
Level V2 Security Review
Pashov Audit Group

Conducted by: Said, btk, zark, Araj, TheWeb3Mechanic, Silvermist, 0xAbhay
April 9th 2025 - April 18th 2025



Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Level V2
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. High Findings
[H-01] Zero heartBeat can cause reward claim failures

8.2. Medium Findings
[M-01] reward does not account for an under-peg
scenario
[M-02] Unnecessary withdraw can occur during
initiateRedeem and reward
[M-03] Incorrect maxRedeemPerBlock check
[M-04] Max redeemPerBlock limit not implemented
correctly
[M-05] Missing oracle updates in RewardsManager

8.3. Low Findings
[L-01] initialize() lacks asset and oracle length check
[L-02] Wrong Boring vault setup
[L-03] Morpho low-liquidity vaults at risk of price
manipulation
[L-04] Testing vaults in morpho are not yet removed from
deployment script
[L-05] aUSDC, aUSDT and steakhouse USDC not
mintable
[L-06] LevelReserveLens returns incorrect reserves

1

3

3

3

4

4

4
5
5

6

7

10

10

10

12

12

13

14

16

17

20

20

20

20

21

21

22



[L-07] BoringVault can receive ETH but cannot withdraw
it
[L-08] Missing role assignment for strategy removal
[L-09] Missing role authorization for beforeTransferHook
[L-10] Unnecessary and dangerous token approvals
[L-11] Inconsistent value tracking in
maxRedeemPerBlock across stablecoins
[L-12] Collateral may be stuck in silo if asset is removed
[L-13] Aave incentives will be locked
[L-14] RewardsManager cannot handle yield split across
multiple assets
[L-15] LVLUSD burning causes permanent collateral
accounting mismatch
[L-16] Vault deposit frontrun
[L-17] Default strategies are not updated on strategy
removal

2

22

23

23

23

24

25

26

27

29

30

32



1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the Level-Money/contracts repository was done
by Pashov Audit Group, with a focus on the security aspects of the application's
smart contracts implementation.

3

https://github.com/pashov/audits
https://twitter.com/pashovkrum


4. About Level V2
Level is the protocol behind Level USD (lvlUSD), a stablecoin backed by restaked
dollar tokens. Users can mint and stake lvlUSD to earn a yield from AVSs on
restaking protocols, as well as blue-chip on-chain lending protocols. lvlUSD is a
stablecoin fully backed by USDC and USDT, which can be minted permissionlessly
and generates yield through lending protocols. Users can stake lvlUSD to receive
slvlUSD, which appreciates in value as yield is distributed, and both tokens are
freely usable across integrated DeFi platforms.

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

4



5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

5



6. Security Assessment Summary
review commit hash - 08ffd7e9d81f7017498524e646bf3abba47426a4

fixes review commit hash - 5065d156f72b878db301907509eadb49760275d2

Scope

The following smart contracts were in scope of the audit:

DeployLevel

DeploymentUtils

LevelMintingV2

LevelMintingV2Storage

AuthUpgradeable

StrictRolesAuthority

PauserGuard

PauserGuarded

MathLib

OracleLib

StrategyLib

VaultLib

interfaces/

LevelReserveLens

AaveTokenOracle

ERC4626DelayedOracle

ERC4626Oracle

ERC4626OracleFactory

BoringVault

RewardsManager

RewardsManagerStorage

Silo

VaultManager

VaultManagerStorage

6

https://github.com/Level-Money/contracts/tree/08ffd7e9d81f7017498524e646bf3abba47426a4
https://github.com/Level-Money/contracts/tree/5065d156f72b878db301907509eadb49760275d2


7. Executive Summary
Over the course of the security review, Said, btk, zark, Araj, TheWeb3Mechanic,
Silvermist, 0xAbhay engaged with Level to review Level V2. In this period of time
a total of 23 issues were uncovered.

Protocol Summary
Protocol Name Level V2

Repository https://github.com/Level-Money/contracts

Date April 9th 2025 - April 18th 2025

Protocol Type Stablecoin

Findings Count
Severity Amount

High 1

Medium 5

Low 17

Total Findings 23

7



Summary of Findings
ID Title Severity Status

[H-01] Zero heartBeat can cause reward
claim failures High Resolved

[M-01] reward does not account for an under-
peg scenario Medium Resolved

[M-02] Unnecessary withdraw can occur
during initiateRedeem and reward Medium Resolved

[M-03] Incorrect maxRedeemPerBlock check Medium Resolved

[M-04] Max redeemPerBlock limit not
implemented correctly Medium Resolved

[M-05] Missing oracle updates in
RewardsManager Medium Resolved

[L-01] initialize() lacks asset and oracle
length check Low Resolved

[L-02] Wrong Boring vault setup Low Resolved

[L-03] Morpho low-liquidity vaults at risk of
price manipulation Low Acknowledged

[L-04] Testing vaults in morpho are not yet
removed from deployment script Low Resolved

[L-05] aUSDC, aUSDT and steakhouse
USDC not mintable Low Resolved

[L-06] LevelReserveLens returns incorrect
reserves Low Resolved

[L-07] BoringVault can receive ETH but
cannot withdraw it Low Resolved

[L-08] Missing role assignment for strategy Low Resolved

8



removal

[L-09] Missing role authorization for
beforeTransferHook Low Resolved

[L-10] Unnecessary and dangerous token
approvals Low Resolved

[L-11]
Inconsistent value tracking in
maxRedeemPerBlock across
stablecoins

Low Resolved

[L-12] Collateral may be stuck in silo if asset
is removed Low Resolved

[L-13] Aave incentives will be locked Low Acknowledged

[L-14] RewardsManager cannot handle yield
split across multiple assets Low Acknowledged

[L-15] LVLUSD burning causes permanent
collateral accounting mismatch Low Acknowledged

[L-16] Vault deposit frontrun Low Acknowledged

[L-17] Default strategies are not updated on
strategy removal Low Resolved

9



8. Findings

8.1. High Findings

[H-01] Zero heartBeat  can cause reward
claim failures

Severity
Impact: Medium

Likelihood: High

Description
The OracleLib  and RewardsManager  contracts work together to enable reward
claiming based on asset prices. A key part of this process involves the
getAssets()  function in StrategyLib , which calculates the total assets held
by a vault. This function depends on price data fetched via
OracleLib.getPriceAndDecimals() .

However, the current implementation passes a heartBeat  value of 0 when
calling getPriceAndDecimals() :

(          
          int256assetsForOneShare,
          uint256decimals
        ) = OracleLib.getPriceAndDecimals(address(config.oracle

The heartBeat  parameter is used to determine whether price data is still fresh.
Passing 0 effectively means "no tolerance" for stale data. As a result, if the
current block.timestamp  is even slightly greater than the updatedAt
timestamp of the price, the function will revert — causing the reward claim to
fail.

Proof of Concept

10



A user calls the reward()  function on the RewardsManager  contract.
reward()  triggers getAccruedYield() , which internally calls getAssets()
from StrategyLib .
getAssets()  invokes OracleLib.getPriceAndDecimals()  with a heartbeat
of 0.
If block.timestamp > updatedAt + 0 , the call reverts, preventing the user
from claiming rewards.
This clearly shows how the current setup can block users from receiving
rewards, especially when price feeds are not updated frequently.

Recommendations
Update the getPriceAndDecimals()  call in getAssets()  to use a non-zero
heartbeat . A value of at least 3600 seconds (1 hour) is recommended.

11



8.2. Medium Findings

[M-01] reward  does not account for an
under-peg scenario

Severity
Impact: High

Likelihood: Low

Description
When reward  is called, it calculates the accrued yield as the total asset
balances in the vault and across strategies, minus the minted shares in the
vault.

function getAccruedYield(address[] calldata assets) public view returns 
      (uint256 accrued) {
        uint256 total;

        for (uint256 i = 0; i < assets.length; i++) {
            address asset = assets[i];

            StrategyConfig[] memory strategies = allStrategies[asset];

            uint256 totalForAsset = vault._getTotalAssets(strategies, asset);
 >>>        total += totalForAsset.convertDecimalsDown(ERC20(asset).decimals
   (), vault.decimals());
        }
        uint256 vaultShares = vault.balanceOf(address(vault));
        accrued = total - vaultShares;

        return accrued;
    }

However, this doesn't account for scenarios where the underlying asset is
currently under-peg ( price < $1). When the asset is under-peg, its actual value
is lower than the calculated asset amount. This can result in an incorrect
calculation of the accrued yield allocated to the treasury, potentially leading to
lvlUSD being insufficiently collateralized in the event of a sharp price drop.

Recommendations

12



Consider each asset price when calculating the total value.

[M-02] Unnecessary withdraw can occur
during initiateRedeem  and reward

Severity
Impact: Medium

Likelihood: Medium

Description
When users trigger initiateRedeem , the operation always attempts to
withdraw collateral from the default strategies without first checking whether
the current collateral balance in the boring vault is sufficient to cover the
redemption request.

13



function initiateRedeem
      (address asset, uint256 lvlUsdAmount, uint256 expectedAmount)
        external
        requiresAuth
        notPaused
        returns (uint256, uint256)
    {
        if (!redeemableAssets[asset]) revert UnsupportedAsset();
        if 
          (!isBaseCollateral[asset]) revert RedemptionAssetMustBeBaseCollateral();
        if (lvlUsdAmount == 0) revert InvalidAmount();

        uint256 collateralAmount = computeRedeem(asset, lvlUsdAmount);
        if 
          (collateralAmount < expectedAmount) revert MinimumCollateralAmountNotMet();

        pendingRedemption[msg.sender][asset] += collateralAmount;
        userCooldown[msg.sender][asset] = block.timestamp;

        // note preventing amounts that would fail by definition at complete 
        // redeem due to max per block
        if 
          (pendingRedemption[msg.sender][asset] > maxRedeemPerBlock) revert ExceedsMax

        lvlusd.burnFrom(msg.sender, lvlUsdAmount);

        // Don't block redemptions if withdraw default fails
>>>     try vaultManager.withdrawDefault(asset, collateralAmount) {
            emit WithdrawDefaultSucceeded(msg.sender, asset, collateralAmount);
        } catch {
            emit WithdrawDefaultFailed(msg.sender, asset, collateralAmount);
        }

        vaultManager.vault().exit(
            address(silo), ERC20(asset), collateralAmount, address
              (vaultManager.vault()), lvlUsdAmount
        );

        emit RedeemInitiated(msg.sender, asset, collateralAmount, lvlUsdAmount);

        return (lvlUsdAmount, collateralAmount);
    }

This could lead to unnecessary withdrawals from strategies, even when there is
enough collateral in the vault to cover the redemption request. This results in
suboptimal yield and asset management.

The same case also applies when RewardsManager.reward  is called.

Recommendations
Only trigger vaultManager.withdrawDefault  when the collateral balance in
the vault is insufficient to cover the redemption and reward  request.

[M-03] Incorrect maxRedeemPerBlock  check

14



Severity
Impact: Medium

Likelihood: Medium

Description
maxRedeemPerBlock  is intended to limit the maximum redemption per block.
However, it is currently being checked against pendingRedemption .

function initiateRedeem
      (address asset, uint256 lvlUsdAmount, uint256 expectedAmount)
        external
        requiresAuth
        notPaused
        returns (uint256, uint256)
    {
        if (!redeemableAssets[asset]) revert UnsupportedAsset();
        if 
          (!isBaseCollateral[asset]) revert RedemptionAssetMustBeBaseCollateral();
        if (lvlUsdAmount == 0) revert InvalidAmount();

        uint256 collateralAmount = computeRedeem(asset, lvlUsdAmount);
        if 
          (collateralAmount < expectedAmount) revert MinimumCollateralAmountNotMet();

        pendingRedemption[msg.sender][asset] += collateralAmount;
        userCooldown[msg.sender][asset] = block.timestamp;

        // note preventing amounts that would fail by definition at complete 
        // redeem due to max per block
>>>     if 
  (pendingRedemption[msg.sender][asset] > maxRedeemPerBlock) revert ExceedsMaxBlockLim

        lvlusd.burnFrom(msg.sender, lvlUsdAmount);

        // Don't block redemptions if withdraw default fails
        try vaultManager.withdrawDefault(asset, collateralAmount) {
            emit WithdrawDefaultSucceeded(msg.sender, asset, collateralAmount);
        } catch {
            emit WithdrawDefaultFailed(msg.sender, asset, collateralAmount);
        }

        vaultManager.vault().exit(
            address(silo), ERC20(asset), collateralAmount, address
              (vaultManager.vault()), lvlUsdAmount
        );

        emit RedeemInitiated(msg.sender, asset, collateralAmount, lvlUsdAmount);

        return (lvlUsdAmount, collateralAmount);
    }

This will cause the check to not work as intended. Users can easily bypass it
by transferring the lvlUSD to another account and redeeming it.

Recommendations
15



Either move the maxRedeemPerBlock  check to completeRedeem , where
redeemedPerBlock  is increased or move the redeemedPerBlock  increment to
initiateRedeem  and perform the check against maxRedeemPerBlock  there.

function initiateRedeem
      (address asset, uint256 lvlUsdAmount, uint256 expectedAmount)
        external
        requiresAuth
        notPaused
        returns (uint256, uint256)
    {
        if (!redeemableAssets[asset]) revert UnsupportedAsset();
        if 
          (!isBaseCollateral[asset]) revert RedemptionAssetMustBeBaseCollateral();
        if (lvlUsdAmount == 0) revert InvalidAmount();

        uint256 collateralAmount = computeRedeem(asset, lvlUsdAmount);
        if 
          (collateralAmount < expectedAmount) revert MinimumCollateralAmountNotMet();

        pendingRedemption[msg.sender][asset] += collateralAmount;
        userCooldown[msg.sender][asset] = block.timestamp;

+      redeemedPerBlock[block.number] += collateralAmount;

        // note preventing amounts that would fail by definition at complete 
        // redeem due to max per block
-        if 
- (pendingRedemption[msg.sender][asset] > maxRedeemPerBlock) revert ExceedsMaxBlockLim
+        if 
+ (redeemedPerBlock[block.number] > maxRedeemPerBlock) revert ExceedsMaxBlockLimit();

        // ...
    }

[M-04] Max redeemPerBlock  limit not
implemented correctly

Severity
Impact: Medium

Likelihood: Medium

Description
The LevelMintingV2  contract is designed to control the total amount of assets
that can be redeemed in a single block using the maxRedeemPerBlock
parameter. This mechanism aims to maintain system stability and prevent

16



liquidity shortages. However, the current implementation fails to enforce this
limit correctly.

The issue lies in how the initiateRedeem()  and completeRedeem()  functions
handle redemptions. While initiateRedeem()  checks if a user's requested
redemption exceeds maxRedeemPerBlock , this check is applied on a per-user
basis. As a result, each user can redeem up to the maximum allowed amount
during their cooldown period—regardless of what other users are redeeming.
This effectively means that multiple users can redeem the full limit
concurrently in the same block.

Consider the following example:

1. maxRedeemPerBlock  is set to 250,000.
2. User A calls initiateRedeem()  with an amount of 250,000.
3. User B does the same, also requesting 250,000.
4. Both transactions are mined in the same block.
5. Total redemptions for the block = 500,000, which doubles the intended limit.

Recommendations
Use the same mechanism that is used during minting.

[M-05] Missing oracle updates in
RewardsManager

Severity
Impact: Medium

Likelihood: Medium

Description
The RewardsManager.getAccruedYield()  function calculates rewards based on
oracle prices but fails to call _tryUpdateOracle()  before fetching prices. This
behavior is different from LevelMintingV2 , which explicitly updates oracles
before using their prices.

17



function getAccruedYield(address[] calldata assets) public view returns 
      (uint256 accrued) {
        uint256 total;

        for (uint256 i = 0; i < assets.length; i++) {
            address asset = assets[i];
            StrategyConfig[] memory strategies = allStrategies[asset];
@>            uint256 totalForAsset = vault._getTotalAssets(strategies, asset);

            // ...
        }

        // ...
    }

As shown above, getAccruedYield  calls _getTotalAssets  for assets like
USDC  and USDT  to compute the total assets controlled by BoringVault . This
computation virtually converts all vault shares from lending strategies into
their underlying assets.

function _getTotalAssets
      (BoringVault vault, StrategyConfig[] memory strategies, address asset)
        internal
        view
        returns (uint256 total)
    {
        // Initialize to undeployed
        uint256 totalForAsset = ERC20(asset).balanceOf(address(vault));

        for (uint256 j = 0; j < strategies.length; j++) {
            StrategyConfig memory config = strategies[j];
@>            totalForAsset += StrategyLib.getAssets(config, address(vault));
        }

        return totalForAsset;
    }

To perform this conversion, StrategyLib.getAssets  is used. It checks the
number of shares held in each strategy and converts them to the underlying
asset using oracle prices. However, as shown below, the call to update the
oracle (required for share tokens like steakUSDC or any other using
ERC4626DelayedOracle ) is missing.

18



function getAssets(      
      StrategyConfigmemoryconfig,
      addressvault
    ) internal view returns (uint256 assets_
        // ...

        uint256 shares = receiptToken.balanceOf(vault);

        uint256 sharesToAssetDecimals =
            shares.mulDivDown(10 ** ERC20(address(              
              10**ERC20
            )

@>        (  
  int256assetsForOneShare,
  uint256decimals
) = OracleLib.getPriceAndDecimals(address(config.oracle
        assets_ = uint256(assetsForOneShare).mulDivDown
          (sharesToAssetDecimals, 10 ** decimals);
        return assets_;
    }

The impact of this vulnerability is that stale prices may be used during each
rewards calculation, and it’s unclear when ERC4626DelayedOracle::update
will next be called to assign updated prices.

Recommendations
To resolve this issue, ensure that the oracle is updated before price retrieval,
similar to the approach used in LevelMintingV2.sol .

19



8.3. Low Findings

[L-01] initialize()  lacks asset and oracle
length check

In initialize(), oracle is added for the asset through for-loop. However, it
doesn't check/require asset.length to be equals oracles.length:

function initialize(
        address[] memory _assets,
        address[] memory _oracles,
....
    ) external initializer {
....
        for (uint256 i = 0; i < _assets.length; i++) {
            addOracle(_assets[i], _oracles[i], false);
        }
....

    }

Ensure both assets and oracles are of the same length, otherwise, it will be an
out-of-bond error.

[L-02] Wrong Boring vault setup
VaultManager  is a contract intended to be created behind an upgradeable
proxy. However, in VaultManagerStorage , the boring vault is set in the
constructor instead of in VaultManager 's initializer function. Consider moving
this logic from the VaultManagerStorage  constructor to the initialize
function in VaultManager .

[L-03] Morpho low-liquidity vaults at risk
of price manipulation

Morpho vaults or any ERC-4626 vaults are inherently prone to price
manipulation, especially in the case of new or low-liquidity vaults. For
instance, In an empty vault with no protection mechanisms:

20



The attacker deposits a minimal amount (e.g., 1 wei of the token) and
receives 1 share.
The attacker then transfers a large amount directly to the vault (e.g., 100M
tokens).
This creates an exchange rate where 1 shares ≈ 100M tokens.
A user depositing 1 token would receive 0 shares due to the inflated
exchange rate.

Failing to check the price per share when calculating total value or during
deposit/withdrawal operations could cause issues. Generally, slippage checks
on the expected returned assets or shares are used to ensure no loss occurs
when the ERC-4626 price is manipulated.

Level team comments:
Acknowledged. When depositing into vaults, we plan on adopting the
following policy:

at least $100k in initial underlying deposits
we can be no more than 25% of the vault's size

[L-04] Testing vaults in morpho are not yet
removed from deployment script

Inside DeployLevel.s.sol , there is a _setupMorphoVaultsForTests  function
which sets up and registers a list of strategies for testing purposes, but it is
currently still being called inside the script. Consider removing the
_setupMorphoVaultsForTests  call inside the run  function.

[L-05] aUSDC , aUSDT  and steakhouse USDC
not mintable

Based on the documentation, it is stated that users will be able to mint with
aUSDC, aUSDT, and Steakhouse USDC. However, currently in
DeployLevel.s.sol , these assets are not configured as mintable assets.

21



[L-06] LevelReserveLens  returns incorrect
reserves

The _getReserves()  function in the LevelReserveLens  contract currently
only includes reserves from the v1 vaults, completely ignoring collateral held
in the v2 vaults. As a result, it underestimates the total reserves backing
lvlUSD, returning v1Reserves + 0—with the v2 collateral effectively
hardcoded to zero:

function _getReserves(      
      IERC20Metadatacollateral,
      addresswaCollateralAddress,
      addresssymbioticVault
    )
        internal
        view
        override
        returns (uint256)
    {
        uint256 v1Reserves = super._getReserves
          (collateral, waCollateralAddress, symbioticVault);

        uint256 boringVaultValue = 0;

        return v1Reserves + boringVaultValue;
    }

This misrepresentation can lead to inaccurate reserve data for any consumers
relying on this function, potentially affecting financial decisions.

Add a public function to the VaultManager  contract that returns the total assets
held for a given collateral token. Then, update _getReserves()  in
LevelReserveLens to use this new function instead of the hardcoded zero for
v2.

[L-07] BoringVault  can receive ETH but
cannot withdraw it

The BoringVault  contract has receive  function that is payable :

receive() external payable {}

22



If someone sends a transaction with msg.value != 0  then the ETH will be
stuck in the contract forever without a way for anyone to withdraw it.

Remove the receive  function since the ETH balance is not used in the
contract anyway.

[L-08] Missing role assignment for strategy
removal

The removeAssetStrategy  function in VaultManager  requires auth but no role
has been granted permission to call it. This could prevent removing
problematic strategies in emergencies. Consider adding the role capability :

_setRoleCapabilityIfNotExists(
    STRATEGIST_ROLE,
    address(config.levelContracts.vaultManager),
    bytes4(abi.encodeWithSignature("removeAssetStrategy(address,address)"))
);

[L-09] Missing role authorization for
beforeTransferHook

The setBeforeTransferHook  function in BoringVault requires auth but no role
has been granted permission to call it. This means the hook functionality is
effectively disabled as no one can set it. Consider adding the necessary role
capability :

_setRoleCapabilityIfNotExists(
            VAULT_MANAGER_ROLE,
            address(config.levelContracts.boringVault),
            bytes4(abi.encodeWithSignature("setBeforeTransferHook(address)"))
        );

[L-10] Unnecessary and dangerous token
approvals

The VaultLib  library contains unnecessary token approvals in both
_withdrawFromAave  and _withdrawFromMorpho  functions:

23



function _withdrawFromAave
      (BoringVault vault, StrategyConfig memory _config, uint256 amount)
        internal
        returns (uint256 withdrawn)
    {
        address aaveV3 = _getAaveV3Pool();

@>        vault.increaseAllowance(address
  (_config.receiptToken), aaveV3, amount);

        // ...
     }

    function _withdrawFromMorpho
      (BoringVault vault, StrategyConfig memory _config, uint256 amount)
        internal
        returns (uint256 withdrawn)
    {
        IERC4626 morphoVault = IERC4626(_config.withdrawContract);

        uint256 sharesToRedeem = morphoVault.previewWithdraw(amount);

        if (sharesToRedeem == 0) {
            revert("VaultManager: amount must be greater than 0");
        }

@>        vault.increaseAllowance(address
  (_config.receiptToken), _config.withdrawContract, sharesToRedeem);

        // ...
    }

These approvals are unnecessary because:

Aave V3's withdraw  function doesn't require the approval of aTokens .
Morpho's withdraw  function burns shares directly from the caller's balance
without requiring approval.

Consider removing these unnecessary token approvals from both withdrawal
functions.

[L-11] Inconsistent value tracking in
maxRedeemPerBlock  across stablecoins

The maxRedeemPerBlock  limit tracks collateral amounts (USDC/USDT) rather
than the actual lvlUSD  value being redeemed. Since stablecoins can deviate
from their peg (e.g., USDC at $0.99 and USDT at $1.01), this creates
inconsistencies in the actual lvlUSD  value being limited. A user redeeming
through USDT when it's above peg could redeem 1-2% more lvlUSD  value

24



compared to someone using USDC when it's below peg, while both would be
counted the same against the maxRedeemPerBlock  limit.

uint256 collateralAmount = computeRedeem(asset, lvlUsdAmount);
        if 
          (collateralAmount < expectedAmount) revert MinimumCollateralAmountNotMet();

@>        pendingRedemption[msg.sender][asset] += collateralAmount;

Consider tracking and limiting the lvlUSD  value being redeemed instead of the
raw collateral amount to ensure consistent value limits across different
collateral types.

[L-12] Collateral may be stuck in silo if
asset is removed

When user completeRedeem(), it requires the asset to be redeemableAssets .
However, admin can remove any asset from redeemableAssets mapping
through removeRedeemableAsset() . This will revert completeRedeem() and
collateral will stuck  in a silo contract.

function completeRedeem(    
    addressasset,
    addressbeneficiary
  ) external notPaused returns (uint256 collateralAmount
        if (!redeemableAssets[asset]) revert UnsupportedAsset();
....

    }

1. Suppose a user-initiated redemption of 100e18 lvlUSD for USDC/T, which
is baseCollateral as well as redeemableAssets. This will transfer the
collateral from boringVault to the silo contract.

2. Admin removed the asset from redeemableAssets before user could
complete his redeem.

3. When user call completeRedeem(), it'll revert because that asset was no
longer a valid redeemableAssets.

4. As a result, the collateral of user will stick forever in the silo contract.

Recommendations:

Remove the requirement of redeemableAssets in completeRedeem() because
collateral has been already removed from boringVault.

25



[L-13] Aave incentives will be locked
Aave provides Incentives (e.g., staking rewards or liquidity mining rewards,
seeing here: https://aave.com/docs/primitives/incentives) to users who supply
assets to the protocol. These incentives are typically distributed in the form of
additional tokens (e.g., AAVE or other governance tokens) and can be claimed
by users who interact with Aave's incentive mechanisms.

However, in the current implementation of the  LevelMintingV2,
RewardManager, VaultManager  contract, there is no functionality to claim these
incentives. This is a missing feature that could prevent levelV2 from
accessing the full benefits of supplying assets to Aave.

The  vaultManager  contract supplies collateral tokens to Aave.

function _depositToAave
      (BoringVault vault, StrategyConfig memory _config, uint256 amount)
        internal
        returns (uint256 deposited)
    {
        address aaveV3 = _getAaveV3Pool();
        vault.increaseAllowance(address
          (_config.baseCollateral), aaveV3, amount);

        uint256 balanceBefore = ERC20(_config.baseCollateral).balanceOf(address
          (vault));
        vault.manage(
            address(aaveV3),
            abi.encodeWithSignature(
                "supply(address,uint256,address,uint16)", address
                  (_config.baseCollateral), amount, address(vault), 0
            ),
            0
        );
        uint256 balanceAfter = ERC20(_config.baseCollateral).balanceOf(address
          (vault));

        uint256 deposited_ = balanceBefore - balanceAfter;
        emit DepositToAave(address(vault), address
          (_config.baseCollateral), amount, deposited_);

        return deposited_;
    }

However, it does not provide a method for rewardManger/operator to claim the
incentives that Aave distributes to suppliers. In Eth mainnet, the aave rewards
contract
is: https://etherscan.io/address/0x8164Cc65827dcFe994AB23944CBC90e0aa8
0bFcb

Currently, this contract is still available for reward claiming.

26

https://aave.com/docs/primitives/incentives
https://etherscan.io/address/0x8164Cc65827dcFe994AB23944CBC90e0aa80bFcb
https://etherscan.io/address/0x8164Cc65827dcFe994AB23944CBC90e0aa80bFcb


As a result, levelV2 cannot claim the incentives provided by Aave, resulting in
lost rewards.

Recommendations:

Add a function that allows operator/rewardManager to claim incentives from
Aave. This involves interacting with Aave's Incentives
Controller or Rewards Distributor contracts.

Level team comments
Acknowledged. Since the owner of the BoringVault can call manage, the
rewards won’t be lost forever. Aave seems to rarely issue rewards for USDC/T,
and Morpho’s reward claiming mechanism can be configured by the contract’s
deployer, so we’re okay with deferring adding a function to claim rewards to
the next RewardsManager update.

[L-14] RewardsManager  cannot handle yield
split across multiple assets

The RewardsManager::reward  function cannot handle cases where the total
accrued yield is split between multiple assets ( USDC  and USDT ) and exceeds
the balance of any single asset's strategies. This creates a situation where
rewards cannot be claimed even though yield exists in the protocol.

function reward(address[] calldata assets) external requiresAuth {
        uint256 accrued = getAccruedYield(assets);
        address redemptionAsset = assets[0];

        if (accrued == 0) {
            revert NotEnoughYield();
        }

        uint256 accruedAssets = accrued.convertDecimalsDown(vault.decimals
          (), ERC20(redemptionAsset).decimals());

        vault._withdrawBatch(allStrategies[redemptionAsset], accruedAssets);

@>        vault.exit(treasury, ERC20(redemptionAsset), accruedAssets, address
  (vault), 0);

        emit Rewarded(redemptionAsset, treasury, accruedAssets);
    }

For example:

27



1. BoringVault has 10 shares.
2. USDC strategies have 11 USDC.
3. USDT strategies have 11 USDT.
4. Total accrued yield is (11+11) - 10 = 12.
5. When trying to claim rewards, the function will revert because:

It tries to withdraw 12 from USDC strategies (which only have 11).
Or try to withdraw 12 from USDT strategies (which only have 11).
Neither strategy has enough to cover the full yield amount.

This means that even though there is yield available in the protocol, it cannot
be claimed because the reward function doesn't support splitting the
withdrawal across multiple assets. As a result, every call on the reward()  will
always revert.

Recommendations:

reward()  should be modified to support withdrawing yield from multiple
assets proportionally. This could be implemented by calculating the share of
yield from each asset and making proportional withdrawals from each asset's
strategies. Alternatively, you could specify which assets to withdraw from and
in what amounts.

Level team comments
Acknowledged. We expect to be calling reward  at least once a week, so the
yield that we can expect to share is roughly (annualized yield APR / 52) *
total USD value of reserves . Illustrating a couple cases:

Assuming average yield of 4%: 4% / 52  = 0.08%  Assuming a high yield of
20%: 20% / 52  = 0.40%  Assuming an extremely high yield of 100%: 100% /
52  = 1.92%

So assuming that at least 2% of reserves are stored in the most liquid base
collateral, we should be able to cover extremely high yield cases. And since we
only have 2 base collateral, we're comfortable assuming that the most liquid
base collateral can cover cases where the yield is very high, or we call reward
less frequently.

28



[L-15] LVLUSD  burning causes permanent
collateral accounting mismatch

When LVLUSD  tokens are burned directly (not through the redemption process),
the corresponding vault shares in the BoringVault  are not burned. This creates
a mismatch between the total supply of LVLUSD  tokens and the vault shares
representing the collateral backing them.

The issue affects the RewardsManager 's yield calculations, which are based on
total - vault.balanceOf(address(vault)) . With unburned vault shares, this
calculation becomes inaccurate, leading to incorrect reward distributions since
there is not as many LVLUSD  as it is assuming.

contract 
   lvlUSD is ERC20Burnable, ERC20Permit, IlvlUSDDefinitions, SingleAdminAccessControl 
         // code
}

For example:

1. User deposits 100 USDC  and gets 100 LVLUSD .
2. BoringVault  mints 100 vault shares.
3. User burns 50 LVLUSD  directly.
4. Result:

LVLUSD  supply: 50
Vault shares: 100
USDC  in vault: 100

function getAccruedYield(address[] calldata assets) public view returns 
      (uint256 accrued) {
        uint256 total;

        for (uint256 i = 0; i < assets.length; i++) {
            // code
        }

        uint256 vaultShares = vault.balanceOf(address(vault));
        accrued = total - vaultShares;

        return accrued;
    }

While there's no direct financial incentive to burn LVLUSD  tokens, there are
legitimate use cases where LVLUSD  might be burned (e.g., protocol upgrades,

29



token migrations). The mismatch between vault shares and LVLUSD  supply
affects the protocol's accounting and reward distribution mechanisms.

Recommendations:

The optimal solution should implement a hook in the LVLUSD  contract that
automatically calls the BoringVault  to burn the corresponding vault shares
whenever LVLUSD  tokens are burned.

Level team comments
Acknowledged. Since lvlUSD is an immutable contract, we won't be able to
affect it's logic. In addition, there is a path to recovery, since the admin
timelock can call vault.exit  to recover the collateral that used to back the
burned lvlUSD .

[L-16] Vault deposit frontrun
The vault supports multiple strategies (e.g., Aave and Morpho). However,
when users mint LVLUSD, funds are initially deposited only into the default
strategy (like Aave). Strategy rebalancing (e.g., moving funds from Aave to
Morpho) must be done manually by the admin using the following steps:

1. Withdraw tokens from the Aave strategy: The admin first calls the
withdraw()  function to pull the aTokens from Aave and convert them
back to USDC, moving the tokens to the vault.

2. Deposit the USDC into the Morpho strategy: Once the USDC tokens are
back in the vault, the admin can then use the deposit()  function to move
those tokens into the Morpho strategy.

The function to withdraw tokens from the Aave strategy is not the same as the
deposit function — the admin first withdraws tokens, which are then available
for rebalancing or depositing into a different strategy.

Here’s an example:

30



// Admin withdraws aTokens from Aave and converts them to USDC in the vault
function withdraw
  (address asset, uint256 amount) external requiresAuth notPaused {
    // Withdraw logic...
}

// Admin then deposits the USDC into Morpho strategy
function deposit(  
  addressasset,
  addressstrategy,
  uint256amount
) external requiresAuth notPaused returns (uint256 deposited
    return _deposit(asset, strategy, amount);
}

In this way, the admin is able to reallocate funds between Aave and Morpho
strategies by first withdrawing from Aave and then depositing into Morpho.

Issue: Front-Running Causes DoS
If a user redeems LVLUSD right before the admin's deposit transaction is
mined, the vault sends collateral (e.g., USDC) to the Silo  contract, reducing
the vault’s token balance.

Example:
Vault has exactly 20,000 USDC.
Admin tries to move 20,000 USDC from Aave to Morpho.
A user redeems 1 LVLUSD, causing vault to send 1 USDC to Silo → vault
now has 19,999 USDC.
The deposit transaction fails due to insufficient funds.
Even though the 1 USDC is still in the protocol (in Silo), it's inaccessible to
the vault at the moment.

This allows any user to front-run and grief the protocol, preventing legitimate
strategy reallocations.

Extended DoS: Large Holder Exploit
Even if the admin attempts to reallocate only a partial amount, such as 10,000
out of 20,000, a malicious user holding more than the remaining balance
(e.g., 10,001 LVLUSD) can force the same DoS:

31



Vault holds 20,000 USDC.
Admin initiates deposit of 10,000.
Malicious user redeems 10,001 LVLUSD → vault sends 10,001 USDC to
Silo.
Vault now only has 9,999 USDC.
Admin’s 10,000 USDC deposit fails, despite having sufficient liquidity just a
moment earlier.

This creates a denial of service (DoS) scenario, where the vault cannot
reallocate funds properly due to a front-running attack or a malicious user
exploiting the system.

Recommendations:

LevelMintingV2::initiateRedeem function when admin is depositing into a
strategy

Level team comments
Great! Acknowledging this (if all actions happen in a multicall using private
RPCs, this issue would be mitigated)

[L-17] Default strategies are not updated on
strategy removal

When a strategy is removed using removeAssetStrategy() , the function
removes the strategy from assetToStrategy  mapping but fails to update the
defaultStrategies  array. This can lead to a situation where the default
strategies list contains invalid or removed strategies, potentially causing issues
with default deposits and withdrawals.

32


