
Prepared for
David Lee
Level

Prepared by
Juchang Lee
Sylvain Pelissier
Zellic

September 11, 2024

Points Farm
Smart Contract Security Assessment



Points Farm Smart Contract Security Assessment September 11, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Points Farm 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Signature replay allows unauthorizedmigrations 11

3.2. No test suite 13

3.3. Tokens from previousmigrationsmay be lost 15

3.4. Uneffective wETH limit 17

3.5. ERC-20 approve function reverts on nonstandard token 19

3.6. Owner of the contract can arbitrarily prevent deposits andmigrations 20

Zellic © 2024 ← Back to Contents Page 2 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

4. Assessment Results 20

4.1. Disclaimer 21

Zellic © 2024 ← Back to Contents Page 3 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 21

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


Points Farm Smart Contract Security Assessment September 11, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Level from September 3rd to September 4th, 2024.
During this engagement, Zellic reviewed Points Farm's code for security vulnerabilities, design
issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any vulnerabilities that could result in the loss of user funds?
• Could an admin key compromise lead to loss of user funds?
• Is there insufficient access control for any critical functions?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Points Farm contracts, we discovered six findings. One
critical issuewas found. Onewasof high impact, onewasofmedium impact, onewasof low impact,
and the remaining findings were informational in nature.

Zellic © 2024 ← Back to Contents Page 5 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 1

■ High 1

■ Medium 1

■ Low 1

■ Informational 2

Zellic © 2024 ← Back to Contents Page 6 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

2. Introduction 2.1. About Points Farm

Level contributed the following description of Points Farm:

Level is a stablecoin protocol powered by restaked dollar tokens like USDT and USDC.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024 ← Back to Contents Page 7 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Zellic © 2024 ← Back to Contents Page 8 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

2.3. Scope

The engagement involved a review of the following targets:

Points FarmContracts

Type Solidity

Platform EVM-compatible

Target points-farm

Repository https://github.com/Level-Money/points-farm ↗

Version 7329e6411ce2faeae831f83e2fb65f7a0e2088a9

Programs LevelStakingPool

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of four person-days. The assess-
ment was conducted by two consultants over the course of two calendar days.

Zellic © 2024 ← Back to Contents Page 9 of 21

https://github.com/Level-Money/points-farm


Points Farm Smart Contract Security Assessment September 11, 2024

Contact Information

The following project manager was associated
with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Juchang Lee
Engineer
lee@zellic.io ↗

Sylvain Pelissier
Engineer
sylvain@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

September 3, 2024 Start of primary review period

September 4, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 21

mailto:jacob@zellic.io
mailto:lee@zellic.io
mailto:sylvain@zellic.io


Points Farm Smart Contract Security Assessment September 11, 2024

3. Detailed Findings 3.1. Signature replay allows unauthorizedmigrations

Target LevelStakingPool

Category CodingMistakes Severity Critical

Likelihood Medium Impact Critical

Description

The migrate function in the contract enables users to convert their tokens into lvlUSD. For amigra-
tion to proceed, it must first be authorized by the levelSigner contract. To verify themigration, the
contract generates a hash that includes the migrator's address, the signature's expiration date, the
contract's address, and the current chain ID.

function migrate(
address[] calldata _tokens,
address _migratorContract,
address _destination,
uint256 _signatureExpiry,
bytes calldata _authorizationSignatureFromLevel

) external {
uint256[] memory _amounts = _migrateChecks(

msg.sender,
_tokens,
_signatureExpiry,
_migratorContract

);

bytes32 constructedHash = keccak256(
abi.encodePacked(

"\x19Ethereum Signed Message:\n32",
keccak256(

abi.encodePacked(
_migratorContract,
_signatureExpiry,
address(this),
block.chainid

)
)

)
);

//...

Zellic © 2024 ← Back to Contents Page 11 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

Then thesignatureprovidedasanargument is verified tobecorrectwith respect to thelevelSigner
contract:

// verify that the migrator's address is signed in the authorization signature
by the correct signer (levelSigner)
if (

!SignatureChecker.isValidSignatureNow(
levelSigner,
constructedHash,
_authorizationSignatureFromLevel

)
) {

revert SignatureInvalid();
}

However, there is nomechanism in place to prevent the same signature from being replayed to au-
thorize other user migrations.

Impact

If another user obtains a valid signature from the levelSigner contract, they can replay the signa-
ture before the _signatureExpiry time, allowing them to migrate their tokens without proper au-
thorization.

Recommendations

We recommend that this function include nonces to prevent replay attacks and add the sender's
address to the hash, binding the signature to a specific user.

Remediation

This issue has been acknowledged by Level. Level will disable the migrate functionality and ask
users to withdraw funds and convert them to lvlUSD tokens by othermeans.

Zellic © 2024 ← Back to Contents Page 12 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

3.2. No test suite

Target LevelStakingPool

Category CodingMistakes Severity High

Likelihood High Impact High

Description

There is currently no test suite for this codebase.

Impact

When building a project with multiple moving parts and dependencies, comprehensive testing is
essential. This includes testing for both positive and negative scenarios. Positive tests should ver-
ify that each function's side effect is as expected, while negative tests should cover every revert,
preferably in every logical branch. For example, Finding 3.6. ↗ could have been discovered by a test.

The test suite for this project should be implemented with a large coverage to include all contract
code, not just surface-level functions. It is important to test the invariants required for ensuring se-
curity. Testing the findings reported during this audit should be implemented to avoid regression
in the future. Additionally, testing cross-contract function calls and transfers is recommended to
ensure the desired functionality.

Recommendations

We recommend building a rigorous test suite to ensure that the system operates securely and as
intended.

Good test coverage hasmultiple effects.

• It finds bugs and design flaws early (preaudit or prerelease).
• It gives insight into areas for optimization (e.g., gas cost).
• It displays codematurity.
• It bolsters customer trust in your product.
• It improves understanding of how the code functions, integrates, and operates — for de-
velopers and auditors alike.

• It increases development velocity long-term.

The last point seems contradictory, given the time investment to create and maintain tests. To ex-
pandupon that, tests helpdevelopers trust their ownchanges. It is difficult to know if a code refactor
— or even just a small one-line fix—breaks something if there are no tests. This is especially true for

Zellic © 2024 ← Back to Contents Page 13 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

new developers or those returning to the code after a prolonged absence. Tests have your back
here. They are an indicator that the existing functionalitymost likely was not broken by your change
to the code.

Remediation

This issue has been acknowledged by Level.

Zellic © 2024 ← Back to Contents Page 14 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

3.3. Tokens from previousmigrationsmay be lost

Target LevelStakingPool

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

Inside the migrate function, after verifying the signature, the _migrate function is called to update
the user’s balance and grant themigrator contract approval to transfer the user’s tokens.

function _migrate(
address _user,
address _destination,
address _migratorContract,
address[] calldata _tokens,
uint256[] memory _amounts

) internal {
uint256 length = _tokens.length;
//effects for-loop (state changes)
for (uint256 i; i < length; ++i) {

//if the balance has been already set to zero, then _tokens[i] is a
duplicate of a previous token in the array

if (balance[_tokens[i]][_user] == 0) revert DuplicateToken();

balance[_tokens[i]][_user] = 0;
}

emit Migrate(
++eventId,
_user,
_tokens,
_destination,
_migratorContract,
_amounts

);

//interactions for-loop (external calls)
for (uint256 i; i < length; ++i) {

IERC20(_tokens[i]).approve(_migratorContract, _amounts[i]);
}

//...

Zellic © 2024 ← Back to Contents Page 15 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

However, the approve function may decrease the allowance of the user, and if the previous al-
lowance was not transferred, it may be lost since the user balance is set to zero between each mi-
gration.

Thevulnerability comes fromERC-20's_approve function,whichsets thespender’sallowancewith-
out checking if the previous allowancewas transferred or not.

Impact

Depending on the implementation of themigrator contract, the usermay lose funds.

For example, if the user first migrates two tokens, then the contract will approve for two tokens. If
the migrator does not transfer the tokens directly, and meanwhile the user wants to migrate one
more token, then the allowance will be decreased to one by the approve function and the migrator
contract will only be able to transfer a single token— not three, as intended.

Recommendations

The contract should use the function safeDecreaseAllowance instead of approve as defined in
OpenZeppelin's SafeERC20 ↗ implementation.

Remediation

This issue has been acknowledged by Level. Level will disable the migrate functionality and ask
users to withdraw funds and convert them to lvlUSD tokens by othermeans.

Zellic © 2024 ← Back to Contents Page 16 of 21

https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#SafeERC20-safeIncreaseAllowance-contract-IERC20-address-uint256-


Points Farm Smart Contract Security Assessment September 11, 2024

3.4. Uneffective wETH limit

Target LevelStakingPool

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The maximum amount staked by a user is set by the mapping tokenBalanceAllowList, which is
configured by the constructor of the function setStakableAmount. When a user wants to deposit
tokens, the amount sent is checked to be less than the limit and the amount already staked by the
depositFor function. However, to deposit wETH, the function depositETHFor has to be used by the
user:

function depositETHFor(address _for) external payable whenNotPaused {
if (msg.value == 0) revert DepositAmountCannotBeZero();
if (_for == address(0)) revert CannotDepositForZeroAddress();
if (tokenBalanceAllowList[WETH_ADDRESS] == 0)
revert TokenNotAllowedForStaking();

balance[WETH_ADDRESS][_for] += msg.value;
emit Deposit(++eventId, _for, WETH_ADDRESS, msg.value);

IWETH(WETH_ADDRESS).deposit{value: msg.value}();
}

In this function, the limit is not checked, themaximumvalue is only checked to benonzero. Thus, the
user is allowed to deposit any amount as soon as the limit is nonzero.

Impact

Since thebalance limit is ineffective forwETH, thecontract is not able tocontrol theamountofwETH
staked.

Recommendations

We recommend to check the amount of wETH deposited as it is done in the depositFor function.

Zellic © 2024 ← Back to Contents Page 17 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

Remediation

This issue has been acknowledged by Level. Level is considering not accepting wETH anymore by
setting the stakable amount to zero.

Zellic © 2024 ← Back to Contents Page 18 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

3.5. ERC-20 approve function reverts on nonstandard token

Target LevelStakingPool

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

As explained in Finding 3.3. ↗, the function _migrate is called in order to update user balance and
approve themigrator contract to transfer the user's token. For ERC20 tokens, the approve function
must return a bool value. If not, the contract call to approve reverts. Thus, the migration may not
work for non-ERC20 tokens like USDT.

Impact

According to the documentation ↗, a user should be able to restake USDT. However, USDT does not
adhere to the ERC20 token standard. The USDT approve function does not return anything. Since
the contract is expecting a boolean value but, for USDT, does not get anything, then the contract
reverts, preventing the user frommigrating their USDT. However, no fundswould be locked, and the
users canwithdraw their funds whenever they want.

Recommendations

The contract should use the function forceApprove fromSafeERC20 ↗,whichwas created specially
to handle those cases of ERC20 and nonstandard tokens.

Remediation

ThisbugwasreportedbyLevelduring thepreauditphase. Levelwill disable themigrate functionality
and ask users to withdrawUSDT and convert them to lvlUSD tokens by othermeans.

Zellic © 2024 ← Back to Contents Page 19 of 21

https://level-money.gitbook.io/docs/user-guides/depositing-usdt
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20


Points Farm Smart Contract Security Assessment September 11, 2024

3.6. Owner of the contract can arbitrarily prevent deposits andmigrations

Target LevelStakingPool

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The owner of the contract has the ability to change the signer contract and the stakeable amount
at any time via the setLevelSigner and setStakableAmount functions. If the owner changes the
signer contract, previous signatures from the former signerwill no longer be valid for verification by
thecontract. Additionally, altering thestakeableamountcouldpreventusers fromdepositing tokens
into the contract.

Impact

Theowner isable topreventauser frommigrating their tokensbychanging thelevelSigner justbe-
fore a user calls the migrate function. The owner can also prevent deposits by changing the stake-
able amount. However, those griefing attacks do not result in a loss of funds since the user is able to
withdraw their funds at any time. Only the gas paid is lost.

Recommendations

Consider making setLevelSigner and setStakableAmount callable only when the contract is
paused.

Remediation

This issue has been acknowledged by Level.

Zellic © 2024 ← Back to Contents Page 20 of 21



Points Farm Smart Contract Security Assessment September 11, 2024

4. Assessment Results At the time of our assessment, the reviewed codewas deployed to the EthereumMainnet.

During our assessment on the scoped Points Farm contracts, we discovered six findings. One crit-
ical issue was found. One was of high impact, one was of medium impact, one was of low impact,
and the remaining findings were informational in nature.

4.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 21 of 21


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Points Farm
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Signature replay allows unauthorized migrations
	No test suite
	Tokens from previous migrations may be lost
	Uneffective wETH limit
	ERC-20 approve function reverts on nonstandard token
	Owner of the contract can arbitrarily prevent deposits and migrations

	Assessment Results
	Disclaimer


