Prepared by
Juchang Lee

Prepared for
David Lee

Level

issier

Sylvain Pel

Zellic

September 11,2024

Points Farm

Smart Contract Security Assessment

1% :
\\4W ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024
Contents About Zellic 4

1. Overview 4
11 Executive Summary 5
1.2. Goals of the Assessment 5
1.3. Non-goals and Limitations 5
14. Results 5
2. Introduction 6
2.1. About Points Farm 7
2.2. Methodology 7
2.3. Scope 9
2.4. Project Overview 9
2.5. Project Timeline 10
3. Detailed Findings 10
3.1. Signature replay allows unauthorized migrations 1
3.2. Notestsuite 13
3.3. Tokens from previous migrations may be lost 15
3.4. Uneffective wETH limit 17
3.5. ERC-20 approve function reverts on nonstandard token 19
3.6. Owner of the contract can arbitrarily prevent deposits and migrations 20

Zellic © 2024 < Back to Contents Page 2 of 21

3 .
> ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

4, Assessment Results 20

41. Disclaimer 21

Zellic © 2024 <— Back to Contents Page 3 of 21

Points Farm Smart Contract Security Assessment September 11,2024

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2024

< Back to Contents Page 4 of 21

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

3 .
> ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

1. Overview 11. Executive Summary

Zellic conducted a security assessment for Level from September 3rd to September 4th, 2024.
During this engagement, Zellic reviewed Points Farm's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Are there any vulnerabilities that could result in the loss of user funds?
» Could an admin key compromise lead to loss of user funds?
« Isthere insufficient access control for any critical functions?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

» Front-end components
« Infrastructure relating to the project
» Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Points Farm contracts, we discovered six findings. One
critical issue was found. One was of high impact, one was of medium impact, one was of low impact,
and the remaining findings were informational in nature.

Zellic © 2024 < Back to Contents Page 5 of 21

2. .
ZI0 ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

Breakdown of Finding Impacts

Impact Level Count
M Critical 1
B High 1
' Medium 1
B Low 1
B Informational 2

Zellic © 2024 <— Back to Contents Page 6 of 21

Points Farm Smart Contract Security Assessment September 11,2024

2. Introduction

21.

About Points Farm

Level contributed the following description of Points Farm:

Level is a stablecoin protocol powered by restaked dollar tokens like USDT and USDC.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time permitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding's impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024

< Back to Contents Page 7 of 21

Points Farm Smart Contract Security Assessment September 11,2024

Informational.

Zellic organizes its reports such that the most important findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational”
finding higher than a"Low" finding. The key distinction is that although certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Zellic © 2024

< Back to Contents Page 8 of 21

3 .
> ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

2.3. Scope

The engagement involved a review of the following targets:

Points Farm Contracts

Type Solidity

Platform EVM-compatible

Target points-farm

Repository https:/github.com/Level-Money/points-farm »
Version 7329e6411ce2faeae831f83e2fb65f7a0e2088a9
Programs LevelStakingPool

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of four person-days. The assess-
ment was conducted by two consultants over the course of two calendar days.

Zellic © 2024 < Back to Contents Page 9 of 21

https://github.com/Level-Money/points-farm

Points Farm Smart Contract Security Assessment

September 11,2024

Contact Information

The following project manager was associated
with the engagement:

Jacob Goreski

¥+ Engagement Manager

2.5. Project Timeline

The following consultants were engaged to

conduct the assessment:

Juchang Lee
Engineer
lee@zellic.io 7

=
A
LAY

Sylvain Pelissier
Engineer
sylvain@zellic.io #

=
A
LAY

The key dates of the engagement are detailed below.

September 3,2024 Start of primary review period

September 4,2024 End of primary review period

Zellic © 2024

< Back to Contents

Page 10 of 21

mailto:jacob@zellic.io
mailto:lee@zellic.io
mailto:sylvain@zellic.io

Points Farm Smart Contract Security Assessment September 11,2024

3. Detailed Findings

3.1. Signature replay allows unauthorized migrations

Target LevelStakingPool

Category Coding Mistakes Severity Critical

Likelihood Medium Impact Critical
Description

The migrate function in the contract enables users to convert their tokens into IvIUSD. For a migra-
tion to proceed, it must first be authorized by the 1evelSigner contract. To verify the migration, the
contract generates a hash that includes the migrator's address, the signature's expiration date, the
contract's address, and the current chain ID.

function migrate(
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes calldata _authorizationSignatureFromlLevel
) external {
uint256[] memory _amounts = _migrateChecks(
msg.sender,
_tokens,
_signatureExpiry,
_migratorContract
)E

bytes32 constructedHash = keccak256(
abi.encodePacked(
"\x19Ethereum Signed Message:\n32",
keccak256 (
abi.encodePacked(

_migratorContract,
_signatureExpiry,
address(this),
block.chainid

/...

Zellic © 2024

< Back to Contents Page 11 of 21

Points Farm Smart Contract Security Assessment September 11,2024

Thenthe signature provided as an argumentis verified to be correct with respectto the levelSigner
contract:

if (
1SignatureChecker.isValidSignatureNow(
levelSigner,
constructedHash,
_authorizationSignatureFromLevel
)
) {
revert Signaturelnvalid();
}

However, there is no mechanism in place to prevent the same signature from being replayed to au-
thorize other user migrations.

Impact

If another user obtains a valid signature from the 1evelSigner contract, they can replay the signa-
ture before the _signatureExpiry time, allowing them to migrate their tokens without proper au-
thorization.

Recommendations

We recommend that this function include nonces to prevent replay attacks and add the sender's
address to the hash, binding the signature to a specific user.

Remediation

This issue has been acknowledged by Level. Level will disable the migrate functionality and ask
users to withdraw funds and convert them to IvIUSD tokens by other means.

Zellic © 2024

< Back to Contents Page 12 of 21

Points Farm Smart Contract Security Assessment September 11,2024

3.2. Notestsuite

Target LevelStakingPool

Category Coding Mistakes Severity High

Likelihood High Impact High
Description

There is currently no test suite for this codebase.

Impact

When building a project with multiple moving parts and dependencies, comprehensive testing is
essential. This includes testing for both positive and negative scenarios. Positive tests should ver-
ify that each function's side effect is as expected, while negative tests should cover every revert,
preferably in every logical branch. For example, Finding 3.6. 2 could have been discovered by a test.

The test suite for this project should be implemented with a large coverage to include all contract
code, not just surface-level functions. It is important to test the invariants required for ensuring se-
curity. Testing the findings reported during this audit should be implemented to avoid regression
in the future. Additionally, testing cross-contract function calls and transfers is recommended to
ensure the desired functionality.

Recommendations

We recommend building a rigorous test suite to ensure that the system operates securely and as
intended.

Good test coverage has multiple effects.

« Itfinds bugs and design flaws early (preaudit or prerelease).
« It givesinsightinto areas for optimization (e.g., gas cost).

« ltdisplays code maturity.

* Itbolsters customer trust in your product.

« Itimproves understanding of how the code functions, integrates, and operates — for de-
velopers and auditors alike.

* Itincreases development velocity long-term.

The last point seems contradictory, given the time investment to create and maintain tests. To ex-
pand upon that, tests help developers trust their own changes. Itis difficult to know if a code refactor
— or even just a small one-line fix — breaks something if there are no tests. This is especially true for

Zellic © 2024

< Back to Contents Page 13 of 21

Points Farm Smart Contract Security Assessment September 11,2024

new developers or those returning to the code after a prolonged absence. Tests have your back
here. They are an indicator that the existing functionality most likely was not broken by your change
to the code.

Remediation

This issue has been acknowledged by Level.

Zellic © 2024

< Back to Contents Page 14 of 21

l :
N
>N ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

3.3. Tokens from previous migrations may be lost

Target LevelStakingPool

Category Coding Mistakes Severity Medium

Likelihood Medium Impact Medium
Description

Inside the migrate function, after verifying the signature, the _migrate function is called to update
the user’s balance and grant the migrator contract approval to transfer the user’s tokens.

function _migrate(
address _user,
address _destination,
address _migratorContract,
address[] calldata _tokens,
uint256[] memory _amounts
) internal {
uint256 length = _tokens.length;
//effects for-loop (state changes)
for (uint256 i; i < length; ++i) {
//if the balance has been already set to zero, then _tokens[i] is a
duplicate of a previous token in the array
if (balance[_tokens[i]][_user] == 0) revert DuplicateToken();

balance[_tokens[i]][_user] = 0O;

emit Migrate(
++eventId,
_user,
_tokens,
_destination,
_migratorContract,
_amounts
DE
//interactions for-loop (external calls)
for (uint256 i; i < length; ++i) {

IERC20(_tokens[i]).approve(_migratorContract, _amounts[i]);

/...

Zellic © 2024 < Back to Contents Page 15 of 21

Points Farm Smart Contract Security Assessment September 11,2024

However, the approve function may decrease the allowance of the user, and if the previous al-
lowance was not transferred, it may be lost since the user balance is set to zero between each mi-
gration.

The vulnerability comes from ERC-20's _approve function, which sets the spender’s allowance with-
out checking if the previous allowance was transferred or not.

Impact
Depending on the implementation of the migrator contract, the user may lose funds.

For example, if the user first migrates two tokens, then the contract will approve for two tokens. If
the migrator does not transfer the tokens directly, and meanwhile the user wants to migrate one
more token, then the allowance will be decreased to one by the approve function and the migrator
contract will only be able to transfer a single token — not three, as intended.

Recommendations

The contract should use the function safeDecreaseAllowance instead of approve as defined in
OpenZeppelin's 2implementation.

Remediation

This issue has been acknowledged by Level. Level will disable the migrate functionality and ask
users to withdraw funds and convert them to IvIUSD tokens by other means.

Zellic © 2024

< Back to Contents Page 16 of 21

https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#SafeERC20-safeIncreaseAllowance-contract-IERC20-address-uint256-

3 .
> ZeIIIC Points Farm Smart Contract Security Assessment September 11,2024

3.4. Uneffective WETH limit

Target LevelStakingPool

Category Coding Mistakes Severity Low

Likelihood Medium Impact Low
Description

The maximum amount staked by a user is set by the mapping tokenBalanceAllowList, which is
configured by the constructor of the function setStakableAmount. When a user wants to deposit
tokens, the amount sent is checked to be less than the limit and the amount already staked by the
depositFor function. However, to deposit wETH, the function depositETHFor has to be used by the
user:

function depositETHFor(address _for) external payable whenNotPaused {
if (msg.value == 0) revert DepositAmountCannotBeZero();
if (_for == address(0)) revert CannotDepositForZeroAddress();
if (tokenBalanceAllowlList[WETH_ADDRESS] == 0)
revert TokenNotAllowedForStaking();

balance[WETH_ADDRESS][_for] += msg.value;
emit Deposit(++eventId, _for, WETH_ADDRESS, msg.value);

TIWETH(WETH_ADDRESS) .deposit{value: msg.value}();

In this function, the limitis not checked, the maximum value is only checked to be nonzero. Thus, the
user is allowed to deposit any amount as soon as the limit is nonzero.

Impact

Since the balance limitis ineffective for wETH, the contractis not able to control the amount of WETH
staked.

Recommendations

We recommend to check the amount of WETH deposited as itis done in the depositFor function.

Zellic © 2024 <— Back to Contents Page 17 of 21

3 .
> Zel I IC Points Farm Smart Contract Security Assessment September 11,2024

Remediation

This issue has been acknowledged by Level. Level is considering not accepting wETH anymore by
setting the stakable amount to zero.

Zellic © 2024 <— Back to Contents Page 18 of 21

Points Farm Smart Contract Security Assessment September 11,2024

3.5. ERC-20 approve function reverts on nonstandard token

Target LevelStakingPool

Category Coding Mistakes Severity Informational

Likelihood N/A Impact Informational
Description

As explained in Finding 3.3. », the function _migrate is called in order to update user balance and
approve the migrator contract to transfer the user's token. For ERC20 tokens, the approve function
must return a bool value. If not, the contract call to approve reverts. Thus, the migration may not
work for non-ERC20 tokens like USDT.

Impact

According to the 2, a user should be able to restake USDT. However, USDT does not
adhere to the ERC20 token standard. The USDT approve function does not return anything. Since
the contract is expecting a boolean value but, for USDT, does not get anything, then the contract
reverts, preventing the user from migrating their USDT. However, no funds would be locked, and the
users can withdraw their funds whenever they want.

Recommendations

The contract should use the function forceApprove from 2, which was created specially
to handle those cases of ERC20 and nonstandard tokens.

Remediation

Thisbug was reported by Level during the preaudit phase. Level willdisable the migrate functionality
and ask users to withdraw USDT and convert them to IvIUSD tokens by other means.

Zellic © 2024

< Back to Contents Page 19 of 21

https://level-money.gitbook.io/docs/user-guides/depositing-usdt
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20

Points Farm Smart Contract Security Assessment September 11,2024

3.6. Owner of the contract can arbitrarily prevent deposits and migrations

Target LevelStakingPool

Category Coding Mistakes Severity Informational

Likelihood N/A Impact Informational
Description

The owner of the contract has the ability to change the signer contract and the stakeable amount
at any time via the setLevelSigner and setStakableAmount functions. If the owner changes the
signer contract, previous signatures from the former signer will no longer be valid for verification by
the contract. Additionally, altering the stakeable amount could prevent users from depositing tokens
into the contract.

Impact

The owneris able to preventauser from migrating their tokens by changing the 1evelSignerjustbe-
fore a user calls the migrate function. The owner can also prevent deposits by changing the stake-
able amount. However, those griefing attacks do not resultin a loss of funds since the user is able to
withdraw their funds at any time. Only the gas paid is lost.

Recommendations

Consider making setLevelSigner and setStakableAmount callable only when the contract is
paused.

Remediation

This issue has been acknowledged by Level.

Zellic © 2024

< Back to Contents Page 20 of 21

Points Farm Smart Contract Security Assessment September 11,2024

4. Assessment Results

At the time of our assessment, the reviewed code was deployed to the Ethereum Mainnet.

During our assessment on the scoped Points Farm contracts, we discovered six findings. One crit-
ical issue was found. One was of high impact, one was of medium impact, one was of low impact,
and the remaining findings were informational in nature.

41. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024

< Back to Contents Page 210of 21

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Points Farm
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Signature replay allows unauthorized migrations
	No test suite
	Tokens from previous migrations may be lost
	Uneffective wETH limit
	ERC-20 approve function reverts on nonstandard token
	Owner of the contract can arbitrarily prevent deposits and migrations

	Assessment Results
	Disclaimer

