347

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

Step 5: Modify jetty-ssl.xml for LWE-UI Component

In the directory the file $LWS_HOME/conf/jetty/lwe-ui/etc jetty-ssl.xml

should be edited to activate the sample configuration. The configuration is
currently commented out, but the comment tags should be removed and the

, , , and keyStore keyStorePassword keyManagerPassword trustStore

 parameters should be configured.trustStorePassword

<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <Call name="addConnector">

 <Arg>

 <New

class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port"

default="8989"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

</Configure>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 299
347

The and files must be located in the locations specified sokeyStore trustStore

they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the file.jetty-ssl.xml

Step 6: Modify jetty.xml for the LWE-Connectors Component

The file found in needs to bejetty.xml $LWS_HOME/conf/jetty/connectors/etc

modified to comment out the non-SSL connector and activate the SSL-connector.
Unlike the LWE-Core and LWE-UI components, the Connectors component only
requires modifying a single file.

In the file, find the following section and add comment markers at the beginning
and at the end (and , respectively) so it looks like this:<!-- -->

<--

 <Call name="addConnector">

 <Arg>

 <New class="org.eclipse.jetty.server.bio.SocketConnector">

 <Set name="port"><SystemProperty name="jetty.port"

default="8765"/></Set>

 <Set name="maxIdleTime">50000</Set>

 <Set name="lowResourceMaxIdleTime">1500</Set>

 </New>

 </Arg>

 </Call>

-->

In the same file, uncomment the section "To add a HTTPS SSL Listener" to
activate the sample configuration. After the comment tags are removed, configure
the , , , and keyStore keyStorePassword keyManagerPassword trustStore

 parameters.trustStorePassword

<Call name="addConnector">

 <Arg>

 <New

class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">

 <Arg>

 <New class="org.eclipse.jetty.http.ssl.SslContextFactory">

 <Set name="keyStore"><SystemProperty

name="lucidworksConfHome"/>/keystore</Set>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 300
347

 <Set name="keyStorePassword">secret</Set>

 <Set name="keyManagerPassword">secret</Set>

 <Set name="trustStore"><SystemProperty

name="lucidworksConfHome"/>/truststore</Set>

 <Set name="trustStorePassword">secret2</Set>

 <Set name="needClientAuth">false</Set>

 </New>

 </Arg>

 <Set name="port"><SystemProperty name="jetty.port"

default="8765"/></Set>

 <Set name="maxIdleTime">30000</Set>

 </New>

 </Arg>

 </Call>

The and files must be located in the locations specified sokeyStore trustStore

they can be found on Jetty startup. They can be located anywhere on the server,
as long as the correct locations are defined in the file.

Step 7: Restart LucidWorks

After verifying that the and files are in the locationskeyStore trustStore

specified in each file, LucidWorks Search for the changes to takemust be restarted
effect.

Certificate Management
LucidWorks uses standard java jks format in keystores and truststores. Those
stores can be managed using the standard Java .keytool

Currently all certificates are managed outside of LucidWorks. There are no
certificate management tools or admin displays for configuring SSL certificate
related settings. All configuration tasks need to be made manually after installing
LucidWorks and potentially repeated on all nodes where LucidWorks is running.

Client Certificates for LWE-Core and Connectors
It is possible to configure the LWE-Core and Connectors components to use
certificates while communicating.

Prior to LucidWorks v2.5.2, the was used to define clientSSL Configuration API
certificates. This is now configured in as Java SSL system properties.master.conf

http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 301
347

To use these properties, open (found in and editmaster.conf $LWS_HOME/conf

these properties:

-Djavax.net.ssl.keyStore=conf/keystore.client

-Djavax.net.ssl.keyStorePassword=secret2

-Djavax.net.ssl.trustStore=conf/truststore.client

-Djavax.net.ssl.trustStorePassword=secret3

The paths to the and should be entered as complete paths,keyStore trustStore

or relative to .$LWS_HOME/app/bin

It is not possible to configure the LWE-UI component in this way

Configuring Mutually Authenticated SSL
LucidWorks supports securing communications to the core APIs with Mutual SSL
authentication. This means the and Solr API can be protected so thatREST API
only clients that you trust can access these APIs. The system can also use
mutually authenticated SSL internally to communicate to each Solr node when
using distributed search.

The LucidWorks portions of SSL functionality can be configured by using the SSL
 API.Configuration

When configuring LucidWorks to use mutually authenticated SSL the container
must also be configured to require certificates for authentication. In Jetty this is
done by using in the related SSL<set name="needClientAuth">true</Set>

Connector section of the Jetty configuration files (see above).

Mutual authentication is not supported for the LWE-UI component, and
thus the Admin UI.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 302
347

Debugging SSL Configuration
Reviewing logging events from the (either LucidWorks log files

 or) may provide some hints aboutcore.YYYY_MM_DD.log ui.YYYY_MM_DD.log

what is going on if SSL is not working as expected.

Common SSL Problems

Symptom: javax.net.ssl.SSLHandshakeException: null cert chain

Cause: Client is not sending client certificate. Reconfigure client so that it sends a
client certificate with the request.

Symptom: javax.net.ssl.SSLException: Unrecognized SSL message,
plaintext connection?

Cause: Client is connecting to SSL endpoint without using SSL.

The cURL command line tool can be used to verify the SSL configuration.
For example,:

curl --cacert <ca.crt> --key <host.key> --cert <client.crt>
https://localhost:8443/dashboard

The link in this example is to the main LucidWorks Admin UI dashboard.
Since this requires authentication, you should see the HTML indicating you
will be redirected to the login page. If that's what you see, then SSL is
properly set up.

Related Topics

Jetty doc on configuring SSL
Java keytool

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 303
347

Solr Direct Access
LucidWorks Search is Solr-powered at its core. Solr, an Apache Software
Foundation project, provides an easy-to-use HTTP interface above and beyond
Lucene, a very fast and scalable Java search engine library. Both Solr and Lucene
are entirely open source, available under the Apache Software License.

LucidWorks Search exposes the Solr interface directly. This means that
applications can leverage both Solr's power and openness and LucidWorks
Search's ease of use.

This guide covers Solr when LucidWorks and Solr intersect but it does not provide
an extensive overview of the inner workings of Solr, and in places assumes some
basic knowledge of Solr. For a good introduction to Solr, the Lucene/Solr
community has produced an which provides a lot ofApache Solr Reference Guide
information about how Solr works "under the hood".

Solr Version
For information about the Solr version included in this release of LucidWorks, see
the SOLR_VERSION.txt file in . For LucidWorks$LWS_HOME/app/SOLR_VERSION.txt

v2.9, we have included Solr version 4.8.1 (the official release). We have also
included the following patch:

SOLR-5641: REST API to modify requestHandlers
SOLR-5922: Support Collections API calls in SolrJ
SOLR-4470: Support Basic HTTP authentication in internal Solr requests
SOLR-5285: Support child documents
SOLR-6257: Error using two '!' in a document ID with the
CompositeIdRouter

You can also get detailed Solr version information for all releases of LucidWorks
Search from our public Github fork here:

. To see information for a specifichttps://github.com/lucidimagination/lucene-solr
LucidWorks version, select the tag for that version from the "Switch Tags"
drop-down list. Please note, however, that this is not a stand-alone, runnable
Lucene or Solr release; it is intended as a source reference only.

http://cwiki.apache.org/confluence/display/solr
https://issues.apache.org/browse/SOLR-5641
https://issues.apache.org/jira/browse/SOLR-5922
https://issues.apache.org/jira/browse/SOLR-4470
https://issues.apache.org/jira/browse/SOLR-5285
https://issues.apache.org/jira/browse/SOLR-6257
https://github.com/lucidimagination/lucene-solr

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 304
347

1.

2.

How the LucidWorks-Bundled Solr is Different
The primary difference between using Solr and LucidWorks is the base URL. Solr's
example application is accessed by default at ,http://localhost:8983/solr/

whereas the LucidWorks default collection instance of Solr is rooted at
. If using multiple collections,http://localhost:8888/solr/collection1/

replace with the correct collection name. The Solr URL for eachcollection1

collection is displayed under each collection listing on the main page inCollections
the Admin UI.

In addition, some of the examples that are usually included with Solr are not
included with LucidWorks. This includes detailed examples and explanations that
are provided in the and files. Those examples willschema.xml solrconfig.xml

likely still work with LucidWorks, but would need to be inserted manually into
those files.

Other differences are mentioned specifically in sections that discuss certain
features. If a limitation with Solr is not mentioned, it can be assumed that the Solr
functionality works as you would expect with a stand-alone Solr instance.

Adding Solr Plugins
Generally speaking, most plugins to Solr should work with LucidWorks Search,
provided that they are compatible with the Solr version used with LucidWorks
Search (see above). As described in the #Solr Version Solr Wiki page on Solr

, there are two options for integrating plugins:Plugins

"Place your JARs in a directory in the instanceDir of your SolrCore." Forlib

LucidWorks Search, this would mean the directory of your collection lib

. For example, if you wanted to use the plugin with the defaultinstance_dir

collection, collection1, you would put the relevant JARs in
. You can find the $LWS_HOME/conf/solr/cores/collection1_0/bin

 name with the . The name indicates a directoryinstance_dir Collections API
name, always relative to .$LWS_HOME/conf/solr/cores

"Use the directive in your file to specify an arbitrarylib solrconfig.xml

JAR path, directory of JAR files, or a directory plus regex that JAR file names
must match." This alternative allows you define the path in solrconfig.xml

http://wiki.apache.org/solr/SolrPlugins
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 305
347

2.

for your collection using the directive. More information on using this<lib>

directive is available in the Apache Solr Reference Guide section on Lib
.Directives in SolrConfig

Either of these approaches will allow integration of a Solr-based plugin with
LucidWorks Search. If the plugin will be used with multiple LucidWorks Search
collections, pick either approach here and configure the use of the plugin for one
collection. Once you've verified that it works successfully with LucidWorks Search,
you can use that single collection to create a for use as theCollection Template
basis for future collections.

If there is configuration to be done in or (or othersolrconfig.xml schema.xml

configuration files) in order to properly use the plugin, you will need to make those
changes as a separate step and by manually editing the files. If the changes
conflict with or modify the LucidWorks Search defaults, the Admin or Search UI
may behave abnormally. It's best to do thorough testing before moving to
production with any plugin.

More information on how to create a custom plugin is available from the Solr Wiki
at .http://wiki.apache.org/solr/SolrPlugins

Related Topics

Apache Solr Reference Guide
Apache Solr project homepage
Apache Solr Wiki
Solr Plugins from the Solr Wiki

https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
https://cwiki.apache.org/confluence/display/solr/Lib+Directives+in+SolrConfig
http://wiki.apache.org/solr/SolrPlugins
http://cwiki.apache.org/confluence/display/solr
http://lucene.apache.org/solr/
http://wiki.apache.org/solr/
http://wiki.apache.org/solr/SolrPlugins

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 306
347

Performance Tips
A number of configuration items can be manipulated for better performance when
benchmarking LucidWorks. Implementing some of these optimizations may require
directly configuring Solr via and . See the schema.xml solrconfig.xml Apache

 for details on Solr customizations that may be right for yourSolr Reference Guide
implementation.

Ensure that you are running the JVM in server mode.
Allocate only as much memory as needed to the JVM heap. The rest should
be left free to allow the operating system to cache as much of the Lucene
index files as possible.

Improving indexing speed

Minimize indexing the same content in more than one field. Each field should
be either indexed on its own or Solr's functionality can be used tocopyField
copy it to an indexed catch-all field.
Avoid storing the same content more than once. The target field of copyField
commands should almost never be stored.
Avoid commits during the indexing process. Turn off Solr auto-commit and
avoid explicitly committing until indexing has completed.
Disable rules processing if not using business rules as part of your
implementation. See the section on for details onDisabling Business Rules
how to disable rules processing.

Improving Search speed

Perform a variety of searches before starting any timings. This warms up the
server JVM, and causes parts of the index, commonly used sort fields and
filters to be cached by the operating system.
Search in as few fields as possible. A single indexed catch-all text field
containing the contents of all the other searchable fields (generated by

 commands) will be faster to search than a multi-field querycopyField
across many indexed fields.

https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr
https://cwiki.apache.org/confluence/display/solr/Copying+Fields

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 307
347

If necessary, turn off relevancy enhancers such as proximity phrase queries,
date recency boosts, and synonym expansion to generate benchmarks for
comparison with later tests when those features are re-enabled.
Retrieve the minimum number of that still provide a optimalstored fields
search experience for users.
Only retrieve the number of documents that are immediately necessary. The

 and query arguments may be used to request pages of results.start rows
Disable rules processing if not using business rules as part of your
implementation. See the section on for details onDisabling Business Rules
how to disable rules processing.
For a large index (on *NIX), force key parts of the indexed portion into
operating system cache by changing to the index directory and executing
cat *.prx *.frq *.tis > /dev/null

Review the section on if leading wildcards haveWildcards at Start of Terms
been enabled for important performance considerations.

Related Topics

Expanding Capacity

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 308
347

Expanding Capacity

 As your search application grows, you may need to
scale the system to add space for indexes or to increase query responsiveness.
This section discusses advanced deployment options to enhance system
performance and ensure seamless application scaling.

With Solr 4, which is included with LucidWorks Search, the best way to scale is in
SolrCloud mode. How to start LucidWorks in SolrCloud mode is discussed in the
section .Using SolrCloud in LucidWorks

If you only need to extend your index across multiple servers Index Replication
shows how to configure multiple shards for a master-slave environment. Or you
can use to distribute search and indexingDistributed Search and Indexing
processes across multiple servers or shards for peak performance. Note, however,
that distributed search and replication are no longer in active development by the
Solr community.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 309
347

Using SolrCloud in LucidWorks
SolrCloud is a set of Solr features that expands the capabilities of Solr's distributed
search, simplifying the creation and management of Solr clusters. SolrCloud is still
under active development, but already supports the following features:

Central configuration for the entire cluster
Automatic load balancing and fail-over for queries
Zookeeper integration for cluster coordination and configuration

For an introduction to SolrCloud, and how it is different from index replication, see
the LucidWorks Knowledgebase article . In addition, the ApacheWhat is SolrCloud?
Solr Reference Guide includes an extensive , which includessection on SolrCloud
background information and configuration instructions. Some changes have been
made for LucidWorks Search, however, which are described below.

LucidWorks Search implements SolrCloud as a ; to managepurely Solr feature
SolrCloud shards and replicas, you should refer to and use instructions designed
for a purely Solr installation. There are only a few caveats and modifications for
LucidWorks Search, detailed below, specifically for bootstrapping ZooKeeper and
the cluster nodes.

Topics discussed in this section:

Enabling SolrCloud Mode
Using the Embedded ZooKeeper
Bootstrapping Solr vs. LucidWorks Search

How SolrCloud Works with LucidWorks
Replicated Configurations
Using the Admin UI in SolrCloud Mode
Feature Limitations
Collections APIs

Using a Stand-Alone ZooKeeper Instance or Ensemble
Related Topics

https://support.lucidworks.com/entries/24134353-What-is-SolrCloud-And-how-does-it-compare-to-master-slave-
https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 310
347

Enabling SolrCloud Mode
LucidWorks Search includes an installer that can install the application on each
node of the planned SolrCloud cluster. For details on using this approach, see the
section . This approach will allow you to install threeSolrCloud Cluster Installation
ZooKeeper instances to create a quorum, and then install as many LucidWorks
Search nodes as needed.

The standard instructions for starting SolrCloud are modified slightly for
LucidWorks Search. Commands within the installer take these modifications into
account, but if starting without the installer, refer to the modifications described
below.

While much of the SolrCloud documentation in the Apache Solr Reference Guide
 can be used, it is important to only start LucidWorks Searchsection on SolrCloud

in SolrCloud mode with the instructions included here.

Using the Embedded ZooKeeper

It's possible to make two standalone, or single server, installations communicate
with each other in SolrCloud mode using the ZooKeeper instance embedded with
Lucidworks Search. This can be useful to create a simple two-node cluster when
just starting to learn how this functionality can work for your search application.
With this approach, two separate installations are made (as described in the
section). Then one installation is started with commandsSingle Server Installation
to bootstrap configurations and start ZooKeeper.

Because we need two servers for this example, we will make two installations of
LucidWorks, one on the server " " and the other on the server " ".example example2

During installation, do not start LucidWorks Search. Instead, start the two
installations manually, as shown below.

We recommend that you only install LucidWorks using the installer
application; copying the directory to another directoryLucidWorksSearch

to create another server may cause conflicts with ports. Information on
installing LucidWorks is available in the section on .Installation

https://cwiki.apache.org/confluence/display/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 311
347

The installation in should use port 8983 for the LWE-Core component,example

which will be changed from the default during the installation process. The
installation on should use the default port (8888) for the LWE-Coreexample2

component. If enabling other components, be sure to modify the ports for each
installation as well. If new to LucidWorks, see the section on Working With

 for more information about the components. YourLucidWorks Search Components
port selections might look like this:

Component example Ports example2 Ports

LWE-Core 8983 8888

LWE-Connectors 8965 8765

LWE-UI 8889 8989

ZooKeeper will run on the LWE-Core port + 1000, so in this scenario we expect
ZooKeeper to run on port 9983. It's important to keep that in mind while planning
the installation ports so there isn't an inadvertent conflict with LucidWorks Search
ports.

SolrCloud uses ZooKeeper to manage nodes, and it's worth taking a look
at the to understand how ZooKeeper works beforeZooKeeper website
configuring SolrCloud. Solr can embed ZooKeeper, but for a production
use, it's recommended to run a ZooKeeper ensemble, as described in the

 of the SolrCloud wiki page.ZooKeeper section

Starting LucidWorks Search

To start LucidWorks Search in SolrCloud mode, use the usual LucidWorks start
script, but pass some Java options to it. To start , you would use aexample

command like this:

Start 'example'

$LWS_HOME/app/bin/start.sh -lwe_core_java_opts "-Dbootstrap_conf=true

-DzkRun -DnumShards=2"

http://zookeeper.apache.org/
http://zookeeper.apache.org/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 312
347

The allows copying of the configuration files for each collection tobootstrap_conf

the nodes, while starts ZooKeeper. The value defines how manyzkRun numShards

nodes there will be in the cluster. Be sure to set this accurately, as Solr cannot yet
easily increase the number of shards without re-bootstrapping the cluster.

We only need to pass and the first time LucidWorks isbootstrap_conf numShards

started in SolrCloud mode. In subsequent LucidWorks restarts, start this leader
node with . The could be./start.sh -lwe_core_java_opts "-DzkRun" -DzkRun

added to , in which case the script alone would startmaster.conf start.sh

ZooKeeper each time.

To start the next nodes of the cluster, we still use the start script, but with some
different options. This would start :example2

Start 'example2'

$LWS_HOME/app/bin/start.sh -lwe_core_java_opts "-DzkHost=localhost:9983"

Note that the port defined as the is the port of the LWE-Core component +zkHost

1000. So, if LWE-Core on our server was defined at port 8983, ZooKeeperexample

would be started at port 9983.

The above instructions assume a Linux-based operating system. For
Windows-based systems, use as in these examples:start.bat

Start :example

$LWS_HOME\app\bin\start.bat -lwe_core_java_opts

"-Dbootstrap_conf=true -DzkRun -DnumShards=2"

Start :example2

$LWS_HOME\app\bin\start.bat -lwe_core_java_opts

"-DzkHost=localhost:9983"

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 313
347

If you have used the installer to install LucidWorks in SolrCloud mode, the required
commands have been added to the for each server, and no specialmaster.conf

start or stop instructions are required for restarts. In that case, you would not run
the embedded ZooKeeper; instead you would have installed and configured a
quorum, and the parameters have been added to the file.zkHost master.conf

Bootstrapping Solr vs. LucidWorks Search

This table outlines the differences between the Solr instructions for bootstrapping
SolrCloud mode and the LucidWorks Search instructions. It is meant as a summary
if you are already familiar with how SolrCloud works.

SolrCloud LucidWorks Search

Use start.jar Use or with start.sh start.bat

 defined-lwe_core_java_opts

Use to uploadbootstrap_confdir

configuration files to ZooKeeper
bootstrap_conf=true

Use collection.configName Not needed with bootstrap_conf=true

Default configuration directory is
./solr/collection1/conf

Default configuration directory is
$LWS_HOME/conf/solr/cores/collection1_0/conf

How SolrCloud Works with LucidWorks
There are some caveats to using SolrCloud with LucidWorks Search, as it is so far
only partially integrated with the system. Future releases of LucidWorks Search
will contain more tight integration points with SolrCloud functionality.

Replicated Configurations

When running LucidWorks Search in SolrCloud mode, some LucidWorks
Search-specific features are not yet fault tolerant and highly available. While the
index and configuration files are fully SolrCloud supported, the following are not
currently replicated across shards:

Data sources and their related metadata (such as crawl history)
The LucidWorks user database, which stores manually created users (such
as the default "admin" user)
User alerts

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 314
347

LDAP configuration files
SSL configuration

Even though these features aren't replicated, they can still be used with
LucidWorks Search in SolrCloud mode. The files that hold this metadata are in the

 folder and could be copied to the other nodes in the cluster to act$LWS_HOME/conf

as backup if the main node goes down for any length of time. This is a manual
process and not yet automated by LucidWorks Search.

Using the Admin UI in SolrCloud Mode

To accommodate for the lack of replicated configurations, we recommend that you
do a full LucidWorks Search (i.e.,) on every machine ininstallation all components
your cluster. You should then choose one node to use for the Admin UI. This is the
node that will store your data sources and associated metadata. Another node can
be chosen as the node that does crawling, or you can use the same node used by
the Admin UI. Document updates will still be sent to the nodes, via the index
update processes that make up SolrCloud functionality.

If the node used for the Admin UI goes down, you can choose another node to act
as the Admin UI node, but unless the related configuration files have been copied
to that node you will not have the same user accounts and data sources in the
other nodes. Once you bring the node originally used for the Admin UI back, it
should still have your data sources and other LucidWorks-specific metadata.

You can configure LucidWorks Search to not start the Admin UI by changing
 and setting the parameter to$LWS_HOME/conf/master.conf lweui.enabled

'false'.

Feature Limitations

The following LucidWorks features may encounter significant problems when
working in SolrCloud mode:

Click Scoring cannot be used in SolrCloud mode at this time.
Auto-complete-related suggestions should be pulled from a single index node
if auto-complete is enabled by adding ' ' to any query.&distrib=false

Distributed auto-complete indexing is possible but requires configuration of
the auto-complete indexing on each node and adding a ' ' component toquery

the autocomplete requestHandler in .solrconfig.xml

De-duplication does not work in SolrCloud due to a bug in Solr ().SOLR-3473

https://issues.apache.org/jira/browse/SOLR-3473

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 315
347

SSL does not work with SolrCloud due to a bug in Solr ().SOLR-3854
Log indexing and query statistics in the Admin UI will be inconsistent. If you
are using LucidWorks Search in SolrCloud mode or with each component
installed on a different server, please see the section Log Indexing with

 for details on how to make sure your logs are fullySeparated Components
indexed.

Collections APIs

LucidWorks Search and Solr both have Collections APIs. They are not duplicates,
even though they share the same parameters. It is important, however, to only
use the to create collections, because of theLucidWorks Search Collections API
issues described in the section . The LucidWorks Search#Replicated Configurations
Admin UI also uses the LucidWorks Collections API to create collections.

When creating a new collection (with either the Admin UI or the API), and you are
working in SolrCloud mode, you can specify the number of shards to break it up
into. This number, however, cannot be higher than the number of shards defined
when LucidWorks Search was bootstrapped.

Behind the scenes, the LucidWorks Search Collections API update LucidWorks
Search-specific collection configuration files and also uses Solr's Collection API to
create the collection in Solr. This has some ramifications for LucidWorks Search:

Solr's Collection API does not allow defining the instanceDir or the dataDir,
so there is no way for LucidWorks Search to instruct Solr to create the new
collection directories in the same place on the filesystem as the pre-existing
collections that ship with LucidWorks Search. Solr creates collections by
default with the and directories in the same location, but theconf data

LucidWorks Search directory structure separates those directories to
 and . Because$LWS_HOME/conf/solr/cores $LWS_HOME/data/solr/cores

Solr's Collection API does not allow setting the path values explicitly, they
are created in Solr's default location. What this means is that new collections
created in SolrCloud mode will be located in a different location from the
pre-existing collections (i.e., they will be located under

 and the data directory will not be located under $LWS_HOME/conf/solr

). This is normal and will not have any impact on$LWS_HOME/data/solr

document indexing or searching.

https://issues.apache.org/jira/browse/SOLR-3854

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 316
347

Solr's Collection API itself uses Solr's CoreAdmin API to asynchronously
create cores on each node. For this reason, the collection will appear to be
renamed as . LucidWorks Search will<collection>_shard<x>_replica<y>

mostly display the correct name, but the directory on the server will show
the core name (and each core on each node will be named differently). The
Solr Admin UI will also display the core name in the Core dropdown list. If
you are accessing the Solr Admin for several different nodes, this may cause
some initial confusion. Essentially, LucidWorks displays information about a
collection, but Solr displays information about the specific core you are
looking at. For more information about the differences between cores and
collections in Solr, also refer to the and other pages onSolrCloud Glossary
SolrCloud in the Apache Solr Reference Guide.

Using a Stand-Alone ZooKeeper Instance or Ensemble
If you review the Solr Reference Guide or any of the Solr documentation about
SolrCloud, you may notice that using the Apache ZooKeeper instance that is
included with Solr is not recommended for real production systems. This is
because the embedded Zookeeper will not provide sufficient failover; the
ZooKeeper instance is dependent on the Solr instance so if one of the Solr
instances is shut down, an associated ZooKeeper instance will also be shut down.

For this reason, the LucidWorks installer includes the ability to install a ZooKeeper
quorum while installing LucidWorks Search.

If you have an existing ZooKeeper, or an existing SolrCloud setup, the Apache Solr
Reference Guide provides information about how to use a stand-alone ZooKeeper
instance at . That information is worthSetting Up an External ZooKeeper Ensemble
reviewing before installing a stand-alone ZooKeeper. The same instructions apply
if used with LucidWorks Search, with the exception of the bootstrapping
instructions as described in the earlier section #Starting LucidWorks Search
(above).

When using stand-alone ZooKeeper with LucidWorks Search, you need to
take care to keep your version of ZooKeeper updated with the latest
version distributed with Solr and LucidWorks Search. Since you are using
it as a stand-alone application, it does not get upgraded when you
upgrade LucidWorks Search.

https://cwiki.apache.org/confluence/display/solr/SolrCloud+Glossary
https://cwiki.apache.org/confluence/display/solr/Setting+Up+an+External+ZooKeeper+Ensemble

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 317
347

Solr 4.0 and LucidWorks 2.5.0 and 2.5.1 use Apache ZooKeeper v3.3.6.

Solr 4.1 and higher, and LucidWorks 2.5.2 and higher, use Apache
ZooKeeper v3.4.5.

Related Topics

Getting Started with SolrCloud from the Apache Solr Reference Guide
SolrCloud Wiki page

https://cwiki.apache.org/confluence/display/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 318
347

Index Replication

As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for
redundancy, failover, and improved performance. Index Replication and
Distributed Search are considered obsolete technologies; while still
supported, they are not in active development. See the section on Using

 for more information on using SolrCloud withSolrCloud in LucidWorks
LucidWorks Search.

Index Replication distributes complete copies of a master index to one or more
slave servers. The master server continues to manage updates to the index. All
querying is handled by the slaves. This division of labor enables Solr to scale to
provide adequate responsiveness to queries against large search volumes. The
master server's index is replicated on the slaves, which then process requests such
as queries.

LucidWorks Search supports index replication, but it is not configured through the
Admin UI. Instead, replication configuration requires editing XML configuration files
in the Solr release included with LucidWorks Search. This section explains how
replication works and how to edit the configuration files. Detailed examples are
provided, so even if you're new to XML and Solr configuration, you should be able
to set up and configure master/slave replication servers with ease.

When the is enabled, LucidWorksClick Scoring Relevance Framework
ensures that also the click boost data is replicated together with index
files. See the section on for moreClick Scoring Tools and Index Replication
information.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 319
347

Configuring Replication on the Master Server
To set up replication, you will need to edit the file on the mastersolrconfig.xml

server. To edit the file, you can use an XML editor or even a simpler tool such as
Notepad on a PC or TextEdit on a Mac.

Within the file, you will edit the definition for a Request Handler.solrconfig.xml

A Request Handler is a Solr process that responds to requests. In this case, you
will be configuring the Replication RequestHandler, which processes requests
specific to replication.

The example below shows how to configure the Replication RequestHandler on a
master server.

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="master">

 <!-- Replicate on 'optimize'. Other values can be 'commit', 'startup'.

 It is possible to have multiple entries of this config string -->

 <str name="replicateAfter">optimize</str>

 <!-- Create a backup after 'optimize'. Other values can be 'commit',

'startup'.

 It is possible to have multiple entries of this config string.

 Note that this is just for backup, replication does not require

this.

 -->

 <!-- <str name="backupAfter">optimize</str> -->

 <!-- If configuration files need to be replicated give the names here,

 separated by comma -->

 <str name="confFiles">schema.xml,stopwords.txt,elevate.xml</str>

 <!-- The default value of reservation is 10 secs. See the

documentation

 below. Normally, you should not need to specify this -->

 <str name="commitReserveDuration">00:00:10</str>

 </lst>

</requestHandler>

Operations that Trigger Replication

The value of the parameter in the ReplicationHandlerreplicateAfter

configuration determines which types of events should trigger the creation of
snapshots for use in replication.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 320
347

The parameter can accept multiple arguments.replicateAfter

replicateAfter Setting Description

startup Triggers replication whenever the
master index starts up.

commit Triggers replication whenever a commit
is performed on the master index.

optimize Triggers replication whenever the
master index is optimized.

If you are using setting for , you'll also need a or startup replicateAfter commit

 if you want to trigger replication on future commits/optimizes as well. Ifoptimize

only the option is given, replication will not be triggered on subsequentstartup

commits/optimizes after it is done for the first time at the start.

Configuring Replication on Slave Servers
The code below shows how to configure a ReplicationHandler on a slave server.

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="slave">

 <!-- fully qualified url for the replication handler of master.

 It is possible to pass on this as a request param for the

 fetchindex command

 -->

 <str

name="masterUrl">http://master.solr.company.com:8983/solr/corename/replication</str>

<!-- Interval in which the slave should poll master. Format is HH:mm:ss.

 If this is absent slave does not poll automatically.

 But a fetchindex can be triggered from the admin or the http API

 -->

 <str name="pollInterval">00:00:20</str>

 <!-- THE FOLLOWING PARAMETERS ARE USUALLY NOT REQUIRED -->

 <!-- To use compression while transferring the index files.

 The possible values are internal|external

 if the value is 'external' make sure that your master Solr

 has the settings to honor the accept-encoding header.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 321
347

1.

2.

3.

4.

 see here for details

http://wiki.apache.org/solr/SolrHttpCompression

 If it is 'internal' everything will be taken care of

automatically.

 USE THIS ONLY IF YOUR BANDWIDTH IS LOW.

 THIS CAN ACTUALLY SLOW DOWN REPLICATION IN A LAN -->

 <str name="compression">internal</str>

 <!-- The following values are used when the slave connects to the

 master to download the index files.

 Default values implicitly set as 5000ms and 10000ms respectively.

 The user DOES NOT need to specify these unless the bandwidth

 is extremely low or if there is an extremely high latency

 -->

 <str name="httpConnTimeout">5000</str>

 <str name="httpReadTimeout">10000</str>

 <!-- If HTTP Basic authentication is enabled on the master,

 then the slave can be configured with the following -->

 <str name="httpBasicAuthUser">username</str>

 <str name="httpBasicAuthPassword">password</str>

 </lst>

</requestHandler>

The master server is unaware of the slaves. Each slave server continuously polls
the master (depending on the parameter) to check the currentpollInterval

index version of the master. If the slave finds out that the master has a newer
version of the index it initiates a replication process. The steps are as follows:

The slave issues a filelist command to get the list of the files. This command
returns the names of the files as well as some metadata (e.g., size, a
lastmodified timestamp, an alias if any).
The slave checks with its own index if it has any of those files in the local
index. It then runs the filecontent command to download the missing files.
This uses a custom format (akin to the HTTP chunked encoding) to download
the full content or a part of each file. If the connection breaks in between,
the download resumes from the point it failed. At any point, the slave tries 5
times before giving up a replication altogether.
The files are downloaded into a temp directory, so that if either the slave or
the master crashes during the download process, no files will be corrupted.
Instead, the replication process will simply abort.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 322
347

4.

5.

After the download completes, all the new files are 'mv'ed to the live index
directory, and the file's timestamp is set to be identifical to the file's
counterpart on the master master.
A commit command is issued on the slave by the Slave's ReplicationHandler,
and the new index is loaded.

Configuring Replication on a Repeater Server
A master may be able to serve only so many slaves without affecting performance.
Some organizations have deployed slave servers across multiple data centers. If
each slave downloads the index from a remote data center, the resulting download
may consume too much network bandwidth. To avoid performance degradation in
cases like this, you can configure one or more slaves as repeaters. A repeater is
simply a node that acts as both a master and a slave. To configure a server as a
repeater, the definition of the Replication requestHandler in the solrconfig.xml
file must include file lists of use for both masters and slaves. Be sure to set the
replicateAfter parameter to commit, even if replicateAfter is set to optimize on the
main master. This is because on a repeater (or any slave), a commit is called only
after the index is downloaded. The optimize command is never called on slaves.
Optionally, one can configure the repeater to fetch compressed files from the
master through the compression parameter to reduce the index download time.

Here's an example of a ReplicationHandler configuration for a repeater:

<requestHandler name="/replication" class="solr.ReplicationHandler">

 <lst name="master">

 <str name="replicateAfter">commit</str>

 <str name="confFiles">schema.xml,stopwords.txt,synonyms.txt</str>

 </lst>

 <lst name="slave">

 <str

name="masterUrl">http://master.solr.company.com:8983/solr/corename/replication</str>

<str name="pollInterval">00:00:60</str>

 </lst>

</requestHandler>

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 323
347

Replicating Configuration Files
To replicate configuration files, list them with the parameter in theconfFiles

master's configuration. Only files found in the conf directory of the master's Solr
instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. Even if a
configuration file is changed on the master, that file will be replicated only after
there is a new commit/optimize on master's index.

As a precaution when replicating configuration files, Solr copies configuration files
to a temporary directory before moving them into their ultimate location in the
conf directory. The old configuration files are then renamed and kept in the same

 directory. The ReplicationHandler does not automatically clean up these oldconf/

files.

Unlike the index files, where the timestamp is good enough to figure out if they
are identical, configuration files are compared against their checksum. If a
replication involved downloading at least one configuration file with a modified
checksum, the ReplicationHandler issues a core-reload command instead of a
commit command.

Replicating the solrconfig.xml File

To keep the configuration of the master servers and slave servers in sync, you can
configure the replication process to copy configuration files from the master server
to the slave servers. In the on the master server, include a solrconfig.xml

 value like the following:confFiles

<str

name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>

This ensures that the local configuration will be saved as solrconfig_slave.xml

 on the slave. All other files will be saved with their originalsolrconfig.xml

names. On the master server, the file name of the slave configuration file can be
anything, as long as the name is correctly identified in the string; thenconfFiles

it will be saved as whatever file name appears after the colon ':'.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 324
347

Related Topics

Using SolrCloud in LucidWorks
Scaling and Distribution chapter from the Apache Solr Reference Guide

https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 325
347

Distributed Search and Indexing

As of Solr 4.0, SolrCloud is the preferred way to distribute indexes for
redundancy, failover, and improved performance. Index Replication and
Distributed Search are considered obsolete technologies; while still
supported, they are not in active development. See the section on Using

 for more information on using SolrCloud withSolrCloud in LucidWorks
LucidWorks Search.

Consider using distributed search when an index becomes too large to fit on a
single system, or when a single query takes too long to execute. Distributed
search can reduce the latency of a query by splitting the index into multiple shards
and querying across all shards in parallel, merging the results.

Distributed search should not be used if queries to a single index are fast enough
but one simply wishes to expand the capacity (queries per second) of the system.
In this case, standard should be used.Index Replication

Distributed Indexing
To utilize distributed search, the index must be split into shards across multiple
servers. Each shard is a LucidWorks Search server containing a complete index
that can be queried independently, but which only contains a fraction of the
complete search collection.

If using distributed indexing with a Solr XML data source type, you may
encounter a situation where the crawl never ends without a restart of
LucidWorks. This is due to a problem in the distributed index processor
and the way Solr XML files are crawled by LucidWorks.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 326
347

1.

2.

There are two possible solutions to this problem:

Use . The distributed indexing is handled automatically bySolrCloud
ZooKeeper, and provides automatic failover in case of server failure.
Disable the on all but the primary,DistributedUpdateProcessor

master, node. It is not really required to be running on slave nodes
since LucidWorks crawlers send their files through only one node
during processing.

Manual Distributed Indexing

One method of splitting the search collection into multiple shards is to index some
documents to each shard instead of sending all documents to a single shard.
Updates to a document should always be sent to the same shard, and documents
should not be duplicated on different shards.

Manual Configuration

A Distributed Update Processor can be enabled to automatically support distributed
indexing by sending update requests to multiple servers (shards).

Enabling distributed indexing is done via the file, found in solrconfig.xml

 (replace with the name of$LWS_HOME/solr/cores/collection/conf collection

the collection that is being configured for distributed indexing). By default it is not
enabled. The file needs to be installed on each shard, and thesolrconfig.xml

shards should be listed in the same order in each file.

The distributed update processor is controlled by two parameters, and shards

, which may either be specified in , or supplied with a specificself solrconfig.xml

update request to Solr.

shards lists the servers in the cluster. The list should be exactly the same
(that is, in the same order) in the configuration file for every server in the
cluster.
self should be different for each server in the cluster and should match the
entry in for the particular server. It is used to allow updates for theshards

particular server to be directly added rather than going through the HTTP
interface. If it is missing, distributed update will still work, but will be less
efficient.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 327
347

To start using distributed indexing, find the following section in ,solrconfig.xml

and uncomment the shard location definitions. Below is an example of shard
definition that is not commented out.

<updateRequestProcessorChain name="lucid-update-chain">

 <processor class="com.lucid.update.DistributedUpdateProcessorFactory">

 <!-- example configuration...

 "shards should be in the *same* order for every server

 in a cluster. Only "self" should change to represent

 what server *this* is. -->

 <str name="self">localhost:8983/solr</str>

 <arr name="shards">

 <str>localhost:8983/solr</str>

 <str>localhost:7574/solr</str>

 </arr>

 </processor>

 <processor class="solr.LogUpdateProcessorFactory">

 <int name="maxNumToLog">10</int>

 </processor>

 <processor

class="com.lucid.update.FieldMappingUpdateProcessorFactory"/>

 <processor class="solr.RunUpdateProcessorFactory"/>

</updateRequestProcessorChain>

Indexing Documents

If distributed indexing has been configured as above, then any indexing initiated
from the LucidWorks Search administration user interface, such as crawling
directories, will be appropriately handled by sending some documents to each
server. One can use the distributed update processor in conjunction with any
update handler while directly updating Solr. The and /update/xml /update/csv

update handlers are already configured to use , the distributed updatedistrib

processor, by default.

If an update handler has not been configured to use the distributed update
processor, it may be specified in the URL via the parameter:update.processor

http://localhost:8888/solr/collection1/update?update.processor=distrib

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 328
347

If the and parameters are not configured in solrconfig.xml, then theyself shards

may be specified as arguments on the update url.

http://localhost:8888/solr/collection1/update?update.processor=distrib&self=localhost:8888/solr&shards=localhost:8983/solr,localhost:7574/solr,localhost:8888/solr

Update commands may be sent to any server with distributed indexing configured
correctly. Document adds and deletes are forwarded to the appropriate
server/shard based on a hash of the unique document id. commands and commit

 commands are sent to every server in .deleteByQuery shards

Distributed Search
After a logical index is split across multiple shards, distributed search is used to
make requests to all shards, merging the results to make it appear as if it came
from a single server.

Programmatic Distributed Search

One can use distributed search with Solr request handlers such as , standard

, or (the handler used by the LucidWorks Search), or any otherdismax lucid

search handler based on .org.apache.solr.handler.component.SearchHandler

Supported Components

The following Solr components currently support distributed searching:

The Query component that returns documents matching a query
The Facet component, for and requests where facet.query facet.field

 (the default: return the constraints with the highestfacet.sorted=true

counts)
The Highlighting component, which highlights results
The Debug component

The presence of the parameter in a request will cause that request to beshards

distributed across all shards in the list. The syntax of is shards

host1:port1/base_url1,host2:port2/base_url2,...

The example below would query across 3 different shards, combining the results:

http://localhost:8888/solr/collection1/select?shards=localhost:8983/solr,localhost:7574/solr,localhost:8888/solr&q=super

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 329
347

As a convenience to clients, a new request handler could be created with shards
set as a default like any other ordinary parameter.

The parameter should not be set as a default in the standardshards

request handler as this could cause infinite recursion.

Scalability and Fault Tolerance
To provide fault tolerance and increased scalability, standard can bereplication
used to provide multiple identical copies of each index shard. Each shard would
have a master and multiple slaves.

Indexing in a Fault Tolerant Distributed Configuration

Only the master for each shard should be configured in distributed indexing or
specified to the distributed update processor. There is no fault tolerance while
indexing - if the master for a shard goes down, indexing should be suspended.

Searching in a Fault Tolerant Distributed Configuration

Each shard will have multiple replicas. A Virtual IP (VIP) should be configured in
the load balancer for each shard, consisting of all replicas. LucidWorks Search
distributed search configuration, and the parameter for distributed searchshards

requests should use these VIPs.

A single VIP consisting of all the shard VIPs should be configured for all external
systems to use the search service.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 330
347

Integrating Monitoring Services

 Monitoring your application always is an important
part of running production system. Most system administrators have used various
tools to ensure everything is ok from the health of server's filesystem to the the
temperature of CPUs. LucidWorks Search provides additional capabilities to
integrate application level statistics information into these monitoring tools.

LucidWorks Search and Solr make available several JMX MBeans which can be
used with stand-alone JMX clients, or integrated with servers that support MBeans,
such as Nagios or Zabbix. More information on all these options is below.

JMX
Enabling JMX for LucidWorks Search
JMX Clients
JMX MBeans

Integrating with Monitoring Systems
Zabbix
Nagios

Helpful Tips

JMX
JMX is a standard way for managing and monitoring all varieties of software
components for Java applications. JMX uses objects called MBeans (Managed
Beans) to expose data and resources from your application. LucidWorks Search
provides number of read-only monitoring beans that provide useful
statistical/performance information. Combined with JVM (platform JMX MBeans)
and OS level information, it becomes powerful tool for monitoring.

Enabling JMX for LucidWorks Search
By default JMX is enabled in LucidWorks Search for local access only. If you want
to connect and monitor application remotely you need to change

http://en.wikipedia.org/wiki/Java_Management_Extensions

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 331
347

 parameter in the file and addlwecore.jvm.params $LWS_HOME/conf/master.conf

the following JVM parameters:

lwecore.jvm.params=... -Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.port=3000

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.authenticate=false

-Djava.rmi.server.hostname=my.server.name

Where 3000 is an unused TCP port number.

You might want to secure remote JMX access either by configuring a software or
hardware firewall to allow connections to specified port only from your
hosts/network or by configuring password authentication and/or SSL encryption.
For more information about various security options please refer to the JMX

.documentation

JMX Clients
There are number of various JMX clients you can use to connect to the LucidWorks
Search server and browse available information.

JConsole

JConsole is a standard (part of the JDK) graphical monitoring tool to monitor Java
Virtual Machine (JVM) and Java applications which provides a nice way to display
memory and CPU information as well MBeans from arbitrary applications.

JMXTerm

Jmxterm is an open source command line based interactive JMX client. It allows
you to easily navigate JMX MBeans on remote servers without running a graphical
interface or opening a JMX port. It can also be integrated with script languages
such as Bash, Perl, Python, Ruby, etc. See the following as an example of how it
can be used:

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 332
347

sh> java -jar jmxterm-1.0-alpha-4-uber.jar

Welcome to JMX terminal. Type "help" for available commands.

$>jvms

67183 () - start.jar

/Users/alexey/LWE/conf/jetty/rails/etc/jetty.xml

/Users/alexey/LWE/conf/jetty/rails/etc/jetty-jmx.xml

/Users/alexey/LWE/conf/jetty/rails/etc/jetty-ssl.xml

67182 (m) - start.jar

/Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty.xml

/Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty-jmx.xml

/Users/alexey/LWE/conf/jetty/lwe-core/etc/jetty-ssl.xml

93534 () - jmxterm-1.0-alpha-4-uber.jar

8554 () -

$>open 67182

#Connection to 67182 is opened

$>domains

#following domains are available

JMImplementation

com.sun.management

java.lang

java.util.logging

org.mortbay.jetty

org.mortbay.jetty.handler

org.mortbay.jetty.security

org.mortbay.jetty.servlet

org.mortbay.jetty.webapp

org.mortbay.log

org.mortbay.util

solr/LucidWorksLogs

solr/collection1

$>domain solr/collection1

#domain is set to solr/collection1

$>beans

#domain = solr/collection1:

...

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 333
347

solr/collection1:id=collection1,type=core

solr/collection1:id=org.apache.solr.handler.StandardRequestHandler,type=standard
...
solr/collection1:id=org.apache.solr.search.FastLRUCache,type=fieldValueCache
solr/collection1:id=org.apache.solr.search.LRUCache,type=documentCache
solr/collection1:id=org.apache.solr.search.LRUCache,type=filterCache
solr/collection1:id=org.apache.solr.search.LRUCache,type=queryResultCache
solr/collection1:id=org.apache.solr.search.SolrFieldCacheMBean,type=fieldCache
...
solr/collection1:id=org.apache.solr.search.SolrIndexSearcher,type=searcher
solr/collection1:id=org.apache.solr.update.DirectUpdateHandler2,type=updateHandler

$>bean

type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

#bean is set to

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

$>info
#mbean

=

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2
#class

name = org.apache.solr.core.JmxMonitoredMap$SolrDynamicMBean

attributes

 %0 - adds (java.lang.String, r)

 %1 - autocommit maxTime (java.lang.String, r)

 %2 - autocommits (java.lang.String, r)

 %3 - category (java.lang.String, r)

 %4 - commits (java.lang.String, r)

 %5 - cumulative_adds (java.lang.String, r)

 %6 - cumulative_deletesById (java.lang.String, r)

 %7 - cumulative_deletesByQuery (java.lang.String, r)

 %8 - cumulative_errors (java.lang.String, r)

 %9 - deletesById (java.lang.String, r)

 %10 - deletesByQuery (java.lang.String, r)

 %11 - description (java.lang.String, r)

 %12 - docsPending (java.lang.String, r)

 %13 - errors (java.lang.String, r)

 %14 - expungeDeletes (java.lang.String, r)

 %15 - name (java.lang.String, r)

 %16 - optimizes (java.lang.String, r)

 %17 - rollbacks (java.lang.String, r)

 %18 - source (java.lang.String, r)

 %19 - sourceId (java.lang.String, r)

 %20 - version (java.lang.String, r)

#there's no operations

#there's no notifications

$>get cumulative_adds

#mbean =

solr/collection1:type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2:
cumulative_adds

= 125;

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 334
347

JMX MBeans
LucidWorks includes a number of useful JMX MBeans, some available through Solr
and some developed in LucidWorks Search itself:

Solr MBeans

Domain Objects Available
attributes

Comments

solr/collection type=updateHandler,

id=org.apache.solr.update.

DirectUpdateHandler2

cumulative_adds,
cumulative_deletesById,
cumulative_deletesByQuery,
cumulative_errors,
commits,
autocommits,
optimizes,
rollbacks,
docsPending, etc

This MBean
provides
comprehensive
information about
indexing activity
like number of
added documents,
number of errors,
number of
commits,
autocommits and
optimize
operations. It is
really useful to
plot that
information into
graphs in your
monitoring
system. The
cumulative_errors
parameter shows
the number of low
level IO
exceptions.

solr/collection type=/update,
id=org.apache.solr.handler.

request, errors,
avgTimePerRequest,
etc

If using direct Solr
API, there are
separate beans for

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 335
347

Domain Objects Available
attributes

Comments

XmlUpdateRequestHandler
all types of
handlers you can
use to index
documents into
the system, such
as XML, CSV,
JSON request
handlers. It makes
sense to add this
UpdateRequest
Handler
information to
indexing graphs as
well. You might
also setup
monitoring alert
on a number of
errors for
particular update
handler to make
sure LucidWorks
Search clients
don't hit any
errors during
indexing like
invalid fields
names or types,
no required fields
in indexed
documents, etc.

solr/collection type=/lucid,
id=org.apache.solr.handler.

requests, errors,
timeouts,
avgTimePerRequest

This MBean
represents the
default LucidWorks

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 336
347

Domain Objects Available
attributes

Comments

StandardRequestHandler
Search request
handler and
provides statistics
about number of
search requests,
errors, timeouts
and average
response time for
search requests.
It's pretty useful
to display this
information on
monitoring graphs
as well as setup
monitoring alerts,
such as, "notify
administrator if
average response
time is more than
0.5 second or total
number of errors
and timeouts is
more than 1% of
total requests".

solr/collection type=searcher,
id=org.apache.solr.search.

SolrIndexSearcher

numDocs,
warmupTime

numDocs is the
total number of
documents in the
index.

 iswarmupTime
the amount of
time a new
Searcher takes to
warm. When

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 337
347

Domain Objects Available
attributes

Comments

LucidWorks Search
commits new data
into index, a new
Searcher is
opened and
warmed. The
warming operation
regenerates
caches from the
previous Searcher
instance and runs
some predefined
in solrconfig.xml
queries to warm
up IO filesystem
cache and load
Lucene FieldCache
in memory. This
attribute basically
defines how long
does it take to
commit before
new data will be
available to users.
It makes sense to
monitor this
parameter and
setup trigger to
alert the
LucidWorks Search
administrator if it
takes more time
than you expect.

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 338
347

Domain Objects Available
attributes

Comments

solr/collection type=filterCache,
id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

Solr caches
popular filter
query
(fq=category:IT)
attributes as
unordered sets of
document ids. This
technique
significantly
improves search
filtering/faceting
performance. size
is the current
number of cached
filter queries.
cumulative_hitratio
represents if this
cache is
successfully
utilized by giving
the ratio of
successful cache
hits to overall
number of
lookups. If it's low
(such as < 0.3 or
30%) over long
period of time
then you might
want either
increase cache
size or disable it at

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 339
347

Domain Objects Available
attributes

Comments

all to reduce
performance
overhead.

solr/collection type=queryResultCache,

id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
warmupTime, etc

This cache stores
ordered sets of
document IDs and
the top N results
of a query ordered
by some criteria.
It has the same
attributes as
filterCache.

solr/collection type=documentCache,

id=org.apache.solr.search.

LRUCache

cumulative_evictions,
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups,
etc

The
documentCache
stores Lucene
Document objects
that have been
fetched from disk.

LucidWorks Search MBeans

Domain Objects Available
attributes

Comments

lwe id=crawlers,
name=<data_source_id>,

type=datasources

total_runs,
total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

This MBean
displays crawlers
statistics
information for
specific data
source (like
number of
processed
documents,

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 340
347

Domain Objects Available
attributes

Comments

number of errors,
etc). If you have
periodically or long
running scheduled
data source then
you might want to
monitor and alert
if there's any
problem with the
underlying source
(web site,
SharePoint server,
etc) or how
optimized your
incremental crawl
is (percentage of
num_unchanged
to num_total), for
example.

lwe id=crawlers,
name=<collection_name>,

type=collections

total_runs,
total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

If you have
multiple data
sources and don't
want to monitor
on per data source
level, but keep an
eye on aggregate
numbers for the
whole collection
you might want to
use this bean.

lwe id=crawlers,
type=total

total_runs,
total_time,
num_total,

You can use this
MBean if you have
multiple collections

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 341
347

Domain Objects Available
attributes

Comments

num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

(homogeneous
collections or
multi-tenant
architecture) to
monitor on per
instance level.

Integrating with Monitoring Systems
Using JConsole and JmxTerm tools is a good way to explore information hidden in
JMX, but what you really need is to monitor your application automatically, record
historical information, display it in a graphical form, configure parameters
thresholds as triggers and send alerts in case of denial of service or performance
problems. There are various standard sysadmin tools for that and integrating
LucidWorks with them is no different than with any other Java application. The
idea is that you can retrieve application information and send it to external
monitoring system. In our documentation we provide two examples of integrating
LucidWorks server with popular open source monitoring tools - and .Zabbix Nagios

Zabbix
Zabbix is an enterprise-class open source distributed monitoring solution for
networks and applications. It comes with pre-defined templates for almost all
operating systems as well as various open source applications. It also has a great
template for JVM that contains the most vital statistics of arbitrary Java
application. There are different ways how you can integrate LucidWorks with
Zabbix and the best approach depends on the Zabbix release version.

Pre-2.0 Releases

Zabbix does not contain built-in support for monitoring Java applications prior to
v2.0, but if you are handy with scripting and command line tools then there are
two possible approaches:

UserParameter: You can configure the Zabbix system agent to send custom
monitored items using . For retrieving JMX statistics you can useUserParameter

either or as command line clients.cmdline-jmxclient jmxterm

http://www.zabbix.com
http://www.zabbix.com/documentation/1.8/manual/config/user_parameters
http://crawler.archive.org/cmdline-jmxclient/
http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 342
347

UserParameter=jvm.maxthreads, java -jar cmdline-jmxclient.jar

localhost:3000 java.lang:type=Threading PeakThreadCount

zabbix_sender utility: If you have a large number of JMX monitored items, or you
need to monitor some items quite frequently, then spawning a Java Virtual
Machine process to get a single object/attribute can be too expensive. In this case
consider scripting JMX interactions using the command line tool and yourJMXTerm
favorite scripting language. The solution below is in Ruby but could be
implemented using any scripting language. The main idea is that you can run a
JMXTerm java application from your script and communicate with it using stdin
and streams using the library.stdout expect

require "open3"

require 'expect'

....

run jmxterm java application

stdin, stdout, wait_thr = Open3.popen2e('java -jar

jmxterm-1.0-alpha-4-uber.jar')

wait for prompt

result = stdout.expect('$>', 60)

...

connect to specific jvm

stdin.puts("open #{process_id}")

result = stdout.expect('$>', 60)

...

stdin.puts('get -d solr/collection1 -b

type=searcher,id=org.apache.solr.search.SolrIndexSearcher numDocs')

result = stdout.expect('$>', 60)

parse response from jmxterm command

...

run zabbix_sender command to send single item or save multiple values

into file and send as a batch

output = `zabbix_sender -z #{@server_name} -p #{@server_port} -i

file.txt`.chomp

parse response and validate that operation is successful

...

http://www.zabbix.com/documentation/1.8/manual/processes/zabbix_sender
http://en.wikipedia.org/wiki/Expect

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 343
347

1.
2.

3.

4.

5.

6.

7.

2.x Releases

Zabbix 2.0 contains built-in support for monitoring Java applications (Zabbix Java
proxy). For more information please see the JMX Monitoring section of the Zabbix

.manual

The following steps describe how to integrate LucidWorks Search with the Zabbix
2.0 release.

Download and install the 2.0 release according to the official .documentation
In order to build Zabbix JMX proxy you should build Zabbix package with the

 configuration option, such as --enable-java ./configure

.--enable-server --with-mysql --enable-java

If you intend to run Zabbix on the same server where you installed
LucidWorks, you may want to add the option, such as --enable-agent

./configure --enable-server --with-mysql --enable-java

.--enable-agent

After , copy the example start script from make install init.d

 into the directory andmisc/init.d/debian/zabbix-server /etc/init.d

edit it to start the JMX proxy daemon by adding
 and <install_dir>/sbin/zabbix_java/startup.sh

 calls to the corresponding<install_dir>/sbin/zabbix_java/shutdown.sh

options in .init.d

Configure JMX proxy in by editing the /etc/zabbix/zabbix_server.conf

, and parameters. The JavaGateway JavaGatewayPort StartJavaPollers

 should match the defined in JavaGatewayPort LISTEN_PORT

. It is also recommended<install_dir>/sbin/zabbix_java/settings.sh

to enable JMX proxy verbose logging by editing
 and changing the <install_dir>/sbin/zabbix_java/lib/logback.xml

 element to point to your log file directory and setting the file level

attribute to "debug".
Import, using the Zabbix UI, the sample templates found in

 called (there$LWS_HOME/app/examples/zabbix lwe_zabbix_templates.xml

are 3 in that file).
Install the Zabbix agent to the server where LucidWorks Search is installed
and configure it to connect to the Zabbix server.

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring
http://www.zabbix.com/documentation/2.0/manual/installation/install

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 344
347

7.

8.

9.

10.

11.

Add Zabbix host and assign proper template for the specific operating
system (i.e., linux, freebsd, etc.).
Assign the imported templates (Template_JVM, Template_Solr,
Template_LWE) to that host.
Enable JMX monitoring in LucidWorks and allow the Zabbix server connect to
JMX interface over the network. Instructions to enable JMX monitoring are in
the section of this Guide.#Enabling JMX for LucidWorks Search
Add the JMX interface to the host where LucidWorks is installed. This is done
via the Zabbix UI by creating JMX agents for each counter.
Start any activity in LucidWorks (such as, crawling, indexing, or serving
queries) and review the graphs for the monitored host (see screenshots
below).

Example graphs

Total number of documents in search index

Total Number Of Documents
Solr index operations (commits, optimizes, rollbacks)

Solr Index Operations
Solr document operations (adds, deletes by id or query)

Solr Document Operations
Crawling activity - number of total documents processed, number of failures
(retrieve, parsing), number of new documents

Crawling Activity
Search activity - number of search requests

http://www.zabbix.com/documentation/2.0/manual/config/items/itemtypes/jmx_monitoring#configuring_jmx_interfaces_and_items_in_zabbix_gui

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 345
347

Search Activity
Search Average Response Time

Search Average Response Time
Searcher Warmup Time (how fast committed docs become
visible/searchable)

Searcher Warmup Time
Java Heap Memory Usage

Java Heap Memory Usage
Caches stats

Nagios
Nagios is a popular open source computer system and network monitoring
software application. It watches hosts and services, alerting users when things go
wrong and again when they get better. There are different Nagios plugins that
allow you to monitor Java applications using JMX interface. We recommend you to
use as the most mature plugin that supports differentSyabru Nagios JMX Plugin
data types (integers, floats, string regular expressions) and advanced Nagios

http://www.nagios.org/
http://snippets.syabru.ch/nagios-jmx-plugin/

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 346
347

threshold syntax. In order to install Syabru Nagios JMX Plugin you should copy
 and from the downloaded package to Nagios check_jmx check_jmx.jar plugins

directory and add to either global check_jmx command definition commands.cfg

configuration file or put the file into configurationjmx.cfg nagios_plugins

directory. The next step is to define Nagios services, as in this example:

LWE searcher warmup time is no more than 1) 1 second - warning state

2) 2 seconds - critical state

define service {

 hostgroup_name all

 service_description LWE_SEARCHER_WARMUP_TIME

 check_command check_jmx!3000!-O

"solr/collection1:type=searcher,id=org.apache.solr.search.SolrIndexSearcher"

-A warmupTime -w 1000 -c 2000 -u ms

 use generic-service

 notification_interval 0

}

LWE search average response time is no more than 1) 100ms - warning

state 2) 200ms - critical state

define service {

 hostgroup_name all

 service_description LWE_SEARCHER_AVG_RSP_TIME

 check_command check_jmx!3000!-O

"solr/collection1:type=/lucid,id=org.apache.solr.handler.StandardRequestHandler"

-A avgTimePerRequest -w 100 -c 200 -u ms

 use generic-service

 notification_interval 0

}

After you setup your services and reload the Nagios configuration you can monitor
application state using either the Nagios web UI or receive email notifications.

Nagios UI screenshot (thresholds on the screenshots are lowered to trigger
critical state as an example)

Nagios email alert

http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition

LucidWorks Search Documentation 05-Aug-2014

© 2014
LucidWorks

Find this documentation online at
http://docs.lucidworks.com/

Page of 347
347

Helpful Tips

OS file system cache: One of the frequent problems with LucidWorks
Search and Lucene/Solr applications is that if you do not have enough free
memory and a significant index size you might notice performance problems
because there's not enough free memory for the file system cache. IO cache
is a crucial resource for search applications, so it definitely makes sense to
monitor this parameter and display it in graphs with other memory
information like free memory, jvm heap memory, swap, etc. This parameter
is part of the OS level monitoring in Zabbix (name is

).vm.memory.size[cached]

File descriptors: Another problem is that sometimes your application can
hit OS or per process file descriptor limits. It is also recommended to
monitor these parameters and set trigger thresholds for these parameters.
CPU usage: Default Zabbix templates have triggers for CPU load average
numbers. You might want to tune thresholds for your server based on
number of CPUs and expected load.
Heap memory usage and garbage collector statistics: Zabbix Java
template contains multiple items and triggers for memory and garbage
collector invocation counts. You should also tune these parameters to match
your scenario.
Solr index size and free disk space: These should be set properly to
avoid "Out Of Disk Space" errors.

	Getting Started
	LucidWorks Search User Interface Help
	System Configuration Guide
	Understanding LucidWorks Search
	How Search Engines Work
	Indexing
	Searching
	Full-text Searching and Challenges

	How LucidWorks Search Works
	Related Topics

	Working With LucidWorks Search Components
	About the Components
	LWE-Core
	LWE-UI
	LWE-Connectors
	Default Installation URLs

	Configuring the Components
	Related Topics

	System Directories and Logs
	Locating Files and Directories
	Configuring LucidWorks Search Directories
	Temporary Files

	System Logs
	Log Properties

	LucidWorksLogs Collection
	Related Topics

	Starting and Stopping LucidWorks Search
	Starting a Standalone LucidWorks Search Instance
	Starting SolrCloud-enabled LucidWorks Search Instances
	Passing SolrCloud parameters at Start
	Updating master.conf

	Stopping LucidWorks Search (all modes)
	Starting or Stopping Components Separately

	Configuring Default Settings
	Related Topics

	LucidWorks System Usage Monitor
	Information Collected
	How the System Usage Monitor Works
	When Information is Sent
	How Information is Sent

	How to Opt-In or Opt-Out
	During Installation
	Post-Installation

	More Information

	Collections and Indexes
	Working with Collections
	Default Collections
	Per-Collection Features
	System-Wide Features
	Related Topics

	Using Collection Templates
	Included Templates
	Creating a Template
	Related Topics

	Indexing Documents
	Defining Fields
	Indexing Data Sources
	Related Topics

	Storing Indexes in HDFS
	Defining the HdfsDirectoryFactory in solrconfig.xml
	Updating master.conf
	Related Topics

	How Documents Map To Fields
	Related Topics

	Customizing the Field Schema
	Guidelines for Removing Fields from the Schema
	Essential Fields
	Built-In Search UI Fields
	Fields to Support Specific Features
	Crawler Fields
	Other Dynamic Fields

	Table of Fields

	Reindexing Content
	Related Topics

	Multilingual Indexing and Search
	Approaches to Multilingual Search
	Single Field Approach
	Multiple Field Approach
	Multiple Indexes Approach

	Open Source Multilingual Capabilities
	Adding Support for Other Languages
	Related Topics

	Lucid Plural Stemming Rules
	The Stemming Rules File
	Types of Stemming Rules
	Protected Word
	Replacement Word
	Protected Suffixes
	Translation Suffix

	Example Stemming Rules File
	Choosing an Alternate Stemmer
	Using the FieldTypes API
	Editing schema.xml

	Deleting the Index
	Related Topics

	Crawling Content
	Overview of Crawling
	The Crawl Process
	Re-Crawling Documents

	Data Source Options
	Logging
	Scheduling
	Field Mapping

	Data Source Types
	Related Topics

	Supported Filetypes
	Supported File Formats

	Troubleshooting Document Crawling
	Errors Creating Data Sources
	Path or URL Errors
	MapR-related Errors

	Understanding Crawl Errors
	Possible Errors

	Related Topics

	Pushing Content to LucidWorks
	Push Data Sources
	Add lucidworks_fields to Incoming Content
	Examples

	Related Topics

	Indexing Documents Directly to Solr
	Solr and the LucidWorks Admin UI
	Indexing Solr XML
	Indexing Column (Comma) Delimited Data
	Related Topics

	Crawling Windows Shares with Access Control Lists
	Permissions with Access Control Lists
	How SMB ACL Information Is Stored In The Index
	Related Topics

	Indexing Binary Data Stored in a Database
	Example
	Related Topics

	Using the Hadoop Crawlers
	System Requirements
	Special Requirements for MapR

	Using Hadoop Crawlers in LucidWorks
	How the Crawler Works
	Differences from Other Hadoop Crawlers in LucidWorks
	Job Jar Arguments
	Mapper Classes
	Example Arguments

	Permission Issues
	Related Topics

	Integrating Nutch
	Solr indexer
	Field mapping in Nutch
	Field mapping in LucidWorks
	Putting it all together
	Summary
	Related Topics

	Processing Documents in Batches
	How a Batch is Constructed
	Steps to Configure Batch Crawling
	More about the Data Source Settings

	Related Topics

	Using the Apache Hive Connector
	Installing LucidWorks to Hive
	Create an External Table
	Queries and Inserting Tables

	Query and Search Configuration
	Overview of Query Processing
	Matching the User's Query to Documents
	Search Results

	Getting Search Results
	Basics of Searching
	Request Handlers
	Query Parsers

	Related Topics
	Constructing Solr Queries
	Solr Query Parameters
	Query Parsers
	Related Topics

	Solr Query Responses
	Structure of the Response
	The responseHeader Section
	The response Section
	The highlighting Section
	The facet_counts Section
	The spellcheck Section
	The debug Section

	Format of Results
	Related Topics

	Query and Response Examples
	Related Topics

	Understanding and Improving Relevance
	Relevance Testing
	After Testing
	Related Topics
	Indexing and Relevance
	Stop words
	Alternate Indexing Fields
	Document and Field Boosting
	Stemming and Lemmatization

	Queries and Relevance
	Boosting Specific Documents
	Query Term Boosting
	Click Scoring Relevance Framework
	Synonyms
	Unsupervised Feedback
	Boosting Documents According to Rules
	Related Topics

	Relevance Tuning Tools
	Relevancy Workbench
	Explain Scoring
	Solr Analysis
	Using Luke
	External Boost Data
	Related Topics

	Synonyms and Stop Words
	Synonym Expansion
	Stop Words
	Related Topics
	Suppressing Stop Word Indexing
	Disabling Stop Word Indexing
	Position Increment Mode

	Spell Check
	Related Topics

	Auto-Complete of User Queries
	Automatic Creation of Auto-Complete Indexes

	Enterprise Alerts
	How Alerts Work
	Enabling Alerts

	Click Scoring Relevance Framework
	Functionality of Click Scoring
	Collection of Query Terms and User Clicks
	Processing Logs
	Maintenance of Historical Click Data
	Document Boost Data
	Integration of Boost Data with the Index

	Using Click Scoring information
	Related Topics
	Using Click Scoring Tools
	File Formats
	Query and Click-through Log Format
	Boost File Format

	Click-induced Boost Calculation
	ClickAnalysisRequestHandler
	Click Scoring Tools and Index Replication

	Business Rules Integration
	About Rules Engines
	When Should I Use Business Rules?
	How to Implement Business Rules in LucidWorks Search
	Integrating with your Rules Engine

	Configuring Business Rules in LucidWorks Search
	RequestHandlers
	/rulesMgr
	Optional RequestHandlers
	/update-with-rules
	/update-extract-with-rules
	/search-with-rules

	SearchComponents
	firstRulesComp
	lastRulesComp
	Rules Component Parameters
	Input Parameters
	Facts Collected for the RulesComponent

	landingPage
	Input Parameters
	Facts Collected for the LandingPageComponent

	UpdateRequestProcessorChain
	Facts Collected for the RulesUpdateProcessor

	Document Transformer
	Facts Collected for the RulesDocTransformer

	Rules with Index Replication

	Writing Rules
	Rules Files
	Rule Declarations
	rule and Attributes
	when Conditions
	then Actions

	DroolsHelper Class
	Limitations

	Related Topics

	Example Rules and Recipes
	Sample Rule Files
	Detailed Examples
	README Example
	Landing example

	Disabling Business Rules
	Remove Rules from Update Chain
	Remove Rules from the /lucid Request Handler
	Remove the Rules Request Handler
	Remove Rules Search Components
	Remove the RulesDocTransformer
	Remove Rules From the Replication Handler

	Security and User Management
	Restricting Access to UIs and APIs
	Network Access
	User Authentication
	User Authorization

	Restricing Access to Documents
	User Authentication Options
	Manual User Management
	Enabling Jetty-based Authentication with LDAP Roles
	Modify master.conf
	Modify jetty.xml
	Modify web.xml
	Modify solr.xml
	Enable LDAP
	Restart LucidWorks Search

	Admin UI-based LDAP Authentication
	LDAP Configuration File
	Modify Server Settings Page in Admin UI
	Enable LDAP property in master.conf
	Restart LucidWorks

	Jetty-Based Authentication with realm.properties
	Modify Login Configuration jetty.xml
	Create a realm.properties File
	Modify Roles in web.xml

	Role Configuration
	Defining Roles
	Resources

	Granting User Access

	Restricting Access to Content
	Search Filters
	Access Control Lists
	Document-based Authorization
	Related Topics

	Enabling SSL
	Steps to Enable SSL
	Step 1: Modify master.conf
	Step 2: Modify jetty.xml for LWE-Core Component
	Step 3: Modify jetty-ssl.xml for LWE-Core Component
	Step 4: Modify jetty.xml for LWE-UI Component
	Step 5: Modify jetty-ssl.xml for LWE-UI Component
	Step 6: Modify jetty.xml for the LWE-Connectors Component
	Step 7: Restart LucidWorks

	Certificate Management
	Client Certificates for LWE-Core and Connectors
	Configuring Mutually Authenticated SSL
	Debugging SSL Configuration
	Common SSL Problems

	Related Topics

	Solr Direct Access
	Solr Version
	How the LucidWorks-Bundled Solr is Different
	Adding Solr Plugins
	Related Topics

	Performance Tips
	Improving indexing speed
	Improving Search speed
	Related Topics

	Expanding Capacity
	Using SolrCloud in LucidWorks
	Enabling SolrCloud Mode
	Using the Embedded ZooKeeper
	Starting LucidWorks Search

	Bootstrapping Solr vs. LucidWorks Search

	How SolrCloud Works with LucidWorks
	Replicated Configurations
	Using the Admin UI in SolrCloud Mode
	Feature Limitations
	Collections APIs

	Using a Stand-Alone ZooKeeper Instance or Ensemble
	Related Topics

	Index Replication
	Configuring Replication on the Master Server
	Operations that Trigger Replication

	Configuring Replication on Slave Servers
	Configuring Replication on a Repeater Server
	Replicating Configuration Files
	Replicating the solrconfig.xml File

	Related Topics

	Distributed Search and Indexing
	Distributed Indexing
	Manual Distributed Indexing
	Manual Configuration
	Indexing Documents

	Distributed Search
	Programmatic Distributed Search
	Supported Components

	Scalability and Fault Tolerance
	Indexing in a Fault Tolerant Distributed Configuration
	Searching in a Fault Tolerant Distributed Configuration

	Integrating Monitoring Services
	JMX
	Enabling JMX for LucidWorks Search
	JMX Clients
	JConsole
	JMXTerm

	JMX MBeans

	Integrating with Monitoring Systems
	Zabbix
	Pre-2.0 Releases
	2.x Releases
	Example graphs

	Nagios

	Helpful Tips

