
Level A-1
Security Audit

May 1, 2025

Version 1.0.0

https://0xmacro.com/

Presented by 0xMacro

https://0xmacro.com/

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Issue Details

Disclaimer

Introduction

This document includes the results of the security audit for Level's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by

the Macro security team from April 18th to the 28th.

The purpose of this audit is to review the source code of certain Level Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes

that should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Medium 7 2 - 5

Low 5 2 - 3

Code Quality 8 - - 8

Informational 2 - - -

Level was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions with the Level team.

Available documentation in the repository.

Provided technical documentation.

Trust Model, Assumptions, and Accepted Risks (TMAAR)

Trusted Entities:

Admin Multisig: Is the roles admin of other roles, can upgrade contracts,

pause/unpause contracts, remove user roles, redeemable assets and oracles and

disable both minting and redeeming. Has the highest authority of the protocol,

and is trusted to act in the best interest of it. Is a 5/8 timelocked multisig, with 4

internal signers and 4 trusted 3rd party signers, where all signers use cold wallets.

Operator Multisig: Can pause/unpause contracts, disable minting/redeeming, and

manage the vault via the vault manager. Is a 2/5 safe, where signers are internal

team members and 4/5 wallets are cold.

Treasury Multisig: Can call reward() on the reward manager, and is trusted to use

assets received to mint more lvlUSD and distribute to stakers. Is a 3/4 safe, where

signers are internal team members and all wallets are cold.

Hexagate GateKeepers: Can pause/unpause contracts and disable minting. Is

trusted to monitor the state of lvlUSD and react when needed in the best interest

of the protocol. Is a EOA stored in AWS.

Trust Assumptions:

Users must trust that the above trusted entities will act in the best interest of the

protocol.

Holders of Level are at risk of losing assets if any of the strategies the protocol

interacts with experiences unexpected issues, like in the event of a hack or

insolvency. The intention is that level money will only interact with proven and

stable protocols and keep this risk to a minimum.

Source Code

The following source code was reviewed during the audit:

Scope

Repository: Level Money contracts

Final Commit Hash: 5065d156f72b878db301907509eadb49760275d2

Specifically, we audited the following contracts within this repository:

Source Code SHA256

src/v2/LevelMintingV2.sol c4021a45a1a843d7668145a288561076ba
47198f1699ccc01ff91fa312fab6bc

src/v2/LevelMintingV2Storage.sol c850e35f95312ca864747ba9eb616ab1af
0a485f55d047e7ee5c280085774906

src/v2/auth/AuthUpgradeable.sol 1ad1e7e356a4bb5916401f5904c706ab39
cb36756aff3bf322ab34e92d307e53

src/v2/auth/StrictRolesAuthority.sol fe755fd0453ba4826937e330e48718ea98
0d50dc187388c06395a13af4ad2d72

src/v2/common/guard/PauserGuard.sol 924663aca6781dcb2f2988c187925d957c
428649a3e582eabbba2b3485226908

src/v2/common/guard/PauserGuarded.sol 6eea005248ca4eeeee4ad40154a788e056
1eba55151b2df055396c2b057ec205

src/v2/common/libraries/MathLib.sol 959dc0878368bc68cac2c41474774fab22
8e22ca0e80b0d52cdfd183c5841e99

src/v2/common/libraries/OracleLib.sol 407d083edfcf18243e2c5119ef4e50fdb9
fd5e2326f2cd31a1363e56a0ef63b5

src/v2/common/libraries/StrategyLib.sol 1857441f2512588aa055acd2dc1f094e3d
ac54d6f355be42a5edef7ce015d210

https://github.com/Level-Money/contracts/

Source Code SHA256

src/v2/common/libraries/VaultLib.sol 73b1652096e4bf4ee47699c2923052ce59
b9beff0b4b705ea1bdb3cd2a0aafbd

src/v2/interfaces/AggregatorV3Interface.so
l

f713c8782afe6e66f8ef7e8caf08c4226d
1af1ab9928dcf998e73d70427b966c

src/v2/interfaces/aave/DataTypes.sol 98bed7b7ba50b12eb66c4fddd6f7877fa0
0867601db8612d9d6b6983ae341615

src/v2/interfaces/aave/IEACAggregatorProx
y.sol

352cab2ff6d1921094904dac59c21fbb74
c2b2e8b0b719b86db6b7e00f2ce6d0

src/v2/interfaces/aave/IPool.sol d359240fec5f2d131eb1bb43322d881bf1
94db4fdfd2535990d29899c8a28479

src/v2/interfaces/aave/IPoolAddressesProvi
der.sol

6596af3544778a94f9c01a3d78baf53dce
fb221ef2546c99edc5f845f8d1d8d1

src/v2/interfaces/level/IBoringVault.sol cef86c4a389461583f6dd879f288dde559
83bb1d9a4fd1e389689fdea72af20d

src/v2/interfaces/level/IERC4626Oracle.sol 568600b596c7f10892491e7087b22accf9
6a2a9db829199f2a60f253cbf19924

src/v2/interfaces/level/ILevelMintingV2.sol e98e14b9417bd90130dc3d439d56336a88
d77f939c2faf8c3b9be29eb2f2d7fc

src/v2/interfaces/level/IPause.sol 823da0726d6860c7a83e0094f3527d2fc3
4aa0dc17180a086586dd8741a8e0a2

src/v2/interfaces/level/IPauserAuthority.sol 00f201c6bdf2338968d8d06e366220a6f0
69fd612fea1d6ebdf227aa17c8bb64

src/v2/interfaces/level/IRewardsManager.so
l

9a9d6ed54391e0af20c0984cc89c147feb
a6915e6970a58c2e936f5665f85922

src/v2/interfaces/level/IVaultManager.sol d4691784fa172fbfae072f9d553ccfb4ef
51dda2db325d2447e2e0f5fd8579d8

Source Code SHA256

src/v2/interfaces/level/IlvlUSD.sol 5db26afef84f4e09fd1ff8fd8e76fa6cba
905cadecb6a437006fbb471112d060

src/v2/interfaces/morpho/IMetaMorpho.sol ace96ee95cd6b68442712a256e24f90393
2b26d278094b04655611748049dae6

src/v2/interfaces/morpho/IMetaMorphoV1_1
.sol

cfbc076c7d307ddbe0ea7430474a9148af
830836449c5b0bed79ef1259b41532

src/v2/interfaces/morpho/IMorpho.sol e8600e7cb5620deddd002b17b014deaa74
aadadd030cd56b2c21b56e53d09b11

src/v2/interfaces/morpho/PendingLib.sol ca53d7a1bd1c9fe0a9cf092f197cbb8b02
192faf773060fc8b2dac1d432c909a

src/v2/lens/LevelReserveLens.sol e93f82b6f01cef4710b1811bdffe22b00b
15cbc7b5332cc7a9bc6249825b6604

src/v2/oracles/AaveTokenOracle.sol 81571e3a2989e3e5098548219e9e8cb929
51a3c2a7366752a8f9888cc4433a58

src/v2/oracles/ERC4626DelayedOracle.sol 549d137ecc2014f91d8b8734bc55a8f06a
47e4a2414174ee277a46f8c10ecd62

src/v2/oracles/ERC4626Oracle.sol c7c82cdffc071aad172bbf40c2fffb8a0d
2eee98bc0a03bd8cec754d9091cb45

src/v2/oracles/ERC4626OracleFactory.sol 7f3f5917bec713649201c428caa5b9d0da
b4c00a98c913209e2633bb22e3a4e9

src/v2/usd/BoringVault.sol a08f6f69d92cd6f90526ff766c86e7998a
0878a125943bebeed7ff2f51e12b63

src/v2/usd/RewardsManager.sol 95af9b753ce148cb0583b281d250f0ed3c
038ff1209cc690d677d4b6c035853a

src/v2/usd/RewardsManagerStorage.sol c9b6e5cce9f36e2874f1cde4f0390cfa3d
45552055750dcd2fe281ebef788354

Source Code SHA256

src/v2/usd/Silo.sol d34a41e84eafbce858815e414e86083a74
aba054c4c3f29a4046a81a0d4548f1

src/v2/usd/VaultManager.sol c1092deb5ef7bb5f8d02cd8f70d2b35539
c2984f7eaafe076a99f4b819698974

src/v2/usd/VaultManagerStorage.sol a4c289ca09a769160a7e9d1a9f395cbb40
ffd26dc1191064910517e554259378

Additionally we reviewed these deployment scripts:

Source Code SHA256

script/v2/DeployLevel.s.sol bb998a52fb684f29a0976108abd50c4835
e45ea2a00501a489d043b6ae19853d

script/v2/DeployTestnet.s.sol 87862d3cc0967c38634c0e5e29942134a2
18ff0290ede456c3be5da517cfba5f

script/v2/DeploymentUtils.s.sol 0ea8eee346e4ee7cff8bbe5fe250f35c06
2eda818d88a9aed17192abbc634930

script/v2/lens/UpgradeLevelReserveLens.s.
sol

ab4ba98bf3671310f4667fc93a6b709feb
d19f5d4bd010f8e427a6423d7e2e03

* File hashes shown above are the final version of the reviewed contracts,

corresponding to the final commit hash.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

M-1 External reward received are stuck in the vault

M-2 Potential precision loss calculating total assets

M-3 Calculated rewards may be inaccurate if underlying depegs

M-4 USDT approvals can revert if current value is non-zero

M-5 Risk of being under collateralized after calling reward()

M-6 Suboptimal yield withdrawal strategy reduces protocol returns

M-7 Burnt lvlUSD not reflected in vault shares

L-1 Minting can be prevented by a griefer

L-2 Oracle not updated consistently

L-3 Users who initiate a new redemption while having a completed cooldown must

wait again unnecessarily

L-4 Potential overflow in computeMint() when using high decimal tokens

L-5 Rewards calculation may be inaccurate due to non-exhaustive asset tracking

I-1 Rebalancing can be griefed

I-2 Rewards may not be claimable without rebalancing assets

Q-1 Public functions with requiresAuth modifier can be bypassed in future upgrades

Q-2 Redundant denylist check in mint function leads to unnecessary gas costs

Q-3 Redundant subtraction operation in completeRedeem() can be simplified

Q-4 Inefficient implementation of getAssets in VaultLib._getTotalAssets

Q-5 Redundant calculation of deposited/withdrawn amounts in Vault operations

Q-6 Redundant token existence checks in BoringVault's enter/exit functions add

unnecessary gas cost

Q-7 Missing validation checks in strategy configuration functions

Q-8 Inconsistent initialization pattern in PauserGuarded contract used by non-

upgradeable contracts

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the

client should give to fixing the issue. We assign severity according to the table of

guidelines below:

Severity Description

(C-x)

Critical

We recommend the client must fix the issue, no matter

what, because not fixing would mean significant

funds/assets WILL be lost.

(H-x)

High

We recommend the client must address the issue, no

matter what, because not fixing would be very bad, or

some funds/assets will be lost, or the code’s behavior is

against the provided spec.

(M-x)

Medium

We recommend the client to seriously consider fixing the

issue, as the implications of not fixing the issue are severe

enough to impact the project significantly, albiet not in an

existential manner.

(L-x)

Low

The risk is small, unlikely, or may not relevant to the

project in a meaningful way.

Whether or not the project wants to develop a fix is up to

the goals and needs of the project.

(Q-x)

Code Quality

The issue identified does not pose any obvious risk, but

fixing could improve overall code quality, on-chain

composability, developer ergonomics, or even certain

aspects of protocol design.

(I-x)

Informational

Warnings and things to keep in mind when operating the

protocol. No immediate action required.

(G-x)

Gas

Optimizations

The presented optimization suggestion would save an

amount of gas significant enough, in our opinion, to be

worth the development cost of implementing it.

Issue Details

M-1 External reward received are stuck in the vault

TOPIC

Protocol Design

STATUS

Acknowledged

IMPACT

Medium

LIKELIHOOD

High

Level money V2 manages positions held by it’s vault using the VaultManager contract.

The vault manager is currently setup to handle different strategies limited to

depositing or withdrawing into or out of either Aave or Morpho lending pools. There is

an assumption that the vault will only receive assets from these direct interactions,

however if protocols offer separate rewards tokens for interacting with their protocols,

or any other reason, the manager has no way to interact with these tokens, nor include

them as rewards to distribute to token holders. In the case of Morpho, their pools offer

a native asset reward, but additionally rewards lenders Morpho tokens, that the vault

can receive via the distributor contract. Aave also allows for external incentives that

are claimable via its incentive controller. Currently there is no way for the manager to

properly handle receiving or interacting with these tokens, unless it is upgraded to do

so.

Remediations to Consider

Add methods to handle external rewards for Aave and Morpho, as well as for other

potential protocols you may interact with, to prevent them from being locking in the

vault and potentially offer additional rewards to lvlUSD holders.

RESPONSE BY LEVEL

Since the owner of the BoringVault can call manage, the rewards won’t be lost

forever. Aave seems to rarely issue rewards for USDC/T, and Morpho’s reward

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol

M-2 Potential precision loss calculating total assets

TOPIC

Accounting

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

In StrategyLib contract, total assets held in strategies for a specific asset are

calculated via getAssets(), where the amount of receipt tokens owned is converted to

the value of its associated underlying stable coin using pricing from the proper oracle.

Before prices are used, the amount of receipt tokens held is converted from its

decimals to the underlying stable coins decimals:

uint256 shares = receiptToken.balanceOf(vault);

uint256 sharesToAssetDecimals =
 shares.mulDivDown(10 ** ERC20(address(config.baseCollateral)).decimals(), 1

(int256 assetsForOneShare, uint256 decimals) =
 OracleLib.getPriceAndDecimals(address(config.oracle), config.heartbeat);

assets_ = uint256(assetsForOneShare).mulDivDown(sharesToAssetDecimals, 10 ** de

Reference: StrategyLib.sol#L48-56

In cases where they share the same decimals or the price is pegged 1:1 via rebasing like

Aave’s aTokens, this isn’t an issue. However in the case where the receipt token differs

from its underlying in decimals and its price isn’t pegged, then converting to decimals

before including the price can lead to a loss of precision. In the case of Morpho, it uses

ERC4626 vaults with 18 decimals, and the price of its shares is based on yield, so will

likely trend to increase relative to the underlying asset. Considering the expected

claiming mechanism can be configured by the contract’s deployer, so we’re okay

with deferring adding a function to claim rewards to the next RewardsManager

update.

https://github.com/Level-Money/contracts//commit/565fdf8f69b25807abc4a1081aaf986587a80fa1
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/StrategyLib.sol
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/StrategyLib.sol#L41-L59
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/StrategyLib.sol#L48-L56

collateral assets will the be the stable coins USDC and USDT, both using 6 decimals,

this can lead to precision loss, and inaccurate assessment of held assets. This can

effect both withdrawals as well as inaccurate rewards calculations when calling

reward().

Remediations to Consider

Multiply by price before converting to the underlying’s decimals to prevent precision

loss.

M-3 Calculated rewards may be inaccurate if underlying depegs

TOPIC

accounting

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

When rewards are calculated via reward(), asset value in the vault is calculated and

related to the total vault shares to determine the amount of yield accrued, this yield is

then withdrawn to the treasury, where it is trusted to mint more lvlUSD with the

received assets, and distribute it to lvlUSD stakers. The main calculation for assets held

for a given asset is handled by getAccruedYield() :

function getAccruedYield(address[] calldata assets) public view returns (uint25
 uint256 total;

 for (uint256 i = 0; i < assets.length; i++) {
 address asset = assets[i];

 StrategyConfig[] memory strategies = allStrategies[asset];

 uint256 totalForAsset = vault._getTotalAssets(strategies, asset);

 total += totalForAsset.convertDecimalsDown(ERC20(asset).decimals(), vau
 }

 uint256 vaultShares = vault.balanceOf(address(vault));

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52
https://github.com/Level-Money/contracts//commit/bbb4942da16f6b64ba0468a36b6df9c862c9dfc9
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52

 accrued = total - vaultShares;

 return accrued;
}

Reference: RewardsManager.sol#L85-102

getAccruedYield() sums the value held for each asset specified into a final total,

however, _getTotalAssets() returns assets in terms of the strategies underlying token,

rather than in terms of lvlUSD. Considering each underlying token is intended to be a

USD based stable coin, this is typically fine. In the case where an underlying token is

depegged, this 1:1 assumption could result in overvaluing assets held, and thus value

accrued, resulting in reward() pulling more assets out than it should and causing lvlUSD

to be under-collateralized.

Remediations to Consider

Convert each underlying asset into lvlUSD via oracles, similar to how it is handled in

computeMint() and computeRedeem().

M-4 USDT approvals can revert if current value is non-zero

TOPIC

Use Cases

STATUS

Fixed

IMPACT

High

LIKELIHOOD

Low

A known issue with USDT is that it requires the current approval amount for a protocol

to be zero before setting to another non-zero value. When depositing into a protocol

with either _depositToAave() or _depositToMorpho(), vault.increaseAllowance() is

called to give the protocol approval to spend tokens:

function increaseAllowance(address token, address spender, uint256 amount) exte
 require(token.code.length != 0, "Token does not exist");

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L85-L102
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/VaultLib.sol
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L179-L186
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L191-L204
https://github.com/Level-Money/contracts//commit/f4fb184f6ae6561e4ec05c5f716fcc1a9bebfa1f
https://bailsec.io/tpost/auxijvrbd1-usdt-and-approvals
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/VaultLib.sol#L97-L121
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/common/libraries/VaultLib.sol#L152-L173
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/BoringVault.sol#L150-L153

 ERC20(token).safeApprove(spender, amount); //TODO replace with forceapprove d
}

Reference: BoringVault.sol#L50-53

As mentioned in the TODO, safeApprove should be replaced by forceApprove , since

Solady’s safeApprove does not handle the edge case of USDT approvals, if a protocol

being interacted with does not consume all USDT approvals when depositing, the

lingering approval will cause future calls to increaseAllowance to fail. Considering

USDT will be one of the main collateral tokens used, this edge case should be

addressed to ensure deposits do not revert. Although deposits are allowed to revert in

mint, the end result would be USDT directly transferred to the vault and not generating

the expected yield that it would if deposited into the set default strategy. Additionally

the vault would be blocked from depositing USDT into protocols that this occurs, until

an external BoringVault.manage() call is made to revoke unspent USDT approvals.

Remediations to Consider

Use Solady’s safeApproveWithRetry(), or another resolution from an trusted repo.

Alternatively you can set approvals to zero before calling increaseAllowance()

M-5 Risk of being under collateralized after calling reward()

TOPIC

Insolvency

STATUS

Fixed

IMPACT

High

LIKELIHOOD

Low

After reward() is called, based on price evaluations of assets held in the vault, all

excess value not required to collateralize lvlUSD is sent to the treasury. This means

that the value of the vaults assets equals the value of lvlUSD. This makes sense,

however there can be near-term price updates that could then result in the value of

assets held to not collateralize circulating lvlUSD, particularly for assets held in

morpho pools where bad debt could lead to a decrease in price. Large price deviations

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/BoringVault.sol#L150-L153
https://github.com/Vectorized/solady/blob/main/src/utils/SafeTransferLib.sol#L338-L355
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/BoringVault.sol#L59-L74
https://github.com/Vectorized/solady/blob/main/src/utils/SafeTransferLib.sol#L357-L388
https://github.com/Level-Money/contracts//commit/d3ac9fad4acf3216d4cdc80639babec5ad1688bd
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52

of collateralized assets held in the vault is always a risk that could lead to depegging,

which is why stable protocols and use of stable coins are the expected strategies, and

a buffer of generated yield helps mitigate potential downside price fluctuations. In the

case of directly after reward() is called, there is no longer an asset buffer and could

lead to lvlUSD being under collateralized, with little direct incentive to mint more until

the peg is re-achieved, as minting always costs $1 USD value of collateral asset.

Maintaining a little asset value buffer may be advised based on the value of assets held

in more volatile or risky pools/protocols to reduce risk of under collateralization and

thus depegging.

Remediations to Consider

Add a optional percent or flat amount buffer parameter to reward() that keeps a

specified amount of excess assets to potentially sufficiently over collateralize lvlUSD to

reduce downside risk.

M-6 Suboptimal yield withdrawal strategy reduces protocol returns

TOPIC

Rewards Management

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

The RewardsManager.reward() function implements a suboptimal strategy for

withdrawing yield, resulting in reduced returns for the protocol over time. The current

implementation withdraws yield by converting receipt tokens to base tokens without

first utilizing available base tokens in the vault, leading to compounding interest

losses.

The root cause lies in the reward() function's withdrawal logic. When withdrawing

accrued yield, the function:

1. Calculates total accrued yield across all strategies

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52
https://github.com/Level-Money/contracts//commit/13034faab5dd0b88336d7e6e33b029953b85d314

2. Directly converts receipt tokens to base tokens to fulfill the yield amount

3. Transfers the withdrawn amount to the treasury

This approach fails to optimize for maximum yield because it doesn't prioritize using

already-available base tokens in the vault before converting receipt tokens that are

actively earning interest.

Consider this scenario:

Initial state:

Vault holds 50 USDC (base token) and 950 sUSDC (Steakhouse USDC, receipt token

worth $950)

After one day at 10% APY:

The 950 sUSDC appreciates to $1,045

Total vault value: $1,095

Accrued yield: $95

Current behavior:

Converts ~86.3 sUSDC to USDC to withdraw $95 yield

Remaining vault value: 50 USDC + 863.7 sUSDC = $1,000

After another day at 10% APY: Total value grows to $1,086.4

Optimal behavior would:

Use the existing 50 USDC first

Convert only 40.9 sUSDC to obtain the remaining $45 needed

Leave 909.1 sUSDC in the vault

After another day at 10% APY: Total value grows to $1,090.9

The difference of $4.5 per cycle compounds over time, which proves the suboptimal

yield of the protocol.

Remediations to Consider Implement a two-step withdrawal process in the reward()

function:

1. First, check and withdraw available base tokens from the vault

2. Only convert receipt tokens if additional funds are needed

M-7 Burnt lvlUSD not reflected in vault shares

TOPIC

accounting

STATUS

Acknowledged

IMPACT

Medium

LIKELIHOOD

Medium

The expected invariant is that the shares of lvlUSD should equal the total balance of

lvlUSD. The LvlUSD token is burnable, which means that the owner of the tokens can

destroy their tokens by calling burn() or burnFrom() on the token, lowering the supply

of lvlUSD. The vault supply is only informed of lvlUSD minting and burning via

LevelMinting.sol, so burning tokens in this way does not result in the equivalent vault

shares to be burned, causing the invariant to be broken. The effect of this can be seen

in the case of RewardManager’s reward() where it determines accrued assets based on

the vaults total supply, but in the case of burnt lvlUSD tokens this supply would be

higher than lvlUSD, so the amount of assets required to collateralize lvlUSD should be

lower than is calculated.

Remediations to Consider

Consider updating the vault shares on burning, evaluate assets required to collateralize

lvlUSD based on it’s own supply rather than vault shares, or watch burning events and

have the admin multisig burn a proportional amount of vault shares via vault.exit()

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v1/lvlUSD.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Burnable.sol#L20-L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC20Burnable.sol#L35-L38
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/RewardsManager.sol#L36-L52

RESPONSE BY LEVEL

L-1 Minting can be prevented by a griefer

TOPIC

Griefing

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

When minting lvlUSD via mint() there is a limit to the amount of lvlUSD that can be

minted in each block:

 mintedPerBlock[block.number] += lvlUsdMinted;

 if (mintedPerBlock[block.number] > maxMintPerBlock) revert ExceedsMaxBlockLimi

Reference: LevelMintingV2.sol#L56-58

The intention behind constraining the amount of lvlUSD per block is to prevent large

influxes in cases of depegging or arbitrage opportunities. However, if someone were to

want to prevent users from being able to mint lvlUSD, or prevent a net positive

issuance over time, they could continually frontrun and mint the max limit per block,

preventing additional mints from occurring that block. They could then initiate a

redemption via initiateRedeem() to redeem the minted lvlUSD back for their collateral

after waiting the cooldownDuration (default of 5 minutes). If a user was so inclined and

had the funds they repeat this for each block within the cooldownDuration and loop

redeemed assets back to continue the attack. Notably, lvlUSD has a deny list,

preventing transfers to or from any address on this list, however only the address

when minting is checked if they are on this deny list, and when calling

We’ll watch for burn events and have the admin timelock can call vault.exit to

recover the collateral that used to back the burned lvlUSD. Since lvlUSD is an

immutable contract, we won't be able to affect it's logic.

https://github.com/Level-Money/contracts//commit/00a03c717b3236da4baa8c45cf05ff23e34446c7
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L45-L81
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L45-L81
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L83-L119

completeRedeem() any beneficiary can be set, allowing the griefer to circumvent any

attempts to use the deny list to prevent this attack. This attack is quite costly to

implement, and has no obvious incentives to do so, it is good to be aware that it exists.

Remediations to Consider

Consider checking if msg.sender is on the deny list when calling completeRedeem(), it is

important to note that doing so could result in unredeemable assets in the case where

the user is added to the deny list before completing their redemption, locking assets in

the silo.

L-2 Oracle not updated consistently

TOPIC

Oracles

STATUS

Acknowledged

IMPACT

Low

LIKELIHOOD

Low

When minting lvlUSD before it pulls the price from the oracle it attempt to update

beforehand:

if (isLevelOracle[order.collateral_asset]) {
 oracles[order.collateral_asset]._tryUpdateOracle();
}

Reference: LevelMinting.sol#L50-52 This is also done for VaultManager’s _deposit()

and _withdraw() functions. This is done to ensure the price is accurate, specifically if

the oracle is a ERC4626DelayedPriceOracle. In initiateRedeem() however, the oracle is

not attempted to be updated, resulting in a potentially stale pricing if other calls that

do update the oracle are not called. Additionally the same occurs in RewardsManager.

[getAccruedYield()](https://github.com/Level-

Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/Rewards

Manager.sol#L84-L102) .

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L121-L135
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L121-L135
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol#L146-L169
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol#L171-L192
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/oracles/ERC4626DelayedOracle.sol
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/LevelMintingV2.sol#L83-L119

Remediations to Consider

Consider attempting to update the oracle in initiateRedeem() to be more consistent

and have potentially more up to date prices.

RESPONSE BY LEVEL

L-3 Users who initiate a new redemption while having a completed

cooldown must wait again unnecessarily

TOPIC

Redemption Process

STATUS

Acknowledged

IMPACT

Low

LIKELIHOOD

Low

In LevelMintingV2.sol , the initiateRedeem() function allows users to start the

redemption process for their lvlUSD tokens. However, when users attempt to initiate a

new redemption while having a completed cooldown period from a previous

redemption that hasn't been claimed yet, the function still enforces a new cooldown

period instead of reverting.

This creates a suboptimal user experience where users who forget to claim their

completed redemption first will have their funds unnecessarily locked for another

cooldown period when initiating a new redemption.

Remediations to Consider Add a check at the start of initiateRedeem() to ensure

users cannot initiate new redemptions if they have completed but unclaimed

redemptions. Alternatively, at the UI level, implement a warning message to notify

users that initiating a new redemption will reset the cooldown period for their

unclaimed redemptions.

This would be true if we let users redeem lvlUSD for non-base collateral (ie

Morpho vault tokens). Since redemptions are only going to be in base collateral

(for which we only use Chainlink oracles), _tryUpdateOracle will never be called.

RESPONSE BY LEVEL

L-4 Potential overflow in computeMint() when using high decimal

tokens

TOPIC

Arithmetic Overflow

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

The computeMint() function in LevelMintingV2.sol performs calculations to

determine the amount of lvlUSD to mint based on collateral value. When using high

decimal tokens (particularly receipt tokens for stablecoins like PYUSD), the

intermediate calculations can potentially overflow due to large exponents in the

numerator.

The issue occurs in the calculation: collateralAmount * numerator / denominator

For receipt tokens, the numerator is the product of 10 ** LVLUSD_DECIMAL ,

collateralOraclePrice , and underlyingPrice , while the denominator includes the

corresponding decimal adjustments.

With high decimal tokens like PYUSD (18 decimals) and its receipt token sPYUSD (18

decimals):

If collateralOraclePrice = 1.1e18 (sPYUSD/PYUSD)

And underlyingPrice = 1e18 (PYUSD/USD)

The numerator would be ~1.1e56

This means a collateral amount of 105,265 PYUSD (~$115,792) would cause an overflow

in the intermediate multiplication.

We will update this in the UI, and add a comment to the smart contract code.

https://github.com/Level-Money/contracts//commit/5cfe191093d08e29938aec933d090c34dedda2d4

While users can mitigate this by splitting deposits into multiple transactions, this

workaround results in poor UX. More critically, when the msg.sender is a contract that

cannot configure collateral amounts, this issue can lead to protocol integration

problems.

Remediations to Consider Modify the calculation to reduce intermediate values by

factoring out common decimals between numerator and denominator:

numerator = collateralOraclePrice * underlyingPrice;
denominatorDecimals = collateralToken.decimals() + collateralOracleDecimals + u

if (denominatorDecimals > LVLUSD_DECIMAL) {
 return collateralAmount.mulDivDown(numerator, 10 ** (denominatorDecimals -
} else {
 return collateralAmount * numerator * (10 ** (LVLUSD_DECIMAL - denominatorD
}

This maintains the same mathematical relationship while reducing the size of

intermediate values.

L-5 Rewards calculation may be inaccurate due to non-exhaustive asset

tracking

TOPIC

Rewards Calculation

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

The reward() function in RewardsManager contract relies on an array of assets passed

as input to calculate accrued yield. This design is problematic because it allows for

potential calculation inaccuracies if the caller does not provide a complete list of all

assets that should be included in the yield computation.

The root issue lies in the fact that while strategies are set per asset via

setAllStrategies() , there is no mechanism to ensure that all relevant assets are

https://github.com/Level-Money/contracts//commit/6358dff10db9cd0b7a275641e46a384fa70ed83b

included when reward() is called. This could lead to lower yield calculation if some

assets are accidentally omitted from the input array.

Remediations to Consider Track all valid assets internally in the contract rather than

relying on input parameters:

contract RewardsManager {
+ address[] public validAssets;

 function setAllStrategies(address asset, StrategyConfig[] memory strategies
+ if (!_containsAsset(validAssets, asset)) {
+ validAssets.push(asset);
+ }
 // ... existing code ...
 }

- function reward(address[] calldata assets) external notPaused requiresAuth
+ function reward() external notPaused requiresAuth {
- uint256 accrued = getAccruedYield(assets);
+ uint256 accrued = getAccruedYield(validAssets);
 // ... rest of the function ...
 }
}

This ensures that yield calculations always consider all assets that have been properly

configured in the system.

I-1 Rebalancing can be griefed

TOPIC

Griefing

IMPACT

Informational ✳

The VaultManager is able to control the vault to directly withdraw and deposit assets

into supported protocols via deposit() and withdraw(), allowing them to withdraw

assets from one protocol and deposit them into another. However, since when

https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol#L29-L39
https://github.com/Level-Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/VaultManager.sol#L42-L50

redemptions are initiated, assets are also withdrawn from the vault first, then from

default withdrawal strategies, it is possible that redemptions can cause rebalances to

fail if the expected assets are no longer held in the vault or the expected amount is no

longer in a default withdrawal strategy. This is not likely to arise as much of an issue,

but ensuring strategists execute their rebalances in a single atomic transaction, and

potentially using a private RPC is suggested to prevent this from occurring.

RESPONSE BY LEVEL

I-2 Rewards may not be claimable without rebalancing assets

TOPIC

Accounting

IMPACT

Informational ✳

RewardsManager.[reward()](https://github.com/Level-

Money/contracts/blob/9c69738aac06ef0edb3be6a7c9f4c6ef320f8cef/src/v2/usd/Rewards

Manager.sol#L36-L52) function calculates rewarded assets accrued, and pulls these

assets from the vault into the treasury. Only a single asset is pulled from, the 0th index

of the assets array parameter, to cover the rewards owed across potentially many

different assets used in the protocol, which means that there is required to be enough

free liquidity of that asset to cover all accrued rewards for the protocol. If this is not

the case, coordination between the strategist freeing up assets before the treasury can

call reward may be required. It is suggested there be enough assets available to cover

rewards and for reward() to be called semi-frequently

RESPONSE BY LEVEL

We plan on rebalancing through atomic transactions with private RPC URLS.

Q-1 Public functions with requiresAuth modifier can be bypassed in

future upgrades

TOPIC

Access Control

STATUS

Fixed

QUALITY IMPACT

Low

Several functions including LevelMintingV2.addMintableAsset() ,

LevelMintingV2.addRedeemableAsset() , LevelMintingV2.addOracle() ,

LevelMintingV2.removeOracle() , LevelMintingV2.setHeartBeat() ,

StrictRolesAuthority.setUserRole() , and StrictRolesAuthority.removeUserRole()

are marked as public while being protected by the requiresAuth modifier. This

creates a potential security risk in future upgrades of the contract.

The issue stems from how function selectors work in Solidity. The requiresAuth

modifier checks msg.sig to determine if the caller has the required authorization.

However, in future upgrades, if a new function is added that internally calls any of

these public functions, that internal call would bypass the requiresAuth check since

msg.sig would be the selector of the outer function, not the internal one being called.

While this is not an immediate vulnerability since there are currently no functions that

make such internal calls, it represents poor security architecture that could be

exploited in future upgrades if proper care is not taken.

Consider changing the visibility of these functions from public to external to

prevent them from being called internally.

Since we expect to call reward at least once a week, we expect amount of rewards

claimed as a percentage of the reserves to be relatively low. To take an example, if

the APR on lending protocols is 10% (which is rare), the weekly percentage of

reserves we’d need to redeem as rewards is less than 20 bps.

https://github.com/Level-Money/contracts//commit/7583109ac602cbab1242ad9a91ed37ce427245f4

Q-2 Redundant denylist check in mint function leads to unnecessary

gas costs

TOPIC

Redundant logic

STATUS

Fixed

QUALITY IMPACT

Low

The LevelMintingV2.mint() function in performs an explicit check for denylisted

addresses by calling lvlusd.denylisted(msg.sender) . However, this check is

redundant since the lvlUSD token already performs the same validation in its

_beforeTokenTransfer() hook, which is called during the minting process.

Consider removing the redundant check:

function mint(Order calldata order) external requiresAuth notPaused returns (ui
- if (lvlusd.denylisted(msg.sender)) revert DenyListed();

 // ... rest of the function

Q-3 Redundant subtraction operation in completeRedeem() can be

simplified

TOPIC

Code Simplification

STATUS

Fixed

QUALITY IMPACT

Low

In LevelMintingV2.completeRedeem() , the code first assigns

pendingRedemption[msg.sender][asset] to collateralAmount and then subtracts

collateralAmount from pendingRedemption[msg.sender][asset] . Since these values

are equal and the intent is to clear the pending redemption, this operation can be

simplified to a direct assignment to zero.

https://github.com/Level-Money/contracts//commit/7583109ac602cbab1242ad9a91ed37ce427245f4
https://github.com/Level-Money/contracts//commit/7583109ac602cbab1242ad9a91ed37ce427245f4

Replace the subtraction operation with a direct assignment to zero since we're clearing

the entire pending redemption:

 collateralAmount = pendingRedemption[msg.sender][asset];
- pendingRedemption[msg.sender][asset] -= collateralAmount;
+ pendingRedemption[msg.sender][asset] = 0;

Q-4 Inefficient implementation of getAssets in

VaultLib._getTotalAssets

TOPIC

Redundant logic

STATUS

Fixed

QUALITY IMPACT

Low

In VaultLib._getTotalAssets , the function iterates through each strategy to call

StrategyLib.getAssets(config, address(vault)) individually. However, StrategyLib

already provides an overloaded getAssets function that accepts an array of

StrategyConfig and performs the iteration internally. Using the array version would

eliminate an unnecessary loop layer and slightly improve gas efficiency.

Remediations to Consider Replace the manual iteration with a direct call to the array

version of getAssets :

 function _getTotalAssets(BoringVault vault, StrategyConfig[] memory strategie
 internal
 view
 returns (uint256 total)
 {
 uint256 totalForAsset = ERC20(asset).balanceOf(address(vault));
- for (uint256 j = 0; j < strategies.length; j++) {
- StrategyConfig memory config = strategies[j];
- totalForAsset += StrategyLib.getAssets(config, address(vault));
- }
+ totalForAsset += StrategyLib.getAssets(strategies, address(vault));

https://github.com/Level-Money/contracts//commit/7583109ac602cbab1242ad9a91ed37ce427245f4

 return totalForAsset;
 }

Q-5 Redundant calculation of deposited/withdrawn amounts in Vault

operations

TOPIC

Redundant logic

STATUS

Fixed

QUALITY IMPACT

Low

In VaultLib.sol , there are multiple instances where the code calculates

deposited/withdrawn amounts by taking the difference between balance before and

after the operation. However, these calculations are redundant since the amounts are

always equal to the input parameter amount in the functions _depositToAave() ,

_depositToMorpho() , and _withdrawFromMorpho() .

Consider returning the input amount parameter instead of calculating the difference.

This saves gas by eliminating redundant storage reads and arithmetic operations.

Similar changes should be applied to _depositToMorpho() and

_withdrawFromMorpho() .

Q-6 Redundant token existence checks in BoringVault's enter/exit

functions add unnecessary gas cost

TOPIC

Redundant logic

STATUS

Fixed

QUALITY IMPACT

Low

https://github.com/Level-Money/contracts//commit/6bc4a5724cac61e53cef4b0b66bf8e900ee7c4aa
https://github.com/Level-Money/contracts//commit/1f43790811c4f83c9973165498607909bbc121af

The BoringVault contract implements redundant token existence checks in both

enter() and exit() functions using require(address(asset).code.length != 0,

"Token does not exist") . These checks are unnecessary because

SafeTransferLib.safeTransfer() already includes this check in the Solmate version

being used.

Consider removing the redundant token existence checks from both functions since

they add unnecessary gas overhead.

Q-7 Missing validation checks in strategy configuration functions

TOPIC

Input Validation

STATUS

Fixed

QUALITY IMPACT

Low

In both RewardsManager.setAllStrategies() and

VaultManager.setDefaultStrategies() , there are missing validation checks for

strategy configuration parameters. While RewardsManager validates baseCollateral , it

doesn't verify the category field. Conversely, VaultManager checks if the category is

valid but doesn't validate if the baseCollateral matches the input asset. Consider

adding validation in both functions

Q-8 Inconsistent initialization pattern in PauserGuarded contract used

by non-upgradeable contracts

TOPIC

Initialization Pattern

STATUS

Fixed

QUALITY IMPACT

Low

https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol#L54
https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol#L54
https://github.com/Level-Money/contracts//commit/aa8ec849b835b9cf85be6544830ddaf5044e134c
https://github.com/Level-Money/contracts//commit/1229d478716416b6c604337878e0298ef7448146

The PauserGuarded contract follows an upgradeable contract pattern with

initialization functions, but it's being used by non-upgradeable contracts like

BoringVault . The __PauserGuarded_init() function lacks the onlyInitializing

modifier from OpenZeppelin's upgradeable pattern, which appears to be intentionally

removed to allow non-upgradeable contracts like BoringVault to use it.

This creates an inconsistent and potentially confusing pattern where the

PauserGuarded contract uses upgradeable contract patterns (storage gaps,

initialization functions), but removes key safety checks (onlyInitializing) to support

non-upgradeable contracts. This mixed usage leads to BoringVault contract having

bloated features for upgradability while not being upgradeable. Moreover, this can

create confusion for future contracts that inherit from the PauserGuarded contract.

Consider creating a non-upgradeable version of PauserGuarded specifically for non-

upgradeable contracts like BoringVault . Alternatively, maintain the upgradeable

pattern properly by keeping onlyInitializing and making BoringVault upgradeable

if that flexibility is desired.

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect to

the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement and

those arising from a course of dealing, usage or trade with respect thereto, and all such

warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods or

services or for any claim or demand by any other party. In no event will Macro be liable for

consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by the

Level team and only the source code Macro notes as being within the scope of Macro’s

review within this report. This report does not include an audit of the deployment scripts

used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice, is

not intended to be relied upon as investment advice, is not an endorsement of this project

or team, and it is not a guarantee as to the absolute security of the project. In this report

you may through hypertext or other computer links, gain access to websites operated by

persons other than Macro. Such hyperlinks are provided for your reference and convenience

only, and are the exclusive responsibility of such websites’ owners. You agree that Macro is

not responsible for the content or operation of such websites, and that Macro shall have no

liability to your or any other person or entity for the use of third party websites. Macro

assumes no responsibility for the use of third party software and shall have no liability

whatsoever to any person or entity for the accuracy or completeness of any outcome

generated by such software.

