P 210
.I.f ﬁ‘ (]
NS g.

\""'-l-_-l—"‘

lucidworks

DOCUMENTATION

IIIIIIIIIII

LucidWorks Search Platform Documentation

LucidWorks Enterprise Documentation i 5
About Lucid Imagination o e e e e 5
How to Use this Documentation i e 6
Introduction . . . o o e e 8

Features of LucidWorks Enterprise e 9
How Search Engines WorK . .. oot e e e e e e e e e e e e e 11
How LucidWorks Enterprise WOorks i e e e e 13
Indexing DOCUMENES . . . o ottt e e e e e e e e e e e 15
Managing Indexes and Fields i e 17
Managing QUEIIES . . . o v vttt e e e e e e e 18
Installation and Upgrade Guide i e e e e e e 20
Installation e 21
Running the Installation Wizard e e e e e 22
Running the Installer in Console Mode i e e e 23
Automating Installation Options for Installation to Multiple Environments 25
Uninstalling Lucid Works Enterprisettt e e et e e e e e e e e e e 28
Working With LucidWorks Enterprise Components e 29
System Directories and LOgS o it i it e e e e 31
Starting and Stopping LucidWorks Enterprise i e 33
Migrating from @ Prior Version e e 34
LucidWorks Update ToOol . . .o e e e s 35
Index Upgrade Tool it e e e e e e 43
LucidWorks Enterprise User Interface Guide ittt e 44
System Configuration Guide e 45
Configuring Default Settings e e 46
Working with Collections e 50
Using Collection Templatest e e et e e e e e e e e e e 51
Crawling and Indexing Configuration 52
Supported Filetypes o e e e e 53
How Documents Map To Fields et e e e e e e s 54
Customizing the Schema e 54
Synonyms, Stop Words, and Stemming e 63
Term Analysis File FOrmats e 64
Suppressing Stop Word INdeXinNgttt e e e e 68
Troubleshooting Document Crawlingo e 71
Batch (Split) Crawlingo e e e e 72
Crawling Windows Shares with Access Control Lists i 73
Suggestions for External Data Source Documents i e 75
Integration with External Pipelines i 77
Deleting the Index e 80
Query and Search Configuration i 80
Enterprise Alerts e 81
Spell Check .o e e e e e 81
Auto-Complete of User QUENES . . . o o v i ittt ettt e e e 82
Document Highlighting e e e e 83
Search User Interface Customization e 86
Performing a Search Against LucidWorks Enterprise i 87
Understanding and Improving Relevancettt e et e e 91
Click Scoring Relevance Framework e e 96
Using Click Scoring ToOIS . . . i e e e e e e e e e e e e e 100
Multilingual Indexing @and SearCht e 103
Security and User Management ittt e e e 105
Securing LucidWorks Enterpriset e 106
Enabling SSL . . . e e e e 107
Restricting Access to Content e e 109
LDAP INntegration ottt e e e e 110
SOIr DIreCE ACCESS v v o v v ittt e et et e e e e 114
PerfOrmManCe TIPS . . o ot e e e 118
EXpanding Capacity o v it e e e e e 119
Index Replication i e 120
Distributed Search and Indexing it i e e e 123
SOl CloUd . e e e e e e e 126

Integrating Monitoring Services o i e e e 127

LucidWorks Search Platform Documentation

LuCid QUEIY Parser . . . e e e e e 139
Building Search QUEES i it et e e e e e e 140
Basic Usage i e e 141
Understanding TermS . . . oo ittt e e e e e e e e e 142
Case INSensitivity e 143
Simple Boolean QUEMIES . . . o i it i e e e e e e 143
Natural Language QUEKIES o o it i e e e e e e e e e e e 143
Phrase QUeNY i e e e e 144
More LIKe This . . vttt e e e e e e e s e e e e e e 144
Boolean Operators oo e 145
Hyphenated Terms e e et e e e e e e e e e e e 147
Punctuation and Special Characters i 148
AlphanUmEriC TeIMS . . . i it et e e e e e e e 149
Wildcard QUENIES i i st e e e e e e e e e e 149
RanNge QUENIES . . . o i e e e e 151
FUZZy QUEIIES . . . e e e e e e e 152
Fields and Field Types . . .o oot e e e e e e s 153
Field QUENIES . . . it e e e e e e e 153
Date QUEMIES . o o i e s 154
Date RanNges e e e e 155

Solr Date Formatt e s 156
Non-Text, Date, Numeric Field QUeries it e e e e e e e e e e e s 158
Whitespace e 158
Term Operators o e e e e 159
Selecting Al DOCUMENES . . . o o it e e e e e e e e e e e 159
Relational Operators i e e 160
Accented CharaCters vttt e e e e e e 160
Building Advanced QUENES o ot ittt e s 161
Minimum Match for Simple Queries i e e 162
Negative QUEeMES e e e e e 162
Escaping Wildcard Characters ittt ettt e e e e e e 163
Proximity Operations e e e 163
Term BoOSting . . . i e 167
Boolean Relevancy BoOSting o oo ittt e e e e 168

Query Analysis for Relevancy Boosting e 168

Term Modifiers . . . oo e e e e e e 168
Default Query Fields oo i e 169
EMpPLy QUEIIES . . o e e e e e e e e e e e 170
Queries with Unicode Characters it e e e e e e e e e 170
Escaping Special Syntax Characters it e e e e 170
Term Keyword Options . . . it i eeeea 172
Like Term Keyword Option oo it e 172

Like Document Term Keyword Option i e e e e e e e 173

Query Parser Customization e 174
Choosing an Alternate Stemmer e e e 178
LucidWorks REST API Reference i i ittt et e e e e e e e e s 178
Getting Started Indexing e 180
Advanced Operations Using the REST API i et e e e e e e e e e e e 184
Error Response Formato oo e e 188
V=] /=1 [0 o 189
CollECtiONS o o o i s e e e 191
Collection INfO . . . vt e e e e 196
ACtIVIEIES . . e e e 200
AcCtiVity Status . . . o e e e e e e 205
Activity HisStory . . . o e e 206

Data SOUNCES . . . ittt e e e e e e e e e e e 208
Data Source Schedules 232

Data Source JObS e e e e 235

Data Source Status e e 240

Data Source History 242

Data Source Crawl Data Delete e 244

Batch Crawling APL . . . oo e 245

Flelds . o e e e e e e e e e e e e 257

LucidWorks Search Platform Documentation

FleldTypes . o o e e s 270
JDB C DIIVEIS . ittt e e e e e e e e e 278
SettiNgS . . e 281
Collection Templates . . . oo it e e e e e e 287
ROIES . L e e e 288
Filtering ReSUILS . . . o o o e e e e e e e e e 294
Search Handler Components e 298
Collection Index Delete i e e e e e e e 300
AlErtS AP . L L e e e e e e e e e 302
USBIS o i i i e e e e e e e e e e e e e e e 312
SSL Configuration e e e 318
Example Clients e s 322
Example .Net Clients i e e e e e e 323
Example Perl Clients e 323
Example Python Clients e 330

GloSSary Of IS . o o o it e et e e e et e e e e e e e e 335

LucidWorks Search Platform Documentation

LucidWorks Enterprise Documentation

The LucidWorks Documentation is organized into several guides that cover all aspects of using and implementing a
search application with LucidWorks Enterprise and LucidWorks Cloud.

Introduction

® How indexes are created
® How queries are handled

Installation & Upgrade Guide

® Installing a new LucidWorks Enterprise server
® System Directories and Logs
® Migrating configuration and index data to a new installation

System Configuration Guide

Troubleshooting crawl issues

Alerts configuration

Query options

Custom fields, field types, and other index customizations
Performance considerations and system monitoring
Distributed search and indexing

Security options

LucidWorks Enterprise UI Guide

Use the built-in user interfaces to:

® Set up data sources and schedule crawls
® Configure fields and field types

® Enable user access

® Search for indexed documents

LucidWorks REST API Reference

Get programmatic access to:

Configure data sources and administer crawls
Set system settings

Manage fields, field types, and collections
Example clients

Lucid Query Parser

® How the default query parser handles user requests
® Customization options

© 2011 Lucid Imagination. All rights reserved. Page 5

http://lucidworks.lucidimagination.com/display/help

LucidWorks Search Platform Documentation

About Lucid Imagination

lucid

IMAGINATION

Lucid Imagination is the first commercial company exclusively dedicated to Apache Lucene/Solr open-source
technology. As an active participant in the enormous community using Lucene and Solr, Lucid Imagination free
software for developers, documentation, commercial-grade support, high-level consulting, and comprehensive
training. Customers include AT&T, Sears, Ford, Verizon, Cisco, Zappos, Raytheon, The Guardian, The Smithsonian
Institution, Salesforce.com, The MotleyFool, Macy's, Qualcomm, Taser, eHarmony, and many other household names
around the world. The company’s web site serves as a knowledge portal for the Lucene and Solr community, with
information and resources to help developers build and deploy Lucene-based solutions in a more efficient and
cost-effective manner. The Lucid Imagination founding team includes several key contributors and committers to
Lucene and Solr, as well as experts in enterprise search application development.

For more information on product and support options for LucidWorks Enterprise, please write to:
sales@lucidimagination.com or visit our website. Support inquiries can be submitted via our LucidWorks Enterprise
forums.

Lucid Imagination
3800 Bridge Parkway, Suite 101
Redwood City, CA 94065

Tel: 650.353.4057
Fax: 650.525.1365

© 2011 Lucid Imagination. All rights reserved. Page 6

http://www.lucidimagination.com
http://www.lucidimagination.com/forum
http://www.lucidimagination.com/forum
http://www.lucidimagination.com

LucidWorks Search Platform Documentation

How to Use this Documentation

Audience and Scope

This guide is intended for search application developers and administrators who want to use LucidWorks Enterprise to
create world class search applications for their websites.

While LucidWorks Enterprise is built on Solr, and many of its features are implementations of Solr and Lucene
features, this Guide does not cover basic Solr or Lucene configuration. We do, however, point out where LucidWorks
Enterprise deviates from Solr or Lucene standard configuration practices, and have provided links to Solr and Lucene
documentation where possible for further explanation if the functionality in LucidWorks Enterprise is identical to Solr or
Lucene. One important note to remember is that LucidWorks Enterprise is multi-core enabled by default, with

col I ectionl as the default core. This means that standard Solr paths such as http://1 ocal host: port/solr/*, as
shown in Solr documentation, would be http://1 ocal host: port/solr/col |l ectionl/* in LucidWorks Enterprise.

Conventions

Special notes are included throughout these pages.

Note Type Look & Description

Information

»ﬂ Notes with a blue background are used for information that is important for you to
know.

Notes
1. Notes are further clarifications of important points to keep in mind while using
LucidWorks Enterprise.
Tip
@ Notes with a green background are Helpful Tips.
Warning

u’i‘t Notes with a red background are warning messages.

API Conventions

Parameters

Parameters shown in paths that need to be modified for your installation and specific configuration are indicated in
italics.

For example, getting the status of a data source is shown as:
CET /api/collection/collection/datasources/id.
If you were using 'collection1' and data source '3', you would enter:

CET /api/collection/collectionl/datasources/3.

© 2011 Lucid Imagination. All rights reserved. Page 7

http://localhost:port/solr/*
http://localhost:port/solr/collection1/*

LucidWorks Search Platform Documentation

Getting Support

With the download of LucidWorks Enterprise, access is provided to online forums found at
http://forums.lucidimagination.com/. Premium support is available with a subscription.

© 2011 Lucid Imagination. All rights reserved. Page 8

http://forums.lucidimagination.com/
http://www.lucidimagination.com/services/subscriptions

LucidWorks Search Platform Documentation

Introduction

This section will introduce you to basic concepts of LucidWorks Enterprise and search engine deployment. It includes
the following topics:

Features of LucidWorks Enterprise gives an overview of the features provided by LucidWorks Enterprise over and
above the core features of Apache Solr.

How Search Engines Work describes the processes used by search engines to allow people to submit queries and see
links to documents in return.

How LucidWorks Enterprise Works gives an overview of LucidWorks Enterprise and how it was built on Solr and
Lucene.

Indexing Documents gives a conceptual overview of the indexing process.
Managing Indexes and Fields gives a conceptual overview of document parsing and field management.

Managing Queries gives a conceptual overview of query processing and management.

© 2011 Lucid Imagination. All rights reserved. Page 9

LucidWorks Search Platform Documentation

Features of LucidWorks Enterprise

Because LucidWorks Enterprise is Apache Solr plus enhancements, it provides all of the benefits of Solr, along with the
backing of a company staffed by many of the developers and maintainers of both Solr and Lucene.

Powerful Search

® Powered by Apache Lucene/Solr: Apache Lucene and Apache Solr are fast, efficient, and backed
by a thriving community. LucidWorks Enterprise includes a complete Apache Solr release with all
features, including parsers, stemmers, tokenizers, and so on. You do not need to be familiar
with Solr in order to build search applications with LucidWorks Enterprise.

® Near Real-Time Search: LucidWorks Enterprise allows you to update and delete index data in
segments as it becomes available, allowing your users to search in near real time.
Scalable: Distributed search and distributed indexing allow for easily scaling out.
Replication: For high-traffic sites, replication can be employed to efficiently copy indexes to
worker nodes configured behind a load balancer.

® Cloud Connectors: Built-in support for Hadoop and Amazon EC2 S3 ensures robust, efficient
search for data in the cloud.

® REST API: LucidWorks Enterprise features can be easily integrated with existing enterprise
infrastructure with a set of APIs that do everything the user interface can do.

Simple Administration

® Easy Installation: LucidWorks Enterprise comes with an easy-to-use installer, which can also be
used to generate an automated installation script for playback on slave nodes in multi-server
configurations.

® Administration UI: A robust interface provides access to the most common administrative tasks,
including configuration of crawlers and index fields, user management, and user experience
options. System metrics also show the status of active processes and user search experience.

® Data Connectors: LucidWorks Enterprise can index and search databases, file systems, Web
sites, and Microsoft SharePoint repositories without additional programming.

® Support for Popular File Formats: Support for many different filetypes is available, including
Microsoft Office, Adobe PDF, and other common file formats. Additional options for file readers
and document filters are also available.

® Security: LucidWorks Enterprise is LDAP-aware, so search application developers can create
document level security and admin function security in accordance with local security policies.
Lucid Imagination has also added enhancements for optional end-to-end SSL encryption.

Advanced User Experience

® Query Parsing Enhancements: LucidWorks Enterprise enables a more resilient, richer user query
experience. New query operators and better stop word and synonym handling together provide
a simpler, more forgiving and intuitive end user search experience, improving the odds of
turning user inputs into quality results.

® (Click Scoring Relevance Framework: Click Scoring is a suite of tools for adjusting scoring and
ranking of documents based on analysis of historical user click data. LucidWorks Enterprise
tracks which documents were selected by users, allowing manual and automated boosting based
on the popularity of a given document.

® User Alerts: To keep users up to date as new search results are available, LucidWorks Enterprise
alerts enables automated notification. Any valid search query can form the basis for an alert;
end users can select, define, and manage their own queries.
Integrated Spell Checking: LucidWorks Enterprise supports Lucene's spelling checker natively.
Integrated Auto-complete: As users type in partial queries, LucidWorks Enterprise will suggest
completed search terms, so users can quickly complete queries or choose from frequently
occurring query terms.

LucidWorks Enteprise also includes technical support from Lucid Imagination. Our engineers have extensive hands-on

© 2011 Lucid Imagination. All rights reserved. Page 10

LucidWorks Search Platform Documentation

knowledge of both Apache Solr and LucidWorks Enterprise and can answer questions and help you resolve problems.
In addition, Lucid Imagination offers consulting services designed to help organizations better understand and
implement search efficiently and cost-effectively. Contact your Lucid Imagination sales representative for details.

© 2011 Lucid Imagination. All rights reserved. Page 11

LucidWorks Search Platform Documentation

How Search Engines Work

Basics

In its simplest form, a search engine is an application that enables a user to query a data set for information. Most
people are familiar with search engines that search the internet, but search engines also have many and varied
applications inside the enterprise. Enterprise documents or websites are not available to the public at large, so they
can't be searched with internet search engines such as Google or Yahoo. That means you need a separate search

engine for internal use.

In LucidWorks Enterprise, each unit of text to be searchable is a "document", whether it is an article, a website, a
product description, or a phone book entry. In an enterprise environment, the administrator determines which of
these documents make up the data set to be searched.

This graphic shows the basic operation of a search engine:

_ Basic Operation of a
e~ Search Engine

User Query

lucidworks antlerprisa Bearch

Result List

Search Index _ |

e s g,

Indexing

For a user to search a set of documents, the search engine needs to know what is in them. The process a search
engine uses to find out what is in a document is called "indexing". Essentially, an administrator tells the search engine
where to find the document or documents, or feeds them to the search engine by way of an uploading process. The
search engine then creates an index of all the words it finds, along with a pointer to the document in which it found
them. Most information within documents is organized into "fields." Fields contain information that serves a specific,
important purpose in the document, such as Title, Author, or Creation Date. Good search engines are able to identify

these fields and create an index for each one.

Once the search engine creates an index, lots of interesting features can be added to aid users in their search
experience, such as a spelling checker, automatic query completion, faceting of results, and "find similar"

© 2011 Lucid Imagination. All rights reserved. Page 12

LucidWorks Search Platform Documentation

functionality.

Searching

Once the search engine has created an index of available content, it is ready to accept a search. This happens when
the user enters a keyword or phrase, and the search engine compares that keyword or phrase against the index,
returning pointers to any documents that are associated with them.

Of course, people are surprisingly different in the way in which they approach a topic, so search engines need to take
these variations into account. The goal of a search engine is to match words entered by a user to words found in a
document, so one technique it uses is to "normalize" both the user's query and terms that have been indexed as much
as possible to find the best possible match, similar to the way in which you might convert both a target string and the
text you are matching to uppercase in order to eliminate case-sensitivity.

Full-text Searching and Challenges

Several inherent challenges complicate full-text search. First, there is currently no way to guarantee the searcher will
find the "best" results because there is often no agreement on what the "best" result is for a particular search. That's
because evaluating results can be very subjective. Also, users generally enter only a few terms into a search engine,
and there is no way for the search system to understand the user's intention for a search. In fact, if the user is doing
an initial exploration of a topic area, the user may not even be aware of his or her intention.

A system that understands natural language (that is, the way people speak or write) perfectly is usually considered
the ultimate goal in search engine technology, in that it would do as good a job as a person in finding answers. But
even that is not perfect, as variations in human communication and comprehension mean that even a person is not
guaranteed to find the "right" answer, especially in situations where there may not even be a single "right" answer for
a particular question.

Some search engines, such as LucidWorks Enterprise, are built with features that try to solve, or at least mitigate,
these challenges.

© 2011 Lucid Imagination. All rights reserved. Page 13

LucidWorks Search Platform Documentation

How LucidWorks Enterprise Works

Like any other search engine, LucidWorks Enterprise works by indexing several kinds of documents and providing a
way for a user to search them. It uses Lucene and Solr to handle the core indexing and query processing tasks, and
leverages the latest advancements in those projects. LucidWorks Enterprise also builds on the work of the open-source
community by adding crawling features, a robust REST API, an easy-to-use administration interface, and other
features.

This graphic shows the relationship between Lucene, Solr, and LucidWorks Enterprise.

lucidwui ns
Enterprise
Apache "" » mﬁxgz
Solr e
% Security
Field Definition Admin Ul
Covonensmirs | (P
Core Search Quary Inearpracation = * Search Ul
Library XML Configuration PO
& Indexes Faceting %E‘ §_

The Apache Solr/Lucene core provides the indexing and searching functionality on which LucidWorks Enterprise is
built. As an application developer, you can access this functionality in the same way that you access a traditional Solr
installation. This includes field definition, document analysis, faceting, and basic query interpretation. The Apache
Solr/Lucene core can be used as a standalone installation, if you want to work with it directly.

On top of the Apache Solr/Lucene core is LucidWorks Enterprise, which has been designed to take the pain out of
running an Apache Solr-based search engine by providing programmatic or admin-interface-level access to features
that are normally difficult to work with directly, such as field definition or data source creation and scheduling. It does
this in several ways:

® The LucidWorks Enterprise Administration User Interface provides configuration and management tools for
almost every feature of LWE, including document acquisition, security, and field definitions.

® |ucidWorks Enterprise provides a Search User Interface that includes advanced features such as query
completion, "find similar" searches, and integration with click scoring.

® C(Click Scoring enables LucidWorks Enterprise to adjust search results based on user actions: it automatically
adjusts search results according to which ones users click most, and more so if the user's query is similar to
the query for which the documents were selected before.

® The REST API provides programmatic access to almost all configuration and management functions within
LucidWorks Enterprise.

© 2011 Lucid Imagination. All rights reserved. Page 14

LucidWorks Search Platform Documentation

® LucidWorks Enterprise provides end-to-end SSL security, as well as the ability to limit access to specific results
based on a user's identity or group affiliation.
® Enterprise Alerts enable the search application to notify a user when new results have been found for a query.

Most of the functionality provided by LucidWorks Enterprise comes from the LWE Core component, which manages all
of these processes and features so administrators can concentrate on building and managing their own applications
rather than the underlying search engine.

© 2011 Lucid Imagination. All rights reserved. Page 15

LucidWorks Search Platform Documentation

Indexing Documents

Introduction to Indexing

The first step to being able to search is to create an index. Modern search applications use a technique called an
"inverted index" to make search more efficient. An inverted index is similar to the index found in the back of a book,
where words extracted during the indexing process are listed and stored with pointers for each document and the total
frequency of each word (which is later used in relevance ranking). LucidWorks Enterprise also adds location
information to each word in order to support proximity searching (where you can specify queries such as dog NEAR
puppy).

This example shows how an inverted index may be constructed:

Sample Documents Word List
ﬂ m
Baseball is played during summer months. baseball [1]

2 Summer is the time for picnics here. during 1 [1]

3 Months later we found out why. found 1 (3]

4 Why is summer so hot here? here 2 (2], [4]
hot 1 [4]
is 3 [1], (2], [4]
months 2 [1], [3]
summer 3 [1], [2], [4]
the 1 [2]
why 2 (3], (4]

How Indexing Works

Indexing documents is the slowest part of a search application. Each document needs to be broken into individual
words and a word list created. As each new document is indexed, the word list is updated with new words or existing
words on the list are updated with pointers to the new documents. The index will be very big (although usually not as
big as the documents themselves), and various techniques are used to compress the index to make it smaller. A
smaller index saves disk space, lowering hardware costs for the search application, but also allowing faster retrieval
during query processing. This compression makes adding new documents a slower process than with relational
databases, for example. It is often most efficient to add documents in batches for this reason.

Advanced indexing processes, such as the one used with LucidWorks Enterprise, pay attention to the fact that
documents are not solely lists of sentences and words, but instead usually contain some sort of structure - an email
will likely have "to" and "from" information; Word and PDF documents may have "title" and "author" information, in
addition to the main "body"; product descriptions may have "price", "description" or "color" information. These are
known as fields within each document. Adding field information to the word list facilitates a user's ability to search for
emails from a specific person, or shoes that come in a particular color. It also allows the search application to treat the
data in each field properly: dates, for example, should be treated differently than an author name, which is treated

differently than a price.

Our written language includes a lot of information that is extraneous to a search application when it comes to
matching user queries to words extracted from documents. For example, we end sentences with a period, or put
periods between individual letters of an acronym. To humans, there is no difference between UCLA and U.C.L.A., but a
computer will treat those as two different words because they are literally different strings. However, a user searching
for UCLA probably does not care much whether it is spelled with periods or not in the matching document (there are

© 2011 Lucid Imagination. All rights reserved. Page 16

LucidWorks Search Platform Documentation

cases where it matters, but generally it does not). To overcome these differences in our written language, words are
normalized in several ways during the indexing process. All terms are made lower case so differences in capitalization
do not impact results. Plural words are made singular so users who enter dogs will also find dog. Punctuation,
apostrophes, accent marks, and other special characters are stripped.

Stop Words

It used to be quite common for search applications to remove very common words, often called stop words, such as a,
the, of, from, and so on from the index to save disk space. Because these terms were most common, they had the
largest document lists associated with them, and they are usually the least useful in actually finding the right
document. However, disk space is many times cheaper now than it used to be, and compression of the index is also
vastly improved so conservation of disk space is much less a concern than it used to be. And, while most of the time
these terms don't add much to a search, excluding them meant they could never be used, even when they were the
most essential part of the search (the failure of "to be or not to be" as a query was a common example from the
1990s of the cost of removing these stop words from the index). There may be valid reasons to remove stop words
from a user's search, but there are few reasons to exclude them from the index. We will discuss the impact of stop
words on a user's search later.

Indexing Data Sources

In order for users to be able to search, LucidWorks Enterprise provides a way for administrators to configure data
sources to collect documents and index them. The available data source types are preconfigured to be able to parse
documents and understand the fields commonly found in documents: for example, the Web data source understands
the fields commonly found on web pages, so the content found there is indexed appropriately. Set up data sources on
the Index - Sources screen, or in the Quick Start wizard. An important factor in configuring LucidWorks Enterprise is to
determine how often to revisit each data source for new or updated content.

© 2011 Lucid Imagination. All rights reserved. Page 17

LucidWorks Search Platform Documentation

Managing Indexes and Fields

Each document to be indexed can be broken up into several parts, depending on the structure of the document. For
example, most text documents consist of a title, author, and main body. It may also contain date created and/or
modified, permission information, and version data. A list of phone numbers may include personal information such as
name and address in addition to the actual phone numbers. These parts are called fields, and properly parsing each
document into its component parts is essential to effective indexing in order to optimize the search experience for
users and minimize the size of the index.

LucidWorks Enterprise includes information on how to parse several types of documents such as Microsoft Word files,
web pages, and PDF files and contains fields common to these types. Databases can be indexed by mapping columns
to pre-configured fields, or new fields can be created as needed. XML files in Solr format can also be used to explicitly
name parts of documents to ensure proper parsing during indexing. Lucid Imagination has provided smart defaults for
how to define fields, but the Fields screen in the Administration UI allows administrators to change the default settings
or to add custom fields.

There are several things to consider when configuring fields. The primary one is whether to store the field or not.
Stored fields take up space in the index, but they allow the field to then be indexed (that is, made searchable) or
available to users for display. It may be preferable to store a field and use it for display in a results list, but not allow
it to be searchable. Alternately, a field can be designated for use in a facet, so it would be stored and indexed, but
perhaps not searchable. A careful analysis of documents should occur before indexing to be able to anticipate how it
will be indexed. If fields are not correctly configured before a document is indexed, documents will need to be
re-indexed at a later time. If that is required, the existing index can be deleted and documents can be added to it
from scratch.

© 2011 Lucid Imagination. All rights reserved. Page 18

LucidWorks Search Platform Documentation

Managing Queries

Understanding Query Processing

The goal for any search application is to return the correct document while allowing a user to enter a query however
they want. The query may be in the form of keywords, a natural language question, or snippets of documents.
Advanced queries may be (or may include) date ranges, Boolean operations, searches on specific document fields, or
proximity information to define how close (or how far apart) terms should be to each other.

Search engines take the query entered and transform them to find the best results. Synonyms of the terms entered
may be applied to expand the number of possible document matches (such as looking for "attorney" when a user
enters "lawyer"). If terms are stripped of punctuation and capital letters during indexing, a similar process should also
be applied to the user query to ensure matches in the index.

Relevance Ranking

The system then tries to match the user's transformed terms to terms in documents in the index. Once it finds
documents, it puts the list of matching documents into some order. They might be ordered by date, by entry to the
index, or, most commonly, by relevance. Relevance ranking is one of the most complex components of a search
engine, since most queries are very short (one to three words) and that is usually not enough information to know the
user's full intention. However, some general methods to return the best results are common across many good search
engines.

When matches for a user's query are found, the number of times each term (word, date, and so on) occurs in the
document is calculated. Documents with a higher frequency of a term are considered more likely to be relevant than
documents with a lower frequency. This "term frequency" is combined with another method called "inverse document
frequency", which means that words appearing in the fewest documents tend to be the more valuable terms to use in
calculating relevance. In other words, the more rare words (or dates, numbers, etc.) are in your query, the more
important they are for finding the best document matches.

For example, in a search for "the new bookshelf", simply adding up the term frequencies to get the total of how many
times they occur would not get the best document, because each word is not of equal information value. Documents
with lots of occurrences of "bookshelf", the rarest of the three words, would likely be more relevant than documents
with lots of occurrences of either "the" or "new", which are very common words and likely occur in many documents
that have nothing to do with bookshelves.

Some search engines will strip very small and common words (a, the, of, and so on), known as stop words, from the
user's query. This is less common than it used to be, when disk space was very expensive and it was critical for
indexes to be as small as possible: removing these words could reduce an index as much as 50%. Since these words
are so common they generally do not add much to most user's searches, but in some cases they could be critical to
finding the right document (a movie search for "To Have and Have Not", for example, or a company called "On
Technology") so removing them was limiting for users. Today, with less expensive disks available and better
compression techniques they are nearly always included in the index and used when processing a user's query. Special
care should be taken to ensure the high frequency of these small words does not distort query results, which the Lucid
query parser was designed to do.

Other techniques used in relevance ranking include considering the date of the item (documents that are more recent
may be considered more relevant to some users) or where the term matches occur (words in the title of the document
may be more relevant than words at the end). LucidWorks Enterprise includes the option to use Click Scoring, which
uses information about what documents prior users have clicked when calculating relevance as another method that
can be employed.

One factor that can improve the ranking of results is to provide user's with tools to expand their queries without
providing additional search terms. A "find similar" option allows users to request documents that are similar to one
that may be almost right for their search. Explicit or automatic feedback allows users to resubmit their search with
terms pulled from documents that are considered near matches, in hopes of getting more or better matches. In
LucidWorks Enterprise, unsupervised feedback can be enabled, which automatically takes the top documents from the
preceding results and pulls important terms from them to use with the user's original query.

Search Results

© 2011 Lucid Imagination. All rights reserved. Page 19

LucidWorks Search Platform Documentation

Once the system has compiled the list of matching documents, they need to be presented to the user with enough
information to help them decide which documents are best. First, the documents should be sorted in some way: the
most common is by how well the documents match the query (relevance), but date may also be preferred, or another
field such as author or manufacturer. Some snippet of the document should be used to help users figure out if the
document is a match, such as title, author and date. The first few sentences, or a few sentences around the
highlighted occurrence of the user's search term, are also helpful to give the user some context for why each
document was selected as a match.

Document clustering, also called faceting, can help users select from a large list of results. Facets are documents
grouped together by some common element such as author, type, or subject and are usually displayed with the
number of results that can be found in each group. Providing facets allows users to "drill down" or further restrict their
results and find the documents they are looking for.

Result lists may need to be limited to only documents that a user has access to view. Lucid Works Enterprise has
several options for doing this.

© 2011 Lucid Imagination. All rights reserved. Page 20

LucidWorks Search Platform Documentation

Installation and Upgrade Guide

This guide covers installation, deployment, and server administration processes to get LucidWorks Enterprise installed
on your server.

Installation describes how to install and uninstall LucidWorks Enterprise, including system requirements. Two
installation modes are available: a wizard-like graphical interface and command line installation for headless servers.
Installation time should take no longer than a few minutes.

If LucidWorks Enterprise needs to be installed on multiple servers with the same options, automation is possible by
creating a script. Read more at Automating Installation Options for Installation to Multiple Environments.

The installer provides an option to start LucidWorks Enterprise. However, there are other points during operation of
the application where it may be necessary to start and then restart the application. Information on how to do that can
be found at Starting and Stopping LucidWorks Enterprise.

As you start to use LucidWorks Enterprise, an understanding of the directory structure, where to find logs, and how to
work with the components will be invaluable. That information is described at System Directories and Logs and
Working with LucidWorks Enterprise Components.

Those customers migrating from v1.7 or v1.8 of LucidWorks Enterprise now have a migration path that can be
followed to move to v2.0. There are several steps to this process, which are described at Migrating from a Prior
Version.

© 2011 Lucid Imagination. All rights reserved. Page 21

LucidWorks Search Platform Documentation

Installation

There are two ways of installing LucidWorks Enterprise:

® You can run the installer in graphical mode, which guides you through a series of dialog boxes, then installs
and configures the software.

® You can run the installer in console mode, which limits the installer's interface to the command line. If you do
not have access to the graphical user interface of the system you are installing the software on, run the
installer in console mode.

For Linux and Mac systems, the install file is called lucidworks-enterprise-installer-2.0.jar.

For Windows systems, the install file is called lucidworks-enterprise-installer-2.0.exe. On Windows, the installer
should be run with Administrator privileges to ensure proper installation.

Requirements

You must have Java 1.6 or higher (JRE or JDK) installed and in your path before you install LucidWorks Enterprise.
Supported Operating Systems:

32-bit and 64-bit versions of Windows XP, Windows Vista, Windows 7 and Windows Server 2003
Linux-based operating systems with a 2.4 kernel or later

Mac OS X 10.5+

CentOS v.5.0+

Apache Solr runs in a Java servlet container. The LucidWorks Enterprise automatically installs and configures Jetty, an
open source Java servlet container. You do not need to take any extra steps to configure a servlet container for
LucidWorks Enterprise.

Hardware Requirements:

® Minimum: 2GB RAM

® Recommended for 100,000 to 1,000,000 documents: 4GB-8GB RAM, 2GHz dual-core CPU

® Recommended for greater than 1,000,000 documents: 8GB-16GB RAM, 2.4GHz dual-core CPU
Disk Space:

® Depends on the size and number of documents to be indexed. Contact Lucid Imagination for assistance in
determining the disk space needed for your implementation.

Running the Installation Wizard

To run the installation wizard, follow these steps:

1. Double-click the installation file (.JAR or .EXE). The Information screen appears.

If the installer does not open when you double-click it, open a command shell or prompt, make
sure that Java 6 or greater is in your path, and launch the installer manually with the command
java -jar <file-nane.jar>.

2. Click Next. A list of prerequisites for installing LucidWorks Enterprise appears.

3. Make sure your system meets the specified requirements, then click Next. The License Agreements screen
appears.

© 2011 Lucid Imagination. All rights reserved. Page 22

http://www.lucidimagination.com

LucidWorks Search Platform Documentation

4. Read the license. If you accept its terms, click the button that reads, "I accept the terms of this license
agreement."

5. Click Next. The Components to Enable screen appears.

The installer displays a list of LucidWorks Enterprise components and their default addresses. We recommend
that you install all components, unless you are working on a custom installation. See Working With LucidWorks
Enterprise Components for more information.

6. Configure the components dialog box to select the LWE components and network addresses you want to
install.

1 Remove Default Addresses to Skip Components
If you choose not to install a component, be sure to uncheck the box next to the component
name and remove its default address (or change it to the location where that component is
installed). If the address is not removed or changed, the component will not be installed, but
the default address will be entered into the mast er . conf configuration file, which will cause
installed components to try to access the skipped component at that address.

7. Click Next. The Select Installation Path screen appears. Enter or browse to the directory where LucidWorks
Enterprise will be installed. This will be the location of $LWE_HOVE, which is referenced throughout this Guide
when specifying file paths.

8. Click Next. The installer will ask you to confirm the installation location before proceeding.
9. Click OK. The Summary of Choices screen appears.
10. Confirm your installation choices, then click Next. The LucidWorks Enterprise Installation begins.

11. When the installation is finished, click Next. The Start LucidWorks Enterprise screen appears. To start
LucidWorks Enterprise immediately, check the Start LucidWorks box.

12. Click Next. The installer initiates the LucidWorks Enterprise start scripts. In most installations, these start
quickly, but it may take up to one minute for the scripts to complete. The installer allows you to continue while
the scripts work in the background.

13. Click Next.

14. As a final step, the installer can create an automated installation script that includes the settings you chose
that you can use to run unattended installations. To generate an automated installation script, click Generate
an automatic installation script. Otherwise, click Done.

You have now installed LucidWorks Enterprise. If you accepted the default component locations, you can access the
Administrative User Interface at http://localhost:8989/. Otherwise, you can find the Administrative User Interface at
the URL and port you chose in step six. Refer to the README.txt file under the installation root directory for the
default password. You can change the default password using the Users screen in the Admin UI or with an API call
described on the Users API page.

Running the Installer in Console Mode

If you are installing LucidWorks Enterprise on a computer without a graphical user interface (a "headless" machine),
you can run the installer in "console" mode.

1. Launch the installer with the command j ava -jar <file-nane.jar> -consol e.

© 2011 Lucid Imagination. All rights reserved. Page 23

http://lucidworks.lucidimagination.com/display/help/Login+Screen
http://localhost:8989/
http://lucidworks.lucidimagination.com/display/help/User+Management

LucidWorks Search Platform Documentation

bash-3.2$ java -jar lucidworks-enterprise-installer-2.0.jar -console

2. Read through the license, then press '1' at the end to accept the license terms.

You agree that this Agreenment is the conplete Agreenent for the Programs and |icenses,
and this Agreenment supersedes all prior or

cont enpor aneous Agreenents or representations. If any termof this Agreenent is found to
be invalid or unenforceable,

the remaining provisions will remain effective. This Agreenent is governed by the
substantive and procedural |aws of California.

You and Lucid agree to submit to the exclusive jurisdiction of, and venue in, the courts
of San Mateo county in California

in any dispute arising out of or relating to this Agreenent.

press 1 to accept, 2 to reject, 3 to redisplay

1

3. Select each component to install and choose the address and port each component will run on (this is multiple
steps).

Pl ease sel ect which LVE conponents should be enabled on this server, or specify the
renote address of a conponent if it will run renotely:

[x] Run LWE-Core Locally
input 1 to select, O to deselect:
1
Address [http://127.0.0. 1:8888]

[x] Run LWE-U Locally
input 1 to select, O to deselect:
1
Address [http://127.0.0.1: 8989]

Not e: Conponents wi |l conmuni cate with each other using these addresses, and if enabl ed
on this machine, will run on the port given in the address.

Leave the address blank to keep a conponent from being used (locally or renptely)
press 1 to continue, 2 to quit, 3 to redisplay

1

4. After approving the components to install, select the directory location for the install. This will be the base path
for SLVWE_HOVE, which is referenced throughout this Guide when discussing configuration and log file locations.

Sel ect target path [/Users/cassandradwor k/ Downl oads]
/ Appl i cations/ Luci dl magi nati on/ Luci dWor ksEnt erpri se
press 1 to continue, 2 to quit, 3 to redisplay

1

© 2011 Lucid Imagination. All rights reserved. Page 24

LucidWorks Search Platform Documentation

5. The installer installs LucidWorks Enterprise, and asks if you want to start the servers.

[Starting to unpack]
[Processing package: LucidWrks (1/1)]
[Unpacki ng finished]

Luci dworks Enterprise has been installed. Wuld you like to start Luci dwrks Enterprise
now?
NOTE: Luci dWorks Enterprise will be started in the background and nay take sonme tinme to
conpl ete | oadi ng.
You may continue on with the installer before it finishes |oading.
Dependi ng on your system hardware, Luci dWorks Enterprise nmay take sone tinme to finish
| oading even after the installer has been cl osed.
[x] Start Luci dWrks Enterprise
input 1 to select, O to deseclect:
1

6. Finally, the installer displays confirmation of the successful installation.

Install was successeful
application installed on /Applications/Lucidlnagination/Luci dWwrksEnterprise
[Console installation done]

If you specified that the installer should start LucidWorks Enterprise, you can access the Admin UI at the address you
specified during the component configuration (the default is http://localhost:8989). A user named "admin" is created
during the installation process with a default password that can be found in the README.txt file found under
$LVE_HOVE/ app. The default password can be changed with either the User page in the Admin UI or the User API.

Automating Installation Options for Installation to Multiple Environments

Generating an Installation Script from the Graphical Installer

The last step of the graphical installer gives you the option of creating an automatic installation script. This script is an
XML file that contains the configuration decisions that you made during the installation process. You can use this file to
repeat the same installation in multiple environments, if needed.

This screen shows the option to create the script:

© 2011 Lucid Imagination. All rights reserved. Page 25

http://localhost:8989
http://lucidworks.lucidimagination.com/display/help/User+Management

LucidWorks Search Platform Documentation

Installation of LucidWorks Enterprise Edition

Installation Finished

Installation has completed successfully.

An uninstaller program has been created in:
JApplications/Lucidlmagination/LucidWorksEnterprise/Uninstaller

| (Generate an automatic installation script ;'l

Lucidlmagination

a Dlnne‘

e

To generate this configuration file, click Generate an automatic installation script.

A dialog box will open prompting you to save the file in a location of your choosing. The default location is the same
directory where LucidWorks Enterprise has been installed. Enter a filename such as "config-options.xml," then press

enter.

To use the installation script in future installations, run the installer from the command line with a command such as:

java -jar lucidwrks-enterprise-installer-2.0.jar config-options.xn

Generating an Installation Script by Hand

You can also create an installation script without using the graphical installer, although you cannot c

reate it using the

installer in console mode, by creating the XML file by hand. This is a sample script that can be used as a start; see

below for details on what sections to edit to customize this script locally.

© 2011 Lucid Imagination. All rights reserved.

Page 26

LucidWorks Search Platform Documentation

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<Aut omat edl nstal | ati on | angpack="eng">

<com i zforge. i zpack. panel s. HTMLHel | oPanel i d="UNKNO/N

(comi zforge.izpack. panel s. HTM_Hel | oPanel)"/ >

<com i zforge. i zpack. panel s. HTMLI nf oPanel i d=" UNKNO/N

(com i zforge.izpack. panel s. HTM.I nf oPanel)"/ >

<com i zf orge. i zpack. panel s. Li cencePanel id="UNKNOMWN (com i zforge.izpack. panel s. Li cencePanel)"
/>

<com i zforge. i zpack. panel s. User | nput Panel id="enabl ed">

<user | nput >

<entry key="Enabl eLVEU " val ue="true"/>

<entry key="LWEU Address" value="http://127.0.0.1:8989"/>

<entry key="Enabl eLVWECore" val ue="true"/>

<entry key="LweCoreAddress" value="http://127.0.0. 1:8888"/>

</ user| nput >

</ com i zf orge. i zpack. panel s. User | nput Panel >

<com | uci d. i zpack. St opLWPanel i d="UNKNOM (com | uci d.izpack. St opLWPanel)"/ >

<com | uci d. i zpack. CheckPort Panel id="UNKNOWN (com | ucid.izpack. CheckPort Panel)"/>

<com | uci d. i zpack. Fi ndLWPanel i d="UNKNOM (com | uci d. i zpack. Fi ndLWPanel)"/ >

<com | uci d. i zpack. St opLWPanel i d="UNKNOM (com | uci d. i zpack. St opLWPanel)"/ >

<com | uci d. i zpack. CheckPort Panel id="UNKNOWN (com | ucid.izpack. CheckPort Panel)"/>

<com i zforge. i zpack. panel s. Tar get Panel i d="UNKNOAN (com i zforge. i zpack. panel s. Tar get Panel) ">
<i nstal | pat h>/ Appl i cati ons/ Luci dl magi nati on/ Luci dWor ksEnt er pri se</i nstal | pat h>

</ com i zf orge. i zpack. panel s. Tar get Panel >

<com | uci d. i zpack. Summar yPanel i d="UNKNOW (com | ucid.izpack. SunmaryPanel)"/ >

<com i zforge. i zpack. panel s. I nstal | Panel id="UNKNOM (com i zforge.izpack. panels.|nstallPanel)"
/>

<com i zforge. i zpack. panel s. User | nput Panel id="startlwe">

<user | nput >

<entry key="start.|lw' value="true"/>

</ user | nput >

</com i zforge. i zpack. panel s. User | nput Panel >

<com | uci d. i zpack. NoLogPr ocessPanel i d="UNKNOAN (com | uci d.i zpack. NoLogProcessPanel)"/>

<com i zforge. i zpack. panel s. Short cut Panel i d="UNKNO/N

(comi zforge.izpack. panel s. Shortcut Panel)"/ >

<com i zforge. i zpack. panel s. Fi ni shPanel id="UNKNOM (com i zforge.izpack. panel s. Fi ni shPanel)"/ >
</ Aut onat edl nst al | ati on>

There are three areas to edit:
Enable Components

This section defines where each component of LucidWorks Enterprise is installed so they know how to talk to each
other.

<user | nput >

<entry key="Enabl eLMEU " val ue="true"/>

<entry key="LWEUl Address" value="http://127.0.0.1:8989"/>
<entry key="Enabl eLVEECor e" val ue="true"/>

<entry key="LweCor eAddress" value="http://127.0.0.1:8888"/>
</ user | nput >

To skip the installation of a component, set the "Enable" value to f al se and remove the URL in the associated
"Address" value. See the section onWorking With LucidWorks Enterprise Components for more information about what
each component does.

Set the Installation Path

This is the directory and path of the LucidWorks Enterprise installation. Change to the proper path as needed.

<i nstal | pat h>/ Appl i cations/ Luci dl magi nati on/ Luci dWor ksEnt er pri se</instal | pat h>

© 2011 Lucid Imagination. All rights reserved. Page 27

LucidWorks Search Platform Documentation

Start LucidWorks Enterprise after Script Completion

LucidWorks Enterprise start scripts can be initiated immediately following completion of the installation. The default is
true; if you do not want to initiate the start scripts immediately, change the value to f al se.

<user | nput >
<entry key="start.|lw' value="true"/>
</ user | nput >

Once you have made the appropriate edits, save the file with a name such as confi g-opti ons. xm . To use it in future
installations, run the installer from the command line with a command such as (be sure to replace our sample file
name with the one created locally):

java -jar lucidworks-enterprise-installer-2.0.jar config-options.xni

Uninstalling Lucid Works Enterprise

You can uninstall LucidWorks Enterprise by running the uninstaller found in the $LWE_HOVE/ app/ uni nst al | er
directory. Two files are available: uni nstal | er. exe for Windows systems and uni nstal | er.jar for Linux and Mac
systems.

1. Launch the appropriate file. The I1zPack - Uninstaller dialog box appears:

e N IzPack - Uninstaller

© This will remove the installed application!

[E Force the deletion of /Applications /Lucidlmagination/LucidWorksEnterprise

T e—
[Uninstall) [Quit)

2. Select Force the deletion of your/installation/directory to remove the parent installation directory. If you do not
force the deletion of the installation directory, the application will be removed but the installation directory will
remain.

3. Click Uninstall.

The uninstaller displays the progress bar.

< NeNe lzPack - Uninstaller

© This will remove the installed application!

v Force the deletion of /Applications /Lucidlmagination/LucidWorksEnterprise

- [Finisheat

I.\-Ir-llr-ll-;:all

4. When the uninstallation is complete, click Quit to close the uninstaller.

© 2011 Lucid Imagination. All rights reserved. Page 28

LucidWorks Search Platform Documentation

" Uninstall from the Command Line
You cannot run the uninstaller from the command line in console mode. To remove LucidWorks
Enterprise on a server without GUI access, stop all running LucidWorks Enterprise processes, then
manually delete the parent directory. This will remove all indexes and associated data.

© 2011 Lucid Imagination. All rights reserved. Page 29

LucidWorks Search Platform Documentation

Working With LucidWorks Enterprise Components

Basics of LucidWorks Enterprise Components

LucidWorks Enterprise has two main components that can each be run together on a single server or deployed on
separate servers if desired:

LWE Core

The LucidWorks Enterprise (LWE) Core component is the main engine of the application. It contains the search index,
the index definitions, the query parser, the embedded Solr application and Lucene libraries, as well as serves the REST
API (with the exception of Alerts).

LWE UI

The UI component includes all web-based graphical interfaces for administering the application, a sample search
interface, and the enterprise alerts feature. Through the Admin UI, you can modify index fields, configure data
sources for content collection, define aspects of the search experience, and monitor system performance. The Search
UI provides a front-end for users to submit queries to LucidWorks Enterprise and review results. It includes search
features such as automatic completion of queries, spell checking, faceting, and sorting. It is not intended as a
production-grade user interface, rather as a sample interface to use while configuring and testing the system.
Enterprise Alerts provide a way for users of the front-end Search UI to save searches and receive notifications when
new results match their query terms. There is a user interface piece with forms and screens for users to configure and
review their alerts, as well as a REST API for programmatic access to the Alerts features.

Default Installation URLs

This guide will refer to example URLs that will reference the default installation URLs for each component. These
defaults are:

Component Default URL
LWE Core http://127.0.0.1:8888/

LWE UI http://127.0.0.1:8989/

These URLs are used by the installer for two purposes:

1. When the various components communicate with each other, or link to one another, they specify which URL
will be used.

2. If the "Enable" check box is selected for a component when using the installer, then that component will be run
locally, using the port specified in the URL.

Configuring the Components

If LWE Core and LWE UI are run on the same machine, they must be defined with different ports. They can also be
configured to run on different servers.

There are three possible ways to configure the components:

1. Both components run on the same machine and they are started and stopped together. This is the default for
the installer, which automatically prompts for default ports that are different for each component. To use this
mode, you only need to run the installer once and follow through the process completely.

2. Both components run on the same machine but they are started and stopped separately. This would require
running the installer two times on the same machine. See Running Components on Different Servers or
Different Ports of the Same Server below for detailed instructions on how to do this.

3. Each component is on a different machine and started and stopped separately. This requires running the
installer on each machine. See Running Components on Different Servers or Different Ports of the Same Server
below for detailed instructions on how to do this.

© 2011 Lucid Imagination. All rights reserved. Page 30

http://127.0.0.1:8888
http://127.0.0.1:8989

LucidWorks Search Platform Documentation

Running Components on Different Servers or Different Ports of the Same Server

To run components on different ports of the same server, you must run the installer twice, putting each installation in
a different installation path (that is, a distinct "LWE Home"). If running the components on different servers entirely,
the default installation path could be used on both servers because they are different machines.

For example, consider a use case where we want to:

® Run the LWE Core component on the machine 'serverl' on port 8888
® Run the LWE UI component on the machine 'server2' port 8989

In this scenario, we need two installations, and our installation steps would be something like the following:

® First Installation, LWE Core on 'serverl’

Ll .

5.

6

Launch the installer and follow the steps until the component selection screen.

Change the default URL for LWE Core to http://server1:8888.

Deselect the "Enable" checkbox for the LWE UI component so it will not be installed on serverl.
Change the URL for the LWE UI to http://server2:8989. Even though it will not be run as part of this
installation, this URL will be used in the LWE Core configuration to be able to talk to LWE UI.
Advance to the Next screen, and select a path for this installation.

Finish the installation.

® Second Installation, LWE UI on 'server2’

1.
2.

3.
4.

5.

Please note:

Launch the installer again, and advance to the component selection screen.

Deselect the "Enable" check boxes for the LWE Core component so it will not be installed on server2 but
change the URL to http://server1:8888 so LWE UI configuration can talk to LWE Core.

Change the URL for LWE UI to http://server2:8989.

Advance to the Next screen, and select a path for this installation on server2. If you were instead
installing the LWE UI on the same machine, you would enter a different installation path.

Finish the installation.

® Starting and stopping server processes will need to occur in both installations; there is no single start/stop
script that will work across multiple installations.

® The $LVE_HOVE/ conf/ mast er. conf files in both installations will continue to refer to components that were not
installed. You must take care not to enable a component in the wrong installation.

® The Click Scoring Relevance Framework runs as part of the LWE Core, and requires that
click-<col |l ecti onNane>. | og (generated by the Search User Interface) be available in the
$LWE_HOWVE/ dat a/ | ogs/ directory. If LWE Core and LWE UI components are enabled in different installations,
an external process must be responsible for copying that file into the $LWE_HOVE/ dat a/ | ogs directory of the
LWE Core installation.

© 2011 Lucid Imagination. All rights reserved. Page 31

http://server1:8888
http://server2:8989
http://server1:8888
http://server2:8989

LucidWorks Search Platform Documentation

System Directories and Logs

Locating Files and Directories

The following table shows the default location of some directories that may be needed to effectively work with
LucidWorks Enterprise. These paths are all relative to the "LWE Home" directory ($LWE_HOVE) which is specified when

running the installer.

What
Configuration Files

Documentation

Examples

Jetty Libraries

Licenses

Logs

LucidWorks Indexes
LucidWorks Logs

Solr Home

Solr Configuration Files
Solr Source Code

Start/Stop Scripts

Path
$LVE_HOVE/ conf /

$LWE_HOVE/ app/ docs/ (PDF format) and $LWE_HOME/ | we- cor e/ doc/ (HTML format)

$LVE_HOVE/ app/ exanpl es/

$LWE_HOVE/ app/jetty/libl/

$LWE_HOVE/ app/ | egal /

$LWE_HOVE/ dat a/ | ogs/ (See below for log file list)
$LWE_HOWVE/ dat a/ sol r/ cores/ col | ecti on_nane/ dat a/
$LWE_HOWVE/ dat a/ sol r/ cor es/ Luci dWor ksLogs/ dat a/
$LWE_HOVE/ dat a/ sol r/

$LWE_HOVE/ conf/sol r/

$LWE_HOVE/ app/ sol r-src/

$LWVE_HOVE/ app/ bi n/

1. Editing Configuration Files on Windows
LucidWorks Enterprise holds configuration files open after reading them, which may cause problems on
Windows systems that do not allow editing open files. In this case, stop LucidWorks Enterprise before
editing files on Windows to be sure the edits are saved properly.

Configuring LucidWorks Enterprise Directories

After you have installed LucidWorks Enterprise, you can configure the location of of the app, conf, data, and | ogs
directories by passing these parameters to the start script (start.sh or start. bat):

--lwe_app_dir
--lwe_conf _dir
--lwe_data_dir
--lwe_log_dir

For example, to change the location of the dat a directory, pass the following parameter to your start script:

start.sh --lwe_data_dir /var/data

System Logs

LucidWorks Enterprise records system activities to rolling log files located in the $LWE_HOVE/ dat a/ | ogs directory of the
installation by default. The table below describes the main purpose of the various log files.

© 2011 Lucid Imagination. All rights reserved. Page 32

LucidWorks Search Platform Documentation

Log Name Function

$LWE_HOMWE/ dat a/ | ogs/ core. <YYYY_MM DD>. | og LWE Core operations, including information from crawling
activities

$LWE_HOVE/ dat a/ | ogs/ core-stderr. | og Errors from Jetty startup

$LWE_HOVE/ dat a/ | ogs/ core-stdout. | og Messages from Jetty startup

$LWE_HOVE/ dat a/ | ogs/ request . <YYYY_MM DD>. | og API requests from front-end systems (Search, Admin and
Alerts) to the back-end LWE Core

$LWE_HOVE/ dat a/ | ogs/ ui . | og Information from the Rails application, which runs the
Search, Admin and Alerts components

$LVE_HOVE/ dat a/ | ogs/ ruby-stderr.| og Errors from Ruby startup

$LVE_HOVE/ dat a/ | ogs/ r uby- st dout . | og Messages from Ruby startup

$LWE_HOVE/ dat a/ | ogs/ cl i ck-<col | ecti onNane>. | og User click data, for use in relevance boosting (if enabled)
$LWE_HOVE/ dat a/ | ogs/ al ert _trace. | og Alert heartbeat that checks for new alerts to run

$LWE_HOVE/ dat a/ | ogs/ googl e_connect ors. feed. | og SharePoint crawling operations. Note, this file can also
include a number in the name, such as
googl e_connectors. feedO. | og, etc.

The LucidWorks Enterprise Core log is configured by a properties file ($LWE_HOVE/ conf/ | og4j . xm). The default is to
create a distinct log per date (server time). Only data from the most recent core. YYYY_MM DD. | og file is included in
query and index history calculations that appear in the Admin User Interface.

1. Rotation of the ui.log File
On Windows machines, log rotation of the ui . | og file only has been disabled. The LWE Core log will
still be date specific, but the ui . | og will need to be manually rotated.

LucidWorksLogs

LucidWorks Enterprise records log files for your Solr indexes in a collection called LucidWorksLogs, which contains a
pre-configured data source also called | uci dwor ksl ogs. You can view the data for the LucidWorksLogs collection as
you would for any other collection. You can also access the log files directly in the

$LWE_HOMWE/ dat a/ sol r/ cor es/ Luci dwor ksLogs/ directory.

The log files on a LWE-Core server are accessible via HTTP at the URL "http://server: port/l ogs". This URL lists all
files currently in the logs directory, and provides links for downloading them individually. This can be useful in
situations where you do not have direct shell access to the LWE-Core machine, but would like to review the log files
for troubleshooting purposes.

When securing the HTTP Port of LWE-Core installation, consideration should be taken as to whether the "/logs"
directory should be secured or not.

© 2011 Lucid Imagination. All rights reserved. Page 33

LucidWorks Search Platform Documentation

Starting and Stopping LucidWorks Enterprise

Starting LucidWorks

If you did not allow the installer to start LucidWorks, or if shortcuts were not installed, you can still start or stop
LucidWorks Enterprise manually from the command line. This will start all servers:

1. Open a command shell, and make sure Java 1.6 or greater is in your path.
2. Change directories to the LucidWorks installation directory, then to the $LWE_HOWE/ app/ bi n directory.

3. Invoke start.sh for UNIX/Mac/Cygwin or st art. bat for Windows systems.

Stopping LucidWorks

To stop LucidWorks Enterprise, use the stop scripts at the command line. This will stop all servers and any running
processes.

1. Open a command shell, and make sure Java 1.6 or greater is in your path.

2. Change directories to the LucidWorks installation directory, then to the $LWE_HOWE/ app/ bi n directory.

3. Invoke stop. sh for UNIX/Mac/Cygwin or st op. bat for Windows systems.

i Restarting LucidWorks Enterprise
To restart LucidWorks Enterprise, first stop the servers and start them again using the processes

outlined above.

© 2011 Lucid Imagination. All rights reserved. Page 34

LucidWorks Search Platform Documentation

Migrating from a Prior Version

It is not yet possible to perform a fully automated upgrade from one LucidWorks Enterprise version to another, but it
is possible to migrate configuration and data from a prior version to v2.0. Migration is possible only from v1.7 or v1.8
to v2.0.

@ While the migration steps are outlined below, it is recommended that this only be attempted after
consultation with Lucid Imagination Support to be sure the latest version of the tools are installed and
all customizations are accounted for.

One issue to be careful of is that data source IDs may change when importing configuration data from
the prior installation of LucidWorks Enterprise to the new one. This is because the Update Tool imports
the configuration data and allows LucidWorks Enterprise to use it's own processes to assign new data
source ids. However, the index data is simply converted, leaving documents with the same data source
related fields intact. This mismatch will not destroy the system, but may cause unexpected behavior in
the Admin UI and in search results (such as, document counts may not appear correctly in the Admin
UI). Deleting documents may also be problematic, meaning that using the UI to delete documents
from data sources may delete documents for the wrong data sources.

It is highly recommended to run through this process in a test environment to understand the likely
outcome before using this in production.

The migration steps are as follows:

1. Export system configuration from the older version while LucidWorks Enterprise is running. Be sure to review
the issues.txt output of the tool to understand what problems may occur during the rest of the migration.
Stop LucidWorks Enterprise and run the Upgrade Tool. Save the output files where they can be found later.
Install LucidWorks Enterprise v2.0 on a new server or in a different location from the older version.

Migrate the LucidWorks Enterprise configuration to the new version (with LucidWorks Enterprise running).
Update configuration files with customizations that are not supported by the Update Tool.

Upgrade the index for each collection and put the new index files in the proper places in the new installation.
LucidWorks Enterprise should not be running while this occurs.

7. Re-generate auto-complete indexes for each collection, if desired.

oukwn

At the current time, it is not possible to install a new version of LucidWorks Enterprise over an existing one. If
upgrading the application on the same server it is currently running on, a new directory path will need to be input into
the installer to continue. Also, make sure to define the component ports on the new installation as different from the
existing LucidWorks Enterprise.

LucidWorks Update Tool

The LucidWorks Update Tool is a standalone utility that uses the LucidWorks REST API to enable a user to capture
customized configuration information from a running LucidWorks Enterprise server, store the information in a local zip
file, and update another LucidWorks Enterprise server to match the same configuration. The tool provides an
export/import capability and a product upgrade capability, but it operates external to LucidWorks Enterprise rather
than as an embedded feature. The tool also generates a human-readable summary of the LucidWorks Enterprise
schema. Currently, this tool only collects information that is available with the REST API. Some changes, such as
manual edits to sol rconfig. xm or schema. xnl files, will need to be migrated manually.

How the Update Tool Works
Configuration Fixes for This Release
Using the Update Tool
Examples
Tool Output
® Directory Structure of the Output Zip File
® The Summary File
® The Issues File
® The Version Files

© 2011 Lucid Imagination. All rights reserved. Page 35

LucidWorks Search Platform Documentation

® Schemas for Past Releases

How the Update Tool Works

The tool collects information about and is able to update:

collections

data sources

fields

field types (will be updated only if the source and target servers support the Field Type API released in v2.0)
search components (currently only ad)

filter component configurations (without passwords, as these are not returned by the API)
search handlers (currently only /| uci d)

collection settings

stop words

synonyms

roles

users

authorizations

alerts

It does not collect actual indexed document data. If you are unable to re-index your data, the Index Upgrade tool will
permit you to migrate existing index data to a new LucidWorks Enterprise.

The tool attempts to correct the configuration as needed to accommodate any incompatibilities between releases. This
can include moving from an existing LucidWorks Enterprise server to a LucidWorks Enterprise server running a new
version. The tool can also display or save a readable summary of the configuration for a LucidWorks Enterprise server.
You can read directly from one server and write directly to another server, or optionally save the config info into a zip
file and write to a server later. You could even save the configuration for a server in a zip file and later restore it from
the saved zip file. While there are numerous ways to use the exported configurations, the primary purpose and design
of the tool is to ease upgrading from an older version of LucidWorks Enterprise to a newer one.

There is a preview mode option so you can display a list of changes that need to be made to a target server to get it
to match an existing config without making the changes. The servers can be local or remote.

As a convenience, the Update Tool also saves a copy of all of the Solr "conf" files (schenma. xni , sol rconfi g. xnl ,
synonyms, stopwords, stemming rules, etc.) in the zip files that it creates to save a LucidWorks Enterprise schema.
But, although these files are kept in the zip file, they are not pushed to the destination server when doing an update
except in cases where LucidWorks Enterprise contains an API for a specific part of the configuration (i.e., Fields, Field
Types, and some settings).

1. Use the Latest Version of the Update Tool
The Update Tool can capture from any release of LucidWorks Enterprise, but can only update to a
LucidWorks Enterprise server running the "current" version of LucidWorks Enterprise. The tool will
display an error message and exit if the target LucidWorks Enterprise server is not running the latest
release.

You can use an old version of the tool to capture from an old LucidWorks Enterprise, but you need to
use a newer version of the tool to update a newer LucidWorks Enterprise.

To be sure you're using the latest version of the tool itself, check our website at
http://www.lucidimagination.com/products/lucidworks-search-platform/enterprise/update-tool-20 to
see if we've made any changes.

Configuration Fixes for This Release

For LucidWorks Enterprise v2.0, the Update Tool will make the following changes:

® As of version 2.0, LucidWorks Enterprise no longer supports the i ndex_t i ne_st opwor ds setting. If a saved
schema has this setting, the tool will automatically remove it and automatically insert a stop word filter into
the index analyzer for the text_en field.

© 2011 Lucid Imagination. All rights reserved. Page 36

http://www.lucidimagination.com/products/lucidworks-search-platform/enterprise/update-tool-20

LucidWorks Search Platform Documentation

® The acl field will be preserved in the destination LucidWorks Enterprise even if it is not defined in the source
collection. This is a new field in v2.0.

® The aclusers and aclgroups fields are ignored since the crawlers will dynamically add attr_aclusers and
attr_aclgroups as dynamic fields (aclusers and aclgroups are renamed attr_aclusers and attr_aclgroups in
v2.0).

® All attribute names that were defined in CamelCase in earlier versions have now been standardized to use
names with underscores; the tool will automatically map these.

® Users migrated from earlier versions will be given passwords of "default-user-password". This can be
overwritten with the - D option, as below.

® In v2.0, there is no longer a separation between Users and Authorizations (which defined what parts of the UI
a user could access), in fact, the Authorizations API has been removed. Users are now given an authorization
in their user account to access either "admin", allowing access to the Admin UI and Search UI, or "search",
allowing access to the Search UI only. During migration, users with the former Authorization of ADMIN will be
mapped to having an "admin" authorization, while those with SEARCH will be mapped to "search".

® Data source and activity schedules will be migrated, but because the APIs and prior versions of LucidWorks
Enterprise allow more flexibility in setting a schedule than the v2.0 UI, the tool updates activity schedules
(which are the actions that optimize the index, create an autocomplete index, and process click logs) in the
following ways:

1. By default, the tool will update any existing activity schedule in the new LucidWorks Enterprise server
(the "target" server)

2. The tool will create a single activity schedule in the target server. If there are multiples from the source
server, the first one will be used and the rest discarded. The tool will report when it has done this.

3. The user can use the - noUni queActi vi t ySchedul es option to force the Update Tool to create activity
schedules in the target server for every activity that was present in the source. If using this option,
however, note that only one schedule is displayed in the v2.0 UI, which may be confusing for some
users if there are multiples of any schedule type.

Using the Update Tool

To use the Update Tool, run LweUpdat e- 2. 0. j ar found in $LVWE_HOVE/ app/ mi gr ati on_t ool s/ | we- updat e- t ool with
the following command:

java -jar LweUpdate-2.0.jar [options]

There are several possible options, as follows:

Option Parameter Description

-r URL Reads from a LucidWorks Enterprise server.
Parameters can be localhost, remotehost or
the fully defined URL. See below for how to
set the LWE_URL in your environment to use
remotehost as the parameter.

-0 file name Outputs the schema to a file. If no file
extension is specified, .zip will be used by
default. Use with the -r option to read the
configuration and output it to a file.

-1 file name Installs the schema from a file to the target
LucidWorks Enterprise server.

-w URL Writes the schema to the target LucidWorks
Enterprise server.

© 2011 Lucid Imagination. All rights reserved. Page 37

LucidWorks Search Platform Documentation

-D default-user-password=new-password Overwrites the default password for all

-preview none
- updat e none
-enpty none
- keep none

{{-noUniqueActivitySchedules none

{{-uniqueActivitySchedules none

-version none
-q none
-ra URL
-wa URL

users being migrated from
"default-user-password" to a user-supplied
alternative. This is a Java system property
and should be entered before the -j ar
portion of the command, as in:

j ava
- Ddef aul t - user - passwor d=new passwor d
-jar LweUpdate-2.0.jar [options]

Displays the changes that would be needed
to the target LucidWorks Enterprise server,
but does not make the changes.

Enables changes to the target LucidWorks
Enterprise server if it appears to be already
configured. By default, if the target server
has been configured the tool will quit.

Deletes all documents in all collections in
the target LucidWorks Enterprise server.
This is the default behavior if this is not
specified.

If documents have been indexed in the
target LucidWorks Enterprise server before
the configuration has been imported, this
option will retain the documents and their
history information.

Allows multiple activity schedules to be
migrated from the source to the target, if
multiples existed in the source. Note that
the v2.0 UI only displays one activity
schedule, even if multiples exist. The
default behavior is only migrate the first
schedule of any type (click, autocomplete,
or optimize) and discard the others with a
warning.

Enforces the default behavior to only
migrate the first schedule of any type. It is
not required, but is available as an
additional assurance.

Displays the name and version of the tool.
Suppresses all INFO-level log messages.

Defines the URL where the alerts
component has been configured if it is not
the default.

Defines the URL where the alerts
component should be configured in the
target LucidWorks Enterprise server if it
should not be the default.

If accessing a server with HTTPS configured, the following four JVM properties must also be specified before the -jar

part of the java command.

® -Dclient-keystore-url=<URL or path>: The URL or path for the key store file.
® _Dclient-keystore-pass=*<passwor d>: Password for the key store file.

© 2011 Lucid Imagination. All rights reserved.

Page 38

LucidWorks Search Platform Documentation

® -Dclient-truststore-url=<URL or file://path>: URL or path for the trust store file.
® -Dclient-truststore-pass=*<password>: Password for the trust store file.

In addition to specifying a URL on the command line, you may define the LWE_URL environment variable and then
simply refer to r enot ehost or LWE_URL where a LucidWorks Enterprise server URL is required (as with options -r and
-0, for example). To do this in bash for example, you would enter the following at the command line:

LVWE_URL=ht t p: // ww. ny- conpany. com 8888; export LWE_URL

Examples

1. Read user config info from a source LucidWorks Enterprise server to get a brief summary of what is on it:
collections, data sources, and fields, and document counts by collection and data source.
a. Define the LWE_URL and use remotehost instead of the server URL

java -jar LweUpdate-2.0.jar -r renotehost

b. Use localhost as the URL

java -jar LweUpdate-2.0.jar -r |ocal host

c. Define the full URL

java -jar LweUpdate-2.0.jar -r [http://sone.host:port/]

2. Read configuration from the source LucidWorks Enterprise server and save it in a local zip file.
a. Define the file name with the extension

java -jar LweUpdate-2.0.jar -r renotehost -o |ocal -schema. zip

b. Define the output filename and accept the default extension

java -jar LweUpdate-2.0.jar -r renotehost -o |ocal -schema

3. Read configuration from the source LucidWorks Enterprise server and save it in a local zip file, then install a
new version of LucidWorks Enterprise and write the saved config info to the new server
a. Create the output

java -jar LweUpdate-2.0.jar -r remotehost -o local-schens. zip

b. Import to the target server

java -jar LweUpdate-2.0.jar -i local-schema.zip -w http://sone. ot her. host

4. Read configuration from the source LucidWorks Enterprise server, optionally saving it in a local zip file, then
update the target LucidWorks Enterprise server to match the source configuration
a. Write the output to a file and write it to the target server

java -jar LweUpdate-2.0.jar -r renmotehost -o |ocal-schema.zip -w http:
/I sone. ot her . host

b. Or, skip the step of outputting it to a file and write it directly to the target server

© 2011 Lucid Imagination. All rights reserved. Page 39

file://path

LucidWorks Search Platform Documentation

java -jar LweUpdate-2.0.jar -r renotehost -w http://sone. ot her. host

5. Read configuration from the source LucidWorks Enterprise server, optionally saving it in a local zip file, then
use the preview option to get a report of the changes that would be needed to another LWE server to match
that user config info, but do not make the changes

a. Preview with configuration output

java -jar LweUpdate-2.0.jar -preview -r renotehost -o |ocal -save-schema.zip -w
http://some. ot her. host

b. Or, skip the step of outputting it to a file

java -jar LweUpdate-2.0.jar -preview -r renotehost -w http://sone. ot her. host

6. Write the saved config info from a local zip file to a target LWE server

java -jar LweUpdate-2.0.jar -i local-schema.zip -w renotehost

7. Restore a LWE server to a prior state that had been saved in a local zip file
a. Create the output

java -jar LweUpdate-2.0.jar -r renotehost -o |ocal-schema. zip

b. Import to the new target server

java -jar LweUpdate-2.0.jar -i local-schema.zip -w renptehost

8. Reads a schema from the source LucidWorks Enterprise server with alerts running on port 9898 and writes it to
save-schema.zip

java -jar LweUpdate-2.0.jar -r localhost -ra http://1ocal host: 9898 -0 save-schena

9. Reads a schema from the source LucidWorks Enterprise server and updates the target LucidWorks Enterprise
server at 'http://someurl'. Alerts will be read from port 9898 of localhost and updated at port 7979 on the
target

java -jar LweUpdate-2.0.jar -r localhost -ra http://local host: 9898 -w
http://soneurl:8888 -wa http://someurl: 7979

10. Reads a schema from a remote server with both an SSL key store and trust store and writes it into
save-schema.zip

java -Dclient-keystore-url=file:///home/ me/ nykeystorefile -Dclient-keystore-pass=secretl
-Dclient-truststore-url=file://nytruststorefile&bsp;-Dclient-truststore-pass=secret2
-jar LweUpdate-2.0.jar -r https://some-url.com 8888 -0 save-schema

Tool Output
If using the -r option alone, a basic summary is shown in the terminal window as the tool runs. More detail is

provided when the output is sent to a file with the - o option. When looking at the output, there are several files
included.

© 2011 Lucid Imagination. All rights reserved. Page 40

LucidWorks Search Platform Documentation

Directory Structure of the Output Zip File

sunmary. t xt

i ssues. t xt

mast er. conf.json

version. json

version. t xt

coll ections.json

col |l ection_sizes.json

A directory for each collection, with the same name as the collection "instance" directory in the LucidWorks
Enterprise installation:

users.

dat asour ces. j son

fields.json

fieldtypes.json

info.json

settings.json

rol es.json

dat asour ce_schedul es. j son

dat asource_hi stories.json

dat asour ce_si zes. j son

sear ch_conponents. j son

filter_conmponents.json

jdbc_driver-files.json, which is a list of filenames, not the actual driver files
jdbc_driver_cl asses.json

a conf directory, which includes the Solr schema. xm and sol rconfi g. xm files, as well as all the other
files from the Solr conf directory of each collection.

json

aut hori zati ons. j son
coll ection_tenplates.json
alerts.json

The . j son files are structured as array blocks, pretty-printed for readability and to facilitate editing if needed.

The Summary File

The sunmary. t xt file is a readable file that summarizes the entire installation that is generated in the output zip file
includes:

URL of the LucidWorks Enterprise server and the alerts URL
Date and time when the info was captured
The LucidWorks Enterprise release number and all the version info returned by the REST API (as raw JSON)

If version info is not present, the tool will heuristically determine the LWE release based on the
availability or unavailability of various API features

Number of collections, users, authorizations, and alerts
For each collection (including the LucidWorksLogs collection):

Name
Directory name
Template name
Number of indexed documents
Number of data sources
Number of fields
Number of field types
For each data source:
Name
1d
Category
Type
Crawler
Number of indexed documents
Schedule
® Status of last crawl job
For each field:
® Name

© 2011 Lucid Imagination. All rights reserved. Page 41

LucidWorks Search Platform Documentation

®* Type
® Whether the field is:
Indexed
Stored
Searched by default
Included in search results
® Used as a facet
Summaries of fields:
® |ist of fields searched by default
® List of fields included in search results
® List of fields used as facets
For each field type:
®* Name
® (Class

® Info for the collection (directories, disk space, etc.)
® Settings for the collection, including stop words and synonyms

For each role:

® name

® List of groups

® |ist of users

® List of filters
For each search component (currently hard-wired to one)

® Handler name (e.g., "/lucid")

® List of search component names (e.g., "filterbyrole", "query", etc.)
For each filter component configuration

® Filter component name (e.g., "ad")

® Filter component configuration (raw JSON) - excludes password
List of JDBC driver files
List of JDBC driver classes

® For each User:

User name

Last name

First name

Email address

Password (which, unfortunately, is always just eight asterisks)
Password hash which is used in place of the actual password

® For each authorization:

Name of the authorization (ADMIN, SEARCH, ALERTS)
List of group names authorized for this activity
List of user names authorized for this activity

® List of collection templates

' When updating the target LucidWorks Enterprise server, settings from the LucidWorksLogs collection
will not be updated. This is to preserve any improvements that may have been made in the newer
release. This means that any changes that were made on the source LucidWorks Enterprise server,
such as changes to the refresh rate, will need to be made again.

The Issues File

The log output and summary. t xt will include any potential problems that were detected by the tool, but the list of such
issues is also written to i ssues. t xt for quick and easy review.

The Version Files

There are two version files. The first, ver si on. j son, contains the JSON returned by the LucidWorks Enterprise Version
API, but that API is only supported from v2.0 forward. The second file, versi on. t xt, is a simple, single-line text file
that contains the LucidWorks Enterprise release version number which either came from the version API or was
determined heuristically by the tool.

The LWE release version numbers recognized by the tool are:

© 2011 Lucid Imagination. All rights reserved. Page 42

LucidWorks Search Platform Documentation

1.6
1.7
1.8
2.0

Schemas for Past Releases

The install comes with and creates a directory called $LWE_HOVE/ app/ i gr ati on-t ool s/ r el ease- schemas, which has
pre-run captures of each of the recent LucidWorks Enterprise versions. These can be used for reference and can also
be used to reset a server to a fresh, blank state. The supported releases are currently:

® 1.7: $LVWE_HOVE/ app/ mi gr at i on-t ool s/ rel ease- schemas/ 1- 7- schema. zi p
® 1.8: $LWE_HOME/ app/ mi gration-tool s/ rel ease- schemas/ 1- 8- schena. zi p
® 2.0: $LVWE_HOMVE/ app/ mi grati on-tool s/ rel ease- schemas/ 2- 0- schena. zi p

There is also a set of example schemas that show what a capture looks like with collections, data sources, fields,
users, roles, authorizations, and alerts already defined. These are found in
$LWE_HOVE/ app/ i gr ati on-t ool s/ exanpl e- schenas, with zip files for each version (1.7, 1.8 and 2.0).

Index Upgrade Tool

In order to upgrade an index from an earlier version of LucidWorks Enterprise to v2.0, the Index Upgrade Tool should
be run. This tool is found under $LWE_HOVE/ ni gr ati on-t ool s/ in a .jar file called | ndexUpgr adeTool . j ar.

The tool will support upgrading an index from v1.7 or v1.8 to v2.0. Earlier versions are not supported.

F

It is recommended to run this Upgrade Tool only after consultation with Lucid Imagination Support to
be sure you understand the full ramifications of running this tool on your local, customized, index.

Lucid Imagination regularly reviews how our term indexing and query interpretation with our "lucid" query parser
operates and may make changes from time to time. In some cases, this means that queries may not behave the same
between releases. In particular, for v2.0, we have changed the way we handle indexing "CamelCase" terms from
documents and processing queries entered in that format. Previously, these terms were indexed as single terms, but
we have changed this so now they will be indexed as multi-term phrases. This means queries entered in CamelCase
will also be interpreted as multi-term phrase queries. However, the index upgrade tool does not convert these terms
to multi-term phrases, so moving forward there may be a mix of terms in the index, such as "SharePoint" and "Share
Point". While we have provided this index upgrade tool to help you avoid re-indexing your data, it is recommended to
do so with every migration to a new version.

Before running the tool, you should make sure LucidWorks Enterprise is not running to ensure there are no indexing
processes taking place while performing the upgrade.

To run the tool, open a command line interface and input the command:

java -jar |IndexUpgradeTool .jar [options] <sourcedir> <destinationdir>

The <sour cedi r > parameter is the existing index that will be moved to the <desti nati ondir>. In vl1.7 and v1.8, the
<sour cedi r > is found at $SLWE_HOVE/ sol r/ cores/ col | ecti on/ dat a/ i ndex, where col | ecti on is the name of the
collection whose indexes are being upgraded. In v2.0, the directory structure has changed, so the <desti nati ondi r>
would be $LVWE_HOVE/ dat a/ sol r/ cor es/ col | ecti on/ dat a/ i ndex.

@ The IndexUpgradeTool can upgrade the index for one collection at a time. If there are multiple
collection in the origin LucidWorks Enterprise, these would each need to be converted separately.

There is currently one option that can be used with the tool, which is - checki ndex. This will run Lucene's checkindex
tool to validate that the index is correct. This is a good idea to do, especially for systems already in production, but
will add time to the upgrade process.

© 2011 Lucid Imagination. All rights reserved. Page 43

LucidWorks Search Platform Documentation

. About Spell Check and Auto-Complete Indexes From Prior Versions
Before LucidWorks Enterprise v2.0, when spell checking and/or auto-complete was enabled a separate
index was created. In v2.0, the spell check feature can use data from the 'spell’ field in the main index
and creation of a separate index is no longer required. For this reason, the spell check index is not
upgraded, although the 'spell' field from the main index will be converted as part of the main index
upgrade.

The auto-complete feature still uses a separate index in v2.0. However, this index is not upgraded as

part of this process. After upgrading the main index, the auto-complete index will need to be
re-populated by running the aut oconpl et e job with either the Admin UI or the Activities API.

© 2011 Lucid Imagination. All rights reserved. Page 44

LucidWorks Search Platform Documentation

LucidWorks Enterprise User Interface Guide

Error formatting macro: redirect: java.lang.NullPointerException
The LucidWorks Enterprise User Interface Guide is now located at
http://lucidworks.lucidimagination.com/display/help.

You should be redirected in 5 seconds. If not, click the link above to go directly to it.

© 2011 Lucid Imagination. All rights reserved. Page 45

http://lucidworks.lucidimagination.com/display/help

LucidWorks Search Platform Documentation

System Configuration Guide

The System Configuration Guide provides detailed information about many of the features included with LucidWorks
Enterprise.

Many of the settings used by the crawlers are configured by default, and can be edited with the
$LWE_HOVE/ conf /| we- cor e/ def aul t. ym file. More information is available on the page Configuring Default Settings.

Content in LucidWorks Enterprise is organized into collections, which can each have different documents, data sources,
fields, field types and settings. Before starting to configure LucidWorks Enterprise, it's important to understand how
collections work and when you may need to create new ones. Working with Collections provides an overview of how
this works. When it's time to create new collections, it is possible to create collection templates to speed the initial
setup process.

When ready to start adding documents to the LucidWorks Enterprise Index, there are several items to consider such
as if the fields in the documents are configured correctly and use the proper field types and if the default mapping of
documents to the various fields is right. Crawling and Indexing Configuration covers these topics and other options
such as synonyms and stop words, setting up a batch-only crawl (where documents are not indexed), and specific
advice for particular content repositories. If you need to delete the index and start over, that's covered too.

Once documents have been indexed, the system is ready to serve queries. There are several options available here
too, covered in Query and Search Configuration. Users can set up alerts, spell check helps them recover from spelling
mistakes, auto-complete prompts users to use terms that are already known to exist in the index, and document
highlighting shows the user's search terms in the context of the document.

One issue that is important to users is that the results are relevant to them. We've included a chapter on
Understanding and Improving Relevance to understand how relevance ranking works in LucidWorks Enterprise and
what can be done to adjust it if needed. In some situations, the documents that other users have previously selected
(either in general or for the same query) may be considered more relevant, and LucidWorks Enterprise includes the
Click Scoring Relevance Framework to take those user clicks into account.

Securing the system should be a high priority, and the section on Security and User Management describes how to
integrate LucidWorks Enterprise with an LDAP or Active Directory server, how to enable SSL for the system, and how
to restrict access to content.

System performance is a big factor in getting users to adopt and continue to use the search application. Performance
Tips describes how to approach judging and improving performance metrics, while Integrating Monitoring Services
shows how to hook LucidWorks Enterprise into JMX, Zabbix or Nagios to keep an eye on how the system is running.
At some point, you may need to increase the number of servers that are indexing and serving user queries - the
options are described in Expanding Capacity.

Finally, LucidWorks Enterprise is built on Solr, and instead of hiding that under the hood, we provide a way to access it
natively if that is easier for your application. Solr Direct Access describes how to do that in detail.

© 2011 Lucid Imagination. All rights reserved. Page 46

LucidWorks Search Platform Documentation

Configuring Default Settings

You can configure many default settings in LucidWorks Enterprise in the def aul ts. ym file located in the

$LWVE_Hone/ conf /| we- cor e directory. You must restart LucidWorks Enterprise after editing this file for your changes to

take effect.
Some of the default settings you can configure include:

Default crawl depth

Default field mappings for crawlers

Batch crawling of data sources

Enabling or restricting data sources by crawler
Default HTTP proxy settings

For example, to set the default crawl depth to 3 (which means that the crawler will follow links/sub-directories up to

three steps away from the initial target), set dat asour ce. craw _depth: 3.

Here is an example def aul ts. ym file with comments that explain the various default settings:

file: defaults.ym

initCalled: true

| ocation: CONF

val ues:

Set to true to block index updates
control. bl ockUpdates: false

this list is enpty
crawl ers. enabl ed. craw ers:

cram ers.filesystemcraw . hone: null

enabled if this list is enpty.
crawl ers. lucid. aperture. enabl ed. dat asources: "'

unrestricted if this list is enpty
crawl ers. lucid. aperture.restricted. datasources: ''
craw ers. | uci d. external . enabl ed. dat asources: "'
craw ers. lucid. external .restricted. dat asources:
craw ers. lucid. fs. enabl ed. dat asources: "'
cram ers.lucid.fs.restricted. dat asources:
craw ers. | uci d. gcm enabl ed. dat asources: "'
craw ers.lucid.gcmrestricted. dat asour ces:
craw ers. lucid.jdbc. enabl ed. dat asources: "'
craw ers.lucid.jdbc.restricted. datasources:
craw ers. | ucid. | ogs. enabl ed. dat asour ces:
craw ers.lucid.logs.restricted. datasources: "'
craw ers. lucid. sol rxnl . enabl ed. dat asources: "'
craw ers. lucid.sol rxm .restricted. dat asour ces:

Default data source bounds: choose none or tree
dat asour ce. bounds: none

Batch processing; caching of crawl ed raw content
dat asour ce. caching: fal se

Explicitly commt when craw is finished
dat asource. commit _on_finish: true

Solr's coonmtWthin setting, in mlliseconds
dat asource. commit_wi thin: 900000

Default crawl depth: the nunber of cycles or hops fromthe root URL/directory. Set

unlimted craw depth
dat asource. crawl _depth: -1
dat asource.follow_|inks: true

Set to true to ignore the rules defined in /robots.txt for a site

© 2011 Lucid Imagination. All rights reserved.

A whitespace-separated |list of synbolic craw er names to enable; all crawers are enabled if

Absolute path that will be used to resolve relative path of local file systemcraw s

Per-crawler list of enabled datasource types, whitespace-separated. All available types are

Per-crawl er whitespace-separated |list of restricted datasource types; all enabled types are

to -1 for

Page 47

LucidWorks Search Platform Documentation

dat asource. i gnore_robots: false
Performindexing at the sane tine as crawing
dat asour ce. i ndexi ng: true
Default field mapping for Aperture-based crawl ers
dat asour ce. mappi ng. aperture: & d001 !!com |l ucid.adm n.collection. datasource. Fi el dMappi ng
dat asour ceFi el d: data_source
defaul tField: nul
dynam cField: attr
literals: {}
nmappi ngs
slide-count: pageCount
content-type: nminmeType
body: body
sl ides: pageCount
subj ect: subject
pl ai nt ext messagecont ent: body
I astnodi fied: |astMdified
| ast nodi fi edby: aut hor
cont ent - encodi ng: char act er Set
type: nul
date: null
creator: creator
aut hor: aut hor
title: title
m metype: mi neType
created: dateCreated
pl ai nt ext content: body
pagecount: pageCount
contentcreated: dateCreated
description: description
contributor: author
name: title
filelastnodified: |astMdified
ful I name: aut hor
fulltext: body
messagesubj ect: title
| ast-nodi fied: |astMdified
acl: acl
keyword: keywords
contentl astnodi fied: |astMdified
last-printed: nul
l'inks: nul
url: wurl
batch_id: batch_id
crawl _uri: craw _uri
filesize: fileSize
page- count: pageCount
content-length: fileSize
filename: fileName

mul ti Val
fileSize: false
body: false

author: true
title: false
acl: true
description: false
dateCreated: false
types:
filesize: LONG
| ast nodi fi ed: DATE
dat ecr eat ed: DATE
date: DATE
uni queKey: id
Default field mapping for craw ers that use Tika parsers
dat asour ce. mappi ng. ti ka: *ido0l
Maxi num si ze of content to be fetched

© 2011 Lucid Imagination. All rights reserved. Page 48

LucidWorks Search Platform Documentation

dat asour ce. max_bytes: 10485760

Maxi mum nunmber of documents to collect; set to -1 for unlinmited docunents
dat asour ce. max_docs: -1

Set to true to apply content parsers to the retrieved raw docunents
dat asour ce. parsi ng: true

are not using a proxy server
dat asour ce. proxy_host: "'
HTTP proxy password, if you are using an HTTP proxy server
dat asour ce. proxy_password: "'
proxyPort for an HTTP proxy server, if you are using one
dat asource. proxy_port: -1
Usernane to authenticate with HTTP proxy server
dat asour ce. proxy_user nane: '
If true, datasources will attenpt to verify access to the renpte repositories
dat asource. verify_access: true
HTTP-specific preferences sent in HITP headers during craw ing
http. accept.charset: utf-8,1S0O 8859-1;q=0.7,*;9=0.7
http. agent. browser: Mzilla/5.0
http.agent.enmil: craw er at exanple dot com
http. agent.nane: Luci dWorks
http.agent.url:
http.agent.version: "'
http.craw . del ay: 2000
Maxi mum nunber of redirections in a redirection chain
http. max. redirects: 10
Nunber of threads for HTTP crawl i ng
http.numthreads: 1
Socket timeout in mlliseconds
http.tineout: 10000
Specify the HITP version: HTTP/1.1 if true; HTTP/1.0 if false
http.use. httpll: true

© 2011 Lucid Imagination. All rights reserved.

Defines the host nane of an HTTP proxy server to use for web crawl ing; leave blank if you

Page 49

LucidWorks Search Platform Documentation

ssl.auth_require_authorization: false
ssl.auth_require_secure: false

© 2011 Lucid Imagination. All rights reserved. Page 50

LucidWorks Search Platform Documentation

Working with Collections

LucidWorks Enterprise supports the creation and use of multiple "collections". A collection is a set of documents that
are grouped together with the same indexing and query rules. There are times, however, when multiple index rules
need to coexist in the same system, perhaps to index very different types of content (books vs. movies, for example),
or when you need to be more confident in limiting user access to some documents.

The concept of collections in LucidWorks Enterprise is very similar to the concept of cores in Solr. Under the hood, a
collection is the same as a core in Solr, however we have added functionality to the LucidWorks Enterprise GUI to
make configuring collections straight-forward and navigating between collections simple.

You can configure the following items for each collection individually:

Datasources
Fields

Query settings
Search UI
Search Filters
Schedules
Solr Admin

After you have created additional collections, you should pay special attention to the collection name you are working
with so you edit the proper configuration files or make the correct API calls. This is particularly true when using the
REST API or several of the advanced configuration options discussed later in this Guide, but it also applies to the
various screens of the Administration User Interface (Admin UI). Modifying the wrong collection out of context may
have unexpected consequences including poorly indexed content or an inconsistent search experience for users.

The following items are system-wide and can only be configured for the entire LucidWorks Enterprise installation:

® Collection definition

® Access to user interfaces

® Users

® Alerts (although these take the collection as a parameter to limit the query)

Using Collection Templates

It is possible to create templates for collection creation by configuring one collection and creating a . zi p file that is
called during new collection creation either via the user interface or the REST API. Each template is a .zip file that
consists of LucidWorks configuration files. The default LucidWorks configuration is available as def aul t. zi p. The
default configuration can be customized as needed and put in a .zip archive for use when creating new collections in
the future.

We have also created a stripped-down version of the LucidWorks Enterprise default configuration that includes only
the few fields that are absolutely essential for the system to run (see Customizing the Schema for more details on our
default field set). This can be used for collection creation if desired. The package is called essenti al . zi p. Both
templates can be found in $LWE_HOVE/ app/ col | ecti on_t enpl at es.

To make a custom template, create a new collection and configure it as needed, whether that is via the user interface,
using the REST API, or manual editing of configuration files. All of the configuration files for a collection reside in the

i nstance_di r for the collection, which is found under $LWE_HOME/ conf/ sol r/ cores/ col | ecti on, where col | ecti on
is the name of the collection that is being used as the basis for the template.

© 2011 Lucid Imagination. All rights reserved. Page 51

http://wiki.apache.org/solr/CoreAdmin

LucidWorks Search Platform Documentation

&4 app
3 conf
[gom
0 solr
[cores
] collection1_0
[bin
[conf
[jdbclib
|| LucidWorksLogs
solr.xml
2| zoo.cfg

(] data

Then create a . zi p file from the i nst ance_di r. The .zip file can have any name, including def aul t. zi p, although
using the same name would overwrite the system default template, meaning it would not be available at a later time if

needed. All templates must be placed in $SLVWE_HOVE/ conf/ col | ecti on_t enpl at es to be available during collection
creation.

i
L]

We recommend that you use all the sub-directories from the i nst ance_di r even if some of the files
have not been customized in the base collection.

© 2011 Lucid Imagination. All rights reserved. Page 52

LucidWorks Search Platform Documentation

Crawling and Indexing Configuration

This section describes how to configure crawling and indexing in LucidWorks Enterprise. It includes the following
topics:

Supported Filetypes

How Documents Map to Fields

Customizing the Schema

Synonyms, Stop Words, and Stemming

Term Analysis File Formats

Suppressing Stop Word Indexing
Troubleshooting Document Crawling

Batch (Split) Crawling

Crawling Windows Shares With Access Control Lists
Suggestions for External Data Source Documents
Integration with External Pipelines

Deleting the Index

Supported Filetypes

LucidWorks Enterprise can identify many different file formats (MIME types), and can extract text and metadata from
the MIME types listed in the table below. Even if LucidWorks Enterprise cannot extract data from a file, it can often at
least recognize the file type and index basic information about the file, such as the filename and its metadata.

Note that extracting data from third party proprietary file formats is often difficult and may result in irregular text

being extracted and indexed. If you encounter a format that is supported, but does not get properly extracted, please
share the information with Lucid Support, including the file, if possible.

Supported File Formats

Name MIME Type(s) Notes

HTML text/html

JPG Images image/jpeg Metadata Only

Mail message/rfc822 and message/news = Some mime based mail attachments can be

extracted.

MP3 Metadata audio/mpeg Metadata only

Microsoft Office Word, PowerPoint, Excel, MS All applications are trademarks of the Microsoft
Publisher, Visio Corporation

Open Office OpenDocument and StarOffice
documents

OpenXML Microsoft's latest Office format

Adobe Portable Document application/pdf PDF is a trademark of Adobe

Format

Plain Text text/plain

Quattro application/x-quattropro, Trademark of Corel

application/wb2
Rich Text Format text/rtf

eXtensible Markup text/xml
Language (XML)

© 2011 Lucid Imagination. All rights reserved. Page 53

LucidWorks Search Platform Documentation

How Documents Map To Fields

When LucidWorks Enterprise (LWE) crawls a data source, it extracts the target data and stores it in fields in the index.
The specific mapping from the source data to the indexed fields is determined by the crawler you are using, which is in
turn determined by the data source type. For a list of file types supported by LWE, see Supported Filetypes. Let us
consider two common file types, both processed by the Aperture crawler: a website and a Microsoft Word document.

For the website, consider a case where you have crawled http://lucidimagination.com with a crawl depth of zero,
which means that only the first page is indexed. The Aperture crawler maps the web page as follows (note that this
example is not complete or exhaustive):

Data Source Field Mapping @ Field Content
url url http://lucidimagination.com

content-type mimeType html/text

title title The Company for Apache Lucene Solr Open Source Search | Lucid Imagination
body body The Future Of Search
And so on.

For the Microsoft Word document, consider this document, included here in its entirety:

This Is The Heading

This is some text. It is very interesting.

{
|
{
{
é
5
p

B ‘Fd#""#““ rw

Data Source Field Mapping Field Content

mimetype mimeType application/vnd.openxmlformats-officedocument.wordprocessingml
title title Example Word Doc

author author Drew Wheeler

body body This Is The Heading This is some text. It is very interesting.

For information on which crawlers handle which data source types, see the Data Source REST API documentation. For
more information on fields in LucidWorks Enterprise, see the Table of Fields in the section Customizing the Schema.

Customizing the Schema

© 2011 Lucid Imagination. All rights reserved. Page 54

http://aperture.sourceforge.net/
http://lucidimagination.com
http://lucidimagination.com

LucidWorks Search Platform Documentation

LucidWorks Enterprise contains a schema. xnml file for each collection, which is used to define the fields for the index
(among other things). It is the same schema. xni file that is used with a Solr installation, however Lucid Imagination
has added fields to support various features of LucidWorks Enterprise and to make it easier for users to get up and
running. Not all users will need all fields, however, so they may want to trim the schema. xm file so it is easier to
read. The following table shows the default fields, how they are used, and if they can be removed for local
installations.

One of the primary added values of LucidWorks Enterprise is the integration of content crawlers for web sites,
filesystems and other repositories of content. Many of the fields added to schema. xm are for this purpose and should
be retained. In many cases, if they are removed from the schema, they will be recreated the next time a crawler that
uses them crawls new content. However, if not using the LucidWorks Enterprise crawlers, they can generally be safely
removed. They will be added based on a dynamic rule ("*" rule) in the schena. xn file that should be retained to
avoid unexpected failures of the crawlers. If this rule is left in place, nearly any field in the schema can be removed as
it will be added back if it is needed.

-a Only delete the "*" rule if you are absolutely positive other deleted fields will not be needed in your
specific implementation. Deleting this rule may also complicate future upgrades, as it is not possible to
predict when Lucid Imagination will add new fields to the schema. xnml file to support future
functionality.

® Guidelines for Removing Fields from the Schema
Essential Fields

Built-In Search UI Fields

Fields to Support Specific Features
Crawler Fields

Other Dynamic Fields

® Table of Fields

Guidelines for Removing Fields from the Schema

Essential Fields

There are five essential fields which must be retained in schema. xm for LucidWorks Enterprise to continue to function.
These are:

id

data_source
data_source_name
data_source_type
text_all

timestamp

The text_all field is required because schema. xm declares it as the default search field for the Lucene RequestHandler
(query parser), which is also the default for the basic Solr query parser. If you are using | uci d or Di sMax, however,
and will never use the Lucene or Solr query parsers, the field could be deleted. However, it may be best to retain it.

@ We have created a sample schema that includes only the essential fields listed above that can be used
for collection creation. See Using Collection Templates for more information.

Built-In Search UI Fields

LucidWorks Enterprise includes a default search UI that can be used as-is or replaced with a fully local interface. If
using it as-is, even for testing or during initial implementation, the following fields must also be retained in
schema. xm :

® url
® title

© 2011 Lucid Imagination. All rights reserved. Page 55

LucidWorks Search Platform Documentation

body

author
keywords
description
dateCreated
lastModified
pageCount
mimeType
author_display
keywords_display
timestamp

The Search Ul includes these fields for results display and default faceting, so for it to work properly, these fields
should be retained.

Fields to Support Specific Features

Several fields are included in schema. xm in support of specific LucidWorks Enterprise features. They can be removed
if those features are disabled or not in use.

Feature Fields

Click Scoring Relevance Framework | click

click_terms
click_val
ACL acl
Spell Check spell
Auto Completion autocomplete
Enterprise Alerts timestamp

Crawler Fields

The crawlers included with LucidWorks Enterprise create fields in schema. xn that begin with attr_ and are used to
store document-specific metadata during the crawl processes. They are not generally used otherwise by LucidWorks
Enterprise (such as in search results or other computations). Due to the dynamic "*" rule, they will be added back to
schema. xnl if not in place. If not using the LucidWorks Enterprise crawlers, they can be removed, but it is
recommended to retain them if possible.

Other Dynamic Fields

Several other dynamic fields (all including an '*', such as *_i, *_s, *_|, etc.) are defined in schema. xm . These can be
removed if they will not be used - the only two we recommend that you retain are the "*" rule and the attr_* fields.

Table of Fields

1 The table below notes whether a field will be indexed, stored, used for facets or included in results.
This is default behavior, and can be modified locally. After customization, this table may not reflect the
state of your schema. xnl file.

Field Name Type Indexed Stored Used @ Included Used for Can Be Deleted
for in
Facets Results

© 2011 Lucid Imagination. All rights reserved. Page 56

LucidWorks Search Platform Documentation

acl

attr_* (any field

starting with
‘attr_")

author

author_display

autocomplete

batch_id

bcc

string

string

text_en

string

textSpell

string

text_en

belongsToContainer text_en

© 2011 Lucid Imagination. All rights reserved.

Storing Access
Control List
information.

Created by the
crawlers and used
for a wide array of
document-specific
metadata. Not
specifically
declared in the
schema.xml file,
but dynamically
created during
crawls.

Raw author pulled
from documents.
Used by default in
the built-in Search
UIL.

Used for display of
authors in facets.
Used by default in
the built-in Search
UL

Stores terms for
the auto-complete
index. By default,
it is created by
copying terms
from the title,
body, description
and author fields.

Identifies the
batch that added
the document.

Used in processing
email messages.

Used to store the
URL of the archive
file (.zip, .mbox,
etc.) which
contains the file.

Only if never
using Access
Control List
(ACL)
query-time
document
security.

Yes, but
automatically
created by
LucidWorks
crawlers, so will
be recreated at
next crawl run.

Only if never
using built-in
Search UI.

Only if never
using built-in
Search UI.

Only if never
using built-in
auto-complete
functionality.

Yes.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field.

Yes.

Page 57

LucidWorks Search Platform Documentation

body

byteSize

cc

characterSet

click

click_terms

© 2011 Lucid Imagination. All rights reserved.

text_en

int

text_en

string

string

text_ws

The body of a
document
(generally, the
main text). Used
by default for
display in the
built-in Search UI.

The size of the
document.

Used in processing
email messages.

The character set
used for the
document. Only
populated if it is
declared in the
document (most
commonly with
HTML files).

Used with the
Click Scoring
Relevance
Framework and
contains the boost
value.

Used with the
Click Scoring
Relevance
Framework and
contains the top
terms associated
with the
document.

Only if never
using built-in
Search UI.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field and was
crawled by the
lucid.aperture
crawler (local
file systems and
web sites).

Yes. Will be
added
dynamically if
an indexed
document
contains this
field.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field.

Only if Click
Scoring will not
be used.

Only if Click
Scoring will not
be used.

Page 58

LucidWorks Search Platform Documentation

click_val

contentCreated

crawl_uri

creator

data_source

data_source_name

data_source_type

dateCreated

© 2011 Lucid Imagination. All rights reserved.

string

date

string

text_en

string

string

string

date

Used with the
Click Scoring
Relevance
Framework and
contains a string
representation for

the boost value for
the document. The

format allows it to
be used for
processing
function queries.

The creation date
for the document,
if available.

A copy of the URL
for the document.

The creator of the
document, if
available.

The ID of the data
source that
crawled this
document.

The name of the
data source that
crawled this
document.

The type of data
source that
crawled this
document.

The date the
content was
created, if
available.

Only if Click
Scoring will not
be used.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field. However,
it will not be
added as a
date, but a
string, which
may cause
sorting issues if
the field is used
again later.

Yes.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field.

No. Field is
essential.

No. Field is
essential.

No. Field is
essential.

Only if never
using built-in
Search UI.

Page 59

LucidWorks Search Platform Documentation

description

email

fileName

fileSize

from

fullname

generator

id

id_highlight

incubationdate_dt

keywords

© 2011 Lucid Imagination. All rights reserved.

text_en

text_en

text_en

int

text_en

text_en

text_en

string

text_en

date

text_en

The description
from a document,
if it exists in the
document. For
example, Microsoft
Office document
properties
contains a
description field
that can be filled
in by the user.

Not currently used
by any LucidWorks
Enterprise
crawlers.

The name of the
file.

The size of the
file.

Used in processing
email messages.

Data in this field is
mapped to
"author".

The name of the
software that
generated the
document, if
available.

Unique ID for the
document.

No longer used by
LucidWorks
Enterprise and will
be removed in a
later version.

Used in older Solr
example
documents.

The keyword list
from a Microsoft
Office document.

Only if never
using built-in
Search UI.

Yes. Will be
added
dynamically if
an indexed
document
contains this
field.

Yes.

Yes.

Yes. Will be
created
dynamically if
indexing a

document that
contains this
field.

Yes.

Yes.

No. Field is
essential.

Yes.

Yes.

Only if never
using built-in
Search UI.

Page 60

LucidWorks Search Platform Documentation

keywords_display comma-separated X X Terms from the Only if never
keyword field using built-in
formatted for Search UI.

display to users.

lastModified date X X X Date the content Only if never

was last modified. | using built-in
Search UI.

mimeType string X X X X The type of Only if never
document (PDF, using built-in
Microsoft Office, Search UI.
etc.).

name text_en X X Data in this field is = Yes.

mapped to "title".

otherDates date X X Dates other than Yes.
dateCreated or
lastModified would
be mapped to this
field.

pageCount int X X X The number of Only if never
pages in a using built-in
Microsoft Office Search UI.
document such as
Word or
PowerPoint.

partOf string X X Typically used for
an email
attachment, this
points to the
larger document of
which this
document is a
part.

price float X X Example field that Yes.
could be used for
processing
e-commerce data.

retrievalDate date X X Not currently Yes.
used, but could be
used for the date a
web document
was retrieved from
its server.

rootElementOf text_en X X Populated only for Yes.
the root or initial
document of a
crawl.

signatureField string X X Part of Solr's Yes.
default schema.

© 2011 Lucid Imagination. All rights reserved. Page 61

LucidWorks Search Platform Documentation

spell textSpell X
text_all text_en X
text_medium text_en X
text_small text_en X
timestamp date X
title text_en X
to text_en X
type text_en X

© 2011 Lucid Imagination. All rights reserved.

Stores the terms
to be used in
creating the spell
check index.
Created by
copying terms
from the title,
body, description
and author fields.

Used to combine
text fields for
faster searching.
Created by
copying terms
from the id, url,
title, description,
keywords, author
and body fields.

Not currently
used.

Not currently
used.

Time the
document was
crawled and used
for date faceting
and display of
activities in the
LucidWorks Admin
UI. Also used for
Enterprise Alerts
to know when the
document was
added to the index
for alerts
processing.

The title of the
document.

Used in processing
email messages.

Used by the
lucid.aperture
crawler to store
Aperture's
classification of an
information object,
separate from its
MIME type.

Only if never
using built-in
spelling
checker.

No. Field is
essential.

Yes.

Yes.

No, field is
considered
essential.

Only if never
using built-in
Search UI.

Yes. Will be
created
dynamically if
indexing a
document that
contains this
field.

Yes.

Page 62

LucidWorks Search Platform Documentation

url string X X The URL to access = Only if never
the document. using built-in
Search UI.
username text_en X X No longer used Yes.
and may be
removed in a later
version.
weight float X X Example field that Yes.
could be used for
processing

e-commerce data.

Synonyms, Stop Words, and Stemming

LucidWorks Enterprise is built on the Solr infrastructure, including Solr's schema and field-type analyzer architecture.
Although there are separate analyzers for indexing of documents and querying of the index, this topics concerns only
the query analyzer. The Solr analyzer architecture is quite flexible and permits the administrator to specify a tokenizer
and a list of filters. The tokenizer breaks a string into tokens, typically based on white space. Each filter than performs
a relatively discrete step in the processing of tokens to produce the final form of a term that is ready to be matched
against terms in the index.

Typical filter steps in term analysis include, but are not limited to:

Tokenize the text stream based on white space

Expand synonyms

Remove stop words

Remove punctuation and break apart multi-word terms (for example, CD-ROM)

Translate upper case to lower case

Translate accented characters into un-accented equivalents

Stemming to translate plural words to singular and possibly reduce words to their root word

Synonym Expansion

The administrator can provide a synonym definition file for each type of text field in the schema. Synonyms can be
either single terms or multi-term phrases. There can be an unlimited number of terms and phrases which are defined
as synonyms.

If the Lucid query parser encounters any of those terms or phrases in a query term list, additional (optional) clauses
will be automatically added to the user query so that the query will match either the specified term or phrase or any of
the synonym terms or phrases.

A synonym can also be defined as a direct replacement so that the replacement term or phrase will be substituted in
the query for the original term or phrase.

For the format of a synonyms file, see Term Analysis File Formats.

Stop Words

Many common prepositions, pronouns, and adjectives offer little benefit for matching documents, but can add some
value when ranking results. Although it is possible to remove stop words when documents are indexed, more relevant
results will be achieved by indexing all terms, querying only non-stop words, and then boosting the results by
including pairs and triples of the stop words and non-stop words.

There is the special case where a term list consists only of stop words. In that case, all words are included in the
query.

All words within quoted phrases are used for the query, even if they are stop words.

The user can also force a stop word to be included in the search by either preceding it with a plus sign ("+") or

© 2011 Lucid Imagination. All rights reserved. Page 63

LucidWorks Search Platform Documentation

enclosing it within double quotation marks. For example,

User Input Query Interpretation

at a "at" and "a" are stop words, so they will not be included with the query
conf erence

+at a "at" will be included in the query, but "a" will not
conference

"at" a Same
conf erence

"at a All three words will participate in the query
conf erence"

this is it There is no need to override because all three words are stop words, so all three will be included
in the query

The precise list of stop words is stored in a file that can be edited by the administrator to tailor it to the application.

Additionally, there can be separate stop word files for specific field types that may have special vocabulary
requirements. For more information about setting up custom stop word files, see Term Analysis File Formats.

Stemming

The purpose of stemming is to translate different forms of similar words to a common form so that a query for one
form of a word will also match the other forms. The most common difference is singular words versus their plurals.
Another variation in form is the variety of conjugations of a word.

Although the administrator can select what stemming filter or options are to be enabled for each field type, by default
all text fields will have a stemming filter that converts most plural words to singular.

Stemming is not a perfect process, so some plurals may be missed and some singular words may be mistakenly
translated to some other singular or possibly even a non-word. Non-words, such as jargon, names, and acronyms can
also be mistakenly stemmed. But, since stemming usually occurs at both document indexing time and at query time,
improper stemming is frequently not even detectable.

If stemming proves problematic for a given application, the administrator can always turn it off or select an alternative
stemming filter.

The Lucid simple plural stemming filter is completely controlled by rules contained in a file, so additional rules and
special cases can be easily added by the administrator.

For the format of the Lucid plural stemmer rules file, see the Lucid Plural Stemmer Rules File Format section.

If an alternative stemmer is desired, such as Lucid KStem, see the Choosing an Alternate Stemmer section.

Term Analysis File Formats

While LucidWorks Enterprise provides reasonable defaults for term analysis, you may desire more customization. To
further customize your term analysis defaults, you can use the term analysis filters in Solr. Some of these term
analysis filters are driven by rules contained in text files. These include:

® Stopwords
® Synonyms
® Stemming rules

You can edit synonyms and stop words in the Query Settings section of the Administration User Interface. The actual
files can be found in the $LVWE_HOVE/ conf/ sol r/ cores/ col | ecti onl_0/ conf directory (assuming the default
collection of col | ecti onl; if using multiple collections, use the collection name that matches the collection to be
changed).

© 2011 Lucid Imagination. All rights reserved. Page 64

LucidWorks Search Platform Documentation

Stop Words File Format

The LucidWorks Enterprise Stop Words file format is the same as the Solr stopwords file format which is one term per
line, as in:

an
and
are
as
at

Synonyms File Format

The LucidWorks Enterprise Synonyms file format is the same as the Solr synonyms file format. Blank lines and lines
starting with pound are comments. Explicit mappings match any token sequence on the left side of "=>" and replace
with all alternatives on the right side. These types of mappings ignore the expand parameter in the schema.

Equivalent synonyms may be separated with commas and will give no explicit mapping (that is, the listed terms are
equivalent). This allows the same synonym file to be used in different synonym handling strategies.

Example:

| awyer, attorney

one, 1
two, 2
three, 3
ten, 10

hundred, 100
t housand, 1000
tv, television

#nul tipl e synonym mappi ng entries are nerged
foo => foo bar

foo => baz

#i s equivalent to

foo => foo bar, baz

Lucid Plural Stemming Rules File Format

The Lucid plural stemmer is designed to focus on stemming of plural words into their singular forms. It is rule-based,
so the rules can be supplemented and tuned to handle a wide range of exceptions. Individual words can be protected
from stemming and can be given special-case stem words. But usually, general patterns cover wide classes of words.

This is mostly mapping plural to singular and primarily those ending with "s", but there are also verb forms not ending
with "s" that fall under the same heuristic rules.

It is understood that this simple heuristic approach will misinterpret some words that should either not be stemmed or
should be stemmed differently. The rules try to avoid removing "s" endings that are not plural (or verb conjugations),
such as "alias" or "business."

Input token does not need to be lower case, but stemming change will be lower case.

The filter (factory) is named com | uci d. anal ysi s. Luci dPl ural StenfFi | t er Fact ory. It has a "rules" parameter which
names the rules file. The default rules file is named Luci dSt enRul es_en. t xt and found in

$LWE_HOMWE/ conf/sol r/cores/col | ectionl_0/ conf. It is expected that each natural language will have its own
stemming rules file. This file is also specific to each collection.

If you edit the stemming rules file, adhere to the following format guidelines.

© 2011 Lucid Imagination. All rights reserved. Page 65

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.StopFilterFactory
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.SynonymFilterFactory

LucidWorks Search Platform Documentation

1. Exclamation point indicates a comment or comment line to be ignored.
2. White space is extraneous and ignored.
3. Blank lines ignored.

Types of Stemming Rules

Protected Word

Just write the word itself, it will not be changed.

® word

Replacement Word

Word will always be changed to a replacement word.
word => new word

word -> new word

word --> new word
word = new word

Protected Suffixes

Any matching word will be protected.

® pattern suffix

Pattern may start with an asterisk to indicate variable length. Use zero or more question marks to indicate that a
character is required. Use a trailing slash if a consonant is required.

Examples:

® 2ass
® *97ass
® %9297/ ass

Translation Suffix

Suffix of matching word will be replaced with new suffix.

® pattern suffix => new suffix

Pattern rules are the same as for protected suffixes. The pattern may be repeated before the replacement suffix for
readability.

Examples:

*ses => se
*ses -> *se
*?/ uses => se
*2?7s =>
*9?7s => *

The latter two examples show no new suffix, meaning that the existing suffix is simply removed.

Rules are evaluated in the order that they appear in the rules file, except that whole protected words and replacement
words are processed before examining suffixes.

To restrict the minimum word length that is to be stemmed, simply create rules consisting of only question marks ('?")
to match and protect words of those lengths.

For example, to protect words of less than four characters in length, add three rules, before any other rules:

© 2011 Lucid Imagination. All rights reserved. Page 66

LucidWorks Search Platform Documentation

P2 I Protects 1-char words.
7?2 ! Protects 2-char words. :
{ 7?2 | Protects 3-char words.

Example Stemming Rules File

Here is the default Luci dSt enRul es_en. t xt file that ships with LucidWorks Enterprise:

© 2011 Lucid Imagination. All rights reserved. Page 67

LucidWorks Search Platform Documentation

? \! Mninumof four characters before any stenm ng

??

?2?2?

*ss \! No change : business

*"s \! No change : cat's - Handled in other filters

*elves => *elf \! selves => self, elves, thenselves, shelves

appendi ces => appendi x

*indices => *index \! indices => index, subindices - NOT jaundices
*theses => *thesis \! hypotheses => hypot hesis, parentheses, theses
*aderies => aderie \! canmmraderie

*ies => *y \l countries => country, flies, fries, ponies, phonies, queries, synphonies
*hes => *h \! dishes => di sh, ashes, snmashes, nmmtches, batches
*???0es => *0 : potatoes => potato, avocadoes, tonatoes, zeroes

goes => go

does => do

?0es => *oe \! toes => toe, foes, hoes, joes, nobes - NOT does, goes - but "does" is also
plural for "doe"

??0es => ??0e \! floes => floe

*sses => *ss \! passes => pass, bosses, classes, presses, tosses
*igases => *igase \! ligases => |igase

*gases => *gas \! outgases => outgas, gases, degases

*mases => *mas \! Christnases => Christmas, Thomases

*?vases => *vas \! canvases => canvas - NOT vases

*iases => *ias \! aliases => alias, bias, Eliases

\ *abuses => *abuse \! di sabuses => di sabuse, abuses

*cuses => *cuse \! accuses => accuse, recuses, excuses

*fuses => *fuse \! diffuses => diffuse, fuses, refuses

*/uses => *us : buses => bus, airbuses, viruses; NOI houses, npuses, causes
*xes => *x \! indexes => index, axes, taxes

*zes => *z \! buzzes => buzz

*es => *e \| spaces => space, files, planes, bases, cases, races, paces
*ras => *ra \! zebras => zebra, agoras, algebras

\ *us

/s => \l cats => cat (require consonant (not "s") or "o" before "s")
*oci => *ocus \! foci => focus

*cti => *ctus \! cacti => cactus

pl usses => plus

gasses => gas

cl asses => cl ass

m ce => nouse

data => datum

\! bases => basis

anebi ases => anebi asi s

atlases => atl as

El i ases => Elias

nol asses

feet => foot

backhoes => backhoe

calories => calorie

\! Sone plurals that don't nake sense as singul ar
sal es
news
j eans

Suppressing Stop Word Indexing

By default, LucidWorks Enterprise indexes all stop words. Modern data storage is very cheap and even the simplest of
stop words provide additional context that boosts relevancy and enables more precise queries. By default, the Lucid
query parser eliminates stop words from basic queries, including them only when they are used in quoted phrases, or

© 2011 Lucid Imagination. All rights reserved. Page 68

LucidWorks Search Platform Documentation

when a query term list consists only of stop words. In addition, the Lucid query parser uses query stop words to
construct relevancy boosting phrase terms (bigram and trigram phrases) to supplement the basic query. Still, there
may be applications and environments where the choice is to suppress the indexing of stop words. Although this is not
the preferred choice, it is supported by the Lucid query parser.

There are two modes for suppressing stop word indexing:

1. Skip mode: Completely ignore or skip them, as if they were not present.
2. Position increment mode: Do not store them in the index, but increment the position counter so as to leave a
hole at the position of each stop word.

When skip mode is selected, the query parser will ignore or skip stop words in quoted phrases.

When position increment mode is selected, the query parser will also skip each stop word, but will increment the
position of the next term in the phrase so as to allow any term to match between the previous term and the next term
after the stop word. This will allow for more precise query matching than the first mode where stop words are simply
discarded.

Examples
Given these mini documents:

® Doc #1: Buy the time for the test.
® Doc #2: Buy more time for the test.
® Doc #3: Buy time for test.

A query of Buy the tine regardless of the stop word indexing mode will be equivalent to Buy AND ti ne and match all
three documents.

A query of "buy the tine" in normal indexing mode will match exactly that phrase and match only the first
document. In skip mode it is equivalent to "buy ti me" and will match the first and third documents. In position
increment mode the query is equivalent to "buy * time" which is not a valid query format but indicates that "ti nme"
will match the second word after "buy" regardless of the intervening word. This will match the first and second
documents, but not the third document.

Disabling Stop Word Indexing

Solr field types in the schema XML file control whether stop words will be indexed for particular fields. A stop word
filter may be placed in the tokenizer chain for the index analyzer for a field type to filter out stop words and assure
that they will not be stored in the index.

Filters are specified at the field type level, not the field level. For example, you may have titl e and body fields, both

with the t ext _en field type. A stop word filter may be specified for the t ext _en field type and will apply to all fields of
that same type, in this case titl e and body. If you really need to have a separate filter for a subset of the fields of a

given type, you must create a separate field type to use for that subset of fields.

The standard stop word filter is named St opFi | t er and is generated by the St opFi | t er Fact ory Java class.
LucidWorks Enterprise ships with a schema XML file (schema. xm) with the t ext _en field type with a commented out
entry for this standard stop word filter. To enable it, simply remove the XML comment markers around that one filter
entry.

-ﬂn Schemas are Collection Specific
The schema. xni file is specific to each collection and can be found under
$LWE_HOVE/ conf/ sol r/ cores/ <col | ecti on_nane>/ conf. If using multiple collections, be sure to
locate the correct schema. xni file for the collection to be updated. After editing the schema.xml file,
LucidWorks Enterprise should be restarted. On some Windows machines, LucidWorks Enterprise may
need to be stopped before editing the file.

So, starting with the following in schema. xn :

© 2011 Lucid Imagination. All rights reserved. Page 69

LucidWorks Search Platform Documentation

<fiel dType class="sol r. Text Fi el d" name="text_en" positionlncrenent Gap="100">

<anal yzer type="index">

<t okeni zer class="sol r.WitespaceTokeni zerFactory"/>

<I-- in this exanple, we will only use synonyns at query tinme

<filter class="solr.SynonynFilterFactory" synonynms="i ndex_synonyms.txt"
i gnoreCase="true" expand="fal se"/>

-->

<l--

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. txt"/>

-->

<filter class="solr.WrdDelimterFilterFactory"
gener at eNunber Parts="1" gener at eWrdParts="1"
catenateAl | =" 0" cat enat eNunbers="1" catenat eWrds="1"
spl i t OnCaseChange="0"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="solr.|SCOLatinlAccentFilterFactory"/>

<filter class="com | ucid.anal ysis.LucidPlural StenFilterFactory"
rul es="Luci dStenRul es_en. txt"/>

</ anal yzer>

Edit

the stop filter factory entry:

<l--
<filter class="solr.StopFilterFactory’
wor ds="st opwords. txt"/>

i gnoreCase="true"

-->

And

remove the XML comment markers to get:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. t xt"/>

Which results in the following analyzer description:

<fi el dType class="sol r. Text Fi el d* name="t ext _en" positionlncrenment Gap="100">

<anal yzer type="index">
<t okeni zer cl ass="sol r. Wi tespaceTokeni zer Factory"/>
<I-- in this exanple, we will only use synonyns at query tinme
<filter class="solr.SynonynFilterFactory” synonyms="index_synonyns.txt"
i gnoreCase="true" expand="fal se"/>
—
<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. t xt"/>
<filter class="solr.WrdDelimterFilterFactory"
gener at eNunber Parts="1" gener at eWrdParts="1"
catenateAl | =" 0" cat enat eNunbers="1" cat enat eWrds="1"
spl it OnCaseChange="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.|SCOLatinlAccentFilterFactory"/>
<filter class="com | ucid.anal ysis.LucidPlural StenFilterFactory"
rul es="Luci dStenRul es_en. txt"/>
</ anal yzer>

© 2011 Lucid Imagination. All rights reserved.

Page 70

LucidWorks Search Platform Documentation

After such a change, be sure to re-index all documents.

Also, make sure that the query analyzer for that field type references the same stop words file:

<anal yzer type="query">
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"/>

Do not change or comment out the query analyzer when making this index change.

Position Increment Mode

There is an additional option available for indexing of stop words. You can choose to suppress the actual indexing of
stop words, but still increment the position in the document being indexed to leave empty spaces at the positions of
the stop words. This enables queries with stop words in phrases (and in relevancy-boosting phrase terms) to query

more precisely without either the storage overhead of indexing the actual stop words or the query-time overhead of
searching for occurrences of the stop words. This is called position increment mode. It is enabled with an additional

parameter to the stop filter factory in the index analyzer called enabl ePosi ti onl ncr enment s which is set to "true".

To enable this mode, edit the St opFi | t er Fact ory entry of the index analyzer (which was uncommented above) in
schema. xm so it appears as follows:

<filter class="solr.StopFilterFactory" ignoreCase="true"
wor ds="st opwords. t xt" enabl ePosi tionl ncrements="true"/>

Only the index analyzer should be changed. The query analyzer should not be changed regardless of the indexing
mode. The query parser has internal logic that decides whether and when to call the query stop word filter.

After this change, be sure to re-index all documents.

Troubleshooting Document Crawling

Errors during crawling will be recorded in the core. <dat e>. | og file. You can find the cor e. <dat e>. | og file in the
$LVE_HOVE/ dat a/ | ogs di rect ory. Serious exceptions will be reported to the LucidWorksLogs collection, which you
can search as you can any other collection. You can also view log events on the Server Log page (Status -> Server
Log).

Documents may be skipped because there is not an extractor available for that file type, or because the file size
exceeds the maximum set during crawl configuration. Skipped documents will not be recorded in the LucidWorksLogs
collection. These would be found in the log file with a format like this:

INFO filesystem FileSystenCrawl er - File <file-URL> exceeds the maxi mum si ze specified for this data
source. Ski pping.

WARN No extractor for <file format>; Skipping: <document-URl >

Possible Errors

With each of the errors below, the exact cause cannot be determined. This information is provided to help you find the
errors in the log file; precise troubleshooting requires information about the documents and system environment. If a
document causes an error (besides being too large or the system being out of memory), it may be helpful to try to
isolate it and try again to be sure it is the document causing the problem and not some other system error that may
have occurred at the same time.

In each of the errors below, the document URI will be listed. For files this will be the path and filename, for websites it
would be the URL; for other data sources it will be whatever you have assigned as the document URI when the data
source was configured.

Exception

© 2011 Lucid Imagination. All rights reserved. Page 71

LucidWorks Search Platform Documentation

WARN Exception while craw ing: <document-URlI > <exception-w th-stack-trace>
WARN Doc failed: <exception-with-stack-trace>
WARN Doc failed: <docunent-URlI> - cause: <exception-cause-nmessage>

PDF files are notorious for causing exceptions in their processing, but that is primarily for file system crawls.
Out of memory

WARN Fil e caused an Qut of Menory Exception, skipping: <docunment-URl > <exception-wth-stack-trace>
WARN Doc failed: <exception-wth-stack-trace>
WARN Doc failed: <docunent-URlI> - cause: <OOM exception-nessage>

SubCrawlerException

WARN Doc failed: <exception-with-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-nessage>

Unknown file type

WARN Doc failed: Could not find extractor: <docunent-URl >

In this case, this warning will be seen in the logs but will not be reported in the LucidWorksLogs collection.
I/0 error

WARN | O Exception processing: <document-URlI > <exception-w th-stack-trace>
WARN Doc failed: <exception-with-stack-trace>
WARN Doc failed: <docunent-URlI > - cause: <exception-nmessage>

HTML/XML/XHTML parsing errors

WARN Doc failed: <exception-with-stack-trace>
WARN Doc failed: <docunent-URI> - cause: <exception-cause-nmessage>

This is another case where a warning will be seen in the logs but will not be reported in the LucidWorksLogs collection.

Batch (Split) Crawling

Batch (or "Split") crawling allows you to separate the fetching data from the process of parsing the rich formats (such
as PDFs, Microsoft Office documents, and so on), as well as the process of indexing the parsed content in Solr.

To enable batch crawling, set the i ndexi ng parameter of a data source to f al se using the Data Sources API. You can
also set the par si ng and cachi ng parameters to true or false, depending on your needs. Batch crawling attributes for
data sources are as follows:

Key Type Default Description

parsing | boolean true If true, the raw content fetched from remote repositories is immediately parsed in
order to extract the plain text and metadata. If false, the content is not parsed: it is
stored in a new batch with its protocol-level metadata. New batches are created during
each crawl run as needed.

caching boolean false If true, the raw content is stored in a batch even if immediate parsing and/or indexing
is requested. You can use this to preserve the intermediate data in case of crawling or
indexing failure, or in cases where full re-indexing is needed and you would like to
avoid fetching the raw content again.

indexing boolean true If true, the parsed content is sent to Solr for indexing. If false, the parsed document is
not indexed: it is stored in a batch (either a newly created one, or the one where the
corresponding raw content was stored). Set this attribute to f al se to enable batch
crawling.

Batches consist of the following two parts:

© 2011 Lucid Imagination. All rights reserved. Page 72

LucidWorks Search Platform Documentation

® a container with raw documents, and the protocol-level metadata per document
® a container with parsed documents, ready to be indexed.

The exact format of this storage is specific to a crawler controller implementation. Currently a simple file-based store
is used, with a binary format for the raw content part and a JSON format for the parsed documents. The first container
is created during the fetching phase, and the second container is created during the parsing phase. A new round of
fetching creates a new batch if one or more of the parameters described above requires it.

Not all crawler controllers support batch crawling, or all batch crawling operations. For example, the Aperture crawler (
| uci d. aper t ure) does not support raw content storage: it behaves as if the "parsing" parameter is always t rue and
caching is always f al se.

To work with batches and batch jobs, use the Batch Crawling API. You can find details for all relevant API calls on that
page. The basic workflow is as follows:

1. Create a data source using the Admin UI or Data Sources API.

2. Configure the data source for batch crawling by setting the i ndexi ng parameter to f al se using the Data
Sources API. You can also set the cachi ng and i ndexi ng parameters as described above.

3. Schedule a crawl for the data source.

4. Get the bat ch_i d for the data source using the Batch Crawling API: GET
http://1ocal host: 8888/ api/collections/collectionl/batches.

5. Using the Batch Crawling API, start the batch job for your data source using the bat ch_i d obtained in the
previous step: PUT http://| ocal host: 8888/ api/col |l ections/collectionl/batches/craw er/job/
bat ch_i d.

You can also use the Batch Crawling API to get the status of or stop running batch jobs, delete batches and batch
jobs, and so on.

Crawling Windows Shares with Access Control Lists

® About Crawling Windows Shares with Access Control Lists
® Additional System Requirements
® QOperating System
® Microsoft Windows Active Directory
® Network Connections
® Other Requirements
® How SMB ACL Information Is Stored In The Index
® How To Set Up And Crawl An SMB Data Source With ACLs

About Crawling Windows Shares with Access Control Lists

LucidWorks Enterprise can crawl Windows shares and the Access Control Lists (ACLs) associated with shared files and
directories. You can use this ACL information to limit users' searches to the content they are permitted to access.

The following model is implemented as a search filtering component by default:

Group READ Access Subgroup READ Access User READ Access Search Result Returned?

o (permit) o) o] o)
o] x (deny) o] X
o] o] X X
o] X X X
X (o] o X
X X o X
X (o] X X
X X X X

© 2011 Lucid Imagination. All rights reserved. Page 73

http://localhost:8888/api/collections/collection1/batches
http://localhost:8888/api/collections/collection1/batches/

LucidWorks Search Platform Documentation

o) - (not set) o) o)

(0] (0] - (0]

To understand this table, read the rows left to right. For example, in the first row, we see that the user's main group,
subgroup, and individual permissions all allow READ access to a shared resource, so the search result is returned. In
the second row, we see that the user's main group and user's individual permissions allow READ access, but the user's
subgroup's permissions do not, so no search result is returned to the user.

Additional System Requirements

Operating System

® Microsoft Windows Server 2003
® Microsoft Windows Server 2008

Microsoft Windows Active Directory

Active Directory is required for getting the user and group data.

Network Connections

Connections from LucidWorks Enterprise to the host sharing the directory:

® Server Message Block (SMB)
® TCP Port 445
® UDP Port 445

Connections from LucidWorks Enterprise to the host running Active Directory

® Lightweight Directory Access Protocol (LDAP)
® TCP Port 389

For information on setting up LDAP in LucidWorks Enterprise for use with Windows Active Directory, see LDAP
Integration

Other Requirements

® Credentials with READ and ACL READ permissions for accessing the Windows share. We recommend that you
create a special user for this purpose.

® Credentials with read-only access to the Active Directory LDAP. This is used for search-time filtering, and we
recommend that you create a special user for this purpose.

How SMB ACL Information Is Stored In The Index

For each file that is crawled through the SMB data source the acl field is populated with data that can be used at
search time to filter the results so that only people that have been granted access at the user level or through group
membership can see them. Two kinds of tokens are stored: Allow and Deny. The format used is as follows:

Allow:
W NA<SI D>

© 2011 Lucid Imagination. All rights reserved. Page 74

LucidWorks Search Platform Documentation

Deny:
W ND<SI D>

Where SI D is the security identifier commonly used in Microsoft Windows systems. There are some well known SIDs
that can be used in the acl field to make documents that are crawled through some other mechanism than by using
SMB data source behave, from the acl pow, the same way as the crawled SMB content:

SID Description
S-1-1-0 Everyone.

S-1-5-domain-500 A user account for the system administrator. By default, it is the only user account that is given
full control over the system.

S-1-5-domain-512 | Domain Admins: a global group whose members are authorized to administer the domain. By
default, the Domain Admins group is a member of the Administrators group on all computers
that have joined a domain.

S-1-5-domain-513 Domain Users.

Note that some of the listed SIDs contain a domai n token. This means that the actual SIDs differ from system to
system. To find out the SIDs for particular user in particular system you can use the information provided by the
Windows command line tool whoani by executing command whoani /al | .

You can populate the acl field in your documents with these Windows SIDs to make them searchable in LucidWorks
Enterprise. For example, if you wanted to make some documents available to "Everyone" you would populate the acl
field with the W NAS- 1- 1- 0 token. If you wanted to make all docs from one data source available to everybody you
can use the literal definitions in the data source configuration.

How To Set Up And Crawl An SMB Data Source With ACLs

1. Create an SMB data source. LucidWorks Enterprise (LWE) crawls in a recursive fashion, so you only need to
provide a starting URL and the credentials required to access the share. LWE crawls SMB data sources with the
filesystem crawler, so all of the features of the filesystem crawler are available, including i ncl ude_pat hs,
excl ude_pat hs, craw _dept h, max_si ze. You can specify these features in the data source configuration.

2. Configure the ACL Filtering component.

-ﬂn Configuration of ACL is also possible using the Filtering Results and Search Handler Component
APIs.

3. Crawl the new SMB data source.

Suggestions for External Data Source Documents

In some cases, it may not be possible to use the crawlers embedded with LucidWorks Enterprise to index content,
such as an email archive or a Web repository that's best accessed via an API. It's possible to use another process,
such as using Solr], to feed documents directly to Solr. In that situation, LucidWorks Enterprise would not know about
the documents and would not be able to include information about the data source in facets or display statistical data
about the data source in the Admin UI. There is a way to create an "external" data source and add fields to the
document so LucidWorks Enterprise can treat the documents the same as documents found via the embedded
crawlers. The data source can be added either via the Sources screen in the Admin UI or via the Data Sources API.

-ﬁn External data sources cannot be scheduled or otherwise controlled with LucidWorks Enterprise. The
process for feeding documents to the index is entirely controlled outside of the application. If regular
updates to documents are required, a server-side cron job or other mechanism may need to be
configured manually.

© 2011 Lucid Imagination. All rights reserved. Page 75

http://wiki.apache.org/solr/Solrj

LucidWorks Search Platform Documentation

Once a data source of the type "external" is added, you need to complete the link between the documents and the
new data source by adding several fields to the documents. At a minimum, the id of the newly created data source
should be added as a dat a_sour ce field, which can be found by either inspecting the URL of the data source when on
the Data Source Detail screen, or by using the Data Source API. In order for the documents to appear in facets, also
add the dat a_sour ce_nane. Adding the dat a_sour ce_t ype and a unique ID per document in the i d field will enhance
the ability of LucidWorks Enterprise to display information about these documents in the Admin UI (such as document
counts and other data).

The default search UI included with LucidWorks Enterprise relies on the ti t| e and body fields being populated in order
to display information about results to users; the aut hor and | ast Modi fi ed fields are also used for display and
faceting. If your custom search UI uses these or other fields for display of results, it's recommended that the
documents pushed directly to Solr include content in the those fields for a consistent user experience.

For example, using the API, a new data source could be created with these settings:

curl -X post -H 'Content-type: application/json' http:
/11 ocal host: 8888/ api/col |l ections/col |l ectionl/datasources -d
{

"nanme": " Test External #1",

"type":"external ",

"crawl er":"lucid. external",

"source_type":"Raw Sol r XM.",

"source":"Sol r update"

The output of this command would be as follows:

{
"commit_on_finish":true,
"verify_access":true,
"indexing":true,
"source_type":"Raw Sol r XML",
"collection":"collectionl",
"type":"external ",
"crawl er":"lucid. external",
"id":3,"category":"External ",
"source":"Sol r update",
"nane": " Test External #1",
"parsing":true,
"conmmit_w t hin":900000,
"caching": fal se,
"max_docs": -1

}

Then a document such as this could be added directly to Solr:

© 2011 Lucid Imagination. All rights reserved. Page 76

LucidWorks Search Platform Documentation

curl http://1ocal host:8888/solr/collectionl/update?commt=true -H "Content-Type: text/xm"
--data-binary '

<add>

<doc>

<field name="dat a_source">3</fiel d>

<field name="dat a_source_nane">Test External #1</field>
<field name="dat a_source_type">external </field>

<field name="id">http://ww. w ki pedi a. coml nytest</field>
<field name="title">My First Docunment</field>

<field nane="aut hor">Tom Jones</fi el d>

<field name="body" >

This is the body text of ny first test docunent.
It is being fed directly into the Solr update handl er.
That is all for now

The end.
</field>

</ doc>
</ add>'

Integration with External Pipelines

In some situations you may want to index content that has already been preprocessed with existing external systems,
often employing several steps and modules (such as Natural Language Processing tools, dictionaries, Named Entity
Recognition modules, custom tokenizers, stemmers, etc).

Standard field types supported in Solr do not provide this functionality. LucidWorks Enterprise adds a field type
dedicated to support such scenarios.

PreAnal yzedFi el d Type

The PreAnal yzedFi el d type provides a way to index a serialized token stream, optionally with a stored value of the
field that will be stored independently of the provided token stream.

When using standard Solr field types when a stored value is provided then the tokenized value will be derived by
applying an analysis chain. But with PreAnal yzedFi el d these two values are fully independent. That is, it is possible
to provide a stored value that is completely unrelated to the token stream that will be indexed. The token stream part
of the field is required, but the stored field is optional and may be omitted.

Field Content Format

Tokens to be indexed as well as the optional stored value are passed using a special serialization format, described in
a pseudo-Backus-Naur Form syntax below:

content ::= (stored)? tokens

stored ::= "=" text "="

tokens ::= (token ((" ") + token)*)*
token ::= text ("," attrib)*
attrib ::= name '=" val ue

nanme ::= text

val ue ::= text

There are some special characters that must be properly escaped in the "text" values using a back-slash '\' character.
The following escape sequences are recognized (listed below with added double quotes for clarity):

© 2011 Lucid Imagination. All rights reserved. Page 77

LucidWorks Search Platform Documentation

"\=" - literal equals sign character. This is the only escape sequence recognized in the stored part of the field,
other escape sequences in this part are treated literally.

"\ " - space character

"\," - comma character

"\/" - back-slash character
"\n" - newline character

"\r" - carriage-return character

"\t" - horizontal tab character

', Java Unicode escape sequences (e.g., \u0001) are not supported.

Supported Token Attributes

The following token attributes are supported, and identified with short symbolic names:

® | - position increment (integer)

s - token offset, start position (integer)
e - token offset, end position (integer)
t - token type (string)

f - token flags (hexadecimal integer)

p - payload (bytes in hexadecimal format)

Token offsets are tracked and implicitly added to the token stream - the start and end offsets consider only the term
text and whitespace, and exclude the space taken in the serialization format by token attributes.

Example Token Streams

This example contains only the token stream part (stored value is omitted). Note that token offsets are tracked even
though they were not specified.

"one two three'

stored: 'null’

tok: '(termrone, start O fset=0, endOf fset=3)"'
tok: '(termrtwo, start O fset=4, endOf fset=7)"'
tok: '(termrthree,startOffset=8, endOfset=13)"

In this example the additional unescaped whitespace is skipped and is not treated as a part of the token, but it affects
token offsets.

one two three '

- stored: 'null’

- tok: '(termrone,startOffset=1, endf fset=4)"

- tok: '(termrtwo, startOffset=6, endCf fset=9)"'

- tok: '(termrthree,startOfset=12, endO fset=17)"

This example shows how to explicitly set starting and ending offsets, as well as position increments.

© 2011 Lucid Imagination. All rights reserved. Page 78

LucidWorks Search Platform Documentation

'one, s=123,e=128,i =22 two three, s=20, e=22'

- stored: 'null’

- tok: '(termeone, positionlncrenent=22,start O fset=123, endf f set =128) "
- tok: '(termetwo, positionlncrenent=1,startOf fset=5 endfset=8)"

- tok: '(termrthree, positionlncrenment=1,startOfset=20, endXfset=22)"

This example presents various combinations of escape sequences and their interpretation. Of particular interest may

be the first token, with value of "one ," and type equal to ",", as well as a series of invalid escapes and unescaped
special characters that are ignored

"\ one\ \,,i=22,t=\, two\=

\n,\ =\ \!

- stored: 'null’

- tok: '(termr one ,,positionlncrement=22,startfset=0,endXfset=6)"
- tok: ' (termrtwo=

, posi tionlncrenment=1,type=,,startfset=7, endOfset=15)"
- tok: '(terme\, positionlncrenent=1,startCOf fset=17, endf f set =18)"

This example shows an unusual case of empty tokens with non-empty attributes.

',1=22 ,i=33,s=2,e=20 ,
- stored: 'null’
- tok: '(termm positionlncrenment=22,startfset=0,endX fset=0)"
- tok: '(termr positionlncrement=33,startOffset=2, endOfset=20)"
- tok: '(termr positionlncrement=1,startOfset=2, endOfset=2)"

This example illustrates the use of the optional stored value part.

"=This is the stored part with \=

\n \'t escapes.=one two three\ '
- stored: 'This is the stored part with =
\n \t escapes.’

- tok: '(termrone, start O fset=0, endOf fset=3)"'
- tok: '(termrtwo, startOffset=4, endOffset=7)"
- tok: '(termrthree ,startOffset=8, endCf fset=13)"'

Empty (non-null) stored value, and no token stream.

- stored: "'
- (no tokens)

Example of passing just the stored value. If the Solr schema indicates that this field should be analyzed then this
value will be passed as usual through the declared analysis chain in order to produce a token stream.

© 2011 Lucid Imagination. All rights reserved. Page 79

LucidWorks Search Platform Documentation

"=this is a test.='
- stored: 'this is a test.'
- (no tokens)

Deleting the Index

During application development, you might use sample data that is inappropriate for the production system. To
remove this data, you can delete the entire index or just delete the content and crawl history for a single data source.

The easiest way to do this is to issue an API command using the Collections Index API. This API provides two methods
to stop all running indexing tasks, clear the index, and clear any persistent crawl data (crawl history) for either the
entire collection or a single data source.

i This Will Delete ALL of Your Data
The following procedure to delete a collection should only be used if you are sure you want to delete all
documents in your index. Once this command has been executed, there is no way to retrieve the
content. If only some documents should be deleted, use the method to delete documents for a specific
data source.

If you only want to clear the crawl history, the Data Source Crawl Data API provides a way to delete only the history
for a data source, but not the content.

An alternative approach would be to issue a delete command directly to Solr with the following syntax. However, this
will not stop running tasks nor clear persistent crawl data.

http://1ocal host: 8888/ sol r/ updat e?stream body=<del et e><query>i d:\[* TO \ *\] </ quer y></ del et e>

© 2011 Lucid Imagination. All rights reserved. Page 80

LucidWorks Search Platform Documentation

Query and Search Configuration

This section describes how to configure query and search options in LucidWorks Enterprise. It includes the following
topics:

Enterprise Alerts

Spell Check

Auto-Complete of User Queries

Document Highlighting

Search User Interface Customization

Performing a Search Against LucidWorks Enterprise

Enterprise Alerts

The alerts feature of LucidWorks Enterprise allows a user to save a search and receive notifications when new results
are available.

Overview of Alerts Functionality

1. The user does a search, and clicks the link under the search box to "Create new alert".

a. The user configures the alert and notification settings, including how often to run the alert (peri od) and
an email address to send alert notifications.
b. LucidWorks Enterprise automatically saves the timestamp of when the alert was created (checked_at).

2. Every 60 seconds, a scheduled process within the UI checks to see if it is time to run any alerts.

3. When the alert is run, the query is executed as entered by the user, on the collection that the query was
initially run on, and the timestamp of the most recent document is compared to the timestamps of documents
in the result set.

4. If there are new results for the user, a notification is sent, assuming the mail server has been configured in the
[Settings] page of the UI.

) Parameter names in parentheses above refer to the Alerts API documentation.

Types of Alerts

A passive alert acts like a smart saved search. It is smart in the sense that it keeps track of the last time the user
checked for new results to their search and provides only new results the next time the alert is checked. As the name
implies, a passive alert provides no notification when new documents are indexed. It waits for a request before it
checks for new query results.

An active alert is checked periodically at a user-defined interval (currently every hour, day or week is available). When
new results to the query are discovered, an active alert sends a notification via email to the email address defined in
the alert. At the current time, only email notifications are possible.

1. Schema Must Define a Timestamp Date Field
Both active and passive alerts require that the index define a timestamp date field that is indexed,
defaulted to NOW, and used to indicate the time of document indexing. The default LucidWorks
Enterprise schema already defines this timestamp. If you are using or extending the default
LucidWorks Enterprise schema, you have met the timestamp requirements for alerts.

Spell Check

Integrated query spell checking is bundled with LucidWorks Enterprise, with the option to integrate third-party
enhanced spell checking capabilities. Spell checking and auto-complete is index-driven, meaning all suggestions are

© 2011 Lucid Imagination. All rights reserved. Page 81

LucidWorks Search Platform Documentation

derived from the actual content in an indexed collection and not from a predefined dictionary of words. In practical
terms, this helps solve the all-too-familiar case of working with messy data written by a variety of authors of varying
quality. One author may spell a word one way, while another author spells it a different way. Meanwhile, the user
spells it a third way. An index-derived spell checker provides suggestions based on the (sometimes incorrect) words in
the dictionary, ensuring that end users still find relevant documents even if they contain misspellings.

' Spell Check Settings are Per Collection
The indexes created for spell checking are unique to each collection, and based on the documents
indexed for a particular collection. In a multi-collection environment, the steps to enable spell checking
must be done in each collection.

To enable spell checking for specific fields, three steps must be taken:

1. Enable spell checking by accessing the Query Settings tab of the Admin UI and check the box next to
"Spell-check". Alternatively, the Settings API can be used.

2. Ensure there are fields configured for spell checking by accessing the Indexing Fields tab and choosing "Index
for Spell Checking". The Fields API could also be used if preferred.

3. Crawl your content.

-ﬂn What makes for a good spell-checking field?
A good spell checking field is a field that contains ample text-based content that end users are going to
search against using word-based queries. For example, the title and body fields are good candidates,
while a "price" field is probably not.

Using the Spell Checker Results

The spell checker is integrated into LucidWorks Enterprise via Solr's Sear chConponent plugin framework. Specifically,
it is set up via the Spel | CheckConponent . Thus, when enabled, spell suggestions are returned with query results inline
in the query response, as documented on the SpellCheckComponent page.

Auto-Complete of User Queries

Integrated query auto-complete is bundled with LucidWorks Enterprise as an index-driven feature, meaning all
suggestions are derived from the actual content in an indexed collection and not from a predefined dictionary of
words. For users, this means they will see suggestions for actual terms in documents, not for terms that may not
exist.

' Auto-Complete Settings are Per Collection
The indexes created for auto-complete are unique to each collection, and based on the documents
indexed for a particular collection. In a multi-collection environment, the steps to enable
auto-complete must be done in each collection.

Because the creation of auto-complete indexes may take some system resources, LucidWorks Enterprise does not
create this index by default. Auto-Complete indexing jobs must be scheduled using the Settings interface under the
Indexing tab of the Admin UI (or via the Activities API) before query suggestions will appear for users. You can
configure LucidWorks Enterprise to create this index automatically after crawling content.

To enable auto-complete of user queries, three steps must be taken:

1. Enable auto-complete by accessing the Querying Settings tab of the Admin UI and check the box next to "Auto
complete". Alternatively, the Settings API can be used.

2. Ensure there are fields configured for auto-complete by accessing the Indexing Fields tab and choosing "Index
for autocomplete". The Fields API can be used instead if that is your working mode.

3. After crawling some content, create the "autocomplete" index by accessing the Index Settings tab of and
scheduling a time for the "Generate autocomplete index" job to run. The Activities API can be used instead if
preferred. This must be done before automatic query completion will occur for users.

© 2011 Lucid Imagination. All rights reserved. Page 82

http://wiki.apache.org/solr/SearchComponent
http://wiki.apache.org/solr/SpellCheckComponent

LucidWorks Search Platform Documentation

#) What makes for a good auto-complete field?
A good auto-complete field is a field that contains ample text-based content that end users are going
to search against using word-based queries. For example, the title and body fields are good
candidates, while a "price" field is probably not.

Automatic Creation of Auto-Complete Indexes

By default, LucidWorks Enterprise does not build the indexes for auto-complete each time documents are added to the
index (e.g., from crawling new content) because doing so may have performance implications in a production
environment with a large index. However, LucidWorks Enterprise can be configured to do this automatically by
changing the bui | dOnCommni t setting in sol rconfi g. xm to true. Usually, it's a better idea to schedule index builds so
that they run on a regular interval rather than doing it on every commit using this method.

For Auto-Complete, find the following section in the sol rconfi g. xn file for the collection:

<l-- Auto-Conpl ete conponent -->
<sear chConmponent nane="aut oconpl ete" cl ass="sol r. Spel | CheckConponent ">
<I st nane="spel | checker">
<str nanme="nane">autoconpl ete</str>
<str name="cl assnane" >or g. apache. sol r. spel | i ng. suggest . Suggest er</str>
<str name="| ookupl npl ">or g. apache. sol r. spel | i ng. suggest . tst. TSTLookup</str>
<str name="fi el d">aut oconpl ete</str>
<str name="storeDir">aut oconpl ete</str>
<str nanme="bui | dOnConmi t " >f al se</str>
<fl oat name="t hreshol d">. 005</f| oat >
<l-- <str nanme="sourcelLocation">anerican-english</str> -->
</lst>
</ sear chConponent >

Auto-Complete data is persisted in a directory defined in the st oreDi r property (relative to the collection's dat abDi r
directory), so the default setting of bui | dOnConmi t to false may be sufficient, especially if the source of the
auto-complete data is not the main index (empty sour ceLocat i on property) but an external file that changes rarely.

Document Highlighting

The document highlighting service (RequestHandler) implemented by Docunent Hi ghl i ght er Request Handl er performs
a similar function to the built-in Solr highlighter. The key difference is that while the Solr highlighter operates on a list
of results returned from the index in response to a query, the Document Highlighter described here can perform
highlighting of arbitrary content in one of many supported formats, and the content can be either submitted as a part
of request or it may be retrieved from the current index.

Document Highlighter can return the original text, the highlighted text, and offsets of each matching span of terms,
according to request parameters.

Overview of Request Parameters

Below is a list of parameters accepted by this RequestHandler. Parameters are mandatory unless marked as optional,
in which case a default value will be used.

® dochl . g: the query to use for finding highlights. Note: the query parser can be defined using the regular gt =
parameter, for example: gt =l ucene.

® dochl . mode={highlight | offsets | both}: (optional, default is hi ghl i ght). When mode is set to
hi ghl i ght, only the text with highlighted sections will be returned. If mode is set to of f set s, only the

matching term spans and their offsets will be returned. When mode is set to bot h, both highlights and offsets
will be returned.

® dochl .source={solrcell | stored | xm | text}: the source of the text to be highlighted.

© 2011 Lucid Imagination. All rights reserved. Page 83

LucidWorks Search Platform Documentation

® solrcell : retrieve text from a specified content stream (required) using Ext r acti ngRequest Handl er,
commonly referred to as SolrCell, and optionally use a subset of extracted data specified in an XPath
expression (see below for more details). All parameters specific to SolrCell, such as field mapping, can
be used in combination with this option.

® stored: obtain text from stored fields of a specified document in the current index (see below for
additional parameters).

® xnl : use the text content of the provided XML content stream, and optionally use a subset of the XML
selected by an XPath expression.

® text: use the provided plain text content stream.

LucidWorks Enterprise (LWE) performs text analysis based on the field names in the supplied content. The default field

name,

if none are present, is body. The default field type, which determines the analysis chain, is obtained based on

this field name from the current schema. It can be also overridden using dochl . f t . NAME parameters, for example

dochl

. ft. body=t ext _en. A special name of dochl . ft.* can be used to set an override for any other unspecified field.

dochl . xpat h: (optional, default is none, which selects the whole document). This XPath expression is used to
select matching elements in the input XML document (either provided directly as XML content stream, or
extracted using SolrCell). Only text content from the selected elements will be processed. In the case of
multiple matches, LWE processes each match separately, and returns text, highlight, and offset nodes
arranged in the order of matching.

dochl . fil enane: (optional, default is none) can be used to help with content extraction.

dochl . i ncl udeOri gText : (optional, default is true when dochl . node=of f set s and false otherwise). If true
then returns also the original source text.

dochl . begi nMar ker : (optional, default is) characters to use as the start of the highlighted span.
dochl . endMar ker : (optional, default is) characters to use as the end of the highlighted span.

dochl . docl d: (required when dochl . node=st or ed) unique key (without field name) that identifies the
document to obtain the stored fields from.

dochl . f1 : (optional, considered when dochl . node=st or ed) if present, specifies a comma-separated list of
fields to highlight. If absent, the regular f parameter is considered. If both are absent then LWE uses all stored
fields.

Examples

Request

curl "http://1ocal host:8888/solr/collectionl/dochl ?dochl . g=t est &lochl . source=text & /
stream body=Thi s+i s+a+t est +exanpl e&dochl . node=bot h&dochl . i ncl udeOri gText =t rue
&dochl . begi nMar ker =&dochl . endMar ker ="

© 2011 Lucid Imagination. All rights reserved. Page 84

http://wiki.apache.org/solr/ExtractingRequestHandler

LucidWorks Search Platform Documentation

Response

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st nanme="responseHeader" >
<int nane="stat us">08&</int>
<int nanme="Qrli ne">91</int>
</lst>
<l st nane="results">
<l st nanme="0">
<l st name="of fsets">
<str nanme="test">10-14</str>
</lst>

<str name="text">This is a test exanple</str>
</lst>
</lst>
</ response>

<str name="highlighted">This is a & t;span>test& t;/span>

exanpl e<str>

Request

curl "http:

i \-F "nyfile=test.pdf"

/11 ocal host: 8888/ sol r/collectionl/dochl ?dochl . g=t est &np; dochl . sour ce=sol rcel | &np; dochl . node=bot

Response

<?xm version="1.0" encodi ng="UTF-8"?>
<response>

<l st nane="responseHeader">
<int nane="status">0</int>
<int nanme="Qrli ne">61</int >
</lst>

<l st name="resul ts">

<l st nanme="body" >

<l st name="of fsets">

<str name="test">10-14</str>
<str nanme="test">40-44</str>
</lst>

</str>
</lst>
</lst>
</ response>

<str nane="hi ghlighted">This is a test exanple. This is a second test exanple.

Request

curl "http:

\-H
"Content-Type: text/xm"

/11 ocal host: 8888/ sol r/coll ectionl/dochl ?2dochl . g=t est &np; dochl . sour ce=xm &anp; dochl . nbde=bot h&str
version="1.0" +encodi ng=" UTF-8' ?> & t;top> & t; p>first+test& t;/p> & t; p> second+t est +¢

© 2011 Lucid Imagination. All rights reserved.

Page 85

LucidWorks Search Platform Documentation

Response
<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="responseHeader">
<int nane="status">0</int>
<int nane="Qrli ne">76</int>
</lst>
<l st nane="results">
<l st nane="body">
<l st name="of fsets">
<str nanme="test">17-21</str>
</lst>
<str nanme="hi ghlighted">first testsecond test exanpl e</str>
</lst>
</lst>
</ response>

Search User Interface Customization

Client Interaction with LucidWorks Enterprise

LucidWorks Enterprise is built upon Solr and supports it natively. You may find it helpful to review the Solr Reference
Guide for Solr 1.4 if you plan to interact directly with Solr.

Lucid Imagination has defined a special Solr search request handler, /| uci d, for LucidWorks Enterprise. This request
handler is preconfigured, and you can see the default settings returned in each response's responseHeader/params
data structure. These parameters can be overridden by the client request, but overriding some parameters may
adversely affect the expected search results.

To search using the LucidWorks Enterprise request handler, simply point your HTTP client/browser to
http://localhost:8888/solr/collection1/lucid?q=some+query. LucidWorks Enterprise returns XML by default. If you
would rather have serialized PHP returned instead of XML, modify the URL to
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps.

LucidWorks Enterprise uses Solr's default SearchHandler, adding a custom query parser, role filtering, spelling

checking, unsupervised feedback, and so on. Solr's common query parameters apply, along with Solr's built-in
highlighting and other built-in search component handling.

ﬁ Any request sent to Solr must include the collection name. In the above example URLs, "collection1"
refers to the default LucidWorks Enterprise collection. If you have configured multiple collections,
replace "collection1" with the appropriate collection name.

The data is returned as a standard Solr search data structure, formatted either as XML, Ruby, Python, PHP, PHPS, and
even server-side XSL. For more information, see Solr's wt (writer-type) documentation.

Debug Mode

To enable detailed debug information in the LucidWorks Enterprise Search UI, add &ebug=on to the request. Debug
information includes detailed query parse information and Lucene explanations.

Integrating LucidWorks Enterprise with PHP

You can interact with LucidWorks Enterprise using PHP with Solr's serialized PHP format. Here is some sample code to
issue the request and produce a response:

© 2011 Lucid Imagination. All rights reserved. Page 86

http://www.lucidimagination.com/Downloads/LucidWorks-for-Solr/Reference-Guide
http://www.lucidimagination.com/Downloads/LucidWorks-for-Solr/Reference-Guide
http://localhost:8888/solr/collection1/lucid?q=some+query
http://localhost:8888/solr/collection1/lucid?q=some+query&wt=phps
http://wiki.apache.org/solr/CommonQueryParameters
http://wiki.apache.org/solr/QueryResponseWriter

LucidWorks Search Platform Documentation

<?php
$url = "http://1ocal host: 8888/ solr/collectionl/lucid?g=query&wt =phps";
$serializedResult = file_get_contents($url);

$response = unserialize($serializedResult);
?>

The $response variable holds a nested associative array. The complete structure can be dumped and seen clearly
using pri nt _r ($response);

The total number of search results is available as $response[' response'] [' nunFound'] . An array of documents, in

sort order, is $response[' response'][' docs'].

@ You can reverse engineer Solr request syntax by looking at LucidWorks Enterprise queries written to
the | uci d. YYYY_MM DD. | og. Look for lines like this:

INFO. [collectionl] /lucid
wt =xnl &st art =0&sor t =r andoml+desc&qg=exanpl e&versi on=2.2 0 17

The wt =xni &st ar t =0&sor t =r andoml+desc&g=exanpl e&ver si on=2. 2 string represents the parameters
sent to Solr. For PHP integration, use wt =phps instead of wt =xni .

Highlighter Usage

The /| uci d request handler defaults the highlighter pre and post query term markers with special unique tokens in
order to ensure HTML escaping is done properly. If you are using the LucidWorks Enterprise built-in search interface,
these markers are handled automatically. If you use a custom client with LucidWorks Enterprise against the /| uci d
request handler, you will need to account for these special markers by either replacing them in the client tier or
overriding these parameters. The default markers are LWE_BEG N_HI GHLI GHT and LWE_END_HI GHLI GHT. To override
these parameters, set the hl . si npl e. pre and hl . si npl e. post on the client request.

Performing a Search Against LucidWorks Enterprise

LucidWorks Enterprise has its own Search UI, but if you are going to build your own user interface, or your own
application to access the data stored in LucidWorks Enterprise, you will need to access the underlying engine directly.

LucidWorks Enterprise is built on Apache Solr, so the techniques necessary for performing a search against it are the
same as those for performing a search against Solr. In other words, an HTTP call to a URL of:

http://127.0.0. 1: 8888/ sol r/ col | ecti onl/sel ect/ ?q=Ni ckChase

Would return a result such as this:

© 2011 Lucid Imagination. All rights reserved. Page 87

LucidWorks Search Platform Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<response>
<l st name="responseHeader" >
<int name="status">0</int>
<int nanme="Qri ne">99</int >
<l st name="parans">
<str nanme="q" >N ckChase</str>
</lst>
</lst>
<result nane="response" nunfFound="151" start="0">
<doc>
<str nanme="geo">none</str>
<str nanme="id">29059644164939776</str>
<int name="retweet Count">0</int>
<str nane="source">web</str>
<str name="text">Working on a Twitter app; anybody got a preferred Java Twitter
library?</str>
<arr name="text _nediuni>
<str>Ni ckChase</str>
<str>en</str>
<str/>
<str>web</str>
<str>Working on a Twitter app; anybody got a preferred Java Twitter library?</str>
<str>2011-01- 23T06: 15: 33. 000Z</ str>
<str>0</str>
</arr>
<dat e nanme="ti nestanp">2011-02-13T14: 06: 53. 191Z</ dat e>
<arr name="userl|d">
<str>99999999</str>
</arr>
<str nane="userlLang">en</str>
<str name="user Nane" >N chol as Chase</str>
<str nane="user Scr eenNane" >Ni ckChase</str>
</ doc>
</result>
</ response>

You can then consume that XML from within your application.

While XML is the default output format, LucidWorks Enterprise supports multiple formats, including JSON, CSV, and
even object formats such as PHP, Java, and Python.

In general, to change the output format, use the wt parameter, as in:

http://127.0.0.1:8888/solr/collectionl/sel ect/?qg=N ckChase&w =j son

This provides a response of

© 2011 Lucid Imagination. All rights reserved. Page 88

LucidWorks Search Platform Documentation

"responseHeader": {
"status":O0,
"Qrime": 1,
"parans": {
"wt":"json",
"q":"N ckChase"
}
.
"response": {
"nunfound": 151,
"start":O0,
"docs": [
{
"id":"29059644164939776",
"user Nanme": "N chol as Chase",
"user ScreenNane": " Ni ckChase",
"userLang":"en",
"source":"web",
"text":"Working on a Twitter app; anybody got a preferred Java Twitter library?",
"ret weet Count": 0,
“timestanp”:"2011-02-13T14: 06: 53. 1917",
"geo": "none",
"text_mediun:["Ni ckChase","en","", "web", "Working on a Twitter app; anybody got a
preferred Java Twitter library?",
"2011-01- 23T06: 15: 33. 000Z","0"],
"userld":["99999999"]
}

The structure of the results depends on the options you choose in the request string. For example, you can specify
faceting and highlighting;

http:
/1127.0.0.1:8888/solr/collectionl/select/?g=twitter&facet=on&f acet.fiel d=user Scr eenNane&hl =
true&hl . fl=text

Which gives a result such as this:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="responseHeader" >
<int name="status">0</int>
<int name="Qri me">359</int>
<l st name="parans">
<str nane="facet">on</str>
<str nanme="facet.fiel d">userScreenNane</str>
<str name="hl.fl">text</str>
<str nanme="hl">true</str>
<str name="qg">twitter</str>
</lst>
</lst>
<result name="response" nunfFound="2190" start="0">
<doc>
<str nanme="geo">none</str>
<str nane="id">38402455221829632</ str>

© 2011 Lucid Imagination. All rights reserved. Page 89

LucidWorks Search Platform Documentation

<arr name="obj ect Type">
<str>twsStatus</str>

</arr>

<int nane="retweet Count">0</i nt>

i Phone&l t;/a> </str>

android twitter
client using twitter4j http://is.gd/ 1YUFyY #a ...</str>
<arr nane="text_nedi uni>
<str>t4j _news</str>
<str>en</str>
<str/>
<str>& t;a href="http://twitter.com" rel="nofollow > Twitter for
i Phone&l t;/a> </str>
<str>RT @nventive: Really useful Twitter Android code RT @nbake Devel opi ng an android
twitter
client using twitter4j http://is.gd/ 1YUFyY #a ...</str>
<str>2011- 02- 18T01: 00: 33. 000Z</ st r>
<str>0</str>
<larr>
<dat e nane="tinestanp">2011-02- 18TO01: 45: 05. 52Z</ dat e>
<arr name="user|d">
<str>88888888</str>
</arr>
<str name="userLang">en</str>
<str nanme="user Nane">t 4] _news</str>
<str nane="user Scr eenNane" >t 4j _news</str>
</ doc>
</result>
<l st name="facet_counts">
<l st name="facet_queries"/>
<| st name="facet_fields">
<l st name="user Scr eenNane" >
<int name="beaker">189</int >
<int nane="cl oudexpo” >35</int>
<int nanme="randybi as">35</i nt>
<int nane="getjavaj ob">26</int>
</lst>
</lst>
<l st name="facet_dates"/>
<l st name="facet_ranges"/>
</|st>
<l st name="hi ghlighting">
<l st name="38402455221829632" >
<arr name="text">
<str>RT @nventive: Really useful & t;span class="highlight"
> Twitter& t;/span> Android code RT
@nbake Devel oping an android & t;span class="highlight"
>twitter& t;/span> client</str>
<larr>
</lst>

© 2011 Lucid Imagination. All rights reserved.

<str name="source">& t;a href="http://twitter.com " rel="nofollow > Twitter for

<str nane="text">RT @nventive: Really useful Twitter Android code RT @nbake Devel opi ng an

Page 90

LucidWorks Search Platform Documentation

</ response>

Notice the structure of the search response: it starts with the r esponseHeader block, which provides information such
as the query, whether you have specified highlighting, and so on.

Next is the resul t block, which shows the actual documents returned by the search, along with the nunfound and
start attributes, which specify the total number of results and the starting position for the results returned in this
response. For each document, LucidWorks Enterprise returns all fields that are marked as st or ed=t r ue in the field
definition.

If you have specified faceting, next you will see facet counts for each field specified. You can then use that information
to build links to your narrowed search. For example, we started with the query:

http:
/1127.0.0.1:8888/solr/collectionl/select/?q=tw tter&f acet=on&f acet.fiel d=user Scr eenNane&hl =
true&hl . fl =text

If you then wanted to build a link to results narrowed on the user Scr eenNanme cl oudExpo, it would look like this:

http://127.0.0.1: 8888/ solr/col l ectionl/sel ect/?g=twitter&f acet=on&hl =true
&hl . f1 =t ext & g=user Scr eenNane: cl oudExpo

This way you have the same set of results, with the additional filter query of user Scr eenNane: cl oudExpo, which
selects only the documents with a user Scr eenNane field of cl oudExpo.

After the facet information comes the hi ghl i ghti ng block. Highlighting consists of snippets with the relevant
information marked up appropriately. (By default, terms are marked up as a span with the class hi ghl i ght, so you
can use CSS to style them however you like.) Each snippet is contained in a block that refers back to the i d value of
the original document. So in this case, the nane attribute of 38402455221829632 refers back to doc with an i d of
38402455221829632. You can then use this information to build your web application.

As far as how to actually use these responses, you can either work with them directly, or use the Solr API as provided
for your programming language. For example, a Solr] request looks something like this:

Sol r Server server = new CommonsHttpSol r Server("http://1 ocal host:8888/solr/collectionl");

Sol rQuery query = new Sol rQuery();
query.setQuery("twitter");
query.addSortFi el d("tinmestanp", SolrQuery. ORDER desc);

QueryResponse rsp = server.query(query);
Sol r Docurent Li st docs = rsp. get Resul ts();
for (SolrDocurment doc : docs){
Systemout. println((String)doc.getFieldvalue("id")+": ");
System out. println((String)doc.getFieldVal ue("userScreenNane")+" -- "+(String
)doc. get Fi el dVal ue("text"));

}

Here you are creating a connection to the server, then creating and executing the request. From there, you can
manipulate documents as you see fit.

APIs exist for most programming languages. You can find a list of bindings on the Solr Wiki.

© 2011 Lucid Imagination. All rights reserved. Page 91

http://wiki.apache.org/solr/IntegratingSolr

LucidWorks Search Platform Documentation

Understanding and Improving Relevance

As mentioned earlier, relevance is one of the most complex components of a search engine implementation. Users
may have differing opinions about what the best match for their query is, but this is generally because most user's
queries are too short for the system to gain a full understanding of the intention behind the query. However, there are
some ways to assess relevance and adjust how documents are scored to improve ranking.

Judging Relevance

Relevance should always be judged in the context of a specific index and a set of queries for that index. Often the best
way to achieve this is through query log analysis. In a typical query log analysis, the top 50 queries (give or take) are
extracted from the logs, plus ten to twenty random queries. Next, one to three users enter each query into the system
and then judge the top ten (or five) results. Judgments may be done using values of relevant, somewhat relevant, not
relevant and embarrassing. The goal of relevancy tuning is to maximize the number of relevant documents while
minimizing the number of irrelevant ones.

By recording these values and repeating the test over time, it becomes possible to see if relevancy is getting better or
worse for the particular system in question.

An alternative method for judging relevance is to use what is commonly referred to as A/B testing. In this approach,
some set of users are shown results using one version of the index while another set of users is shown the results
from a different version. To judge the success of a particular approach, user clicks are tracked and analyzed to
determine which approach provides better results.

1. Click Scoring Relevance Framework
One important aspect of LucidWorks Enterprise relevance scoring functionality is the ability to boost
documents that prior users have selected. This functionality is the Click Scoring Relevance Framework
and can be enabled through the Administrative User Interface.

Indexing Techniques

Several techniques can be employed during indexing to alter default relevance ranking. While these techniques almost
always have to be mirrored on the query side, they will be considered here as they originate during indexing.

Document and Field Boosting

When indexing using the Solr APIs it is possible to mark one Document or Field as being more important than other
documents or fields by setting a boost value during indexing. These boost factors are then multiplied into the scoring
weight during search, thus potentially boosting the result higher up in the result set. This type of boosting is usually
done when knowledge about a document's importance is known beforehand. However, index time boosting only
provides 255 distinct values of granularity and if a change is needed to the boost value, the document must be
re-indexed.

Stemming and Lemmatization

Stemming is the process of reducing a word to a base or root form. For example, removing plurals, gerunds ("ing"
endings) or "ed" endings. Lemmatization is a variation of stemming that leaves a whole word in place, while stemming
need not do that. There are many stemming theories and techniques. Some are quite aggressive, stripping words
down to very small roots, while others (called light stemmers) are less aggressive.

LucidWorks Enterprise currently ships with many options for stemming but it is also possible to plug in a custom
analyzer or use other Solr or Lucene analyzers not included. As a general rule of thumb, it is usually best to start with
a light stemming approach that removes plurals and other basics techniques and then progress to more aggressive
stemming only after performing some relevance testing as described in Judging Relevance.

Default stemming in LucidWorks Enterprise uses the Lucid Plural Stemmer for the default English text analysis Field
Type which simply stems plural words into their singular form, although rules can be added to a rules file to protect
and specially translate words or even add or modify stemming rules as needed (see the Stemming and Lucid Plural

© 2011 Lucid Imagination. All rights reserved. Page 92

LucidWorks Search Platform Documentation

Stemmer Rules File Format sections.) The Lucid KStem stemmer is available, which is based on the KStemmer light
stemming library. More aggressive stemmers are also available, like Dr. Martin Porter's Snowball stemmers (choose
the "text (English Snowball)" Field Type).

To experiment with different stemmers, there is a well-defined mechanism in the embedded Solr for plugging in
stemmers via the Analysis Process. There is also an easy to use Admin interface for testing the analysis process
located at http://localhost:8888/solr/collection1/admin/analysis.jsp.

Alternate Indexing Fields

When indexing, it is often useful to apply several different analysis techniques to the same content. For example,
providing a default case-insensitive search is often the best choice for general users, but expert users will often want
to do exact match searches which additionally require a case-sensitive field. In Solr, this can be accomplished by using
the <copyFi el d> mechanism, as described in the Solr Wiki section on the Schema. This currently can be set up by
editing the schema. xni file and restarting LucidWorks Enterprise.

Other examples of alternate fields include different stemming approaches, using character-based and word-based
n-grams, and stripping punctuation, accents and other marks. As with any change, though, some time should be
taken to evaluate whether it is an improvement.

Stopwords

As discussed previously, removing stopwords (such as a, the, of, and so on) from the index and stripping them from
queries is a common technique for reducing the size of an index and improving search results, despite the fact that it
throws away information. While LucidWorks Enterprise can remove stopwords at indexing time, it does not by default.
Instead, LucidWorks Enterprise excludes stopwords at query times, except in certain types of queries where they are
used to better clarify the user's intent (such as in phrases). Both the Extended Dismax Query Parser and the Lucid
Query Parser can take advantage of stopwords to improve results by using them in an n-gram approach.

Search Techniques

On the search side, there are many techniques for improving relevance, the most important of which is user
education. While the techniques described below can make things much easier for users, educating users on how to
use the proper query syntax, when to use it, and how to refine queries can be instrumental in enhancing the relevance
of search results. Obviously, not all users will read manuals or take the time to learn new query syntax, so the
following techniques can be used to achieve better results in many situations.

Query Term Boosting

Similar to Document/Field boosting, terms in a query can be boosted. Boosting a query term implies that the term in
question is somehow more important than the other terms in the query. One advantage of query time boosting is an
expanded level of granularity is available for expressing the boost value. Additionally, the boost value is not "baked in"
to the index, so it is easier to change.

Synonym Expansion

Synonym expansion is a common technique that looks up each token in the original query and expands it with
synonyms; strictly speaking, synonym expansion mostly improves recall (the ability to get more relevant documents)
rather than relevance ranking or the exclusion of irrelevant documents. For instance, a user query contain "USA" could
be expanded to look like (USA OR "United States" OR "United States of America"), which will likely bring back results
that the user intended to retrieve, but did not fully specify. In LucidWorks Enterprise, it is easy to specify a list of
synonyms that can be used for expansion. Synonym lists are best created by analyzing query logs and then looking up
synonyms for (common) query terms and then testing the results. Generic synonym lists (like those obtained from
WordNet) can be useful, but care must be taken as too many synonyms can be problematic for users, especially if
they are not appropriate for the genre of the index. It is, however, quite common to produce synonym lists contain
common abbreviations, humbers (for example, 1 -> one, 2 -> two, and so on) and acronyms.

Unsupervised Feedback

Unsupervised feedback is a relevancy tuning technique that executes the user's query, takes the top five or ten
documents from the result, extracts "important" terms from each of the documents and then uses those terms to

© 2011 Lucid Imagination. All rights reserved. Page 93

http://www.comp.lancs.ac.uk/computing/research/stemming/general/krovetz.htm
http://snowball.tartarus.org/
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://localhost:8888/solr/collection1/admin/analysis.jsp
http://wiki.apache.org/solr/SchemaXml
http://wordnet.princeton.edu/

LucidWorks Search Platform Documentation

create a new query which it then executes and whose results are returned to the user. This is all done automatically in
the background with no interaction required by the end user. As an example, if the user searches for the word "dog"
and the top three documents are (for the sake of example):

1. Great big brown dogs run through the woods.
2. Dogs don't like cats.
3. A poodle is a type of dog.

The feedback query might look something like (dog) OR (great OR big OR brown OR dog OR run OR woods OR
cat OR poodl e).

Since these terms co-occur with the word "dog" in high ranking documents, the theory goes that they are terms that
can help better specify the user's short query. Unsupervised feedback is often viewed as a helper, but it does rely on
the assumption that the top few documents are highly relevant to the search. If they are not, then the results
incorporating feedback will likely be worse than those without feedback.

Unsupervised feedback is optional in LucidWorks Enterprise and is disabled by default. It may be enabled by checking
the Enable Unsupervised Feedback check box in the query settings panel of the Administration User Interface.

) Supervised Feedback
Supervised feedback is similar to unsupervised feedback except that users explicitly pick which results
are relevant, usually by clicking the result or checking a box indicating it is relevant. The LucidWorks
Enterprise feedback component does not currently support supervised feedback.

Boosting Specific Results with Query Elevation Component

The Query Elevation Component is a Solr SearchComponent that enables editorial control of results by allowing
specific results to be placed in specific positions for a given query. For example, if a particular FAQ answer is buried in
the result set for a query, then it can be "promoted" to occur as the first result by setting making it so in the Query
Elevation Component. For details on how to configure the component, see the Solr Wiki section titled
QueryElevationComponent. It can be configured by editing sol rconfi g. xml manually, or using the Settings REST API.

-ﬁn QueryElevationComponent Requires Restart
Configuring the QueryElevationComponent requires restarting LucidWorks Enterprise.

Debugging Relevance Issues

It is often the case that particular queries cause users to question the relevance of the documents returned. There are
several key things to keep in mind when debugging these problems. First and foremost, determine how important the
query is. Is it a common query or does it only occur once in a great while? If it is a relatively rare query, it may not be
worth the effort to try to "fix" it. Second, do not overtune. Fixing one query may break ten other queries. Unless there
is an obvious fix, it is recommended that relevance judgments be established first so that any breakages can be
quickly caught. After the need to fix a problem is established, there are some techniques to do just that.

The first thing to do when debugging is to run the query in debug mode by appending &ebug=on to the request. In
the default LucidWorks Enterprise Search UI, links will appear under each search result to "toggle explain"; clicking
that will show the scoring of each document for the query.

By turning on debug mode, it is then possible to see why an individual result scored the way it did, as is the case
here:

© 2011 Lucid Imagination. All rights reserved. Page 94

http://wiki.apache.org/solr/QueryElevationComponent

LucidWorks Search Platform Documentation

1: 2.4688563 = (MATCH) boost((title:lucenen5.0|text_all:lucene)~0.01, 1000.0/(1.0*fl oat
(rord(l ast Modi fied))+1000.0))~"2”, product of:
2: 2.6342697 = (MATCH) nax plus 0.01 tines others of:
2.6313386 = (MATCH) weight(title:lucene”5.0 in 103), product of:
0.99999946 = queryWeight(title:lucene”5.0), product of:
3: 5.0 = boost
5.26268 = idf (docFreq=2, nunDocs=213)
0. 03800343 = queryNorm
2.63134 = (MATCH) fieldwWight(title:lucene in 103), product of:

4: 1.0 = tf(ternFreq(title:lucene)=1)
5: 5.26268 = idf (docFreq=2, nunDocs=213)
6: 0.5 = fieldNorn{field=title, doc=103)

0.2931021 = (MATCH) weight(text_all:lucene in 103), product of:
0.102523014 = queryWeight (text_all:lucene), product of:
2.6977305 = idf (docFreq=38, nunDocs=213)
0. 03800343 = queryNorm
2.8588905 = (MATCH) fieldwWight(text_all:lucene in 103), product of:
6.78233 = tf(ternfFreq(text_all: |l ucene)=46)
7: 2.6977305 = idf (docFreq=38, nunDocs=213)
0. 15625 = fieldNorn(field=text_all, doc=103)
8: 0. 9372071 = 1000. 0/ (1. 0*fl oat (rord(l ast Modi fi ed) =67) +1000. 0)

1 The overall score for the document given the expanded query.

2 The score from the main query

3 A boost of 5.0 is applied to the title.

4 The term frequency (tf) of the word in the Document. The word "lucene" occurs once in the title Field of the
Document.

5 The IDF (inverse document frequency) for the word in the title Field. The word "lucene" occurs in the title Field in 2
Documents out of a total of 213 Documents.

6 Apply length normalization to the Field.
7 The IDF for the word in the text_all Field. The word occurs in 38 documents out of 213.
8 The default query for LucidWorks Enterprise can boost more recent documents higher than older documents.

#) A Word on Scoring
Scores for results for a given query are only useful in comparison to other results for that exact same
query. Trying to compare scores across queries or trying to understand what the actual score means
(for example, 2.34345 for a specific document) may not be an effective exercise. However,
understanding the components that were factored in to make that score is a different story.

Using Luke

Another useful tool for evaluating relevance scores applied to documents is Luke, which is an easy to use GUI that
provides valuable information about the underlying Lucene index. Its features include document browsing, query
testing, term browsing (including high frequency terms) and statistics about the collection as a whole. To use Luke
with LucidWorks Enterprise, launch it using the script located in the | uke directory under the installation.

Once Luke is launched, point it at the LucidWorks Enterprise index directory (

$LWE_HOMWE/ dat a/ sol r/ cores/ col | ecti onl_0/ dat a/ i ndex, replacing "collection1_0" with the actual collection path
you want to look at) and open the index. From there, the most useful actions are to view the high frequency terms,
and also particular documents (under the Documents tab) using the "Browse by term" and "Browse by document
number" options. Key items to look for are missing documents and fields, terms or words that are not tokenized
"correctly". Correctly, in this case, does not necessarily mean the analysis process was wrong, it may mean that the
output is not what a user would expect. For instance, the word may be stemmed in an unexpected way.

© 2011 Lucid Imagination. All rights reserved. Page 95

http://code.google.com/p/luke/

LucidWorks Search Platform Documentation

ﬂ Luke in LucidWorks Enterprise
LucidWorks Enterprise packages a version of Luke, which is provided 'as is'. It can be found at
$LWE_HOVE/ app/ | uke and launched by running the | uke. sh script for Linux/Mac or the | uke. bat script
for Windows.

Correcting Issues

Once issues have been discovered and understood, then it is best to develop a strategy for fixing or working around
the issue. This can often mean changing analysis steps. To help better visualize the analysis process, Solr ships with
an analysis tool that effectively shows the outcome of each analysis step on both the indexing side and the query side.
To use this tool, point a browser at http://localhost:8888/solr/collection1/admin/analysis.jsp? and enter the text to be
analyzed. By trying out the text with different analysis capabilities (by selecting different Fields or Field Types), it is
possible to better understand why matches may or may not occur.

Improving relevance with external boost data

The standard mechanism in Solr for adding external field data (which may affect ranking) is through the use of

Ext er nal Fi | eFi el d type. This mechanism is sufficient when adding simple string or numeric values to be processed
by function queries, but it's not sufficient to express more complex scoring mechanisms, based on other regular query
types.

© 2011 Lucid Imagination. All rights reserved. Page 96

http://localhost:8888/solr/collection1/admin/analysis.jsp?

LucidWorks Search Platform Documentation

Click Scoring Relevance Framework

It is often desirable to adjust the scoring of results based on user feedback, whether that feedback is explicit or
implicit. Query logs provide a wealth of information that indicates what users were searching for and which results
they found relevant to the query. If certain documents are often selected as answers to queries, then it makes sense
to increase their ranking based on their popularity with users.

LucidWorks Enterprise includes a component that enables administrators to add this type of information to the index.
This component is referred to as the Click Scoring Relevance Framework (or Click Scoring, for short). The framework
includes tools for query log collection, processing of logs and robust calculation of the data used to boost certain
documents. It is possible to supply boost data prepared without Click Scoring tools included with LucidWorks
Enterprise, however the data must be available in a predefined location and follow a specified text format. More details
about how Click Scoring works and information about other advanced configuration parameters are described in Using
Click Scoring Tools.

This component can be enabled in the Querying Settings section of the Admin UI.

Functionality of Click Scoring

When users select a particular document for viewing from a list of search results, we can interpret this as implicit
feedback that the document is more relevant to the query than other documents in the results list. This further
indicates a strong association between the terms of the query and the selected document, because apparently users
believe the selected document matches their query better than other returned documents.

This graphic gives an overview of how Click Scoring works:

© 2011 Lucid Imagination. All rights reserved. Page 97

LucidWorks Search Platform Documentation

f 1. Enable Click Scoring enabled in Admin Ul
Click
\ SGDHHQ Click Scoring type enabled in solrconfig.xml

¢

Users search & click on relevant"H
results)

”3. Clicks and associated queries areu
stored in click_<collection>.log

ire
is scheduled and run to

Click Scoring Activity During Click Activity:

- Top query terms are analyzed
create boost file

. results are boosted |

- Weights are caleulated with number of
clicks per document and positions in
results lists (lower positions get a higher
weight)

- New data Is merged with older boost
data; boost values expire if document is
not clicked on again

5. Users do more

searches & Boost values contribute to overall
relevance calculations for a document,
previously clicked but clicks are not the only factor

This reinforcement of ranking and terms needs to be counterbalanced by "expiration" of past history of click-through
events, to avoid situations when documents that are selected many times start to permanently dominate the list of
results and become selected even more often, at the expense of other perhaps more relevant documents that did not
enjoy such popularity over time.

Click Scoring implements several major areas of functionality related to the processing of click-through events:

collection of query logs and click-through logs

maintenance of historical click data to control the expiration of past click-through events

aggregation of log data, calculation of click-induced weights and association of query terms with target
documents

integration of boost data with the main index data

These areas of functionality are described in the following sections.

Collection of Query and Click-Through Logs

This part of the functionality is implemented in the LucidWorks Enterprise Search User Interface. If LucidWorks
Enterprise is used with a custom search user interface that directly uses the LucidWorks Enterprise REST API and the
underlying Solr API, this part of Click Scoring needs to be reimplemented. The final boost data file follows a simple

© 2011 Lucid Imagination. All rights reserved. Page 98

LucidWorks Search Platform Documentation

text format, so this can be also supplied by an external process if desired. See Using Click Scoring Tools for more
details about such custom integration.

Both the queries and the click-through events are logged to the same log file. The default location of this file is in
$LWE_HOWVE/ dat a/ | ogs/ cl i ck-<col | ecti onNanme>. | og, and the name of the log file corresponds to the collection
name (for example, cl i ck-col | ectionl_0. | og for the default collection in LucidWorks Enterprise).

When using Index Replication this log data is not replicated to slave nodes. However, the latest version of the
aggregated boost data (see below) is replicated together with the main index files, so that the slave nodes can
perform click-based scoring the same way as the master node that calculated the boost data.

Maintenance of Historical Click Data

Each time click processing runs it saves a copy of the click log (by default this is in
$LWE_HOVE/ dat a/ sol r/ cor es/ <col | ecti onNane>/ dat a/ cl i ck- dat a/). Other data produced during click processing is
also stored in that location.

Over time the amount of data collected there could be significant. LucidWorks Enterprise does not delete this data
automatically, because query and click-through logs are a valuable resource and can be used for other data mining
tasks. If the size of this data becomes a concern, all subdirectories in that location can be removed except for
current/ and previ ous/ directories that preserve the current and previous boost data.

#) Collection of User Clicks
If Click Scoring is not enabled, LucidWorks Enterprise does not gather information about user
document clicks.

Processing of click-through logs

Raw logs need to be processed before they can be used for scoring, and historical data needs to be appropriately
accumulated (taking into account the gradual expiration of older data mentioned above).

This processing step can be scheduled to run periodically using the Administration User Interface by setting a recurring
activity in the Indexing Settings screen of the Admin UI. It results in the creation of calculated click boost data, which
is by default located in $LWE_HOVE/ dat a/ sol r/ cor es/ <col | ecti onNane>/ dat a/ cl i ck-dat a/ current.

Integration of click boost data with main index

If Click Scoring is enabled and boost data exists, then when new documents are indexed, an index optimization is run,
or a full re-index is executed, the boost data is integrated on the fly with the main index. Most frequent query terms
are added as a field to respective documents, and weights of these documents are adjusted.

The field names added by Click Scoring are configurable, but assuming their prefix is set to the default value of cli ck
the following fields will be created from boost data and automatically populated:

® click: an indexed, not-stored field with a single term "1", whose purpose is only to convey a floating-point
field boost value. Field boost values have limited resolution, which means that small differences in boost value
may yield the same value after rounding.

® click_terms: an indexed, stored, and analyzed field that contains a list of top terms associated with the
document (presumably obtained through analysis of click-through data). This field's Lucene boost is also set to
the boost value for this document obtained from the boost data file.

® click_val : an indexed, stored field that contains a single term: a string representation of the boost value for
this document. This format is suitable for processing in function queries.

Using Click Scoring information

There are several ways that the added Click Scoring information can affect ranking of results. By default, LucidWorks
Enterprise is configured to use Click Scoring data as an additional field in a | uci d query parsing (and extended variant
of di smax). Other methods can be configured manually, and may involve using cl i ck_val field as an input to a
function query. This section describes the | uci d query parser method, which is the default.

© 2011 Lucid Imagination. All rights reserved. Page 99

LucidWorks Search Platform Documentation

When Click Scoring is enabled via the Administration User Interface, a field with a boost cl i ck_t erms”5. 0 is
automatically added to the list of fields for the search handler (which uses a | uci d query parser).

This means that query terms will be matched also with the cl i ck_t er ms field using the relative weight of 5.0 (this
weight can be changed only via Settings API or by manual editing of sol rconfi g. xm). The score contribution of this
match will be related to this weight, the term frequency/inverse document frequency scoring formula for this field, and
the usual | uci d (extended di smax) scoring rules.

The end result of this query processing is that documents that contain in their cl i ck_t er ns field terms from the query

will have a higher ranking, proportionally higher to the popularity of the document (the number of click-throughs) and
the overlap of query terms with cli ck_t erns.

Using Click Scoring Tools
The Click Scoring Tools package is a set of tools for analyzing query and click-through logs in order to obtain
relevance-boosting data. This boost data can then be used by other Click Scoring components such as

d i ckl ndexReader Fact ory and the | uci d query parser to adjust document ranking based on the click-through rate
and common query terms.

File Formats

The Click Scoring Tools package reads and generates files that follow specific formats, which are summarized below.
All files are plain text files with tab-separated records, one record per line.

Query and Click-through Log Format

Click Scoring tools expect this file to be located in $LWE_HOVE/ dat a/ | ogs/ cl i ck-<col | ecti onNanme>. | og.

Q TAB queryTi mestanp TAB query TAB request| D TAB nunberOfHits
C TAB cl i ckTi nestanp TAB request| D TAB docunent| D TAB position

The fields are:

Field Description

QorC Identifies the type of the record, either a query log record or a click-through log record
queryTi mestanp A long integer representing the time when the query was executed

query The user query, after basic escaping (removal of TAB and new-line characters)
request| D A unique request identifier related to query and timestamp

nunberOfHits The total number of results matching the query

clickTi mestanp A long integer representing the time of the click-through event

request| D The same value as above for the Qrecord
docurnent | D The uni queKey of the document that was selected
position The 0-based position of the selected document on the list of results

Boost File Format
This file is usually generated as a result of the Click Scoring processing of log files, but it could be also supplied by

some other external process. Click Scoring expects this file to be located in
$LVE_HOVE/ dat a/ sol r/ cor es/ <col | ecti onNanme>/ dat a/ cl i ck- dat a/ current/boost . dat a.

© 2011 Lucid Imagination. All rights reserved. Page 100

LucidWorks Search Platform Documentation

docunment | D TAB |ist(topTerns) TAB |ist(boost) TAB I|ist(updateTi mestanp)

The fields are:

Field Description
docurnent | D The uni queKey of the document
list(topTerns) A comma-separated list of pairs in the format phrase:weight

|ist(updateTi nestanp A comma-separated list of long integer timestamps, which affect how the current boost
data will be aggregated with the next version of boost data. This element is optional and
it's for internal use by Click Scoring Tools

Click-induced Boost Calculation

When Click Scoring tools are run (using the C i ckAnal ysi sRequest Handl er) old boost data (if present) is merged
with the new boost data, processed by a Boost Processor to produce the new numeric boost value per documentID,
and a new list of top-N shingles per documentID. Previous values of the floating-point boost are preserved in a boost
history field, so that they may be considered during the next round of calculations.

The default configuration uses a Boost Processor that discounts historical boost values depending on the passed time
by applying an exponential half-life decay formula. Such discounted historical values are then aggregated with the
current values. This method of aggregation reflects both past history of click-throughs and also reacts closely to recent
click-through events.

C i ckAnal ysi sRequest Handl er

The d i ckAnal ysi sRequest Handl er initiates and monitors the click-through analysis. The tools for Click Scoring
processing are available via com | uci d. handl er. d i ckAnal ysi sRequest Handl er, which can be activated from the
sol rconfi g. xm configuration file the same way as any other request handler.

The configuration that ships with LucidWorks Enterprise already contains a section that activates this handler, under
the relative path / cli ck.

This handler accepts a request parameter, which can take one of the following values:

® STATUS - return the status of the ongoing analysis, if any.
Example request:

curl "http://1ocal host:8888/solr/collectionl/click?request=STATUS"

Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<I st nane="responseHeader">
<int nanme="status">08&t;/int>
<int nane="QrTi ne">205&t;/int>

</l sté>

<str nanme="logDir">java.io.File:.../logs</str>

<str name="prepDir">java.io.File:.../click-prepare</str>
<str name="boostDir">java.io.File:.../click-data</str>

<null name="dictDir"/>
<str nanme="processing">ldle.</str>
</ response>

© 2011 Lucid Imagination. All rights reserved. Page 101

LucidWorks Search Platform Documentation

® PROCESS - start the clickthrough processing. If the processing is already running, an error message will be
returned and this request will be ignored.
Example request:

curl "http://1ocal host:8888/solr/collectionl/click?request=PROCESS"

Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st name="responseHeader">
<int name="status">0</int>
<int name="Qrli ne">136</int>
</Ist>
<str nane="resul t">C i ckthrough analysis started.</str>
</ response>

Subsequently, the status returned after all processing is finished will look like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nanme="responseHeader">
<int name="status">0</int>
<int nanme="Qrli ne">1</int>
</lst>
<str nane="logDir">java.io.File:./logs</str>
<str nane="prepDir">java.io.File:./click-prepare</str>
<str nane="boostDir">java.io.File:./click-data</str>
<null name="dictDir"/>
<str nanme="processing">Stopped: Stage 3/3: prepare=finished, ok aggregate=finished, ok
boost _cal c=fini shed, ok</str>
</ response>

® STOP - stop the currently ongoing analysis, if any is running.
Example request:

curl "http://1ocal host:8888/solr/collectionl/click?request=STOP"

Example response:

<?xm version="1.0" encodi ng="UTF-8"?>
<r esponse>
<l st nane="responseHeader">
<int name="status">0</int>
<int name="Qrli me">0</int>
</lst>
<str nanme="resul t">There is no running analysis to stop - ignored.</str>
</ response>

When processing is finished, new versions of boost files will be placed in the current directory, and previous
boost data will be moved to the previ ous directory. At this point in order to read the new boost values
SolrCore needs to be reloaded (for example, by issuing a <conmi t / > update request).

In addition to the r equest parameter this handler supports also the following parameters:

© 2011 Lucid Imagination. All rights reserved. Page 102

LucidWorks Search Platform Documentation

® conmit (default to false) if set to true, then after the processing is finished the handler will automatically
execute a commit operation to reopen the IndexReader and to load the newly calculated boost data. Please
note that Solr supports only a single global commit, which means that all other open transactions (such as
ongoing indexing) will also be committed at this time.

® sync (default to false) if set to true, then the processing will be executed synchronously, blocking the caller
and returning only when all processing is finished. Default is to run the processing in a separate background
thread.

Click Scoring Tools and Index Replication

When LucidWorks Enterprise is configured to use Index Replication the boost . dat a file will also be automatically
replicated. Due to the internal limitations of the Solr's Repl i cati onHandl er the boost data file will be located inside
the main index directory on the slave nodes, but it will be properly recognized by the Click Scoring components on the
slave nodes.

For the replication of boost . dat a to work the sol confi g. xnl must contain the following line in the <mai nl ndex>
section:

<mai nl ndex>
<del etionPolicy class="comlucid.solr.click.CickDeletionPolicy"/>

</ mai nl ndex>

© 2011 Lucid Imagination. All rights reserved. Page 103

LucidWorks Search Platform Documentation

Multilingual Indexing and Search

LucidWorks Enterprise has a number of capabilities designed to make working with multilingual data straightforward.
By default, it includes support for most European languages, Japanese, Korean and Chinese using Lucene's analyzers
package. Additionally, by purchasing the Basis Technology add-on plugin, it is easy to add even more advanced
capabilities for working with languages.

Multilingual capabilities are provided by Lucene's analysis process (see
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters). Since Lucene is built on Java, which is Unicode enabled,
many multilingual issues are handled automatically by LucidWorks Enterprise and Solr. In fact, the main issues with
multilingual search are mostly the same issues for working with any single/native language: how to analyze content,
configure fields, define search defaults, and so on.

Approaches to Multilingual Search

Besides the normal language issues, multilingual search does require a decision to be made on whether to use a single
field for each language, a field for each language or even a separate indexes for each language. Each of these three
approaches has pros and cons.

Single Field Approach

Pros

® Simple to search across all languages
® Fast to search

Cons

® Requires Language Detection software, which is not included in LucidWorks Enterprise, and which will slow
down indexing

® Requires the query language to be specified beforehand, since language detection on queries is often
inaccurate

® May return irrelevant results, since words may have same spelling but different meanings in different
languages

® May skew relevancy statistics

® Hard to filter/search by language

Multiple Field Approach

Pros
® No language detection required
® FEasy to search and/or filter by language
® Relevancy is clear since there is no noise from other languages with common spellings (minor)

Cons

® Many languages = many fields = more difficult to know what to search
® Slower to search across all languages

Multiple Indexes Approach

Pros

® Easy to bring one language off-line for maintenance without effecting other languages
® Can easily partition data and searches across machines by language
® Easy to search and filter by language

® More complex administration

© 2011 Lucid Imagination. All rights reserved. Page 104

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

LucidWorks Search Platform Documentation

® Slower and more difficult to search across all languages

Currently, LucidWorks Enterprise supports the multiple field and multiple index approach out of the box, but the single
field approach is still possible with some additional work that requires intermediate level Solr expertise.

Open Source Multilingual Capabilities

The crux of multilingual handling is applying analysis techniques to the content to be indexed. These techniques are
specified in the Solr's schema. xnl by the <fi el dType> declarations. Out of the box, LucidWorks Enterprise comes
configured with numerous predefined field types designed to make indexing and searching multilingual content easy to
do.

Note that most of the supported languages (especially the European languages) are designed to use Dr. Martin
Porter's Snowball stemmers along with stop word filters, synonym filters and various other filters.

@ Multiple Languages May Require Customization
Although LucidWorks Enterprise ships with default analysis and filter techniques, they may need
customization for your search application. Consider the included language configurations to be good
starting points for support of any given language and make adjustments as needed. For information on
relevance tuning and debugging for additional tools and techniques to improve results, see
Understanding and Improving Relevance

By setting up the appropriate fields per language, it is possible to simply point LucidWorks Enterprise at the given data
source and have it index the content.

Adding Support for Other Languages

While there are a wide variety of languages available "out of the box", there may come a time where support for a
new language is needed. There are a few possibilities:

® Try out the language with the StandardAnalyzer, since it often does the right thing as far as tokenization and
basic analysis goes. Note that the analyzer doesn't do stemming or perform more advanced language
translation.

® Write an Analyzer, Tokenizer or TokenFilter and the associated Solr classes as described on the Solr Wiki page
at http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

® Use an n-gram character-based approach that chunks characters into n-grams and indexes them. Accuracy will
be limited, but it may be better than nothing.

If choosing the second option, the new capability can be brought into LucidWorks Enterprise as described in the Solr
wiki section on SolrPlugins.

Basis Technology Multilingual Capabilities

The optional Basis Technology Rosette Linguistics Platform (RLP) provides extensive multilingual capabilities, many of
which have been integrated into LucidWorks Enterprise. RLP provides rich algorithms for morphological analysis,
segmentation and other language needs. RLP is currently available for most, but not all, LucidWorks Enterprise
platforms (see http://basistech.com/products/platforms/ for a list of RLP platforms and system requirements in this
Guide for a list of LucidWorks Enterprise platforms.)

Obtaining the Rosette Linguistics Platform (RLP)

To purchase the Basis Technology RLP package, contact Lucid Imagination. Contact Lucid Support for instructions on
installation and configuration.

© 2011 Lucid Imagination. All rights reserved. Page 105

http://snowball.tartarus.org/
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/SolrPlugins
http://basistech.com/products/platforms/

LucidWorks Search Platform Documentation

Security and User Management

Generally, enterprise-level application designers must take into account four main security considerations for any
search application:

Network access to the various components of the service
Authentication of users

Authorization to use various parts of the user interface
Authorization to view certain documents

LucidWorks Enterprise implements security for each of these as follows:

Network access: Because the components of LucidWorks Enterprise (LWE-Core, Admin UI, Search UI, and Alerts) run
on different ports, an administrator can easily secure individual components at the network level by restricting access
to the port in question. For example, if only the Admin and Search UI services need to be accessible outside the
production network, an administrator can leave those ports can be open while blocking LWE-Core and Alerts ports can
be easily blocked. The chapter Securing LucidWorks Enterprise describes this process in more detail. Note that if you
are using LucidWorks Enterprise's document authorization features, this step is particularly important, as direct access
to the underlying Solr application can circumvent these measures.

User authentication: LucidWorks Enterprise supports LDAP binding for user authentication, so an administrator can
create roles or groups on an external LDAP server, then use them within LWE to control access to UI functionality or
sets of documents. The chapter LDAP Integration describes how to configure LDAP for LucidWorks Enterprise.

UI authorization: LucidWorks Enterprise controls access to the Admin UI, the Search UI, and Alerts. The chapter LDAP
Integration discusses how to use the Admin UI to configure these access levels in order to give different LDAP users
and groups authorization to use each of these different functions.

Document authorization: LucidWorks Enterprise allows the administrator to configure document filters for different
roles. These document filters then limit what documents appear in search results for users in those roles. For example,
the administrator can create a filter that enables users in the finance role to see only documents that satisfy a query
of department:finance. You can create these filters with the Search Filters screen of the Admin UI. LucidWorks
Enterprise also enables the creation of document-based filtering, in which only the owner (or owners) of a document
are able to see it. The section Restricting Access to Content describes how to set up your documents to support this
functionality.

Securing LucidWorks Enterprise

Restricting Access to LucidWorks Enterprise

LucidWorks Enterprise consists of two components: LWE Core and LWE UI.

Because it provides access to the REST API, direct access to the LWE Core component provides access to all of Solr's
capabilities, including adding and removing documents, retrieving stored field values for all documents, and additional
LucidWorks Enterprise-enhanced capabilities such as job scheduling, system status, and indexing file, web, and
database sources. The LWE Core component should only be directly HTTP accessible to other components that need
access to Solr or REST API interfaces. If you are using a single server installation and don't want to expose Solr or
REST API interfaces via the network then you might want to restrict access to LWE Core to localhost only. You can do
that by adding the socket connector's host attribute for the Jetty container or the HTTP Connector's addr ess attribute
for the Tomcat container.

You can also restrict direct access to LucidWorks Enterprise components by IP address, or by fronting it with an
authenticating firewall. For a production implementation, consider restricting access to the component HTTP ports to
only by the application, just as one would do with a typical relational database. If you are using LucidWorks
Enterprise's built-in search filters or document-level authentication, you must prevent access to LWE by any process
other than your application in order to prevent circumvention of these features.

© 2011 Lucid Imagination. All rights reserved. Page 106

http://docs.codehaus.org/display/JETTY/Configuring+Connectors#ConfiguringConnectors-ConfigurationOptions
http://tomcat.apache.org/tomcat-5.5-doc/config/http.html#Standard_Implementation
http://tomcat.apache.org/tomcat-5.5-doc/config/http.html#Standard_Implementation

LucidWorks Search Platform Documentation

#) Implementing SSL
Some of the components can be implemented with SSL. See the chapter Enabling SSL for more
details.

Restricting Access to LucidWorks Enterprise User Interfaces

LucidWorks Enterprise has two built-in authorizations to control user access:

® ADMIN allows users to access any part of the LucidWorks Enterprise UI.
® SEARCH limits users to only the built-in end user search interface.

You can restrict a user's access to specific parts of the application by mapping manually created or LDAP-supplied
usernames and/or LDAP-supplied groups to appropriate authorization on the User screen in the Admin UI.

Hiding Documents by Restricting LucidWorks Enterprise's Access

The privileges of the LucidWorks Enterprise process and the rights that process has to access documents for indexing
are crucial to its proper operation. Generally, you want LucidWorks Enterprise to be able to access all documents
within a particular folder or from a particular web site. The built-in LucidWorks Enterprise file and web crawling data
sources will index any specified document, as long as the LucidWorks Enterprise process has permissions to do so.
After a document has been indexed, all stored fields are accessible through the Solr interface.

That said, documents can be excluded from indexing by leveraging operating system, file, and web-level security
capabilities; if the process doesn't have access, it will not index the content.

In the case of a database data source, the LucidWorks Enterprise database integration requires that you provide
credentials in the form of a JDBC connection string. These credentials determine the visibility of data for LWE.

Enabling SSL

LucidWorks Enterprise

To configure the LWE-Core and LWE-UI components for SSL, set each component to htt ps:// and specify the port
you wish during the installation process. If you have already installed LucidWorks Enterprise, you can set these values
in the $LWE_HOVE/ conf / mast er . conf file:

COVPONENT LWE-Core - LWE-Solr + LWE REST API.

| wecor e. enabl ed=t rue
| wecor e. address=https://127.0.0. 1: 8443

COVPONENT LWE-U - Adnmin and Search U as well as Aerts

| weui . enabl ed=true
| weui . address=https://127.0.0. 1: 8443

After configuring the Core and UI components to htt ps, set ssl . auth_require_secure: true in the
$LWE_HOVE/ conf /| we- cor e/ def aul ts. ynl file.

Jetty

Both the LWE-Core and LWE-UI components run under Jetty, which can be configured to use SSL. Each component
needs to be enabled separately, although the process for each component is the same.

LWE-Core

© 2011 Lucid Imagination. All rights reserved. Page 107

LucidWorks Search Platform Documentation

In the directory $LVE_HOVE/ conf/j etty/ | we-core/ etc the file jetty-ssl.xm should be edited to activate the
sample configuration. The configuration is currently commented out, but the comment tags should be removed and
the keyst ore, passwor d, keyPasswor d, t rust st ore and t r ust Passwor d parameters should be configured.

<Configure id="Server" class="org.nortbhay.jetty. Server">
<l--
<Cal I nane="addConnector">
<Ar g>
<New cl ass="org. nortbay.jetty.security. Ssl Socket Connect or">
<Set name="Port">8443</ Set >
<Set name="max! dl eTi ne">30000</ Set >
<Set nane="keystore"><SystenProperty nanme="I| uci dwor ksConf Hone"
/>/jettyllwe-corel/etc/keystore</Set>
<Set nane="passwor d">0BF: 1vnylzl 01x8elvnwlvn61x8glzl ulvn4</ Set >
<Set nane="keyPasswor d">0BF: 1u2ulwn 1z7s1z7alwnl 1u2g</ Set >
<Set name="truststore"><SystenProperty name="| uci dwor ksConf Hone"
I>ljettyl/lwe-core/etc/truststore</Set>
<Set nanme="trust Password">0BF: 1vnylzl 01x8elvnwlvn61x8glzl ulvn4</ Set >
<Set nane="NeedC i ent Aut h" >t rue</ Set >
</ New>
</ Ar g>
</Call >
-->
</ Confi gure>

LWE-UI

In the directory $LVWE_HOME/ conf/jetty/ | we-ui/etc the filejetty-ssl.xm should be edited to activate the sample
configuration. The configuration is currently commented out, but the comment tags should be removed and the
keyst ore, password, keyPassword, truststore and t rust Passwor d parameters should be configured.

<Configure id="Server" class="org.nortbay.jetty. Server">
<l--
<Cal | nanme="addConnector">
<Ar g>
<New cl ass="org. nortbhay.jetty.security. Ssl Socket Connect or ">
<Set nane="Port">8443</ Set >
<Set name="max! dl eTi ne">30000</ Set >
<Set name="keystore"><SystenProperty nanme="| uci dwor ksConf Hone"
/>/jettyllwe-ui/etc/keystore</ Set>
<Set name="passwor d">0BF: 1vnylzl 01x8elvnwlvn61x8glzl ulvn4</ Set >
<Set nane="keyPasswor d">0BF: lu2ulwr 1z7s1z7alwnl 1u2g</ Set >
<Set name="truststore"><SystenProperty nanme="I|uci dwor ksConf Hormre"
/>/jettyl/lwe-ui/etc/truststore</Set>
<Set nane="trust Password">0BF: 1lvnylzl 01x8elvnwlvn61x8glzl ulvn4</ Set >
<Set nane="Needd i ent Aut h" >t rue</ Set >
</ New>
</ Arg>
</ Cal | >
>
</ Confi gure>

For more information about configuring Jetty to use SSL, see
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL.

Configuring Mutually Authenticated SSL

LucidWorks Enterprise supports securing communications to the core APIs with Mutual SSL authentication. This means
the REST API and Solr API can be protected so that only clients that you trust can access these APIs. The system can

© 2011 Lucid Imagination. All rights reserved. Page 108

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

LucidWorks Search Platform Documentation

also use mutually authenticated SSL internally to communicate to each Solr node when using distributed search.
The LWE portions of SSL functionality can be configured by using the SSL Configuration API.

When configuring LucidWorks Enterprise to use mutually authenticated SSL the container must also be configured to
require certificates for authentication. In Jetty this is done by using <property nane="needd i ent Aut h"
val ue="true" /> in the related sslconnector.

Debugging SSL

Reviewing logging events from the LucidWorks Enterprise log files (either core. YYYY_MM DD. | og or ui . | og) may
provide some hints about what is going on.

Common SSL Problems

Symptom: javax.net.ssl.SSLHandshakeException: null cert chain
Cause: Client is not sending client certificate. Reconfigure client so that it sends a client certificate with the request.
Symptom: javax.net.ssl.SSLException: Unrecognized SSL message, plaintext connection?

Cause: Client is connecting to SSL endpoint without using SSL.

@ The curl command line tool can be easily used to verify ssl configuration:

curl --cacert <ca.crt> --key <host.key> --cert <client.crt>
https://1 ocal host: 8443/ sol r/adm n

If you can see the HTML for the Solr Admin page after running that command then SSL is properly set
up.

Certificate Management

LucidWorks Enterprise uses standard java jks format in keystores and truststores. Those stores can be managed using
the standard Java keytool.

Currently all certificates are managed outside of LucidWorks Enterprise. There are no certificate management tools or
admin displays for configuring SSL certificate related settings. All configuration tasks need to be made manually after
installing LucidWorks Enterprise and potentially repeated on all nodes where LucidWorks Enterprise is running.

Restricting Access to Content

LucidWorks Enterprise provides two ways to restrict access to content through based on user identity: search filters,
and document-based access.

Search Filters

Search filters provide the ability to limit the visibility of content only to specific users or user groups. For example,
users in the finance role might be limited only to documents that satisfy the query depart nent: fi nance. The
LucidWorks Enterprise Administration User Interface allows the creation of search filters that can be appended to all
user queries. Usernames (manually created or supplied by the LDAP system) and/or groups (supplied by the LDAP
system) can be mapped to search filters with the Search Filters page.

Document-based Authorization

An application can enforce document visibility controls in front of LucidWorks Enterprise simply by adding fields to
each document that represent either usernames, group membership, or other types of flags that help match a user
with the content they are allowed to see in results. Generally these types of fields would be of type "string", possibly
multi-valued. This technique is best suited to content extracted from a database or custom data source. The file and

© 2011 Lucid Imagination. All rights reserved. Page 109

https://localhost:8443/solr/admin
http://download.oracle.com/javase/1.4.2/docs/tooldocs/windows/keytool.html

LucidWorks Search Platform Documentation

web crawling capabilities in LucidWorks Enterprise do not index any security related attributes (though the file path
itself may be useful for application-level restrictions).

For example, documents could be indexed with an "owner" field. Here's a Solr XML file for this example:

<add>
<doc>
<field name="id">1</fiel d>
<field nanme="t ext">Bob's Docunent - For his eyes only\!</field>
<field name="owner">bob</fiel d>
</ doc>
<doc>
<field name="id">2</fiel d>
<field nane="text">Jill's Docunent - Only she should find this</field>
<field name="owner">jill</field>
</ doc>
</ add>

LDAP Integration

LucidWorks Enterprise supports integrating user authentication with an existing LDAP system. Two LDAP features are
currently supported:

1. Authentication and Authorization of users (prerequisite for any other LDAP functionality)
2. User-to-group mapping (optional)

LDAP and built-in (API-based) user authentication are mutually exclusive. If LDAP is enabled, built-in authentication is
not, and the reverse.

1. Self-signed Certificates
LucidWorks Enterprise LDAP functionality is not compatible with self-signed or custom certificates.

To configure LucidWorks Enterprise to use LDAP for user authentication, edit the LDAP Configuration File. To enable
LDAP in LucidWorks Enterprise, set the environment variable | weui . | dap. enabl ed=t rue in the mast er. conf file (
$LWE_HOVE/ conf / mast er . conf).

-a Map a Valid LDAP User/Group to Authorization Before Enabling LDAP
Because LucidWorks Enterprise's built-in authentication is disabled when LDAP authentication is
enabled, you cannot map a user or group to the Admin authorization after LDAP is enabled. If no one
has Admin authorization, no one will be able to access the Administration User Interface. So, before
enabling LDAP, go to the System Settings page and map an LDAP username or a group to "Admin UI"
by adding it to the Group or User section of the Admin UI definition.

For standard LDAP integration, the LDAP administrative user only needs permissions to query the LDAP server for
users and groups. Lucid Imagination strongly recommends you create an LDAP admin user with only the necessary
minimal user and group querying permissions for use with LucidWorks Enterprise.

LucidWorks Enterprise (LWE) also allows you to authenticate users without LDAP administrative credentials. This
method is called "queryless" authentication, because LWE does not query the LDAP directory for user information.
Rather, LWE uses the attribute value plus the user's login and the base suffix as the user's DN. This method only
works if the exact location of your LDAP user data is known and is the same for all relevant users. Another limitation
of queryless authentication is that LWE cannot find members of a group, only individual users.

LDAP Configuration File

The main configuration file for configuring LDAP is $LWE_HOVE/ conf/ | dap. ynil . The default settings must be modified
as needed for LucidWorks Enterprise to connect to the LDAP server and query the database for user authentication.

© 2011 Lucid Imagination. All rights reserved. Page 110

LucidWorks Search Platform Documentation

After the file has been edited, restart the server.

Here is the default content of the | dap. ym file. Note that the file includes sample configurations for standard LDAP
authentication, queryless authentication, and Microsoft ActiveDirectory integration for use with Windows Shares data
sources.

SRR P T TP

Warning: Always restart the application after adjusting
your LDAP config, or unpredictable behavior nmay result.
HHHHH R R

production:

host: | ocal host

port: 389 # 636 for SSL

attribute: uid

base: dc=xyz, dc=corp, dc=com

user_query: '$ATTR=$LOG N # default query is '$ATTR=$LOA N, set this if you need
sonet hi ng nore conpl ex

adm n_user: cn=Manager, dc=xyz, dc=corp,dc=com # If you don't have an adm n password, you
can disable

adm n_password: secret # admn login in the U "Settings" page
ssl: false

group_base: ou=groups, dc=xyz, dc=cor p, dc=com

group_nenbershi p_attribute: uni queMenber

group_nane_attribute: cn

group_query: ' (& objectclass=groupO Uni queNanes) ($ATTR=$USER))' # default query is

' $ATTR=3USER where $USER i s user's DN

Attribute Definitions

#

(see bel ow for sanple configs)

attribute: The attribute of the user object that the systemw Il use to search for the user,

or assume when constructing an explicit DN via query-Iless authentication
base: Search base for user queries, or suffix appended to attribute+l ogin for queryless
aut henti cation
user_query: (optional) supplies an arbitrarily conplex query if the default user query is
not sufficient.
Variable substitutions:
$ATTR wi || be substituted with the value of "attribute' from above
$LOG N wi Il be substituted with the value the user entered in the login formin the U
search is perforned using 'base’ as a search base
adm n_user: login to use for searching the directory - not used with query-Iess
aut henti cation
admi n_password: password to use for searching the directory - not used with query-Iess
aut henti cation
ssl: enabl e/ di sabl e SSL
group_base: Search base for group queries. Not used with query-Iless authentication
group_nenbership_attribute: The attribute to look for in the group object that will contain
menbers' user DNs
group_nane_attribute: The attribute of the group object that the systemw ||l use to search
for the group
group_query: (optional) supplies an arbitrarily conplex query if the default group query is
not sufficient.
Vari abl e substitutions
$ATTR wi || be substituted with the value of 'group_name_attribute' from above
$USER wi || be substituted with the | ogged-in user's fully-qualified LDAP DN
search is performed using 'group_base' as a search base
Note: The default query ($ATTR=$USER) does not specify the object type for groups
several different group object types are common, e.g. group, groupOf Nanes,
roupOf Uni queNanes.
Therefore, non-group objects may also match if they contain an a matching attribute

HQ #H H B HHH

Sanpl e Configurations
#

© 2011 Lucid Imagination. All rights reserved. Page 111

LucidWorks Search Platform Documentation

Basic Configuration

production:

host: | ocal host

port: 389 # 636 for SSL

attribute: uid

base: dc=xyz, dc=corp, dc=com

adm n_user: cn=Manager, dc=xyz, dc=cor p, dc=com
adm n_password: secret

ssl: false

group_base: ou=groups, dc=xyz, dc=cor p, dc=com
group_nenbershi p_attribute: uni queMenber # often this is just 'nenber’
group_nane_attribute: cn

Basi ¢ Queryl ess Authentication
Not es
Di sable "Use admn credentials in U /settings/edit page", and restart
Group |l ookup is not possible in this node
producti on:
host: | ocal host
port: 389 # 636 for SSL
attribute: uid
base: ou=users, dc=xyz, dc=cor p, dc=com
ssl: fal se
all other attributes are invalid with queryless authentication

M crosoft ActiveDirectory

producti on:
host: | ocal host
port: 389 # 636 for SSL
attribute: userPrincipal Nane # AD uses userPrinci apal Name for emmil address

red@onai n. com
base: dc=domai n, dc=com
adm n_user: cn=Manager, dc=cor p, dc=com
adm n_password: secret
ssl: false
group_base: ou=groups, dc=cor p, dc=com
group_nenber ship_attri bute: nenber

HOoH H H HOH TN H H O R H H H H H HHHHHHH K HHE R R HHH

© 2011 Lucid Imagination. All rights reserved.

e.g.

Page 112

LucidWorks Search Platform Documentation

group_name_attribute: nane

The attribute definitions included in the | dap. yn file are as follows:

Attribute

attribute

base

user_query

admin_user

admin_password

ssl

group_base
group_membership_attribute
group_name_attribute

group_query

User to Group Mappings

Definition

The attribute of the user object that the system will use to search for the user, or
assume when constructing an explicit DN via query-less authentication.

Search base for user queries, or suffix appended to attribute + login for queryless
authentication.

Optional: supplies an arbitrarily complex query if the default user query is not
sufficient. Variable substitutions are as follows: $ATTR will be substituted with the
value of 'attribute' from above; $LOGIN will be substituted with the value the user
entered in the login form in the UI.

Search is performed using 'base' as a search base.

Administrative login to use for searching the directory. Not used for queryless
authentication.

Administrative password to use for searching the directory. Not used for queryless
authentication.

Enable/disable SSL.

Search base for group queries. Not used with queryless authentication.

The attribute to look for in the group object that will contain members' user DNs.
The attribute of the group object that the system will use to search for the group.

Optional: supplies an arbitrarily complex query if the default group query is not
sufficient. Variable substitutions are as follows: $ATTR will be substituted with the
value of 'group_name_attribute'; $USER will be substituted with the logged-in user's
fully-qualified LDAP DN. Search is performed using 'group_base' as a search base.

»ﬂ The default query ($ATTR=$USER) does not specify the object type
for groups. Several different group object types are common, such as
group, groupOfNames, groupOfUniqueNames, and so on. Therefore,
non-group objects may also match if they contain a matching
attribute.

LWE supports two different methods of mapping users to groups:

® Listing users as attributes in group directory entries
® |isting groups as attributes in user directory entries

You should only use one of these methods at a time. Your configuration should contain only one of the two blocks of
LDAP user/group mapping settings.

Manual User Management

LucidWorks Enterprise also includes a REST API that allows creation and authentication of users. Using this API and
the Perl Examples provided with the application, users can be created, passwords reset, and accounts deleted. As

© 2011 Lucid Imagination. All rights reserved. Page 113

LucidWorks Search Platform Documentation

mentioned previously, API-based user management and LDAP authentication are mutually exclusive: you can only use
one user management method.

© 2011 Lucid Imagination. All rights reserved. Page 114

LucidWorks Search Platform Documentation

Solr Direct Access

LucidWorks Enterprise is Solr-powered at its core. Solr, an Apache Software Foundation project, provides an
easy-to-use HTTP interface above and beyond Lucene, a very fast and scalable Java search engine library. Both Solr
and Lucene are entirely open source, available under the Apache Software License.

LucidWorks Enterprise exposes the Solr interface directly. This means that applications can leverage both Solr's power
and openness and LucidWorks Enterprise's ease of use. This chapter examines common needs of application
developers in getting custom data into LucidWorks Enterprise/Solr and searching documents that have been indexed.
There is a wealth of information about Solr at Solr's wiki which we intentionally do not duplicate within the LucidWorks
Enterprise documentation.

i Solr Version
For information about the Solr version included in this release of LucidWorks Enterprise, see the
SOLR_VERSION.txt file in $LWE_HOVE/ app/ sol r-src/ SOLR_VERSI ON. t xt . You can also get detailed
Solr version information for all releases of LucidWorks Enterprise from our public github fork here:
https://github.com/lucidimagination/lucene-solr. To see information for a specific release, select the
tag for that release from the Switch Tags drop-down list.

-ﬁ The primary difference in accessing Solr's example instance and LucidWorks Enterprise is the base
URL. Solr's example application is accessed by default at htt p: / /| ocal host : 8983/ sol r/ , whereas the
LucidWorks Enterprise default collection instance of Solr is rooted at
http://1 ocal host: 8888/ solr/col |l ectionl/. If using multiple collections, replace col | ecti onl with
the correct collection name.

Indexing Solr XML

Solr natively digests a simple XML structure like this:

<add>
<doc>
<field name="fiel dnanel">field val ueA</fi el d>
<field name="fiel dnane2">field val ueB</fi el d>
</ doc>
<doc>
<field name="fi el dnane3">nul ti val uel</fiel d>
<field name="fi el dnanme3">nul ti val ue2</fi el d>
</ doc>
</ add>

That <add> structure supports multiple <doc>, and each <doc> supports multiple <fi el d>. Fields can be multi- or
single valued, depending on the schenma. xm configuration. The LucidWorks Enterprise Index Fields screens provide a
handy user interface for managing field properties, including the multivalued setting.

One way to integrate LucidWorks Enterprise with a custom data source is to dump the data from that data source into
XML files formatted in this way, and index them as a Solr XML Data Source. LucidWorks Enterprise has built-in support
for indexing a directory tree of Solr XML files and scheduling periodic re-indexing. Alternatively, the XML files can
easily be posted into LucidWorks Enterprise and Solr externally using curl, the REST API, or other tools that can HTTP
POST, like this:

curl http://1ocal host: 8888/ solr/collectionl/update --data-binary @il enane. xm -H
"Content-type:text/xm; charset=utf-8

© 2011 Lucid Imagination. All rights reserved. Page 115

http://wiki.apache.org/solr
https://github.com/lucidimagination/lucene-solr
http://localhost:8983/solr
http://localhost:8888/solr/collection1

LucidWorks Search Platform Documentation

Solr's XML format can perform other operations including deleting documents from the index, committing pending
operations, and optimizing an index (a housekeeping operation). For more information on these operations, as well as
adding documents, refer to Solr's Update XML Messages

Indexing Column (Comma) Delimited Data

The following section uses an example to illustrate how to index delimited text with LucidWorks Enterprise.

1. Save the following simple comma-separated data as sample_data.text:

id, title,categories
1, Exanple Title, "categoryl, category2"
2, Anot her Record Exanple Title,"category2, category3"

2. Configure the index schema using the Fields editor in the Admin UI as follows:

® At the bottom of the page, click Add new field to get a blank field form
® Add a new field with the following settings:

® Name: categories

® Type: string

® Stored: checked

® Multi-valued: checked

® Short Field Boost: none

® Search by Default: checked

® Include in Results: checked

® Facet: checked

3. Save and apply those settings.

4. Now index the CSV data from the command-line using curl:

curl "http://1ocal host:8888/solr/collectionl/update/csv?conm t=true&f.categories.split=
true"
--data-binary @anple_data.txt -H ' Content-type:text/plain; charset=utf-8'

5. You can also make the file pipe-delimited, like this:

id/title|categories
3| Three| cat egory3
4| Four | cat egor y4, cat egory5

And then you can index using this command:

curl "http://1ocal host:8888/solr/collectionl/update/csv?conm t=true&f.categories.split=true
&separator=|"
--data-binary @ipe.txt -H ' Contenttype:text/plain; charset=utf-8'

© 2011 Lucid Imagination. All rights reserved. Page 116

http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Platform Documentation

For a full description of all CSV options, see the Solr UpdateCSV documentation.

Searching Solr

Search results can be readily obtained through an HTTP GET request to Solr. For LucidWorks Enterprise, it is as
straightforward as this URL: http://| ocal host: 8888/ sol r/ col | ecti onl/ | uci d?q=ny+query& ol e=DEFAULT.

The "collection1" part of that path is the Solr core hame of the default LucidWorks Enterprise collection. If using
another collection, modify the URL to replace "collection1" with the correct collection name. The "lucid" part of the
request is a custom Solr request handler mapping that LucidWorks Enterprise has preconfigured (called the Lucid
query parser). The "role" part of the request specifies the role by which results are filtered and returned. If you do not
include a role in the request, LucidWorks Enterprise will return not search results. Entering that URL in a browser
results in XML being returned and (generally, depending on browser) rendered somewhat legibly. Any HTTP client can
be used.

There are many options to requesting search results from Solr (and thus LucidWorks Enterprise). For more

information, start with Solr's standard request handler and common query parameters.

ﬂ To ensure that your query is indexed for UI reporting, include the r eq_t ype=nmai n parameter in your
query URL.

Programmatic access to Solr/LucidWorks Enterprise

Solr's open access to search results over HTTP makes interaction very easy, but a web application still needs to parse
the response (which may be XML or other formats such as JSON, Ruby, Python, or binary Java-to-Java) and provide
navigation. There are native libraries in several languages that abstract the HTTP request and response parsing to
make Solr integration extremely straightforward.

This section covers only a fraction of the ways to integrate with Solr programmatically. See Integrating Solr for more
information and examples.

LucidWorks Enterprise on Java

Solr comes with a Java API, Solr], to natively interact with Solr. Here is an example program to search:

inport org.apache.solr.client.solrj.SolrServer;

import org.apache.solr.client.solrj.SolrQuery;

i mport org.apache.solr.client.solrj.SolrServerException;

i mport org.apache.solr.client.solrj.response. QueryResponse;
inport org.apache.solr.client.solrj.inpl.ComonsHttpSolrServer;
i nport org. apache. sol r. conmon. Sol r Docunent ;

inmport java.net. Ml fornmedURLExcepti on;

public class Sol rJExanpl e {
public static void main(String[] args) throws MalfornmedURLException, Solr Server Exception
{
Sol rServer solr = new CommonsHtt pSol rServer ("http://Iocal host: 8888/ solr/collectionl");
QueryResponse response = solr.query(new Sol rQuery("my query"));
for (SolrDocunent doc : response.getResults()) {
System out. println(doc. getFieldvalue("id') + ": " + doc.getFieldvalue("title"));
}
}
}

For more information on Solr], see the Solr] wiki page.

LucidWorks Enterprise on Ruby

© 2011 Lucid Imagination. All rights reserved. Page 117

http://wiki.apache.org/solr/UpdateCSV
http://localhost:8888/solr/collection1/lucid?q=my+query&role=DEFAULT
http://wiki.apache.org/solr/IntegratingSolr
http://wiki.apache.org/solr/Solrj

LucidWorks Search Platform Documentation

Using the solr-ruby library (installed with gem install solr-ruby) for searching LucidWorks Enterprise is simple and
elegant:

require "solr’

solr = Solr:: Connection.new("http://local host:8888/solr/collectionl")
results = solr.query("my query")

results.each {|hit| puts "#{hit['id]}: #{hit['title]}"}

For more information on the solr-ruby library, see Solr-Ruby.

Query Parsers

All of query parsers included with Solr are available for use, in addition to the enhanced parser included with
LucidWorks Enterprise.

Name id availability = Description

Lucene lucene Solr The Lucene Query Parser, with some Solr enhancements. More information can
or Solr be found at the Solr Wiki page for Solr query syntax.

Function func Solr Parses a FunctionQuery which calculates a function over field values. More

information available at the Solr Wiki page for function queries.

DisMax dismax | Solr Search across multiple fields, allow +, -, and phrase queries while escaping most
other Lucene syntax to avoid syntax errors. More information available at the
Solr Wiki page for the DisMaxRequestHandler.

Extended @ edismax | Solr A version of the Extended DisMax parser developed by Lucid and donated to the
DisMax Apache Software Foundation for inclusion in Solr.
Lucid lucid LucidWorks = Allows Lucene syntax, enhanced proximity boosting, and query time synonym

Enterprise = expansion. Tolerant of syntax errors. More information available in this guide in
the section on the Lucid Query Parser

field field Solr Single-purpose micro query parser. Generates a query on a single field.

prefix prefix Solr Single-purpose micro query parser. Generates a prefix query on a single field.
raw raw Solr Single-purpose micro query parser. Generates a raw unanalyzed term query.
Boosted @ boost Solr Single-purpose micro query parser. Generates a BoostedQuery which boosts a

Query by a FunctionQuery.

Nested query Solr Single-purpose micro query parser. Delegates to another query parser.

© 2011 Lucid Imagination. All rights reserved. Page 118

http://wiki.apache.org/solr/solr-ruby
http://wiki.apache.org/solr/SolrQuerySyntax
http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/DisMaxRequestHandler

LucidWorks Search Platform Documentation

Performance Tips

A number of configuration items can be manipulated for better performance when benchmarking LucidWorks
Enterprise. Implementing some of these optimizations may require directly configuring Solr via schema. xnml and

sol rconfig. xm . See the Solr documentation at http://wiki.apache.org/solr/ for more details on Solr customizations
that may be right for your implementation.

Ensure that you are running the JVM in server mode.
Allocate only as much memory as needed to the JVM heap. The rest should be left free to allow the operating
system to cache as much of the Lucene index files as possible.

Improving indexing speed

Minimize indexing the same content in more than one field. Each field should be either indexed on its own or
Solr's copyField functionality can be used to copy it to an indexed catch-all field.

Avoid storing the same content more than once. The target field of copyField commands should almost never
be stored.

Avoid commits during the indexing process. Turn off Solr auto-commit and avoid explicitly committing until
indexing has completed.

Improving Search speed

Perform a variety of searches before starting any timings. This warms up the server JVM, and causes parts of
the index, commonly used sort fields and filters to be cached by the operating system.

Search in as few fields as possible. A single indexed catch-all text field containing the contents of all the other
searchable fields (generated by copyField commands) will be faster to search than a multi-field query across
many indexed fields.

If necessary, turn off relevancy enhancers such as proximity phrase queries, date recency boosts, and
synonym expansion to generate benchmarks for comparison with later tests when those features are
re-enabled.

Retrieve the minimum number of stored fields that still provide a optimal search experience for users.

Only retrieve the number of documents that are immediately necessary. The start and rows query arguments
may be used to request pages of results.

For a large index (on *NIX), force key parts of the indexed portion into operating system cache by changing to
the index directory and executing cat *.prx *.frq *.tis > /dev/null

Optimize the index occasionally to minimize the number of segments in the index. When benchmarking, the
number of segments in the index should be noted.

Review the section on Wildcards at Start of Terms if leading wildcards have been enabled for important
performance considerations.

© 2011 Lucid Imagination. All rights reserved. Page 119

http://wiki.apache.org/solr/
http://wiki.apache.org/solr/SchemaXml#Copy_Fields

LucidWorks Search Platform Documentation

Expanding Capacity

As your search application grows, you may need to scale the system to add space for indexes or to increase query
responsiveness. This section discusses advanced deployment options to enhance system performance and ensure
seamless application scaling.

Index Replication shows how to configure multiple shards for a master-slave environment.

Distributed Search and Indexing discusses how to distribute search and indexing processes across multiple servers or
shards for peak performance.

Solr Cloud covers the new cloud-capable features of Solr and how to use them with LucidWorks Enterprise.

Index Replication

Index Replication distributes complete copies of a master index to one or more slave servers. The master server
continues to manage updates to the index. All querying is handled by the slaves. This division of labor enables Solr to
scale to provide adequate responsiveness to queries against large search volumes. The master server's index is
replicated on the slaves, which then process requests such as queries.

When the Click Scoring Relevance Framework is enabled LucidWorks Enterprise ensures that also the click boost data
is replicated together with index files.

LucidWorks Enterprise supports index replication, but it is not configured through the Administration User Interface.
Instead, replication configuration requires editing XML configuration files in the Solr release included with LucidWorks
Enterprise. This chapter explains how replication works and how to edit the configuration files. Detailed examples are
provided, so even if you're new to XML and Solr configuration, you should be able to set up and configure
master/slave replication servers with ease.

) Note

Remember that LucidWorks Enterprise uses Solr multi-core technology, with "collection1" as the
default core, causing paths to be of the form http://host: port/solr/collectionl/* instead of
http://host: port/solr/* as shown in the Solr documentation.

Configuring Replication on the Master Server

To set up replication, you will need to edit the sol rconfi g. xml file on the master server. To edit the file, you can use
an XML editor or even a simpler tool such as Notepad on a PC or TextEdit on a Mac.

Within the sol rconfi g. xm file, you will edit the definition for a Request Handler. A Request Handler is a Solr process
that responds to requests. In this case, you will be configuring the Replication RequestHandler, which processes
requests specific to replication.

The example below shows how to configure the Replication RequestHandler on a master server.

© 2011 Lucid Imagination. All rights reserved. Page 120

http://host:port/solr/collection1/*
http://host:port/solr/*

LucidWorks Search Platform Documentation

<request Handl er nane="/replication" class="solr.ReplicationHandl er">
<I st nane="nmster">
<l-- Replicate on 'optimze' . Other values can be 'commt', 'startup'.
It is possible to have nultiple entries of this config string -->
<str name="replicateAfter">optimze</str>
<l-- Create a backup after 'optim ze'. Gher values can be 'conmit', 'startup'.
It is possible to have multiple entries of this config string.
Note that this is just for backup, replication does not require this.
-->
<l-- <str nane="backupAfter">optimze</str> -->
<l-- |f configuration files need to be replicated give the nanmes here,
separated by conma -->
<str nane="conf Fi | es">schema. xnl , st opwords. txt, el evate. xm </str>
<!-- The default value of reservation is 10 secs. See the docunentation
bel ow. Normal Iy, you should not need to specify this -->
<str nane="conm t ReserveDuration">00: 00: 10</str>
</lst>
</ request Handl er >

Operations that Trigger Replication

The value of the repl i cat eAft er parameter in the ReplicationHandler configuration determines which types of events

should trigger the creation of snapshots for use in replication.

The repl i cat eAf t er parameter can accept multiple arguments.

replicateAfter Setting Description

startup Triggers replication whenever the master index starts up.
commi t Triggers replication whenever a commit is performed on the master index.
optimze Triggers replication whenever the master index is optimized.

If you are using st art up setting for repl i cat eAf t er, you'll also need a commit or opti m ze if you want to trigger

replication on future commits/optimizes as well. If only the st art up option is given, replication will not be triggered on

subsequent commits/optimizes after it is done for the first time at the start.

Configuring Replication on Slave Servers

The code below shows how to configure a ReplicationHandler on a slave server.

© 2011 Lucid Imagination. All rights reserved.

Page 121

LucidWorks Search Platform Documentation

<request Handl er nane="/replication" class="solr.ReplicationHandl er">
<l st nane="sl| ave">
<!-- fully qualified url for the replication handler of master.
It is possible to pass on this as a request paramfor the
f et chi ndex comrand
-->
<str name="nasterUrl">http:// master.solr.conpany. com 8983/ sol r/ corenane/ replication</str>
<l-- Interval in which the slave should poll naster. Format is HH nm ss.
If this is absent slave does not poll automatically.
But a fetchindex can be triggered fromthe admn or the http APl
—
<str nane="pol | | nterval ">00: 00: 20</ str>
<!-- THE FOLLOWN NG PARAMETERS ARE USUALLY NOT REQUI RED - ->
<!-- To use conpression while transferring the index files.
The possi bl e values are internal | external
if the value is '"external' nake sure that your naster Solr
has the settings to honor the accept-encodi ng header.
see here for details http://wki.apache. org/solr/Sol rHtpConpressi on
If it is "internal' everything will be taken care of automatically.

USE THI'S ONLY | F YOUR BANDW DTH | S LOW
TH'S CAN ACTUALLY SLOW DOAN REPLI CATION IN A LAN -->
<str nane="conpression">internal </str>
<!-- The follow ng values are used when the slave connects to the
naster to downl oad the index files.
Default values inplicitly set as 5000ms and 10000ns respectively.
The user DOES NOT need to specify these unless the bandwi dth
is extrenely lowor if there is an extrenely high |atency
-->
<str nanme="httpConnTi neout ">5000</ st r>
<str nanme="htt pReadTi neout ">10000</ str>
<l-- |f HTTP Basic authentication is enabled on the master,
then the slave can be configured with the following -->
<str nane="httpBasi cAut hUser" >user name</str>
<str name="htt pBasi cAut hPasswor d" >passwor d</ str>
</lst>
</ request Handl er >

The master server is unaware of the slaves. Each slave server continuously polls the master (depending on the
pol | I nterval parameter) to check the current index version of the master. If the slave finds out that the master has
a newer version of the index it initiates a replication process. The steps are as follows:

1. The slave issues a filelist command to get the list of the files. This command returns the names of the files as
well as some metadata (e.g., size, a lastmodified timestamp, an alias if any).

2. The slave checks with its own index if it has any of those files in the local index. It then runs the filecontent
command to download the missing files. This uses a custom format (akin to the HTTP chunked encoding) to
download the full content or a part of each file. If the connection breaks in between, the download resumes
from the point it failed. At any point, the slave tries 5 times before giving up a replication altogether.

3. The files are downloaded into a temp directory, so that if either the slave or the master crashes during the
download process, no files will be corrupted. Instead, the replication process will simply abort.

4. After the download completes, all the new files are 'mv'ed to the live index directory, and the file's timestamp
is set to be identifical to the file's counterpart on the master master.

5. A commit command is issued on the slave by the Slave's ReplicationHandler, and the new index is loaded.

Configuring Replication on a Repeater Server

A master may be able to serve only so many slaves without affecting performance. Some organizations have deployed
slave servers across multiple data centers. If each slave downloads the index from a remote data center, the resulting
download may consume too much network bandwidth. To avoid performance degradation in cases like this, you can
configure one or more slaves as repeaters. A repeater is simply a node that acts as both a master and a slave. To
configure a server as a repeater, the definition of the Replication requestHandler in the sol rconfi g. xm file must
include file lists of use for both masters and slaves. Be sure to set the replicateAfter parameter to commit, even if

© 2011 Lucid Imagination. All rights reserved. Page 122

LucidWorks Search Platform Documentation

replicateAfter is set to optimize on the main master. This is because on a repeater (or any slave), a commit is called
only after the index is downloaded. The optimize command is never called on slaves. Optionally, one can configure the
repeater to fetch compressed files from the master through the compression parameter to reduce the index download
time.

Here's an example of a ReplicationHandler configuration for a repeater:

<r equest Handl er nane="/replication" class="solr.ReplicationHandl er">
<l st nanme="naster">
<str name="replicateAfter">commt</str>
<str nane="confFil es">schena. xn , st opwor ds. t xt, synonyms. t xt </ str>
</lst>
<l st nane="sl| ave">
<str nane="nasterUr|l">http://master.solr.conpany. com 8983/ sol r/corenane/replication</str>
<str nanme="pol | I nterval ">00: 00: 60</ str>
</lst>
</ request Handl er >

Replicating Configuration Files

To replicate configuration files, list them with the conf Fi | es parameter in the master's configuration. Only files found
in the conf directory of the master's Solr instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. Even if a configuration file is changed on the
master, that file will be replicated only after there is a new commit/optimize on master's index.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary directory before
moving them into their ultimate location in the conf directory. The old configuration files are then renamed and kept in
the same conf/ directory. The ReplicationHandler does not automatically clean up these old files.

Unlike the index files, where the timestamp is good enough to figure out if they are identical, configuration files are
compared against their checksum. If a replication involved downloading at least one configuration file with a modified
checksum, the ReplicationHandler issues a core-reload command instead of a commit command.

Replicating the sol rconfi g. xm File

To keep the configuration of the master servers and slave servers in sync, you can configure the replication process to
copy configuration files from the master server to the slave servers. In the sol rconfi g. xnl on the master server,
include a conf Fi | es value like the following:

<str nanme="confFi |l es">solrconfig_slave.xm :solrconfig.xm, x.xm,y.xm</str>

This ensures that the local configuration sol rconfi g_sl ave. xm will be saved as sol rconfi g. xm on the slave. All
other files will be saved with their original names. On the master server, the file name of the slave configuration file
can be anything, as long as the name is correctly identified in the conf Fi | es string; then it will be saved as whatever
file name appears after the colon ':'.

More Information

For more information about configuring index replication, see Chapter 10 of the LucidWorks for Solr Certified
Distribution Guide.

Distributed Search and Indexing

Consider using distributed search when an index becomes too large to fit on a single system, or when a single query
takes too long to execute. Distributed search can reduce the latency of a query by splitting the index into multiple
shards and querying across all shards in parallel, merging the results.

© 2011 Lucid Imagination. All rights reserved. Page 123

LucidWorks Search Platform Documentation

r. Distributed search should not be used if queries to a single index are fast enough but one simply
wishes to expand the capacity (queries per second) of the system. In this case, standard Index
Replication should be used.

Distributed Indexing

To utilize distributed search, the index must be split into shards across multiple servers. Each shard is a LucidWorks
Enterprise server containing a complete index that can be queried independently, but which only contains a fraction of
the complete search collection.

Manual Distributed Indexing

One method of splitting the search collection into multiple shards is to index some documents to each shard instead of
sending all documents to a single shard. Updates to a document should always be sent to the same shard, and
documents should not be duplicated on different shards.

Manual Configuration

A Distributed Update Processor can be enabled to automatically support distributed indexing by sending update
requests to multiple servers (shards).

Enabling distributed indexing is done via the sol rconfi g. xm file, found in $SLWE_HOVE/ sol r/ cor es/ col | ecti on/ conf
(replace col | ecti on with the name of the collection that is being configured for distributed indexing). By default it is
not enabled. The sol rconfi g. xnl file needs to be installed on each shard, and the shards should be listed in the same
order in each file.

The distributed update processor is controlled by two parameters, shar ds and sel f, which may either be specified in
sol rconfig. xm , or supplied with a specific update request to Solr.

® shards lists the servers in the cluster. The list should be exactly the same (that is, in the same order) in the
configuration file for every server in the cluster.

® sel f should be different for each server in the cluster and should match the entry in shar ds for the particular
server. It is used to allow updates for the particular server to be directly added rather than going through the
HTTP interface. If it is missing, distributed update will still work, but will be less efficient.

To start using distributed indexing, find the following section in sol rconfi g. xml , and uncomment the shard location
definitions. Below is an example of shard definition that is not commented out.

<updat eRequest Processor Chai n name="di strib">
<processor class="com | ucid.update.Di stributedUpdateProcessorFactory">
<! -- exanple configuration...
"shards should be in the *same* order for every server
inacluster. Only "self" should change to represent
what server *this* is. -->

<str nanme="sel f">| ocal host: 8983/ sol r</str>
<arr nanme="shards">
<str>| ocal host: 8983/sol r</str>
<str>| ocal host: 7574/ sol r</str>
<larr>
</ processor >
<processor class="sol r.LogUpdat eProcessor Factory">
<i nt nanme="nmaxNuniToLog">10</i nt >
</ processor >
<processor class="sol r. RunUpdat eProcessor Factory"/>
</ updat eRequest Pr ocessor Chai n>

Indexing Documents

© 2011 Lucid Imagination. All rights reserved. Page 124

LucidWorks Search Platform Documentation

If distributed indexing has been configured as above, then any indexing initiated from the LucidWorks Enterprise
administration user interface, such as crawling directories, will be appropriately handled by sending some documents
to each server. One can use the distributed update processor in conjunction with any update handler while directly
updating Solr. The / updat e/ xm and / updat e/ csv update handlers are already configured to use di stri b, the
distributed update processor, by default.

If an update handler has not been configured to use the distributed update processor, it may be specified in the URL
via the updat e. processor parameter:

http://1ocal host: 8888/ solr/collectionl/update?update. processor=distrib

If the sel f and shar ds parameters are not configured in solrconfig.xml, then they may be specified as arguments on
the update url.

http:
/11 ocal host: 8888/ sol r/ col |l ectionl/updat e?updat e. processor =di stri b&sel f =l ocal host: 8888/ sol r&
shar ds=I ocal host : 8983/ sol r, | ocal host: 7574/ sol r, | ocal host : 8888/ sol r

Update commands may be sent to any server with distributed indexing configured correctly. Document adds and
deletes are forwarded to the appropriate server/shard based on a hash of the unique document id. commit commands
and deleteByQuery commands are sent to every server in shards.

Distributed Search

After a logical index is split across multiple shards, distributed search is used to make requests to all shards, merging
the results to make it appear as if it came from a single server.

Programmatic Distributed Search

One can use distributed search with Solr request handlers such as st andar d, di smax, or | uci d (the handler used by
the LucidWorks Enterprise), or any other search handler based on
or g. apache. sol r. handl er. conponent . Sear chHandl er.

Supported Components

The following Solr components currently support distributed searching:

® The Query component that returns documents matching a query

® The Facet component, for f acet. query and facet . fi el d requests where f acet. sort ed=t rue (the default:
return the constraints with the highest counts)

® The Highlighting component, which highlights results

® The Debug component

The presence of the shar ds parameter in a request will cause that request to be distributed across all shards in the
list. The syntax of shards is host 1: port 1/ base_url 1, host 2: port 2/ base_url 2, . ..

The example below would query across 3 different shards, combining the results:

http:
/11 ocal host: 8888/ sol r/ sel ect ?shar ds=I ocal host: 8983/ sol r, | ocal host: 7574/ sol r, | ocal host : 8888/ sol r &q
super

As a convenience to clients, a new request handler could be created with shar ds set as a default like any other
ordinary parameter.

© 2011 Lucid Imagination. All rights reserved. Page 125

LucidWorks Search Platform Documentation

t The shards parameter should not be set as a default in the standard request handler as this could
cause infinite recursion.

Scalability and Fault Tolerance

To provide fault tolerance and increased scalability, standard replication can be used to provide multiple identical
copies of each index shard. Each shard would have a master and multiple slaves.

Indexing in a Fault Tolerant Distributed Configuration

Only the master for each shard should be configured in distributed indexing or specified to the distributed update
processor. There is no fault tolerance while indexing - if the master for a shard goes down, indexing should be
suspended.

Searching in a Fault Tolerant Distributed Configuration

Each shard will have multiple replicas. A Virtual IP (VIP) should be configured in the load balancer for each shard,
consisting of all replicas. LucidWorks Enterprise distributed search configuration, and the shar ds parameter for
distributed search requests should use these VIPs.

A single VIP consisting of all the shard VIPs should be configured for all external systems to use the search service.

Solr Cloud

SolrCloud is a set of Solr features that expands the capabilities of Solr's distributed search, enabling and simplifying
the creation and use of Solr clusters. SolrCloud is still under active development, but already supports the following
features:

® Central configuration for the entire cluster

® Automatic load balancing and fail-over for queries

® Zookeeper integration for cluster coordination and configuration

Solr Cloud Examples

Solr Cloud is currently an expert level API in development, and the current state is documented on the SolrCloud wiki
page. The documentation for the specific SolrCloud version included with this version of LucidWorks Enterprise is here.

LucidWorks Enterprise command line start and stop is a bit different than the example server included in Apache Solr.
Some changes are needed to follow along with the Solr examples.

® Instead of java -jar start.jar,use./start.shor./start.bat and use the command line paramater
-lwe_core_java_opts to pass additional command line options to the JVM.

® We recommend that you only install LWE using the installer application; copying the LucidWorksEnterprise
directory to another directory to create another server may cause conflicts with ports.

® The Solr config directory in LucidWorks Enterprise is . / conf/sol r/ cores/ col | ecti on1_0/ conf as opposed to
.Isolr/conf

® Queries should include an additional query parameter &di st ri b=t r ue to submit the search to multiple shards.
Here is how one would set up the SolrCloud Example A: Simple two shard cluster.

Because we need two servers for this example, we will make two installations of LucidWorks Enterprise, one in

exanpl e and the other in exanpl e2 . The installation in exanpl e should use port 8983 for LWE Core (selected in the
installer). The installation in exanpl e2 should use the default port (8888) for LWE Core. If enabling other components,
be sure to run them on different ports in each installation as well.

© 2011 Lucid Imagination. All rights reserved. Page 126

http://wiki.apache.org/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud
http://wiki.apache.org/solr/SolrCloud?action=recall&rev=32
http://wiki.apache.org/solr/SolrCloud#Example_A:_Simple_two_shard_cluster

LucidWorks Search Platform Documentation

The original Apache Solr instructions look like this:

cd exanpl e
java -Dbootstrap_confdir=./solr/conf -Dcollection.configName=nyconf -DzkRun -jar start.jar

Equivalent LucidWorks Enterprise instructions for Linux-based systems:

cd exanpl e
bin/start.sh -lwe_core_java_opts "-Dbootstrap_confdir=./solr/cores/collectionl_0/conf
- Dcol I ecti on. confi gNane=nyconf -DzkRun"

cd ../exanpl e2
bin/start.sh -lwe_core_java_opts "-DhostPort=8888 -Dcol | ection.configNane=nyconf
- DzkHost =l ocal host : 9983"

For Windows-based systems:

cd exanpl e
bin\start.bat -lwe_core_java_opts "-Dbootstrap_confdir=./solr/cores/collectionl_0/conf
-Dcol | ecti on. confi gNanme=nyconf -DzkRun"

cd ../ exanpl e2
bin\start.bat -lwe_core_java_opts "-DhostPort=8888 -Dcollection.configNanme=nmyconf
- DzkHost =I ocal host : 9983"

Browse to http://localhost:8983/solr/collection1/admin/zookeeper.jsp to see the state of the cluster (the zookeeper
distributed filesystem).

© 2011 Lucid Imagination. All rights reserved. Page 127

http://localhost:8983/solr/collection1/admin/zookeeper.jsp

LucidWorks Search Platform Documentation

Integrating Monitoring Services

® JMX
Enabling JMX for LucidWorks Enterprise
® JMX Clients
® JConsole
® JMXTerm
® JMX MBeans
® Integrating with Monitoring Systems
® Zabbix
® Post-2.0 releases
® Pre-2.0 releases
® How to integrate with Zabbix 2.0 (1.9.x)
® Example graphs
® Nagios
® Helpful tips

Monitoring your application always is an important part of running production system. Most system administrators
have used various tools to ensure everything is ok from the health of server's filesystem to the the temperature of
CPUs. LucidWorks Enterprise provides additional capabilities to integrate application level statistics information into
these monitoring tools.

JMX

JMX is a standard way for managing and monitoring all varieties of software components for Java applications. JMX
uses objects called MBeans (Managed Beans) to expose data and resources from your application. LucidWorks
Enterprise provides number of read-only monitoring beans that provide useful statistical/performance information.
Combined with JVM (platform JMX MBeans) and OS level information, it becomes powerful tool for monitoring.

Enabling JMX for LucidWorks Enterprise

By default JMX is enabled in LucidWorks Enterprise for local access only. If you want to connect and monitor
application remotely you need to change | wecor e. j vm par ans parameter in the LWE_HOME/ conf / mast er . conf file and
add the following JVM parameters:

| wecore.jvm parans=... -Dcom sun. managenent.j nxrenote -Dcom sun. managemnent . j nxr enot e. port =3000
-Dcom sun. nanagenent . j nxr enot e. ssl =f al se
-Dcom sun. managenent . j nxr enot e. aut henti cat e=f al se - Dj ava. rm . server. host nane=ny. server. nane

Where 3000 is an unused TCP port number.
You might want to secure remote JMX access either by configuring a software or hardware firewall to allow

connections to specified port only from your hosts/network or by configuring password authentication and/or SSL
encryption. For more information about various security options please refer to the JMX documentation.

JMX Clients

There are number of various JMX clients out there you can use to connect to LucidWorks Enterprise server and browse
available information.

JConsole
JConsole is a standard (part of the JDK) graphical monitoring tool to monitor Java Virtual Machine (JVM) and Java

applications which provides a nice way to display memory and CPU information as well MBeans from arbitrary
applications.

© 2011 Lucid Imagination. All rights reserved. Page 128

http://en.wikipedia.org/wiki/Java_Management_Extensions
http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html

LucidWorks Search Platform Documentation

IJMXTerm

Jmxterm is an open source command line based interactive JMX client. It allows you to easily navigate JMX MBeans on
remote servers without running a graphical interface or opening a JMX port. It can also be integrated with script
languages such as Bash, Perl, Python, Ruby, etc. See the following as an example of how it can be used:

sh> java -jar jnxterm1l.0-al pha-4-uber.jar
Wel cone to JMX terminal. Type "hel p" for avail abl e conmands

$>j vis

67183 () - start.jar /Users/al exey/ LWE/ conf/jetty/rails/etc/jetty.xn

| Users/ al exey/ LWE/ conf/jetty/rails/etc/jetty-jm. xn

| Users/ al exey/ LWE/ conf/jetty/rails/etc/jetty-ssl.xn

67182 (m - start.jar /Users/al exey/ LWE/ conf/jetty/lwe-core/etc/jetty.xn
| User s/ al exey/ LWE/ conf/jetty/lwe-core/etc/jetty-jnx.xm

[User s/ al exey/ LME/ conf/jetty/lwe-core/etc/jetty-ssl.xm

93534 () - jmxterm1.0-al pha-4-uber.jar

8554 () -

$>open 67182
#Connection to 67182 is opened

$>donai ns

#f ol | owi ng domains are avail able
JM npl enent ati on

com sun. nenagenent

java.l ang
java.util.logging
org.nortbay.jetty

org. nortbay.jetty. handl er
org.northay.jetty. security
org.northay.jetty. servlet
org. northay.jetty. webapp
org. nortbay. | og

org. nortbay. uti

sol r/ Luci dWor ksLogs
solr/collectionl

$>domai n solr/coll ectionl
#domain is set to solr/collectionl

$>beans
#domain = solr/collectionl

solr/collectionl:id=collectionl,type=core
solr/coll ectionl:id=org. apache. sol r. handl er. St andar dRequest Handl er, t ype=st andar d

solr/col l ectionl:id=org. apache. sol r. search. Fast LRUCache, t ype=fi el dVal ueCache
solr/col l ectionl:id=org.apache. sol r. search. LRUCache, t ype=docunent Cache
solr/col l ectionl:id=org. apache. sol r.search. LRUCache, type=filterCache

solr/col l ectionl:id=org. apache. sol r. search. LRUCache, t ype=quer yResul t Cache
solr/coll ectionl:id=org. apache. sol r. search. Sol r Fi el dCacheMBean, t ype=fi el dCache

© 2011 Lucid Imagination. All rights reserved. Page 129

https://dev.lcimg.com/wiki/download/attachments/9145048/JConsole_Overview.png
https://dev.lcimg.com/wiki/download/attachments/9145048/JConsole_Memory.png
https://dev.lcimg.com/wiki/download/attachments/9145048/JConsole_SolrMBeans.png
http://wiki.cyclopsgroup.org/jmxterm

LucidWorks Search Platform Documentation

#bean is set to

$>get cunul ative_adds

© 2011 Lucid Imagination. All rights reserved.

solr/col l ectionl:id=org.apache. sol r. search. Sol r| ndexSear cher, t ype=sear cher
solr/col l ectionl:id=org. apache. sol r. updat e. Di rect Updat eHandl er 2, t ype=updat eHand| er

$>bean type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl er 2

sol r/coll ectionl:type=updat eHandl er, i d=org. apache. sol r. updat e. Di rect Updat eHandl er 2

$>info
#nmbean = solr/collectionl:type=updat eHandl er, i d=or g. apache. sol r. updat e. Di r ect Updat eHandl| er 2
#cl ass name = org. apache. sol r. core. JnxMoni t or edMap$Sol r Dynani cMBean
attributes
% - adds (java.lang.String, r)
% - autocommit mexTinme (java.lang.String, r)
14 - autocommits (java.lang.String, r)
%3 - category (java.lang.String, r)
% - conmts (java.lang.String, r)
LZ5) - cumul ative_adds (java.lang.String, r)
%6 - cumul ative_del etesByld (java.lang.String, r)
% - cunul ative_del etesByQuery (java.lang. String, r)
% - cunulative_errors (java.lang.String, r)
% - deletesByld (java.lang.String, r)
%0 - del etesByQuery (java.lang.String, r)
%1 - description (java.lang.String, r)
%2 - docsPending (java.lang.String, r)
%3 - errors (java.lang.String, r)
%4 - expungeDeletes (java.lang. String, r)
%5 - name (java.lang.String, r)
%6 - optimzes (java.lang.String, r)
%7 - rollbacks (java.lang.String, r)
%8 - source (java.lang.String, r)
%9 - sourceld (java.lang.String, r)
%20 - version (java.lang.String, r)
#there's no operations
#there's no notifications

Page 130

LucidWorks Search Platform Documentation

#nmbean = solr/coll ectionl:type=updat eHandl er, i d=org. apache. sol r. updat e. Di r ect Updat eHandl er 2:

cunul ative_adds = 125;

JMX MBeans

LucidWorks Enterprise provides number of useful JMX MBeans, some in Solr and some in LucidWorks Enterprise:

Solr MBeans

Domain Objects

solr/<collection_name> type=updateHandler,id=org.apache.solr.update.DirectUpdateHandler2

© 2011 Lucid Imagination. All rights reserved.

Available attributes

cumulative_adds,
cumulative_deletest
cumulative_deletesl
cumulative_errors,
commits, autocomn
optimizes, rollbacks
docsPending, etc

Page 131

LucidWorks Search Platform Documentation

solr/<collection_name> type=/update,id=org.apache.solr.handler.XmlUpdateRequestHandler request, errors,
avgTimePerRequest

solr/<collection_name> type=/lucid,id=org.apache.solr.handler.StandardRequestHandler requests, errors, tin
avgTimePerRequest

© 2011 Lucid Imagination. All rights reserved. Page 132

LucidWorks Search Platform Documentation

solr/<collection_name> type=searcher,id=org.apache.solr.search.SolrIndexSearcher numbDocs, warmupT

© 2011 Lucid Imagination. All rights reserved. Page 133

LucidWorks Search Platform Documentation

solr/<collection_name> type=filterCache,id=org.apache.solr.search.LRUCache cumulative_eviction
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups
warmupTime, etc

solr/<collection_name> type=queryResultCache,id=org.apache.solr.search.LRUCache cumulative_eviction
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups
warmupTime, etc

solr/<collection_name> type=documentCache,id=org.apache.solr.search.LRUCache cumulative_eviction
cumulative_hitratio,
cumulative_hits,
cumulative_inserts,
cumulative_lookups

LucidWorks Enterprise MBeans

Domain Objects Available Comments
attributes

© 2011 Lucid Imagination. All rights reserved. Page 134

LucidWorks Search Platform Documentation

total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

total_runs,
total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

lwe id=crawlers,name=<data_source_id>,type=datasources total_runs,
lwe id=crawlers,name=<collection_name>,type=collections
lwe id=crawlers,type=total

Integrating with Monitoring Systems

total_runs,
total_time,
num_total,
num_new,
num_updated,
num_unchanged,
num_failed,
num_deleted

This MBean displays crawlers
statistics information for
specific data source (like
number of processed
documents, number of
errors, etc). If you have
periodically or long running
scheduled data source then
you might want to monitor
and alert if there's any
problem with the underlying
source (web site, SharePoint
server, etc) or how
optimized your incremental
crawl is (percentage of
num_unchanged to
num_total), for example.

If you have multiple data
sources and don't want to
monitor on per data source
level, but keep an eye on
aggregate numbers for the
whole collection you might
want to use this bean.

You can use this MBean if
you have multiple collections
(homogeneous collections or
multi-tenant architecture) to
monitor on per instance
level.

Using JConsole and JmxTerm tools is a good way to explore information hidden in JMX, but what you really need is to
monitor your application automatically, record historical information, display it in a graphical form, configure
parameters thresholds as triggers and send alerts in case of denial of service or performance problems. There are
various standard sysadmin tools for that and integrating LucidWorks Enterprise with them is no different than with any
other Java application. The idea is that you can retrieve application information and send it to external monitoring
system. In our documentation we provide two examples of integrating LucidWorks Enterprise server with popular open

source monitoring tools - [Zabbix|#Zabbix] and [Nagios|#Nagios].

Zabbix

Zabbix is an enterprise-class open source distributed monitoring solution for networks and applications. It comes with
pre-defined templates for almost all operating systems as well as various open source applications. It also has a great
template for JVM that contains the most vital statistics of arbitrary Java application. There are different ways how you
can integrate LucidWorks Enterprise with Zabbix and the best approach depends on the Zabbix release version.

Post-2.0 releases

Post-2.0 releases (currently it's in beta release stage) comes with built-in support for monitoring Java applications
(Zabbix Java proxy). For more information please see the JMX Monitoring section of the Zabbix manual.

Pre-2.0 releases

If you are handy with scripting and command line tools then you can also gather and send all the JMX information

© 2011 Lucid Imagination. All rights reserved.

Page 135

http://www.zabbix.com/documentation/2.0/manual/jmx_monitoring

LucidWorks Search Platform Documentation

using

either:

® UserParameter: You can configure the Zabbix system agent to send custom monitored items using

UserParameter configuration parameter. For retrieving JMX statistics you can use either cmdline-jmxclient or
jmxterm command line clients.

User Par anet er =j vm nmaxt hreads, java -jar cndline-jnmxclient.jar |ocal host: 3000
java. |l ang: t ype=Thr eadi ng PeakThr eadCount

® zabbix_sender tool: If you have a large number of JMX monitored items, or you need to monitor some items

quite frequently, then spawning a Java Virtual Machine process to get a single object/attribute can be too
expensive. In this case consider scripting JMX interactions using the JMXTerm command line tool and your
favorite scripting language. The solution below is in Ruby but it could be implemented using any scripting
language. The main idea is that you can run a JMXTerm java application from your script and communicate
with it using st di n and st dout streams using expect library.

require "open3"
require 'expect'

run jnxtermjava application

stdin, stdout, wait_thr = Open3.popen2e('java -jar jnmxterm1.0-al pha-4-uber.jar')
wait for pronpt

result = stdout.expect('$>', 60)

connect to specific jvm
stdin. puts("open #{process_id}")
result = stdout.expect('$>, 60)

stdin.puts('get -d solr/collectionl -b

type=sear cher, i d=or g. apache. sol r. sear ch. Sol r I ndexSear cher nunDocs')
result = stdout.expect('$>, 60)

parse response fromjnxterm comrand

run zabbi x_sender command to send single itemor save multiple values into file and send as
a batch

out put = " zabbi x_sender -z #{@erver_nane} -p #{ @erver_port} -i file.txt .chonp

parse response and validate that operation is successful

How

to integrate with Zabbix 2.0 (1.9.x)

This section covers step by step guide how to integrate LucidWorks Enterprise product with the Zabbix 2.0 (1.9.x)
release. This won't work with previous releases (1.8.x) because they lack built-in JMX support.

1.

Download and install 2.0 (1.9.x) release according to official documentation. In order to build Zabbix JMX
proxy you should build Zabbix package with the - - enabl e-j ava configuration option, such as ./ confi gure
--enabl e-server --w th-nysgl --enable-java.

. After make install you should copy the example i nit. d start script from

m sc/init.d/ debi an/ zabbi x- server into the /etc/init.d directory and edit it to start the JMX proxy
daemon as well. To do that you should add <i nstal | _di r >/ sbi n/ zabbi x_j ava/ st art up. sh and
<instal |l _dir>/shin/zabbix_java/ shut down. sh calls to the corresponding options ininit.d.

. Configure JMX proxy in / et ¢/ zabbi x/ zabbi x_server. conf (see JavaProxy, JavaProxyPort and

St art JavaPol | er s parameters). Verify that you're using the same port configured in

<i nstal |l _dir>/sbin/zabbi x_javal/ settings. sh file. It is also recommended to enable JMX proxy verbose

logging (edit <i nstal | _di r>/ shi n/ zabbi x_j ava/l i b/ | ogback. xm file and change fi| e element to point to
your log file directory and set level attribute to debug level).

Import the sample Zabbix templates found in $LWE_HOME/ app/ exanpl es/ zabbi x called

| we_zabbi x_t enpl ates. xm (there are 3 in that file).

Install the Zabbix agent to the server where LucidWorks Enterprise is installed and configure it to connect to

© 2011 Lucid Imagination. All rights reserved. Page 136

http://www.zabbix.com/documentation/1.8/manual/config/user_parameters
http://crawler.archive.org/cmdline-jmxclient/
http://wiki.cyclopsgroup.org/jmxterm
http://www.zabbix.com/documentation/1.8/manual/processes/zabbix_sender
http://en.wikipedia.org/wiki/Expect
http://www.zabbix.com/documentation/2.0/manual/installation/install

LucidWorks Search Platform Documentation

the Zabbix server.

6. Add Zabbix host and assign proper template for the OS (linux, freebsd, etc.).

7. Assign the imported templates (Template_JVM, Template_Solr, Template_LWE) to that host.

8. Enable JMX monitoring in LucidWorks Enterprise and allow the Zabbix server connect to JMX interface over the
network.

9. Add IJMX interface to host where LucidWorks Enterprise is installed.

10. Start any activity in the LucidWorks Enterprise server (crawling, indexing, serving) and check out graphs for

monitored host (see screenshots below).

Example graphs

® Total number of documents in search index

® Solr index operations (commits, optimizes, rollbacks)

1

® Solr document operations (adds, deletes by id or query)

¥

® Crawling activity - number of total documents processed, number of failures (retrieve, parsing), number of
new documents

® Search activity - number of search requests

¥

® Search Average Response Time

® Searcher Warmup Time (how fast committed docs become visible/searchable)

® Java Heap Memory Usage

® Caches stats

© 2011 Lucid Imagination. All rights reserved. Page 137

http://www.zabbix.com/documentation/2.0/manual/jmx_monitoring#configuring_interfaces_and_items_in_zabbix_gui
https://dev.lcimg.com/wiki/download/attachments/9145048/TotalNumberOfDocuments.png
https://dev.lcimg.com/wiki/download/attachments/9145048/SolrIndexOperations.png
https://dev.lcimg.com/wiki/download/attachments/9145048/SolrDocumentOperations.png
https://dev.lcimg.com/wiki/download/attachments/9145048/CrawlingActivity.png
https://dev.lcimg.com/wiki/download/attachments/9145048/SearchActivity.png
https://dev.lcimg.com/wiki/download/attachments/9145048/SearchAverageResponseTime.png
https://dev.lcimg.com/wiki/download/attachments/9145048/SearcherWarmupTime.png
https://dev.lcimg.com/wiki/download/attachments/9145048/HeapMemoryUsage.png

LucidWorks Search Platform Documentation

Nagios

Nagios is a popular open source computer system and network monitoring software application. It watches hosts and
services, alerting users when things go wrong and again when they get better. There are different Nagios plugins that
allow you to monitor Java applications using JMX interface. We recommend you to use Syabru Nagios JMX Plugin as
the most mature plugin that supports different data types (integers, floats, string regular expressions) and advanced
Nagios threshold syntax. In order to install Syabru Nagios JMX Plugin you should copy check_j nx and check_j nx. j ar
from the downloaded package to Nagios pl ugi ns directory and add check_jmx command definition to either global
commands. cf g configuration file or put the j nx. cf g file into nagi os_pl ugi ns configuration directory. The next step is
to define Nagios services, as in this example:

LWE searcher warrmup time is no nore than 1) 1 second - warning state 2) 2 seconds - critica

state

define service {
host gr oup_nane al |
servi ce_description LWE_SEARCHER WARMUP_TI ME
check_command check_j nx! 3000! - O

"solr/collectionl:type=searcher,id=org.apache. sol r.search. Sol rl ndexSearcher" -A warmupTi ne -w
1000 -c 2000 -u ns

use generic-service

notification_interval 0
}
LWE search average response tinme is no nore than 1) 100ns - warning state 2) 200nms -
critical state
define service {

host gr oup_nane al |
servi ce_description LWE_SEARCHER_AVG_RSP_TI ME
check_command check_j nx! 3000! - O

"solr/collectionl:type=/Ilucid,id=org.apache. sol r.handl er. Standar dRequest Handl er" -A
avgTi mePer Request -w 100 -c¢ 200 -u ns

use generi c-service

notification_interval 0

After you setup your services and reload the Nagios configuration you can monitor application state using either the
Nagios web UI or receive email notifications.

® Nagios UI screenshot (thresholds on the screenshots are lowered to trigger critical state as an example)

localhost () LWE SEARCHER AVG RSP TIME _2011-0&22 08:02:21 0d Oh23m 525 44 JMX CRITICAL - avgTimePerRequest = 3.3344653ms
LWE SEARCHER WARMUP TIME [CRITIGANN 2011-08-22 08:01:56 0d Oh 17m 53s 414 JMX CRITICAL - warmupTime = 1294ms

® Nagios email alert

© 2011 Lucid Imagination. All rights reserved. Page 138

https://dev.lcimg.com/wiki/download/attachments/9145048/FilterCacheSize.png
https://dev.lcimg.com/wiki/download/attachments/9145048/FilterCacheHitRatio.png
https://dev.lcimg.com/wiki/download/attachments/9145048/DocumentCacheSize.png
https://dev.lcimg.com/wiki/download/attachments/9145048/DocumentCacheHitRatio.png
https://dev.lcimg.com/wiki/download/attachments/9145048/QueryResultsCacheSize.png
https://dev.lcimg.com/wiki/download/attachments/9145048/QueryResultsCacheHitRatio.png
http://www.nagios.org/
http://snippets.syabru.ch/nagios-jmx-plugin/
http://snippets.syabru.ch/nagios-jmx-plugin/commands.html#Definition

LucidWorks Search Platform Documentation

** PROBLEM Service Alert: localhost/LWE_SEARCHER_WARMUP_TIME is CRITICAL **
Inbox |):
nagios@ip-10-110-235-82.ec2.internal to me 11:52 AM (44 minutes agg
W Nag-los R
Notification Type: PROBLEM
Service: LWE_SEARCHER_WARMUP_TIME
Host: localhost
Address: 127.0.01
State: CRITICAL
Date/Time: Mon Aug 22 07:52:01 UTC 2011

Additional Info:

JMX CRITICAL - warmupTime = 1114ms

Helpful tips

OS file system cache: One of the frequent problems with LucidWorks Enterprise and Lucene/Solr applications is
that if you do not have enough free memory and a significant index size you might notice performance
problems because there's not enough free memory for the file system cache. I0 cache is a crucial resource for
search applications, so it definitely makes sense to monitor this parameter and display it in graphs with other
memory information like free memory, jvm heap memory, swap, etc. This parameter is part of the OS level
monitoring in Zabbix (name is vm menory. si ze[cached]).

File descriptors: Another problem is that sometimes your application can hit OS or per process file descriptor
limits. It is also recommended to monitor these parameters and set trigger thresholds for these parameters.
CPU usage: Default Zabbix templates have triggers for CPU load average numbers. You might want to tune
thresholds for your server based on number of CPUs and expected load.

Heap memory usage and garbage collector statistics: Zabbix Java template contains multiple items and
triggers for memory and garbage collector invocation counts. You should also tune these parameters to match
your scenario.

Solr index size and free disk space: These should be set properly to avoid "Out Of Disk Space" errors.

© 2011 Lucid Imagination. All rights reserved. Page 139

LucidWorks Search Platform Documentation

Lucid Query Parser

The Lucid query parser is designed as a replacement for the existing Apache Lucene and Solr query parsers to produce
good results with queries in any format, extracting the maximum possible information from the user entry to produce
the best matches. The user (or system administrator) does not need to indicate what type of query it is: query
interpretation is "modeless". The system will never produce an error message in response to a query and will always
make the best interpretation possible. The system will match documents with alternative word forms (for example,
singulars/plurals; this is on by default), expand synonyms, spell-check queries and handle queries in various
languages (English by default) as configured by the administrator.

Features

The basic features of the Lucid query parser include all those of the traditional Apache Lucene and Apache Solr DisMax
query parsers and is designed to work well for users accustomed to the search syntax used by popular Web search
engines.

The Lucid query parser also includes a number of features not found in some or all of these other query parsers,
including:

Relational operators (comparative operators) - '<', '<=', '==', 'I="' '>=''>'
More flexible range searches

Implicit AND operator when no explicit operators are present

The ALL pseudo-field to search across all fields

Automatic bigram and trigram relevancy boosting

Support for natural language queries

Support for a wide variety of date formats

Support for advanced proximity operators - NEAR, BEFORE, AFTER

Support for multi-word synonyms

Enhanced support for hyphenated terms

Case-insensitive field names

Sticky field names

Good results even in the presence of query syntax errors with automatic error recovery
Intelligent out-of-the-box settings for best results

Wide range of configuration options for special needs

Simply put, the Lucid query parser is capable of handling existing Lucene and Solr queries and many Web search
engine queries.

© 2011 Lucid Imagination. All rights reserved. Page 140

LucidWorks Search Platform Documentation

Building Search Queries

This section reviews some of the most commonly used types of search queries and gives examples of how LucidWorks
Enterprise processes them. More information can be found in the section on Building Advanced Queries.

Basic Usage

The Lucid query parser uses a humber of built-in but configurable heuristics to automatically detect and process
queries in a variety of formats.

Basic keyword queries are made up of words and quoted phrases, such as those used in Web search engines. As in
those search engines, the default interpretation rule for such queries is that all significant words in the query must be
present for a document to match. Examples:

® quantum physics
® address of "Wite House"

Simple Boolean queries are made up of words or phrases preceded by a '+' to indicate that a word or phrase must be
present for a document to match, or by a '-' to mean they cannot be present. If a '+' or '-' or relational operator is
present, other words or phrases in the query are interpreted as 'nice to have' but are not required or excluded for
documents to match. For example,

® +pet cat dog fish rabbit -snakes

Full Boolean queries use any legal combination of the Boolean operators AND, OR, NOT and an unlimited number of
matching parentheses. The AND and OR operators may be any case, but the NOT operator must always be upper
case. Configuration settings can be used to alter these defaults. For example,

® (dog AND puppy) OR (cat AND kitten)
® lincoln and washi ngton NOT (bridge or tunnel)

Extended Boolean queries combine simple Boolean queries (a term list or list of terms and quoted phrases, optionally
using the '+' and '- ' operators) with the Boolean AND, OR, and NOT operators. For example,

® Abraham +Lincoln -tunnel or George +Washington -bridge and (early history or influences)

Natural language queries, are made up of either sentence fragments or natural language questions that begin with
one of the question words 'Who', 'What', 'When', 'Where', 'Why', or '"How' and end with a question mark. For example,

® the return of the pink panther

® what is aspirin?
® How does a rocket work?

Queries using Lucene syntax (see below) include field delimiters, Proximity Operators, wildcards, and so on. This
syntax may be used with arbitrarily complex Boolean expressions. For example,

® title:psychol og*

® [1968 TO 1972]
® "software devel oprent"~10

More like this queries are those in which the users types or pastes in a long section of text as a model to match. The
Lucid query parser uses a statistical approach for matching such queries.

For queries in any other format, the Lucid query parser will do a best effort interpretation.

Although these features work together automatically out of the box, a wide range of configuration options are
available and described in the following sections.

Users should use quotation marks around any series of words they intend to be interpreted as a literal phrase in order
to find documents that must have that exact phrase. However, in most cases users are better served by omitting the
quotation marks, since the query parser ranks higher those documents that have consecutive words near each other
while also bringing back potentially relevant documents that have those words but not necessarily as a literal phrase.

© 2011 Lucid Imagination. All rights reserved. Page 141

LucidWorks Search Platform Documentation

By default, the Lucid query parser also pays attention to every word in the query and tries to use each word
appropriately. Common words such as a, t he, t o, etc. (often called "stop words"), are not ignored but are treated
specially. For example, a query consisting of only stop words will, as the default, require all of them to be present. On
the other hand, a query such as what is aspirin, will only require the word aspi ri n, but make use of all the words
in the query to rank the best documents highest when documents are returned in order of relevancy.

Error Handling

The Lucid query parser is designed to be able to handle and give good results for even the most malformed queries.
No exceptions will be thrown in any event. Common mistakes include mismatched parentheses, brackets, or braces,
unterminated strings, missing operand for a Boolean operator, or any other operator, unknown field names, and
extraneous punctuation.

In the worst case, the offending character, operator, or term will be discarded.

Understanding Terms

The basic unit of a query is a term. In its simplest form, a term is simply a word or a number. A term may also include
embedded punctuation such as hyphens or slashes, and may in fact be more than one word separated by such
embedded punctuation. A term may also include wildcard ('?' and '*").

This basic form of term is referred to as a single term. For example, the following are all single terms:

cat

CD- ROM
123

1, 000

- 456

+7. 89

$1, 000. 00
cat*

?at

at ?2c*he

Numbers optionally may have a leading + or - sign that is considered part of the number. If you wish to place the
'must' or 'must not' operators in front of an unsigned number, add an extra '+' between the operator and the
unsigned number.

There is a second form of term called a phrase, which is a sequence of terms enclosed in double quotation marks. The
intention is that the terms (words) are expected to occur in that order and without intervening terms. An alternative
purpose is simply to indicate that a Lucid keyword operator should be interpreted as a natural language word rather
than as an operator. For example:

® "In the beginning" "George Washington" "AND' "myocardial infarction”

A third form of term is the range query, which is a pair or terms which will match all terms that lexically fall between
those two terms. For example, [cat TO dog] matches all terms between cat and dog in lexical order (i.e.,
alphabetically, in this case).

A fourth form of term is a parenthesized sub-query which may be a complex Boolean query. For example:
® cat (bat OR fish AND giraffe) zebra

A sequence of terms (of any form - single, phrase, range, or sub-query) is referred to as a term list. A term list might
be used to represent one or more compound terms, or simply a list of keywords and phrases, or a combination of the
two. A term list is the most common form of query. In this basic form, a term list has no operators.

Note that for non-text fields, a term may not actually be a word or number, but may have a special syntax specific to
that field such as a part number or telephone number.

In order to offer advanced search functions, each term can optionally be preceded or followed by various term

modifiers. An example of a modifier before a term is a field name. An example of a modifier after a term is a boost
factor.

© 2011 Lucid Imagination. All rights reserved. Page 142

LucidWorks Search Platform Documentation

A subset of operators (term operators, + and -) may also be included within a term list.

Case Insensitivity

As a general rule, query text is case insensitive, meaning that you may use any combination of upper and lower case
letters regardless of the case used in documents in the search collection. This also includes field names and keyword
options. Mixed case may be used for technical correctness (e.g., proper names) or for readability or emphasis, but will
in no way affect the query results.

One exception is in string or keyword fields, as distinct from full-text fields, where the administrator may have chosen
to maintain precise case for precision or some other reason.

Another exception is that the administrator may decide to remove the term analysis filter which is responsible for
making sure that terms are converted to lower case when they are indexed as well as query time.

But in general you should feel free to enter queries as feels most natural and feel free to enter the entire query in
lower case if that is what feels most natural to you.

The following queries will be interpreted identically:

presi dent george washington "cherry tree" datenodified: 1994
Presi dent George Washington "Cherry Tree" dateModified: 1994
presi dent GEORGE Washi ngt on " CHERRY TREE" Dat eMbdi fi ed: 1994
PRESI DENT geor ge WAshi ngton "CHERRY tree" DATEMODI Fl ED: 1994

Simple Boolean Queries

A simple Boolean query consists of a list of terms, single keywords or quoted phrases, some of which may be preceded
with the '+' and '- ' Boolean operators. Terms preceded by the '+' operator are required, meaning that only documents
containing those terms will be selected by the query. Terms preceded by the '-' operator are prohibited, meaning that
only documents that do not contain any of the prohibited terms will be selected by the query. All other terms are
considered optional, meaning that none of those terms are required for a document to be selected by the query, but
documents containing those terms will be ranked higher based on how many of the optional terms they contain. For
example,

® president george +washington -bridge
Which selects documents which contain "Washington" but not "bridge". Selected documents do not have to contain
"president" or "george", but they will be ranked higher if they do.

Natural Language Queries

A natural language query is one in which the user does not use any special syntax, but instead enters their search in
the form of a statement or question, or as they would normally speak to another person. In general, the best first stab
at any query is to write the query as a natural language question, such as:

® what is aspirin?

Or, include all of the connective words to fully express the topic so that they can participate in relevancy boosting. For
example, rather than asking a user to conform their query to the query parser with:

® title: return "pink panther"
the user can simply enter the title as it would normally appear:
® the return of the pink panther

The Lucid query parser will automatically reformulate the query so that documents containing the exact wording will
rank high, but documents containing subsets of the query will rank reasonably high as well.

A special feature supporting natural language queries is that a trailing question mark ('?', which normally would be

© 2011 Lucid Imagination. All rights reserved. Page 143

LucidWorks Search Platform Documentation

treated as a wildcard character) will automatically be stripped from the query if there are at least three terms in the
query and the initial term is a question word, "who", "what", "when", "where", "why", or "how". If for some reason
you do wish to enter a query that ends with a wildcard question mark but starts with a question word, simply follow it
with a space and a period or other punctuation character. For example,

® what is aspirin? . (Treated as a wildcard)

The exact minimum word count is configurable with the mi nStri pQvar k configuration setting.

Phrase Query

In natural language, a phrase is simply a sequence of words or terms. Query languages usually require that the
phrase be enclosed within double quotation marks. Raw natural language text is frequently as good as explicitly
quoted phrases. However, in some cases an explicit phrase may be best for a particular query.

A quoted phrase is simply any query text (or an n-gram) enclosed within double quotation marks. For example:

® "John Doe"

® "John Q Doe"

® "Java software devel opnent”

® "The quick brown fox junped over the |azy dog s back."

The text may consist of words as well as punctuation. Although operators and other special characters may also be
present, they will not have their usual meaning and will be considered as words or punctuation. In particular,
wildcards, parentheses, "+' and "=", and boost factors have no special meaning inside of a quoted phrase. For
example, the following queries are equivalent:

® "__The +cat (in the hat?), ran"2.0 * -away."
® "The cat in the hat ran 2.0 away"

An empty phrase query (that is, "") will be ignored.

A phrase query containing a single term will be treated as a single term query, but any wildcards or operators within
the term will be ignored and stop words will be processed as non-stop words.

In addition to simple Phrase Queries, the Lucid Query Parser also supports Advanced Proximity Queries.

More Like This

A more like this query is a passage of natural language text that has more than a threshold number of terms (the
default is 12, but can be configured by the administrator with the I i keM n configuration setting in sol rconfi g. xn).
All terms will be implicitly ORed. This may result in a large number of results, but automatic bigram and trigram
relevancy boosting will tend to rank results that more closely match the query text. Two applications of this feature
are to detect plagiarism and derivative works or subtle variations. Exact matches will rank highest, but close matches
will also rank high. For example:

When in the Course of human events, it becomes necessary for one people to dissolve the political bands
which have connected them with another, and to assume among the powers of the earth, the separate
and equal station to which the Laws of Nature and of Nature's God entitle them, a decent respect to the
opinions of mankind requires that they should declare the causes which impel them to the separation.

All of that text would typically be pasted into the query box as one line of text.

Be sure not to enclose the passage in double quotation marks, otherwise the query will be treated as a precise phrase
query. There is no harm in using the quoted phrase, other than that an exact match must be made in that case.

This feature may be suppressed by simply enclosing the entire query within parentheses:

(When in the Course of human events, it becomes necessary for one people to dissolve ...)

© 2011 Lucid Imagination. All rights reserved. Page 144

LucidWorks Search Platform Documentation

Boolean Operators

Although the majority of queries can be constructed without resorting to explicit Boolean operators, enterprise users
sometimes do need the extra power to form complex queries to narrow searches. The basic Boolean operators are
AND, OR, and unary and binary NOT. Evaluation is left to right, but parenthesis can be used to control the evaluation
order. For example,

NOT cat AND dog
cat AND (NOT dog)

® Cat OR dog AND pet NOT zebra

® cat OR NOT dog

® cat AND NOT dog

® cat NOT dog

® (cat OR dog) AND (table OR chair)
® hit AND run

® hot OR not

[]

[]

Binary 'NOT' is equivalent to 'AND NOT' unless preceded by 'OR'.

A Boolean operator is used to combine the results of two term lists or the results of another boolean operator. For
example,

® Abraham Li ncol n OR George Washi ngton
® second-hand furniture AND (table OR chair)

Parentheses are not required around term lists (any sequence of terms without Boolean operators, also known as an
extended Boolean query). For example, the following are equivalent to the preceding examples:

® (Abraham Lincol n) OR (George Washi ngton)
® (second-hand furniture) AND (table OR chair)

Although Boolean operators are normally written in all upper case, lower case 'and' and 'or ' are also permitted by
default. Sometimes that may cause a query to be misinterpreted, but usually with little or no harm. Lower case 'not' is
not permitted since it would cause very wrong results if it happened to occur as a query term. For example:

Abr aham Li ncol n and Geor ge Washi ngt on
second-hand furniture and (table or chair)
hit and run

hot or not

The upOp configuration setting can be enabled to require all Boolean operators to be upper case-only. The not Op
configuration setting can be disabled to allow lower case 'not ' as a Boolean operator. See Query Parser Customization
for more details on how to change these settings.

In addition to the Boolean keywords, non-keyword operator equivalents are available as substitutions for the keyword
Boolean operators. A double ampersand ('&&') means 'AND', a double vertical bar ('||') means 'OR' and a single
exclamation point ('!') means 'NOT'. So, the above examples can also be written as:

Cat ||
cat ||
cat &&
cat ! dog

(cat || dog) && (table || chair)

Abraham Lincoln || George Washi ngton
second-hand furniture & (table || chair)
(Abraham Lincoln) || (George Washi ngton)
(second-hand furniture) && (table OR chair)
hit && run

hot || not

| cat && dog

cat & (! dog)

dog

dog && pet ! zebra
!
I dog

Sticky field names or keyword options remain in effect only until either a new sticky field name (or keyword option) or

© 2011 Lucid Imagination. All rights reserved. Page 145

LucidWorks Search Platform Documentation

a right parenthesis at the current parenthesis nesting level. For example,

User Entry Equivalent
title:cat nap OR dog bark title:(cat nap) OR title: (dog bark)
title:cat nap OR body: dog bark title:(cat nap) OR body: (dog bark)

(body:cat AND ((title:dog) OR fish)) AND (body:cat AND ((title:dog) OR body:fish)) AND
bat def aul t: bat

Left to Right Boolean Evaluation Order

Unlike Lucene and Solr, the Lucid query parser assures that Boolean queries without parentheses will be evaluated
from left to right. For example, the following are equivalent:

® cat OR dog OR fox AND pet
® (cat OR dog OR fox) AND pet
® ((cat OR dog) OR fox) AND pet

Implicit AND versus Implicit OR

If none of the terms of a term list have explicit operators (+ or -, the individual terms will be implicitly ANDed into the
query. Lucene and Solr default to implicit ORing of terms, but implicit ANDing tends to produce better results in most
applications for most users. For example:

User Input Query Interpreted as
heart attack heart AND attack
Geor ge Washi ngt on George AND Washi ngt on

Lincoln's Gettysburg Address Lincoln's AND Gettysburg AND Address

But if one or more of the terms in a term list has an explicit term operator (+ or - or relational operator) the rest of
the terms will be treated as "nice to have." For example,

® cat +dog -fox

Selects documents which must contain "dog" and must not contain "fox". Documents will rank higher if "cat" is
present, but it is not required.

® cat dog turtle -zebra
Selects all documents that do not contain "zebra". Documents which contain any subset of "cat", "dog", and "turtle"
will be ranked higher.

The def Op configuration setting in sol rconfi g. xm can be used to disable the implicit AND feature, but it is enabled
by default.

Strict vs. Loose Extended Boolean Queries

A strict query or Boolean query is one in which explicit Boolean operators are used between all terms. A loose query,
also known as an extended Boolean query, uses a combination of explicit Boolean operators and term lists in which
the operators are implicit. Put simply, extended Boolean queries allow free-form term lists as operands for the Boolean
operators, while strict Boolean queries permit only a single term or quoted phrase (or parenthesized sub-query.)
Loose, extended Boolean queries provide every bit of the power of a strict Boolean query, but are more convenient to
write and can be easier to read. In fact, queries written in more of a natural language format with fewer explicit
Boolean operators facilitate relevancy boosting of adjacent terms.

Examples of strict Boolean queries The equivalent loose, extended Boolean queries

© 2011 Lucid Imagination. All rights reserved. Page 146

LucidWorks Search Platform Documentation

cat AND dog cat dog
(cat OR dog) AND (food OR health) (cat OR dog) AND (food OR health)
cat OR dog NOT pets cat dog -pets

(George AND Washington) OR (Abraham AND Lincoln) George Washington OR Abraham Lincoln

"George Washington" OR ("Abraham" AND "Lincoln") @ "George Washington" OR "Abraham Lincoln"

Hyphenated Terms

Hyphenated terms, such as pl ug-i n or CD- ROV, are indexed without their hyphens, both as a sequence of sub-words
and as a single, combined term which is the catenation of the sub-words. That combined term is stored at the position
of the final sub-word. Users authoring documents are not always consistent on whether they use the hyphens or not,
but the goal of the Lucid query parser is to be able to match either given a query of either. To do this as well as
possible, the Lucid query parser will expand any hyphenated term into a Boolean OR of the sub-words as a phrase and
the combined term.

h3. Simple Hyphenated Terms

A query of pl ug-i n will automatically be interpreted as ("plug i n" OR plugin). If we have these mini-documents:
* Doc #1: This is a plugin.

* Doc #2: This is the plug-in.

* Doc #3: Where is my plug in?

The query will match all three documents.

A query of pl ugi n will only match the first two documents, but that is a limitation of this heuristic feature. The query
results are better than without this feature even if they are still not ideal.

h3. Hyphenated Terms within Quoted Phrases

Quoted phrases may contain any number of hyphenated terms, in which case the Lucene "span query" feature is used
for the entire phrase as well as the individual hyphenated terms which are expanded as above.

A query of:
*"pbuy a cd-romw th plug-in software"

would match any of the following mini-documents:

* Doc #1: I want to buy a cdrom with plugin software
* Doc #2: I want to buy a cdrom with plug-in software
* Doc #3: I want to buy a cd-rom with plugin software
* Doc #4: I want to buy a cd-rom with plug-in software

In terms of the new proximity operators, this query is equivalent to:
*buy a before:0 cd-rombefore:0 with before:0 plug-in software

which is equivalent to:

® buy a before:0 ("cd ront or cdron) before:0 with before:0 ("plug in" or plugin) before:0
sof twar e

Multiple Hyphens in Terms
Some hyphenated terms have more than two sub-words. For example:
® on-the-run and never-to-be-forgotten

will be interpreted as:

® ("on the run" OR ontherun) and ("never to be forgotten" OR nevertobeforgotten)

© 2011 Lucid Imagination. All rights reserved. Page 147

LucidWorks Search Platform Documentation

Multiple hyphens occur in various special formats, such as phone numbers. For example:
® 646-414-1593 1-800- 555- 1212
which will be interpreted as:
® ("646 414 1593" OR 6464141593) AND ("1 800 555 1212" OR 18005551212)
Social Security numbers and ISBNs also have multiple hyphens. For example,
® 101-23-1234 and 978- 3- 16- 148410-0
will be interpreted as:
® ("101 23 1234" OR 101231234) and ("978 3 16 148410 0" OR 9783161484100)
Part numbers and various ID formats also tend to contain more than one hyphen. These would be treated similarly to

the examples above.

Punctuation and Special Characters

In general, any punctuation or special character that is not a query operator is treated as if it were white space. This
includes commas, periods, semi-colons, slashes, etc. Punctuation or special characters before and after either a single
term or the terms within a phrase will be ignored. Punctuation is sometimes referred to as a delimiter. For example,

User Input Query Interpreted as
/this/ t hi s (note: still treated as a stop word)

cat, dog; fox. cat dog fox

Yahoo! Yahoo
C++ C
B- B

However, punctuation embedded within a single term or the terms of a phrase will be treated as if it were a hyphen
and the term is treated as if it were a phrase with white space in place of the punctuation. For example,

User Input Query Interpreted as
X,Y,2z "Xy z"

Jan/ Feb/ Mar "Jan Feb Mar"

; Jan/ Feb/ Mar . "Jan Feb Mar"
Jan&Feb "Jan Feb"

"Reports for Jan&Feb" "Reports for Jan Feb"

C++/ C#/ Java "C C Java"
AT&T "AT T
U S "U s

Dollar signs, commas, and decimal points are treated similarly. For example,

User Input Query Interpreted as

1, 000 "1 000"

© 2011 Lucid Imagination. All rights reserved. Page 148

LucidWorks Search Platform Documentation

$1,275.34 "1 275 34"

Web URLs are not treated specially, other than to allow the colon rather than treating it as a field name, so the URL
special characters are removed using the same punctuation removal rules as any other term. For example,

User Input Query Interpreted as
http://www.cnn.com/ "http ww cnn cont

http://people.apache.org/list_A.html "http peopl e apache org list A htnl"

Similarly, email addresses have no special treatment, other than to treat all special characters, including the "@" and
dots as delimiters within a phrase. For example,

User Input Query Interpreted as
joe@nn.com "joe cnn cont

j oseph. sm t h@hi t ehouse. gov "joseph smth whitehouse gov"

Alphanumeric Terms

Alphanumeric single terms and terms within phrases are split into separate terms as a phrase. For example:

User Input Query Interpreted as
A20 "A 20"

B4X3 "B 4 X 3"

Al pha7 "Al pha 7"

"N kon Cool pi x P90" "N kon Cool pi x P 90"

24x Zoom Z980 "24 x" Zoom "Z 980"

Wildcard Queries

Any term in a query, except for quoted phrases, may contain one or more wildcard characters. Wildcard characters
indicate that the term is actually a pattern that may match any number of terms. There are two forms of wildcard
character: asterisk ("*") which will match zero or more arbitrary characters and question mark ("?") which will match

exactly one arbitrary character.

Wildcards Within or At End of Terms

A term consisting only of one or more asterisks will match all terms of the field in which it is used. For example,
title:*,

The most common use of asterisk is as the last character of a query term to match all terms that begin with the rest
of the query term as a prefix. For example, pai nt *.

One traditional use of asterisk is to force plurals to match. This use is usually unnecessary because LucidWorks
Enterprise uses a stemming filter to automatically match both singular and plural forms. However, this technique may
still be useful if the administrator chooses to disable the stemming filter or for fields that may not have a stemming
filter. For example, Sneaker * will match both "sneaker" and "sneakers".

A question mark can be used where there might be variations for a single character. For example:

User input Matches

© 2011 Lucid Imagination. All rights reserved. Page 149

http://www.cnn.com/
http://people.apache.org/list_A.html

LucidWorks Search Platform Documentation

?at "cat", Bat", "fat", "kat", and so on
c?t "cat", "cot", "cut"
ca? "cab", "can", "cat", and so on

Any combination of asterisks and question mark wildcards can be used in a single term, but care is needed to avoid
unexpected results.

Note that wildcards are not supported within quoted phrases. They will be treated as if they were white space.
Wildcards can be used for non-text fields.

If you need to use a non-wildcard asterisk or question mark in a non-text field, be sure to escape each of them with a
backslash. For example,

nyFi el d: ABC\ * DEF\ ?GHI

will match the literal term " ABC* DEF?CHI " .

If you need to use a trailing question mark wildcard at the end of a query that starts with a question word (who, what,
when, where, why or how), be sure to add a space and some extraneous syntax such as a +, otherwise the natural
language query heuristic will discard that trailing question mark. For example:

User Entry Behavior
What is aspirin? The question mark is ignored
nyField: XX YY/Z? The question mark is treated as a wildcard

Where is part AB004x? The question mark is ignored
Where is part AB004x? + The question mark is treated as a wildcard and the extraneous "+" will be ignored

nyField: XX/'YY/Z? + The question mark is treated as a wildcard and the extraneous "+" will be ignored

Wildcards at Start of Terms

Wildcards can be placed at the start of terms, such as *ati on, which is known as a leading wildcard or sometimes as a
suffix query. The syntaxes are the same as described above, but there may be local performance considerations that
need to be evaluated.

Lucene and Solr technically support leading wildcards, but this feature is usually disabled by default in the traditional
query parsers due to concerns about query performance since it tends to select a large percentage of indexed terms.
The Lucid query parser does support leading wildcards by default, but this feature may be disabled by setting the

| eadW | d configuration setting in sol rconfi g. xm to 'false'. To address performance concerns, Lucene 2.9+ and Solr
1.4+ now support a 'reversed wildcards' (or 'reversed tokens') strategy to work around this performance bottleneck.

This optimization is disabled by default. To enable this optimization you must manually add the
Rever sedW | dcar dFi | t er Fact ory filter to the end of the index analyzer tokenizer chain for the field types in the
schema. xnl file for the fields that require this optimization.

This affects all fields for the selected field types, so if you have multiple fields of a selected type and do not want this
feature for all of them, you must create a new field type to use for the selected field.

The LucidWorks Enterprise query parser will detect when leading wildcards are used and invoke the reversal filter, if
present in the index analyzer, to reverse the wildcard term so that it will generate the proper query term that will
match the reversed terms that are stored in the index for this field.

The rules for what constitutes a leading wildcard are not contained within the Lucid query parser itself. Rather, the
query parser invokes the filter factory (if present) to inquire whether a given wildcard term satisfies the rules. There
are a variety of optional parameters for the filter factory, described below, to control the rules. The default rules are
that a query term will be considered to have a leading wildcard and to be a candidate for reversal only if there is either

© 2011 Lucid Imagination. All rights reserved. Page 150

LucidWorks Search Platform Documentation

an asterisk in the first or second position or a question mark in the first position and neither of the last two positions
are a wildcard. If a wildcard query term does not meet these conditions, the wildcard query will be performed with the
usual, un-reversed wildcard term.

Use of the wildcard reversal filter will double the number of terms stored in the index for all fields of the selected field
type since the filter stores the original term and the reversed form of the term at the same position.

There is no change to the query analyzer for the optimized field or field type. The reversal filter factory must only be
specified for the index analyzer.

As an example, the index analyzer for field type t ext _en should appear as follows after you have manually edited
schema. xnl to add the wildcard reversal filter at the end of the index analyzer for this field type:

<fiel dType nane="text _en" class="solr. TextField"
posi ti onl ncrenent Gap="100">
<anal yzer type="index">
<t okeni zer class="sol r. Wi tespaceTokeni zer Factory"/>
<filter class="solr. WrdDelimterFilterFactory"

wan

gener at eWordPart s="1" gener at eNunber Parts="1"

spl it OnCaseChange="0"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.|SCOLatinlAccentFilterFactory"/>
<filter class="com| ucid. analysis.LucidPlural StenfilterFactory"
rul es="Luci dStenRul es_en. txt"/>
<filter class="solr.ReversedW | dcardFilterFactory"/>
</ anal yzer>

You must place the wildcard reversal filter at the end of the index analyzer for the field type since it is reversing the
final form of the terms as they would normally be stored in the index.

Although this feature improves the performance of leading wildcards, it will not improve the performance of search
terms that have both leading and trailing wildcards, since such a term will still have a leading wildcard even after
being reversed. In such a case, which depends on the rule settings, the filter factory will inform the Lucid query parser
that such a wildcard term is not a candidate for reversal. In that case, the Lucid query parser would generate a
wildcard query using the un-reversed wildcard term.

The filter factory has several optional parameters to precisely control what forms of wildcard are considered leading
and candidates for reversal at query time:

® maxPosAst eri sk="n" -- maximum position (1-based) of the asterisk wildcard ('*') that triggers the reversal of
a query term. Asterisks that occur at higher positions will not cause the reversal of the query term. The
default is 2, meaning that asterisks in positions 1 and 2 will cause a reversal (assuming that the other
conditions are met.)

® maxPosQuesti on="n" -- maximum position (1-based) of the question mark wildcard ('?') that triggers the
reversal of a query term. The default is 1. Set this to 0 and set maxPosAst eri sk to 1 to reverse only pure
suffix queries (i.e., those with a single leading asterisk.)

® maxFractionAsterisk="n.n' -- additional parameter that triggers the reversal if the position of at least one
asterisk ('*') is at less than this fraction (0.0 to 1.0) of the query term length. The default is 0.0 (disabled.)

® nminTrailing="n" -- minimum number of trailing characters in query term after the last wildcard character. For
best performance this should be set to a value larger than one. The default is two.

These optional parameters only affect query processing, but must be associated with the index analyzer even though

they do not affect indexing itself.

Range Queries

A range query is a pair of terms which matches all terms which are lexically between those two terms. The two terms
are enclosed within square brackets ("[]") or curly braces ("{}") and separated by the keyword "TO". For example,

® [cat TO dog]

© 2011 Lucid Imagination. All rights reserved. Page 151

LucidWorks Search Platform Documentation

Square brackets indicate that the specific terms will also match terms in documents. This is referred to as an inclusive
range. Curly braces indicate that the specific terms will not match terms in documents and that only terms between
the two will match. This is referred to as an exclusive range.

LucidWorks Enterprise supports open-ended ranges, in which one or both terms are written as an asterisk ("*") to
indicate there is no minimum or maximum value for that term.

In contrast to Lucene and Solr, the brackets and braces can be mixed in LucidWorks Enterprise, so that one term
(either) can be inclusive while the other is exclusive.

Another LucidWorks Enterprise extension allows the "TO" keyword to be entered in the lower case ("to"). Some
examples:

User input Matches

[cat TO dog] @ All terms lexically between "cat" and "dog", including "cat" and "dog

{cat TO dog} All terms lexically between "cat" and "dog", excluding "cat" and "dog

{cat TO dog] @ All terms lexically between "cat" and "dog", excluding "cat", but including "dog"
[cat TO dog} All terms lexically between "cat" and "dog", including "cat", but excluding "dog"
[* to dog] "dog" and all terms lexically less

[cat to *] "cat" and all terms lexically greater.

[cat to *} Same as above because "*" forces inclusive match.

[* to *] All terms

{* to *} Same, because "*" forces inclusive match.

Range queries only work properly for fields that are lexically sorted or trie numeric fields, as specified by the
administrator.

Trie Numeric Range Query

Lucene now supports trie numeric fields, which enable much faster range queries in addition to being sorted in
numeric order rather than lexical order. Each trie numeric field has a datatype, integer, real, or date.

User input Matches

pageCount: [10 to 20] Documents between 10 and 20 pages in size
weight:[0.5 to 70] Documents with weights between 0.5 and 70.0
dat eModi fi ed: [1984 to 2005] Documents modified between 1984 and 2005

dat eModi fi ed: [20- Jan-04 to 05- Feb-07] Documents modified between January 20, 2004 and February 5, 2007

Fuzzy Queries

A fuzzy query is a request to match terms that are reasonably similar to the query term. A wildcard is a strict form for
specifying similarity, requiring the individual characters of the term to match precisely as written, while a fuzzy query
allows characters to be shuffled, inserted, or deleted. Fuzzy query measures the editing distance, which is the number
of characters which would have to be moved, inserted, or deleted to match the query term and then comparing that to
half the length of the query term as a ratio. In other words, half as many characters as appear in the query term can
be shuffled or changed in order to match the query term. Fuzzy query is good for matching similar terms as well as
catching misspellings.

A fuzzy query is simply a single term (not a phrase) followed by a tilde ("~"). For example,

© 2011 Lucid Imagination. All rights reserved. Page 152

LucidWorks Search Platform Documentation

soap~ matches "soap", "soup",

soan", "loap", "sap", "asoap", and so on.

For cases in which you want to require greater or less similarity, an optional similarity ratio can be specified.

The similarity ratio is a float ratio written after the tilde, ranging from 0.0 to 0.999. The default is 0.5. Smaller ratios
indicate that less similarity is required. Larger ratios indicate that greater similarity is required. Lucene does not
support a ratio of 1.0 which would require no differences from the query term. Lucid will treat any value of 1.0 or
greater as 0.999, which effectively requires an exact match unless the term is very long.

Lucene's implementation of fuzzy search is not very effective for very short terms (three characters or less) because it
uses half of the term length as the maximum editing distance.

Fields and Field Types

An enterprise search engine organizes the data and properties for documents of the collection into distinct categories
called fields, each of which has its own type of data as defined by a field type. Fields and field types are defined in a
schema. The formatting and handling of data within fields is performed by a software component known as an
analyzer. Analyzers are defined for each field type. There is a crawler which collects documents and data and analyzes
their content using the analyzers and stores the analyzed data in the index, where it can be searched by user queries.
This is an open-ended architecture that provides tremendous flexibility, but can also add to the level of detail that
users, or at least advanced users, need to know to query a LucidWorks Enterprise search collection.

The system administrator is responsible for setting up the schema and defining the fields and field types. Those details
are beyond the scope of this section and are generally not needed by a typical user. The only information the user
needs is the list of field names that are supported by the schema and possibly details about how fields may be
formatted. Many fields will be simple text fields, so no additional detail is needed, and many other fields will be simple
numbers or strings or dates. However, for sophisticated enterprise applications, there may be fields with more
complex structure.

The LucidWorks Enterprise query parser recognizes four distinct field types:

Text

Date

Numeric (trie)
Other

Text fields behave virtually the same as in a typical Web search engine, with queries consisting of words and quoted
phrases.

Date fields have a standard format, but because dates formats vary so widely, a variety of alternative formats are
recognized by the Lucid query parser to allow users to more easily specify dates in queries. For example, the year
alone can be used in a query rather than writing a range from January 1 to December 31, or a range of years can be
used without the non-year portion of the standard format. See Date Queries for more information.

For trie numeric fields, the Lucid query parser will make sure that numbers are properly formed before being handed
off to the analyzer. For integer fields, real numbers used as query terms will be truncated to integers. Negative
numbers are also permitted for trie numeric fields.

For all other field types, the Lucid query parser simply hands the source query term text off to the analyzer and relies
on it to "do the right thing." If the analyzer has a problem, the term will be ignored.

Field Queries

When thinking about what is to be searched, the user has two choices: either to rely on the default field(s) specified
by the system administrator or to explicitly specify field names within the query. In general, the former is sufficient,
but on occasion the latter is needed.

Lucene had the concept of a single default field, but in Solr that has been replaced with a list of fields known as the
query fields or default fields. Of course, there is no reason that the query fields list could not consist of a single field.

Searching for a term will actually search for it in each of the fields listed in the query fields, and a document will match
for that term if the term is found in any of the query fields.

Because every enterprise application has its own data needs, you will have to consult your system administrator for

© 2011 Lucid Imagination. All rights reserved. Page 153

LucidWorks Search Platform Documentation

the list of field names.
There are three query formats for explicitly specifying field names:

® titleraspirin
Single term - write the field name, a colon, and then the single term (or quoted phrase). Only that one term
will be searched in the specified field and subsequent terms will be search in the default fields.

® title:(cat OR (dog AND fish))
Parenthesized sub-query - write the field name, colon, left parenthesis, a sub-query (which may simply be a
full query, ranging from a single term to a complex Boolean query with nested parentheses), and a right
parenthesis.

® title:cat OR (dog AND fish)
Sticky field name - write the field name, a colon, a space, and then the rest of the query. All subsequent terms
will be searched in that sticky field name, until a new sticky field name is specified or a right parenthesis is
reached at the current parenthesis level, for example.

There are two special pseudo-field names:

® ALL: - searches all fields defined in the schema or even defined dynamically, for example,
ALL: cat OR dog

® DEFAULT - revert to searching the default query fields if in a sticky or parenthesized field name.
title:cat OR dog AND DEFAULT: fi sh

9

Field names are case insensitive, including ALL (Al | , al |) and DEFAULT (Def aul t and def aul t).

1. Note
If the query parser encounters a field name that is not defined, it will be treated as a simple term. For
example, noFi el d: f oo will be treated as the term list noFi el d f 0o. This is done because it is not
uncommon to paste natural language text into the search box, and colon is a not uncommon
punctuation character.

Date Queries

When the LucidWorks Enterprise query parser detects that a field is defined in the collection schema as the field type
"date" (or an instance of a "DateField", or a trie), a variety of common date formats are also supported in addition to
the traditional Solr date format as defined in the "Solr Date Format" section. These alternative formats are designed to
make it easy to specify individual dates, months, and years. They can be used as standalone query terms, or with the
range and relational operators. The non-Solr, alternative, date formats will automatically be expanded internally by
the LucidWorks Enterprise query parser into Lucene range queries. For example, 2006 would be treated the same as

[2006- 01- 01T0OO: 00: 00Z TO 2006- 12-31T23: 59: 59. 9997] .

The common date formats are:

® YYYY
* 2001
® YYYY-MM
® 2001-07
® 2001-7
® YYYY-MM-DD
® 2001-07-04
¢ 2001-7-4
® YYYYMM
® 200107
® YYYYMMDD
¢ 20010704
® YYYY-MM-DDTHH
® 2001-07-04T08
¢ 2001-07-04t08

© 2011 Lucid Imagination. All rights reserved. Page 154

LucidWorks Search Platform Documentation

® 2001-7-4t08
® YYYY-MM-DDTHH:MM
® 2001-07-04T08:30
® 2001-07-04t08:30
® 2001-7-4t08:30
* MM-YY
® (07-01
® 7-98
* 7-1
* MM-YYYY
® (07-2001
® 7-2001
®* MM-DD-YY
® (07-04-01
® 7-4-01
® 7-4-1
®* MM-DD-YYYY
® (07-04-2001
® 7-4-2001
* MM/YY
® (07/01
® 7/01
* 7/1
* MM/YYYY
® (07/2001
® 7/2001
* MM/DD/YY
® (07/04/01
® 7/4/1
* MM/DD/YYYY
® (07/04/2001
® 7/4/2001
®* DD-MMM-YY
04-Jul-01
4-jul-01
4-JUL-01
04-Jul-1
4-jul-1
4-JUL-1
®* DD-MMM-YYYY
® (04-Jul-2001
® 4-jul-2001
® 4-JUL-2001
* MMM-YY
® Jan-01
® jan-01
® JAN-1
* MMM-YYYY
® Jan-2001
® jan-2001
® JAN-2001

Date Ranges

Even a simple date term can expand into a range, but the alternative date formats can be used in range terms as well.

User Input Query Interpreted As
[2001 TO 2005] [2001- 01- 01TOO0: 00: 00Z TO 2005-12-31T23: 59: 59. 999]
{2001 TO 2005} {2001- 12- 31T23: 59: 59. 999Z TO 2005- 01- 01T00: 00: 00Z}

© 2011 Lucid Imagination. All rights reserved. Page 155

LucidWorks Search Platform Documentation

[Jun-2001 to 7/2005] [2001- 06-01T00: 00: 00Z TO 2005- 07-31T23: 59: 59. 9997]

[7/4/ 2001 to 9-7-2002] [2001-07-04T00: 00: 00Z TO 2002-09-07T23: 59: 59. 9997]
The alternative data formats may also be used with relational operators to imply ranges.

User Input Query Interpreted As
dat eMbdi fi ed: < 2001 dateMbdi fied: [* TO 2001-01-01T0O: 00: 00Z]

dat eModi fied: <= 2001 dateMdified: [* TO 2001-12-31T23: 59: 59. 9997]

1. Date format expansion only occurs for fields that the LucidWorks Enterprise query parser recognizes as
being "date" fields. A date stored in a text field or string field must be manually and correctly
formatted by the user.

Solr Date Format

The user-friendly date formats supported by the LucidWorks Enterprise query parser are in addition to the date format
that is supported by Solr. Solr provides a format for a specific date and time, as well as date math to reference
relative dates and times based on a starting date and time.

The simplest form of Solr date is the keyword 'NOW which refers to the current date and time. It is case sensitive in
Solr, but the Lucid query parser will permit it to be in any case. 'NOW can be used either if no explicit date or date
math is specified, or it can be used if date math is specified without an explicit date.

An explicit date is written in Solr using a format based on ISO 8601, which consists of a string of the form

yyyy- mm ddThh: nm ss. mmi, where 'yyyy' is the four-digit year, the first 'mm’' is the two-digit month, 'dd' is the
two-digit day, 'T' is the mandatory literal letter 'T' to indicate that time follows, 'hh' is the two-digit hours ('00' to
'23"), the second 'mm' is the two-digit minutes ('00' to '59'"), 'ss' is the two-digit seconds ('00' to '59'"), optionally
".mmm’ is the three-digit milliseconds preceded by a period, and 'Z' is the mandatory literal letter 'Z' to indicate that
the time is UTC ('Zulu"). The millisecond portion, including its leading period, is optional. Trailing zeros are not
required for milliseconds.

i
a "I\'lr?;eLucid query parser does not require the 'Z' and will translate a lower case 't' or 'z' to upper case.

Some examples:

® Now

® Now

now

® 2008-07-04T13: 45: 042

® 2008-07-04T13: 45: 04. 1237

® 2008-07- 04T13: 45: 04.5Z

Solr requires hyphens between the year, month, and day, but the LucidWorks Enterprise query parser will add them if
they are missing.

Solr date math consists of a sequence of one or more addition, subtraction, and rounding clauses. '+' introduces an
addition clause, '-' introduces a subtraction clause, and '/' introduces a rounding clause. Addition and subtraction
require an integer followed by a calendar unit. Rounding simply requires a calendar unit.

The calendar units are:

© 2011 Lucid Imagination. All rights reserved. Page 156

LucidWorks Search Platform Documentation

YEAR or YEARS

MONTH or MONTHS

DAY or DAYS or DATE

HOUR or HOURS

M NUTE or M NUTES

SECOND or SECONDS

M LLI SECOND or M LLI SECONDS or M LLI or M LLI S

Example rounding clauses:
® /YEAR
¢ / MONTH
® /DAY
® /HOUR
Example addition and subtraction clauses:
® +6MONTHS
® +3DAYS
® -2YEARS
® -1DAY
Examples using dates and date math:
® Now
® NOw DAY
® NOW HOUR
® NOW 1YEAR
® NOW 2YEARS
® NOW 3HOURS- 30M NUTES
® /DAY
® /HOUR
® -1YEAR
® -2YEARS
® / DAY+6MONTHS+3DAYS
® +6MONTHS+3DAYS/ DAY
® 2008-07- 04T13: 45: 042/ DAY
® 2008-07- 04T13: 45: 04Z- 5YEARS

® [2008-07-04T13: 45: 04Z TO 2008- 07- 04T13: 45: 04Z+2MONTHS+7DAYS]
lﬂ Whitespace is not permitted.

As a general rule, any tail portion of a proper date/time term can be omitted and the Lucid query parser will fill in the
missing portions. But, the result will be an implicit range query. For example:

© 2011 Lucid Imagination. All rights reserved. Page 157

LucidWorks Search Platform Documentation

® 2008-01-01T00: 00: 00Z
® 2008-01-01T00: 00: 00
® 2008-01-01T00: 00 same as [2008-01- 01T00: 00: 00Z TO 2008- 01- 01T00: 00: 59Z7]
® 2008-01-01T00: same as [2008- 01- 01T00: 00: 00Z TO 2008-01-01TOO0: 59: 59Z7]
® 2008-01- 01T same as [2008- 01- 01T00: 00: 00Z TO 2008-01-01T23: 59: 59Z7]
® 2008-01- 01 same as [2008- 01- 01T00: 00: 00Z TO 2008-01-01T23: 59: 59Z7]
® 2008-01 same as [2008- 01- 01T00: 00: 00Z TO 2008- 01- 31T23: 59: 597]
® 2008 same as [2008- 01- 01T00: 00: 00Z TO 2008-12- 31T23: 59: 597]
The same technique can be used in explicit date range queries and with relational operators.

See the or g. apache. sol r. schenun. Dat eFi el d and or g. apache. sol r. uti | . Dat eMat hPar ser Java classes for more
information about the Solr date/time format.

If there is any parsing problem in a date term, the LucidWorks Enterprise query parser will catch the exception and
simply ignore the date term.

Non-Text, Date, Numeric Field Queries

The LucidWorks Enterprise query parser has a number of features to support text, date, and trie numeric fields, but
other field types are simply passed through the schema query analyzer that has been specified by the administrator in
the schema. Non-trie numbers (integers, floats) and strings are two common non-text/date/numeric field types.

String fields may seem similar to text fields, but the full string is one term, even if it has embedded whitespace and
punctuation.

If you make a mistake in formatting query text for a non-text, non-date, non-trie numeric field, the offending query
term will simply be ignored. String fields would not typically have any mistakes, but any mistakes could cause a failure
to match documents properly. A non-digit or a decimal point in an integer field or an improperly formatted float are
mistakes that could occur in non-trie numeric fields.

There are two forms for terms in non-text/date/numeric fields:

® Simple term: a term as in a text field, typically delimited by whitespace or one of the special syntax
characters.

® Quoted string: looks like a quoted text phrase, but every character between the quotes, including whitespace
and any special syntax characters are considered part of the text of the term.

In both forms any special syntax characters or whitespace can be escaped (with backslash). For many cases, either
form can be used. An advantage of quoted string terms is that less escaping of special syntax characters is needed. A
key difference is that wildcard character cannot be used as wildcards within quoted strings, but they can be used as
wildcards in simple terms.

Some examples:

nyl ntFi el d: 123

myFl oat Fi el d: 123. 45

nyStringField:Hello

nyStringField: Hel l o\ World! (With escaped embedded space and exclamation point.)
nyStringField:"Hello Wrld!" (Same, but no escaping needed.)

nmylntField:"123"

nyStringFi el d: *cat * (Wildcard matches string values containing the sub-string "cat".)
nyStringField:"cat" (Non-wildcard matches Matches string values that are literally "cat".)
nyStringField:"\"cat\"" (Matches string values that are the text "cat" with enclosing double quotes.)
nyStringField: ({[A-B\:C'D}) (Matches the string ""({[A~B:C~D]})".)
nyStringField:"({[A~B:C'D})" (Same, but no escaping needed.)

© 2011 Lucid Imagination. All rights reserved. Page 158

LucidWorks Search Platform Documentation

Whitespace

Whitespace can be used as liberally as a user desires between terms and operators, with only a few exceptions. There
must not be any space:

® Between a field name and the colon (':') which follows it.

® Between a term operator ('{+3}' or '-') and the term that follows.

® Between a term and a suffix modifier (tilde or circumflex), or within a suffix modifier, or between suffix
modifiers.

® Between a backslash ("\") and the special character that it is escaping.

Also, whitespace is not required, but permitted at the following points:
Before or after parentheses.
Before or after a non-keyword Boolean operator ("&&", "||" or "!".)

Before or after a double quotation mark (") enclosing phrases.

[]
[]
[]
® Before a term operator (‘{+}' or'-".)

There must be either whitespace or some operator, such as a parenthesis, after any single term and any '+' or '-'
operator that follows it, otherwise the '+' or '-', and any non-whitespace that follows, is considered as part of the
preceding term.

Line breaks are treated as whitespace. So, very long queries can be broken into shorter lines for readability with no
impact of the query interpretation.

Quoted phrases may be split over two or more lines as well.

Term Operators

In addition to the Boolean operators ('AND', 'OR', 'NOT') used to construct complex queries with sub-queries, there are
operators that are used at the term level, within term lists. They are written immediately before a term, without
whitespace.

® '+' - Require a term - it must be present in documents
® '-' - Exclude a term - it must not be present in documents
® Relational operators - '==', 'I=', '<', '<=', '>', and '>='. Whitespace is permitted after the operator.
Term operators, field names, keyword options, and prefix modifiers can be written in any order. For example:
title:>cat
>title:cat
+title:dog
title: +dog
-title:frog
title:==frog
==title:frog

nostem +title: bats

Selecting All Documents

The LucidWorks Enterprise query parser has a special feature that selects all documents as efficiently as possible using
a special Lucene API. The syntax is simply *: *.

Alternately, a query consisting of a single asterisk ('*") will select all documents that contain a term in the list of

default search fields. This will not necessarily select all documents since there may be some documents in the
collection which do not have values in the default query fields.

© 2011 Lucid Imagination. All rights reserved. Page 159

LucidWorks Search Platform Documentation

All documents containing a term in a specified field can be queried by writing the field name, a colon, and the asterisk.
For example,

® title:®
would return all documents that have titles, although not all documents may have titles.

Combining that with exclusion permits a query to find all documents that do not have a value in the specified field. For
example,

® —title:*
is equivalent to:
¢ xix _title:*
But that is not necessarily equivalent to:
® x _titler
because the latter depends on precisely which fields are listed in the query fields, so it may return no documents or a

subset of the total documents in the collection.

Relational Operators

In addition to the Lucene range syntax, the LucidWorks Enterprise query parser supports the standard collection of
relational operators (also known as comparative operators, '==', 'l=', '<', '<=', '>=', and '>"), for example:

® Nevada politics >= dateCreated: 2003
® Nevada politics dateCreated: >= 2003
Whitespace may be freely used both before and after a relational operator.

Other term prefix modifiers, such as a field name and term keyword options, can be combined with a relational
operator, in any order. For example, the following queries are equivalent:

® cat nosyn:body: < dog
cat < nosyn: body: dog
cat nosyn: body: <dog

cat nosyn: <body: dog
cat nosyn: < body: dog
cat nosyn: body: < dog

cat nosyn: body: <dog

The '=="and ''=' relational operators are equivalent to the '+' and '-' term operators. So, these queries are
equivalent:

® cat +dog -fox

® cat ==dog !=fox
® cat == dog != fox

Accented Characters

The LucidWorks Enterprise query parser supports text terms written using the so-called accented characters that
appear in Unicode and ISO Latin-1 as hex codes 00A1 though 00AF, but it is common that the administrator will set up

© 2011 Lucid Imagination. All rights reserved. Page 160

LucidWorks Search Platform Documentation

the schema so that a filter such as the | SOLati n1Accent Fi | t er will be included in field type analyzers for the purpose
of stripping the accents by mapping the accented characters to unaccented ASCII equivalents.

For example, Caf é Francai se would be treated identically to Caf e Francai se

Typically, accents are removed when documents are indexed. That means that they must also be removed at query
time so that query terms can match indexed terms. But, the administrator could decide to preserve accented
characters at index time, in which case accents will then also need to be preserved at query time.

The LucidWorks Enterprise query parser normally bypasses the analyzer for text fields, but it will invoke the accent
removal filter if it is present and has the word Accent in its name.

It is technically possible for the administrator to construct an index filter that indexes both the accented and
unaccented forms of terms and remove the query accent filter, and then the user could query the unaccented term to
get both accented and unaccented terms or query the accented term and get only the accented terms.

Accents are not normally stripped for non-text fields, but that depends purely on whether each non-text field type
does or does not have an accent removal filter specified.

© 2011 Lucid Imagination. All rights reserved. Page 161

LucidWorks Search Platform Documentation

Building Advanced Queries

This section describes more advanced search queries some of the most commonly used types of search queries and
gives examples of how LucidWorks Enterprise processes them.

Minimum Match for Simple Queries

None of the optional terms in a simple Boolean query is required to be present for a document to be selected by the
query, but in some cases you would like to require that at least some of the optional terms be present. This can be
accomplished by supplying a minimum match modifier, which specifies either a count or percentage of the optional
terms that are required for the immediate following simple Boolean query. The minimum match can be specified either
with the mi nMat ch (or at Least) keyword option or by enclosing the simple query within parentheses and appending a
tilde ('~") followed by the term count or percentage (which may also be a fraction). The keywords mi niat ch and

at Least are synonymous. For example:

m nMatch: 1 +pet cat dog fish rabbit -snakes

m nMat ch: 2(+pet cat dog fish rabbit -snakes)
m nMat ch: 25% +pet cat dog fish rabbit -snakes)
m nmat ch: 0. 25(+pet cat dog fish rabbit -snakes)
m nMat ch: 50% +pet cat dog fish rabbit -snakes
m nmat ch: 25(+pet cat dog fish rabbit -snakes)
at Least: 25(+pet cat dog fish rabbit -snakes)
atl east: 25(+pet cat dog fish rabbit -snakes)
(+pet cat dog fish rabbit -snakes)~1

(+pet cat dog fish rabbit -snakes)~25%

(+pet cat dog fish rabbit -snakes)~25

(+pet cat dog fish rabbit -snakes)~0.25

If a space follows the ni nMat ch keyword option, then the setting is sticky and applies to all subsequent Boolean
queries until the next closing parenthesis, otherwise the setting applies only to the parenthesized Boolean query that
immediately follows.

Since each of the above examples has four optional terms, 25% means that one out of four of the optional terms must
be present in a document for it to be selected by the query. A value of 50% (or two) requires that at least half of the
optional terms be present in a document.

A value of 0 or 0% means that no optional terms are required. This is the default. A value that matches (or exceeds)
the count of optional terms or 100% means that all optional terms are required.

If a whole number is specified and no percentage is present, the Lucid query parser will do an excellent job of
guessing whether the number is a count of terms or a percentage. In other words, the percent symbol ('%) is almost
always optional.

As a special case, a small percentage, such as 1% is treated as requiring a minimum of one optional term to match.

Keyword option names are not case sensitive, although they tend to be written in their proper camel case form in this
documentation. So, m nMat ch, m nmat ch, M nMat ch, and M NVATCH are all equivalent.

The administrator can change the default (for example, to one to assure that at least one optional term is present)
using the m nMat ch configuration setting.

Negative Queries

A term list with only the '-' term operator and no '+' term operators is known as a negative query and will query all
documents that do not have the specified '-' terms. This is equivalent to a term list requesting all documents and then
excluding the specified terms.

User Input Equivalent to

© 2011 Lucid Imagination. All rights reserved. Page 162

LucidWorks Search Platform Documentation

- cat * % -cat

-cat -dog *:* -cat -dog

Escaping Wildcard Characters

The wildcard characters, "*" and "?" are a special case. They are always part of the term in which they are embedded,
but they have their special wildcard meaning rather than being simply characters in a term. But, if you do have a
non-text field in which the wildcard characters are actually text in that field, you can escape them using a backslash.
For example,

® nyField: E\ *TRADE

The term will literally be "E* TRADE" rather than a wildcard.
® nyField: x\?y\?z

The term will literally be "x?y?z" rather than a wildcard.

Note that due to a limitation of Lucene, if there are any non-escaped wildcard characters in a term, escaping will be
ignored for all other wildcard characters in that term. For example,

® nyField: E*TRA?E

Will be treated as a wildcard query for the term "E* TRA?E", with both the * and ? being treated as wildcard characters.
On the other hand,

® nyField: E*TRA\ ?E

Will be treated as a non-wildcard term query for the term "E&* TRA?E".

Proximity Operations

A proximity query searches for terms that are either near each other or occur in a specified order in a document rather
than simply whether they occur in a document or not.

Phrase Proximity Queries

Exact phrase matching is a powerful query tool, but frequently the phrasing used in relevant documents is not exactly
the same. It is commonly the case that there are extra terms, or the terms may be in another order. In other cases,
the phrase terms may be relatively near, with quite a few extra words between them. For example, the following two
queries may return different results even though they are semantically equivalent:

"t eam devel oprment "

"devel opnent of teans"

The difference between the two is an extra word in the middle and a reversal of the two key terms.

We can write a single phrase proximity query that will match both phrases:

"t eam devel oprment " ~3

The tilde ("~") is used after a quoted phrase to indicate a phrase proximity search. It is followed by an integer (whole
number) which is the maximum editing distance for phrases that will match the query phrase. The editing distance
treats each term as a single unit and measures how many unit terms need to be moved to translate from one phrase

to another. In this case, it takes one unit to move "team" to "of", a second unit to move it to "development", and a
third unit to move it before "development".

To query for two terms that are within 50 words of each other:
"cat dog"~50

To query a person's name and allow for an optional middle initial:

© 2011 Lucid Imagination. All rights reserved. Page 163

LucidWorks Search Platform Documentation

"John Doe"~1 matches "John Doe" and "John Q Doe"

To query a person's hame and allow for both first name first or last name first:

"John Doe"~2 matches "John Doe" and "Doe, John", as well as "John Q Doe"

Advanced Proximity Operators

The Lucid query parser also supports advanced proximity query operators to specify more elaborate sequences of

terms and to control the order of terms and how many intervening terms are permitted. The advanced proximity
operator keywords are:

Advanced Operator Sample Query Matches

NEAR X near y Documents containing "x" within 15 terms of "y", either before or after
BEFORE X before y Documents containing the term "x" no more than 15 terms before the term "y"
AFTER x after y Documents containing the term "x" no more than 15 terms before the term "y"

These operators are case insensitive and may be upper, lower, or mixed case, unless the opUp configuration setting is
set to "true", which would then treat them (and all other operator keywords) as normal terms unless they are entirely
upper case.

Excluding Terms from Advanced Proximity Queries

Normally, any combination of terms may appear between the terms that mark the start and end of an advanced
proximity query (the BEFORE, AFTER, and NEAR operators), but in some situations it is desirable to prevent specific
terms from occurring between those start and end terms. Just as with a simple keyword query, this exclusion can be
done by listing terms preceded by the minus sign '-' or NOT operator.

For example, these pairs of queries are equivalent:

Geor ge NEAR Washi ngton -person
Geor ge NEAR Washi ngt on NOT person

George NEAR Lincoln -person
George NEAR Lincoln (NOT person)

Also, the exclusions may be specified on either side of the proximity operator, so the following queries are equivalent:

George NEAR Lincoln -person
George -person NEAR Lincoln

George NEAR Lincoln (NOT person)
George (NOT person) NEAR Lincoln

Controlling Distance Between Terms

By default, the distance between the two terms of a proximity operator can be up to 15 additional terms. That default
distance is controlled by the near Sl op configuration setting. But if you need more or fewer intervening terms for a
specific proximity operator, you can specify the desired limit of intervening terms by writing a colon (":") and the
number immediately after the operator name. For example,

X before:3 y
matches documents containing "x" no more than three terms before "y".
A distance of 0 (zero) means no intervening terms. For example,

X before:0 vy

is the same as:

© 2011 Lucid Imagination. All rights reserved. Page 164

LucidWorks Search Platform Documentation

Xy

which matches documents where the terms are adjacent and in that order.

Composing Longer Sequences of Terms

The advanced proximity operators can be composed (or "daisy-chained") to match more complex term sequences. For
example:

x before y before z

matches documents containing "x" before "y" with no more than 15 intervening terms and followed by "z" with no
more than 15 intervening terms after "y".

The distance limit can be controlled for each proximity operator, such as:
x before: 10 y before: 100 z

which requires that there be no more than 10 terms between "x" and "y", but "z" can be up to 100 terms after "y".

Any combination of any number of NEAR, BEFORE, and AFTER proximity operators can be composed into a sequence,
such as

cat near dog before:50 fox after fish near:3 bat before zebra

Left to Right Evaluation Order

When multiple advanced proximity operators are composed, they are evaluated left to right, except as parentheses
are used to explicitly specify the evaluation order. So, the previous example is evaluated as:

(x before y) before z

In fact, the evaluation order does not matter in that example, which could also be written as:

x before (y before z)

But evaluation order does matter with:

X near:3 (y before:50 z)

where the intent is that "x" could be shortly before or after either end of the "y"/"z" sequence. But,
x near:3 y before:50 z

would evaluate as:

(x near:3 y) before:50 z

which would match "x" close to "y" but not close to "z".

Within parentheses used for operands of proximity operators, only the OR and proximity operators can be used. Other
operators will be treated as if they were the OR operator.
Quoted Phrases

Quoted phrases with any number of terms can be used as the operands of the proximity operators. For example,
"First step" before:200 "l ast step"”

The terms in the quoted phrase must occur in order, with no intervening terms between the quoted terms.

© 2011 Lucid Imagination. All rights reserved. Page 165

LucidWorks Search Platform Documentation

Quoted Proximity Phrases

Quoted phrases may specify a maximum number of terms that may appear between the terms of the phrase, using
the usual quoted phrase proximity query notation of a tilde ("~") and the number of terms permitted. For example,

"proposal devel opnent”~3 near: 50 project

Would match the terms "proposal" and "development" (in that order) with no more than three intervening terms and
occurring no more than 50 terms before or after "project”.

) Note

Unlike normal quoted proximity phrases, the phrase terms are expected to occur in order. So, this
example will not match " devel opnent proposal ... project".

Alternative Terms

When several different terms are permitted at a position in a proximity sequence, the alternative terms can be
specified using the OR operator and parentheses for either or both terms of the operator. For example,

(cd-romor dvd) before:1 drive

would match documents with the term "drive" preceded by either "cd-rom" or "dvd" with at most one intervening
term. Alternatives can also be used with composed proximity operators. For example,

(cd-romor dvd) before:1 ((built-in or external) before:0 drive)

which requires "built-in" or "external" to immediately precede "drive", but an intervening term is permitted after
"cd-rom" or "dvd".

Alternatives can also be quoted phrases. For example, ("I n the begi nning" or "At the start" or "Starting
out") before: 1000 "the end" will match documents containing the phrase "the end" preceded by either the phrase
"In the beginning", "At the start", or "Starting out" with up to 1,000 intervening terms.

Term Lists

A phrase that is not enclosed within quotes is known as a term list and may be used as either of the operands of a
proximity operator, where it will be treated as if it were a quoted phrase. For example,

pets before ani nal judgnents before book
will match the same documents as:

pets before "ani mal judgnents" before book

Parenthesized Proximity Expressions in Term Lists

Although term lists with proximity operators may seem like a mere convenience to avoid typing the quotes around a
phrase, the construct is much more powerful. Each of the terms in a proximity term list can be one of:

® Single term (but no wildcard or fuzzy term)
® Quoted phrase
® Parentheses enclosing:
® One or more proximity operators (evaluated left to right)
® Another term list
® List of term alternatives separated by OR operators. Each term alternative can be a full proximity
expression, including nested parentheses.

For example,

red (light or sign) picture near street

© 2011 Lucid Imagination. All rights reserved. Page 166

LucidWorks Search Platform Documentation

would be equivalent to:

("red light picture" or "red sign picture") near street
which could also be written using nested term lists:

(red light picture or red sign picture) near street
which is also equivalent to:

((red light picture) or (red sign picture)) near street

Single Field

Although field names can be used for terms within a proximity expression, only the first field name is used and the
others are ignored since an entire proximity expression is evaluated within only a single field.

title:x after (body:y near author:z)

is evaluated as:

title: x after (y near z)

A proximity query with no field or the DEFAULT field will query against all of the fields listed in the gf (query fields)
request parameter. The proximity query will be evaluated against each field in turn and the results combined with the

disjunction max query operation. But, that will still evaluate the full proximity query expression on only one field at a
time.

Boolean Operations on Proximity Expressions

Multiple proximity expressions, each with its own field, can be used within a single query simply by combining them
with the AND, OR, or NOT boolean operators. The precedence of the boolean operators is such that entire proximity
expressions will be evaluated before the surrounding boolean operators. So,

title: red before light or body: enpty before tank

would evaluate as:

(title: red before light) or (body: enpty before tank)

The AND operator can be used to require a set of proximity queries to be satisfied, such as:

(title: red before blue) and (body: night after day) and (town near city)

where "red" must occur before "blue" in the title field, "night" must occur after "day" in the body field, and "town"

must occur near "city" in any field.

Term Boosting

Although the Lucid query parser will automatically add relevancy boosting for bigrams and trigrams of query terms,
the sophisticated user may also explicitly add a boost factor for any term.

A boost factor is a suffix modifier placed after a term which consists of a circumflex ('*") followed by a decimal number
indicating a multiplication factor to use in the relevancy calculation for a term. For example:

® cat”4 dog”1.5 fox "the end"”0.3

The default boost factor is 1.0, but it is actually derived from the default boost factors specified for the various fields
given in the default query field configuration which is controlled by the administrator.

A boost factor of 1.0 indicates that there should be no change from the default boost factor. A factor greater than 1.0
will increase the relevancy of the term. A factor less than 1.0 will decrease the relevancy of the term.

© 2011 Lucid Imagination. All rights reserved. Page 167

LucidWorks Search Platform Documentation

In the example above, "fox" will get the default boosting, "dog" will get modestly higher boosting, "cat" will get
significantly higher boosting, and "the end" will have its relevancy reduced well below the default.

You can also give a relevancy boost factor to a term list or sub-query by enclosing it within parentheses. For example:

® (cat +dog -fox)"2.5
® (cat OR dog)"3.5 AND (fox NOT bat)”0.5

Boolean Relevancy Boosting

Boolean 'AND' and 'OR' operators will also participate in relevancy boosting, by treating the operators as the text
words 'and' and 'or' and then combining them into phrases with the last term of the term list to their left and the first
term of the term list to their right. For example, each of the following queries will give a higher relevancy ranking for
the phrase 'hit and run' than a document that simply contains the terms 'hit' as well as 'run':

® hit AND run
® hit and run
® hit & run

® hit "and" run
® "hit and run"

Query Analysis for Relevancy Boosting

Bigrams, trigrams, unigrams, and n-grams are generated in the analysis of a user query to identify sequences of
terms; in this context, an n-gram is a series of terms or words, though in other contexts an n-gram may refer to a
series of characters. A bigram is a sequence of two terms, a trigram is a sequence of three terms, a unigram is a
single term, and an n-gram is any sequence of terms, but generally four or more terms. A term list is an n-gram. In
the context of n-grams, a quoted phrase counts as a single term. Although the user of the Lucid query parser does not
need to worry about this level of detail since it is handled automatically by LucidWorks Enterprise, it is helpful to
understand how Lucid is going to analyze the query, perform the search, and rank the results for better relevance.
Basically, the Lucid query parser uses the n-grams (particularly the bigrams and trigrams) from the original query to
boost results that contain not only the discrete query terms, but n-grams of the query terms as well.

For example, both of the following queries match documents containing the phrase "meet the press":

® neet the press

® "neet the press”

The first query consists of three terms, or two bigrams ("meet the" and "the press"), and one trigram ("meet the
press"). The second is actually a unigram because a quoted phrase counts as a single term.

The first query also returns any documents that contain "meet" and "press" ("the" is a stop word), even if the
document does not contain the full sequence "meet the press". Traditionally that might be annoying, but the Lucid
query parser automatically adds extra clauses to the user query to OR in the bigrams and trigrams from the query with
a boost factor so that occurrences of "meet the", "the press", and "meet the press" will rank higher than documents
that merely contain "meet" and "the".

Superficially, the second query might seem better because it is more precise, but sometimes extra words may be
present so that multi-word fragments of the phrase might match, but will not if the full phrase is used.

A simple natural language phrase can be used directly as a query and can be expected to return quite good results
without the need to add extra operators or specific formats. This point may not be completely obvious when using a
simple three-word phrase, but should be more clear with a longer sentence fragment, such as:

® The conpany neeting was attended by enpl oyees
® "The conpany neeting was attended by enpl oyees"

The precise quoted phrase will match the exact phrasing so will not catch the statement if it is reworded as
"Employees attended the company meeting." But the first query will match that rewording, and rank it reasonably
high due to the match on the trigram "The company meeting".

Term Modifiers

© 2011 Lucid Imagination. All rights reserved. Page 168

LucidWorks Search Platform Documentation

One method for selecting advanced search features is the use of term modifiers, which precede or follow a term.

There are three forms of term modifier that may appear before a term, referred to as a prefix modifier, all of which
consist of a name followed by a colon:

® Field name, for example:
title:cat

® Pseudo-field name: ALL, DEFAULT, *, for example:
ALL: cat DEFAULT: dog

® Keyword options: nostem, nosyn, and so on. Any number of keyword options can be specified for a single
term, each with its own colon, for example:
nostem nosyn:title: paintings

' Note
There is no whitespace between prefix modifiers or the term to which they apply, if they are intended
to apply to the single term (or quoted phrase or parenthesized sub-query) immediately following the
colon. But, if there is a space, then the modifier will be a sticky modifier that applies to all subsequent
terms at the same parentheses nesting level.

A term may also be preceded by a relational operator or a '+' or '-' operator, but those are considered term operators
rather than term modifiers.

There are three forms of term modifier that may appear after a term, also called a suffix modifier:

® Boost factor: a circumflex (‘') followed by a decimal number indicating a multiplication factor to use in the
relevancy calculation for a term, which may be greater than 1.0 to increase boosting or less than 1.0 to lower
boosting, for example:
cat”4 dog”"1l.5 "the end""0.3

® Proximity distance: a phrase followed by a tilde (‘~') followed by an integer to specify that additional words
may occur between the terms of the phrase, as well as reordering of the terms, up to the specified distance.
"product security"~5

® Fuzzy search: a single term followed by a tilde ('~'), optionally followed by a decimal nhumber to specify that
the term should match similar terms, where the number specifies how similar.
soap~ (Defaults to 0.5.)
soap~0.5
soap~0. 1 (Not very similar.)
soap~0. 99 (Virtually identical.)

1. Note
Lucene considers wildcards and range searches to be term modifiers, but in this guide they are
discussed separately.

Default Query Fields

Although explicit field names can be specified for all terms, a default set of field names will be used for terms which
are not preceded by a field name (or sticky field name). The administrator must decide which fields make the most
sense for default fields for the application. In some cases that may be a single field, which may be a merger of a
number of separate fields, but it may also be a list of field names. The qf configuration setting lists the default fields
and their boosts.

The default field list may also specify default term boot factors for the fields. A field name can be followed by a
circumflex and the boost factor for that field.

For example, the administrator might set the default query fields configuration setting to:

© 2011 Lucid Imagination. All rights reserved. Page 169

LucidWorks Search Platform Documentation

body titlenr5 abstract

That will cause the query:

cat title:dog fox

to be equivalent to:

(body:cat title:cat”5 abstract:cat) title:dog"5 (body:fox title:fox"5 abstract:fox)

Technically, LucidWorks Enterprise generates a disjunction maximum query if multiple fields are specified for the
default query fields.

The LucidWorks Enterprise query parser also has the ability to support an asterisk ("*") for the field list to indicate
that all fields should be searched when no field is specified for a query term.

Empty Queries

The query user interface may prevent the user from entering an empty query, but the LucidWorks Enterprise query
parser supports an alternate query string (see the g. al t configuration setting) to be used in such cases. This string
can be configured by the administrator, but defaults to *: *, which will return all documents.

Queries with Unicode Characters

Although the LucidWorks Enterprise query parser itself is capable of accepting Unicode characters directly, it is usually
not very convenient to enter them on a typical computer keyboard. As with Lucene and Solr, LucidWorks Enterprise
supports a variation of the Java escaping format to enter explicit Unicode characters as hexadecimal character codes.
Each explicit Unicode character is introduced with a backslash "\ ", the letter "u", followed by one to four hexadecimal
digits.

Unlike Lucene and Solr, which require a lower-case "u" and require exactly four digits, LucidWorks Enterprise allows
upper-case "U" and any leading zero digits need not be entered, unless the first character after the hexadecimal code

is itself a character which is used for a hexadecimal digit (digits "0" to "9", letters "a" to "f ", and letters "A" to "F".)
But as a general practice it is safest and most consistent to write the full four digits with any leading zeros

Examples for the word "Cat":

Ca\ u0074

Ca\ U074

Ca\u74

C\ U611t

\ u0043at (zeroes needed since 'a' is a hex digit)
\ u0043\ u0061\ u0074

Examples for the word "Cattle9":

Cattle\u39

Ca\u74t1e9

CQ\ u0061\ U74\ u074\ uod06ce9

C\ u0061\ u74\ u074\ uc\ u65\ u0039

\ u0043\ U0061\ u0074\ u0074\ uOO6C\ UOOB5\ UOO39

Explicit Unicode characters are assumed to be part of query terms and will not be interpreted as query operators. For
example, \ u0021 will not be treated as if it were the "!' " NOT operator.

Escaping Special Syntax Characters

Many non-alphanumeric characters will be accepted within a term, such as hyphen (-), period (.), comma (,), asterisk
(*), at sign (@), number sign (#), dollar sign ($), and semicolon (;), but a handful have special meaning to the Lucid
query parser, such as the non-keyword Boolean operators parentheses (), colon (:), double quotation mark ("),
circumflex (), and tilde (~). Terms are commonly delimited with white space, but the special syntax characters will
delimit terms as well.

© 2011 Lucid Imagination. All rights reserved. Page 170

LucidWorks Search Platform Documentation

The special syntax characters are:

&% (But a single "& is in fact permtted in a term
|| (But a single "|" is in fact permtted in a term
\ (Backsl ash)

]

n

e m e~

 (space)

A plus sign, "+", or minus sign, "- ", at the beginning of a term is also treated as a special syntax character.

Usually, the user need not be concerned in any way about the special syntax characters unless they explicitly wish to
use them as operators, but some non-text fields may have terms that use some of the special syntax characters. In
those cases, individual special characters can be escaped by preceding them with a backslash, "\". Any character can
be escaped without any harm or translation.

For example, all of the above listed special syntax characters can be escaped to be used in terms for non-text fields as
shown in this odd-looking but valid query term:

myField: A&B\|\|Q\DIFAF~G (H) IV{I\VIK[L\] M: N " O ==P\ <Q >R

which passes the following term to the field analyzer for myField:

AZSB\ [\ | O\ D\! FAF~G (H) 1 {J}K\[L\] M N’ O==P<Q>R

Alternatively, a term for a non-text field can simply be enclosed within quotes, although any quotes or backslashes
within the term must still be escaped. The previous example can be written as follows:

nyFi el d: "A&&B| | O\ DI FAF~G (H) 1 {J}K[L] M N\ " O==P<@R"'

Here are some examples of special syntax characters which do not need to be escaped, as per the rules given above:

® http://ww.foo.conmindex.htn

A URL
® info@oo0.com

@ has no special syntax meaning and periods are allowed
® 20010630T12: 30: 00Z

colon appears to be in a time value
® AT&T

Single ampersand is considered a valid character in terms
® ab|cd

Single vertical bar is considered a valid character in terms

© 2011 Lucid Imagination. All rights reserved. Page 171

http://www.foo.com/index.html

LucidWorks Search Platform Documentation

The apostrophe or single quote mark, " ", is not treated the same as a double quotation mark. It is commonly used
for contractions and possessives. It will be preserved for non-text fields, but the typical analyzer for text fields will
discard it.

Term Keyword Options

Term keyword options provide a flexible mechanism for controlling the interpretation of a term. A term keyword option
is a keyword followed by a colon that appears before a term. Any number of keyword options can be specified for a
single term, each with its own colon. For example:

nostem nosyn:title: paintings
The supported term keyword options are:

® |ike: to indicate that specified terms are not required, but will boost relevancy if present, so that selected
documents will be "like" the specified terms. Can also be used to select documents containing the most
relevant terms from a document specified by its document id.

® i nMat ch, at Least : to set the minimum count of percentage of optional terms in a term list that must be
present in selected documents. See the "Minimum Match for Optional Terms of Simple Boolean Queries"
section.

® syn, nosyn: to enable or disable synonym expansion of the following term.

® stem nostem to enable or disable stemming of the following term. Although supported by the parser, there is
not currently search support for both stemmed and unstemmed terms.

® debuglLog: to enable debug output for a query to permit the administrator to examine the detailed query
interpretation.

Term keyword options and any field name can be written in any order, so that the following queries are equivalent:
nosyn:title:tv

title:nosyn: tv

Like Term Keyword Option

You can use the | i ke term keyword option to specify terms that are not required in documents but will enhance
relevancy if they are present: this option selects documents that are like a set of terms rather than absolutely
requiring the terms. This option can specify a single term, a parenthesized list of terms, or be written as a sticky
option that applies to all subsequent terms at this current parenthesis level. For example,

® President like: Lincoln Washington
® President like:(Lincoln Washington)
® President like:Lincoln like:Washington

All three forms are equivalent and will return all documents that have the term "President", with documents that also
contain "Lincoln" or "Washington" ranked higher, and documents containing all three ranked highest.

The single-term form cannot be used if the term has any punctuation or digits, because that triggers
the like document feature which extracts high-relevancy terms from the specified document and then
uses that term list as if it were specified using the like term keyword option.

A query may not even have any required terms. For example,

® |ike: Lincoln Washington Roosevelt
® |ike:(Lincoln Washington Roosevelt)
® |ike:Lincoln like:Washington like:Roosevelt

All three forms are equivalent and will return all documents that have at least one of the terms "Lincoln",
"Washington", or "Roosevelt", with documents containing more of the terms ranked higher.

© 2011 Lucid Imagination. All rights reserved. Page 172

LucidWorks Search Platform Documentation

The | i ke option can be used to reference documents that have text similar to a passage. For example,

® like: Four score "and" seven years ago our fathers brought forth
® |ike:(Four score "and" seven years ago our fathers brought forth)

Both forms are equivalent and will return all documents that have at least one of the words listed, with documents
containing more of the words ranked higher and with documents containing more of the words adjacent as listed
ranked even higher. Note: The quotes around "and" are needed to prevent it from being interpreted as a boolean
operator.

For some simple cases it may be more convenient to use the "+" operator. For example:

® +cat white stray
® cat like:(white stray)

Both forms are equivalent and will return documents that must have "cat", but with any documents also containing
"white" or "stray" ranked higher. Note: If there are not explicit " + " or " - " operators, the query terms will all be
treated as if "" were written.

The | i ke option can also be used in conjunction with the ni nMat ch option to require at least a specified fraction of the
optional terms to be present in documents. For example,

minMatch:75% like: Four score "and" seven years ago our fathers brought forth
minMatch:75 like: Four score "and" seven years ago our fathers brought forth
minMatch:0.75 like: Four score "and" seven years ago our fathers brought forth
minMatch:8 like: Four score "and" seven years ago our fathers brought forth
minMatch:75%:(like: Four score "and" seven years ago our fathers brought forth)
like:(Four score "and" seven years ago our fathers brought forth)~8

like:(Four score "and" seven years ago our fathers brought forth)~75

like:(Four score "and" seven years ago our fathers brought forth)~75%
like:(Four score "and" seven years ago our fathers brought forth)~0.75

All nine forms are equivalent and will return documents that have at least 8 (75% of 10 is 7.5 which is rounded up to
8) of the listed terms.

Like Document Term Keyword Option

If the like term keyword option has a single term specified and that term has digits, or any punctuation, such as
period, slash, colon, and so on, the term is assumed to be a document id and the most relevant terms will be
extracted from that document and used as if they had been listed for the like term keyword option to boost relevancy
for other documents containing those terms. This feature is sometimes referred to as "more like this" or "find similar"
and is available in various commercial search engines.

A document ID is typically a web page URL, a file system path, a number, or some other special format, other than a
term consisting of only letters, that uniquely identifies a given document. Most document IDs, including URLs, can be
written directly, but the ID can be enclosed within quotes if it has any embedded spaces or to enhance readability. For
example:

® Washington like:http://cnn.com -"New York"
® Washington like:"http://cnn.com" -"New York"

Both forms would select documents that contain "Washington" and do not contain "New York", with relevancy boosted
by the most relevant terms contained in the web page at "http://cnn.com". This would find documents similar to the
CNN web page, but requiring "Washington" and excluding "New York".

As a simple but reasonably detailed example, consider the following mini-documents in a Unix file system:
® /usr/home/jsmith/george.txt - George Washington
® /usr/home/jsmith/abe.txt - Abraham Lincoln
® /usr/home/jsmith/both.txt - George Washington and Abraham Lincoln

The following query would return george.txt and both.txt:

© 2011 Lucid Imagination. All rights reserved. Page 173

http://cnn.com

LucidWorks Search Platform Documentation

® |ike:/usr/home/jsmith/george.txt
That query is effectively the same as:
® like:(George Washington)
The following query would return all three documents:
® [ike:/usr/home/jsmith/both.txt
That query is effectively the same as:
® |ike:(George Washington Abraham Lincoln)
Note: Short words are ignored. The actual minimum word length is a configurable parameter.

The actual process of selecting the most relevant terms from the specified document is a bit more complex, but
includes term frequency.

In addition, the terms are each given a calculated boost factor that corresponds to their calculated relevancy. The
examples given here are simplified, but the actual queries include term weights based on frequency in the specified
document.

The like option can be combined with the minMatch option to assure that only documents with some required
percentage of terms are matched. For example, give these mini-documents:

/usr/home/jsmith/alpha.txt - Alpha
/usr/home/jsmith/beta.txt - Beta
/usr/home/jsmith/gamma.txt - Gamma
/usr/home/jsmith/alpha-beta.txt - Alpha Beta
/usr/home/jsmith/beta-gamma.txt - Beta Gamma
/usr/home/jsmith/alpha-gamma.txt - Alpha Gamma
/usr/home/jsmith/all.txt - Alpha Beta Gamma

The following query would match all seven documents:
® |ike:"/usr/home/jsmith/all.txt"

The following query uses minMatch to select only those documents containing 66% or two-thirds of the relevant words
extracted by the like option:

® |ike:"/usr/home/jsmith/all.txt"~2
® [ike:"/usr/home/jsmith/all.txt"~66%
® |ike:"/usr/home/jsmith/all.txt"~0.66

All three of those query forms are equivalent and will exclude the first three documents since they have too few of the
optional terms.

The previous query is equivalent to this query:

® |ike:(Alpha Beta Gamma)~66%

© 2011 Lucid Imagination. All rights reserved. Page 174

LucidWorks Search Platform Documentation

Query Parser Customization

The Lucid query parser offers a wide range of configuration settings, called request parameters that can be set in the
Solr configuration XML file, sol rconfi g. xm (sol rconfig.xm is specific to each collection. If using col | ecti onl,

sol rconfig. xm will be found in $LWE_HOVE/ conf/ sol r/ cores/ col | ecti onl_0/conf). After editing sol rconfig. xm ,
LucidWorks Enterprise should be restarted. On some Windows systems, it may be necessary to stop LucidWorks
Enterprise before editing any configuration file.

First, locate the "/lucid" request handler, which appears as follows:

<request Handl er cl ass="sol r. St andar dRequest Handl er" nanme="/1 uci d">

Next, locate the "defaults" entry, which appears as:

<l st nanme="defaul ts">

Not all of the configuration settings will be present in sol rconfi g. xni . If not present, the settings will default to
internal default settings. In general, sol rconfi g. xnl is used to override internal default settings.

Before adding an override setting you should scan the existing settings to see if there is already a setting that can be
modified. If none is present, add a new entry for the setting as detailed below. The order of the settings does not
matter, so new settings can simply be inserted after the "defaults" entry.

Each configuration setting entry has the following format:

<str nanme="snane">sval ue</str>

where sname is the name of the setting, as detailed below, and svalue is the value of the setting. The setting value
does not use quotes, even for string values.

A number of settings are Boolean on/off settings, where a value of true indicates that the setting is "on" or enabled,
and false indicates that the setting is "off" or disabled.

g. al t : Alternate Query

The g. al t setting specifies a default query to be used if the input query passed to the Lucid query parser is empty. By
default, this setting is *: *, which selects all documents, which is equivalent to placing this entry in the request
"defaults" in sol rconfig. xm :

<str name="q.alt">*:*</str>

To disable this behavior and simply select no documents to return no query results, use an entry as follows:

<str name="q.al t"></str>

| eadW | d: Enable Leading Wildcards

The | eadW | d setting controls whether leading wildcards are permitted in queries. By default, this setting is "on" or
enabled, which is equivalent to placing this entry in the request "defaults" in sol rconfi g. xm :

© 2011 Lucid Imagination. All rights reserved. Page 175

LucidWorks Search Platform Documentation

<str nanme="|eadW | d">true</str>

To disable leading wildcards, turn this setting off, with an entry as follows:

<str nane="|eadW | d">fal se</str>

maxQuery: Query Limits

The Lucid query parser defaults to handling queries of up to 64K (65,536) characters in length. This should be
sufficient to support even the most demanding of applications. But, should even this not be sufficient, configuration
settings in sol rconfi g. xm may be added or modified to override these limits. In other cases, it may be desirable to
dramatically decrease these limits to prevent rogue users from overloading the query/search servers in high-volume
applications.

Here are the four configuration parameters that control maximum query length and their default values:

maxQuery = 65,536 — Maximum length of the source query string (64K).

maxTer ns = 20,000 — Maximum number of terms in the source query string.

maxGenTer ns = 100,000 — Maximum number of Lucene Query terms that will be generated.

maxBool eanC auses = 100,000 - Maximum number of Lucene Boolean Clauses that can be generated for a
single BooleanQuery object. This includes original source terms, plus relevance-boosting phrases that are
automatically generated.

Those default settings do not normally appear in sol rconfi g. xm , but if they did they would appear as follows:

<str name="naxQuery" >65536</str>

<str nanme="naxTer ns" >20000</ str>

<str nanme="naxGenTer ns" >100000</str>

<str nanme="naxBool eanCl auses" >100000</ str>

If you wish to reduce the query length limit for maximum throughput of "casual" queries, a query length of 1,000 and
200 terms might be appropriate, which would require entries as follows:

<str nanme="naxQuery">1000</str>
<str name="naxTer ns" >200</str>

near Sl op: Default Distance Limit for Proximity Operators

The near Sl op setting controls the default distance limit for the NEAR, BEFORE, and AFTER proximity operators. The
internal default is 15, which is equivalent to placing this entry in the request "defaults" in sol rconfi g. xni :

<str nanme="near S|l op">15</str>

The default distance can be changed to 10, for example, with an entry as follows:

<str nanme="near S|l op">10</str>

not Up: Whether Upper Case is Required for the NOT Operator Keyword

© 2011 Lucid Imagination. All rights reserved. Page 176

LucidWorks Search Platform Documentation

The NOT keyword operator is a special case among the keyword operators since "not" is such a common word in
natural language text and would be too easily confused with "not" as a keyword operator. For this reason, the NOT
operator must be all upper case, unless the not Up request parameter is disabled to allow "not" as a lower case
operator.

The not Up setting controls whether the NOT operator keyword must be all upper case. A setting of t r ue means that
the NOT keyword must be all upper case to be considered as an operator rather than as a simple text term. A setting
of f al se means that the NOT operator keyword may be lower case or upper case, or even mixed case. The internal
default is t rue, meaning that all upper case is required for the NOT operator keyword, which is equivalent to placing
this entry in the request "defaults" in sol rconfi g. xm :

<str nanme="not Up">true</str>

Lower case or mixed case for the NOT operator keyword can be enabled with an entry as follows:

<str nanme="not Up">fal se</str>

opUp: Whether Upper Case is Required for Operator Keywords

The opUp setting controls whether operator keywords, such as AND, OR, and NEAR, must be upper case. A setting of
t rue means the keywords must be all upper case to be considered as operators rather than simple text terms. A
setting of f al se means that operator keywords may be lower case or upper case, or even mixed case. The internal
default is f al se, meaning that upper case is not required, which is equivalent to placing this entry in the request
"defaults" in sol rconfi g. xnl :

<str nanme="opUp">fal se</str>

Operator keywords can be required to be all upper case with an entry as follows:

<str name="opUp">true</str>

The NOT keyword operator is a special case since "not" is such a common word in natural language text and would be
too easily confused with "not" as a keyword operator. For this reason, the NOT operator must be all upper case, unless
the separate parameter, not Up, is disabled to allow "not" as a lower case operator.

nm nMat ch: Minimum Match of Optional Terms for Boolean Query

The mi nMat ch configuration setting controls the minimum percentage of optional terms of a simple Boolean query that
must match for a document to be selected. This configuration setting is used as the default unless the user explicitly
uses the mi nMat ch (or at Least) keyword option or the tilde ('~') modifier on a simple Boolean query in the query
string. A setting of 0 (the default) means that none of the optional terms is required for a document match. A value of
100 means that all optional terms must match. As a special case, any small percentage, such as 1, means that at least
one optional term must match in any simple Boolean query. The default value of 0 is equivalent to placing this entry in
the request "defaults" in sol rconfig. xm :

<str name="m nMat ch">0</str>

To assure that at least one optional term matches in every simple Boolean query, use an entry as follows:

© 2011 Lucid Imagination. All rights reserved. Page 177

LucidWorks Search Platform Documentation

<str nanme="m nMatch">1</str>

To require half (50%) of the optional terms to match in simple Boolean queries, use an entry as follows:

<str nanme="m nMat ch">50</str>

Choosing an Alternate Stemmer

Out of the box, the Lucid query parser comes with a basic plural stemmer that translates most plural words to their
singular form. This should be sufficient for most applications. The stemming rules are all rule-based in an easy to read
and write text file format that permits the addition of new rules and permits words to be protected or mapped
specially. This permits flexibility for many more specialized applications.

If for some reason the administrator wishes to use an alternative stemmer, the change can be made manually in the
schema. xni file. Any arbitrary stemming filter can be specified, but Lucid KStem is a typical alternative.

If you edit schema. xm , and search for the t ext _en field type, you should see that both its index and query analyzers
have XML entries for the stemming filter that appear as follows:

<filter class="solr.|SCOLatinlAccentFilterFactory"/>

<l-- <filter class="comlucid.analysis.LucidKStenFilterFactory"/> -->
<filter class="com | ucid.analysis.LucidPlural StenFilterFactory" rules="Luci dStenRul es_en.txt"
/>

The com | uci d. anal ysi s. Luci dPl ural StenFi | t er Fact ory class represents the default plural stemmer. The rul es
parameter specifies the name of the text file that contains the plural stemming rules.

The com | uci d. anal ysi s. Luci dKSt enfi | t er Fact ory class represents the Lucid KStem stemmer, which is disabled
by default using the standard <! =and - > comment markers.

To disable the default plural stemmer and enable Lucid KStem, simply remove the comment markers from the latter
and add them to the former. Do this same thing for both the index and query analyzers. The edited lines should now
appear as follows:

<filter class="solr.|SCOLatinlAccentFilterFactory"/>

<filter class="com | ucid.analysis.LucidKStenFilterFactory"/>

<l-- <filter class="com | ucid.analysis.LucidPlural StenFilterFactory" rul es=
"LucidStenRul es_en.txt"/> -->

Be sure that you have chosen the same stemmer class for both the index and query analyzers. If the stemmer classes
do not match, the result can be that some queries can fail if terms were indexed according to different rules than
those used by the Lucid query parser.

In general, it is best to delete the index and do a full re-indexing of the data collection whenever an index analyzer is
radically changed, such as is the case when stemming filters or rules are changed.

Other alternative stemming filters, such as Snowball and Porter, can be used by using a similar technique as described
above.

© 2011 Lucid Imagination. All rights reserved. Page 178

LucidWorks Search Platform Documentation

LucidWorks REST API Reference

Overview

In a system in which requirements remain fairly static, or at least predictable, the LucidWorks user interface may be
sufficient for managing your system. For more complex or dynamic systems, the LucidWorks Search Platform provides
programmatic, remote access to most high-level aspects of configuration and operation through the REST API.

Most web developers are familiar with the idea of manipulating HTTP requests. For example, your programmatic
access to search itself is by making GET requests to Solr itself, as documented in the Solr Wiki; you may even be
familiar with the idea of indexing data by making a POST request directly to Solr. In the case of the REST API, the
LucidWorks Search Platform uses GET and POST, as well as PUT and DELETE requests, to enable you to
programmatically manage tasks such as creating and managing data sources and alerts, as well as monitoring the
ongoing activities of your LucidWorks system.

The results of a REST request depend not only on the type of request, but on whether you called it on an object or
group of objects. REST requests work as follows:

GET: Used to get information on a single object, or to get a list of objects in a group.
POST: Used to create a new object.

PUT: Used to update an object or group of objects.

DELETE: As expected, used to delete an object or group of objects.

When you use REST requests with LucidWorks, you send a JSON request to the endpoint specified for the object (or
group) in question. The system then sends back the results as a JSON object. (Currently, LucidWorks only recognizes
JSON requests; this may change in the future.)

1. About Server Addresses in Examples
The LucidWorks Search Platform REST API uses the Core component, installed at
http://localhost:8888/ by default in LucidWorks Enterprise and many examples in this Guide use this
as the server location. If you changed this location on install, be sure to change the destination of your
REST requests. If using LucidWorks Cloud, the server call must include the Access Key, which can be
found on the My Search Server page. Example URLs for API calls would then be changed from
http://1ocal host:8989/api/... tohttp://<server address>/<access key>/api/....

Quick Start
Getting Started Indexing

Error Response Format

APIs

® \ersion: Shows information about the LucidWorks and Solr versions being used by the system.
® Collections: Groups of documents that are logically separate.
® Collection Information: Get information about the collection.
® Activities: Control schedules for resource-intensive operations such as optimization and building
indexes.
® Status: The status of currently running Activities.
® History: Statistics for the last 50 runs of an Activity.
® Data Sources: The conduits by which data enters LucidWorks indexes.
Schedules: Control when data is imported.
Data Source Jobs: Start and Stop data source jobs.
Status: Get the status of currently running data sources.
History: Statistics for the last 50 runs of a data source.
® Crawl Data: Delete the crawling history for a specific data source.
® Batch Crawling: Create and manage crawling when the data shouldn't be indexed until a later time.

© 2011 Lucid Imagination. All rights reserved. Page 179

http://wiki.apache.org/solr/
http://localhost:8888/
http://localhost:8989/api/

LucidWorks Search Platform Documentation

® Alerts:
® Users:

Fields: How data from a single document is organized in LucidWorks indexes.

Field Types: Create new field types or modify existing types.

JDBC Drivers: Load required JDBC drivers for database indexing.

Settings: Many different query- and index-time settings.

Collection Templates: Get information about templates that can be used when creating new collections.
Roles: Configure search filters to control access to documents.

Filtering Results: Use Access Control Lists to filter results for Windows Shares.

Search Handler Components: List active search components for a particular search handler.
Collection Index: Delete the entire index or only data from a single data source.

Create and modify alerts for users.

Create user accounts (if not using an external user management system, such as LDAP).

® SSL Configuration: Configure LucidWorks to work with SSL.

@ When creating or updating a resource (using a POST or a PUT), you generally only need to include
those entries in your map that you need to set. When LucidWorks creates a resource, entries you omit
will get their default values. When you update a resource, entries you omit will retain their previous
values.

JSON primitives can be used and will be returned, but LucidWorks also accepts string parsable
equivalents. For example, both 4 or "4" are valid inputs for an integer type, but 4 will be returned by
the REST API.

APIs that take a list will also take a single variable (for example, a list<string> accepts string) and
treat it as a list of size 1.

For convenience, you can append ".json" to any method.

© 2011 Lucid Imagination. All rights reserved. Page 180

LucidWorks Search Platform Documentation

Getting Started Indexing

How to Find Your Server Address

In these examples, URLs are shown with http://<server address>/.... If you are using LucidWorks
Cloud, the server address is found on the My Search Servers page, and includes an Access Key that is
required for all client interactions. If you are using LucidWorks Enterprise, the server address is where
the Core component was installed.

=

Perhaps the most common usage of the REST API is to control and monitor data sources and indexing. For example,
suppose you wanted to create a data source that crawls a web site, such as http://www.grantingersoll.com; In
general, if you were using curl to make your REST requests directly, the process would look like this:

1. First, you create the data source:

curl -H "Content-Type: application/json"

-d "{"url" : "http://ww.grantingersoll.con, "craw _depth" : "2", "type" : "web",
"nane" : "Sanple Site", "crawler": "lucid.aperture"}'

"http://<server address>/api/collections/collectionl/datasources’

Most of these keys, such as url and t ype, are obvious; check the full documentation for the keys involved in creating
various types of Data Sources.

The response is a JSON representation of the object you just created, which includes the i d value:

© 2011 Lucid Imagination. All rights reserved. Page 181

http://www.grantingersoll.com

LucidWorks Search Platform Documentation

{
"idtro1,
"collection": "collectionl",
"type": "web",
"url": "http://ww.grantingersoll.com",
"crawler": "lucid.aperture",
"bounds": "tree",
"category": "Web",
"nane": "Sanple Site",
"crawl _depth": 2,
"max_bytes": 10485760,
"include_paths": [
1,
"collect_links": true,
"exclude_pat hs": [
1.
“mappi ng": {
"mul tiVal": {
"fileSize": true,
"body": true,
I
"defaul tField": null,
"mappi ngs": {
"slide-count": "pageCount",
"content-type": "m nmeType",
"body": "body",
H
"dynam cField": "attr",
"types": {
"filesize": "INT",
"pagecount": "I NT",
"l ast nodi fied": "DATE",
"dat ecreated": "DATE",
"date": "DATE"
H
"uni queKey": "id" ,
"dat asourceFi el d": "data_source"
}
}

2. The next step is to tell LucidWorks to index this data source by creating a new j ob.

In this case, that means sending a PUT request for collection col | ecti onl, data source 1:

curl -X PUT 'http://<server address>/api/collections/collectionl/datasources/1/job’

(Note the -X PUT switch.)

In this case, there is no JSON object to pass; like many of the REST API calls, the important information is in the URL.
In this case, you're passing the collection (col | ecti onl) and the data source number on which the job should be run

(1). Check the full documentation for more information on stopping and starting Data Source Jobs.
This request does not return anything, but it does start the index running.

3. To check the status, you can send a GET request:

© 2011 Lucid Imagination. All rights reserved.

Page 182

LucidWorks Search Platform Documentation

curl '"http://<server address>/api/collections/collectionl/datasources/1/status'

Once again, you are passing the collection and data source number in the URL. The response tells you that the data
source is still being indexed:

"id"o1,

"crawl Started": "2011-03-17T16: 34: 45+0000",
"nunnchanged": O,

"crawl State": "RUNN NG',

"craw St opped”: null,

"jobld": "1",

"nunipdat ed": O,

"numNew': 90,

"nuntailed": O,

"nunDel eted": 0O

When the job is complete, the response will look something like this:

"idtro1,

"craw Started": "2011-03-17T16: 34: 45+0000",
"nunmnchanged": O,

"“craw State": "FIN SHED',

"craw St opped”: "2011-03-17T28: 26: 06+0000",
"jobld": "1",

"nunpdat ed": O,

"nunNew': 328,

"nunfail ed": 2,

"nunDel eted": 0

4. You can also inspect the properties of the overall index itself:

curl "http://<server address>/api/collections/collectionl/info'

Again, you are passing the collection name (col | ecti onl) in the URL. Check the full documentation for more
information on working with Collections.

This call gives you a response that shows all of the information about the collection itself:

© 2011 Lucid Imagination. All rights reserved. Page 183

LucidWorks Search Platform Documentation

"free_di sk_space": "12.2 GB",
"index_|l ast_nodified": "2011-03-17T21:55: 45+0000",
"i ndex_has_del etions": false,
"data_dir":
"C:\\Users\\ N ck\\ Luci dl nagi nati on\\ Luci dWor ksEnt erprise\\bin\\..\\solr\\cores\\collectionl_0\\dg
"index_size": "1.3 MB",
"index_directory": {
"directory":
"C:\\Users\\ N ck\\ Luci dl nagi nati on\\ Luci dWor ksEnt er pri se\\sol r\\cores\\col | ecti onl_0\\data\\index
"l ockl D': "l ucene-87258 8020481af ad83452b87f 7517d46",
"readChunkSi ze": 104857600,
"l ockFactory": {
"l ockDir":
"C:\\Users\\ N ck\\ Luci dl nagi nati on\\ Luci dWor ksEnt erpri se\\sol r\\cores\\col | ectionl_0\\data\\inde

"l ockPrefix": null
}

.
"coll ection_nanme": "collectionl",
"index_is_optimzed": false,
"index_size_bytes": 1318288,
"free_di sk_bytes": 13072003072,
"index_max_doc": O,
"index_num docs": O,
"index_version": 1300398945085,
"index_is_curr ent": true,
"root _dir": "C\\",
"instance_dir": "collectionl_0",
"total _disk_space": "222.7 GB",
"total _disk_bytes": 239171792896

When you are satisfied that your data has been indexed, you are free to start executing searches.

© 2011 Lucid Imagination. All rights reserved. Page 184

LucidWorks Search Platform Documentation

Advanced Operations Using the REST API

LucidWorks Enterprise provides the ability to programmatically control administrative functions using the REST API.

To use the REST API, you send a JSON object via an HTTP request. For example, you can use the REST API to
dynamically create a field:

curl -d '{
"nane": "new field",
"termvectors": true,
"default_value": "lucid rocks",

"use_for_deduplication": true,
"mul ti_valued": true,
"stored": true,
"indexed": true,
"search_by_default": false,
"facet": true,
"index_for_spell check": true,
"synonym expansi on": true,
"short _field_boost": "noderate",
"field_type": "text_en"
}' -H ' Content-type: application/json'" 'http:
/1l ocal host: 8888/ api / col |l ections/collectionl/fields'

The request returns a JSON representation of the created object:

"def aul t _boost": 1.0,
"field_type":"text_en",
"facet":true,

"i ndexed":true,
"short_field_boost":"noderate",
"termvectors":true,
"include_in_results":fal se,
"stored":true,

"omt _tf":false,
“highlight":fal se,

"edi tabl e":true,
"search_by_default": fal se,
"user_field":true,

"mul ti_val ued":true,

"defaul t _value":"lucid rocks",
"use_for_deduplication":true,
"nane": "new field",

"synonym expansi on":true,

"index_for_spell check":true,

"index_for_autoconpl ete": fal se,
"query_time_stopword_handling":fal se,
"copy_fields":["text_mediunt,"text_all", "spell"],
"use_in_find_simlar":fal se}

As with all operations against LWE, you have the option to use any HTTP client to perform these operations, as long as
they use the proper methods, as documented under REST API.

Perhaps the most common usage of the REST API is to control and monitor data sources and indexing. Consider this
example, from Getting Started Indexing. First, you create the data source:

© 2011 Lucid Imagination. All rights reserved. Page 185

LucidWorks Search Platform Documentation

curl -H "Content-Type: application/json"

-d "{"url" : "http://ww.grantingersoll.conl,"crawl _depth" : "2", "type" : "web"
"Sanple Site"}'

"http://1ocal host: 8888/ api/collections/collectionl/datasources'

. "name"

The response includes the id value:

{
"id" 7,
"include_paths":null,
"collect_links":fal se,
"nane":"Sanple Site",
"exclude_paths": nul I,
"type":"web",
"url":"http://ww.grantingersoll.cont,
"craw _depth":2
}

The next step is to tell LWE to run the index by updating the schedule for the data source. That means updating the
schedule for source number 7 using a PUT request:

curl -X PUT -H "Content-Type: application/json"
-d "{"active":true, "type":"index", "start_tinme": "now', "period":0}'
"http://1ocal host: 8888/ api/collections/collectionl/datasources/7/schedule'

This request does not return anything, but it does start the index running. To check the status, we send a GET
request:

curl '"http://1ocal host: 8888/ api/collections/collectionl/datasources/7/status'

This request tells us that the data source is still being indexed:

"id" 7,

"description:":"Crawl i ng Docunents",

"status":

{"crawl _started":"2011-02-27T02: 48: 41+0000",
"num unchanged": 0O,
"num updat ed": 0,
"num new': 26,
"num_renoved": 0},
“running":true

Another common use for the REST API is to manage users and alerts. In most cases, you will use an LDAP server to
manage users, but you also have the option to manage them internally using the REST API. For example, to create a
user, you would send a POST request:

© 2011 Lucid Imagination. All rights reserved. Page 186

LucidWorks Search Platform Documentation

© 2011 Lucid Imagination. All rights reserved.

curl -d '{
"usernane": "smller",
"last_nane": "mller",
"email": "ne@ere.cont,
"first_nane": "john",
"password": "supernan"

}' -H'Content-type: application/json" '"http://]ocal host: 8888/ api/users'

Once you have defined a user, you can then use the REST API to perform authentication:

curl -d 'superman' -H 'Content-type: application/json' 'http:
/11 ocal host: 8888/ api/users/sniller/authenticate'

This API is simple, taking just the password and returning just a true or f al se value, depending on whether the
username in the URL and the password passed match:

true

You can also create an Enterprise Alert, which notifies the user when there are new results for a search. For example,
you can create an alert that sends the new user, smi | | er, notification when there is new data for the search “robot”:

curl -d '{"nanme":"Robot Alert", "query":"robot"}"'
-H "Content-type: application/json”
"http://1ocal host:8989/al erts/users/sniller/alerts'

(Note that Enterprise Alerts do not run on the Solr port; they're handled by the LWE Core component, typically
installed on port 8989.)

The request returns a JSON representation of the object, which includes the ID:

{
“alert_at":null,
"collection_url":"",
"created_at":"2011-02-27T03: 35: 282",
"id": 2,
"mn_alert_interval":0,
"nane": " Robot Alert",
"query":"robot",
"resul ts_since":"2011-02-27T03: 35: 282",
"retrieved_at":"2011-02-27T03: 35: 282",
"update_interval ":null,
"updated_at":"2011-02-27T03: 35: 282",
"user_identifier":"smller",
"properties":{}

}

You can then use that ID to check the status of the alert:
curl "http://1ocal host: 8989/ alerts/users/sniller/alerts/2'

In this case, we have not yet seen any new results;

Page 187

LucidWorks Search Platform Documentation

{
"alert_at":null,
"collection_url":"",
"created_at":"2011-02-27T03: 35: 282",
"id": 2,
"mn_alert_interval":0,
"nane": " Robot Alert",
"query":"robot",
"resul ts_since":"2011-02-27T03: 35: 282",
"retrieved_at":"2011-02-27T03: 35: 282",
"update_interval ":null,
"updat ed_at ": "2011- 02- 27T03: 35: 282",
"user _identifier":"smller",
"properties":{}

}

The LucidWorks Enterprise documentation lists all available functions for the REST API.

© 2011 Lucid Imagination. All rights reserved. Page 188

LucidWorks Search Platform Documentation

Error Response Format

In an ideal world, all of your programming calls will work perfectly. Unfortunately, we do not live in an ideal world, and
occasionally you will need to deal with error messages. LucidWorks returns errors as JSON maps that provide all of the
information you need to determine the problem. They are in the following format:

{
"http_status_nanme": {string},
"http_status_code": {integer},
"errors":[
{
"nmessage": {string},
"key":{string}
H
1
}

These values correspond to the following information:

http_status_name: The name of the status code.

http_status_code: The integer status code that classifies the error. These integer codes correspond to standard HTTP
response codes. For example, if you reference an object that does not exist, the error code will be "404", the
traditional "Not Found" response. For more information, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
errors: This object contains more detailed information on the reasons for the error status, including:

message: A human-readable error message explaining the problem.

key: The input key that the message pertains to. This may be an empty string if the error does not correspond to a
submitted key.

Example
{
"http_status_nane":"Unprocessable Entity",
"http_status_code": 422
“errors":[
{
"message": "Unknown type: bad_type",
"key":"type"
}
{
"message":"start_tinme could not be parsed as a date",
"key":"start_tine"
}
]
}

Note that more than one error may be passed in an error response.

© 2011 Lucid Imagination. All rights reserved. Page 189

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

LucidWorks Search Platform Documentation

Version

The version API shows the LucidWorks and Solr version and build information. This information should be supplied to
support when requesting assistance, as it will help identify the version being used and will speed resolution of any
problems.

® API Entry Point
® Get Version Information

API Entry Point

/ api / ver si on: show the version information

Get Version Information
GET /api/version

Input

Path Parameters
None.

Query Parameters

None.

Output

Output Content
A JSON list of version information in two sections labeled solr and lucidworks.

The Solr section contains the following information about the version of Solr embedded with LucidWorks:

Key Description

svn.repo Address of the Subversion repository Solr was taken from
build.user | The user who created the build

git.repo Address of the Git repository

build.date = The date the build was made

solr.svn.rev The last revision ID of the Solr build

git.commit = The last commit ID of the Solr build

build.host The machine that created the build

build.os The operating system that created the build

The LucidWorks section contains the following information about the LucidWorks software:

Key Description
environment Describes how the build was made
version The LucidWorks version number

© 2011 Lucid Imagination. All rights reserved. Page 190

LucidWorks Se

build.user

arch Platform Documentation

The user who created the build

hudson.build.number The build number

build.date
git.commit
build.host

build.os

The date the build was made
The last commit ID of the LucidWorks build
The machine that created the build

The operating system that created the build

Response Codes

200: OK
Examples
Input
curl "http://1ocal host: 8888/ api/version'
Output
{
"solr" : {
"solr.svn.rev" : "1088021",
"build.os" : "Wndows Vista",
"svn.repo” : "http://svn.apache. org/repos/asf/|ucene/dev/trunk",
"git.commit" : "ec6045ebc1118237917f973d9b779752a9719dab",
"buil d. host" : "BIGBOY",
"build.date" : "2011/04/04 12:57",
"build.user" : "rnuir",
"git.repo" : "git@ithub.com | ucidimagination/lucene-solr.git"
}
"lucidworks" : {
"hudson. bui | d. nunber" : "0",
"build.os" : "Linux",
"version" : "0.0Canop",
"git.commit" : "39408ca4688e635d1ce53ch8e5a8a95a9171c74c",
"environnment" : "production",
"buil d. host" : "bester",
"build.date" : "2011/04/13 18:59",
"build.user" : "hossman"
}
}

© 2011 Lucid Imagination. All rights reserved.

Page 191

LucidWorks Search Platform Documentation

Collections

Data in LucidWorks is organized into Collections. A collection contains data that is logically distinct from data in other
collections. Collections have their own Data Sources, Settings, Fields, and Role Mappings. In other words, collections
are distinct except that they happen to run in the same instance of LucidWorks.

API Entry Points

List Collection Names

Create Collection

List Information for Specific Collection
Delete Collection

API Entry Points

/api/col |l ections: Get a list of available collection names

/api/col | ections/col | ection: Get details or remove a collection

List Collection Names
GET /api/collections

Input

Path Parameters
None

Query Parameters

None

Output
Output Content

A JSON List of Maps mapping Collection keys to values.

Key Type Description
name string The name of the collection.

instance_dir string Advanced: <filepath>. Displays the directory name of the collection in
$LWE_HOVE/ dat a/ sol r/ cores.

Response Codes

200: success ok

Examples
Get a list of all collections and their locations:

Input

curl '"http://1ocal host: 8888/ api/collections'

© 2011 Lucid Imagination. All rights reserved. Page 192

LucidWorks Search Platform Documentation

Output
[
{
"nane": "new_col |l ection",
"instance_dir": "new_ collection_1"
},
{
"name": "collection 1",
"instance_dir": "collectionl_0"
}
{
"name": "social",
"instance_dir": "soci al data"
}
1

Create Collection
PCOST /api/collections

Input

Path Parameters
None

Query Parameters
None

Input content

JSON block with all keys.

Key Type Required Default Description
name string ' Yes null The name of the collection.
template string No None The name of the collection template to use while creating the collection.

See Using Collection Templates for more information on how to create
and use collection templates.

instance_dir string No None Advanced: <filepath> Allows you to optionally override the name and/or
location of the Solr instance directory for the collection. By default, this
will be the next available collection n directory in

$LWE_HOVE/ dat a/ sol r/ cor es. File paths that are not absolute will be
relative to $LWE_HOMWE/ dat a/ sol r/ cores.

1. Because collection templates are based on an instance_dir, it's recommended to specify either
parameter when creating a new collection, not both.

Output

Output Content

JSON representation of new collection

Key Type @ Description

© 2011 Lucid Imagination. All rights reserved. Page 193

LucidWorks Search Platform Documentation

name | string The name of the collection.

Return Codes
201: created
Examples

Create a new collection called "social" and specify that the collection should be stored with the other collections in the
$LWE_HOVE/ dat a/ sol r/ cor es directory, but in a directory called "socialdata".

Input
curl -H 'Content-type: application/json' -d '{"nane": "social", "instance_dir":"social data"}'
"http://1ocal host: 8888/ api/collections'
Output
{
"nanme": "social"
}

List Information for Specific Collection
GET /api/collections/collection

Input

Path Parameters

Key Description

collection = The collection name.

Query Parameters
None

Output

Output Content

JSON representation of the collection.

Key Type Description
name string The name of the collection.

instance_dir string The collection directory name relative to $LWE_HOVE/ sol r/ cor es.

Response Codes

200: success ok

Examples

Get the collection information for the "social" collection:

© 2011 Lucid Imagination. All rights reserved. Page 194

LucidWorks Search Platform Documentation

Input

curl "http://1ocal host: 8888/ api/collections/social’

Output
{
"nanme": "social ",
"instance_dir":"social data"
}

Delete Collection

DELETE / api/ col | ections/col | ection

=

To delete the index for a collection without deleting the entire collection, see the Collection Index
Delete API.

Deleting a collection will delete all associated indexes and settings, but not alerts or manually created users. Use the
Alerts API (LucidWorks Enterprise only) or the Users API to delete those.

Input

Path Parameters

Key Description

collection = The collection name.

Query Parameters
None
Input content

None

Output

Output Content

None

Return Codes

204: success no content

404: not found

Examples

Delete the "social" collection:

Input

curl -X DELETE 'http://1 ocal host: 8888/ api/coll ections/social'

© 2011 Lucid Imagination. All rights reserved. Page 195

LucidWorks Search Platform Documentation

Output

None.

Collection Info

The Collections Info API can be used to retrieve some statistics about a particular collection. You can use this API to
retrieve all information, or just a specific key, such as the data_dir.

® API Entry Points

® Get All Information About a Collection
® Get Specific Information About a Collection

API Entry Points

/api/col | ections/col | ection/info: get all info about the collection.

/api/col | ections/col |l ection/info/nanme: get specific info about the collection.

Get All Information About a Collection

CET /api/collections/collection/info

Returns all information about the collection.

Input

Path Parameters

Key Description

collection ' the collection name

Query Parameters

None

Output

Output Content

A JSON map of collection information keys mapped to their values.

Key Type
collection_name string
data_dir string
free_disk_space string
free_disk_bytes 64-bit
integer
index_is_current boolean
index_directory string

index_has_deletions boolean

Description
The name of collection.
The directory where the index and other data resides.

A human-readable string indicating the amount of free disk space on the partition
where the index resides.

The total number of bytes available on the partition where the index resides.

Is true unless the index on disk has changes not yet visible by this instance.
The current Directory implementation being used for this index.

Is true if the index has deleted documents since the last optimization.

© 2011 Lucid Imagination. All rights reserved. Page 196

LucidWorks Search Platform Documentation

index_last_modified date The date and time that the index was last modified (1-second resolution).
string

index_max_doc 64-bit The largest doc ID in the index.
integer

index_num_docs 64-bit The number of documents in the index.
integer

index_is_optimized boolean Is true if the index was optimized after the last document was indexed.

index_size 64-bit A human-readable string indicating the total size of the index.
integer
index_size_bytes 64-bit The exact size of the index in bytes.
integer
index_version 64-bit A version stamp for the index.
integer
instance_dir string The home directory for the collection.
root_dir string The root directory of the partition on which the index resides.
total_disk_space string A human-readable string indicating the amount of total disk space on the partition

where the index resides.

total_disk_bytes 64-bit The number of total bytes on the partition where the index resides.
integer

Response Codes
200: OK
Examples

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/info'

Output

© 2011 Lucid Imagination. All rights reserved. Page 197

LucidWorks Search Platform Documentation

"free_di sk_space": "10.7 GB",
"index_|l ast_nodified": "2011-03-18T03: 46: 59+0000",
"index_has_del etions": true,
"data_dir":
"C:\\Users\\ N ck\\ Luci dl nagi nati on\\ Luci dWor ksEnt er pri seDocs\\bin\\..\\solr\\cores\\collectionl_(
"index_size": "3.8 MB",
"index_directory": "org.apache.lucene. store. MockDi rect oryW apper",
"coll ection_nanme": "collectionl",
"index_is_optimzed": false,
"index_size_bytes": 3990150,
"free_disk_bytes": 11491110912,
"i ndex_max_doc": 169,
"i ndex_num docs": 136,
"index_version": 1300398945104,
"index_is_current": true,
"root _dir": "C\\",
"instance_dir": "collectionl_0",
"total _disk_space": "222.7 GB",
"total disk _bytes": 239171792896

Get Specific Information About a Collection

CGET /api/collections/collection/infolname

Input

Path Parameters

Key

Description

collection ' the collection name

name the name of the info key

Query Parameters

None

Input Content

Key Type Description

collection_name string The name of collection.

data_dir string The directory where the index and other data resides.

free_disk_space string A human-readable string indicating the amount of free disk space on the partition

where the index resides.

free_disk_bytes 64-bit The total number of bytes available on the partition where the index resides.
integer

index_is_current boolean Is true unless the index on disk has changes not yet visible by this instance.

index_directory string The current Directory implementation being used for this index.

index_has_deletions boolean Is true if the index has deleted documents since the last optimization.

© 2011 Lucid Imagination. All rights reserved. Page 198

LucidWorks Search Platform Documentation

index_last_modified date The date and time that the index was last modified (1-second resolution).
string

index_max_doc 64-bit The largest doc ID in the index.
integer

index_num_docs 64-bit The number of documents in the index.
integer

index_is_optimized boolean Is true if the index was optimized after the last document was indexed.

index_size 64-bit A human-readable string indicating the total size of the index.
integer
index_size_bytes 64-bit The exact size of the index in bytes.
integer
index_version 64-bit A version stamp for the index.
integer
instance_dir string The home directory for the collection.
root_dir string The root directory of the partition on which the index resides.
total_disk_space string A human-readable string indicating the amount of total disk space on the partition

where the index resides.
total_disk_bytes 64-bit The number of total bytes on the partition where the index resides.
integer
Output
Output Content
A JSON map of Collection information keys mapped to their values. For a list of the keys, see GET: Output Content.
Response codes
200: OK
404: Not Found
& Tip

When requesting collection info, you can pass a comma-separated list of keys (such as
index_current,index_version) rather than separate requests for each key.

Examples
Request the number of documents and index version for the collection.

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/info/index_version,index_num docs'

Output

© 2011 Lucid Imagination. All rights reserved. Page 199

LucidWorks Search Platform Documentation

{
"index_num docs": 136,
"I ndex_version": 1300398945104
}
Activities

Activities are scheduled events that perform intensive operations on a collection, such as optimizing the index or
creating the auto-complete index. Typically, schedules are recurring so that LucidWorks performs these activities
periodically. However, activities can also be set for a single point in time. Activities controlled by this API are:

® Optimizing the index
® Indexing autocomplete data
® Processing click-scoring boost data

API Entry points

Get a List of Activities

Create an Activity

View a Specific Activity
Update an Activity's Schedule
Delete a Scheduled Activity

API Entry points

/api/collections/collection/activities: get a list of activities, or create a new one
/api/coll ections/collection/activities/id: view, delete or update an existing activity

Get a List of Activities

CET /api/collections/collection/activities
Note that activities that have never been run will not show in this list.
Input

Path Parameters

Key Description

collection = The collection name.

Query Parameters
None
Output

Output Content

A list of activities. For each activity, the fields are:

Key Type Description

start_time date The start date and time for this schedule, in the format yyyy- MM dd' T' HH: nm ss' +/ - ' hhmm
string The '+/-' is adjusted for the time zone relative to UTC.

© 2011 Lucid Imagination. All rights reserved. Page 200

LucidWorks Search

Platform Documentation

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this
integer should only occur once.

type string The type of activity: optimize, click, autocomplete.

active boolean If true, this schedule will be run at the next scheduled time.
Activity Types

Activity Description

optimize Optimizes the index.

click

autocomplete

Return Codes

200: OK

Examples

Processes logs of user clicks to calculate boost values.

Runs the auto-complete source build phase.

Get a list of all the active activities for the collection.

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/activities

Output

"id'ro9,

"active": true,

“start_time": "2011-03-18T04: 44: 39+0000",
"type": "optimze"

"period": 86400

"idUro 11,

"active": true,

“start_tinme": "2011-03-1 8TO04: 45: 03+0000",
"type": "autoconplete",

"period": 86400

Create an Activity

POST /api/collections/collection/activities

Input

Path Parameters

Key Description

© 2011 Lucid Imag

ination. All rights reserved.

Page 201

LucidWorks Search Platform Documentation

collection = The collection name.

Query Parameters
None

Input Content

Key Type Description

start_time date The start date and time for this schedule, in the format yyyy- MM dd' T' HH: nm ss' +/ -' hhnm
string The API can accept a relative time of "now". The 'T' is entered without quotes. The '+/-' is for

the time zone relative to UTC, and also entered without quotes.

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this

integer should only occur once.

type string The type of activity: optimize, click, autocomplete.
active boolean ' If true, this schedule will be run at the next scheduled time.
Output

Output Content
JSON representing the new resource.
Return Codes

201: Created
Examples

Input

curl -H'Content-type: application/json' -d '
{
"period": O,
"type": "optimze",
"start_tine": "2011-03-29T12:10: 32-0700",
"active": true

}' "http://1ocal host: 8888/ api/collections/collectionl/activities'

Output

{
"id": 19,
"active":true,
“start_tinme":"2011-03-29T19: 10: 32+0000",
"type":"optimze",
"period":0

}

View a Specific Activity
CET /api/collections/collection/activities/id

Input

© 2011 Lucid Imagination. All rights reserved.

Page 202

LucidWorks Search Platform Documentation

Path Parameters

Key Description
collection = The collection name.

id The activity's ID.

Query Parameters
None
Input Content

None

Output

Output Content

Key Type Description

start_time date The start date and time for this schedule, in the format yyyy- M dd' T' HH: nm ss' +/ -' hhnrm
string The '+/-' is adjusted for the time zone relative to UTC.

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this
integer should only occur once.

type string The type of activity: optimize, click, autocomplete.

active boolean ' If true, this schedule will be run at the next scheduled time.

Response Codes
200: OK

404: Not Found

Examples
Input
curl '"http://1ocal host: 8888/ api/collections/collectionl/activities/19'
Output
{
"id": 19,
"active":true,
"start_tinme":"2011-03-29T19: 10: 32+0000",
"type":"optimze",
"period": 0
}

Update an Activity's Schedule

PUT /api/collections/collection/activities/id

© 2011 Lucid Imagination. All rights reserved. Page 203

LucidWorks Search Platform Documentation

Input

Path Parameters

Key Description
collection = The collection name

id The activity's ID.

Query Parameters
None

Input Content

Key Type Description

start_time date The start date and time for this schedule, in the format yyyy- Mt dd' T' HH: nm ss' +/ -' hhnrm
string The API can accept a relative time of "now". The 'T' is entered without quotes. The '+/-' is for
the time zone relative to UTC, and also entered without quotes.

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this
integer should only occur once.

type string The type of activity: optimize, click, autocomplete.

active boolean ' If true, this schedule will be run at the next scheduled time.

Activity Types

Activity Description
optimize Optimizes the index.
click Processes logs of user clicks to calculate boost values.

autocomplete Runs the auto-complete source build phase.

Output

Output Content

None

Return Codes

204: No Content

Examples

Set the server to optimize the index once an hour.

Input

curl -X PUT -H 'Content-type: application/json' -d'
{
"period": 6000
}' '"http://1ocal host: 8888/ api/collections/collectionl/activities/19'

Output

© 2011 Lucid Imagination. All rights reserved. Page 204

LucidWorks Search Platform Documentation

None. (Check properties to confirm changes.)

Delete a Scheduled Activity

DELETE / api/ col | ections/ nane/ activities/id
Input
Path Parameters
Key Description

collection = The collection name

id The activity's ID

Query Parameters
None

Output

Output Content
None

Return Codes
204: No Content

404: Not Found

Examples

Input

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/activities/19'

Output

None. (Check properties to confirm changes.)

Activity Status

The Activities Status API allows you to get information about whether or not an Activity is currently running.

® API Entry points
® Get the Current Status of an Activity

API Entry points

/api/collections/collection/activities/id/status: getthe status of an activity.

Get the Current Status of an Activity

CET /api/collection/collection/activities/id/status

© 2011 Lucid Imagination. All rights reserved. Page 205

LucidWorks Search Platform Documentation

Input
Path Parameters
Key Description

collection = The collection name

id The activity ID. Use 'all' for all activities
Query Parameters
None
Input Content
None
Output
Output Content
Key Type Description
id int The activity ID
running boolean Indicates if the data source is currently being indexed

type string The activity type

Examples

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/activities/2/status'

Output

While the activity is running:

{
"id" 2,
"runni ng" true,
"type" "optim ze"
}

Once process is finished, and the activity is idle:

{
idt o2,
"runni ng"
"type"

}

fal se,
"optim ze"

Activity History

© 2011 Lucid Imagination. All rights reserved.

Page 206

LucidWorks Search Platform Documentation

The Activity History API provides a means to get the historical statistics for previous Activity runs. It provides a data
source's history as a list of history instances.

® API Entry points
® Get the History of a Data Source

API Entry points

/api/coll ections/name/activities/id/ history: get statistics for the last 50 runs of the given Activity.

Get the History of a Data Source

GET /api/collections/collection/activities/id/ history
Input
Path Parameters
Key Description

collection = The collection name.

id The activity ID. Use 'all' for all activities.
Query Parameters
None
Input Content
None
Output

Output Content

Key Type Description

history JSON Contains the following two fields (activity_started and activity_finished) in a
map JSON map.

activity_started date When the activity began.
string

activity_finished date When the activity finished.
string

id integer The ID of the activity, if the API call was not for a specific activity.

Examples

Get a history of all activities:

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/activities/all/history'

Output

© 2011 Lucid Imagination. All rights reserved. Page 207

LucidWorks Search Platform Documentation

[
{
"history": [
{
"activity_finished": "2011-03-18T04: 44: 39+0000"
"activity_started": "2011-03-18T04: 44: 39+0000"
}
1.
“id': 9
1,
{
"history": [
{
"activity_finished": "2011-03-18TO 4:44: 44+0000",
"activity_started": "2011-03-18T04: 44: 44+0000"
}
1
“id": 10
1,
{
"history" : [
{
"activity_finished": "2011-03-18T04: 45: 03+0000"
"activity_started": "2011-03-18TO 4: 45: 03+0000"
}
I
"idtr 11
}
]

Get the history for activity number 9:

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/activities/9/history'

Output

"activity_finished": "2011-03-18T04: 44: 39+0000"
"activity_started": "2011-03-18T04: 44: 39+0000"

Data Sources

Data sources are conduits by which LucidWorks acquires new content. Data sources describe the target repository of
documents and access method. This description is then used to create a crawl job to be executed by a specific crawler
implementation (called "crawler controllers").

At present, the LucidWorks Search Platform comes with the following built-in crawler controllers that support the
following kinds of data sources:

Crawler Controller Symbolic Data Source Types Supported
Name

© 2011 Lucid Imagination. All rights reserved. Page 208

LucidWorks Search Platform Documentation

Aperture-based crawlers

DatalmportHandler-based
JDBC crawler

SolrXML crawler

Google Connector
Manager-based crawler

Remote file system and
pseudo-file system crawler

External data

API Entry Points

API Entry Points

Get a List of Data Sources
Create a Data Source

Get Data Source Details
Update a Data Source
Delete a Data Source

lucid.aperture

lucid.jdbc

lucid.solrxml

lucid.gcm

lucid.fs

lucid.external

Local file system

® Web

JDBC database

Solr XML files

Microsoft SharePoint (Microsoft Office SharePoint Server 2007,
Microsoft Windows SharePoint Services 3.0, SharePoint 2010)

SMB / CIFS (Windows sharing) filesystem

Hadoop Distributed File System (HDFS)

Amazon S3 file system (also known as "S3 native")
HDFS over Amazon S3

Externally generated data

/api/collections/collection/datasources: list or create data sources in a particular collection

/api/col |l ections/collection/datasources/id: update, remove, or get details for a particular data source

Get a List of Data Sources

CET /api/collections/collection/datasources

Input

Path Parameters

Key Description

collection = The collection name

Query Parameters
None
Output

Output Content

© 2011 Lucid Imagination. All rights reserved.

Page 209

LucidWorks Search Platform Documentation

A JSON map of fields to values. The exact set of fields depends on the kind of data source. Commonly used kinds of
data sources use the following symbolic names: file (files on a local file system), web (HTTP/HTTPS web sites), jdbc
(JDBC databases), solrxml (files in Solr XML format), and sharepoint (Microsoft SharePoint). All return:

Key Type Description
id 32-bit The numeric ID for this data source.
integer
type string = The type of this data source. Valid types are:

® file for a filesystem (remote or local, but must be paired with the correct crawler, as
below)

web for HTTP or HTTPS web sites

jdbc for a JDBC database

solrxml for files in Solr XML format

sharepoint for a SharePoint repository

smb for a Windows file share (CIFS)

hdfs for a Hadoop filesystem

s3n for a native S3 filesystem

s3 for a Hadoop-over-S3 filesystem

external for an externally-managed data source

crawler string Crawler implementation that handles this type of data source. The crawler must be able to
support the specified type. Valid crawlers are:

lucid.aperture for web and file types, when the filesystem is local

lucid.fs for file, smb, hdfs, s3n, and s3 types, when the filesystem is remote
lucid.gcm for sharepoint type

lucid.jdbc for jdbc type

lucid.solrxml for solrxml type

lucid.external for external type

collection string = The name of the document collection that documents will be indexed into.

name string A human-readable name for this data source. Names may consist of any combination of letters,
digits, spaces and other characters. Names are case-insensitive, and do not need to be unique:
several data sources can share the same name.

category string The category of this data source: Web, FileSystem, Jdbc, SolrXml, Sharepoint, External, or
Other. For informational purposes only.

The output also includes the field mapping for the data source, which is modifiable as part of the regular data source
update API. The data source key "mapping" contains a JSON map with the following keys and values:

Key Type Description

mappings JSON A map where keys are case-insensitive names of the original metadata key
string-string names, and values are case-sensitive names of fields that make sense in the
current schema. These target field names are verified against the current schema
and if they are not valid these mappings are removed. Please note that null
target names are allowed, which means that source fields with such mappings will
be discarded.

© 2011 Lucid Imagination. All rights reserved. Page 210

LucidWorks Search Platform Documentation

multi_val

types

default_field

dynamic_field

JSON
string-boolean

JSON
string-string

string

string

A map of target field names that is automatically initialized from the schema
based on the target field's multiValued attribute. In general, this will be adjusted
to match the schena. xn value. However, in cases where no indexing will be
performed (i.e., a batch crawl is being performed), the schema.xml is not
available for checking so it may be useful to edit this parameter manually to fit
the expected schema value. If performing a normal crawl (i.e., the crawler finds
the documents, parses them, and passes them along for indexing), this field
should be left as the default.

Field mapping normalization is a step applied after all target names for
field values have been resolved, including substitution with dynamic or
default field names. This step checks that values are compatible with
the index schema. The following checks are performed:

® For the "mimeType" field, : if it is defined as multiValued=false
then only the longest (probably most specific) value is retained,
and all other values are discarded.

® If field type is set to DATE in the field mapping, first the values
are checked for validity and invalid values are discarded. If
multiValued=false in the target schema, then only the first
remaining value will be retained, and all other values are
discarded.

® If field type is STRING, and multiValued=false in the target
schema, then all values are concatenated using a single space
character, so that the resulting field has only single
concatenated value.

® For all other field types, if multiValued=false and multiple values
are encountered, only the first value is retained and all other
values are discarded.

A map pre-initialized from the current schema. Additional validation can be
performed on fields with declared non-string types. Currently supported types are
DATE, INT, LONG, DOUBLE, FLOAT and STRING. If not specified fields are
assumed to have the type STRING.

The map is pre-initialized from the types definition in schema. xm in the following
ways:

Any class with DateField becomes DATE

Any class that ends with *DoubleField becomes DOUBLE

Any class that ends with *FloatField becomes FLOAT

Any class that ends with *IntField or *ShortField becomes INT
Any class that ends with *LongField becomes LONG

Anything else not listed above becomes STRING

The field name to use if source name doesn't match any mapping. If null, then
dynamicField will be used, and if that is null too then the original name will be
returned.

If not null then source names without specific mappings will be mapped to
dynamicField_sourceName, after some cleanup of the source name (non-letter
characters are replaced with underscore).

© 2011 Lucid Imagination. All rights reserved. Page 211

LucidWorks Search Platform Documentation

unique_key string Defines the name of the field in the current schema that is a unique key. Filled in
from the current schema. In general, this will be adjusted to match the
schema. xnl value. However, in cases where no indexing will be performed (i.e., a
batch crawl is being performed), the schema.xml is not available for checking so
it may be useful to edit this parameter manually to fit the expected schema
value. If performing a normal crawl (i.e., the crawler finds the documents, parses
them, and passes them along for indexing), this field should be left as the
default.

datasource_field @ string A prefix for index fields that are needed for LucidWorks faceting and data source
management. In general, this will be adjusted to match the schema. xnl value.
However, in cases where no indexing will be performed (i.e., a batch crawl is
being performed), the schema.xml is not available for checking so it may be
useful to edit this parameter manually to fit the expected schema value. If
performing a normal crawl (i.e., the crawler finds the documents, parses them,
and passes them along for indexing), this field should be left as the default.

literals JSON An optional map that can specify static pairs of keys and values to be added to
string-string output documents.

The following fields are optional and are supported across all data source types listed here:

Key Type Description

commit_within integer Number of milliseconds that defines the maximum interval between commits while
indexing documents.

commit_on_finish boolean When true (the default), then commit will be invoked at the end of crawl.

The following fields control the batch processing, and are also optional. Note: some crawler controllers don't support
batch processing, or support only a subset of options. See also the Batch Crawling API and more information on Batch
(Split) Crawling.

Key Type Description

parsing | boolean When true (the default), the crawlers will parse rich formats immediately. When false, other
processing is skipped and raw input documents are stored in a batch.

indexing boolean When true (the default), then parsed documents will be sent immediately for indexing. When
false, parsed documents will be stored in a batch.

caching boolean When true, both raw and parsed documents will always be stored in a batch, in addition to any
other requested processing. If false (the default), then batch is not created and documents are
not preserved unless as a result of setting other options above.

Below are specific fields for each data source type.

lucid.aperture / File system:

Key Type Description

path string The path of the directory to start reading from. Paths should be entered as
the complete directory path or they will be interpreted as relative to
$LVE_HOVE. On Unix systems, this means the path entered should start at
root / level; on Windows, the drive letter and full path should be used (such
as C:\ pat h). Various types of relative paths, such as ../ or ~/, are not
supported. Filesystem data sources are expected to be unique by URL,
which means that creating two data sources for the same directory is not
possible. The API will attempt to validate that LucidWorks Enterprise can
access the path, and will return an error if it cannot.

follow_links boolean Use true to instruct the crawler to follow symbolic links in the file system.

© 2011 Lucid Imagination. All rights reserved. Page 212

LucidWorks Search Platform Documentation

bounds string Either tree to limit the crawl to a strict subtree, or none for no limits. If tree
is chosen, the crawler will only access pages using the URL as the base
path. For example, if crawling / Pat h/ t o/ Fi | es, the tree option is the
equivalent of / Pat h/ t o/ Fi | es/ *. When follow_links is true, choosing none
will allow the crawl to go to directories outside the base directory path
entered.

include_paths list of Regular expression patterns to match on full URLs of files. If not empty then
strings = at least one pattern must match to include a file. This could be used to limit
the crawl to only certain types of files or certain subdirectories.

exclude_paths list of Regular expression patterns that URLs must not match. If not empty then a
strings file is excluded if any pattern matches its URL. This can be used to exclude
certain types of files from a crawl.

crawl_depth 32-bit How many path levels to descend. Use '-1' to indicate unlimited depth,
integer which is also the default if left empty.

max_bytes long Defines the maximum size of any crawled file. The default is -1, which is
10Mb per document.

url string Read-only value that shows the absolute path. In many cases this will be
identical to the path as entered, but if the path was a shortcut or symbolic
link, the url will show the real path.

fail_unsupported_file_types boolean If true, documents that cannot be parsed (either because of unspecified
errors or because of an unknown file format) will produce an error in the
logs. The default behavior is to not report these documents as failures to
the log.

warn_unknown_mime_types boolean If true, documents with no mime type specified in the format produce a
warning in the log. If the file cannot be processed as plain text, it will be
skipped and a warning message will be printed to the log. The default
behavior is to skip these documents and not report warnings in the log.

Example file data source

{

"crawl _depth": 5,

"follow_ |inks": true,

"nanme": "Luci dWbrks Docunentation”,

"path": "D:\\lwe\\docs\\I uci dworks",

"type": "file",

"bounds":"tree",

"crawl er": "lucid.aperture"
}

lucid.aperture / Web:

Key Type Description

url string The URL that serves as the crawl seed. This is expected to be unique for each data source
of this type, which means that creating two data sources for the same seed URL is not
possible. Note that the lucid.aperture crawler may not always be able to work successfully
with HTTP redirects and may fail on an initial attempt to crawl a site that redirects a user
to a different address. In most cases, a second attempt to crawl the data source will be
successful.

© 2011 Lucid Imagination. All rights reserved. Page 213

LucidWorks Search Platform Documentation

bounds string

include_paths list of
strings

exclude_paths list of
strings

crawl_depth 32-bit

integer
max_bytes long
max_docs long

Either tree to limit the crawl to a strict subtree, or none for no limits. If you choose tree,
the crawler will only access pages using the seed URL as the base path. For example, if
crawling http://www.cnn.com/US, the subtree option is the equivalent of
http://www.cnn.com/US* and would not crawl! http://www.cnn.com/WORLD,
http://www.cnnmexico.com/, or http://us.cnn.com/. If you require more advanced crawl
limiting, you should choose none and use the include_paths or exclude_paths options.

Regular expression patterns to match on full URLs of files. If not empty then at least one
pattern must match to include a file. If you leave this field empty, all paths will be followed
(except when tree is chosen as a bounds parameter), even if they lead away from the
original URL entered. To limit crawling to a specific site, repeat the URL with a regular
expression to indicate all pages from the site (such as, enter

http://wwh . | uci di magi nation\.conl.* if you want to crawl all pages under the URL
http://ww. | uci di magi nati on.com

Regular expression patterns that URLs may not match. If not empty then a file is excluded
if any pattern matches its URL.

The maximum number of crawl cycles (hops) from the starting URL to be crawled. Use '0'
to indicate only the seed URL, or any number higher than 0 to go deeper into a site. Use
'-1' to indicate unlimited depth, which is also the default if left empty. Unlimited depth will
crawl everything linked from the base URL and linked to those links, even if it is 10 or
more levels away. If the base URL is a public internet site, unless you constrain the crawl
to the subtree or define Allow/Disallow Paths, the crawler may run forever. Note that the
lucid.aperture crawler is not designed to create an index of the entire internet, and there
may be severe performance or index space problems if you do not constrain the crawl.

Defines the maximum size of any crawled file. The default is -1, which is 10Mb per
document.

Defines the maximum number of documents to crawl. The default is -1, which is all found
documents, in accordance with other parameters for the data source.

1 The include_paths and exclude_paths parameters for both web and file data source types use Java
Regular Expressions. The SharePoint data source type uses GNU Regular Expressions.

Robots.txt

This data source obeys most of the robots.txt standard, with the exception of the Crawl-Delay directive.

HTTP Proxy

This data source supports communication via an HTTP proxy, either open or authenticated. The following data source
properties determine the use of the proxy:

Key

proxy_host

proxy_port
proxy_username

proxy_password

Authentication

Type

string

string
string

string

Description

host name of the proxy. If null or absent then direct access is assumed, and all other
proxy-related parameters are ignored.

port number of the proxy
optional username credential for the proxy

optional password credential for the proxy

At this time, only the Basic and Digest types of HTTP authentication methods are supported. NTLMv1 and NTLMv2
authentication are not supported in this release.

© 2011 Lucid Imagination. All rights reserved. Page 214

http://www.cnn.com/US
http://www.cnn.com/US*
http://www.cnn.com/WORLD
http://www.cnnmexico.com/
http://us.cnn.com/
http://www.lucidimagination.com/.*
http://www.lucidimagination.com
http://download-llnw.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download-llnw.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://www.robotstxt.org/

LucidWorks Search Platform Documentation

A single data source may have multiple sets of credentials for different sites, or for different realms within a single
site. This authentication data is passed within the aut h property of the data source as a list of JSON maps, each map

with the following properties:

Key Type @ Description

host string host name (or host:port) where this authentication should be used; may be null to indicate any
host

realm string | HTTP Realm where this authentication should be used; may be null to indicate any realm

username string user name; must not be null or empty

password ' string password; must not be null

The HTTP connector first tries to access resources without any authentication. When it receives an HTTP code "401
Authentication Required" the authentication method (Basic, Digest or NTLMv1) is selected automatically, and the

closest matching authentication tuple is selected from the ones configured for the data source.

Example web data source

tidho2,
"collect_links": true,
"crawl _depth": 2,
"excl ude_pat hs": [
"http://wwhA\.lucidinagination\\.confblog/tag/.*",
"http://wwh\ .l ucidinagination\\.conm search\\?.*"
I
"include_paths": [
"http://wwhA\.lucidi magination\\.conl.*"
1.

"auth": [
{
"host": "ww. | uci di nagi nati on. com 443",
"realm': "Test realnt,
"usernane": "userl",
"password": "test1"
},
{
"host": "ww. | uci di magi nati on. cont',
"realm': null,
"usernane": "user2",
"password": "test2"
}
1,
"nanme": "Lucid | nmagination Wbsite",
"type": "web",
"craw er": "lucid.aperture",
“url™: "http://ww. | ucidi magi nation. con "

lucid.jdbc / JDBC:

JDBC databases must have a valid JDBC driver available to the crawler that is appropriate for your RDBMS. To load a

driver, use the JDBC Drivers API.

Key Type Description
driver string = The class name of the JDBC driver.
username string = The username of a database account that should be used to access the data.

© 2011 Lucid Imagination. All rights reserved.

Page 215

LucidWorks Search Platform Documentation

password string = The password of the account that should be used to access the data.
url string = A URI to the database. This should be in the form of j dbc: nysql : //1 ocal host/t est
. Database data sources are expected to be unique by URI, which means that
creating two data sources for the same URI is not possible.
sql_select_statement string = The select statement to use to generate data.
primary_key string = The column name of the primary key.
delta_sql_query string This allows incremental indexing, which will only retrieve updated records in
subsequent crawls without having to retrieve the entire contents of an unconstrained
query. Delta queries select only primary key values of your data and must include
last_maodified condition in the following form, " SELECT i d FROM t abl e WHERE
| ast _nodified > $". The "$" sign will hold the last successful import time from the
database. If you do not use the "$" character, the query will fail.
nested_queries list of | If you want to index one-to-many or many-to-many relations in addition to plain
strings = rows then you can specify an arbitrary number of additional SQL "nested" queries.
For example, if you want to index the list of assigned tags for your documents you
can specify a query in the following form " SELECT tag FROMtag | NNER JO N
docunent _tag ON docunent _tag.tag_id=tag.id WHERE docunent _t ag. doc_i d=$"
. The $ sign will hold the primary key of your main data row. This query will be
executed for every record of your data and corresponding list of tags will be
retrieved from database and indexed in the Solr index.
Example jdbc data source
{
"id" 2,
"nane": "Test database",
"type": "jdbc",
"crawl er": "lucid.jdbc",
"driver": "comnysql.jdbc.Driver",
"usernane": "root",
"password": "pass",
"url": "jdbc:nmysql://local host/test",
"sql _sel ect _statenent": "select * from docunment",
"primary_key": "id",
"delta_sql _query": "select id from docunent where |ast_nodified > $",
"nested_queries": ["select category from docunent_category where doc_i d=$",
"sel ect tag from docunent tag where doc_i d=$"]
}

lucid.solrxml / Solr XML file

The Solr XML data source can only be used on files are formatted according to Solr's XML structure and cannot be
used on XML files formatted for another XML standard. Per the Solr standard, all XML files must include the <add> tag
in order for the documents to be added to the LucidWorks index. More information on properly formatting a Solr XML
file is available at http://wiki.apache.org/solr/UpdateXmIMessages.

Key

© 2011 Lucid Imagination. All rights reserved.

Type Description

Page 216

http://wiki.apache.org/solr/UpdateXmlMessages

LucidWorks Search Platform Documentation

file string The name of the file to read, or directory containing files to read. Paths
should be entered as the complete directory path or they will be
interpreted as relative to $LWE_HOVE. On Unix systems, this means the
path entered should start at root / level; on Windows, the drive letter and
full path should be used (such as C:\ pat h). Various types of relative
paths, such as ../ or ~/, are not supported. The API will attempt to
validate that the path is accessible to the LucidWorks Enterprise server
and will return an error if it is not.

include_datasource_metadata | boolean Use true to add data_source and data_source_type fields to each
document in addition to fields found in the file. This will allow documents
to be included among "Data Source" facets.

generate_unique_key boolean = Use true to add a unique identifier to each document if one is not specified
already for each document in the file. If not specified, the default is true.

include_paths list of An array of URL patterns to include. Used when the data source has been
strings = configured to traverse a directory of possible Solr XML files.

exclude_paths list of An array of URL patterns to exclude. Used when the data source has been
strings configured to traverse a directory of possible Solr XML files.

url string Read-only value that shows the absolute path. In many cases this will be
identical to the path as entered, but if the path was a shortcut or symbolic
link, the url will show the real path to the files.

Example solr xml data source

"idhr 2,

"nane": "Solr exanple XM docunents"”,

"type": "solrxm",

"crawler": "lucid.solrxm",

"file": "D:\\lucene_solr\\solr\\exanpl e\\ exanpl edocs",
"include_paths" : ["*\.xnml"],

"include_dat asource_netadata": true

lucid.gcm / SharePoint:
LucidWorks supports crawling a SharePoint Repository running on the following platforms:

® Microsoft Office SharePoint Server 2007
® Microsoft Windows SharePoint Services 3.0
® Microsoft SharePoint 2010

F:

LucidWorks Search Platform does not support crawling a SharePoint repository running on Microsoft
Portal SharePoint Server 2003 or Microsoft Windows SharePoint Services 2.0.

The SharePoint crawler will index all content in the repository, including public and personal sites, files, discussion
boards, calendars, contacts, and images. In order to index SharePoint content, Google Services for SharePoint must
be installed to be able to fully use the embedded APIs that crawl a SharePoint server. The files are included with
LucidWorks Enterprise, but should be moved to the SharePoint server as described below.

1. Login to the SharePoint server whose sites are to be crawled by the SharePoint data source.

2. Go to the ISAPI directory of SharePoint. If you are using the standard default installation, path of this directory
would be C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\ISAPI\ for SharePoint
2007 and ...\14\ISAPI for SharePoint 2010

© 2011 Lucid Imagination. All rights reserved. Page 217

LucidWorks Search Platform Documentation

3. Copy the following files found from $LWE_HOME into the ISAPI folder as specified in previous step:

ext/ shar epoi
ext/ shar epoi
ext/ shar epoi

ext/sharepoi
ext/ shar epoi
ext/ shar epoi

ext/ shar epoi
ext/ shar epoi
ext/ shar epoi

nt _service/ Bul k
nt _service/ Bul k
nt _service/ Bul k

nt_service/Site
nt_service/Site
nt_service/Site

nt _service/ Acl / GssAcl . asnx
nt _servi ce/ Acl / GssAcl . aspx
nt _servi ce/ Acl / GssAcl . aspx

Aut h/ Shar ePoi nt 2007/ GSBul kAut hori zati on. asnx
Aut h/ Shar ePoi nt 2007/ GSBul kAut hori zat i ondi sco. aspx
Aut h/ Shar ePoi nt 2007/ GSBul kAut hori zat i onwsdl . aspx

Di scovery/ Shar ePoi nt 2007/ GSSi t eDi scovery. asnx
Di scovery/ Shar ePoi nt 2007/ GSSi t eDi scoverydi sco. aspx
Di scovery/ Shar ePoi nt 2007/ GSSi t eDi scover ywsdl . aspx

Key
sharepoint_url
username
password
domain
kdcserver

my_site_base_url

included_urls

excluded_urls

Type

string
string
string
string
string

string

string

string

use_sp_search_visibility = boolean

aliases

authorization

map of
string
to
string

string

Description

The fully qualified URL for the SharePoint site.

Username with authorization to crawl the SharePoint repository.
Password for the username above.

The domain where the user is authenticated .

Kerberos KDC Hostname.

Used for MOSS 2007 only. The MySite base URL is used to determine the
complete MySite URL, so
http://server.domain/personal/administrator/default.aspx would be entered as
http://server.domain. The credentials provided will allow the lucid.gcm crawler
to complete the MySite URL and crawl the content.

The directories on the server that should be crawled for indexing. If left blank,
all paths will be followed, even if they lead away from the original URL entered.
To limit crawling to a specific site, repeat the URL in this site with a regular
expression to indicate all pages from the site. The SharePoint data source uses
GNU regular expressions, which may be different from the Java regular
expressions used for Web and file system data sources. More information on the
syntax can be found in the GNU regular expression documentation.

Directories on the server that should not be crawled and that should be excluded
from the index. The same regular expression syntax can be used to specify
excluded_urls as is used for included_urls.

When true (default) then SharePoint search visibility options will be respected.
Google Services for SharePoint must be installed to use this feature.

Allows mapping of source URL patterns to aliases that are used to rewrite URLs
before indexing.

Should always be set to 'content’, which is the default.

© 2011 Lucid Imagination. All rights reserved. Page 218

http://server.domain/personal/administrator/default.aspx
http://server.domain
http://www.gnu.org/software/gawk/manual/html_node/Regexp.html

LucidWorks Search Platform Documentation

Example SharePoint repository data source

{

"idhr 2,

"nane": "Sharepoint craw ",

"type": "sharepoint",

"craw er": "lucid.gcnt,

"sharepoint _url": "http://my.sharepoint.host.conm",
"usernane": "user",

"password": "secret",

"domai n": "nyDonmai n",

"included_urls": ".*",

"use_sp_search_visibility": true,

"aut hori zation": "content"”
}

lucid.fs / Remote or Pseudo Filesystems

The following properties are common to all remote and pseudo file systems (HDFS, S3, S3n, SMB):

Key

url

type

Type Description

string Root URL formats vary by file system type. For details on the root URL format, see the
file-system-specific information below.

string One of supported data source types, must be consistent with the root URL's protocol. The
following values are supported: file, smb, hdfs, s3n, s3

max_bytes long Optional, default is -1, which is 10Mb per document.

bounds

includes

excludes

string Either tree to limit the crawl to a strict subtree, or "none" for no limits. For example, if
crawling snb: //10. 0. 0. 50/ docs, the tree option is the equivalent of
snb: //10. 0. 0. 50/ docs* and the lucid.fs would not crawl snb: // 10. 0. 0. 50/ ot her . If you
require more advanced crawl limiting, you should choose none and using the includes or
excludes options.

list of = Regular expression patterns to match on full URLs of files. If not empty then at least one
strings = pattern must match to include a file. If left blank, all subdirectory paths will be followed
(limited by the crawl_depth). This feature can be used to limit a filesystem crawl to specific
subdirectories of a base directory path. For example, if the base directory path is
/ Pat h/to/ Fi | es, includes could be used to limit the crawl to subdirectories
/ Path/to/ Fil es/ Archivel/ 2010/ * and / Path/to/ Fi |l es/ Archi ve/ 2011/ *.

list of = Regular expression patterns that URLs must not match. If not empty then a file is excluded if
strings = any pattern matches its URL.

crawl_depth | 32-bit = How many path levels to descend. Use '-1' to indicate unlimited depth which is also the

integer default if left blank.

lucid.fs / File
There are no protocol-specific properties for File (fi |l e://) data sources.

lucid.fs / HDFS

Key

url

Type Description

string = A fully-qualified Hadoop file system URL, including the protocol (hdfs), host name and port of
the namenode, and path of the target resource to crawl:
hdf s: // namenode: 9000/ pat h/ t o/ craw .

username string

© 2011 Lucid Imagination. All rights reserved. Page 219

file://

LucidWorks Search Platform Documentation

password | string
lucid.fs / S3n
Key Type
url string
username
password
lucid.fs / S3
Key Type
url string
username
password

Description

For S3n (Amazon S3 native), the root URL is a fully-qualified URL that starts with the s3n
protocol, the name of the bucket, and the path inside the bucket. Both AccessKeyl d and

Secr et AccessKey are needed: submit AccessKeyl d as the username and Secr et AccessKey as
the password. You can also pass these credentials as part of the URL in the following format:
s3n: // <user name>@passwor d>: bucket / pat h . However, Amazon S3 credentials often contain
characters that are not allowed in URLs. In that case, you must pass these credentials by setting
the "username" and "password" properties explicitly.

Your Amazon S3 AccessKeyld

Your Amazon S3 SecretAccessKey

Description

For S3 (Hadoop over Amazon), the root URL is a fully-qualified URL that starts with the s3
protocol, the name of the bucket, and the path inside the bucket. Both AccessKeyl d and

Secr et AccessKey are needed: submit AccessKeyl d as the username and Secr et AccessKey as
the password. You can also pass these credentials as part of the URL in the following format:

s3:// <user name>@passwor d>: bucket / pat h . However, Amazon S3 credentials often contain
characters that are not allowed in URLs. In that case, you must pass these credentials by setting
the "username" and "password" properties explicitly.

Your Amazon S3 AccessKeyld

Your Amazon S3 SecretAccessKey

lucid.fs / SMB or CIFs (Windows Share)
Information about how LucidWorks interprets Access Control Lists for a Windows Share, see Crawling Windows Shares
with Access Control Lists.

Key

url

username

password

Type Description

string For SMB (Windows Shares) filesystems, the root URL includes the protocol (snb), the host
address, and the path to crawl: snb: // host/ pat h/to/ craw . By default, all files in the
directory tree or folder hierarchy linked from this URL will be crawled, unless you select
some of the limiting options available.

string = A username with READ and ACL READ permissions for accessing the Windows Share. It's
recommended to create a special user for this purpose.

string | Password for a user with READ and ACL READ permissions for accessing the Windows
Share.

windows_domain ' string The optional Windows Domain of the shared file system.

There are a number of SMB related settings that can be controlled by using Java System Properties. See
http://jcifs.samba.org/src/docs/api/overview-summary.html#scp for more information about those settings. Currently
the easiest way to specify these System Properties is to edit the $LWE_HOME/ conf/ mast er. conf file and modify the
value for the property | wecor e. j vm par ans. A restart of LucidWorks Enterprise is needed to make the changes

visible.

© 2011 Lucid Imagination. All rights reserved. Page 220

http://jcifs.samba.org/src/docs/api/overview-summary.html#scp

LucidWorks Search Platform Documentation

Example remote filesystem (SMB) source

"id": 10,

"nane": " <dat asour ce name>",

"type":"snb",

"crawm er":"lucid.fs",

"url":"snb://<host>/ <path>/",
"usernane":"usernane",

"password": "password",

"w ndows_donmai n": " <your w ndows domai n>"

}

"http://1ocal host: 8888/ api/collections/<collection>/datasources'

lucid.external/Externally controlled data sources

External data sources are those which do not use any of LucidWorks Enterprise crawler features. They instead feed
documents directly to Solr via another process, such as Solr]. The purpose of adding it as a LucidWorks Enterprise
data source is to link LucidWorks Enterprise features, such as the Admin UI or display of data sources as facets, to the
documents. Once the data source is created, several fields should be added to each document to complete the link;
see more information on this at Suggestions for External Data Source Documents.

ﬂ External data sources cannot be scheduled or otherwise controlled with LucidWorks Enterprise. The
process for feeding documents to the index is entirely controlled outside of the application. If regular
updates to documents are required, a server-side cron job or other mechanism may need to be
configured manually.

Key Type Description
name string The name of the data source.
source string | Can be anything, but recommended use is for this to be an address or other type of location

information to differentiate the external source.

source_type string Can be anything, but recommended use is for this to be the type of source ("wiki" or "finance
data") that helps identify it.

Sample External source

"id": 45,

"nanme": " Test External #1",
"type":"external ",

"crawl er":"lucid. external",
"source_type":"Raw Sol r XM.",
"source":"Sol r update"

Response Codes

200: Success OK

Examples

Input

© 2011 Lucid Imagination. All rights reserved. Page 221

http://wiki.apache.org/solr/Solrj

LucidWorks Search Platform Documentation

curl "http://1ocal host: 8888/ api/collections/collectionl/datasources’

Output

"max_bytes": 10485760,
"include_paths": [],
"collect_links": true,
"exclude_paths": [],
"mapping": {

"mul ti_val": {
"fileSize": true,
"author": true,
"body": true,
"title": true,
"keywords": true,
"description": false,
"subject": true,
"fileNane": true,
"dat eCreated" : false,
"attr": true,
"creator": true

}

default_field": null,

"mappi ngs": {

"content-type ": "m neType",
"slide-count": "pageCount",
"body": "body",

"slides": "pageCount",

"subject": "subject",

"pl ai nt ext nessagecontent”: "body",
"l ast nodi fi edby": "author",
"content -encodi ng": "characterSet",
"date": null,

"type": null,

"creator": "creator",

"author": "author",

"mnetype": "m neType",

"title": "title",

"pl ai ntextcontent": "body",
"created": "dateCreated",
"contributor": "author",
"description": "description",
"contentcreated": "dateCreated",
"pagecount": "pageCount",

"name": "title",
"filelastnodified": "lastMdified",
"full name": "author",

"fulltext": "body",
"last-nodified": "lastMdified" ,
"nmessagesubject”: "title",
"keyword": "keywords",

"contentl astnodi fied": "lastMdified",
"last-printed": null,

"l'inks": null,

"batch_id": "batch_id",

“crawl _uri": “"craw _uri",
"filesize": "fileSize",
"page-count": "pageCount",
"content-length": "fileSize",

© 2011 Lucid Imagination. All rights reserved.

LucidWorks Search Platform Documentation

"filename": "fil eName"
H
"dynam c_field": "attr",
"types": {
"filesize": "INT",
"pagecount” : "INT",
"l astnodi fied": "DATE",
"dat ecreat ed": "DATE",
"date": "DATE"
b
"uni que_key": "id ",
"dat asource_field": "data_source"
o
"collection": "collectionl",
"type": "web",
"url™ : "http://ww.grantingersoll.com",
"crawl er": "lucid.aperture",
tidtro1,
"bounds": "tree",
"category": "Web",
"name": "Sanple Site",
"craw _depth": 2
b
{

"max_bytes": 21474836 47,
"include_paths": [],
"excl ude_paths": [],

"mappi ng": {
"mul ti_val": {
"fileSize": true,
"body": true,

"aut hor": true,
"title": true,
"keywords": true,
"subject": true,
"descripti on": false,
"fileNanme": true,

"dat eCreated": false,
"attr": true,
"creator": true

H

"default_field": null,

"mappi ngs": {
"slide-count": "pageCount",
"content-type": "m nmeType",
"body": "body",
"slides": "pageCount",
"subject": "subject",
"pl ai nt ext nessagecontent”: " body",
"l ast nodi fi edby": "author",
"cont ent -encodi ng": "characterSet",
"type": null,
"date": null,
"creator": "creator",
"author": "author",
"title": "title",
"m netype": "m neType",
"created": "dateCreated",
"pl ai ntextcontent": "body",
"pagecount”: "pageCount",
"contentcreated": "dateCreated",
"description": "description",
"contributor": "author ",
"name": "title",
"filelastnodified": "lastMdified",
"full name": "author",

© 2011 Lucid Imagination. All rights reserved.

LucidWorks Search Platform Documentation

"nmessagesubj ect":
"l ast-nodified":

"content | ast nodi f

"l'inks": null,

"category": "FileSystent,

© 2011 Lucid Imagination. All rights reserved.

"fulltext ": "body",

"title",
"| ast Modi fied",

"keyword": "keywords",

ied": "lastMdified",

"last-printed": null,

"batch_id": "batch_id",

"craw _uri": "craw _uri",
"filesize": "fileSize",
"page-count": "pageCount",
"content-length": "fileSize",
"filename": "fil eName"
I
"dynam c_field": "attr",
"types": {
"filesize": "INT",
"pagecount”: "I NT",
"l astnodi fied": "DATE",
"datecreated ": "DATE",
"date": "DATE"
b
"uni que_key": "id",
"dat asource_field": "data_source"
I
"follow |inks": true,
"collection": "collectionl",
"type": "file",
"cram er": "lucid.aperture ",
"id'r 2,
"bounds": "tree",

"name": "Small Test Collection",
"path": "C\\ Users\\ N ck\\Docunent s\\Busi ness"

Page 224

LucidWorks Search Platform Documentation

"crawl _depth": 2147483647

Create a Data Source
PQOST /api/collections/collection/datasources

Input

Path Parameters

Key Description

collection = The collection name

Query Parameters
None
Input content

JSON block with all fields. The ID field, if present, will be ignored. See fields in section on getting a list of data sources

Output

Output Content

JSON representation of new data source. Fields returned are listed in the section on getting a list of data sources.
Return Codes

201: created

Examples

Create a data source that includes the content of the Lucid Imagination web site. To keep the size down, only crawl
two levels, and do not index the blog tag links or any search links. Also, do not wander off the site and index any
external links.

Input

curl -H'Content-type: application/json' -d '
{
"crawl _depth": 2,
"excl ude_pat hs": [
"http://wwhA\.lucidinagination\\.conf blog/tag/.*",
“"http://wwA\ . lucidinagination\\.conl search\\?.*"
I
"include_paths": [
"http://wwhA\.lucidimagination\\.conm .*"

I

"nane": "Lucid I nagination Wbsite",
"type": "web",

"crawl er": "lucid.aperture",

“url™: "http://ww.l ucidinagi nation.conm "

}' '"http://1ocal host: 8888/ api/collections/collectionl/datasources'

© 2011 Lucid Imagination. All rights reserved. Page 225

LucidWorks Search Platform Documentation

Output
{
“id": 6,
"max_bytes": 10485760,
"include_paths": [
"http://wwhA\.lucidinagination\\.cont.*"
1.

"col lect_links": true,
"excl ude_pat hs": [
"http://wwhA\.lucidi magination\\.conl bl og/tag/.*",
"http://wwh\.lucidimagination\\.conl search\\?. *"

1.
"mappi ng": {
"mul ti_val ": {
"fileSize": true,
"body": true,

"aut hor": true,
"title": true,
"keywords": true,
"subject": true,
"description": false,
"fileNanme": true,
"dateCreated": false,
"attr": true,
"creator": true

I

"default_field": null,

"mappi ngs": {
"slide-count": "pageCount",
"content- type": "m neType",

"body": "body",
"slides": "pageCount",

"subject": "subject",

"plainte xtnmessagecontent": "body",
"l astnodi fiedby": "author",
"content-encodi ng": "character Set",

"type": null,
"date": null,

"creator": "creator",

"author": "author",

"title": "title",

"mnetype": "m neType",

"created": "dateCreated",
"plaintextcontent": "body",

"page count": "pageCount",
"contentcreated": "dateCreated",
"description": "description",
"contributor": "author",

"name": "title",
"filelastnodified": "lastMdified",
"full name" : "author",

"fulltext": "body",

"nmessagesubj ect”: "title",
"last-nodified": "lastMdified",
"keyword": "keywords",

"contentl astnodified": "lastMdified",

"last-printed": null,
"l'inks": null,
"batch_id": "batch_id",

“craw _uri": "craw _uri",
"filesize": "fileSize",
"page-count": "pageCount",
"content-length": "fileSize",

© 2011 Lucid Imagination. All rights reserved. Page 226

LucidWorks Search Platform Documentation

"filename": "fileNane"
o
" dynamc_field": "attr",
"types": {
"filesize": "INT",
"pagecount”: "I NT",
"lastnodi fied": "DATE",
"dat ecreated": "DATE",
"date": "DATE"
o
"uni que_key": "id",
"datasource_field": "data_source"
b
"collection": "collectionl",
"type": "web",
"url": "http://ww.l ucidi magi nation.conl",
"crawl er": "lucid.aperture",
"bounds": "tree",

"category": "Web" |

© 2011 Lucid Imagination. All rights reserved. Page 227

LucidWorks Search Platform Documentation

"nane": "Lucid | nagination Wbsite",

"crawl _depth": 2

Get Data Source Details

CGET /api/collections/collection/datasources/id

ﬁ Note that the only way to find the id of a data source is to either store it on creation, or use the API

Input

call referenced above to get a list of data sources.

Path Parameters

Key

Description

collection ' the collection name

Query Parameters

Key Type

id

Description

string = The data source ID

Input content

None

Out

put

Output Content

Fields returned are listed in the section on getting a list of data sources.

Return Codes

200: success ok

404: not found

Exa

Get all of the parameters for data source 6, created in the previous step.

mples

Input

Out

© 2011 Lucid Imagination. All rights reserved.

curl

"http://1ocal host: 8888/ api/collections/collectionl/datasources/6

put

"id": 6,
"max_bytes":

10485760,

Page 228

LucidWorks Search Platform Documentation

"include_paths": [
"http://wwh\.lucidi magination\\.com .*"

"collect_links": true,
"exclude_pat hs": [
"http://wwhA\.lucidimagination\\.conl blog/tag/.*",
"http://wwh\ .l ucidinagination\\.conf search\\?. *"

1.
"mappi ng": {
"mul ti_val ": {
"fileSize": true,
"body": true,

"aut hor": true,
"title": true,
"keywords": true,
"subject": true,
"description": false,
"fileNanme": true,
"dateCreated": false,
“attr": true,
"creator": true

}

"default_field": null,

"mappi ngs": {
"slide-count": "pageCount",
"content- type": "m neType",

"body": "body",
"slides": "pageCount",

"subj ect": "subject",

"plai nte xtnmessagecontent": "body",
"l ast modi fi edby": "author",
"content-encodi ng": "character Set",

"type": null,
"date": null,

"creator": "creator",

"aut hor": "author",

"title": "titl e",

"mnetype": "m neType",

"created": "dateCreated",

"plai ntextcontent": "body",

"page count": "pageCount",
"contentcreated": "dateCreated",
"description": "description",
"contributor": "author",

"nane": "title",
"filelastnodified': "lastMdified",
"full name" : "author",

"fulltext": "body",

"nmessagesubj ect": "title",
"last-nodified": "lastMdified",
"keyword": "keywords",

"contentl astnodified": "lastMdified",

"last-printed": null,
"links": null,
"batch_id": "batch_id",

"crawl _uri": "crawl _uri",
"filesize": "fileSize",
"page-count": "pageCount",
"content-length": "fileSize",
"filename": "fil eNane"

.

" dynamc_field": "attr",

"types": {
"filesize": "INT",
"pagecount": "I NT",

"lastrodi fied": "DATE",

© 2011 Lucid Imagination. All rights reserved. Page 229

LucidWorks Search Platform Documentation

"dat ecreated": "DATE",
"date": "DATE"

}
"uni que_key": "id",
"dat asource_field": "data_source"
},
"collection": "collectionl",
"type": "web",
"url": "http://ww.l ucidinagi nation.conm "
"crawl er": "lucid.aperture",
"bounds": "tree",

"category": "Web" |,

© 2011 Lucid Imagination. All rights reserved.

Page 230

LucidWorks Search Platform Documentation

"nane": "Lucid | nagination Wbsite",
"crawl _depth": 2

Update a Data Source
PUT /api/collections/collection/datasources/id

Input

Path Parameters

Key Description
collection = The collection name

id The data source ID

Query Parameters
None
Input content

JSON block with either all fields or just those that need updating. Data source type, crawler type, and ID cannot be
updated. Other fields are listed in the section on getting a list of data sources.

Output

Output Content

None

Return Codes

204: success no content

Examples

Change the web data source so that it crawls three levels instead of just two:

Input

curl -X PUT -H ' Content-type: application/json" -d '
{
"crawl _depth": 3
}' '"http://1ocal host: 8888/ api/collections/collectionl/datasources/6'

Output

None. (Check properties to confirm changes.)

Delete a Data Source
DELETE / api/ col | ections/col | ection/datasources/id

Input

© 2011 Lucid Imagination. All rights reserved. Page 231

LucidWorks Search Platform Documentation

Path Parameters

Key Description
collection ' the collection name

id The data source ID

Query Parameters
None
Input content

None

Output

Output Content

None

Return Codes

204: success no content

404: not found
Examples

Input

curl -X DELETE -H 'Content-type: application/json' 'http:
/1l ocal host: 8888/ api / col | ections/col | ecti onl/datasources/ 13"

Output

None. Check the listing of data sources to confirm deletion.

Data Source Schedules

Each data source has a corresponding schedule that determines when that particular data source will be updated.
Typically, schedules are recurring, so LucidWorks can index new documents from a data source. However, schedules
can also be programmed for a single point in time.

A schedule is a property of a data source. As such, it does not have an individual ID. Instead, the API references the
ID of the data source itself. The schedule is created at the same time as the data source creation, so there is no
mechanism to create a data source schedule.

' A schedule set with this API may display in the Admin UI as "custom" if the options selected do not
match those available via the UI. Some examples of cases where this might happen:

® The period is set to something other than hourly (3600 seconds), daily (86,400 seconds) or
weekly (604,800 seconds).

® The start_time is set to a day that's not today.

® The start_time is set to an hour that is not this hour.

If the schedule is shown as "custom" in the UI, it is still possible to edit it via the UI. However the
options will be limited to the options available through the UI at the current time.

© 2011 Lucid Imagination. All rights reserved. Page 232

LucidWorks Search Platform Documentation

® API Entry Points
® Get a Data Source Schedule
® Update a Data Source Schedule

API Entry Points

/api/col | ections/coll ection/datasources/id/schedul e: Get or update this data source's schedule.

Get a Data Source Schedule

CET /api/collection/collection/datasources/id/schedul e

Input
Path Parameters

Key Description

collection = The collection name

id The data source ID
Query Parameters
None

Output

Output Content

A JSON map of fields to values. Fields are:

Key Type Description

start_time date The start date for this schedule, in the format yyyy- Mt dd' T' HH: nm ss' / ~hhnm_The /' is
string adjusted for the time zone relative to UTC.

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this

integer should only occur once.
type string Currently always i ndex.

active boolean | If true, this schedule will be run at the next scheduled time.
Response Codes
200: OK

Examples
Find out when data source 8 will be indexed next.

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/datasources/8/ schedul e'

Output

© 2011 Lucid Imagination. All rights reserved. Page 233

LucidWorks Search Platform Documentation

"period": O,

"type": "index",

"start_tinme": "2010-03-29T12:10: 32-0700",
"active": true

Update a Data Source Schedule
PUT /api/collections/collection/datasources/id/schedul e

Input

Path Parameters

Key Description
collection = The collection name

id The data source ID

Query Parameters
None
Input Content

Map of fields that should be updated to their new values.

Key Type Description

start_time date The start date for this schedule, in the format yyyy- MM dd' T' HH: nm ss' / “hihmm_The APL can
string accept a refative time of_Now . The ‘T 15 entered without quotes. 1The /' is for the time zone

relative to UTC, and also entered without quotes.

period 64-bit The number of seconds in between repeated invocations of this schedule; set to 0 if this
integer should only occur once.

type string Currently always i ndex (required).
active boolean ' If true, this schedule will be run at the next scheduled time.
Output

Output Content
None

Response Codes
204: No Content
Examples

Input

© 2011 Lucid Imagination. All rights reserved. Page 234

LucidWorks Search Platform Documentation

curl -X PUT -H ' Content-type: application/json' -d '
{
"period": 3,
"type": "index",
"start_tine": "2011-03-18T12:10: 32-0700",
"active": true
}' "http://1ocal host: 8888/ api/collections/collectionl/datasources/8/ schedule'

Output

None.

Data Source Jobs

The Data Sources Jobs API allows direct control over the life cycle of data source crawl jobs.

API Entry Points

Get the Status of a Data Source in a Collection
Start Crawling a Data Source in a Collection
Stop Crawling a Data Source in a Collection

Get the Status of All Data Sources in a Collection
Start Crawling All Data Sources in a Collection
Stop Crawling All Data Sources in a Collection

API Entry Points
/api/col | ections/col |l ection/datasources/id/job: getthe status of, start, or stop crawling a data source for a
particular collection

/api/col | ections/col | ection/datasources/all/job: getthe status of, start, or stop crawling all data sources for
a particular collection

Get the Status of a Data Source in a Collection

GET /api/collections/collection/datasources/id/job
Input
Path Parameters
Key Description

collection = The collection name.

id The data source ID.
Query Parameters
None.

Output

Output Content

Key Description
id The unique id of the datasource.
num_total The total number of documents found during the last crawl.

© 2011 Lucid Imagination. All rights reserved. Page 235

LucidWorks Search Platform Documentation

num_failed The number of documents that could not be parsed.
num_deleted The number of documents that were removed from the index.
num_new The number of documents considered "new".

num_updated The number of documents that were updated.

num_unchanged The number of documents that were not changed.
crawl_started The date and time the crawl started.

crawl_stopped The date and time the crawl stopped.

crawl_state The current state of the job. Entries are FINISHED, STOPPED, or RUNNING.
batch_job If false, the content crawled will be added to the index.
job_id The ID of the job itself.

Response Codes

204: SUCCESS_NO_CONTENT

422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during starting.

Examples

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/datasources/8/job'

Output

{"id":8,

"craw _started":"2011-08-15T13: 06: 34+0000",
"numtotal ": 27,

"num unchanged": 0,
"crawl _state": " RUNNI NG',
"crawl _stopped”: null,
"job_id":"8",

"batch_j ob": fal se,
"num_updat ed": 0,
"num_new': 23,

"num failed":4,

"num del et ed": 0}

Start Crawling a Data Source in a Collection
PUT /api/collections/collection/datasources/id/job

Input

Path Parameters

Key Description
collection = The collection name.

id The data source ID.

© 2011 Lucid Imagination. All rights reserved.

Page 236

LucidWorks Search Platform Documentation

Query Parameters

None.

Output

Output Content

None.

Response Codes

204: SUCCESS_NO_CONTENT

422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during starting.
Examples

Input

curl -X PUT '"http://]ocal host: 8888/ api/collections/collectionl/datasources/8/job'

Output

None.

Stop Crawling a Data Source in a Collection

DELETE / api/ col | ections/col | ecti on/ dat asources/id/job
Input
Path Parameters
Enter path parameters.
Key Description

collection The collection name.

id The data source ID.
Query Parameters
None.
Output
Output Content
None.
Response Codes
204: SUCCESS_NO_CONTENT
422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during stopping.
Examples

Input

© 2011 Lucid Imagination. All rights reserved. Page 237

LucidWorks Search Platform Documentation

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/datasources/8/job'

Output

None.

Get the Status of All Data Sources in a Collection

GET /api/collections/collection/datasources/all/job
Input
Path Parameters

Key Description

collection = The collection name.
Query Parameters

None.

Output

Output Content

Key Description

id The unique id of the datasource.

num_total The total number of documents found during the last crawl.
num_failed The number of documents that could not be parsed.
num_deleted The number of documents that were removed from the index.
num_new The number of documents considered "new".

num_updated The number of documents that were updated.

num_unchanged The number of documents that were not changed.
crawl_started The date and time the crawl started.

crawl_stopped The date and time the crawl stopped.

crawl_state The current state of the job. Entries are FINISHED, STOPPED, or RUNNING.
batch_job If false, the content crawled will be added to the index.
job_id The ID of the job itself.

Response Codes

204: SUCCESS_NO_CONTENT

422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during starting.

Examples

Input

© 2011 Lucid Imagination. All rights reserved.

Page 238

LucidWorks Search Platform Documentation

curl '"http://1ocal host: 8888/ api/collections/collectionl/datasources/all/job'

Output

[

{"id":3,

"crawl _started":null,

"num total ":0,"numunchanged": 0,
"crawl _state":"|DLE",

"crawl _stopped":null,"job_id":"3",
"batch_j ob": fal se, "num updat ed": 0,
"num_new': 0,

"numfailed:oO,

"num del et ed": 0}

{"id": 4,

"craw _started":"2011-08-15T13: 06: 34+0000",
"numtotal":27,
"num_unchanged": 0,
"crawl _state": " RUNNI NG',
"crawl _stopped": nul I,
"job_id":"4",

"batch_j ob": fal se,

"num updat ed": 0,
"num_new': 23,

"num failed":4,

"num del et ed": 0}

]

Start Crawling All Data Sources in a Collection

PUT /api/collections/collection/datasources/all/job
Input
Path Parameters
Enter path parameters.
Key Description
collection = The collection name.
Query Parameters
None.
Output
Output Content
None.
Response Codes
204: SUCCESS_NO_CONTENT

422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during starting.

© 2011 Lucid Imagination. All rights reserved.

Page 239

LucidWorks Search Platform Documentation

Examples

Input

curl -X PUT 'http://]ocal host: 8888/ api/collections/collectionl/datasources/all/job'

Output

None.

Stop Crawling All Data Sources in a Collection

DELETE / api / col | ections/col | ection/ datasources/all/job
Input
Path Parameters
Enter path parameters.

Key Description

collection = The collection name

Query Parameters
None.
Output

Output Content
None.

Response Codes

204: SUCCESS_NO_CONTENT
422: CLIENT_ERROR_UNPROCESSABLE_ENTITY, including a list of errors encountered during starting.

Examples

Input

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/datasources/all/job’'

Output

None.

Data Source Status

The Data Source Status API provides a means to get information about whether a data source is currently being

processed. This outputs the same information as the Data Source Jobs API but is available as a way to intermittently
check the progress of the job.

® API Entry Points
® Get the Status of a Data Source

API Entry Points

© 2011 Lucid Imagination. All rights reserved. Page 240

LucidWorks Search Platform Documentation

/api/col | ections/collection/datasources/id/status: Get this data source's status

Get the Status of a Data Source

CET /api/collection/collection/datasources/id/status

Input

Path Parameters

Key Description

collection = The collection name.

id The data source ID.

Query Parameters

None
Output

Output Content

Key

id

num_total
num_failed
num_deleted
num_new
num_updated
num_unchanged
crawl_started
crawl_stopped
crawl_state
batch_job

job_id

Examples

Input

Description

The unique id of the datasource.

The total number of documents found during the last crawl.
The number of documents that could not be parsed.

The number of documents that were removed from the index.
The number of documents considered "new".

The number of documents that were updated.

The number of documents that were not changed.

The date and time the crawl started.

The date and time the crawl stopped.

The current state of the job. Entries are FINISHED, STOPPED, or RUNNING.

If false, the content crawled will be added to the index.

The ID of the job itself.

curl '"http://1ocal host: 8888/ api/collections/collectionl/datasources/?2/status'

Output

While the data source is being processed:

© 2011 Lucid Imagination. All rights reserved.

Page 241

LucidWorks Search Platform Documentation

"numtotal ": 24,
"id": 3,
“craw _stopped":null,
"numfailed":O0,
"num_updat ed": 0,
"num unchanged": 0O,
"crawl _started":"2011-09-12T20: 51: 55+0000",
"num del eted": 0,
"batch_j ob": fal se,
"num_new': 24,
"crawl _state": " RUNNI NG',
"job_id":"3"

After processing is finished, and the data source is idle:

"num total ":44,

"id": 3,

"craw _stopped":"2011-09-12T20: 53: 05+0000"
"numfailed":1,

"num updat ed": 0,

"num unchanged": 0O,

"craw _started":"2011-09-12T20: 51: 55+0000",
"num del eted": 0,

"batch_j ob": fal se,

"num_new': 43,

"crawl _state":"FI Nl SHED",

"job_id":"3"

Data Source History

The Data Source History API returns historical statistics for previous data source runs. History only returns
information about prior crawls for a data source. Use Data Source Jobs or Data Source Status for details on currently
running crawls.

® API Entry Points
® Get Data Source History

API Entry Points

/ api / col | ecti ons/ nanme/ dat asour ces/i d/ hi story: Get statistics for the last 50 runs of the given data source.

Get Data Source History

GET /api/collections/collection/datasources/id/history
Input
Path Parameters

Enter path parameters.

Key Description

collection = The collection name.

© 2011 Lucid Imagination. All rights reserved. Page 242

LucidWorks Search Platform Documentation

id

The data source ID.

Query Parameters

None

Output

Output Content

Key Type

id integer

crawl_started date
string

crawl_stopped date

string

crawl_state string

num_unchanged 32-bit

integer
num_deleted 32-bit

integer
num_new 32-bit

integer

num_updated 32-bit

Description
The ID of the datasource.

When the crawl began.

When the crawl finished.

The current state of the crawl (RUNNING, FINISHED, or STOPPED).

The number of documents found that were not modified and did not need to be indexed.
The number of documents that were removed from the index because they were no
longer found in the source.

The number of new documents that were found in the source and added to the index.

The number of existing documents that were found in the source and updated in the

integer index because they were modified since the last time they were indexed.
num_failed 32-bit The number of documents from which the crawler failed to extract text.
integer
num_total 32-bit The total number of documents found.
integer
batch_job boolean If false, documents found will be indexed after crawling.
job_id integer The ID of the job.
Examples
Input
curl "http://1ocal host: 8888/ api/collections/nyCollection/datasources/8/ history'
Output

© 2011 Lucid Imagination. All rights reserved. Page 243

LucidWorks Search Platform Documentation

tidto2,

"“crawl _started":
"num_unchanged":
"crawl _state"
"craw _stopped":
"job_id": "2",

"numnew': 6,
"num failed": O,

"numtotal ":6,
"job_id":3
tidtro2,

"crawl _started":

"num unchanged":

"craw _stopped":
“job_id": "2",

"num new': 6,
"numfailed": O,

"numtotal: 6,

"job_id":2

"num updated": O

"2011-03-17T22: 16: 46+0000",
0,

" FI NI SHED",
"2011-03-17T22: 16: 51+0000",

)

"num del eted": O,

"batch_j ob": fal se,

"2011-03-18T03: 25:04+0000",
0,

"crawl _state": "FI N SHED',

"2011-03-18T 03: 25: 12+0000",

"num_ updated": O,

"num del eted": O,

"batch_j ob": fal se,

Data Source Crawl Data Delete

The Data Source Crawl Data API can be used to remove the entire crawl history for a data source. Without a crawl
history, when a data source is re-crawled, all documents will be treated as "never before seen". This can be useful if
field settings have been changed (such as whether the field is stored or not) and a re-crawl of content is required.

® API Entry Points

® Delete Crawl History of a Data Source

API Entry Points

/api/col | ections/coll ection/datasources/id/craw data: Delete the crawl history (persistent crawl data) for a

data source.

Delete Crawl History of a Data Source

DELETE / api/ col | ections/col | ecti on/ dat asources/id/craw data

Input

Path Parameters

Key Description

collection = The collection name

© 2011 Lucid Imagination. All rights reserved.

Page 244

LucidWorks Search Platform Documentation

id the data source ID
Query Parameters
None
Output
Output Content
None
Response Codes
204: success no content
Examples

Input

curl -X DELETE http://local host: 8888/ api/collections/collectionl/datasources/3/craw data

Output

None.

Batch Crawling API

The Batch Crawling API allows you to work with batches and batch crawling jobs. For information about batch
crawling, including how to configure a data source for batch crawling, see Batch (Split) Crawling.

API Entry Points

List All Existing Batches

Delete All Existing Batches

List All Batches For A Specific Crawler Controller
Delete All Batches For A Specific Crawler Controller
List All Batch Jobs For A Specific Crawler Controller
Define A Batch Job For A Specific Crawler Controller
Start a Batch Processing Job

Get The Status Of A Running Batch Processing Job
Stop A Running Batch Processing Job

API Entry Points

api/col |l ections/col |l ection/batches: List or delete existing batches.
api/col l ections/coll ection/batches/craw er: List or delete all batches managed by a given crawler controller.
api/col l ections/col | ection/batches/craw er/job: List all existing or define a new batch processing job.

api /col | ections/col |l ection/batches/craw er/job/batch_id: Start, get the status of, or stop a running batch
job.

List All Existing Batches

CET api/collections/collection/batches

Input

© 2011 Lucid Imagination. All rights reserved. Page 245

LucidWorks Search Platform Documentation

Path Parameters

Key Description

collection The collection name.
Query Parameters

None.

Output

Output Content

A JSON Array with these parameters:

Key Type Description

num_docs integer The number of documents in the batch.

batch_id string The batch identifier.

parsed boolean Indicates whether the documents in the batch have been parsed.

description string The descriptive text you have given the data source.
finish_time integer @ The time at which the batch process was finished.
start_time integer The time at which the batch process started.

parsed_docs integer @ The number of parsed documents in the batch.

ds_id string The data source identifier.
crawler string The crawler controller type for the batch.
collection string The name of the collection containing the batch.

Response Codes

200: OK

Examples

Get a list of all batches:

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/batches'

Output

© 2011 Lucid Imagination. All rights reserved. Page 246

LucidWorks Search Platform Documentation

[
{
"num docs": 0,
"bat ch_i d": " 00000000- 0000- 0000- 0000- 05¢c21a42057b",
"parsed":true,
"description":"HTTP- AUTH",
"finish_tine":0,
"start_tine":1313524874268,
"parsed_docs": 115,
"ds_id":"58",
"collection":"collectionl",
"craw er":"lucid. aperture"
},
{
"num docs": 0,
"bat ch_i d": "00000000- 0000- 0000- 0000- 057edb4a3f de",
"parsed":true,
"description":"CNN',
"finish_tine":0,
"start _tine":1313524585449,
"parsed_docs": 190,
"ds_id":"39",
"collection":"col |l ectionl",
"craw er":"lucid. aperture"
}
{
"num docs": 0,
"bat ch_i d": " 00000000- 0000- 0000- 0000- 05a6e ac33e56",
"parsed":true,
"description":"HTTP- AUTH",
"finish_tine":0,
"start _tine":1313524757507,
"parsed_docs": 61,
"ds_id":"58",
"col l ection":"col | ectionl",
"“craw er":"lucid. aperture"
}
{
"num docs": 0,
"bat ch_i d": "00000000- 0000- 0000- 0000- 05a6aa4c26e8",
"parsed": fal se,
"description":"HDFSTestSite",
"finish_tine":0,
"start _tinme":1313524756426,
"parsed_docs": 0,
"ds_id":"57",
"col l ection":"col l ectionl",
"craw er":"lucid.fs"},
{
"num docs": 0,
"bat ch_i d": "00000000- 0000- 0000- 0000- 057e60bc7733",
"parsed": fal se,
"description":"XM.DS",
"finish_tine":0,
"start_time":1313524583393,
"parsed_docs": 0,
"ds_id":"38",
"col lection":"col |l ectionl",
"crawl er":"lucid.solrxm"
}
]

© 2011 Lucid Imagination. All rights reserved.

Page 247

LucidWorks Search Platform Documentation

Delete All Existing Batches

DELETE api/ col | ections/col | ection/ bat ches

Input
Path Parameters

Key Description

collection = The collection name.

Query Parameters
None.

Output

Output Content
None.

Response Codes
204 No Content
Examples

Delete all existing batches:

Input

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/batches’

Output

None.

List All Batches For A Specific Crawler Controller

CET api/collections/collection/batches/craw er

Input

Path Parameters

Key Description

collection = The collection name.

crawler The name of the crawler controller, such as | uci d. aperture.

Query Parameters

None.
Output

Output Content

© 2011 Lucid Imagination. All rights reserved.

Page 248

LucidWorks Search Platform Documentation

A JSON Array with these parameters:

Key Type Description

num_docs integer = The number of documents in the batch.

batch_id string The batch identifier.

parsed boolean Indicates whether the documents in the batch have been parsed.

description string The descriptive text you have given the data source.
finish_time integer The time at which the batch process was finished.
start_time integer = The time at which the batch process started.

parsed_docs integer = The number of parsed documents in the batch.

ds_id string The data source identifier.
crawler string The crawler controller type for the batch.
collection string The name of the collection containing the batch.

Response Codes

200 OK

Examples

List batches for the | uci d. apert ur e controller:

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/batches/|ucid.aperture'

Output

© 2011 Lucid Imagination. All rights reserved. Page 249

LucidWorks Search Platform Documentation

[
{
"num docs": 0,
"bat ch_i d": " 00000000- 0000- 0000- 0000- 012e3da48bde",
"parsed":true,
"description":"CNN',
"finish_tine":0,
"start_tine":1313519841161,
"parsed_docs": 120,

"ds_id":"12",
"collection":"collectionl",
"craw er":"lucid. aperture"
H
{

"num docs": 0,

"bat ch_i d": " 00000000- 0000- 0000- 0000- 05a4574bf 361",
"parsed":true,

"description":"Fil eSystenDS",

"finish_tine":0,

“start_tinme": 1313524746443,

"parsed_docs": 1068,

“ds_ id":"51",
"collection":"collectionl",
"craw er":"lucid. aperture"

}
]

Delete All Batches For A Specific Crawler Controller
DELETE api/ col | ections/col | ection/ bat ches/craw er

Input
Path Parameters
Key Description

collection = The collection name.

crawler The name of the crawler controller, such as | uci d. aperture.
Query Parameters

None.

Output

Output Content

None.

Response Codes

204 No Content

Examples

Delete all batches for the | uci d. apert ur e controller:

Input

© 2011 Lucid Imagination. All rights reserved.

Page 250

LucidWorks Search Platform Documentation

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/batches/lucid. aperture’

Output

None.

List All Batch Jobs For A Specific Crawler Controller

CET api/collections/collection/batches/crawler/job

Input

Path Parameters

Key Description

collection = The collection name.

crawler The name of the crawler controller, such as | uci d. aperture.

Query Parameters
None.
Output

Output Content

A JSON Array with the following parameters:

Key Type

id string
crawl_started timestamp
num_total integer

num_unchanged integer
crawl_state string

crawl_finished timestamp

job_id string

batch_job boolean
num_updated integer
num_new integer
num_failed integer
num_deleted integer

Response Codes

200 OK

Examples

Description

The data source identifier

The timestamp from the start of the crawling process.
The number of documents included in the job.

The number of unchanged documents included in the job.
The current state of the crawling process.

The timestamp from the finish of the crawling process.
The job identifier.

Indicates whether the job is a batch job or not.

The number of updated documents in the job.

The number of new documents in the job.

The number of documents that the crawler failed to process in the job.

The number of deleted documents in the job.

© 2011 Lucid Imagination. All rights reserved.

Page 251

LucidWorks Search Platform Documentation

List batch jobs for the | uci d. apert ur e controller:

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/batches/|ucid.aperture/job'

Output

[
{
idritT2n,
"craw _started":"2011-08-16T20: 19: 56+0000",
"numtotal ": 2,
"num unchanged": 0,
"crawl _state":"FI Nl SHED",
"craw _stopped":"2011-08-16T20: 19: 56+0000",
"job_id":"00000000-0000- 0000- 0000- 06c639b86e43",
"batch_job":true,
"num_updat ed": 0,
"num_new': 2,
"numfailed:O,
"num del eted": 0
}
]

Define A Batch Job For A Specific Crawler Controller
PUT api/col |l ections/collection/batches/craw er/job

Input
Path Parameters

Key Description

collection | The collection name.

crawler The name of the crawler controller, such as | uci d. aperture.
Query Parameters

None.

Input Content

A JSON array with these parameters:

Key Type Required Default Description
batch_id string yes null The batch identifier, obtained from the batch listing.
collection string no see The name of the original collection containing the batch. If this

crawler

description parameter is not included, LucidWorks uses the current collection.

string no see The original crawler controller type for the batch. If this parameter
description ' is not included, LucidWorks uses the current crawler controller.

© 2011 Lucid Imagination. All rights reserved. Page 252

LucidWorks Search Platform Documentation

ds_id string no null

new_collection = string no null

parse boolean no false
index boolean no true
Output

Output Content
None.
Response Codes

200 OK

Examples

Defines a data source to use as a template. If you specify a
template data source, it will overwrite the field mappings and
batch configuration values (parsing, indexing, and caching) for the
original data source, as well as the data source identifier. For
example, if you are defining a batch job for data source 5, and
you set the ds_i d value to 4, the new batch job will use the field
mappings and batch configuration from data source 4 regardless
of the configuration you have defined for data source 5. It will
also display i d: 4 when you list your batch jobs.

If this parameter is not included, LucidWorks uses the original
data source field mappings, batch configuration, and identifier.

Override for the target collection name, regardless of the batch or
data source collection names.

If true, LucidWorks parses the batch again, regardless of whether
it has already been parsed. If false, the batch is parsed only when
i ndex==t r ue and the batch has not been parsed.

If true, LucidWorks submits the parsed documents for indexing in
the target collection. If false, LucidWorks does not index the
documents.

Define a batch job for the | uci d. apert ur e controller:

Input

{

"coll ection":"coll ectionl",
"crawl er":"lucid. aperture",
"ds_id":"4",

"parse":true,

"index":true

curl -X PUT -H ' Content-type: application/json' -d '

"bat ch_i d":"00000000- 0000- 0000- 1243- 4df 8a1b27888",

}' '"http://1ocal host: 8888/ api/collections/collectionl/batches/Iucid.aperture/job'

Output

None.

Start a Batch Processing Job

PUT api/col l ections/collection/batches/craw er/job/batch_id

Input

© 2011 Lucid Imagination. All rights reserved.

Page 253

LucidWorks Search Platform Documentation

Path Parameters

Key Description
collection | The collection name.
crawler The name of the crawler controller, such as | uci d. aperture.

batch_id = The batch identifier.

Query Parameters

None.

Output

Output Content

None.

Response Codes

200 OK

Examples

Start a batch processing job:

Input

curl -X PUT -H 'Content-type: application/json'

-d

{

"bat ch_i d": "00000000- 0000- 0000- 1243- 344f 2becaaal",
"ds_id": 4",

"collection":"collectionl”
}' '"http://1ocal host: 8888/ api/collections/collectionl/batches/Iucid.aperture/job'

Output

None.

Get The Status Of A Running Batch Processing Job

GET api/collections/collection/batches/craw er/job/batch_id
Input

Path Parameters

Key Description
collection The collection name.
crawler The name of the crawler controller, such as | uci d. aperture.

batch_id = The batch identifier.

Query Parameters

© 2011 Lucid Imagination. All rights reserved. Page 254

LucidWorks Search Platform Documentation

None.
Output

Output Content

A JSON Array with the following parameters:

Key Type Description

id string The data source identifier

crawl_started timestamp The timestamp from the start of the crawling process.
num_total integer The number of documents included in the job.
num_unchanged integer The number of unchanged documents included in the job.
crawl_state string The current state of the crawling process.

crawl_finished timestamp The timestamp from the finish of the crawling process.

job_id string The job identifier.

batch_job boolean Indicates whether the job is a batch job or not.

num_updated integer The number of updated documents in the job.

num_new integer The number of new documents in the job.

num_failed integer The number of documents that the crawler failed to process in the job.
num_deleted integer The number of deleted documents in the job.

Response Codes

200 OK

Examples

Get the status of a running batch processing job:

Input

curl '"http:
/11 ocal host: 8888/ api / col | ections/col | ecti onl/batches/| ucid. aperture/job/00000000- 0000- 0000- 0000- (

Output

© 2011 Lucid Imagination. All rights reserved. Page 255

LucidWorks Search Platform Documentation

[

{"id":"72",

"crawl _started":"2011-08-16T20: 19: 56+0000",
"numtotal ": 2,

"num unchanged": 0,

"crawl _state":"FI Nl SHED",

"crawl _stopped":"2011-08-16T20: 19: 56+0000",
"job_id":"00000000- 0000- 0000- 0000- 06c639b86e43",
"batch_job":true,

"num updat ed": 0,

"num_new': 2,

"num failed:O,

"num del et ed": 0}

Q Running batch jobs also appear in the list of all crawl jobs, but their identifiers correspond to bat ch_i d

and not to a data source ID.

Stop A Running Batch Processing Job

DELETE api/ col | ections/col | ecti on/ batches/craw er/job/batch_id
Input
Path Parameters
Key Description
collection = The collection name.

crawler The name of the crawler controller, such as | uci d. aperture.

batch_id = The batch identifier.

Query Parameters
None.

Output

Output Content
None.

Response Codes
204 No Content.
Examples

Stop a running batch processing job:

Input

© 2011 Lucid Imagination. All rights reserved.

Page 256

LucidWorks Search Platform Documentation

curl -X DELETE 'http:

/11 ocal host : 8888/ api / col | ecti ons/col | ecti onl/batches/| ucid. aperture/job/00000000- 0000- 0000- 0000- (

Output

None.

Fields

The Fields API allows for accessing, modifying, or adding field definitions to a Collection schema.

API Entry Points
Create a New Field

Update a Field
Delete a Field

API Entry Points

Get Attributes for a Field

Get a List of Fields and Attributes for a Collection

/api/col | ections/collection/fields: getall fields and their attributes for a collection or create a new field.

/api/col l ections/collection/fields/nanme: update, delete, or get details for a particular field

Get a List of Fields and Attributes for a Collection

CET /api/collections/collection/fields

Input

Path Parameters

Key Description

collection = The collection name.

Query Parameters

None
Output

Output Content

Key

name

copy_fields

default_boost

Type
string
list
<string>

float

© 2011 Lucid Imagination. All rights reserved.

Description

The name of the field. Field names are case sensitive. Currently a field
name must consist of only A-Z a-z 0-9 - _

A list of field names that this field will be copied to.

How much to boost the field when it is not explicitly included in a user's
query. Search_by_default must be true to change this setting from 1.0:
the settings value reverts to 1.0 when search_by_default is set to false.

Page 257

LucidWorks Search Platform Documentation

default_value

dynamic_base

editable

facet

field_type

highlight

include_in_results

index_for_autocomplete

index_for_spellcheck

© 2011 Lucid Imagination. All rights reserved.

string

string

boolean

boolean

string

boolean

boolean

boolean

boolean

A default text value for the field. This allows a default value to be
entered if the field is empty in the document.

If non null, this indicates the name of the dynamic field in the schema
that is the basis for this fields existence in the collection.

Set to true if an external client is able to edit the field.

Set to true if the lucid request handler will facet on this field. This
setting enables a field's terms (words for text types, or exact value for
"string" type) to be returned to the search client. A field must be
indexed to be facetable. This setting can be changed without
reindexing, as it is used at query time only.

A valid field type defined in schema. xnm . The field type setting controls
how a field is analyzed. There are many options available, and more can
be added by adding a new plugin to the schenma. xm file. It is crucial to
understand the underlying values for a field in order to correctly set its
type. For full text fields, such as "title", "body", or "description", a text
field type is generally the desired setting so individual words in the text
are searchable. There are various text field types, most of which are
language-specific. However, when a text field value is to be taken
literally as-is (exact match only, or for faceting), the "string" type is
likely the right choice.

There are also types for numeric data, including double, float, integer,
and long (and variants of each suitable for sorting: sdouble, sfloat, sint,
and slong). The date field accepts dates in the form
"1995-12-31T23:59:59.9992", with the fractional seconds optional, and
trailing "Z" mandatory.

If you change a field type, we strongly recommend reindexing.

Set to true if the lucid request handler will highlight snippets of the
stored field value when they are returned to the search client. A field
must be stored to be highlighted. This setting can be changed without
reindexing, as it is used at query time only.

Set to true if the lucid request handler will include this field in its
returned results. A field must be stored to be included in results. This
setting can be changed without reindexing, as it is used at query time
only.

Set to true if this field will be used as a source for autocomplete. This
allows terms from this field to be used in creation of an auto-complete
index that will be created by default at the time of indexing. All fields
selected for use in auto-complete are combined into a single
"autocomplete" field for use in search suggestions. If you change this
setting, we recommend that you recreate the auto-complete index as
described in Auto-Complete of User Queries.

Set to true if this field will be used as a source for spellchecking. This
allows terms from this field to be used in the creation of a spell check
index. All fields selected for use in spell checking are combined into a
single "spell" field for use in search suggestions. If this setting is
changed, we recommend that you recreate the spelling check index as
described in Auto-Complete of User Queries.

Page 258

LucidWorks Search Platform Documentation

indexed boolean
multi_valued boolean
num_facets integer
omit_tf boolean
omit_positions boolean

query_time_stopword_handling boolean

search_by_default boolean

short_field_boost string

© 2011 Lucid Imagination. All rights reserved.

Set to true if this field will be indexed for full text search. An indexed
field is searchable on the words (or exact value) as determined by the
field type. Unindexed fields are useful to provide the search client with
metadata for display. For example, URL may not be a valuable search
term, but it is very valuable information to show users in their results
list. For performance reasons, a best practice is to index as few fields as
necessary to still give users a satisfactory search experience. If you
change this setting, you must reindex all documents.

Set to true if this field will be a 'multi_valued' field. Enable this if the
document could have multiple values for a field, such as multiple
categories or authors. We recommend that you reindex all documents
after changing this setting.

Shows the number of facets that will be displayed if _facet_is true.

The omit_tf attribute sets the omitTermFregAndPositions attribute in
the schema. If true, term frequency and position information will not be
indexed. Enable this if the number of times a term occurs in a
document (term frequency) and the proximity of a term to other terms
(position) should not be stored. This may be useful for fields that are
indexed but not used for searching. This option should not be enabled
for text fields (for example, field type text_en) since it would prevent
the proper operation of phrase queries and other proximity operators
such as NEAR which depend on position information. This attribute
works in conjunction with the omit_positions attribute; see the
description of that attribute for valid combinations of the attributes.

The omit_positions attribute sets the omitPositions attribute in the
schema. If true, term position information will not be indexed. Enable
this if the proximity of a term to other terms should not be stored. This
attribute works with the omit_tf attribute in that it would be possible to
remove information about term frequency while retaining proximity
information. There are three possible valid combinations of omit_tf and
omit_positions:

® omit_tf is true and omit_positions is true: This would not store
any term frequency or position information for the field

® omit_tf is false and omit_positions is true: This would not store
term positions information but would store term frequency

® omit_tf is false and omit_positions is false: This would store
term positions and term frequency

Set to true if the lucid query parser will intelligently remove stop words
at query time. This will require LucidWorks to apply the stop word list to
queries that use this specific field. This does not enable stop words
across the board, only to queries on this field (which may be most
useful for 'body' fields, for example).

Set to true if this field will be copied to the default search field. This
requires that all queries search this field when the user has not
specifically defined a field in a query.

Valid values are: none to omit field norms, moderate to boost
moderately with the Sweet Spot Similarity implementation, high to use
the standard Lucene boost implementation. This relevancy boost
compensates for text in short documents that have fewer opportunities
for text matches and may otherwise rank lower in results than they
should. Use 'moderate’ for typical text fields such as the abstract or
body of an article. Use 'high' for very short fields like title or keywords.
Use 'none' for non-text fields. We strongly recommend that you follow
changes to the short field boost with a full reindex.

Page 259

LucidWorks Search Platform Documentation

stored

synonym_expansion

term_vectors

use_for_deduplication

use_in_find_similar

Return Codes
200: OK

404: Not Found

Examples

boolean

boolean

boolean

boolean

boolean

Set to true if the original unanalyzed text will be stored. A field can be
stored independently of indexing, and made available in the results sent
to to a search client. Reindexing is not necessary when changing the
stored field flag, though fields in documents will remain as they were
when they were originally indexed until they are reindexed.

Set to true if the lucid query parser will expand synonyms at query
time.

This attribute is for expert use only with Solr's TermVectorComponent.
It may help you achieve better highlighting and MorelLikeThis
performance at the expense of a larger index. For more information,
see http://wiki.apache.org/solr/FieldOptionsByUseCase.

Set to true if the contents of this field will be used when doing
document de-duplication.

Set to true if this field will be used with the default More Like This
request handler and be taken into consideration in
find-similar/more-like-this computations. The field must be indexed for
it to be used for find-similar. This setting can be changed without
reindexing, as it is used at query time only.

Get a list of all fields for the collection "social":

Input

curl "http://1ocal host: 8888/ api/collections/social/fields'

Output

© 2011 Lucid Imagination. All rights reserved.

Page 260

http://wiki.apache.org/solr/TermVectorComponent
http://wiki.apache.org/solr/FieldOptionsByUseCase

LucidWorks Search Platform Documentation

[

{
"nane": "fileSize"
"defaul t _boost": 1.0,
"termvectors": false
"default _value": null
"index_for_autoconplete": false
"use_for_deduplication": false
"highlight": fal se,
"multi _valued": true
"stored": true
"indexed": true,
"search_by_default": false
"facet": fal se,
"edi table": true,
"i ndex_for_spel | check": false,
"synonym expansi on": fal se
"short _field_boost": "high",
"include_in_results": false
"use_in_find_simlar": false
"query_tinme_stopword_handling": false
"field_type": "text_en",
"omt_tf": true,
"copy_fields":[],
"dynani c_base": nul |

}

{
"nane": "emil",
"defaul t_boost": 1.0,
"termvectors": false
"defaul t _value": null
"index_for_autoconplete": false
"use_for_deduplication": false
“highlight": false,
"mul ti_val ued": true,
"stored": true,
"indexed": true,
"search_by_default": false
"facet": false
"edi table": true
"index_for_spellcheck": false
"synonym expansi on": fal se
"short_field_boost": "high",
"include_in_results": false
"use_in_find_simlar": false
"query_tinme_stopword_handling": false
"field_type": "text_en",
"omt_tf": true,
"copy_fields":[],
"dynami c_base": nul

}

]

Create a New Field

PCST / api/col |l ections/coll ection/fields
Input

Path Parameters

© 2011 Lucid Imagination. All rights reserved. Page 261

LucidWorks Search Platform Documentation

Key Description

collection = The collection name.

Query Parameters
None
Input Content

JSON block with one or more field attribute key/value pairs.

Key Type Required Default Description

name string Yes No The name of the field. Field names are case
default sensitive. Currently a field name must consist of
only A-Z a-z 0-9 - _

copy_fields list No null A list of field names that this field will be copied to.
<string>
default_boost float No 1.0 How much to boost the field when it is not explicitly

included in a user's query. Search_by_default must
be true to change this setting from 1.0: the settings
value reverts to 1.0 when search_by_default is set
to false.

default_value string No null A default text value for the field. This allows a
default value to be entered if the field is empty in
the document.

editable boolean No No Set to true for an external client to be able to edit
default the field.

facet boolean ' No false Set to true if the lucid request handler will facet on
this field. Enables a field's terms (words for text
types, or exact value for "string" type) to be
returned to the search client. A field must be
indexed to be facetable. This setting can be
changed without reindexing, as it is used at query
time only.

© 2011 Lucid Imagination. All rights reserved. Page 262

LucidWorks Search Platform Documentation

field_type string

highlight boolean
include_in_results boolean
index_for_autocomplete boolean
index_for_spellcheck boolean

© 2011 Lucid Imagination. All rights reserved.

Yes

No

No

No

No

No
default

false

false

false

false

A valid field type defined in schema. xm . The field
type setting controls how a field is analyzed. There
are many options available, and more can be added
by adding a new plugin to the schenma. xni file. It is
crucial to understand the underlying values for a
field in order to correctly set its type. For full text
fields, such as "title", "body", or "description", a
text field type is generally the desired setting so
individual words in the text are searchable. There
are various text field types, most of which are
language-specific. However, when a text field value
is to be taken literally as-is (exact match only, or
for faceting), the "string" type is likely the right
choice.

There are also types for numeric data, including
double, float, integer, and long (and variants of
each suitable for sorting: sdouble, sfloat, sint, and
slong). The date field accepts dates in the form
"1995-12-31T723:59:59.9992", with the fractional
seconds optional, and trailing "Z" mandatory.

If you change a field type, we strongly recommend
reindexing.

Set to true if the lucid request handler should
highlight snippets of the stored field value when
they are returned to the search client. A field must
be stored to be highlighted. This setting can be
changed without reindexing, as it is used at query
time only.

Set to true if the lucid request handler should
include this field in its returned results. A field must
be stored to be included in results. This setting can
be changed without reindexing, as it is used at
query time only.

Set to true if this field should be used as a source
for autocomplete. This allows terms from this field
to be used in creation of an auto-complete index
that will be created by default at the time of
indexing. All fields selected for use in auto-complete
are combined into a single "autocomplete" field for
use in search suggestions. If you change this
setting, we recommend that you recreate the
auto-complete index as described in Auto-Complete
of User Queries.

Set to true if this field should be used as a source
for spellchecking. This allows terms from this field
to be used in the creation of a spell check index. All
fields selected for use in spell checking are
combined into a single "spell" field for use in search
suggestions. If this setting is changed, we
recommend that you recreate the spelling check
index as described in Auto-Complete of User
Queries.

Page 263

LucidWorks Search Platform Documentation

indexed boolean
multi_valued boolean
num_facets integer
omit_tf boolean
omit_positions boolean

© 2011 Lucid Imagination. All rights reserved.

No

No

No

No

No

true

false

false

false

Set to true if this field should be indexed for full
text search. An indexed field is searchable on the
words (or exact value) as determined by the field
type. Unindexed fields are useful to provide the
search client with metadata for display. For
example, URL may not be a valuable search term,
but it is very valuable information to show users in
their results list. For performance reasons, a best
practice is to index as few fields as necessary to still
give users a satisfactory search experience. If you
change this setting, you must reindex all
documents.

Set to true if this field should be a 'multi_valued'
field. Enable this if the document could have
multiple values for a field, such as multiple
categories or authors. We recommend that you
reindex all documents after changing this setting.

Set to the number of facets that should be
displayed if the facet attribute is true.

The omit_tf attribute sets the
omitTermFregAndPositions attribute in the schema.
If true, term frequency and position information will
not be indexed. Enable this if the number of times a
term occurs in a document (term frequency) and
the proximity of a term to other terms (position)
should not be stored. This may be useful for fields
that are indexed but not used for searching. This
option should not be enabled for text fields (for
example, field type text_en) since it would prevent
the proper operation of phrase queries and other
proximity operators such as NEAR which depend on
position information.

The omit_positions attribute sets the omitPositions
attribute in the schema. If true, term position
information will not be indexed. Enable this if the
proximity of a term to other terms should not be
stored. This attribute works with the omit_tf
attribute in that it would be possible to remove
information about term frequency while retaining
proximity information. There are three possible
valid combinations of omit_tf and omit_positions:

® omit_tf is true and omit_positions is true:
This would not store any term frequency or
position information for the field

® omit_tf is false and omit_positions is true:
This would not store term positions
information but would store term frequency

® omit_tf is false and omit_positions is false:
This would store term positions and term
frequency

Page 264

LucidWorks Search Platform Documentation

query_time_stopword_handling boolean

search_by_default

short_field_boost

stored

synonym_expansion

term_vectors

use_for_deduplication

use_in_find_similar

© 2011 Lucid Imagination. All rights reserved.

boolean

string

boolean

boolean

boolean

boolean

boolean

No

No

No

No

No

No

No

No

false

false

high

true

false

false

false

false

Set to true if the lucid query parser should
intelligently remove stop words at query time. This
will require LucidWorks to apply the stop word list
to queries that use this specific field. This does not
enable stop words across the board, only to queries
on this field (which may be most useful for 'body'
fields, for example).

Set to true if this field should be copied to the
default search field. This requires that all queries
search this field when the user has not specifically
defined a field in a query.

Valid values are: none to omit field norms,
moderate to boost moderately with the Sweet Spot
Similarity implementation, high to use the standard
Lucene boost implementation. This relevancy boost
compensates for text in short documents that have
fewer opportunities for text matches and may
otherwise rank lower in results than they should.
Use 'moderate’ for typical text fields such as the
abstract or body of an article. Use 'high' for very
short fields like title or keywords. Use 'none' for
non-text fields. We strongly recommend that you
follow changes to the short field boost with a full
reindex.

Set to true if the original unanalyzed text should be
stored. A field can be stored independently of
indexing, and made available in the results sent to
to a search client. Reindexing is not necessary when
changing the stored field flag, though fields in
documents will remain as they were when they
were originally indexed until they are reindexed.

Set to true if the lucid query parser should expand
synonyms at query time.

This attribute is for expert use only with Solr's
TermVectorComponent. It may help you achieve
better highlighting and MoreLikeThis performance at
the expense of a larger index. For more
information, see
http://wiki.apache.org/solr/FieldOptionsByUseCase.

Set to true if the contents of this field should be
used when doing document de-duplication.

Set to true if this field should be used with the
default More Like This request handler and be taken
into consideration in find-similar/more-like-this
computations. The field must be indexed for it to be
used for find-similar. This setting can be changed
without reindexing, as it is used at query time only.

Page 265

http://wiki.apache.org/solr/TermVectorComponent
http://wiki.apache.org/solr/FieldOptionsByUseCase

LucidWorks Search Platform Documentation

Field Configuration for Synonyms

=

Fields must be properly configured for synonyms to work properly. If you expect synonyms to operate
on a specific field, the settings "Search by Default" and "Enable Query Synonym Expansion" must be
enabled or you may experience situations where search results do not include all documents which
contain the synonym terms. To achieve the broadest application of synonym matching, these settings
are particularly important for the "text_all" field, which is configured this way by default. Unless you
give a specific field in your query, LucidWorks will query for synonym terms only in those fields that

are both enabled for default search and enabled for synonym expansion.

Output

Output Content

JSON representation of created resource.
Return Codes

201: Created

422: Unprocessable Entity

This error may have several different conditions:

® Name must be specified

® You must specify a field_type for the field
® An explicit field already exists with the field name

Examples

Input

{

"nane": "ny_new field",
"default_value": "lucid rocks",
"mul ti_val ued": true,
"stored": true,
"i ndexed": true,
"facet": true,
"index_for_spell check": true,
"synonym expansi on": true,
"field_type": "text_en",
"copy_fields": [

"text _mediunt,

"text_all"

]

curl -H 'Content-type: application/json'

}' '"http://1ocal host: 8888/ api/collections/collectionl/fields'

Output

© 2011 Lucid Imagination. All rights reserved.

Page 266

LucidWorks Search Platform Documentation

"defaul t _boost": 1.0,
"field_type": "text_en"
"facet": true,
"indexed": true,
"short_field_boost": "high"
"termvectors": false
"include_in_results": false
"stored": true,
"omt_tf": false,
"highlight": fal se,
"edi table": true
"search_by_default": false,
"mul ti_val ued": true,
"defaul t _value": "lucid rocks",
"use_for_deduplication": false
"nane": "ny_new_ field"
"synonym expansi on": true
"index_for_spellcheck": true
"index_for_autoconplete": false
"query_tine_stopword_handling": false
"copy_fields": [

"text _mediunt,

"text_all™",

"spel "
1.

"use_in_find_simlar": false

Get Attributes for a Field

GET /api/collections/collection/fields/name
Input

Path Parameters

Key Description
collection The collection name.

name The field name.

Query Parameters

none

Input Content

None

Output

Output Content

A JSON map of keys to values. For a list of keys, see GET: Output Content.
Return Codes

204: No Content

© 2011 Lucid Imagination. All rights reserved.

Page 267

LucidWorks Search Platform Documentation

404: Not Found

Examples

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/fields/ny_newfield

Output

"defaul t_boost": 1.0,
"field_type": "text_en",
"facet": true,
"indexed": true,
"short_field_boost": "high",
"termvectors": false,
"include_in_results": false,
"stored": true,
"omt_tf": false,
"highlight": fal se,
"edi tabl e": true,
"search_by_default": false,
"mul ti_val ued": true,
"defaul t _value": "lucid rocks",
"use_for_deduplication": false,
"nane": "ny_new field",
"synonym expansi on": true,
"index_for_spellcheck": true,
"index_for_autoconpl ete": false,
"query_tine_stopword_handling": false,
"copy_fields": [

"text _mediunt,

"text_all",

"spel "
1.

"use_in_find_simlar": false

Update a Field

PUT / api/collections/collection/fields/nane
Input
Path Parameters
Key Description

collection = The collection name.

name The field name.

Query Parameters
None

Input Content

© 2011 Lucid Imagination. All rights reserved.

Page 268

LucidWorks Search Platform Documentation

JSON block with one or more key to value mappings. Any keys you don't edit will keep their existing values. For a list
of keys, see POST: Input Content

Output

Output Content
None

Return Codes
204: No Content

404: Not Found
Examples

Edit the "my_new_field" field so that it's no longer multi-valued. Also change the default value to "lucid really rocks"
and remove it from consideration for spellcheck:

Input

curl -X PUT -H ' Content-type: application/json' -d'
{
"default_value": "lucid really rocks",
"multi _val ued": false,
"index_for_spellcheck": false
}' "http://1ocal host: 8888/ api/collections/collectionl/fields/ny_newfield

Output

None. (Check field properties to confirm changes.)

Delete a Field

DELETE / api/ col | ections/col | ection/fields/nane

Note that deleting a field only removes it as an option for new documents; existing documents will retain this field,
even after it's been deleted. Also, listing all fields in the collection will still show the field after it's been deleted.

Input
Path Parameters
Key Description

collection = The collection name.

name The field name.

Query Parameters
none
Input content

None

Output

© 2011 Lucid Imagination. All rights reserved. Page 269

LucidWorks Search Platform Documentation

Output Content
None

Return Codes
204: No Content

404: Not Found
Examples

Delete the "my_new_field" field.

Input

curl -X DELETE 'http://1ocal host: 8888/ api/collections/collectionl/fields/m_newfield

Output

None. This field will still be included in the list of fields returned.

FieldTypes

The FieldType API allows creating, updating and deleting field types that are used by LucidWorks to define how text
found in a field should be processed during indexing. For example, dates should be processed differently from prices
as they are generally structured differently in documents. The "date" field would use a field type appropriate for dates,
while the "price" field would use a field type appropriate for prices. Many field types are included with LucidWorks
Enterprise and in some cases new ones do not need to be created. However, if the existing list of field types is
insufficient for your implementation, this API will allow you to create new field types without manually editing the
schema. xnl configuration file.

@ Field Types Require Advanced Knowledge of Solr's Schema
LucidWorks uses Solr's schema. xml to define field types and fields, and all the functionality contained
in Solr is available within LucidWorks. That said, FieldType configuration is for advanced users. This
API is intended for those who prefer not to edit the schema. xml file by hand but who would be entirely
comfortable doing so if required.

' About Field Type Properties
There are only two properties common to all field types: "class" and "name". Other properties will vary
according to the class. Some may have an map of analyzers which may include char_filters,
tokenizers, and/or token_filters. Property names (for the class, name, analyzers, etc.) are all strings,
even if they are numeric or boolean. They follow the naming convention found in schema. xni , which is
to say that while most of the properties in LucidWorks Enterprise follow a "under_score" naming
convention, field type properties will generally be in "camelCase", meaning that the property names
are identical to the attribute names as specified in a valid Solr schema. xni file.

API Entry Points

Get a List of All Field Types

Get Details for a Specific Field Type
Create a Field Type

Update Details for a Specific Field Type
Delete a Specific Field Type

API Entry Points

© 2011 Lucid Imagination. All rights reserved. Page 270

LucidWorks Search Platform Documentation

/api/collections/collection/fieldtypes: get a list of all field types
/api/collections/collection/fieldtypes/fieldtype: create, update, delete, or get details for a specific field type

Get a List of All Field Types

GET /api/collections/collection/fieldtypes
Input
Path Parameters
Enter path parameters.

Key Description

collection | The collection where this field type is available

Query Parameters

None

Output

Output Content

A JSON List of Maps mapping FieldType keys to values. There are only two properties that are common to all

FieldTypes; the other properties vary by the class of the field type. All of the classes available in Solr are also available
in LucidWorks.

Key Type Description
class ' string The implementing class for this field type

name string The name of the field type

Response Codes
200: OK
Examples

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/fieldtypes'

Output

The example below has been truncated for space (indicated by "..." at the beginning and end of the example - the full
output would be much longer).

© 2011 Lucid Imagination. All rights reserved. Page 271

LucidWorks Search Platform Documentation

"class":"sol r. Dat eFi el d"
"nane":"pdate",
"om tNornms":"true",
"sort M ssingLast":"true"
b
{

"class":"solr. Text Fi el d"
"name":"text_ws",
"posi tionlncrenent Gap": " 100"
"anal yzers": {
"defaul t":{
“char_filters":[],
"tokeni zer":{
"class":"sol r. Wi t espaceTokeni zer Fact ory"
}
"token_filters":[]
}
}
}

Get Details for a Specific Field Type

CET /api/collections/collection/fieldtypes/fieldtype
Input
Path Parameters

Enter path parameters.

Key Description
collection | The collection where this field type is available

fieldtype @ The name of the field type
Query Parameters
None.

Output

Output Content

A JSON List of Maps mapping Collection keys to values. There are only two properties that are common to all

FieldTypes; the other properties vary by the class of the field type.

Key Type @ Description
class @ string The implementing class for this field type

name | string The name of the field type

Response Codes

List valid response codes and meaning

© 2011 Lucid Imagination. All rights reserved.

Page 272

LucidWorks Search Platform Documentation

Examples

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/fieldtypes/text_en

Output
{
"anal yzers" : {
"index" : {
"token_filters" : [
{
"splitOnCaseChange" : "1",
"cat enat eWords" : "1",
"catenateAll" : "0",
"gener at eNunber Parts" : "1",
"class" : "solr.WrdDelinmterFilterFactory",
"cat enat eNunbers" : "1",
"generateWrdParts" : "1"
I
{
"class" : "solr.LowerCaseFilterFactory"
b
{
"class" : "solr.ASCl | Fol di ngFi | terFactory"
b
{
"class" : "comlucid. anal ysis. LucidPlural StenfilterFactory",
"rules" : "LucidStenRul es_en.txt"
}
1.
"char_filters" : [],
"tokeni zer" : {
"class" : "solr.WitespaceTokeni zer Fact ory"
}
o
"query" : {
"token_filters" : [
{
"ignoreCase" : "true",
"synonyns" : "synonyns.txt",
"expand" : "true",
"class" : "solr.SynonynFilterFactory"
b
{
"ignoreCase" : "true",
"class" : "solr.StopFilterFactory",
"words" : "stopwords.txt"
H
{
"splitOnCaseChange" : "1",
"cat enat eWords" : "0",
"catenateAll" : "0O",
"gener at eNunber Parts" : "1",
"class" : "solr.WrdDelinmterFilterFactory",
"cat enat eNunbers" : "0",
"generateWrdParts" : "1"
b
{
"class" : "solr.LowerCaseFilterFactory"

© 2011 Lucid Imagination. All rights reserved.

Page 273

LucidWorks Search Platform Documentation

H
{
"class" : "solr.ASCl | Fol di ngFi |l ter Factory"
b
{
"class" : "comlucid. anal ysis. Luci dPlural StenfilterFactory",
"rules" : "LucidStenRules_en.txt"
}
1.
“char_filters" : [],
"tokeni zer" : {
"class" : "solr.WitespaceTokeni zer Fact ory"
}
}
}
"positionlncrenmentGap" : "100",
"nanme" : "text_en",

© 2011 Lucid Imagination. All rights reserved.

Page 274

LucidWorks Search Platform Documentation

"class" : "solr. TextField"

Create a Field Type
PGOST /api/collections/collection/fieldtypes
Input
Path Parameters
Enter path parameters.
Key Description
collection | The collection where this field type will be available
Query Parameters
None.
Input Content
See the note about properties at the top of the page.
Output
Output Content
A JSON List of Maps mapping Collection keys to values.
Key Type Description
class ' string The implementing class for this field type
name | string | The name of this field type
Other properties will also be listed if set during creation.
Response Codes
422: FieldType structure was not syntactically correct
Examples

Input
Simple Example

curl -H ' Content-type: application/json -d
|
"class":"solr. Text Fi el d",
"nane": "newfi el dt ype"
}" "http://1ocal host: 8888/ api/collections/collectionl/fieldtypes'

Example with Analyzers

© 2011 Lucid Imagination. All rights reserved. Page 275

LucidWorks Search Platform Documentation

curl -H'Content-type: application/json -d
{
"name" : “"test_field",
"class" : "solr.TextField",
"anal yzers" : {
"default" : {
"token_filters" : [],
"char _filters" : [],
"tokeni zer" : {
"class" : "solr.WitespaceTokeni zer Fact ory"
}
}
I
"posi tionlncrementGap" : "100"
}' "http://1ocal host: 8888/ api/collections/collectionl/fieldtypes'

Output
Simple Example

{

"class":"solr. Text Fi el d",
"nanme": " newfi el dtype"

}

Example with Analyzers

{

"class":"solr. TextField",
"nane":"test _field",
"positionlncrenmentGap": " 100",
"anal yzers": {
"defaul t":{
"char_filters":[],
"t okeni zer": {
"class":"sol r. Wi tespaceTokeni zer Fact ory"

b

"token_filters":[]

Update Details for a Specific Field Type
PUT /api/collections/collection/fieldtypes/fieldtype

Input
Path Parameters

Enter path parameters.

Key Description

collection = The collection name

© 2011 Lucid Imagination. All rights reserved.

Page 276

LucidWorks Search Platform Documentation

fieldtype @ The field type name

Query Parameters
None.

Input Content
See the note about properties at the top of the page.

Properties can be removed from an existing field type by specifying a null value in the PUT request.
Output

Output Content

None.

Response Codes

200: OK

422: Unprocessable Entity

405: Method Not Allowed
Examples

Input

curl -X PUT -H ' Content-type: application/json' -d
"{"positionlncrenentGap":"50"}"
"http://1ocal host: 8888/ api/collections/collectionl/fieldtypes/text_en'

Delete a Specific Field Type

DELETE /api/col |l ections/collection/fieldtypes/fieldtype
Input
Path Parameters

Enter path parameters.

Key Description
collection | The collection where this field type is available

fieldtype @ The fieldtype name
Query Parameters
None.

Output
Output Content
None.

Response Codes

© 2011 Lucid Imagination. All rights reserved. Page 277

LucidWorks Search Platform Documentation

200: OK
Examples

Input

curl -X DELETE -H ' Content-type: application/json'
"http://1ocal host: 8888/ api/collections/collectionl/fieldtypes/payl oads'

JDBC Drivers

If you want to index database content then you need to provide an appropriate JDBC driver for your RDBMS. The
JDBC Drivers API allows you to upload drivers to LucidWorks. Drivers used with LucidWorks must be compliant with
the JDBC 4 specification.

API Entry Points

Get a List of JDBC Drivers

Upload a New JDBC driver

Delete a driver

Get a List of JDBC 4.0 Compliant Drivers

API Entry Points
/api/col | ections/collection/jdbcdrivers: get a list of JDBC drivers or upload a new one

/api/collections/collection/jdbcdrivers/filename: update, delete, or get file contents
/api/col l ections/collection/jdbcdrivers/classes: get a list of JDBC 4.0 compliant drivers

Get a List of JDBC Drivers

CET /api/collections/collection/jdbcdrivers
Input

Path Parameters

Key Description

collection = The collection name

Query Parameters
None.
Input Content

None.

Output

Output Content

Key Type Description

filename string The driver filenames in a list

Return Codes

© 2011 Lucid Imagination. All rights reserved. Page 278

http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html

LucidWorks Search Platform Documentation

None.
Examples

Get a list of all the driver jar files installed in the system.

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/jdbcdrivers'

Output

[
"nmysql .jar",
"postgresql.jar"

]

Upload a New JDBC driver

PCST / api/col | ections/collection/jdbcdrivers

You need to upload the JDBC driver using multipart/form-data file upload.
Input

Path Parameters

Key Description

collection = The collection name

Query Parameters
None.
Input Content

file=driver filename

Output

Output Content
None.

Return Codes

204: (no content = success)

400: Bad Request (if form submit type is not multipart; if there is no "file" element in HTTP request; if file stream is
empty)

409: Conflict (same file/driver already exists)

Examples

Upload the mysql.jar file to the system in order to support MySQL.

Input

© 2011 Lucid Imagination. All rights reserved. Page 279

LucidWorks Search Platform Documentation

curl -F file=@rysql.jar http://]ocal host: 8888/ api/collections/collectionl/jdbcdrivers

Output

None.

Delete a driver

DELETE / api/ col | ections/col | ection/jdbcdrivers/fil enane
Input
Path Parameters
Key Description

collection = The collection name

filename @ The driver filename

Query Parameters
None.

Input Content
None.

Output

Output Content

Key Type Description

Return Codes

204: (No content = success)
409: Not Found

Examples

Remove MySQL support.

Input

curl -X DELETE 'http://]ocal host: 8888/ api/collections/collectionl/jdbcdrivers/nysqgl.jar'

Output
None.

Get a List of JDBC 4.0 Compliant Drivers

GET /api/collections/collection/jdbcdrivers/classes

© 2011 Lucid Imagination. All rights reserved. Page 280

LucidWorks Search Platform Documentation

Input

Path Parameters

Key Description

collection = The collection name

Query Parameters
None.

Input Content
None.

Output

Output Content
None.

Return Codes
None.

Examples

Get a list of the JDBC classes available to datasources.

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/jdbcdrivers/classes'

Output
[
"com nysql . jdbc.Driver",
"oracle.jdbc. Oracl eDriver"
]
Settings

The Settings API allows for accessing and modifying settings for a given collection. Note that editing of some
properties is disallowed by default, and cannot be done through this API.

API Entry Points

Get All Settings for a Collection
Get a Particular Setting

Update Settings

[]
[]
[]
[]
API Entry Points

/api/col | ections/collection/settings: get all settings for a collection or update settings.

/api/col | ections/collection/settings/nanme: get a particular setting

© 2011 Lucid Imagination. All rights reserved. Page 281

LucidWorks Search Platform Documentation

Get All Settings for a Collection

GET /api/collections/collection/settings

Input
Path Parameters

Key Description

collection ' the collection name
Query Parameters

None

Output

Output Content

Key Type
auto_complete boolean
boosts Solr
function
query
boost_recent boolean
click_enabled boolean
click_boost_data string
click_boost_field string
click_index_location string
de_duplication string
default_sort string
display_facets boolean
display_fields string
query_parser string
query_time_stopwords boolean
query_time_synonyms boolean

© 2011 Lucid Imagination. All rights reserved.

Description

Is true if auto-complete is enabled for use in the LucidWorks
Enterprise or LucidWorks Cloud default search interface. Note that
this also requires setting the auto-complete activity to run at regular
intervals. For more information, see Auto-Complete of User Queries.

Defines the boost to apply to each query. The default boost for the
Lucid Query Parser prefers more recent documents.

Is true if the lucid request handler should boost recent documents.
Is true if Click is enabled (LucidWorks Enterprise only).
The path to Click boost data (LucidWorks Enterprise only).

The field name prefix used by Click fields (LucidWorks Enterprise
only).

The path to Click boost index (LucidWorks Enterprise only).

The valid values are: off, do not de-duplicate; overwrite duplicate
documents; tag duplicated with a unique signature.

Default sort method - valid values are: relevance, date, random.

Is true if the LucidWorks Enterprise or LucidWorks Cloud default
search interface should display facets.

Defines the fields to use for display of results to users. Primarily
used to add pseudo-fields to documents, but could be used with
"real" fields also. This parameter only applies when using the | uci d
handler (query parser).

Which query parser the lucid search request handler will use - valid
values are: lucid, dismax, extended dismax, lucene.

Is true if stopwords will be removed at query time.

Is true if synonyms should be added to queries. This will only be
used if the 'lucid' query parser is selected as the default or used in
the query request.

Page 282

LucidWorks Search Platform Documentation

search_server._list list:string
show_similar boolean
spellcheck boolean
stopword_list list:string
unsupervised_feedback boolean

unsupervised_feedback_emphasis = string

synonym_list list:string
unknown_type_handling string
update_server_list complex
elevations complex

Response Codes

200: OK

Examples

Get the existing settings for the collection:

Input

A list of Solr core URLs that the lucid request handler will use for
distributed search - pass an empty list to disable distributed search.

Is true if a "Find Similar" link should be displayed next to user's
search results.

Is true if the LucidWorks Enterprise or LucidWorks Cloud default
search interface should suggest spelling corrections.

A list of stopwords that will be used if 'query_time_stopwords' is
enabled.

Is true if unsupervised feedback is enabled

Defines if unsupervised feedback should emphasize "relevancy”
which does an "AND" of the original query which neither includes nor
excludes additional documents, or "recall" which does an "OR" of the
original query which permits the feedback terms to expand the set of
documents matched - default is "relevancy".

A list of synonym rules that will be used if 'query_time_synonyms' is
enabled.

A valid field type from the core's schema to use for unrecognized
fields - default is text_en.

A map that contains two keys: 'server_list' and 'self'. 'server_list' is
list:string of servers that the lucid update chain will use for
distributed updates and 'self' should either be null if this server will
not receive updates, or it should be a string value containing this
server address if this server will receive updates - pass an empty list
of servers to disable distributed update.

Advanced:

A format that is roughly a JSON equivalent to
http://wiki.apache.org/solr/QueryElevationComponent#elevate.xml
Displays the elevate.xml file in the Collection's Solr conf directory
(by default, $LWE_HOVE/ sol r/ cores/ col | ecti onl_0/conf). To
enable/disable elevation, configure the QueryElevationComponent
and set it to use this elevate.xml file (see Input, below). Solr does
not currently support the QueryElevationComponent with distributed
search.

curl "http://1ocal host: 8888/ api/collections/collectionl/settings'

Output

© 2011 Lucid Imagination. All rights reserved.

Page 283

http://wiki.apache.org/solr/QueryElevationComponent#elevate.xml

LucidWorks Search Platform Documentation

"de_duplication": "off",
"query_tinme_stopwords":
"click_boost_field": "click",
"click_boost_data": "click-data",
"query_parser": "lucid",
"default_sort": "rel evance",
"auto_conplete": true,
"boost _recent": true,
"click_enabled": false,
"synonymlist": ["|awyer, attorney",
100", "t housand, 1000","tv, television"],
"show simlar": true,
"query_tinme_synonyns":
"elevations": {},

true,

true,

{
"unsupervi sed_f eedback_enphasi s": "rel evancy",
"spel | check": true,
"search_server_list": [],
"di splay_facets": true,
"update_server_list": null,
"display_fields" ["id","url","aut hor", "data_source_type", "dat eCreated", "descri ption",
"keywords", "l ast Modi fi ed",
"m meType", "pageCount ", "title"],
"unsupervi sed_f eedback": fal se,
"stopword_list": ["a","an","and", "are","as","at","be","but", "by","for","if","in","into",
"is","it","no","not", "of ",
“on","or","s","such","t","that","the","their","then","there", "these", "they","this","to"
ytwast, twi Lt "with'],
"unknown_t ype_handl i ng": "text_en",
"boosts": ["recip(rord(lastMdified),1,1000,1000)"],

"one,

1", "two, 2", "three, 3", "ten, 10", "hundred,

Get a Particular Setting

GET /api/collections/collection/settings/nane
Returns a map of settings to values for a given setting.
Input

Path Parameters

Key Description

collection = The collection name

name The name of the setting to return

Query Parameters

None

Output

Return Codes

200: OK

Examples

© 2011 Lucid Imagination. All rights reserved.

Page 284

LucidWorks Search Platform Documentation

Determine the default parser for the collection.

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/settings/query_parser’

Output:

"query_parser":"lucid",

Update Settings

PUT /api/collections/collection/settings

Input
Path Parameters

Key Description

collection = The collection name

Query Parameters
None

Input Content

JSON block with values for keys to be updated.

Key

auto_complete

boost
boost_recent
click_enabled
click_boost_data

click_boost_field

click_index_location

de_duplication

default_sort

display_facets

Type

boolean

boolean
boolean
string

string

string

string

string

boolean

© 2011 Lucid Imagination. All rights reserved.

Description

Is true if auto-complete is enabled for use in the LucidWorks
Enterprise or LucidWorks Cloud default search interface.

Is true if the lucid request handler should boost recent documents.
Is true if Click is enabled (LucidWorks Enterprise only).
The path to Click boost data (LucidWorks Enterprise only).

The field name prefix used by Click fields (LucidWorks Enterprise
only).

The path to Click boost index (LucidWorks Enterprise only).

The valid values are: off, do not de-duplicate; overwrite duplicate
documents; tag duplicated with a unique signature.

Default sort method - valid values are: relevance, date, random.

Is true if the LucidWorks Enterprise or LucidWorks Cloud default
search interface should display facets.

Page 285

LucidWorks Search Platform Documentation

display_fields string Defines the fields to use for display of results to users. Primarily
used to add pseudo-fields to documents, but could be used with
"real" fields also. This parameter only applies when using the | uci d
handler (query parser).

query_parser string Which query parser the lucid search request handler will use - valid
values are: lucid, dismax, extended dismax, lucene.

query_time_stopwords boolean Is true if stopwords will be removed at query time.

query_time_synonyms boolean Is true if synonyms should be added to queries. This will only be
used if the 'lucid' query parser is selected as the default or used in
the query request.

search_server_list list:string = A list of Solr core URLs that the lucid request handler will use for
distributed search - pass an empty list to disable distributed search.

show_similar boolean Is true if a "Find Similar" link should be displayed next to user's
search results.

spellcheck boolean Is true if the LucidWorks Enterprise or LucidWorks Cloud default
search interface should suggest spelling corrections.

stopword_list list:string A list of stopwords that will be used if 'query_time_stopwords' is
enabled.

unsupervised_feedback boolean Is true if unsupervised feedback is enabled

unsupervised_feedback_emphasis string Defines if unsupervised feedback should emphasize "relevancy”

which does an "AND" of the original query which neither includes nor
excludes additional documents, or "recall" which does an "OR" of the
original query which permits the feedback terms to expand the set of
documents matched - default is "relevancy".

synonym_list list:string = A list of synonym rules that will be used if 'query_time_synonyms' is
enabled.
unknown_type_handling string A valid field type from the core's schema to use for unrecognized

fields - default is text_en.

update_server_list complex | A map that contains two keys: 'server_list' and 'self'. 'server_list' is
list:string of servers that the lucid update chain will use for
distributed updates and 'self' should either be null if this server will
not receive updates, or it should be a string value containing this
server address if this server will receive updates - pass an empty list
of servers to disable distributed update.

© 2011 Lucid Imagination. All rights reserved. Page 286

LucidWorks Search Platform Documentation

elevations complex | Advanced:
A format that is roughly a JSON equivalent to
http://wiki.apache.org/solr/QueryElevationComponent#elevate.xml
Rewrites the elevate.xml file in the Collection's Solr conf directory
(by default, $LWE_HOVE/ sol r/ cores/ col | ecti onl_0/ conf) and
triggers a core reload. To enable/disable elevation, configure the
QueryElevationComponent and set it to use this elevate.xml file. Solr
does not currently support the QueryElevationComponent with
distributed search.
Example:

el evations": {

"di nner jacket": [
{"doc": "sku_8040489"}
I

"shoes": [
{"doc": "sku_460030"},
{"doc": "sku_415090"}
]

}

}

Output

Output Content

None

Return Codes

204: No Content

Examples

Turn on spell-checking for the collection.

Input

curl -X PUT -H ' Content-type: application/json' -d'
{
"spel |l check":true
}' '"http://1ocal host: 8888/ api/collections/collectionl/settings'

Output

None. Check properties to confirm changes.

Collection Templates

This API lists available collection templates for use in creating new collections.

Each template is a .zip file that consists of LucidWorks configuration files. The default LucidWorks configuration is
available as def aul t. zi p found in $LWE_HOME/ app/ col | ecti on_t enpl at es. The default configuration can be
customized as needed and put in a .zip archive for use when creating new collections in the future. The .zip file can
have any name, including def aul t. zi p, although using the same name would overwrite the system default template,
meaning it would not be available at a later time if needed. All templates must be placed in

$LWE_HOMWE/ conf/ col | ecti on_t enpl at es to be available during collection creation.

© 2011 Lucid Imagination. All rights reserved. Page 287

http://wiki.apache.org/solr/QueryElevationComponent#elevate.xml

LucidWorks Search Platform Documentation

For more information about creating templates, see Using Collection Templates.

API Entry Points

/api/col |l ectiontenpl ates: list available collection templates

List Collection Templates

CET /api/collectiontenpl ates
Input
Path Parameters
None.
Query Parameters
None.
Output
Output Content
A JSON array of available template file names.
Response Codes
200: OK
Examples

Input

curl '"http://1ocal host: 8888/ api/collectiontenplates’

Output

["defaul t.zip"]

Roles

A role is a way to specify a group of users that may have specific privileges. In the case of LucidWorks, roles can also
be used in conjunction with search filters to restrict the set of documents appearing in search results for users to a
particular subset of documents in the index based on their username or LDAP-supplied group membership. This API
provides a way to programmatically manage roles. Note that this is also available in the Admin UI, where it is called "
[Search Filters]".

API Entry Points

Retrieve existing roles

Create a new role

Retrieve an existing role object
Update a role

Delete a role

API Entry Points

© 2011 Lucid Imagination. All rights reserved. Page 288

LucidWorks Search Platform Documentation

/api/coll ections/collection/roles: retrieve existing roles or add new roles

/api/col | ections/col |l ection/rol es/rol e: retrieve, update, or remove roles

Retrieve existing roles

CGET /api/collections/collection/roles

Returns a list of role maps. Each map containing the role name, a list of users, a list of groups the role maps to, and a
list of filters to apply when a given role reads the index.

Input
Path Parameters

Key Description
collection = The collection name.
Query Parameters
None

Output

Output Content

Key Type Description

name string Name of the role.

groups list:string = A list of groups for this role.
users | list:string A list of users for this role.

filters | list:string | A list of filters for this role. Note that filters use Solr's filter query capability, which means they
also use the default Lucene query parser instead of the include lucid parser.

Return Codes
200: OK
Examples

Get a list of the existing roles.

Input

curl "http://1ocal host: 8888/ api/collections/collectionl/roles'

Output

© 2011 Lucid Imagination. All rights reserved. Page 289

http://wiki.apache.org/solr/CommonQueryParameters#fq

LucidWorks Search Platform Documentation

[
{
"groups": [
1,
"name": "DEFAULT",
"filters": [
I,
"users": [
"adm n"
|
}
1

Create a new role
POST /api/collections/collection/roles

Input

Path Parameters

Key Description

collection = The collection name.

Query Parameters
None
Input Content

A JSON map with the following keys.

Key Type Description

name string Name of the role.

groups list:string A list of groups for this role.
users | list:string A list of users for this role.

filters | list:string A list of filters for this role.

Output

Output Content

Key Type Description

name | string Name of the role.

groups list:string = A list of groups for this role.
users list:string | A list of users for this role.

filters | list:string A list of filters for this role.

© 2011 Lucid Imagination. All rights reserved. Page 290

LucidWorks Search Platform Documentation

Return Codes

201: Created

Examples

Create a new role that only shows documents that have a st at us field of "public", and assign it to the groupl and

group2 groups, and to user 1.

Input

curl -H'Content-type: application/json' -d '

{
"name": "ONLY_PUBLIC',
"groups": [
"groupl”,
"group2”
1.
"filters": [

"status: public”

]

sers": [
"user 1"

]

}' "http://1ocal host: 8888/ api/collections/collectionl/roles'

Output

"nane": "ONLY_PUBLIC',
"groups": [
"groupl”,
"group2"
1,
"filters": [
"status: public"
1.
"users": [
"user 1"

]

Retrieve an existing role object
GET /api/collections/collection/roles/role

Input

Path Parameters

Key Description
collection The collection name.

role The role name.

Query Parameters

© 2011 Lucid Imagination. All rights reserved.

Page 291

LucidWorks Search Platform Documentation

None
Input Content

None.

Output

Output Content

Key Type Description

name string Name of the role.

groups list:string A list of groups for this role.
users list:string = A list of users for this role.

filters | list:string = A list of filters for this role.

Response Codes
200: OK

404: Not Found
Examples

Get the details for the ONLY_PUBLI C role:

Input

curl '"http://1ocal host: 8888/ api/collections/collectionl/roles/ONLY_PUBLIC

Output

"nanme": "ONLY_PUBLIC',
"groups": [
"groupl”,
"group2”
1,
"filters": [
"status: public"

]

sers": [
"user 1"

Update a role

PUT /api/collections/collection/roles/role
Input

Path Parameters

© 2011 Lucid Imagination. All rights reserved.

Page 292

LucidWorks Search Platform Documentation

Key Description
collection = The collection name.

role The role name.

Query Parameters
None
Input Content
A JSON map with the following keys.
Key Type Description
groups list:string = A list of groups for this role.

users list:string A list of users for this role.

filters | list:string A list of filters for this role.

Output

Output Content

None.

Response Codes

204: No Content

404: Not Found

Examples

Remove gr oupl from the ONLY_PUBLI C role.

Input

curl -X PUT -H ' Content-type: application/json' -d '
{
"groups": [
"group2"”

1
}' '"http://1ocal host: 8888/ api/collections/collectionl/roles/ONLY_PUBLIC

Output

None. (Check properties to confirm changes.)

Delete a role
DELETE / api/ col | ections/col |l ection/roles/role

Input

Path Parameters

Key Description

© 2011 Lucid Imagination. All rights reserved. Page 293

LucidWorks Search Platform Documentation

collection = The collection name.

role The role name.

Query Parameters
None

Output

Output Content
None.

Return Codes
204: No Content

404: Not Found
Examples

Delete the ONLY_PUBLI C role.

Input

curl -X DELETE 'http://]ocal host: 8888/ api/collections/collectionl/roles/ONLY_PUBLIC

Output

None.

Filtering Results

The Filtering API allows you to configure instances of filtering-related search components, such as those used to filter
search results by Access Control Lists. A filter can then be used to filter search results according to Users group
membership within Active Directory.

API Entry Points

List existing filtering component configuration(s)

Get the Configuration of a Filtering Component Instance
Create new Filtering component configuration

Update the Configuration of a Filtering Component Instance
Delete the Configuration of a Filtering Component Instance

API Entry Points

/api/collections/collection/filtering/: listall filtering instances.

/api/collections/collection/filtering/instance-nane: get, update, and delete configuration details about a
search component instance.

List existing filtering component configuration(s)

CET /api/collections/collection/filtering
Output Contents

A list of JSON hashes of instances configuration:

© 2011 Lucid Imagination. All rights reserved. Page 294

LucidWorks Search Platform Documentation

{
"instance-nane": {
<i nstance configuration>
}
}
Examples

List filterer component confiugurations in the soci al collection.

Input

curl '"http://1ocal host: 8888/ api/collections/social/filtering'

Output

{

"ad": {
"provider.class":"comlucid.security.ad. ADACLTagPr ovi der ",

"filterer.class":"comlucid.security. WndowsACLQueryFilterer",

"provider.config":{
"java. nam ng. provider.url™":
"java. nam ng. security. principal":
b
"filterer.config":{}
}
}

"l dap:// pdc. domai n/ ",
"ad- user @onai n",

Get the Configuration of a Filtering Component Instance

CET /api/collections/collection/filtering/instance-name

Input

Path Parameters

Key Description
collection = The collection name

instance | name of the search component instance

Output

Output Contents

JSON hash of instance configuration with the following keys:

Key Description
class name that generates the effective filter queries based on tags. Use

filterer.class
com | ucid.security. WndowsACLQueryFilterer

© 2011 Lucid Imagination. All rights reserved. Page 295

LucidWorks Search Platform Documentation

filterer.config

provider.class

provider.config

Response Codes

200: Success OK

Examples

hash containing configuration for filterer instance, for

com | uci d. security. WndowsACLQuer yFi | t erer, the following keys are supported:

fal | back_query: Specifies the query to use when AD provided no sid information for the user, by
default this is -*:*

shoul d_cl ause: An optional should clause that is used in the top level boolean query that is
constructed based on the sid information provided by the Active directory

for example if you want to allow all non SMB content to be available to everybody you could use "
: -data_source_type: snb"

class name that reads user groups from Windows ActiveDirectory and builds access tags based on
those. Use com | uci d. security. ad. ADACLTagPr ovi der

hash containing configuration for provider instance, for

com | uci d. security. ad. ADACLTagPr ovi der, the following keys are supported:

j ava. nam ng. provi der . url : specifies the ActiveDirectory LDAP URL

j ava. nami ng. security. princi pal : the user ID for accessing ActiveDirectory

java. nam ng. security. credenti al s: password for the user account accessing ActiveDirectory

Get the filterer configuration for the ad instance in the soci al collection.

Input

curl "http://1ocal host: 8888/ api/collections/social/filtering/ad

Output
{
"filterer.class": "comlucid. security. WndowsACLQueryFilterer",
"provider.class": "comlucid. security.ad. ADACLTagProvi der",
"provider.config":
{
"java. nam ng. provider.url": "ldap://pdc.domain/",
"java. nam ng. security.principal": "ad-user@onain",
}

p

Create new Filtering component configuration

PCST / api/coll ections/collection/filtering

Input

Path Parameters

Key Description

collection = The collection name

instance name of the search component instance

Input Content

© 2011 Lucid Imagination. All rights reserved. Page 296

LucidWorks Search Platform Documentation

Hash of configuration values to set. See Get Output Contents for supported values.

Output

Response Codes

201: created
422: If there was a problem in creating a configuration

Examples

Set the filterer configuration for the ad instance in the soci al collection.

curl -v -X PGST http://1ocal host: 8888/ api/collections/social/filtering/ad
-H "Accept: application/json"
-H "Content-Type: application/json"
-d ' {
"filterer.class": "comlucid.security. WndowsACLQueryFilterer",
"provider.class": "comlucid.security.ad. ADACLTagProvi der",
"provider.config":
{
"java. nam ng. provider.url": "ldap://10.0.0.50/",
"java. nam ng. security.principal": "user@c. donai n. exanpl e",
"java. nam ng. security.credential s": "password"
}
)

Update the Configuration of a Filtering Component Instance

PUT /api/collections/collection/filtering/instance
Input
Path Parameters
Key Description

collection = The collection name

instance | name of the search component instance
Input Content
Hash of configuration values to set. See Get Output Contents for supported values.

Output

Response Codes

204: success nho content

Examples

Set the filterer configuration for the ad instance in the soci al collection.

© 2011 Lucid Imagination. All rights reserved. Page 297

LucidWorks Search Platform Documentation

curl -v -X PUT http://]ocal host: 8888/ api/collections/social/filtering/ad
-H "Accept: application/json"
-H "Content-Type: application/json”
-d ' {
"filterer.class"
"provider.cl ass"
"provider.config"

{
"java. nam ng. provider.url": "ldap://10.0.0.50/"

"java. nam ng. security.principal": "user@c. donai n. exanpl e",
"java. nam ng. security.credential s": "password"

}
p

"com | ucid.security. WndowsACLQueryFilterer"
"com | uci d. security. ad. ADACLTagProvi der",

Delete the Configuration of a Filtering Component Instance
DELETE /api/col |l ections/collection/filtering/instance

Input

Path Parameters

Key Description
collection = The collection name

instance | name of the search component instance

Output
Response Codes

204: success no content
404: when deleting non existing instance

Search Handler Components

The Search Handler Component API allows you to configure the list of active search components for each particular

search handler.
® API Entry Point

® List Search Components for a Search Handler
® Update Search Components for Search Handler

API Entry Point

/api/col | ections/col | ection/conponents/|ist-nane?handl er Nane=/ handl er Nane: List or update search

components for a search handler.

List Search Components for a Search Handler

GET /api/collections/collection/conponents/|ist-nane?handl er Nane=/ handl er Nane

Input

Path Parameters

© 2011 Lucid Imagination. All rights reserved.

Page 298

LucidWorks Search Platform Documentation

Key Description

collection The collection name.

list-name The Solr search component list name: "all", "first", or "last". The "all" list, if present, contains all the
search components for your search handler. The "first" list, if present, appends the additional search
components of your search handler to the beginning of the default list the handler inherits from its
parent class. The "last" list, if present, appends the additional search components of your search handler

to the end of the default list the handler inherits from its parent class. You cannot create new lists using
this API; you can only work with lists that already exist for your search handler.

Query Parameters

Key Description

handlerName The name of search handler; use /lucid for the standard Lucid query request handler.

Output

Output Content

JSON array of current search components.
Response Codes

200: Success OK
404: if the list does not exist

Examples

Get the search components for /| uci d handl er in the soci al collection.

Input

curl "http://1ocal host: 8888/ api/collections/social/conponents/all ?handl er Nanme=/1 uci d’

Output

["rolefiltering","query","mt","stats","feedback","highlight","facet", "spell check", "debug"]

Update Search Components for Search Handler

PUT /api/collections/collection/conponents/list-nanme?handl er Nane=/ handl er Nane
Input
Input Content

JSON array with all of the components.

Path Parameters

Key Description

collection = The collection name.

© 2011 Lucid Imagination. All rights reserved. Page 299

https://wiki.apache.org/solr/SearchComponent

LucidWorks Search Platform Documentation

list-name The Solr search component list name: "all", "first", or "last". The "all" list, if present, contains all the
search components for your search handler. The "first" list, if present, appends the additional search
components of your search handler to the beginning of the default list the handler inherits from its
parent class. The "last" list, if present, appends the additional search components of your search handler
to the end of the default list the handler inherits from its parent class. You cannot create new lists using
this API; you can only work with lists that already exist for your search handler.

Query Parameters

Key Description

handlerName ' The name of the search handler; use /lucid for the standard Lucid query request handler.

Output

Output Content
None.

Response Codes
200: Success OK
Examples

Set the list of search components for /| uci d handler in the soci al collection.

Input

curl -v -X PUT http://local host: 8888/ api/coll ections/social/conponents/all ?handl er Nane=/1ucid
-H "Accept: application/json”

-H "Content-Type: application/json"

-d '["adfiltering","query","mt","stats","feedback", "highlight","facet", "spellcheck", "debug"
K

Output
None.

Collection Index Delete

The Collections Index API can currently be used to delete a collection's main index.

® API Entry Points
® Delete the Index of a Collection
® Delete Indexed Data for a Data Source

API Entry Points

/api/col |l ections/collection/index: delete the collection's index
/api/collections/collection/datasources/datasource/index: delete indexed content for the data source

Delete the Index of a Collection

DELETE /api/col |l ections/collection/index

Stops all running data sources, clears the main search index for the collection, and deletes all crawl history for the
collection.

© 2011 Lucid Imagination. All rights reserved. Page 300

https://wiki.apache.org/solr/SearchComponent

LucidWorks Search Platform Documentation

Input
Path Parameters

Key Description

collection = The collection name
Query Parameters

Key ' Description

key Always set to iaccepttherisk

Output

Output Content
None

Response Codes
204: No Content
Examples

Input

curl -X DELETE http://local host: 8888/ api/collections/collectionl/index?key=i accepttheri sk

Output

None.

Delete Indexed Data for a Data Source

DELETE /api/col | ections/coll ection/ datasour ces/ dat asource/i ndex
Stops the specified data source, deletes all documents from the collection's search index, and deletes all history from

crawling activities. If the data source is SolrXML it must be configured to include metadata before the contents can be
deleted with this API. Otherwise, you will need to delete all documents in the collection to delete these documents.

Input
Path Parameters
Key Description

collection The collection name

datasource The data source ID

Output

Output Content
None

Response Codes

© 2011 Lucid Imagination. All rights reserved. Page 301

LucidWorks Search Platform Documentation

204: No Content
Examples

Input

curl -X DELETE http://local host: 8888/ api/collections/collectionl/datasources/8/index

Output

None.

© 2011 Lucid Imagination. All rights reserved. Page 302

LucidWorks Search Platform Documentation

Alerts API

Enterprise Alerts are a way for users to create a search and save it so that LucidWorks Enterprise notifies them when
new content has been added to the index. The Alerts API provides a way to create, update, or list user alerts so that
you can manage them programmatically.

API Entry Points

Create an Alert

List all Alerts

List Alerts for a User

View Details of a Single Alert
Run an Alert to Get New Results
Update the Details of an Alert
Delete an Alert

API Entry Points

/api/ al erts/ : create an alert, or get a list of all alerts, or list alerts for a specific user
/api/alerts/id: view details, update or delete a single alert
/api/alerts/id/check: run an alert to find new results
' API Address
Unlike the other REST APIs with LucidWorks Enterprise, the Alerts API uses the LWE-UI component. If

you followed a default installation, this component runs at http://1 ocal host: 8989/ . Modify this URL
as needed to match the location of the LWE-UI component if it is not at the default address.

Create an Alert
POST /api/alerts

Input

Path Parameters
None.

Query Parameters
None.

Input Content

Key Type Required Default Description

name string Yes null A user-selected name for the alert.

collection ' string | Yes null The collection to be searched by the alert.

username string Yes null The name of the user who will receive alerts.

query string Yes null The query string.

period 32 bit No null Frequency to update the alert, in seconds. If period is not specified, the
integer alert will only be checked when the user selects it to be checked. In this

sense it becomes more of a "saved search".

© 2011 Lucid Imagination. All rights reserved. Page 303

http://localhost:3000/alerts

LucidWorks Search Platform Documentation

email string No null The email address to send alert messages to. If a period is entered, an
email address is required.

filters JSON No null Filters are generally made from facets displayed as part of results, but can
map be made from any field that contains indexed content from documents.

Output

Output Content

Key Type Description
id integer = A unique id for the alert
name string A user-selected name for the alert.

collection string The collection to be searched by the alert.
username | string = The name of the user who will receive alerts.
query string The query string.

checked_at date A timestamp of when the alert was last checked.

period 32 bit ' Frequency the alert will be updated, in seconds. If period is not specified, the alert will only be
integer checked when the user selects it to be checked. In this sense it becomes more of a "saved
search".
email string The email address to send alert messages to. If a period is entered, an email address is
required.
filters JSON Filters are generally made from facets displayed as part of results, but can be made from any
map field that contains indexed content from documents.

Return Codes
201: Created
Examples

Create an alert that searches every 24 hours for documents with the word "solr".

Input

curl -iX POST -H 'Content-type: application/json' http://1ocal host:8989/api/alerts
-d "{"nanme":"Solr docunents","collection":"collectionl","usernane":"adm n","query":"solr",

“period": 86400, "enuil":"test @est.cont'}’
Output
{
"id": 3,
"nane":"Solr docunents",
"coll ection":"col |l ectionl",
"usernane: : "adm n",
"query":"solr",
"checked_at":"2011-09-09T18: 11: 372"
}

© 2011 Lucid Imagination. All rights reserved. Page 304

LucidWorks Search Platform Documentation

List all Alerts

Get /api/alerts

Input

Path Parameters
None.

Query Parameters
None.

Input Content

None.
Output
Output Content
Key Description
id The unique ID of the alert.

collection The collection that is queried for the alert.

username The username for the owner of the alert.

query The search string.
period How frequently this alert will run (if set).
email The email address that will be sent notifications.

checked_at The timestamp of the last time the alert was run.

filters The filters that will be added to the query string.

Return Codes

201: Created

Examples

Input

curl -iX GET -H 'Accept: application/json'" http://local host:8989/api/alerts

Output

© 2011 Lucid Imagination. All rights reserved. Page 305

LucidWorks Search Platform Documentation

"id" 1,

"nanme":"Solr docunents",

"col lection":"col |l ectionl",
"usernane":"adm n",

"query":"solr",

"period": 86400,

"emai | ":"test @est. cont',
"checked_at":"2011-09-01T19: 49: 482"

List Alerts for a User

CET /api/al erts?user nane=user nane
Input
Path Parameters

None.

Query Parameters
Key Description

username The username associated with the alert.

Output

Output Content

Key Description
id The unique ID of the alert.
name The user-defined name of the alert.

collection The collection that is queried for the alert.

username The username for the owner of the alert.

query The search string.
period How frequently this alert will run.
email The email address that will be sent notifications.

checked_at The timestamp of the last time the alert was run.

filters The filters that will be added to the query string.

Return Codes

200: OK

Examples

List all alerts for the user with a username of "jdoe".

© 2011 Lucid Imagination. All rights reserved. Page 306

LucidWorks Search Platform Documentation

Input
curl -i http://1ocal host: 8989/ api/al erts?username=j doe
Output
{
"id":6,
"nanme": " Sol r PDF Docs"
"collection":"coll ectionl",
"usernane":"jdoe",
"query":"solr",
"period": 86400,
"email":"test @est.cont,
"checked_at":"2011-09-01T19: 49: 482"
"filters":
{"m neType":["application/pdf"]}
}

Note that this is a mutli-valued response.

View Details of a Single Alert
GET /api/user/id

Input

Path Parameters

Key Description

id The unique ID of the alert

Query Parameters

None.

Output

Output Content

Key Description
id The unique ID of the alert.
name The user-defined name of the alert.

collection The collection that is queried for the alert.

username | The username for the owner of the alert.

query The search string.
period How frequently this alert will run.
email The email address that will be sent notifications.

checked_at The timestamp of the last time the alert was run.

© 2011 Lucid Imagination. All rights reserved. Page 307

LucidWorks Search Platform Documentation

filters The filters that will be added to the query string. This will only be shown if there are any filters defined.

Return Codes

200: OK

Examples

Get the details of alert number '1":

Input
curl -i http://local host:8989/api/alerts/1
Output
{
"idl,
"nanme": " Solr docunents",
"collection":"coll ectionl",
"usernane":"adm n",
"query":"solr",
"period": 86400,
"emai |l ":"test @est.cont,
"checked_at":"2011-09-01T19: 49: 482"
}

Run an Alert to Get New Results
PUT /api/al erts/id/check

Input

Path Parameters

Key Description

id The unique ID of the alert.

Query Parameters

None.

Output

Output Content

Key Description
id The unique ID of the alert.
name The user-defined name of the alert.

collection The collection that is queried for the alert.

username | The username for the owner of the alert.

© 2011 Lucid Imagination. All rights reserved. Page 308

LucidWorks Search Platform Documentation

query The search string.
period How frequently this alert is run.
email The email address that will be sent notifications.

checked_at The timestamp of the last run.
filters The filters that will be added to the query string. This will only be shown if there are any filters defined.

results The result list, formatted in a JSON block with the responseHeader, response, highlighting, facet
counts, and spell check.

Return Codes
200: OK
Examples

Get the results of alert number 1:

Input

curl -iX PUT http://1ocal host: 8989/ api/al erts/ 1/ check

Output
The example below has been shortened - real output will be much longer depending on how many documents there
are that match the query.

"idhl,
"nane": " Solr docunents"
"collection":"coll ectionl",
"user nane":"adm n",
"query":"solr",
"period": 86400,
"email":"test @est.cont,
"checked_at":"2011-09-01T20: 17: 192"
"results":{

"responseHeader": {

.

"response": {

H
"hi ghlighting":{

h

"facet _counts":{

}
"spel | check": {

} .

Update the Details of an Alert

© 2011 Lucid Imagination. All rights reserved. Page 309

LucidWorks Search Platform Documentation

PUT /api/alerts/id

Input
Path Parameters

Key ' Description

id A unique ID of the alert
Query Parameters

None.

Input Content
Only fields that will be updated need to be included in the request.

Key Description
id The unique ID of the alert.
name The user-defined name of the alert.

collection | The collection that is queried for the alert.

username The username for the owner of the alert.

query The search string.

period How frequently this alert is run.

email The email address that will be sent notifications.

filters The filters that will be added to the query string. This will only be shown if there are any filters defined.
Output

Output Content

Key Description
id The unique ID of the alert.
name The user-defined name of the alert.

collection The collection that is queried for the alert.
username | The username for the owner of the alert.
query The search string.

checked_at The timestamp of the last time the alert was checked.

period How frequently this alert is run.
email The email address that will be sent notifications.
filters The filters that will be added to the query string. This will only be shown if there are any filters defined.

Return Codes

204: No Content

Examples

© 2011 Lucid Imagination. All rights reserved. Page 310

LucidWorks Search Platform Documentation

Change the query for the "City Alert" to "San Francisco".

Input
curl -iX PUT -H 'Content-type: application/json' -d '{"query":"San Francisco"}"'
"http://1ocal host: 8989/ api/al erts/3'
Output
{
"id": 3,
"nane":"City alert",
"collection":"coll ectionl",
"usernane":"smller",
"query":"San Francisco",
"period": 86400,
"email":"test @est.con',
"checked_at":"2011-09- 01T19: 49: 482"
}

Delete an Alert

DELETE /api/alerts/id
Input
Path Parameters

Key Description

id The unique ID of the alert

Query Parameters

None.

Output

Output Content
None.
Return Codes

204: No Content

Examples

Delete the City Search alert, number 3.

Input

curl -iX DELETE 'http://1ocal host: 8989/ api/alerts/3'

© 2011 Lucid Imagination. All rights reserved. Page 311

LucidWorks Search Platform Documentation

Output

None.

© 2011 Lucid Imagination. All rights reserved. Page 312

LucidWorks Search Platform Documentation

Users

Use the Users API to manage the built-in list of users in LucidWorks. You do not need to use this API if your
installation is configured to pull user information from an LDAP server.

1. Unlike most of the other APIs in LucidWorks Enterprise, this API uses the same port as the LWE-UI
component. If installed with the default port, that would be at http://localhost:8989.

API Entry Points

Get All Users

Create a New User

Get Information About a User
Update a User

Remove a User

API Entry Points

/ api / users: create a user or get all users

/ api / user s/ user nanme: update, get, or delete a user

Get All Users

CET /api/users

Input

Path Parameters
None

Query Parameters
None

Output

Output Content

Key Type Description

username string The username for the user. Each username is unique.

email string The user's email address.

authorization string ' Either admin or search. Users with 'admin’' role can access all parts of the LucidWorks

Enterprise UI; users with 'search’' role can only access the Search UI. The
authorization is case-sensitive and is always all lower-case.

encrypted_password string A secure hash of the user's password.

Return Codes

200: OK
422: Unprocessable Entity (with cause of error)

Examples

© 2011 Lucid Imagination. All rights reserved. Page 313

http://localhost:8989

LucidWorks Search Platform Documentation

Get a listing of the existing users in the system.

Input
curl "http://1ocal host: 8989/ api/users'
Output
[
{
"usernane": "tonmm ckle",
"emai |l ": "m ckl e@ere.cont,
"aut hori zation": "adm n",
"encrypted_password": "$2a$10$Lahkxl PD809eG3t ThMbZbe. ceQt eNcpy Edhnt UELTy BBSgDgnNSQ6"
}
{
"usernane": "adm n",
"emai | ": "adm n@ ocal host. cont,
"aut hori zation": "adm n",
"encrypt ed_password": "$2a$10$Lahkx| PDB09eG3t ThMbZbe. ceQ eNcpy Edhnt UEL Ty BBSgDgnNSQ6"
}
{
"usernane": "suser",
"emai | ": "john@ here. cont,
"aut hori zation": "search",
"password": "$2a$10$! 1TBr GI/ 1xXWLcayOHeHe. Rt aH3KFZy GKVQUTW6eRpn1857ncKnt
}
1

Create a New User
PCST /api/users

Input

Path Parameters
None.

Query Parameters
None.

Input Content

JSON block with all fields.

Key Type Description

username string = The username for the user. Each username must be unique.

email string The user's email address.

authorization string = Either admin or search. Users with 'admin' role can access all parts of the LucidWorks

Enterprise UI; users with 'search’ role can only access the Search UL. The value for

authorization must always be entered in all lower-case letters.

password string The user's password.

© 2011 Lucid Imagination. All rights reserved.

Page 314

LucidWorks Search Platform Documentation

encrypted_password | string | An alternate to password: a secure hash of the user's password.

Output

Output Content

JSON representing the new user.

Key Type Description

id integer The unique ID for the user.
username string | The user's username.

email string | The user's email address.
authorization string | The authorization for the user.

encrypted_password string = The user's password.

Return Codes
201: Created
Examples

Create a new user.

Input

curl -H'Content-type: application/json' -d '

"usernane": "smller",
"emai | ": "ne@ere.cont,
"aut hori zation": "search",

"password": "123456"
}' "http://1ocal host: 8989/ api/ users'

Output
{
"usernane":"smller",
"emai |l " "nme@ere.cont,
"aut hori zation":"search",
"encrypt ed_password": " $2a$10$l 1TBr GT/ 1xXWLcayOHeHe. RntaH3KFZy GKVQUTVW6eRpn1857ncKni'
}

Get Information About a User
GET / api / user s/ usernane

Input

Path Parameters

Key Description

© 2011 Lucid Imagination. All rights reserved.

Page 315

LucidWorks Search Platform Documentation

username The unique username of the user.

Query Parameters
None.

Output

Return Codes
200: OK
Examples

Get information on the sni | | er user.

Input
curl '"http://1ocal host: 8989/ api/users/smller'
Output
{
"usernane": "smller",
"emai |l ": "nme@ere. cont,
"aut hori zation": "search",
"password": "$2a$10$! 1TBr GI/ 1xXWL.cayOHeHe. Rt aH3KFZy GKVQUTW6eRpn1857ncKnt
}

Update a User

PUT / api / user s/ user nane
Input
Path Parameters

Key Description

username The unique username of the user to be updated.

Query Parameters
None.
Input Content

Not all attributes need to be passed, but they could if they all need to be updated.

Key Type Description
username string The username for the user.
email string The user's email address.

© 2011 Lucid Imagination. All rights reserved. Page 316

LucidWorks Search Platform Documentation

authorization string = Either admin or search. Users with 'admin' role can access all parts of the LucidWorks
Enterprise UI; users with 'search' role can only access the Search UI. The value for
authorization must always be entered in all lower-case letters.

password string The user's password.

encrypted_password string | An alternate to password: a secure hash of the user's password.

Output
Output Content
None.

Return Codes

204: No Content

Examples
Change the role for the smi | | er username to "admin", and change the password:

Input

curl -X PUT -H 'Content-type: application/json' -d
{
"aut hori zation":"adm n",
"password": "batnman"
}
"http://1ocal host: 8989/ api/users/sniller'

Output

None. Check properties to confirm changes.

Remove a User

DELETE / api / user s/ user nane
Input
Path Parameters

Key Description

username The unique username of the user to remove

Query Parameters
None.

Input content
None.

Output

Output Content

© 2011 Lucid Imagination. All rights reserved. Page 317

LucidWorks Search Platform Documentation

None.
Return Codes
204: No Content

404: Not Found

Examples

Delete the user smi |l | er.

Input

curl -X DELETE 'http://1ocal host: 8989/ api/users/smller’

Output

None.

© 2011 Lucid Imagination. All rights reserved. Page 318

LucidWorks Search Platform Documentation

SSL Configuration

The SSL Configuration API allows you to work with some of the LucidWorks Enterprise SSL related settings. This API
does not support configuring the Container related settings. For more information about configuring the container
related SSL settings, see Enabling SSL. There are two features that can be configured through this API: configuring
secure/insecure client access to LucidWorks Enterprise core API and configuring the Solr client SSL properties.

The configuration keyaut h_r equi re_secur e controls secure/insecure access to the core API and Solr. Once this
parameter is set to true only secure connections (SSL) are allowed. When aut h_r equi r e_secur e is set to false only
insecure access is allowed. It is possible to have two connectors configured on the Servlet container level at the same
time (one SSL and one non SSL) and you can control the access with this api.

In addition to toggling secure/insecure access it is also possible to configure LWE to allow only mutually authenticated
SSL traffic. This feature is controlled with the parameters aut h_r equi re_aut hori zat i on and

aut h_aut hori zed_clients. When you set aut h_requi re_aut hori zat i on to true you can control which clients are
allowed to access LWE by listing the DNs from the certificates in aut h_aut hori zed_cl i ents.

When using SSL in distributed environment the Solr internal client must be configured to allow it to access other
nodes. The client keystore can be configured with parameters cl i ent _keystore_url and cli ent _keyst ore_password
. The client truststore can be configured with client _truststore_url and client_truststore_password. If there's a
need to further limit down the client access to just some clients aut h_r equi re_aut hori zat i on and
aut h_aut hori zed_cl i ents can be used.

® API Entry Points

® List The Existing SSL Configuration
® Update SSL Configuration

API Entry Points

api / confi g/ ssl : List or update the existing SSL configuration.

List The Existing SSL Configuration
CET api/confi g/ ssl

Input

Path Parameters
None.

Query Parameters

None.

Output

Output Content

JSON block with these parameters:

Key Type Required Default Description

client_truststore_url url no null Client truststore location, only required when using
Mutually Authenticated SSL (Server)

client_keystore_url url no null Client keystore location, only required when using
Mutually Authenticated SSL (Client)

© 2011 Lucid Imagination. All rights reserved. Page 319

LucidWorks Search Platform Documentation

auth_require_authorization = boolean no

auth_require_secure boolean no null
auth_authorized_clients array no [1
of
strings

Response Codes

Examples

List SSL configuration:

Enforces client authorization (with certificates). When
enabled, only clients that are listed in

aut h_aut hori zed_cl i ents are allowed to access / api
and / sol r paths.

Enforces SSL to be used when communicating to REST or
Solr APIs. If false only HTTP is allowed.

Lists authorized clients (certificate DN), only relevant
when auth_require_authorization is set to true.

Input
curl "http://1ocal host: 8888/ api/config/ssl"'
Output
{
"client _truststore_url":"file:/truststore_url",
"client_keystore_url":"file:/keystore_url",
"aut h_require_authorization":fal se,
"aut h_aut hori zed_clients":["cn=fo00"],
"auth_require_secure":fal se
}

Update SSL Configuration
PUT /api/confi g/ ssl

Input

Path Parameters
None.

Query Parameters
None.

Input Content

JSON block with these parameters:

Key Type Required Default
client_truststore_url url no null
client_truststore_password ' sting no null

© 2011 Lucid Imagination. All rights reserved.

Description

Client truststore location, only required when using
Mutually Authenticated SSL (Server)

Client truststore password, only required when using
Mutually Authenticated SSL (Server)

Page 320

LucidWorks Search Platform Documentation

client_keystore_url url no null Client keystore location, only required when using
Mutually Authenticated SSL (Client)

client_keystore_password sting no null Client keystore password, only required when using
Mutually Authenticated SSL (Server)

auth_require_authorization boolean no Enforces client authorization (with certificates). When
enabled, only clients that are listed in
aut h_aut hori zed_cl i ents are allowed to access / api
and / sol r paths.

auth_require_secure boolean no null Enforces SSL to be used when communicating to REST or
Solr APIs. If false only HTTP is allowed.

auth_authorized_clients array no [1 Lists authorized clients (certificate DN), only relevant
of when auth_require_authorization is set to true.
strings

Output

Output Content
None.
Response Codes

201 Success
422 Problem with Input

Examples

Accept only secure communications:

Once you set aut h_requi re_secure to true, LWE only accepts secure (HTTPS) communications to the
REST API, so make sure you have a properly configured Jetty SSL connector before setting this to true.

Input

curl -X PUT -H ' Content-type: application/json' -d
"{"auth_require_secure": true}'
http://127.0.0. 1: 8888/ api / confi g/ ssl

Output
None.
Configure LWE Solr client so that distributed search uses SSL:

Input

curl -X PUT -H ' Content-type: application/json' -d '{

"client_truststore_url":"file:/path_to_keystore/keystore.client",
"client_truststore_password":"password",
"client_keystore_url":"file:/path_to_truststore/truststore.client”,

"client_keystore_password":"password",
"aut h_require_secure":true
}' http://1ocal host: 8888/ api/confi g/ ssl

© 2011 Lucid Imagination. All rights reserved. Page 321

LucidWorks Search Platform Documentation

Output

None.

© 2011 Lucid Imagination. All rights reserved. Page 322

LucidWorks Search Platform Documentation

Example Clients

Example client code demonstrating how to communicate with LucidWorks Enterprise from a variety of programming
languages can be found in the $LVE_HOVE/ app/ exanpl es/ directory of your LucidWorks Enterprise Installation.

Example .Net Clients

The $LWE_HOWE/ app/ exanpl es/ cshar p directory contains utilities demonstrating some of the LucidWorks Enterprise
REST API features from C# code. These utilities can be used to assist people in managing their LucidWorks Enterprise
installation, or as an example of how to write C# code as part of customer applications that will interact with
LucidWorks Enterprise and Solr.

® Dependencies
® Basic Usage

Dependencies

All of these tools require that the "Json.NET" DLL be installed.

All of these tools assume that the main URL for LucidWorks Enterprise is "http://localhost:8888". If LucidWorks
Enterprise is running elsewhere, please set the LWE_URL Environment variable appropriately in the shell where you
will be using these tools.

All of these tools deal with "collection1" by default. To use a different collection, please set the LWE_COLLECTION
Environment variable appropriately in the shell where you will be using these tools.

Basic Usage
lﬂ All of these tools can be run without any arguments to see "help" info about their usage.

Get Some basic Info about the collection...

i nfo. exe show
i nfo. exe show i ndex_num docs index_size free_di sk_space

View, Modify Settings...

settings. exe show
settings. exe show boost_recent stopword_|i st
settings. exe update boost_recent=fal se stopword_|ist=a stopword_|ist=an stopword_|ist=the

(note that creating a list is done by specifying the same setting key multiple times)

Execute Searches (with optional filters)

search. exe "gtk gnone"
search. exe "gtk -gnone"
search. exe "+gtk +gnone" "m neType:text/htm"

Example Perl Clients

© 2011 Lucid Imagination. All rights reserved. Page 323

http://json.codeplex.com/

LucidWorks Search Platform Documentation

The $LWE_HOVE/ app/ exanpl es/ per| directory contains utilities demonstrating many of the LucidWorks Enterprise
REST API features from Perl code. These utilities can be used to assist people in managing their LucidWorks Enterprise
installation, or as an example of how to write Perl code as part of customer applications that will interact with
LucidWorks Enterprise and Solr.

® Dependencies

® Basic Usage

View, Create, Modify, or Delete Collections

Get Basic Information About the Collection

View or Modify Settings

View, Create, Modify, or Delete Data Sources
Manually Start or Stop a Data Source Job

Modify the Schedule of an Existing Data Source
View the Status and Indexing History of Existing Data Sources
View, Create, Modify, Check, or Delete Alerts
View, Create, Modify, or Delete Activities

View the Status and History of Existing Activities
View, Create, Modify, or Delete Fields

View, Create, Modify, or Delete Users

Modify Roles

Pause or Resume All Background Jobs

Execute Searches with Optional Filters

® Recipes

Indexing Data Sources

Indexing and Activating Filters for Certain Users
Indexing and Activating Click Boosting

Pause and Resume All Background Jobs for Maintenance

Dependencies

All of these tools require that the "LWP" and "JSON" Perl modules be installed.

All of these tools assume that the main URL for LWE is "http://localhost:8888" and that the URL for the UI is
"http://localhost:8989"

If LWE is running elsewhere, please set the LWE_URL and LWE_UI_URL Environment variables appropriately in the
shell where you will be using these tools.

With the exception of "collections.pl" (which deals with multiple collections) all of these tools work with "collection1"
by default. To use a different collection, please set the LWE_COLLECTION Environment variable appropriately in the
shell where you will be using these tools.

Basic Usage

lﬁ All of these tools can be run without any arguments to see "help" information about their usage.

View, Create, Modify, or Delete Collections

col l ections. pl show

col l ections. pl show nane=col | ectionl

coll ections. pl create nanme=products instance_dir=prod_dir
col |l ections. pl del ete nane=products

Get Basic Information About the Collection

© 2011 Lucid Imagination. All rights reserved. Page 324

http://search.cpan.org/search?query=libwww-perl&mode=dist
http://search.cpan.org/search?query=JSON&mode=dist

LucidWorks Search Platform Documentation

info.pl show
info.pl show i ndex_num docs index_size free_di sk_space

View or Modify Settings

settings.pl show
settings.pl show boost_recent stopword_list
settings.pl update boost_recent=fal se stopword_list=a stopword_|ist=an stopword_list=the

(Note that you can create a list by specifying the same setting key multiple times.)

View, Create, Modify, or Delete Data Sources

ds. pl show

ds. pl show i d=74

ds. pl show nane=si npl e

ds.pl create nanme=sinple type=file craw er=lucid. aperture path=/usr/share/gtk-doc/htm
ds. pl create nanme=docs type=file craw er=lucid.aperture path=/usr/share/gtk-doc/htmn
craw _dept h=100

ds. pl update id=74 craw _dept h=999

ds. pl update nane=sinple craw _dept h=999

ds. pl update id=74 nane=new_nane craw _dept h=999

ds.pl delete id=74

ds. pl del ete nane=sinpl e

ds.pl delete-all YES YES YES

Manually Start or Stop a Data Source Job

ds.pl start id=74

ds.pl start nane=sinple
ds.pl stop id=74

ds. pl stop name=sinple

Modify the Schedule of an Existing Data Source

ds. pl schedul e id=74 active=true period=60 start_tine=2076-03-06T12: 34: 56- 0800
ds. pl schedul e id=74 active=true period=60 start_tine=now
ds. pl schedul e name=si npl e active=true period=60 start_time=now

View the Status and Indexing History of Existing Data Sources

ds.pl status

ds.pl status id=74

ds. pl status nane=sinpl e
ds.pl history id=74

ds. pl history nane=sinple

View, Create, Modify, Check, or Delete Alerts

© 2011 Lucid Imagination. All rights reserved. Page 325

LucidWorks Search Platform Documentation

al erts.pl show
al erts. pl show usernane=bob
alerts.pl show i d=68
al erts.pl create usernane=bob query=gnone nanme=gnone_al ert
alerts.pl update i d=68 period=5
alerts.pl check id=68
alerts.pl delete i d=68
View, Create, Modify, or Delete Activities

activities.pl show

activities.pl show id=68

activities.pl create type=click active=true period=60 start_tinme=2076-03-06T12: 34: 56- 0800
activities.pl create type=click active=true period=60 start_time=now

activities.pl update id=68 active=true period=300

activities.pl delete id=68

View the Status and History of Existing Activities

activities.pl status
activities.pl status id=68
activities.pl history id=68

View, Create,

Modify, or Delete Fields

fields.pl show
fields.pl show name=mi nmeType
fields.pl create nane=category field_type=string facet=true
fields.pl update nane=category search_by_defaul t=true
fields.pl delete nane=category
View, Create, Modify, or Delete Users
users. pl show
users. pl show user nane=adm n
users. pl create usernane=jim authorizati on=adm n password=ji npass
users. pl update usernane=jim authorizati on=search
users. pl del ete usernanme=jim
Modify Roles
rol es. pl show
rol es. pl show nane=DEFAULT
rol es. pl create nane=SECRET users=hank users=sam filters=status:secret
rol es. pl update nane=DEFAULT filters=status:public
rol es. pl append nane=SECRET users=ji m users=bob groups=executives
rol es. pl del ete nane=SECRET user s=hank
rol es. pl del ete nane=0OLD

© 2011 Lucid Imagination. All rights reserved. Page 326

LucidWorks Search Platform Documentation

Pause or Resume All Background Jobs

mai nt enance. pl pause
mai nt enance. pl pause force
mai nt enance. pl resune ds=5 ds_sched=5 ds_sched=7 act_sched=9

Execute Searches with Optional Filters

search. pl "gtk gnome"
search. pl "gtk -gnone"
search. pl "+gtk +gnone" "m neType:text/htm"

Recipes

Indexing Data Sources

1.
2.

Start up LWE
Create a data source using files on the same server as LucidWorks Enterprise:

. Sch

ds. pl create nane=l ocal docs type=file craw er=lucid. aperture
pat h=/usr/share/ gtk-doc/ htm craw _dept h=100

edule the "localdocs" data source to be indexed every 30 minutes starting now:

ds. pl schedul e nane=l ocal docs active=true period=1800 start_ti me=now

Create a data source using a remote HTTP server:

Run

Peri

ds. pl create nanme=sol rwi ki type=web craw er=lucid. aperture url=http:
/1 wi ki .apache.org/solr/ craw _depth=1

the "solrwiki" data source once right now:

ds. pl start name=sol rwi ki

odically check the status of your data sources to see when the initial indexing is done (look for

"crawl_state"):

ds.pl status

Execute some searches in your browser:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=configuration

Sea

rches can also be executed via the REST API using search.pl:

search. pl configuration

© 2011 Lucid Imagination. All rights reserved.

Page 327

http://localhost:8989/collections/collection1/search?search%5Bq%5D=configuration

LucidWorks Search Platform Documentation

Indexing and Activating Filters for Certain Users

[ay

10.

11.
12.

. Create a new search user named jim:

. Add "jim" to the list of users with the HTML_ONLY role:

. Create a data source of a directory containing HTML files as well as other plain text files:

. Run the data source once right now:

. Start LucidWorks Enterprise
. Create a new role HTML_ONLY to restrict some users and groups to only searching for HTML documents

roles.pl create nane=HTML_ONLY filters=m meType:text/htm

users. pl create username=ji m password=jinpass authorizati on=search

rol es. pl append nane=HTM_._ONLY users=jim

ds.pl create nanme=sinple type=file craw er=lucid.aperture path=/usr/share/gtk-doc/htm
craw _dept h=100

ds.pl start nane=sinple

. periodically check the 'status' of your data source to see when the initial indexing is done (look for

"crawl_state"):

ds. pl status nane=sinple

Use your browser to login as the "jim" (with password "jimpass") and execute a search:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=

. As you execute various searches you should only see HTML documents (note the "Type" Facet in the right hand

navigation column)

Click the "Sign Out" link in the upper-right corner of search pages and Log in again as the "admin" user:
http://localhost:8989/users/sign_out

Execute the same searches as before: http://localhost:8989/collections/collection1/search?search%5Bq%5D=
As you execute various searches you should now see all documents (note the "Type" Facet in the right hand
navigation column)

Indexing and Activating Click Boosting

1.
2.

3.

Start LucidWorks Enterprise
Update your settings to enable click tracking:

settings.pl update click_enabl ed=true

Create a data source:

© 2011 Lucid Imagination. All rights reserved. Page 328

http://localhost:8989/collections/collection1/search?search%5Bq%5D=
http://localhost:8989/users/sign_out
http://localhost:8989/collections/collection1/search?search%5Bq%5D=

LucidWorks Search Platform Documentation

ds. pl create nanme=local _click_ds type=file craw er=lucid. aperture
pat h=/ usr/ share/ gt k-doc/ ht Ml craw _dept h=100

4. Schedule the data source to be indexed every 30 minutes starting now:

ds. pl schedul e name=l ocal _click_ds active=true period=1800 start_ti me=now

5. Schedule the click processing activity to run every 10 minutes:

activities.pl create type=click active=true period=600 start_ti me=now

6. periodically check the 'status' of your data source to see when the initial indexing is done (look for
"crawl_state"):

ds. pl status nane=local _click_ds

7. Execute a search in your browser:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=gnome

8. As you execute searches and click on results, you should see the documents you click on filter up to the top of
those searches as the click processing activity runs every 10 minutes.

Pause and Resume All Background Jobs for Maintenance

=

. Start LucidWorks Enterprise
Update your settings to enable click tracking:

N

settings.pl update click_enabl ed=true

3. Create a data source:

ds. pl create nanme=local _click_ds type=file craw er=lucid. aperture
pat h=/ usr/share/ gt k-doc/ html craw _dept h=100

4. Schedule the data source to be indexed every 30 minutes starting now:

ds. pl schedul e nanme=l ocal _click_ds active=true period=1800 start_ti me=now

5. Schedule the click processing activity to run every 10 minutes:

activities.pl create type=click active=true peri od=600 start_ti me=now

6. Pause all active data source schedules and activities, blocking until any currently running data sources and
activities are finished:

© 2011 Lucid Imagination. All rights reserved. Page 329

http://localhost:8989/collections/collection1/search?search%5Bq%5D=gnome

LucidWorks Search Platform Documentation

mai nt enance. pl pause

This command should output something like the following:

$ mui nt enance. pl pause
/1l ocal host: 8888/ api / col | ections/collectionl/activities/9

/11 ocal host: 8888/ api / col | ections/col | ectionl/ datasources/ 5/ schedul e
Waiting for any currently running Activities to finish...

Waiting for any currently running DataSources to finish...

De- Activating activity #9: http:

De- Activating schedul e of ds#5: http:

... Done!

... Done!
Run this command to resunme everything that was de-activated...
mai nt enance. pl resune activity=9 ds=5

7. Perform whatever maintenance is needed.

8. When

you are ready, run the command mentioned in the output of the "Pause" step to resume scheduled data

source and activity processing:

mai nt enance. pl resune activity=9 ds=5

9. Your data source and click activity will now continue to run on the previously specified schedules.

Example

Python Clients

The $LWE_HOWE/ app/ exanpl es/ pyt hon directory contains utilities demonstrating many of the LucidWorks Enterprise
REST API features from Python code. These utilities can be used to assist people in managing their LucidWorks
Enterprise installation, or as an example of how to write Python code as part of customer applications that will interact
with LucidWorks and Solr.

® Dependencies
® Basic Usage

Get Basic Information About the Collection

View or Modify Settings

View, Create, Modify, or Delete Data Sources
Modify the Schedule of an Existing Data Source
View the Status and Indexing History of an Existing Data Source
View, Create, Modify, or Delete Activities

View the Status and History of Existing Activities
View, Create, Modify, or Delete Fields

View, Create, Modify, or Delete Users

Modify Roles

Execute Searches with Optional Filters

® Recipes

Indexing Data Sources
Indexing and Activating Filters for Certain Users
Indexing and Activating Click Boosting

Dependencies

All of these tools require that the "httplib2" library be available.

All of these tools assume that the main URL for LWE is "http://localhost:8888"
and that the URL for the UI is "http://localhost:8989"

© 2011 Lucid Imagination. All rights reserved. Page 330

http://pypi.python.org/pypi/httplib2

LucidWorks Search Platform Documentation

If LWE is running elsewhere, please set the LWE_URL and LWE_UI_URL Environment
variables appropriately in the shell where you will be using these tools.

All of these tools work with with "collection1" by default. To use a
different collection, please set the LWE_COLLECTION Environment variable
appropriately in the shell where you will be using these tools.

Basic Usage

ﬁ All of these tools can be run without any arguments to see "help" information about their usage.

Get Basic Information About the Collection

info.py show
info.py show i ndex_num docs index_size free_di sk_space

View or Modify Settings

settings. py show
settings.py show boost_recent stopword_|ist
settings.py update boost_recent=fal se stopword_list=a stopword_|ist=an stopword_|ist=the

(Note that you can create a list by specifying the same setting key multiple times.)

View, Create, Modify, or Delete Data Sources

ds. py show

ds. py show i d=74

ds. py show name=si npl e

ds.py create nane=sinple type=file craw er=lucid. aperture path=/usr/share/gtk-doc/htnl
ds. py create nane=docs type=file craw er=lucid. aperture path=/usr/share/gtk-doc/htm
craw _dept h=100

ds. py update id=74 craw _dept h=999

ds. py update nane=si nple craw _dept h=999

ds. py update id=74 nane=new_nane craw _dept h=999

ds. py delete id=74

ds. py del ete nanme=si npl e

Modify the Schedule of an Existing Data Source

ds. py schedul e id=74 active=true period=60 start_tine=2076-03-06T12: 34: 56- 0800
ds. py schedul e i d=74 active=true period=60 start_ti me=now
ds. py schedul e nanme=si npl e active=true period=60 start_ti me=now

View the Status and Indexing History of an Existing Data Source

© 2011 Lucid Imagination. All rights reserved. Page 331

LucidWorks Search Platform Documentation

ds. py status

ds. py status id=74

ds. py status nanme=si nple
ds.py history id=74

ds. py history nane=sinple

View, Create, Modify, or Delete Activities

activities.py show

activities.py show i d=68

activities.py create type=click active=true period=60 start_time=2076-03-06T12: 34: 56- 0800
activities.py create type=click active=true period=60 start_time=now

activities.py update i d=68 peri od=300

activities.py delete i d=68

\

ew the Status and History of Existing Activities

activities.py status
activities.py status id=68
activities.py history id=68

View, Create, Modify, or Delete Fields

fields.py show

fields.py show name=m nmeType

fields.py create name=category field_type=string facet=true
fields.py update name=cat egory search_by_defaul t=true
fields.py del ete nane=cat egory

View, Create, Modify, or Delete Users

users. py show

users. py show user nane=adni n

users. py create usernane=jim authorizati on=adm n password=ji npass
users. py update usernane=jim authorizati on=search

users. py del ete usernane=jim

Modify Roles

rol es. py show

rol es. py show nane=DEFAULT

rol es. py create nane=SECRET user s=hank users=sam filters=status:secret
rol es. py update nane=DEFAULT filters=status:public

rol es. py append nane=SECRET users=jim users=bob groups=executives

rol es. py del ete nane=SECRET user s=hank

rol es. py del ete nane=0LD

Execute Searches with Optional Filters

© 2011 Lucid Imagination. All rights reserved. Page 332

LucidWorks Search Platform Documentation

search. py "gtk gnone"
search. py "gtk -gnone"
search. py "+gtk +gnone" "m neType:text/htm"

Recipes

Indexing Data Sources

1. Start LucidWorks Enterprise
2. Create a data source using files on the same server as LWE:

ds. py create nane=l ocal docs type=file craw er=lucid. aperture
pat h=/ usr/ share/ gt k-doc/ ht Ml craw _dept h=100

3. Schedule the "localdocs" data source to be indexed every 30 minutes starting now:

ds. py schedul e nanme=l ocal docs active=true period=1800 start_ti me=now

4. Create a data source using a remote HTTP server:

ds. py create nanme=sol rwi ki type=web craw er=lucid. aperture url=http:
//w ki .apache. org/solr/ craw _depth=1

5. Schedule the 'solrwiki' data source to be indexed once right now:

ds. py schedul e name=sol rwi ki active=true period=0 start_time=now

6. Periodically check the 'status' of your data sources to see when the initial indexing is done (look for
"crawl_state"):

ds. py status

7. Execute some searches in your browser:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=configuration
8. Searches can also be executed via the REST API using search.py:

search. py configuration

Indexing and Activating Filters for Certain Users

1. Start LucidWorks Enterprise
2. Create a new role HTML_ONLY to restrict some users and groups to only searching for HTML documents

rol es.py create nane=HTML_ONLY filters=m meType:text/htm

© 2011 Lucid Imagination. All rights reserved. Page 333

http://localhost:8989/collections/collection1/search?search%5Bq%5D=configuration

LucidWorks Search Platform Documentation

3.

10.

11.
12.

. Create a data source of a directory containing HTML files as well as other plain text files:

Create a new search user named jim:

users. py create username=ji m password=jinpass authorizati on=search

Add "jim" to the list of users with the HTML_ONLY role:

rol es. py append name=HTM__ONLY users=jim

ds. py create nane=sinple type=file craw er=Iucid. aperture path=/usr/share/gtk-doc/htn
craw _dept h=100

Run the data source once right now:

ds. py start nanme=sinple

. periodically check the 'status' of your data source to see when the initial indexing is done (look for

"crawl_state"):

ds. py status nane=sinpl e

Use your browser to login as the "jim" (with password "jimpass") and execute a search:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=

. As you execute various searches you should only see HTML documents (note the "Type" Facet in the right hand

navigation column)

Click the "Sign Out" link in the upper-right corner of search pages and Log in again as the "admin" user:
http://localhost:8989/users/sign_out

Execute the same searches as before: http://localhost:8989/collections/collection1/search?search%5Bq%5D=
As you execute various searches you should now see all documents (note the "Type" Facet in the right hand
navigation column)

Indexing and Activating Click Boosting

1.
2.

3.

4.

Start LucidWorks Enterprise
Update your settings to enabled click tracking:

settings.py update click_enabl ed=true

Create a data source:

ds. py create nanme=local _click_ds type=file craw er=lucid. aperture
pat h=/usr/share/ gtk-doc/ htm craw _dept h=100

Schedule the data source to be indexed every 30 minutes starting now:

ds. py schedul e nanme=l ocal _click_ds active=true period=1800 start_ti me=now

© 2011 Lucid Imagination. All rights reserved. Page 334

http://localhost:8989/collections/collection1/search?search%5Bq%5D=
http://localhost:8989/users/sign_out
http://localhost:8989/collections/collection1/search?search%5Bq%5D=

LucidWorks Search Platform Documentation

5. Schedule the click processing activity to run every 10 minutes:

activities.py create type=click active=true period=600 start_ti me=now

6. Periodically check the status of your data source to see when the initial indexing is done (look for
"crawl_state"):

ds. py status nane=l ocal _click_ds

7. Execute a search in your browser:
http://localhost:8989/collections/collection1/search?search%5Bq%5D=gnome

8. As you execute searches and click on results, you should see the documents you click on filter up to the top of
those searches as the click processing activity runs every 10 minutes.

© 2011 Lucid Imagination. All rights reserved. Page 335

http://localhost:8989/collections/collection1/search?search%5Bq%5D=gnome

LucidWorks Search Platform Documentation

Glossary of Terms

Where possible, terms are linked to relevant parts of the documentation for more information.

Jump to a letter:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

A

Alerts
An alert allows a user to save searches. There are two types: active, which will send notifications when new results
are found, and passive, which do not send notifications.

Auto-Complete
A way to provide users suggestions for possible matching queries before they have finished typing. In LucidWorks
Enterprise, this relies on an index of terms to be created on a regular basis by scheduling it as an activity.

Boolean Operators
These control the inclusion or exclusion of keywords in a query by using operators such as AND, OR, and NOT.

C

Click Scoring Relevance Framework
A method of changing the relevance ranking of a document based on the nhumber of times other users have clicked on
the same document.

Collection
One or more documents grouped together for the purposes of searching. See also Document.

Component

A part of LucidWorks Enterprise that has been designed to stand alone or can be run independently from other
components. LucidWorks Enterprise has two main components: LWE Core, which runs Solr, indexing, and other
critical application functions and LWE UI, which runs the Administrative UI, the front-end search interface, and the
alerting functionality.

Connector
A connector is a program or piece of code that allows a connection to be made to a data source and content to be
extracted from it.

Crawler
Also known as a "spider", this is a program that is able to retrieve web pages from internal or external web servers.

D

© 2011 Lucid Imagination. All rights reserved. Page 336

LucidWorks Search Platform Documentation

Data Source
Defines the metadata required to connect to a location containing content to be indexed. It could be a file system
path, a Web URL, a JDBC connection, or some other set of values.

Distributed Index
A distributed index is one where the search index for a collection is spread across more than one shard.

Distributed Search
Distributed search is one where queries are processed across more than one shard.

Document
One or more Fields. See also Field.

Field
The content to be indexed/searched along with metadata defining how the content should be processed by LucidWorks
Enterprise.

Inverse Document Frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents divided by the
number of Documents that a particular word occurs in the collection. See http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/java/2_3_2/scoring.html for more info on TF-IDF based scoring and Lucene scoring in

particular. See also Term Frequency.

Inverted Index

A way of creating a searchable index that lists every word and the documents that contain those words, similar to an
index in the back of a book which lists words and the pages on which they can be found. When performing keyword
searches, this method is considered more efficient than the alternative, which would be to create a list of documents
paired with every word used in each document. Since users search using terms they expect to be in documents,
finding the term before the document saves processing resources and time.

M

Metadata
Literally, data about data. Metadata is information about a document, such as it's title, author, or location.

Natural Language Query
A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Q

Query Parser

© 2011 Lucid Imagination. All rights reserved. Page 337

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

LucidWorks Search Platform Documentation

A query parser processes the terms entered by a user.

R

Recall
The ability of a search engine to retrieve all of the possible matches to a user's query.

Relevance
The appropriateness of a document to the search conducted by the user.

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers. In LucidWorks
Enterprise, the master continues to manage updates to the index, while queries are handled by the slaves. This
approach enables LucidWorks Enterprise to properly manage query load and ensure responsiveness.

REST API
An alternative way of controlling LucidWorks Enterprise without accessing the user interface.

Shard
A method of partitioning a database or search engine to maximize performance and efficiency.

SolrCloud
Ongoing work within the Solr community to improve Solr's ability to operate in a cloud environment.

Solr Schema (schema.xml)
The Apache Solr index schema. The schema defines the fields to be indexed and the type for the field (text, integers,
etc.) The schema is stored in schema.xml and is located in the Solr home conf directory.

Solr Config (solrconfig.xml)
The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting, spellchecking and various
other configurations. The file, solrconfig.xml is located in the Solr home conf directory.

Spell Check

The ability to suggest alternative spellings of search terms to a user, as a check against spelling errors causing few or
zero results. In LucidWorks Enterprise, effective spell checking requires an index to be built on a regular basis by
scheduling it as an activity.

Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as part of a natural
language query. Stopwords are generally very small pronouns, conjunctions and prepositions (such as, "the", "with",
or "and")

Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one another. In a
search engine implementation, synonyms may be abbreviations as well as words, or terms that are not consistently
hyphenated. Examples of synonyms in this context would be "Inc." and "Incorporated" or "iPod" and "i-pod".

© 2011 Lucid Imagination. All rights reserved. Page 338

http://wiki.apache.org/solr/SolrCloud

LucidWorks Search Platform Documentation

Term Frequency

The number of times a word occurs in a given document. See http://en.wikipedia.org/wiki/Tf-idf and
http://lucene.apache.org/java/2_3_2/scoring.html for more info on TF-IDF based scoring and Lucene scoring in
particular.

See also Inverse Document Frequency (IDF).

W

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations in spelling or
tenses. In LucidWorks Enterprise, there are two ways to use them. One is to use an asterisk (*) at the end of a term
to find all documents that contain words that start with that pattern. For example, pai nt * would find pai nt, pai nt er
and pai nti ng. A second way is to use a question mark (?) in the middle of a term to substitute for one character in
that term. Such as, c?t would find cat, cot and cut . It's also possible to use wildcards at the start of a term in the
same way - either to replace a single letter (using the ? symbol) or to find documents that contain words that end with
a pattern using a *. For example, *spher e would find ecospher e and st r at osphere.

© 2011 Lucid Imagination. All rights reserved. Page 339

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/java/2_3_2/scoring.html

	LucidWorks Enterprise Documentation
	About Lucid Imagination
	How to Use this Documentation
	Introduction
	Features of LucidWorks Enterprise
	How Search Engines Work
	How LucidWorks Enterprise Works
	Indexing Documents
	Managing Indexes and Fields
	Managing Queries

	Installation and Upgrade Guide
	Installation
	Running the Installation Wizard
	Running the Installer in Console Mode
	Automating Installation Options for Installation to Multiple Environments
	Uninstalling Lucid Works Enterprise

	Working With LucidWorks Enterprise Components
	System Directories and Logs
	Starting and Stopping LucidWorks Enterprise
	Migrating from a Prior Version
	LucidWorks Update Tool
	Index Upgrade Tool

	LucidWorks Enterprise User Interface Guide
	System Configuration Guide
	Configuring Default Settings
	Working with Collections
	Using Collection Templates

	Crawling and Indexing Configuration
	Supported Filetypes
	How Documents Map To Fields
	Customizing the Schema
	Synonyms, Stop Words, and Stemming
	Term Analysis File Formats
	Suppressing Stop Word Indexing
	Troubleshooting Document Crawling
	Batch (Split) Crawling
	Crawling Windows Shares with Access Control Lists
	Suggestions for External Data Source Documents
	Integration with External Pipelines
	Deleting the Index

	Query and Search Configuration
	Enterprise Alerts
	Spell Check
	Auto-Complete of User Queries
	Document Highlighting
	Search User Interface Customization
	Performing a Search Against LucidWorks Enterprise

	Understanding and Improving Relevance
	Click Scoring Relevance Framework
	Using Click Scoring Tools

	Multilingual Indexing and Search
	Security and User Management
	Securing LucidWorks Enterprise
	Enabling SSL
	Restricting Access to Content
	LDAP Integration

	Solr Direct Access
	Performance Tips
	Expanding Capacity
	Index Replication
	Distributed Search and Indexing
	Solr Cloud

	Integrating Monitoring Services

	Lucid Query Parser
	Building Search Queries
	Basic Usage
	Understanding Terms
	Case Insensitivity
	Simple Boolean Queries
	Natural Language Queries
	Phrase Query
	More Like This
	Boolean Operators
	Hyphenated Terms
	Punctuation and Special Characters
	Alphanumeric Terms
	Wildcard Queries
	Range Queries
	Fuzzy Queries
	Fields and Field Types
	Field Queries
	Date Queries
	Date Ranges
	Solr Date Format

	Non-Text, Date, Numeric Field Queries
	Whitespace
	Term Operators
	Selecting All Documents
	Relational Operators
	Accented Characters

	Building Advanced Queries
	Minimum Match for Simple Queries
	Negative Queries
	Escaping Wildcard Characters
	Proximity Operations
	Term Boosting
	Boolean Relevancy Boosting
	Query Analysis for Relevancy Boosting

	Term Modifiers
	Default Query Fields
	Empty Queries
	Queries with Unicode Characters
	Escaping Special Syntax Characters
	Term Keyword Options
	Like Term Keyword Option
	Like Document Term Keyword Option

	Query Parser Customization
	Choosing an Alternate Stemmer

	LucidWorks REST API Reference
	Getting Started Indexing
	Advanced Operations Using the REST API
	Error Response Format
	Version
	Collections
	Collection Info
	Activities
	Activity Status
	Activity History

	Data Sources
	Data Source Schedules
	Data Source Jobs
	Data Source Status
	Data Source History
	Data Source Crawl Data Delete

	Batch Crawling API
	Fields
	FieldTypes
	JDBC Drivers
	Settings
	Collection Templates
	Roles
	Filtering Results
	Search Handler Components
	Collection Index Delete

	Alerts API
	Users
	SSL Configuration
	Example Clients
	Example .Net Clients
	Example Perl Clients
	Example Python Clients

	Glossary of Terms

