1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! Availability Recovery Subsystem of Polkadot.

#![warn(missing_docs)]

use std::{
	collections::{HashMap, VecDeque},
	iter::Iterator,
	num::NonZeroUsize,
	pin::Pin,
	time::Duration,
};

use futures::{
	channel::oneshot::{self, channel},
	future::{Future, FutureExt, RemoteHandle},
	pin_mut,
	prelude::*,
	sink::SinkExt,
	stream::{FuturesUnordered, StreamExt},
	task::{Context, Poll},
};
use rand::seq::SliceRandom;
use schnellru::{ByLength, LruMap};

use fatality::Nested;
use polkadot_erasure_coding::{
	branch_hash, branches, obtain_chunks_v1, recovery_threshold, Error as ErasureEncodingError,
};
#[cfg(not(test))]
use polkadot_node_network_protocol::request_response::CHUNK_REQUEST_TIMEOUT;
use polkadot_node_network_protocol::{
	request_response::{
		self as req_res, outgoing::RequestError, v1 as request_v1, IncomingRequestReceiver,
		OutgoingRequest, Recipient, Requests,
	},
	IfDisconnected, UnifiedReputationChange as Rep,
};
use polkadot_node_primitives::{AvailableData, ErasureChunk};
use polkadot_node_subsystem::{
	errors::RecoveryError,
	jaeger,
	messages::{AvailabilityRecoveryMessage, AvailabilityStoreMessage, NetworkBridgeTxMessage},
	overseer, ActiveLeavesUpdate, FromOrchestra, OverseerSignal, SpawnedSubsystem, SubsystemError,
	SubsystemResult,
};
use polkadot_node_subsystem_util::request_session_info;
use polkadot_primitives::{
	AuthorityDiscoveryId, BlakeTwo256, BlockNumber, CandidateHash, CandidateReceipt, GroupIndex,
	Hash, HashT, IndexedVec, SessionIndex, SessionInfo, ValidatorId, ValidatorIndex,
};

mod error;
mod futures_undead;
mod metrics;
use metrics::Metrics;

use futures_undead::FuturesUndead;
use sc_network::{OutboundFailure, RequestFailure};

#[cfg(test)]
mod tests;

const LOG_TARGET: &str = "parachain::availability-recovery";

// How many parallel recovery tasks should be running at once.
const N_PARALLEL: usize = 50;

// Size of the LRU cache where we keep recovered data.
const LRU_SIZE: u32 = 16;

const COST_INVALID_REQUEST: Rep = Rep::CostMajor("Peer sent unparsable request");

/// Time after which we consider a request to have failed
///
/// and we should try more peers. Note in theory the request times out at the network level,
/// measurements have shown, that in practice requests might actually take longer to fail in
/// certain occasions. (The very least, authority discovery is not part of the timeout.)
///
/// For the time being this value is the same as the timeout on the networking layer, but as this
/// timeout is more soft than the networking one, it might make sense to pick different values as
/// well.
#[cfg(not(test))]
const TIMEOUT_START_NEW_REQUESTS: Duration = CHUNK_REQUEST_TIMEOUT;
#[cfg(test)]
const TIMEOUT_START_NEW_REQUESTS: Duration = Duration::from_millis(100);

/// PoV size limit in bytes for which prefer fetching from backers.
const SMALL_POV_LIMIT: usize = 128 * 1024;

#[derive(Clone, PartialEq)]
/// The strategy we use to recover the PoV.
pub enum RecoveryStrategy {
	/// We always try the backing group first, then fallback to validator chunks.
	BackersFirstAlways,
	/// We try the backing group first if PoV size is lower than specified, then fallback to
	/// validator chunks.
	BackersFirstIfSizeLower(usize),
	/// We always recover using validator chunks.
	ChunksAlways,
	/// Do not request data from the availability store.
	/// This is the useful for nodes where the
	/// availability-store subsystem is not expected to run,
	/// such as collators.
	BypassAvailabilityStore,
}

impl RecoveryStrategy {
	/// Returns true if the strategy needs backing group index.
	pub fn needs_backing_group(&self) -> bool {
		match self {
			RecoveryStrategy::BackersFirstAlways | RecoveryStrategy::BackersFirstIfSizeLower(_) =>
				true,
			_ => false,
		}
	}

	/// Returns the PoV size limit in bytes for `BackersFirstIfSizeLower` strategy, otherwise
	/// `None`.
	pub fn pov_size_limit(&self) -> Option<usize> {
		match *self {
			RecoveryStrategy::BackersFirstIfSizeLower(limit) => Some(limit),
			_ => None,
		}
	}
}
/// The Availability Recovery Subsystem.
pub struct AvailabilityRecoverySubsystem {
	/// PoV recovery strategy to use.
	recovery_strategy: RecoveryStrategy,
	/// Receiver for available data requests.
	req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
	/// Metrics for this subsystem.
	metrics: Metrics,
}

struct RequestFromBackers {
	// a random shuffling of the validators from the backing group which indicates the order
	// in which we connect to them and request the chunk.
	shuffled_backers: Vec<ValidatorIndex>,
	// channel to the erasure task handler.
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
}

struct RequestChunksFromValidators {
	/// How many request have been unsuccessful so far.
	error_count: usize,
	/// Total number of responses that have been received.
	///
	/// including failed ones.
	total_received_responses: usize,
	/// a random shuffling of the validators which indicates the order in which we connect to the
	/// validators and request the chunk from them.
	shuffling: VecDeque<ValidatorIndex>,
	/// Chunks received so far.
	received_chunks: HashMap<ValidatorIndex, ErasureChunk>,
	/// Pending chunk requests with soft timeout.
	requesting_chunks: FuturesUndead<Result<Option<ErasureChunk>, (ValidatorIndex, RequestError)>>,
	// channel to the erasure task handler.
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
}

struct RecoveryParams {
	/// Discovery ids of `validators`.
	validator_authority_keys: Vec<AuthorityDiscoveryId>,

	/// Validators relevant to this `RecoveryTask`.
	validators: IndexedVec<ValidatorIndex, ValidatorId>,

	/// The number of pieces needed.
	threshold: usize,

	/// A hash of the relevant candidate.
	candidate_hash: CandidateHash,

	/// The root of the erasure encoding of the para block.
	erasure_root: Hash,

	/// Metrics to report
	metrics: Metrics,

	/// Do not request data from availability-store
	bypass_availability_store: bool,
}

/// Source the availability data either by means
/// of direct request response protocol to
/// backers (a.k.a. fast-path), or recover from chunks.
enum Source {
	RequestFromBackers(RequestFromBackers),
	RequestChunks(RequestChunksFromValidators),
}

/// Expensive erasure coding computations that we want to run on a blocking thread.
enum ErasureTask {
	/// Reconstructs `AvailableData` from chunks given `n_validators`.
	Reconstruct(
		usize,
		HashMap<ValidatorIndex, ErasureChunk>,
		oneshot::Sender<Result<AvailableData, ErasureEncodingError>>,
	),
	/// Re-encode `AvailableData` into erasure chunks in order to verify the provided root hash of
	/// the Merkle tree.
	Reencode(usize, Hash, AvailableData, oneshot::Sender<Option<AvailableData>>),
}

/// A stateful reconstruction of availability data in reference to
/// a candidate hash.
struct RecoveryTask<Sender> {
	sender: Sender,

	/// The parameters of the recovery process.
	params: RecoveryParams,

	/// The source to obtain the availability data from.
	source: Source,

	// channel to the erasure task handler.
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
}

impl RequestFromBackers {
	fn new(
		mut backers: Vec<ValidatorIndex>,
		erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
	) -> Self {
		backers.shuffle(&mut rand::thread_rng());

		RequestFromBackers { shuffled_backers: backers, erasure_task_tx }
	}

	// Run this phase to completion.
	async fn run(
		&mut self,
		params: &RecoveryParams,
		sender: &mut impl overseer::AvailabilityRecoverySenderTrait,
	) -> Result<AvailableData, RecoveryError> {
		gum::trace!(
			target: LOG_TARGET,
			candidate_hash = ?params.candidate_hash,
			erasure_root = ?params.erasure_root,
			"Requesting from backers",
		);
		loop {
			// Pop the next backer, and proceed to next phase if we're out.
			let validator_index =
				self.shuffled_backers.pop().ok_or_else(|| RecoveryError::Unavailable)?;

			// Request data.
			let (req, response) = OutgoingRequest::new(
				Recipient::Authority(
					params.validator_authority_keys[validator_index.0 as usize].clone(),
				),
				req_res::v1::AvailableDataFetchingRequest { candidate_hash: params.candidate_hash },
			);

			sender
				.send_message(NetworkBridgeTxMessage::SendRequests(
					vec![Requests::AvailableDataFetchingV1(req)],
					IfDisconnected::ImmediateError,
				))
				.await;

			match response.await {
				Ok(req_res::v1::AvailableDataFetchingResponse::AvailableData(data)) => {
					let (reencode_tx, reencode_rx) = channel();
					self.erasure_task_tx
						.send(ErasureTask::Reencode(
							params.validators.len(),
							params.erasure_root,
							data,
							reencode_tx,
						))
						.await
						.map_err(|_| RecoveryError::ChannelClosed)?;

					let reencode_response =
						reencode_rx.await.map_err(|_| RecoveryError::ChannelClosed)?;

					if let Some(data) = reencode_response {
						gum::trace!(
							target: LOG_TARGET,
							candidate_hash = ?params.candidate_hash,
							"Received full data",
						);

						return Ok(data)
					} else {
						gum::debug!(
							target: LOG_TARGET,
							candidate_hash = ?params.candidate_hash,
							?validator_index,
							"Invalid data response",
						);

						// it doesn't help to report the peer with req/res.
					}
				},
				Ok(req_res::v1::AvailableDataFetchingResponse::NoSuchData) => {},
				Err(e) => gum::debug!(
					target: LOG_TARGET,
					candidate_hash = ?params.candidate_hash,
					?validator_index,
					err = ?e,
					"Error fetching full available data."
				),
			}
		}
	}
}

impl RequestChunksFromValidators {
	fn new(
		n_validators: u32,
		erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
	) -> Self {
		let mut shuffling: Vec<_> = (0..n_validators).map(ValidatorIndex).collect();
		shuffling.shuffle(&mut rand::thread_rng());

		RequestChunksFromValidators {
			error_count: 0,
			total_received_responses: 0,
			shuffling: shuffling.into(),
			received_chunks: HashMap::new(),
			requesting_chunks: FuturesUndead::new(),
			erasure_task_tx,
		}
	}

	fn is_unavailable(&self, params: &RecoveryParams) -> bool {
		is_unavailable(
			self.chunk_count(),
			self.requesting_chunks.total_len(),
			self.shuffling.len(),
			params.threshold,
		)
	}

	fn chunk_count(&self) -> usize {
		self.received_chunks.len()
	}

	fn insert_chunk(&mut self, validator_index: ValidatorIndex, chunk: ErasureChunk) {
		self.received_chunks.insert(validator_index, chunk);
	}

	fn can_conclude(&self, params: &RecoveryParams) -> bool {
		self.chunk_count() >= params.threshold || self.is_unavailable(params)
	}

	/// Desired number of parallel requests.
	///
	/// For the given threshold (total required number of chunks) get the desired number of
	/// requests we want to have running in parallel at this time.
	fn get_desired_request_count(&self, threshold: usize) -> usize {
		// Upper bound for parallel requests.
		// We want to limit this, so requests can be processed within the timeout and we limit the
		// following feedback loop:
		// 1. Requests fail due to timeout
		// 2. We request more chunks to make up for it
		// 3. Bandwidth is spread out even more, so we get even more timeouts
		// 4. We request more chunks to make up for it ...
		let max_requests_boundary = std::cmp::min(N_PARALLEL, threshold);
		// How many chunks are still needed?
		let remaining_chunks = threshold.saturating_sub(self.chunk_count());
		// What is the current error rate, so we can make up for it?
		let inv_error_rate =
			self.total_received_responses.checked_div(self.error_count).unwrap_or(0);
		// Actual number of requests we want to have in flight in parallel:
		std::cmp::min(
			max_requests_boundary,
			remaining_chunks + remaining_chunks.checked_div(inv_error_rate).unwrap_or(0),
		)
	}

	async fn launch_parallel_requests<Sender>(
		&mut self,
		params: &RecoveryParams,
		sender: &mut Sender,
	) where
		Sender: overseer::AvailabilityRecoverySenderTrait,
	{
		let num_requests = self.get_desired_request_count(params.threshold);
		let candidate_hash = &params.candidate_hash;
		let already_requesting_count = self.requesting_chunks.len();

		gum::debug!(
			target: LOG_TARGET,
			?candidate_hash,
			?num_requests,
			error_count= ?self.error_count,
			total_received = ?self.total_received_responses,
			threshold = ?params.threshold,
			?already_requesting_count,
			"Requesting availability chunks for a candidate",
		);
		let mut requests = Vec::with_capacity(num_requests - already_requesting_count);

		while self.requesting_chunks.len() < num_requests {
			if let Some(validator_index) = self.shuffling.pop_back() {
				let validator = params.validator_authority_keys[validator_index.0 as usize].clone();
				gum::trace!(
					target: LOG_TARGET,
					?validator,
					?validator_index,
					?candidate_hash,
					"Requesting chunk",
				);

				// Request data.
				let raw_request = req_res::v1::ChunkFetchingRequest {
					candidate_hash: params.candidate_hash,
					index: validator_index,
				};

				let (req, res) = OutgoingRequest::new(Recipient::Authority(validator), raw_request);
				requests.push(Requests::ChunkFetchingV1(req));

				params.metrics.on_chunk_request_issued();
				let timer = params.metrics.time_chunk_request();

				self.requesting_chunks.push(Box::pin(async move {
					let _timer = timer;
					match res.await {
						Ok(req_res::v1::ChunkFetchingResponse::Chunk(chunk)) =>
							Ok(Some(chunk.recombine_into_chunk(&raw_request))),
						Ok(req_res::v1::ChunkFetchingResponse::NoSuchChunk) => Ok(None),
						Err(e) => Err((validator_index, e)),
					}
				}));
			} else {
				break
			}
		}

		sender
			.send_message(NetworkBridgeTxMessage::SendRequests(
				requests,
				IfDisconnected::TryConnect,
			))
			.await;
	}

	/// Wait for a sufficient amount of chunks to reconstruct according to the provided `params`.
	async fn wait_for_chunks(&mut self, params: &RecoveryParams) {
		let metrics = &params.metrics;

		// Wait for all current requests to conclude or time-out, or until we reach enough chunks.
		// We also declare requests undead, once `TIMEOUT_START_NEW_REQUESTS` is reached and will
		// return in that case for `launch_parallel_requests` to fill up slots again.
		while let Some(request_result) =
			self.requesting_chunks.next_with_timeout(TIMEOUT_START_NEW_REQUESTS).await
		{
			self.total_received_responses += 1;

			match request_result {
				Ok(Some(chunk)) =>
					if is_chunk_valid(params, &chunk) {
						metrics.on_chunk_request_succeeded();
						gum::trace!(
							target: LOG_TARGET,
							candidate_hash = ?params.candidate_hash,
							validator_index = ?chunk.index,
							"Received valid chunk",
						);
						self.insert_chunk(chunk.index, chunk);
					} else {
						metrics.on_chunk_request_invalid();
						self.error_count += 1;
					},
				Ok(None) => {
					metrics.on_chunk_request_no_such_chunk();
					self.error_count += 1;
				},
				Err((validator_index, e)) => {
					self.error_count += 1;

					gum::trace!(
						target: LOG_TARGET,
						candidate_hash= ?params.candidate_hash,
						err = ?e,
						?validator_index,
						"Failure requesting chunk",
					);

					match e {
						RequestError::InvalidResponse(_) => {
							metrics.on_chunk_request_invalid();

							gum::debug!(
								target: LOG_TARGET,
								candidate_hash = ?params.candidate_hash,
								err = ?e,
								?validator_index,
								"Chunk fetching response was invalid",
							);
						},
						RequestError::NetworkError(err) => {
							// No debug logs on general network errors - that became very spammy
							// occasionally.
							if let RequestFailure::Network(OutboundFailure::Timeout) = err {
								metrics.on_chunk_request_timeout();
							} else {
								metrics.on_chunk_request_error();
							}

							self.shuffling.push_front(validator_index);
						},
						RequestError::Canceled(_) => {
							metrics.on_chunk_request_error();

							self.shuffling.push_front(validator_index);
						},
					}
				},
			}

			// Stop waiting for requests when we either can already recover the data
			// or have gotten firm 'No' responses from enough validators.
			if self.can_conclude(params) {
				gum::debug!(
					target: LOG_TARGET,
					candidate_hash = ?params.candidate_hash,
					received_chunks_count = ?self.chunk_count(),
					requested_chunks_count = ?self.requesting_chunks.len(),
					threshold = ?params.threshold,
					"Can conclude availability for a candidate",
				);
				break
			}
		}
	}

	async fn run<Sender>(
		&mut self,
		params: &RecoveryParams,
		sender: &mut Sender,
	) -> Result<AvailableData, RecoveryError>
	where
		Sender: overseer::AvailabilityRecoverySenderTrait,
	{
		let metrics = &params.metrics;

		// First query the store for any chunks we've got.
		if !params.bypass_availability_store {
			let (tx, rx) = oneshot::channel();
			sender
				.send_message(AvailabilityStoreMessage::QueryAllChunks(params.candidate_hash, tx))
				.await;

			match rx.await {
				Ok(chunks) => {
					// This should either be length 1 or 0. If we had the whole data,
					// we wouldn't have reached this stage.
					let chunk_indices: Vec<_> = chunks.iter().map(|c| c.index).collect();
					self.shuffling.retain(|i| !chunk_indices.contains(i));

					for chunk in chunks {
						if is_chunk_valid(params, &chunk) {
							gum::trace!(
								target: LOG_TARGET,
								candidate_hash = ?params.candidate_hash,
								validator_index = ?chunk.index,
								"Found valid chunk on disk"
							);
							self.insert_chunk(chunk.index, chunk);
						} else {
							gum::error!(
								target: LOG_TARGET,
								"Loaded invalid chunk from disk! Disk/Db corruption _very_ likely - please fix ASAP!"
							);
						};
					}
				},
				Err(oneshot::Canceled) => {
					gum::warn!(
						target: LOG_TARGET,
						candidate_hash = ?params.candidate_hash,
						"Failed to reach the availability store"
					);
				},
			}
		}

		let _recovery_timer = metrics.time_full_recovery();

		loop {
			if self.is_unavailable(&params) {
				gum::debug!(
					target: LOG_TARGET,
					candidate_hash = ?params.candidate_hash,
					erasure_root = ?params.erasure_root,
					received = %self.chunk_count(),
					requesting = %self.requesting_chunks.len(),
					total_requesting = %self.requesting_chunks.total_len(),
					n_validators = %params.validators.len(),
					"Data recovery is not possible",
				);

				metrics.on_recovery_failed();

				return Err(RecoveryError::Unavailable)
			}

			self.launch_parallel_requests(params, sender).await;
			self.wait_for_chunks(params).await;

			// If received_chunks has more than threshold entries, attempt to recover the data.
			// If that fails, or a re-encoding of it doesn't match the expected erasure root,
			// return Err(RecoveryError::Invalid)
			if self.chunk_count() >= params.threshold {
				let recovery_duration = metrics.time_erasure_recovery();

				// Send request to reconstruct available data from chunks.
				let (avilable_data_tx, available_data_rx) = channel();
				self.erasure_task_tx
					.send(ErasureTask::Reconstruct(
						params.validators.len(),
						std::mem::take(&mut self.received_chunks),
						avilable_data_tx,
					))
					.await
					.map_err(|_| RecoveryError::ChannelClosed)?;

				let available_data_response =
					available_data_rx.await.map_err(|_| RecoveryError::ChannelClosed)?;

				return match available_data_response {
					Ok(data) => {
						// Send request to re-encode the chunks and check merkle root.
						let (reencode_tx, reencode_rx) = channel();
						self.erasure_task_tx
							.send(ErasureTask::Reencode(
								params.validators.len(),
								params.erasure_root,
								data,
								reencode_tx,
							))
							.await
							.map_err(|_| RecoveryError::ChannelClosed)?;

						let reencode_response =
							reencode_rx.await.map_err(|_| RecoveryError::ChannelClosed)?;

						if let Some(data) = reencode_response {
							gum::trace!(
								target: LOG_TARGET,
								candidate_hash = ?params.candidate_hash,
								erasure_root = ?params.erasure_root,
								"Data recovery complete",
							);
							metrics.on_recovery_succeeded();

							Ok(data)
						} else {
							recovery_duration.map(|rd| rd.stop_and_discard());
							gum::trace!(
								target: LOG_TARGET,
								candidate_hash = ?params.candidate_hash,
								erasure_root = ?params.erasure_root,
								"Data recovery - root mismatch",
							);
							metrics.on_recovery_invalid();

							Err(RecoveryError::Invalid)
						}
					},
					Err(err) => {
						recovery_duration.map(|rd| rd.stop_and_discard());
						gum::trace!(
							target: LOG_TARGET,
							candidate_hash = ?params.candidate_hash,
							erasure_root = ?params.erasure_root,
							?err,
							"Data recovery error ",
						);
						metrics.on_recovery_invalid();

						Err(RecoveryError::Invalid)
					},
				}
			}
		}
	}
}

const fn is_unavailable(
	received_chunks: usize,
	requesting_chunks: usize,
	unrequested_validators: usize,
	threshold: usize,
) -> bool {
	received_chunks + requesting_chunks + unrequested_validators < threshold
}

/// Check validity of a chunk.
fn is_chunk_valid(params: &RecoveryParams, chunk: &ErasureChunk) -> bool {
	let anticipated_hash =
		match branch_hash(&params.erasure_root, chunk.proof(), chunk.index.0 as usize) {
			Ok(hash) => hash,
			Err(e) => {
				gum::debug!(
					target: LOG_TARGET,
					candidate_hash = ?params.candidate_hash,
					validator_index = ?chunk.index,
					error = ?e,
					"Invalid Merkle proof",
				);
				return false
			},
		};
	let erasure_chunk_hash = BlakeTwo256::hash(&chunk.chunk);
	if anticipated_hash != erasure_chunk_hash {
		gum::debug!(
			target: LOG_TARGET,
			candidate_hash = ?params.candidate_hash,
			validator_index = ?chunk.index,
			"Merkle proof mismatch"
		);
		return false
	}
	true
}

/// Re-encode the data into erasure chunks in order to verify
/// the root hash of the provided Merkle tree, which is built
/// on-top of the encoded chunks.
///
/// This (expensive) check is necessary, as otherwise we can't be sure that some chunks won't have
/// been tampered with by the backers, which would result in some validators considering the data
/// valid and some invalid as having fetched different set of chunks. The checking of the Merkle
/// proof for individual chunks only gives us guarantees, that we have fetched a chunk belonging to
/// a set the backers have committed to.
///
/// NOTE: It is fine to do this check with already decoded data, because if the decoding failed for
/// some validators, we can be sure that chunks have been tampered with (by the backers) or the
/// data was invalid to begin with. In the former case, validators fetching valid chunks will see
/// invalid data as well, because the root won't match. In the latter case the situation is the
/// same for anyone anyways.
fn reconstructed_data_matches_root(
	n_validators: usize,
	expected_root: &Hash,
	data: &AvailableData,
	metrics: &Metrics,
) -> bool {
	let _timer = metrics.time_reencode_chunks();

	let chunks = match obtain_chunks_v1(n_validators, data) {
		Ok(chunks) => chunks,
		Err(e) => {
			gum::debug!(
				target: LOG_TARGET,
				err = ?e,
				"Failed to obtain chunks",
			);
			return false
		},
	};

	let branches = branches(&chunks);

	branches.root() == *expected_root
}

impl<Sender> RecoveryTask<Sender>
where
	Sender: overseer::AvailabilityRecoverySenderTrait,
{
	async fn run(mut self) -> Result<AvailableData, RecoveryError> {
		// First just see if we have the data available locally.
		if !self.params.bypass_availability_store {
			let (tx, rx) = oneshot::channel();
			self.sender
				.send_message(AvailabilityStoreMessage::QueryAvailableData(
					self.params.candidate_hash,
					tx,
				))
				.await;

			match rx.await {
				Ok(Some(data)) => return Ok(data),
				Ok(None) => {},
				Err(oneshot::Canceled) => {
					gum::warn!(
						target: LOG_TARGET,
						candidate_hash = ?self.params.candidate_hash,
						"Failed to reach the availability store",
					)
				},
			}
		}

		self.params.metrics.on_recovery_started();

		loop {
			// These only fail if we cannot reach the underlying subsystem, which case there is
			// nothing meaningful we can do.
			match self.source {
				Source::RequestFromBackers(ref mut from_backers) => {
					match from_backers.run(&self.params, &mut self.sender).await {
						Ok(data) => break Ok(data),
						Err(RecoveryError::Invalid) => break Err(RecoveryError::Invalid),
						Err(RecoveryError::ChannelClosed) =>
							break Err(RecoveryError::ChannelClosed),
						Err(RecoveryError::Unavailable) =>
							self.source = Source::RequestChunks(RequestChunksFromValidators::new(
								self.params.validators.len() as _,
								self.erasure_task_tx.clone(),
							)),
					}
				},
				Source::RequestChunks(ref mut from_all) =>
					break from_all.run(&self.params, &mut self.sender).await,
			}
		}
	}
}

/// Accumulate all awaiting sides for some particular `AvailableData`.
struct RecoveryHandle {
	candidate_hash: CandidateHash,
	remote: RemoteHandle<Result<AvailableData, RecoveryError>>,
	awaiting: Vec<oneshot::Sender<Result<AvailableData, RecoveryError>>>,
}

impl Future for RecoveryHandle {
	type Output = Option<(CandidateHash, Result<AvailableData, RecoveryError>)>;

	fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
		let mut indices_to_remove = Vec::new();
		for (i, awaiting) in self.awaiting.iter_mut().enumerate().rev() {
			if let Poll::Ready(()) = awaiting.poll_canceled(cx) {
				indices_to_remove.push(i);
			}
		}

		// these are reverse order, so remove is fine.
		for index in indices_to_remove {
			gum::debug!(
				target: LOG_TARGET,
				candidate_hash = ?self.candidate_hash,
				"Receiver for available data dropped.",
			);

			self.awaiting.swap_remove(index);
		}

		if self.awaiting.is_empty() {
			gum::debug!(
				target: LOG_TARGET,
				candidate_hash = ?self.candidate_hash,
				"All receivers for available data dropped.",
			);

			return Poll::Ready(None)
		}

		let remote = &mut self.remote;
		futures::pin_mut!(remote);
		let result = futures::ready!(remote.poll(cx));

		for awaiting in self.awaiting.drain(..) {
			let _ = awaiting.send(result.clone());
		}

		Poll::Ready(Some((self.candidate_hash, result)))
	}
}

/// Cached result of an availability recovery operation.
#[derive(Debug, Clone)]
enum CachedRecovery {
	/// Availability was successfully retrieved before.
	Valid(AvailableData),
	/// Availability was successfully retrieved before, but was found to be invalid.
	Invalid,
}

impl CachedRecovery {
	/// Convert back to	`Result` to deliver responses.
	fn into_result(self) -> Result<AvailableData, RecoveryError> {
		match self {
			Self::Valid(d) => Ok(d),
			Self::Invalid => Err(RecoveryError::Invalid),
		}
	}
}

impl TryFrom<Result<AvailableData, RecoveryError>> for CachedRecovery {
	type Error = ();
	fn try_from(o: Result<AvailableData, RecoveryError>) -> Result<CachedRecovery, Self::Error> {
		match o {
			Ok(d) => Ok(Self::Valid(d)),
			Err(RecoveryError::Invalid) => Ok(Self::Invalid),
			// We don't want to cache unavailable state, as that state might change, so if
			// requested again we want to try again!
			Err(RecoveryError::Unavailable) => Err(()),
			Err(RecoveryError::ChannelClosed) => Err(()),
		}
	}
}

struct State {
	/// Each recovery task is implemented as its own async task,
	/// and these handles are for communicating with them.
	ongoing_recoveries: FuturesUnordered<RecoveryHandle>,

	/// A recent block hash for which state should be available.
	live_block: (BlockNumber, Hash),

	/// An LRU cache of recently recovered data.
	availability_lru: LruMap<CandidateHash, CachedRecovery>,
}

impl Default for State {
	fn default() -> Self {
		Self {
			ongoing_recoveries: FuturesUnordered::new(),
			live_block: (0, Hash::default()),
			availability_lru: LruMap::new(ByLength::new(LRU_SIZE)),
		}
	}
}

#[overseer::subsystem(AvailabilityRecovery, error=SubsystemError, prefix=self::overseer)]
impl<Context> AvailabilityRecoverySubsystem {
	fn start(self, ctx: Context) -> SpawnedSubsystem {
		let future = self
			.run(ctx)
			.map_err(|e| SubsystemError::with_origin("availability-recovery", e))
			.boxed();
		SpawnedSubsystem { name: "availability-recovery-subsystem", future }
	}
}

/// Handles a signal from the overseer.
async fn handle_signal(state: &mut State, signal: OverseerSignal) -> SubsystemResult<bool> {
	match signal {
		OverseerSignal::Conclude => Ok(true),
		OverseerSignal::ActiveLeaves(ActiveLeavesUpdate { activated, .. }) => {
			// if activated is non-empty, set state.live_block to the highest block in `activated`
			if let Some(activated) = activated {
				if activated.number > state.live_block.0 {
					state.live_block = (activated.number, activated.hash)
				}
			}

			Ok(false)
		},
		OverseerSignal::BlockFinalized(_, _) => Ok(false),
	}
}

/// Machinery around launching recovery tasks into the background.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn launch_recovery_task<Context>(
	state: &mut State,
	ctx: &mut Context,
	session_info: SessionInfo,
	receipt: CandidateReceipt,
	mut backing_group: Option<GroupIndex>,
	response_sender: oneshot::Sender<Result<AvailableData, RecoveryError>>,
	metrics: &Metrics,
	recovery_strategy: &RecoveryStrategy,
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
) -> error::Result<()> {
	let candidate_hash = receipt.hash();
	let params = RecoveryParams {
		validator_authority_keys: session_info.discovery_keys.clone(),
		validators: session_info.validators.clone(),
		threshold: recovery_threshold(session_info.validators.len())?,
		candidate_hash,
		erasure_root: receipt.descriptor.erasure_root,
		metrics: metrics.clone(),
		bypass_availability_store: recovery_strategy == &RecoveryStrategy::BypassAvailabilityStore,
	};

	if let Some(small_pov_limit) = recovery_strategy.pov_size_limit() {
		// Get our own chunk size to get an estimate of the PoV size.
		let chunk_size: Result<Option<usize>, error::Error> =
			query_chunk_size(ctx, candidate_hash).await;
		if let Ok(Some(chunk_size)) = chunk_size {
			let pov_size_estimate = chunk_size.saturating_mul(session_info.validators.len()) / 3;
			let prefer_backing_group = pov_size_estimate < small_pov_limit;

			gum::trace!(
				target: LOG_TARGET,
				?candidate_hash,
				pov_size_estimate,
				small_pov_limit,
				enabled = prefer_backing_group,
				"Prefer fetch from backing group",
			);

			backing_group = backing_group.filter(|_| {
				// We keep the backing group only if `1/3` of chunks sum up to less than
				// `small_pov_limit`.
				prefer_backing_group
			});
		}
	}

	let phase = backing_group
		.and_then(|g| session_info.validator_groups.get(g))
		.map(|group| {
			Source::RequestFromBackers(RequestFromBackers::new(
				group.clone(),
				erasure_task_tx.clone(),
			))
		})
		.unwrap_or_else(|| {
			Source::RequestChunks(RequestChunksFromValidators::new(
				params.validators.len() as _,
				erasure_task_tx.clone(),
			))
		});

	let recovery_task =
		RecoveryTask { sender: ctx.sender().clone(), params, source: phase, erasure_task_tx };

	let (remote, remote_handle) = recovery_task.run().remote_handle();

	state.ongoing_recoveries.push(RecoveryHandle {
		candidate_hash,
		remote: remote_handle,
		awaiting: vec![response_sender],
	});

	if let Err(e) = ctx.spawn("recovery-task", Box::pin(remote)) {
		gum::warn!(
			target: LOG_TARGET,
			err = ?e,
			"Failed to spawn a recovery task",
		);
	}

	Ok(())
}

/// Handles an availability recovery request.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn handle_recover<Context>(
	state: &mut State,
	ctx: &mut Context,
	receipt: CandidateReceipt,
	session_index: SessionIndex,
	backing_group: Option<GroupIndex>,
	response_sender: oneshot::Sender<Result<AvailableData, RecoveryError>>,
	metrics: &Metrics,
	recovery_strategy: &RecoveryStrategy,
	erasure_task_tx: futures::channel::mpsc::Sender<ErasureTask>,
) -> error::Result<()> {
	let candidate_hash = receipt.hash();

	let span = jaeger::Span::new(candidate_hash, "availbility-recovery")
		.with_stage(jaeger::Stage::AvailabilityRecovery);

	if let Some(result) =
		state.availability_lru.get(&candidate_hash).cloned().map(|v| v.into_result())
	{
		if let Err(e) = response_sender.send(result) {
			gum::warn!(
				target: LOG_TARGET,
				err = ?e,
				"Error responding with an availability recovery result",
			);
		}
		return Ok(())
	}

	if let Some(i) =
		state.ongoing_recoveries.iter_mut().find(|i| i.candidate_hash == candidate_hash)
	{
		i.awaiting.push(response_sender);
		return Ok(())
	}

	let _span = span.child("not-cached");
	let session_info = request_session_info(state.live_block.1, session_index, ctx.sender())
		.await
		.await
		.map_err(error::Error::CanceledSessionInfo)??;

	let _span = span.child("session-info-ctx-received");
	match session_info {
		Some(session_info) =>
			launch_recovery_task(
				state,
				ctx,
				session_info,
				receipt,
				backing_group,
				response_sender,
				metrics,
				recovery_strategy,
				erasure_task_tx,
			)
			.await,
		None => {
			gum::warn!(target: LOG_TARGET, "SessionInfo is `None` at {:?}", state.live_block);
			response_sender
				.send(Err(RecoveryError::Unavailable))
				.map_err(|_| error::Error::CanceledResponseSender)?;
			Ok(())
		},
	}
}

/// Queries a chunk from av-store.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn query_full_data<Context>(
	ctx: &mut Context,
	candidate_hash: CandidateHash,
) -> error::Result<Option<AvailableData>> {
	let (tx, rx) = oneshot::channel();
	ctx.send_message(AvailabilityStoreMessage::QueryAvailableData(candidate_hash, tx))
		.await;

	rx.await.map_err(error::Error::CanceledQueryFullData)
}

/// Queries a chunk from av-store.
#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
async fn query_chunk_size<Context>(
	ctx: &mut Context,
	candidate_hash: CandidateHash,
) -> error::Result<Option<usize>> {
	let (tx, rx) = oneshot::channel();
	ctx.send_message(AvailabilityStoreMessage::QueryChunkSize(candidate_hash, tx))
		.await;

	rx.await.map_err(error::Error::CanceledQueryFullData)
}

#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
impl AvailabilityRecoverySubsystem {
	/// Create a new instance of `AvailabilityRecoverySubsystem` which never requests the
	/// `AvailabilityStoreSubsystem` subsystem.
	pub fn with_availability_store_skip(
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		metrics: Metrics,
	) -> Self {
		Self { recovery_strategy: RecoveryStrategy::BypassAvailabilityStore, req_receiver, metrics }
	}

	/// Create a new instance of `AvailabilityRecoverySubsystem` which starts with a fast path to
	/// request data from backers.
	pub fn with_fast_path(
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		metrics: Metrics,
	) -> Self {
		Self { recovery_strategy: RecoveryStrategy::BackersFirstAlways, req_receiver, metrics }
	}

	/// Create a new instance of `AvailabilityRecoverySubsystem` which requests only chunks
	pub fn with_chunks_only(
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		metrics: Metrics,
	) -> Self {
		Self { recovery_strategy: RecoveryStrategy::ChunksAlways, req_receiver, metrics }
	}

	/// Create a new instance of `AvailabilityRecoverySubsystem` which requests chunks if PoV is
	/// above a threshold.
	pub fn with_chunks_if_pov_large(
		req_receiver: IncomingRequestReceiver<request_v1::AvailableDataFetchingRequest>,
		metrics: Metrics,
	) -> Self {
		Self {
			recovery_strategy: RecoveryStrategy::BackersFirstIfSizeLower(SMALL_POV_LIMIT),
			req_receiver,
			metrics,
		}
	}

	async fn run<Context>(self, mut ctx: Context) -> SubsystemResult<()> {
		let mut state = State::default();
		let Self { recovery_strategy, mut req_receiver, metrics } = self;

		let (erasure_task_tx, erasure_task_rx) = futures::channel::mpsc::channel(16);
		let mut erasure_task_rx = erasure_task_rx.fuse();

		// `ThreadPoolBuilder` spawns the tasks using `spawn_blocking`. For each worker there will
		// be a `mpsc` channel created. Each of these workers take the `Receiver` and poll it in an
		// infinite loop. All of the sender ends of the channel are sent as a vec which we then use
		// to create a `Cycle` iterator. We use this iterator to assign work in a round-robin
		// fashion to the workers in the pool.
		//
		// How work is dispatched to the pool from the recovery tasks:
		// - Once a recovery task finishes retrieving the availability data, it needs to reconstruct
		//   from chunks and/or
		// re-encode the data which are heavy CPU computations.
		// To do so it sends an `ErasureTask` to the main loop via the `erasure_task` channel, and
		// waits for the results over a `oneshot` channel.
		// - In the subsystem main loop we poll the `erasure_task_rx` receiver.
		// - We forward the received `ErasureTask` to the `next()` sender yielded by the `Cycle`
		//   iterator.
		// - Some worker thread handles it and sends the response over the `oneshot` channel.

		// Create a thread pool with 2 workers.
		let mut to_pool = ThreadPoolBuilder::build(
			// Pool is guaranteed to have at least 1 worker thread.
			NonZeroUsize::new(2).expect("There are 2 threads; qed"),
			metrics.clone(),
			&mut ctx,
		)
		.into_iter()
		.cycle();

		loop {
			let recv_req = req_receiver.recv(|| vec![COST_INVALID_REQUEST]).fuse();
			pin_mut!(recv_req);
			futures::select! {
				erasure_task = erasure_task_rx.next() => {
					match erasure_task {
						Some(task) => {
							let send_result = to_pool
								.next()
								.expect("Pool size is `NonZeroUsize`; qed")
								.send(task)
								.await
								.map_err(|_| RecoveryError::ChannelClosed);

							if let Err(err) = send_result {
								gum::warn!(
									target: LOG_TARGET,
									?err,
									"Failed to send erasure coding task",
								);
							}
						},
						None => {
							gum::debug!(
								target: LOG_TARGET,
								"Erasure task channel closed",
							);

							return Err(SubsystemError::with_origin("availability-recovery", RecoveryError::ChannelClosed))
						}
					}
				}
				v = ctx.recv().fuse() => {
					match v? {
						FromOrchestra::Signal(signal) => if handle_signal(
							&mut state,
							signal,
						).await? {
							return Ok(());
						}
						FromOrchestra::Communication { msg } => {
							match msg {
								AvailabilityRecoveryMessage::RecoverAvailableData(
									receipt,
									session_index,
									maybe_backing_group,
									response_sender,
								) => {
									if let Err(e) = handle_recover(
										&mut state,
										&mut ctx,
										receipt,
										session_index,
										maybe_backing_group.filter(|_| recovery_strategy.needs_backing_group()),
										response_sender,
										&metrics,
										&recovery_strategy,
										erasure_task_tx.clone(),
									).await {
										gum::warn!(
											target: LOG_TARGET,
											err = ?e,
											"Error handling a recovery request",
										);
									}
								}
							}
						}
					}
				}
				in_req = recv_req => {
					match in_req.into_nested().map_err(|fatal| SubsystemError::with_origin("availability-recovery", fatal))? {
						Ok(req) => {
							if recovery_strategy == RecoveryStrategy::BypassAvailabilityStore {
								gum::debug!(
									target: LOG_TARGET,
									"Skipping request to availability-store.",
								);
								let _ = req.send_response(None.into());
								continue
							}
							match query_full_data(&mut ctx, req.payload.candidate_hash).await {
								Ok(res) => {
									let _ = req.send_response(res.into());
								}
								Err(e) => {
									gum::debug!(
										target: LOG_TARGET,
										err = ?e,
										"Failed to query available data.",
									);

									let _ = req.send_response(None.into());
								}
							}
						}
						Err(jfyi) => {
							gum::debug!(
								target: LOG_TARGET,
								error = ?jfyi,
								"Decoding incoming request failed"
							);
							continue
						}
					}
				}
				output = state.ongoing_recoveries.select_next_some() => {
					if let Some((candidate_hash, result)) = output {
						if let Ok(recovery) = CachedRecovery::try_from(result) {
							state.availability_lru.insert(candidate_hash, recovery);
						}
					}
				}
			}
		}
	}
}

// A simple thread pool implementation using `spawn_blocking` threads.
struct ThreadPoolBuilder;

const MAX_THREADS: NonZeroUsize = match NonZeroUsize::new(4) {
	Some(max_threads) => max_threads,
	None => panic!("MAX_THREADS must be non-zero"),
};

impl ThreadPoolBuilder {
	// Creates a pool of `size` workers, where 1 <= `size` <= `MAX_THREADS`.
	//
	// Each worker is created by `spawn_blocking` and takes the receiver side of a channel
	// while all of the senders are returned to the caller. Each worker runs `erasure_task_thread`
	// that polls the `Receiver` for an `ErasureTask` which is expected to be CPU intensive. The
	// larger the input (more or larger chunks/availability data), the more CPU cycles will be
	// spent.
	//
	// For example, for 32KB PoVs, we'd expect re-encode to eat as much as 90ms and 500ms for
	// 2.5MiB.
	//
	// After executing such a task, the worker sends the response via a provided `oneshot` sender.
	//
	// The caller is responsible for routing work to the workers.
	#[overseer::contextbounds(AvailabilityRecovery, prefix = self::overseer)]
	pub fn build<Context>(
		size: NonZeroUsize,
		metrics: Metrics,
		ctx: &mut Context,
	) -> Vec<futures::channel::mpsc::Sender<ErasureTask>> {
		// At least 1 task, at most `MAX_THREADS.
		let size = std::cmp::min(size, MAX_THREADS);
		let mut senders = Vec::new();

		for index in 0..size.into() {
			let (tx, rx) = futures::channel::mpsc::channel(8);
			senders.push(tx);

			if let Err(e) = ctx
				.spawn_blocking("erasure-task", Box::pin(erasure_task_thread(metrics.clone(), rx)))
			{
				gum::warn!(
					target: LOG_TARGET,
					err = ?e,
					index,
					"Failed to spawn a erasure task",
				);
			}
		}
		senders
	}
}

// Handles CPU intensive operation on a dedicated blocking thread.
async fn erasure_task_thread(
	metrics: Metrics,
	mut ingress: futures::channel::mpsc::Receiver<ErasureTask>,
) {
	loop {
		match ingress.next().await {
			Some(ErasureTask::Reconstruct(n_validators, chunks, sender)) => {
				let _ = sender.send(polkadot_erasure_coding::reconstruct_v1(
					n_validators,
					chunks.values().map(|c| (&c.chunk[..], c.index.0 as usize)),
				));
			},
			Some(ErasureTask::Reencode(n_validators, root, available_data, sender)) => {
				let metrics = metrics.clone();

				let maybe_data = if reconstructed_data_matches_root(
					n_validators,
					&root,
					&available_data,
					&metrics,
				) {
					Some(available_data)
				} else {
					None
				};

				let _ = sender.send(maybe_data);
			},
			None => {
				gum::debug!(
					target: LOG_TARGET,
					"Erasure task channel closed. Node shutting down ?",
				);
			},
		}
	}
}