
LiveRamp Embedded Identity in
Snowflake v1

Table of Contents
LiveRamp Embedded Identity in Snowflake .. 3

LiveRamp Native Apps ... 3
Prerequisites ... 5
Enabling LiveRamp Embedded Identity in Snowflake ... 5
Authentication ... 5
Product Support .. 5

Set Up a Native App ... 6
Overall Steps ... 6
Accept the Snowflake Marketplace Terms and Conditions ... 6
Install a LiveRamp Native App .. 7

Open a Native App .. 12
Set the Variables ... 14
Enable Authentication .. 14
Grant Shared Database Permissions ... 15
Activate Logging and Metrics .. 15

Perform RampID Transcoding ... 18
Overall Steps .. 18
Completion Checklist for Native App Setup ... 18
Prepare the Tables for Transcoding .. 19

Table Naming Guidelines .. 20
Metadata Table Columns and Descriptions ... 20
Input Table Columns and Descriptions ... 20

Perform Transcoding .. 21
Perform Identity Resolution .. 24

Overall Steps .. 24
Completion Checklist for Native App Setup ... 25
Prepare the Tables for Identity Resolution .. 25

Metadata Table Columns and Descriptions ... 27
Input Table Columns and Descriptions ... 28

Input Table Columns for PII Resolution ... 28
Input Table Columns for Email-Only Resolution .. 30
Input Table Columns for Device Resolution ... 31
Input Table Columns for CID Resolution ... 31

Perform the Identity Resolution Operation ... 32
View the Output Table .. 33

View the PII Resolution Output Table .. 33
View the Email-Only Resolution Output Table ... 34
View the Device Identifier Resolution Output Table ... 34
View the CID Resolution Output Table .. 34

Privacy Filter ... 34

LiveRamp Embedded Identity in Snowflake v1

2

LiveRamp Embedded Identity in
Snowflake
LiveRamp's Embedded Identity is available through native apps in Snowflake's Marketplace.

CAUTION
This content is for customers utilizing the previous versions of LiveRamp's native apps
in Snowflake (LiveRamp Identity Resolution and LiveRamp Transcoding). For custom-
ers utilizing the LiveRamp Identity native app in Snowflake (starting in October 2023),
see this documentation.

There are two available operations that you can perform using the LiveRamp native apps:

• Identity Resolution, which allows you to resolve an identifier (a device ID or PII, such as name,
address, email, or phone) to LiveRamp’s person-based, pseudonymous identifier, RampID. You can
also resolve a person-based RampID to a household-based RampID. For more information, see
"Perform Identity Resolution [24]".

• RampID Transcoding, which transcodes a RampID in one domain to a RampID in another domain.
Transcoding converts or translates the pseudonymous person-based identifier (the RampID) for use
by another party. For more information, see "Perform RampID Transcoding [18]".

When you install either of these native apps, it creates a set of tables and a schema, and writes a set
of procedures into the Snowflake worksheet. To perform an operation, you provide an input table that
contains the relevant identifiers and a metadata table that contains information on the operation to
be performed.

NOTE
LiveRamp's Embedded Identity in Snowflake is currently in beta. To find out more
about participating in this program, contact snowflake@liveramp.com.

LiveRamp Native Apps
Transcoding and identity resolution capabilities are available within Snowflake through a LiveRamp
native app, which creates a share to your account, opening up a view to query the reference data
set from within your own Snowflake environment. The LiveRamp native apps install from tiles in the
Snowflake Marketplace.

For instructions on setting up a native app, see "Set Up a Native App [6]".

LiveRamp Embedded Identity in Snowflake v1

3

https://www.snowflake.com/data-marketplace/
https://docs.liveramp.com/identity/en/liveramp-embedded-identity-in-snowflake.html#liveramp-embedded-identity-in-snowflake
mailto:snowflake@liveramp.com

A native application has two sides:

• Provider side (LiveRamp).
• Consumer side (LiveRamp partner).

You perform the operation that the native application enables. Upon initialization, the native app
runs an installer script in your account to create an appropriate role and pass the needed stored
procedures. The data can then be queried from your account while the reference data set remains in
LiveRamp's account. This is accomplished through the secure share capability, enabling view access to
the app database.

The LiveRamp native application’s architecture is shown in the figure below. This application can
perform various operations based on the parameters you specify with metadata: transcoding or
identity resolution, for example.

As an example, consider a transcoding operation that converts a RampID in one domain to a RampID
in another domain shown in the figure below. This operation requires the permission of the two
parties, and once permission is granted, LiveRamp makes available the LR_APP_SHARE to the partner
performing the transcode. That share appears in the partner’s Snowflake Shares list.

Figure 1. Native application architecture.

LiveRamp Embedded Identity in Snowflake v1

4

NOTE
After you’ve updated the firewall configuration to enable authentication, the authenti-
cation call is routed to LiveRamp’s GCP instance with the client ID and secret. All data
stays in Snowflake.

The sections that follow describe the prerequisites for performing operations, how to enable the
operation, and how to get support if you require it.

Prerequisites
The following prerequisites are needed to access LiveRamp in Snowflake:

• Administrator or role access to a Snowflake account. For information, see “Enabling non-ACCOUN-
TADMIN Roles to Perform Data Sharing Tasks” in the Snowflake help.

• Permission to create Snowflake roles.

Enabling LiveRamp Embedded Identity in Snow-
flake
To enable LiveRamp Embedded Identity in Snowflake, the following tasks must be performed:

1. You execute an agreement with LiveRamp to access the service, including the permission required
between the parties for transcoding operations, if appropriate (permissions can also be revoked at
any time by emailing transcodingpermission@liveramp.com).

2. LiveRamp reviews the use case, including any additional Data Ethics reviews if required.
3. If you don’t already have credentials for LiveRamp's Identity API, LiveRamp sends you a client ID

and a secret for authentication.
4. LiveRamp sends you the Snowflake account ID/locator for the app to be installed.

Authentication
The LiveRamp Identity Service in Snowflake relies on the same authentication service as LiveRamp's
AbiliTec and RampID APIs (Identity APIs). If you have credentials to those APIs, you can use your
previously assigned credentials.

Authenticating with LiveRamp's native app service requires a call directly from the client's Snowflake
seat to LiveRamp's core services. For information, see the "Enable Authentication [14]" section in "Set
Up a Native App [6]."

Client credentials are used to obtain an access token by passing the client ID and client secret values.
For information, see "About Identity Authentication."

Product Support
For support issues, email liverampsnowflakesupport@liveramp.com.

LiveRamp Embedded Identity in Snowflake v1

5

https://docs.snowflake.com/en/user-guide/security-access-privileges-shares.html
https://docs.snowflake.com/en/user-guide/security-access-privileges-shares.html
https://developers.liveramp.com/abilitec-api/docs/getting-started-1
mailto:liverampsnowflakesupport@liveramp.com

Set Up a Native App in Snow-
flake

Abstract
Transcoding and identity resolution capabilities are available within Snowflake through native apps,
which create a share to your account, opening up a view to query the reference data set from within
your own Snowflake environment.

Transcoding and identity resolution capabilities are available within Snowflake through native apps,
which create a share to your account, opening up a view to query the reference data set from within
your own Snowflake environment.

Once you've completed these steps, you're ready to perform the desired operation. See the articles
listed below for the appropriate instructions:

• "Perform RampID Transcoding [18]"
• "Perform Identity Resolution [24]"

Overall Steps
To set up a native app:

1. Accept the Marketplace terms and conditions [6] in the Snowflake UI.

NOTE
This must be performed by a user with an "orgadmin" role.

2. Install the appropriate LiveRamp native app [7].
3. Set the necessary variables [14] that will be used in subsequent steps.
4. Update the firewall configuration to enable authentication [14].
5. Create and grant permissions to a role [15] that gives the App Share database access to your

tables (including logging and metrics tables).
6. Create logging and metrics tables [15], add them to a share, and share that share back to

LiveRamp. For more information, see the Snowflake help topic "Working with Shares."

See the sections below for detailed information on performing these steps.

Accept the Snowflake Marketplace Terms and
Conditions
To install the LiveRamp native app, an organizational administrator (ORGADMIN) or greater role needs
to accept the Snowflake Data Marketplace terms and conditions:

1. Log in to your Snowflake account with the ORGADMIN role.

LiveRamp Embedded Identity in Snowflake v1

6

https://docs.snowflake.com/en/user-guide/data-sharing-provider.html

NOTE
• Alternatively, once logged in click Switch Role next to the login name and select

ORGADMIN.
• The ORGADMIN role must have provided their first name, last name, and email

address in their account properties. A USERADMIN or another role with OWN-
ERSHIP properties can add these items to the account profile, if required.

2. Click Organizations, and then select Snowflake Data Marketplace Billing.
3. Click Review terms & conditions.
4. In the Review Terms and Conditions dialog box, click the link to review the Terms and Services.
5. If you agree to the terms and conditions, click Accept Terms & Conditions.

Install a LiveRamp Native App
After you've accepted the Marketplace terms and conditions, you install a LiveRamp native app using
either the LiveRamp Transcoding tile or the LiveRamp Identity Resolution tile in the Snowflake Market-
place. The instructions that follow detail the process, using the Identity Resolution native app as an
example.

This section details the installation from the Marketplace within the new interface. To switch from the
legacy interface to the Snowsight interface, click the Snowsight icon to the left of your account name
in the icon bar.

NOTE
The Snowflake help topic "Installing a Snowflake Native Application from the UI" in
Snowflake's native app documentation describes installation in more detail.

To install a native app:

LiveRamp Embedded Identity in Snowflake v1

7

1. In Snowsight, click Private Sharing in the Data section of the left-hand panel.

2. In the Privately Shared Listings section, click the appropriate LiveRamp tile.
The listing page appears and describes the native app including several usage examples.

3. Click Get to view the Create Database dialog box shown below.

LiveRamp Embedded Identity in Snowflake v1

8

4. In Create Database, enter a name for your application.

NOTE
You will need to use this name as your native app database name later in the
process.

5. From the Add Roles drop-down menu, select the role(s) you want to be able to perform the
identity resolutionoperations.

LiveRamp Embedded Identity in Snowflake v1

9

TIP
Roles you might want to consider for inclusion are: SYSADMIN, USERADMIN, or
maybe even PUBLIC.

6. Click Select Warehouse and select the warehouse you will use to install the application.

LiveRamp Embedded Identity in Snowflake v1

10

7. Click Get.
Snowflake runs the installer script of the app to create a database with the name you specified.
When the installation is complete the Installation Complete dialog box will appear.

LiveRamp Embedded Identity in Snowflake v1

11

8. Click Manage to return to the LiveRamp Identity Resolution Marketplace listing page.

After the database is created successfully, the status on that page changes to Installed, and the button
to open the app changes to Open as shown on the LiveRamp Transcoding Marketplace home page.

Open a Native App
To open a LiveRamp native app:

1. Click Open on the listing page.

LiveRamp Embedded Identity in Snowflake v1

12

NOTE
Alternatively in the Snowflake UI click on Private Sharing in the Data section of
the left hand panel to return to the listing page, then click Open on the LiveRamp
Native tile.

You are taken to the Databases page in the Snowflake UI.
2. Open the LiveRamp Identity Resolution app from the Marketplace listing.
3. Select the database you just created for the app.

The worksheet with the various operations as queries saved as stored procedures is displayed.

In this interface, you can run a query or procedure by clicking on the procedure in the worksheet and
then clicking the Run button shown boxed in red above.

See Snowflake’s warehouse documentation for more information on the creation and use of ware-
houses. A warehouse is a specification of computer resources used for operations and follows Snow-
flake’s sizing and pricing rules for pricing and availability. A Snowflake warehouse will auto-suspend
after a certain period of inactivity.

The Input table contains the RampIDs that need to be transcoded or the identifiers that need to
be resolved. You also prepare the metadata table which specifies the parameters of the operation,
including the type of operation (transcode or resolution).

LiveRamp Embedded Identity in Snowflake v1

13

https://docs.snowflake.com/en/user-guide/warehouses-tasks.html#creating-a-warehouse
https://docs.snowflake.com/en/user-guide/warehouses-considerations.html

The results of the operation appear in a read-only output table. The output table contains the conver-
ted or transcoded identifiers and lives in your Snowflake instance. Your customer data (in the form of
the input table) and the metadata table never leaves your Snowflake instance.

Set the Variables
Set some variables that will be used in the subsequent steps (Identity Resolution is shown as an
example):

1. Locate the Defining parameters for the Native App section at the top of the script.

set native_app_db_name = ‘LIVERAMP_IDENTITY_RESOLUTION’;
set native_app_schema_name = ‘lr_app_schema’;

set role_name = ‘PERMISSIONS_ROLE’;

set customer_db_name = ‘RESOLUTION_DEMO’;
set customer_schema_name = concat($customer_db_name,'.','PUBLIC');;
set customer_input_table_name=concat($customer_schema_name,'.','RESOLUTION_INPUT_TABLE');
set customer_meta_table_name=concat($customer_schema_name,'.','RESOLUTION_META_TABLE');
set customer_metrics_table_name=concat($customer_schema_name,'.','METRICS_TABLE');
set customer_logging_table_name=concat($customer_schema_name,'.','LOGGING_TABLE');
set share_name='LIVERAMP_LOG_METRICS_SHARE';
set lr_account='poa18931';

2. Make any necessary changes to the variables:

NOTE
Do not change native_app_schema_name. Leave this value as lr_app_schema.

• LIVERAMP_IDENTITY_RESOLUTION: The name of the database native app is loaded to.
• PERMISSIONS_ROLE: The name of the role to hand permissions to the native app. The permis-

sions to database objects outside the native app are given to this role. This role is then granted
to the native app database.

• RESOLUTION_DEMO: The name of your database.
• PUBLIC: The name of the schema that holds the tables for identity resolution.
• RESOLUTION_INPUT_TABLE: The name of the input table to use for the operation.
• RESOLUTION_META_TABLE: The name of the metadata table to use for the operation.
• METRICS_TABLE: The name of the metrics table to use for the operation.
• LOGGING_TABLE: The name of the logging table to use for the operation.
• SHARE_NAME: The name of the share with logging and metrics to be sent to LiveRamp.
• POA18931: The LiveRamp account number. Unless your LiveRamp representative indicates oth-

erwise, please leave this as is.
3. Click Run.

Enable Authentication
The LiveRamp Identity APIs (ID-API) provide identity resolution technology for offline data (personally
identifiable information or “PII,” such as email address, name, postal address, etc.). The LiveRamp
native app relies on ID-API for authentication and authorization.

LiveRamp Embedded Identity in Snowflake v1

14

https://liveramp.com/developers/product/identity/

To enable authentication:

1. Update the firewall configuration to enable the native app to send requests for authentication:

alter database identifier ($native_app_database_name) set firewall_configuration=('https://9e7j3merc8.execute-api.us-east-2.amazonaws.com/Prod');

2. Click Run.

Grant Shared Database Permissions
To access the required tables (the input and metadata tables), the appropriate permissions must be
granted to the native app. The following procedures create the role for access to these tables.

NOTE
The formats of these tables are described in the sections on preparing the tables in
"Perform RampID Transcoding [18]" and in "Perform Identity Resolution [24]".

To create and grant usage to the appropriate roles, execute the following:

create role if not exists identifier($role_name);
grant usage on database identifier($customer_db_name) to role identifier($role_name);
grant usage on schema identifier($customer_schema_name) to role identifier($role_name);
grant select on table identifier($customer_input_table_name) to role identifier($role_name);
grant select on table identifier($customer_meta_table_name) to role identifier($role_name);
grant select, insert, update on identifier($customer_metrics_table_name) to role identifier($role_name);
grant select, insert, update on identifier($customer_logging_table_name) to role identifier($role_name);
grant role identifier($role_name) to database identifier($native_app_db_name);

Activate Logging and Metrics
The native app can log activity to a log table, and aggregate event data into a set of metrics. If you are
running multiple operations, logging and metrics can help you better understand your performance.

The log and metrics data are stored in the logging_table and metrics_table that you create in
the Create Logging and Metrics tables section in the worksheet shown below.

To activate logging and metrics functionality:

1. Access the LiveRamp native app, click in the Create Logging and Metrics Table section shown
below, and then click Run.

create table if not exists identifier($customer_metrics_table_name)(
 event_time timestamp_tz,
 output_table_name text,
 uuid text,
 tenant text,
 metrics variant,
 job_type varchar(15),
 signature text

LiveRamp Embedded Identity in Snowflake v1

15

https://9e7j3merc8.execute-api.us-east-2.amazonaws.com/Prod

);

create table if not exists identifier($customer_logging_table_name)(
 ts timestamp_tz,
 uuid string,
 msg string
);

2. Verify that the two commands shown below have set CHANGE_TRACKING = TRUE. If not, change
the value(s) to TRUE,

-- Alter Shared Table CHANGE_TRACKING to TRUE (Needed for LiveRamp account to create table streams).
alter table identifier($customer_metrics_table_name) set CHANGE_TRACKING = TRUE;
alter table identifier($customer_logging_table_name) set CHANGE_TRACKING = TRUE;
/*
END
*/

3. Click the line with the procedure and then click Run to enforce the change.
4. Run the commands in the Create logging and metrics share section (shown below) and share back

the new share with logging and metrics table with LiveRamp.

NOTE
The logging and metrics table needs to be shared back to LiveRamp. LiveRamp
validates the metrics and makes the output table visible.

// Create logging and metrics share
/*
This step shares back logging and metrics share back to LiveRamp to enable processing at LiveRamp's end and setting output table as visible.
*/
*/
create share if not exists identifier($share_name);grant usage on database identifier($customer_db_name) to share identifier($share_name);
grant usage on schema identifier($customer_schema_name) to share identifier($share_name);
grant select on identifier($customer_metrics_table_name) to share identifier($share_name);
grant select on identifier($customer_logging_table_name) to share identifier($share_name);
alter share identifier($share_name) add accounts = $lr_account;
/*
END SECTION
*/

NOTE
If the logging share is not shared back with LiveRamp, the output table will not be
visible in your Snowflake instance.

The value of the LiveRamp account will be provided to you by your LiveRamp account manager.

Usage data are collected in the metrics table, which is part of your database.

LiveRamp Embedded Identity in Snowflake v1

16

Each record contains:

• A timestamp
• The UUID (transaction ID)
• The tenant identifier
• The number of records processed or not, an error count
• The job type
• An encrypted field that contains all of this information combined

LiveRamp Embedded Identity in Snowflake v1

17

Perform RampID Transcoding in
Snowflake

Abstract
LiveRamp's Transcoding application in Snowflake allows for the translation of a RampID from one
partner encoding to another using either maintained or derived RampIDs. This allows you to match
persistent pseudonymous identifiers to one another and enables use of the data without sharing the
sensitive underlying identifiers.

LiveRamp's Transcoding application in Snowflake allows for the translation of a RampID from one
partner encoding to another using either maintained or derived RampIDs. This allows you to match
persistent pseudonymous identifiers to one another and enables use of the data without sharing the
sensitive underlying identifiers.

NOTE
For more information about RampID, see "RampID Methodology".

Specifically, RampID transcoding enables:

• Person-based analytics
• Increased match rates in data collaboration
• Measurement enablement across device types

These capabilities are available within Snowflake through a native app, which creates a share to
your account, opening up a view to query the reference data set from within your own Snowflake
environment. See "LiveRamp Embedded Identity in Snowflake [3]" for more information.

Overall Steps
After you've set up the transcoding native app in Snowflake (see "Set Up a Native App [6]" for instruc-
tions), perform the following steps to perform RampID transcoding:

1. Verify that you've performed all the native app setup tasks in the completion checklist.
2. Prepare the input and metadata tables for transcoding.
3. Perform transcoding.

See the sections below for information on performing these tasks.

Completion Checklist for Native App Setup
Before performing a transcoding operation for the first time, verify that you've completed the follow-
ing tasks to set up a transcoding native app in Snowflake:

LiveRamp Embedded Identity in Snowflake v1

18

NOTE
For instructions on completing these tasks, see "Set Up a Native App [6]".

☐ Accepted the terms and conditions of the application.

☐ Installed the appropriate LiveRamp Snowflake native application.

☐ Updated the firewall configuration for authentication.

☐ Created and granted permissions to a role that gives the App Share database access to the
appropriate tables.

☐ Created logging and metrics tables, added them to a share, and shared that share back to
LiveRamp.

After these tasks have been completed, you are ready to prepare the tables and perform the opera-
tion. See the sections below for more information.

Prepare the Tables for Transcoding
Transcoding with the LiveRamp native app requires the preparation and deployment of two tables:

• A metadata table, indicated in the code as <{{transcoding_meta_table}}>.

NOTE
As long as the column names in the input table stay the same, the original metadata
table can be reused for multiple operations. You only need to create a new metada-
ta table if you change the column names in the input table.

• An input table, indicated in the code as <{{transcoding_input_table}}>.

NOTE
An input table needs to be prepared for each transcoding operation.

To create the input and metadata tables:

1. Click in the Create input and metadata table procedure.
2. Click Run.
3. Make any necessary changes to the variables:

<SNOWFLAKE_CONSUMER_INPUT_DATABASE>
<SNOWFLAKE_CONSUMER_SCHEMA>
<transcoding_input_table>
<transcoding_meta_table>

You can create these tables inside Snowflake or import the tables into your database using Snow-
flake’s standard methods. The <...> variables may be substituted with your own values. Be sure

LiveRamp Embedded Identity in Snowflake v1

19

to reference the names correctly in the metadata table, which has as its default name <transcod-
ing_meta_table>, and make sure that the column names also match up correctly.

When creating tables, keep the following guidelines in mind (in addition to the guidelines listed in the
sections below):

• Every column name must be unique in a table.
• Try not to use additional columns in the tables required for the transcode operation. Having extra

columns slows down processing.
• The transcode operation can process records containing blank fields.

Table Naming Guidelines
When naming tables, follow these guidelines:

• Table names must use ASCII characters and not contain either spaces or special characters such
as !@#$%.

• You can use underscores “_” within the name, but not as the initial character.
• Consider using the following elements in your table names: type of data or description, a date

or timestamp, and an identity designation. For example, the table name Identity_TwoButton-
SuitsCampaign_impressions_2022-06-01 contains all three element types.

Metadata Table Columns and Descriptions
The metadata table passes the required credentials, specifies the type of operation, and specifies the
column names in the input table to reference for the original RampIDs, the domain to transcode to,
and the identifier type.

As long as the column names in the input table stay the same, the original metadata table can be
reused for multiple operations. You only need to create a new metadata table if you change the
column names in the input table.

Metadata column names must match those shown in the table below. The column names are not case
sensitive, and should not be enclosed in single or double quotation marks.

Table 1. Metadata table columns for transcoding.
Column Description

CLIENT_ID Enter either an existing CLIENT_ID or a new one provided in implementation.

CLIENT_SECRET Password/secret for the CLIENT_ID.

EXECUTION_MODE Transcoding.

EXECUTION_TYPE Transcoding.

TARGET_COLUMN Enter the column name of the input table which contains the RampIDs to be transcoded.

TARGET_DOMAIN_COLUMN Enter the column name of the input table which contains the target domain for the encoding the
RampIDs should be translated to.

TARGET_TYPE_COLUMN Enter the column name of the input table which contains the target identifier type.

Input Table Columns and Descriptions
An input table needs to be prepared for each transcoding operation.

The column names for the input table can be whatever you want to use, as long as the names match
the values specified in the metadata table.

LiveRamp Embedded Identity in Snowflake v1

20

Table 2. Input table columns for transcoding.
Column Sample Description

rampid XYT999RkQ3MEY1RUYtNUIy-
Mi00QjJGLUFDNjgtQjQ3QUEwMTNEM-
TA1CgMjVBMkNEMTktRD

RampID (maintained or derived) for translation.

Target Do-
main Col-
umn

T001 Target domain:

• Enter a partner’s domain when translating from your native
encoding to that partner’s domain.

• Enter your domain when translating from a partner’s encod-
ing to your native encoding.

ID Type RampID Target type. Currently only "RampID" is supported.

The output table is created by the operation that you run. For an example, see the "Perform Transcod-
ing [21]" section below.

NOTE
You can transcode both maintained RampIDs and derived RampIDs in your table. For
more on RampID types and versions, see “RampID”.

Perform Transcoding
You perform a transcoding operation by running the transcoding procedure and then checking that
the output has succeeded. You then open the output table to check the results.

To transcode the RampIDs in the input table:

1. Select the input table in the left-hand Database Objects navigation pane.
2. Click on the magnifying glass icon tab shown in the figure below.

LiveRamp Embedded Identity in Snowflake v1

21

Figure 2. Results of the transcode operation.

Run the transcoding operation specific for your database and schema to convert your input table
ID values using the parameters in the metadata table for conversion to new RampIDs in the
output table.

3. Locate the lr_resolution_and_trancoding procedure shown below and run that SQL.

call <native_app_database_name>.lr_app_schema.lr_resolution_and_transcoding
(
 ‘<consumer_database_name>.<consumer_schema_name>.<INPUT_TABLE>’,
 ‘<consumer_database_name>.<consumer_schema_name>.<META_TABLE>’,
 ‘<OUTPUT_TABLE>’,
 ‘<consumer_database_name>.<consumer_schema_name>.<LOGGING_TABLE>’,
 ‘<consumer_database_name>.<consumer_schema_name>.<METRICS_TABLE>’
);

4. Ensure that you have correctly entered the names of the database objects you are using into the
procedure above.

5. Click Run.
The transcode operation runs to completion.

6. Open the LiveRamp app worksheet.
7. Locate the Check for output procedure shown below and run that SQL.

// Check for output
/*
Check for output
*/
call <native_app_database_name>.lr_app_schema.check_for_output('<OUTPUT_TABLE>',

LiveRamp Embedded Identity in Snowflake v1

22

);
/*
END SECTION
*/

8. Click Run.
9. Wait until Snowflake returns a status message of success or error.

Once the app returns a success message, the output should be displayed in the native app
database under lr_app_schema.

The results end up in the output table in the same database, the TRANSCODING_TEST_TABLE shown
in the example above (see Step 2).

Table 3. Output table columns for transcoding.
Column Sample Description

RampID XYT999RkQ3MEY1RUYtNUIy-
Mi00QjJGLUFDNjgtQjQ3QUEwMTNEM-
TA1CgMjVBMkNEMTktRD

Returns the original RampID included in
the input table.

Transco-
ded_identifier

XYT001k0MS00MDc1LUI4NjEtMjl-
COUI0MUY3MENBCgNjVGQjE0MTMtRkFBMC00QzlELUJF

Transcoded RampID or NULL (NULL due to
unreadable native RampID or unauthor-
ized domain, etc.).

LiveRamp Embedded Identity in Snowflake v1

23

Perform Identity Resolution in
Snowflake

Abstract
LiveRamp's Identity Resolution capability in Snowflake allows for the translation of various identifiers
to RampIDs. This allows you to resolve personally-identifiable information (PII) or device identifiers
to a persistent pseudonymous identifier for persons and households. You can also input an individ-
ual-based RampID and get back any household-based RampID that might be associated with that
individual.

LiveRamp's Identity Resolution capability in Snowflake allows for the translation of various identifiers
to RampIDs. This allows you to resolve personally-identifiable information (PII) or device identifiers
to a persistent pseudonymous identifier for persons and households. You can also input an individ-
ual-based RampID and get back any household-based RampID that might be associated with that
individual.

NOTE
For more information about RampID, see "RampID Methodology".

Once you've translated your data to RampIDs, you can then share that data to your LiveRamp account
for activation. For more information, see "Share Data from Snowflake to Your LiveRamp Account".

The following identifiers can be resolved:

• Names
• Postal addresses
• Email addresses
• Phone numbers
• Cookies
• MAIDs (mobile device IDs)
• CTV IDs (Connected TV Device IDs)
• CIDs (custom identifiers)
• Person-based, maintained RampIDs (for resolution to household RampIDs)

These capabilities are available within Snowflake through a native app, which creates a share to
your account, opening up a view to query the reference data set from within your own Snowflake
environment. See "LiveRamp Embedded Identity in Snowflake [3]" for more information.

Overall Steps
After you've set up the identity resolution native app in Snowflake (see "Set Up a Native App [6]" for
instructions), perform the following steps to perform identity resolution:

LiveRamp Embedded Identity in Snowflake v1

24

https://docs.liveramp.com/app/en/share-data-from-snowflake-to-your-liveramp-account.html

1. Verify that you've performed all the native app setup tasks in the completion checklist.
2. Prepare and deploy the appropriate input and metadata tables for identity resolution.

• To resolve PII identifiers (such as name, address, phone, and/or email), follow the instructions
on input table creation in the “Input Table Columns for PII Resolution [28]” section below.

• To resolve SHA-256 hashed email addresses only, follow the instructions on input table crea-
tion in the “Input Table Columns for Email-Only Resolution [30]” section below.

NOTE
For email-only data, this execution type may be more performant than the PII
resolution process, depending on your warehouse set up.

• To resolve device identifiers (such as mobile device IDs, CTV IDs, or cookies) or to resolve an
individual RampID to a household RampID, follow the instructions on input table creation in
the “Input Table Columns for Device Resolution [31]” section below.

• To resolve custom identifiers (CIDs), follow the instructions on input table creation in the
“Input Table Columns for CID Resolution [31]” section below.

3. Perform the appropriate identity resolution process, depending on the identifiers being resolved:
4. View the output table.

See the sections below for information on performing these tasks.

Completion Checklist for Native App Setup
Before performing an identity resolution operation for the first time, verify that you've completed the
following tasks to set up an identity resolution native app in Snowflake:

NOTE
For instructions on completing these tasks, see "Set Up a Native App [6]".

☐ Accepted the terms and conditions of the application.

☐ Installed the appropriate LiveRamp Snowflake native application.

☐ Updated the firewall configuration for authentication calls.

☐ Created and granted permissions to a role that gives the App Share database access to the
appropriate tables.

☐ Created logging and metrics tables, added them to a share, and shared that share back to
LiveRamp.

After these tasks have been completed, you are ready to prepare the tables and perform the opera-
tion. See the sections below for more information.

Prepare the Tables for Identity Resolution
Performing identity resolution requires two tables:

LiveRamp Embedded Identity in Snowflake v1

25

• A metadata table, indicated in the code as $customer_meta_table_name.

NOTE
A metadata table can be reused for multiple operations, but a separate metadata
table must be prepared for each different identity resolution operation you want to
perform. For example, if you’re going to perform identity resolution on both MAIDs
and hashed emails, you’ll need a different metadata table for each operation.

• An input table, indicated in the code as $customer_input_table_name.

NOTE
An input table needs to be prepared for each identity resolution operation and can
only contain one type of identifiers.

To create the input and metadata tables:

1. Click in the Create input and metadata table procedure.

set customer_db_name = 'RESOLUTION_DEMO';
set customer_schema_name=concat($customer_db_name,'.','public');
set customer_input_table_name=concat($customer_schema_name,'.','RESOLUTION_INPUT_TABLE');
set customer_meta_table_name=concat($customer_schema_name>'.','RESOLUTION_META_TABLE');
set customer_metrics_table_name=concat($customer_schema_name,'.','METRICS_TABLE');
set customer_logging_table_name=concat($customer_schema_name,'.','LOGGING_TABLE');
set customer_output_table_name='RESOLUTION_OUTPUT_TABLE';

2. Make any necessary changes to the variables:
• RESOLUTION_DEMO: The name of your database.
• public: The name of the schema that holds the tables for identity resolution.
• RESOLUTION_INPUT_TABLE: The name of the input table to use for the operation.
• RESOLUTION_META_TABLE: The name of the metadata table to use for the operation.
• METRICS_TABLE: The name of the metrics table to use for the operation.
• LOGGING_TABLE: The name of the logging table to use for the operation.
• RESOLUTION_OUTPUT_TABLE: The name of the output table that will be created after the

identity resolution operation has been run.
3. Click Run.

You can create these tables inside Snowflake or import the tables into your database using Snow-
flake’s standard methods. The variables should be replaced with your own values. Make sure to
reference the names correctly in the metadata table and make sure that the column names also
match up correctly.

When creating tables, keep the following guidelines in mind:

• Every column name must be unique in a table.
• Try not to use additional columns in the input tables required for the identity resolution operation.
• Having extra columns slows down processing.
• Per Snowflake guidelines, table names cannot begin with a number.

LiveRamp Embedded Identity in Snowflake v1

26

Metadata Table Columns and Descriptions
A metadata table can be reused for multiple operations, but a separate metadata table must be
prepared for each different identity resolution operation you want to perform. For example, if you’re
going to perform identity resolution on both MAIDs and hashed emails, you’ll need a different meta-
data table for each operation.

Metadata column names must match those shown in the table below. The column names are not case
sensitive, and should not be enclosed in single or double quotation marks.

See the table below for a list of the metadata table columns and descriptions:

Example

CLIENT_ID liveramp_client

CLIENT_SE-
CRET

84159be2-
ab93-4bf8-24c9-2g123ef08815

EXECU-
TION_MODE

Resolution Resolution is the only option.

EXECU-
TION_TYPE

PII Options include:

• PII

• Cookies

• MAID

• CTV

• Email

• CID name (provided to you by LiveRamp and specific to the mapping
created)

• HHLink (to resolve individual RampIDs into household RampIDs)

NOTE
Currently, each identifier type has to be separated
into its own input table (including CID types) and
only one option above can be chosen for each
metadata table.

LiveRamp Embedded Identity in Snowflake v1

27

Example

TAR-
GET_COLUMN

{ “name”: [“FIRSTNAME”, “LAST-
NAME”], “streetAd-
dress”: [“ADDRESSLINE”],
“city”: ”CITY”, “state”: “STATE”, “zip-
Code”: “ZIPCODE” }

Enter the column name for the input table column(s) which contains
the IDs to be resolved.

For PII resolution, enter a string that maps each identifier type to the
column names for that identifier, separated by commas and enclosed
with curly brackets, as shown in the example. When including multiple
column names per identifier type, enclose those column names in
straight brackets.

Inputs for PII can include:

• name: [First Name, Middle Name, Last Name]
• streetAddress: [ADDRESSLINE1, ADDRESSLINE2]
• zipCode: [zipcode]
• city: [city]
• state: [state]
• phone: [phone]
• email: [email]

NOTE
If resolving street addresses, zipcode is a required
field along with either name or address.

LIMIT 5 For email or PII resolution only, you can specify the maximum number
of RampIDs to be returned.

Enter an integer between 1 and 10 to specify the maximum number of
RampID results returned per input identifier (to return only the “best
match”, returning 1 RampID is sufficient).

For other identifiers (device identifiers or CIDs), do not include this
column.

Input Table Columns and Descriptions
The column names for the input table can be whatever you want to use, as long as the column
name(s) for the identifiers matches the values specified in the TARGET_COLUMN column of the metada-
ta table. Do not use any column names that are the same as the columns names returned in the
output table for the identity resolution operation you're going to run.

See the sections below for suggested input table columns and descriptions for each resolution type.

The output table is created by the operation that you run. For an example, see the sections in "View
the Output Table [33]" below.

Input Table Columns for PII Resolution
The PII resolution process operates similarly to device identifier and CID resolution, with a key differ-
ence in the data output: instead of returning the original identifier mapped to its associated RampID,
data running through PII resolution will pass through a privacy filter which removes the PII and
reswizzles the table. Because of this, any attributes you need to keep associated with the identifier
need to be included in the input table. For more information, see the "Privacy Filter [34]" section
below.

LiveRamp Embedded Identity in Snowflake v1

28

NOTE

• This offering includes running our Identity Graph on demand. Our testing indicates
that a warehouse size of 4XL that is not being used for any other operations per-
forms best for average workloads, but this is dependent on your individual setup.
Contact your LiveRamp representative to understand the performance implications
of your setup.

• When resolving email data only, using the email-only resolution operation can pro-
vide higher throughput compared to full PII resolution. This is dependent on ware-
house and setup, so talk with your LiveRamp team to determine the best approach
for the use case.

These column names cannot be used in the input table for PII resolution:

• RampID
• Rank
• Filter Name

See the table below for a list of the suggested input table columns and descriptions for PII resolution.

Suggested Col-
umn Name

Example

first_name John You can include separate First Name and Last Name columns or you can combine first
name and last name in one column (such as “Name”).

last_name Doe You can include separate First Name and Last Name columns or you can combine first
name and last name in one column (such as “Name”).

address_1 123 Main St

address_2 Apt 1 You can include separate Address 1 and Address 2 columns or you can combine all
street address information in one column (such as “Address”).

city Smalltown When matching on address, City is optional.

state CA • When matching on address, State is optional.
• If including State, must be a two-character, capitalized abbreviation ("CA", not "Cali-

fornia" or "Ca").

zip 12345 • Required when matching on addresses.
• Can be in 5-digit format or 9-digit format (ZIP+4).

email john@email.com • Plaintext emails only.
• Only one email per input row is permitted. Other emails must be dropped or inclu-

ded in an additional row. If you include an additional row, repeat the values for the
name fields for the best match rates.

• All emails must meet these requirements:
• Have characters before and after the “@” sign
• Contain a period character (“.”)
• Have characters after the period character

• Examples of valid emails include:
• a@a.com
• A@A.COM
• email@account.com
• EMAIL@ACCOUNT.COM
• email@sub.domain.com
• EMAIL@SUB.DOMAIN.COM

LiveRamp Embedded Identity in Snowflake v1

29

Suggested Col-
umn Name

Example

phone 555-123-4567 • Plain text phone numbers only.
• Only one phone number per input row is permitted. Other phone numbers must be

dropped or included in an additional row. If you include an additional row, repeat
the values for the name fields for the best match rates.

• All phone numbers must meet these requirements:
• Can be more than 10 characters if leading numbers over 10 characters are “0” or

“1”
• If no leading numbers are used, must be 10 characters long
• Can contain hyphens (“-”), parentheses (“(“ or “)”), plus signs (“+”), and periods (“.”)

• Examples of valid phone numbers include:
• 8668533267
• 866.853.3267
• (866) 853-3267
• 8668533267
• +1 (866) 853-3267
• +18668533267
• 18668533267
• 1111111118668533267
• 08668533267

• Examples of invalid phone numbers include:
• 987654321 (fewer than 10 characters)
• 98765432109 (more than 10 characters)
• 1234567890 (after removing the leading “1”, less than 10 characters remain)
• 0987654321 (after removing the leading “0”, less than 10 characters remain)

attribute_1 For PII resolution, you can include columns with attribute data. These columns will be
returned in the output table (for more information, see the "View the PII Resolution
Output Table [33]" section below).

Input Table Columns for Email-Only Resolution
The email-only resolution process operates similarly to device identifier and CID resolution, with a
key difference in the data output: instead of returning the original identifier mapped to its associated
RampID, data running through email-only resolution will pass through a privacy filter which removes
the PII and reswizzles the table. Because of this, any attributes you need to keep associated with the
identifier need to be included in the input table. For more information, see the "Privacy Filter [34]"
section below.

NOTE

• When resolving email data only, using email-only resolution can provide higher
throughput compared to full PII resolution. This is dependent on warehouse and
setup, so talk with your LiveRamp team to determine the best approach for the use
case.

• To perform identity resolution across additional PII touchpoints, see the “View the
PII Resolution Output Table [33]” section above.

See the table below for a list of the suggested input table columns and descriptions for email-only
resolution.

LiveRamp Embedded Identity in Snowflake v1

30

Suggested Col-
umn Name

Example Description

hashed_email a64bleicQ3MEYck2Yt-
NUIyco1500QjJGLUs-
zlUGlNjgtQjQ3QUEwMTNEM-
TA1CgNE

• SHA-256 hashed emails only.
• Email addresses should be uppercased and UTF-8 encoded prior to

hashing.
• After hashing, convert the resulting hash into lowercase hexadecimal

representation.

Attribute_1 Male For email address resolution, you can include columns with attribute
data. These columns will be returned in the output table (for more in-
formation, see the "View the Email-Only Resolution Output Table [34]"
section below).

Input Table Columns for Device Resolution
The device resolution operation can be used for the following purposes:

• To translate device identifiers (cookies, MAIDs, and CTV IDs) into individual RampIDs
• To translate individual RampIDs into their associated household RampIDs

See the tables below for a list of the suggested input table columns and descriptions for these device
resolution options.

NOTE

• Each device resolution input table should contain only one identifier column (either
a device identifier or a maintained RampID).

• You can include columns with attribute data, but these columns will not be returned
in the output table.

See the table below for a list of the suggested input table columns and descriptions for translating
device identifiers.

Suggested Column Name Example Description

device_identifier 1f4d256c-1f08-41f6-a108-bbe511de9497 Can be one of the following identifiers:

• Cookie
• MAID
• CTV ID

See the table below for a list of the suggested input table columns and descriptions for translating
individual RampIDs into their associated household RampIDs.

Suggested Col-
umn Name

Example Description

RampID XYT999wXyWPB1SgpMUKlpzA013Ua-
LEz2lg0wFAr1PWK7FMhsd

• The RampID for translation to a Household RampID.
• Must be a maintained RampID (to have an associated with a

Household RampID).

Input Table Columns for CID Resolution
See the table below for a list of the suggested input table columns and descriptions for CID resolution.

LiveRamp Embedded Identity in Snowflake v1

31

NOTE
You can include columns with attribute data, but these columns will not be returned
in the output table.

Suggested Column Name Example Description

cid b916clarib la1;blNj10gtQjQ3QUEwMTNEMTcakt-
boEc0g9022cxoiaklr20185

The CID for translation to a RampID

Perform the Identity Resolution Operation
Once you’ve completed the previous steps, you’re ready to perform the identity resolution operation.

You perform an identity resolution operation by running the identifier resolution procedure shown
below, which includes checking that the output has succeeded. You can then view the output table to
check the results.

The output tables vary somewhat, depending on the type of identfiers being resolved.

To perform the identity resolution operation:

1. On your worksheet, switch to the native app database and LR_APP_SCHEMA under it.
2. Locate the lr_resolution_and_trancoding procedure shown below and click on that code

block.

call lr_resolution_and_transcoding
(
 $customer_input_table_name,
 $customer_meta_table_name,
 $output_table_name,
 $customer_logging_table_name,
 $customer_metrics_table_name
);

3. Click Run.
The resolution operation runs to completion.

4.
// Check for output
/*
Check for output
*/
-

call check_for_output(
$output_table_name
);
/*
END SECTION
*/

5. Click Run.

LiveRamp Embedded Identity in Snowflake v1

32

6. Once Snowflake returns a status message of success, you can view the output table in the native
app database under lr_app_schema. See the sections below for more information.

NOTE
If an error status message is returned, run the Check for output procedure
again.

The results end up in the output table in the same database, with the fields shown in the appropriate
section below.

View the Output Table
The identity resolution results end up in the output table in the same database you specified previous-
ly.

Once you've confirmed that the output table has been generated, see the appropriate section below
for information on the output table format for the type of identity resolution operation that was run.

View the PII Resolution Output Table
The PII resolution process passes the input table through a privacy filter which removes the PII and
reswizzles the table (in addition to other operations). Because of this, any attributes you need to keep
associated with the identifier need to be included in the input table. For more information, see the
"Privacy Filter [34]" section below.

Identity resolution of PII provides supplemental match metadata for additional insight into customer
data that can provide powerful signals for making decisions based on RampIDs.

For PII resolution, the output table includes the fields shown in the table below.

Column Sample Description

Ramp_ID XYT999wXyWPB1SgpMUKlp-
zA013Ua-
LEz2lg0wFAr1PWK7FMhsd

Returns the resolved RampID in your domain encoding.

attribute_1 Male Any attribute columns passed through the service are returned.

__lr_rank 1 Provides insight on the match cascade level associated with the identifi-
ers.

If no maintained RampID is found, this value will be "null".

__lr_fil-
ter_name

name_phone Returns the filter name where the match occurred, which will be one of
the following options:

• name_address_zip

• name_email

• name_phone

• partial_name_email

• partial_name_phone

• strict_name (name + zip)
• email

• phone

• last_name_address

If no maintained RampID is found, this value will be "null".

LiveRamp Embedded Identity in Snowflake v1

33

View the Email-Only Resolution Output Table
The email-only resolution process operates similarly to device identifier and CID resolution, with a
key difference in the data output: instead of returning the original identifier mapped to its associated
RampID, data running through email-only resolution will pass through a privacy filter which removes
the PII and reswizzles the table. Because of this, any attributes you need to keep associated with the
identifier need to be included in the input table. For more information, see the "Privacy Filter [34]"
section below.

For email-only resolution, the results end up in the output table in the same database, with the
following fields (as shown below):

• RAMPID (resolved email data)
• ATTRIBUTES (based on other data passed through the service).

Column Sample Description

Ramp_ID XYT999wXyWPB1SgpMUKlpzA013Ua-
LEz2lg0wFAr1PWK7FMhsd

Returns the resolved RampID in your domain encoding.

Attribute 1 Male Any attribute columns passed through the service are returned.

View the Device Identifier Resolution Output Table
For device identifier resolution, the results end up in the output table in the same database, with the
following fields (as shown below):

• DEVICE_ID (original input)
• RAMPID (converted values).

Device_ID 93abc799-a0a5-40b5-80dd-d2ab61d4d072

Ramp_ID XYT999wXyWPB1SgpMUKlpzA013UaLEz2lg0wFAr1PWK7FMhsd

View the CID Resolution Output Table
For CID resolution, the results end up in the output table in the same database, with the following
fields (as shown below):

• CID_ID (original input)
• RAMPID (converted values).

Column Sample Description

CID_ID 93abc799-a0a5-40b5-80dd-d2ab61d4d072 Original identifier passed in.

Ramp_ID XYT999wXyWPB1SgpMUKlpzA013Ua-
LEz2lg0wFAr1PWK7FMhsd

Returns the resolved RampID in your domain encoding.

Privacy Filter
To minimize the risk of re-identification (the ability to tie PII directly to a RampID), the service includes
the following processes when resolving PII identifiers (PII resolution or email-only resolution):

• Column Values: The process evaluates the combination of all the column values on a per row basis
for unique values. If a particular combination of column values occurs 3 or fewer times, the rows
containing those column values will not be matchable and will not be returned in the output table.

LiveRamp Embedded Identity in Snowflake v1

34

• >5% of the table unmatchable: If, based on column value uniqueness, >5% of the file rows are
unmatchable, the job will fail.

• Number of Unique RampIDs: If fewer than 100 unique RampIDs would be returned, the job will
fail.

• Reswizzle full table: Upon completion, the full table will be reswizzled to return the rows RampID
| attribute_1 | attribute_2 | attribute_n in a different order than what was submitted
in the input table.

LiveRamp Embedded Identity in Snowflake v1

35

	LiveRamp Embedded Identity in Snowflake v1
	Table of Contents
	LiveRamp Embedded Identity in Snowflake
	LiveRamp Native Apps
	Prerequisites
	Enabling LiveRamp Embedded Identity in Snowflake
	Authentication
	Product Support

	Set Up a Native App in Snowflake
	Overall Steps
	Accept the Snowflake Marketplace Terms and Conditions
	Install a LiveRamp Native App
	Open a Native App

	Set the Variables
	Enable Authentication
	Grant Shared Database Permissions
	Activate Logging and Metrics

	Perform RampID Transcoding in Snowflake
	Overall Steps
	Completion Checklist for Native App Setup
	Prepare the Tables for Transcoding
	Table Naming Guidelines
	Metadata Table Columns and Descriptions
	Input Table Columns and Descriptions

	Perform Transcoding

	Perform Identity Resolution in Snowflake
	Overall Steps
	Completion Checklist for Native App Setup
	Prepare the Tables for Identity Resolution
	Metadata Table Columns and Descriptions
	Input Table Columns and Descriptions
	Input Table Columns for PII Resolution
	Input Table Columns for Email-Only Resolution
	Input Table Columns for Device Resolution
	Input Table Columns for CID Resolution

	Perform the Identity Resolution Operation
	View the Output Table
	View the PII Resolution Output Table
	View the Email-Only Resolution Output Table
	View the Device Identifier Resolution Output Table
	View the CID Resolution Output Table

	Privacy Filter

