
A. DDPM TRAINING AND SAMPLING

To train and sample from our diffusion model, we use the
algorithms as described in [8].

Algorithm 2 Training
Input: q(x0), N steps, noise schedule β1, ..., βN
repeat
x0 ∼ q(x0)
t ∼ U({1, ..., N})√
ᾱ ∼ U(

√
ᾱt−1,

√
ᾱt)

ε ∼ N (0, I)
Take gradient descent step on
∇θ

∥∥ε− εθ(√ᾱtx0 +
√

1− ᾱtε,
√
ᾱ)

∥∥2

until converged

Algorithm 3 Sampling
Input: N steps, noise schedule β1, ..., βN
xN ∼ N (0, I)
for t = N, ..., 1 do
ε ∼ N (0, I) if t > 1, else ε = 0

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
εθ(xt,

√
ᾱt)

)
+ σtε

end for
return x0

B. MUSICVAE ARCHITECTURE
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Figure 4. 2-bar melody MusicVAE architecture. The en-
coder is a bi-direction LSTM and the decoder is an autore-
gressive LSTM.

C. TRIMMING LATENTS

During training VAEs typically learn to only utilize a frac-
tion of their latent dimensions. As shown in Figure 5, by
examining the standard deviation per dimension of the pos-
terior q(z|y) averaged across the entire training set, we are

able to identify underutilized dimensions where the aver-
age embedding standard deviation is close to the prior of 1.
The VAE loss encourages the marginal posterior to match
to the prior [42,43], but to encode information, dimensions
must have smaller variance per an example.

In all experiments, we remove all dimensions except for
the 42 dimensions with standard deviations below 1.0, be-
fore training the diffusion model on the input data. We find
this latent trimming to be essential for training as it helps
to avoid modeling unnecessary high-dimensional noise and
is very similar to the distance penalty described in [4].
We also tried reducing the dimensionality of embeddings
with principal component analysis (PCA) but found that
the lower dimensional representation captured too many of
the noisy dimensions and not those with high utilization.
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Figure 5. The standard deviation per dimension of the Mu-
sicVAE posterior q(z|y) averaged across the entire training
set. The region highlighted in red contains the latent di-
mensions that are unused.

D. TABLES

In Tables 2 and 3, we present the unnormalized framewise
self-similarity results as well as the latent space evaluation
of each model.

Setting Unconditional Infilling
Quantity Pitch Duration Pitch Duration
OA µ σ2 µ σ2 µ σ2 µ σ2

Train Data 0.82 0.018 0.88 0.012 0.82 0.018 0.88 0.012
Test Data 0.82 0.018 0.88 0.011 0.82 0.018 0.88 0.011
Diffusion 0.81 0.017 0.85 0.013 0.80 0.021 0.86 0.015
Autoregression 0.76 0.024 0.82 0.015 - - - -
Interpolation 0.94 0.004 0.96 0.004 0.87 0.014 0.91 0.009
N (0, I) Prior 0.69 0.033 0.79 0.016 0.73 0.033 0.82 0.018

Table 2. Unnormalized framewise self-similarity (over-
lapping area) evaluation of unconditional and conditional
samples. Evaluations of same samples as in Table 1. Note
the interpolations have unrealistically high mean overlap
and low variance, while the Gaussian prior and Trans-
formerMDN samples suffer from unrealistically lower
mean overlap and higher variance.



Setting Unconditional Infilling
Metric FD×10−2 MMD×10−2 FD×10−2 MMD×10−2

Train Data 0.00 0.00 0.00 0.00
Test Data 1.24 0.12 1.24 0.12
Diffusion 1.66 0.18 1.53 0.16
Autoregression 1.26 0.12 - -
Interpolation 3.22 0.43 1.97 0.23
N (0, I) Prior 2.44 0.29 1.17 0.12

Table 3. Latent space evaluation of infilling and uncon-
ditional and conditional samples. As described in Sec-
tion 4.5, the TransformerMDN performs better in latent
space similarity, even while producing less realistic sam-
ples (as seen in Tables 1 and 2).

E. ADDITIONAL SAMPLES

In Figure 6 we provide piano rolls of sequences drawn
from the test set and in Figures 7, 8, 9, and 10 we present
additional samples unconditionally generated by our dif-
fusion model, TransformerMDN, spherical interpolation,
and through independent sampling from the MusicVAE
prior, respectively. Additional piano roll visualizations
from infilling experiments are provided in Figure 11.

For extended visual and audio samples of the
generated sequences from each model, we refer
the reader to the online supplement available at
https://goo.gl/magenta/symbolic-music-
diffusion-examples.

https://goo.gl/magenta/symbolic-music-diffusion-examples
https://goo.gl/magenta/symbolic-music-diffusion-examples


Figure 6. Additional piano rolls from the test set.



Figure 7. Additional piano rolls generated unconditionally by our diffusion model.



Figure 8. Additional piano rolls generated unconditionally by TransformerMDN.



Figure 9. Additional piano rolls generated by performing spherical interpolation [30] between the first and last latent
embeddings of sequences drawn from the test set.



Figure 10. Additional piano rolls generated by sampling each latent embedding independently from theN (0, I) MusicVAE
prior.
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Figure 11. Additional piano rolls of infilling experiments. The first and last 256 melody tokens are held constant and the
interior 512 tokens are filled in by the model (dashed red box). Original sample (first row), diffusion model (second row),
interpolation (third row), sampling independently from the MusicVAE prior (fourth row).


