1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(missing_docs)]
//! Primitives for BEEFY protocol.
//!
//! The crate contains shared data types used by BEEFY protocol and documentation (in a form of
//! code) for building a BEEFY light client.
//!
//! BEEFY is a gadget that runs alongside another finality gadget (for instance GRANDPA).
//! For simplicity (and the initially intended use case) the documentation says GRANDPA in places
//! where a more abstract "Finality Gadget" term could be used, but there is no reason why BEEFY
//! wouldn't run with some other finality scheme.
//! BEEFY validator set is supposed to be tracking the Finality Gadget validator set, but note that
//! it will use a different set of keys. For Polkadot use case we plan to use `secp256k1` for BEEFY,
//! while GRANDPA uses `ed25519`.
mod commitment;
pub mod mmr;
mod payload;
#[cfg(feature = "std")]
mod test_utils;
pub mod witness;
pub use commitment::{Commitment, SignedCommitment, VersionedFinalityProof};
pub use payload::{known_payloads, BeefyPayloadId, Payload, PayloadProvider};
#[cfg(feature = "std")]
pub use test_utils::*;
use codec::{Codec, Decode, Encode};
use scale_info::TypeInfo;
use sp_application_crypto::RuntimeAppPublic;
use sp_core::H256;
use sp_runtime::traits::{Hash, Keccak256, NumberFor};
use sp_std::prelude::*;
/// Key type for BEEFY module.
pub const KEY_TYPE: sp_core::crypto::KeyTypeId = sp_application_crypto::key_types::BEEFY;
/// Trait representing BEEFY authority id, including custom signature verification.
///
/// Accepts custom hashing fn for the message and custom convertor fn for the signer.
pub trait BeefyAuthorityId<MsgHash: Hash>: RuntimeAppPublic {
/// Verify a signature.
///
/// Return `true` if signature over `msg` is valid for this id.
fn verify(&self, signature: &<Self as RuntimeAppPublic>::Signature, msg: &[u8]) -> bool;
}
/// BEEFY cryptographic types for ECDSA crypto
///
/// This module basically introduces four crypto types:
/// - `ecdsa_crypto::Pair`
/// - `ecdsa_crypto::Public`
/// - `ecdsa_crypto::Signature`
/// - `ecdsa_crypto::AuthorityId`
///
/// Your code should use the above types as concrete types for all crypto related
/// functionality.
pub mod ecdsa_crypto {
use super::{BeefyAuthorityId, Hash, RuntimeAppPublic, KEY_TYPE as BEEFY_KEY_TYPE};
use sp_application_crypto::{app_crypto, ecdsa};
use sp_core::crypto::Wraps;
app_crypto!(ecdsa, BEEFY_KEY_TYPE);
/// Identity of a BEEFY authority using ECDSA as its crypto.
pub type AuthorityId = Public;
/// Signature for a BEEFY authority using ECDSA as its crypto.
pub type AuthoritySignature = Signature;
impl<MsgHash: Hash> BeefyAuthorityId<MsgHash> for AuthorityId
where
<MsgHash as Hash>::Output: Into<[u8; 32]>,
{
fn verify(&self, signature: &<Self as RuntimeAppPublic>::Signature, msg: &[u8]) -> bool {
let msg_hash = <MsgHash as Hash>::hash(msg).into();
match sp_io::crypto::secp256k1_ecdsa_recover_compressed(
signature.as_inner_ref().as_ref(),
&msg_hash,
) {
Ok(raw_pubkey) => raw_pubkey.as_ref() == AsRef::<[u8]>::as_ref(self),
_ => false,
}
}
}
}
/// BEEFY cryptographic types for BLS crypto
///
/// This module basically introduces four crypto types:
/// - `bls_crypto::Pair`
/// - `bls_crypto::Public`
/// - `bls_crypto::Signature`
/// - `bls_crypto::AuthorityId`
///
/// Your code should use the above types as concrete types for all crypto related
/// functionality.
#[cfg(feature = "bls-experimental")]
pub mod bls_crypto {
use super::{BeefyAuthorityId, Hash, RuntimeAppPublic, KEY_TYPE as BEEFY_KEY_TYPE};
use sp_application_crypto::{app_crypto, bls377};
use sp_core::{bls377::Pair as BlsPair, crypto::Wraps, Pair as _};
app_crypto!(bls377, BEEFY_KEY_TYPE);
/// Identity of a BEEFY authority using BLS as its crypto.
pub type AuthorityId = Public;
/// Signature for a BEEFY authority using BLS as its crypto.
pub type AuthoritySignature = Signature;
impl<MsgHash: Hash> BeefyAuthorityId<MsgHash> for AuthorityId
where
<MsgHash as Hash>::Output: Into<[u8; 32]>,
{
fn verify(&self, signature: &<Self as RuntimeAppPublic>::Signature, msg: &[u8]) -> bool {
// `w3f-bls` library uses IETF hashing standard and as such does not exposes
// a choice of hash to field function.
// We are directly calling into the library to avoid introducing new host call.
// and because BeefyAuthorityId::verify is being called in the runtime so we don't have
BlsPair::verify(signature.as_inner_ref(), msg, self.as_inner_ref())
}
}
}
/// The `ConsensusEngineId` of BEEFY.
pub const BEEFY_ENGINE_ID: sp_runtime::ConsensusEngineId = *b"BEEF";
/// Authority set id starts with zero at BEEFY pallet genesis.
pub const GENESIS_AUTHORITY_SET_ID: u64 = 0;
/// A typedef for validator set id.
pub type ValidatorSetId = u64;
/// A set of BEEFY authorities, a.k.a. validators.
#[derive(Decode, Encode, Debug, PartialEq, Clone, TypeInfo)]
pub struct ValidatorSet<AuthorityId> {
/// Public keys of the validator set elements
validators: Vec<AuthorityId>,
/// Identifier of the validator set
id: ValidatorSetId,
}
impl<AuthorityId> ValidatorSet<AuthorityId> {
/// Return a validator set with the given validators and set id.
pub fn new<I>(validators: I, id: ValidatorSetId) -> Option<Self>
where
I: IntoIterator<Item = AuthorityId>,
{
let validators: Vec<AuthorityId> = validators.into_iter().collect();
if validators.is_empty() {
// No validators; the set would be empty.
None
} else {
Some(Self { validators, id })
}
}
/// Return a reference to the vec of validators.
pub fn validators(&self) -> &[AuthorityId] {
&self.validators
}
/// Return the validator set id.
pub fn id(&self) -> ValidatorSetId {
self.id
}
/// Return the number of validators in the set.
pub fn len(&self) -> usize {
self.validators.len()
}
}
/// The index of an authority.
pub type AuthorityIndex = u32;
/// The Hashing used within MMR.
pub type MmrHashing = Keccak256;
/// The type used to represent an MMR root hash.
pub type MmrRootHash = H256;
/// A consensus log item for BEEFY.
#[derive(Decode, Encode, TypeInfo)]
pub enum ConsensusLog<AuthorityId: Codec> {
/// The authorities have changed.
#[codec(index = 1)]
AuthoritiesChange(ValidatorSet<AuthorityId>),
/// Disable the authority with given index.
#[codec(index = 2)]
OnDisabled(AuthorityIndex),
/// MMR root hash.
#[codec(index = 3)]
MmrRoot(MmrRootHash),
}
/// BEEFY vote message.
///
/// A vote message is a direct vote created by a BEEFY node on every voting round
/// and is gossiped to its peers.
#[derive(Clone, Debug, Decode, Encode, PartialEq, TypeInfo)]
pub struct VoteMessage<Number, Id, Signature> {
/// Commit to information extracted from a finalized block
pub commitment: Commitment<Number>,
/// Node authority id
pub id: Id,
/// Node signature
pub signature: Signature,
}
/// Proof of voter misbehavior on a given set id. Misbehavior/equivocation in
/// BEEFY happens when a voter votes on the same round/block for different payloads.
/// Proving is achieved by collecting the signed commitments of conflicting votes.
#[derive(Clone, Debug, Decode, Encode, PartialEq, TypeInfo)]
pub struct EquivocationProof<Number, Id, Signature> {
/// The first vote in the equivocation.
pub first: VoteMessage<Number, Id, Signature>,
/// The second vote in the equivocation.
pub second: VoteMessage<Number, Id, Signature>,
}
impl<Number, Id, Signature> EquivocationProof<Number, Id, Signature> {
/// Returns the authority id of the equivocator.
pub fn offender_id(&self) -> &Id {
&self.first.id
}
/// Returns the round number at which the equivocation occurred.
pub fn round_number(&self) -> &Number {
&self.first.commitment.block_number
}
/// Returns the set id at which the equivocation occurred.
pub fn set_id(&self) -> ValidatorSetId {
self.first.commitment.validator_set_id
}
}
/// Check a commitment signature by encoding the commitment and
/// verifying the provided signature using the expected authority id.
pub fn check_commitment_signature<Number, Id, MsgHash>(
commitment: &Commitment<Number>,
authority_id: &Id,
signature: &<Id as RuntimeAppPublic>::Signature,
) -> bool
where
Id: BeefyAuthorityId<MsgHash>,
Number: Clone + Encode + PartialEq,
MsgHash: Hash,
{
let encoded_commitment = commitment.encode();
BeefyAuthorityId::<MsgHash>::verify(authority_id, signature, &encoded_commitment)
}
/// Verifies the equivocation proof by making sure that both votes target
/// different blocks and that its signatures are valid.
pub fn check_equivocation_proof<Number, Id, MsgHash>(
report: &EquivocationProof<Number, Id, <Id as RuntimeAppPublic>::Signature>,
) -> bool
where
Id: BeefyAuthorityId<MsgHash> + PartialEq,
Number: Clone + Encode + PartialEq,
MsgHash: Hash,
{
let first = &report.first;
let second = &report.second;
// if votes
// come from different authorities,
// are for different rounds,
// have different validator set ids,
// or both votes have the same commitment,
// --> the equivocation is invalid.
if first.id != second.id ||
first.commitment.block_number != second.commitment.block_number ||
first.commitment.validator_set_id != second.commitment.validator_set_id ||
first.commitment.payload == second.commitment.payload
{
return false
}
// check signatures on both votes are valid
let valid_first = check_commitment_signature(&first.commitment, &first.id, &first.signature);
let valid_second =
check_commitment_signature(&second.commitment, &second.id, &second.signature);
return valid_first && valid_second
}
/// New BEEFY validator set notification hook.
pub trait OnNewValidatorSet<AuthorityId> {
/// Function called by the pallet when BEEFY validator set changes.
fn on_new_validator_set(
validator_set: &ValidatorSet<AuthorityId>,
next_validator_set: &ValidatorSet<AuthorityId>,
);
}
/// No-op implementation of [OnNewValidatorSet].
impl<AuthorityId> OnNewValidatorSet<AuthorityId> for () {
fn on_new_validator_set(_: &ValidatorSet<AuthorityId>, _: &ValidatorSet<AuthorityId>) {}
}
/// An opaque type used to represent the key ownership proof at the runtime API
/// boundary. The inner value is an encoded representation of the actual key
/// ownership proof which will be parameterized when defining the runtime. At
/// the runtime API boundary this type is unknown and as such we keep this
/// opaque representation, implementors of the runtime API will have to make
/// sure that all usages of `OpaqueKeyOwnershipProof` refer to the same type.
#[derive(Decode, Encode, PartialEq, TypeInfo)]
pub struct OpaqueKeyOwnershipProof(Vec<u8>);
impl OpaqueKeyOwnershipProof {
/// Create a new `OpaqueKeyOwnershipProof` using the given encoded
/// representation.
pub fn new(inner: Vec<u8>) -> OpaqueKeyOwnershipProof {
OpaqueKeyOwnershipProof(inner)
}
/// Try to decode this `OpaqueKeyOwnershipProof` into the given concrete key
/// ownership proof type.
pub fn decode<T: Decode>(self) -> Option<T> {
codec::Decode::decode(&mut &self.0[..]).ok()
}
}
sp_api::decl_runtime_apis! {
/// API necessary for BEEFY voters.
#[api_version(3)]
pub trait BeefyApi<AuthorityId> where
AuthorityId : Codec + RuntimeAppPublic,
{
/// Return the block number where BEEFY consensus is enabled/started
fn beefy_genesis() -> Option<NumberFor<Block>>;
/// Return the current active BEEFY validator set
fn validator_set() -> Option<ValidatorSet<AuthorityId>>;
/// Submits an unsigned extrinsic to report an equivocation. The caller
/// must provide the equivocation proof and a key ownership proof
/// (should be obtained using `generate_key_ownership_proof`). The
/// extrinsic will be unsigned and should only be accepted for local
/// authorship (not to be broadcast to the network). This method returns
/// `None` when creation of the extrinsic fails, e.g. if equivocation
/// reporting is disabled for the given runtime (i.e. this method is
/// hardcoded to return `None`). Only useful in an offchain context.
fn submit_report_equivocation_unsigned_extrinsic(
equivocation_proof:
EquivocationProof<NumberFor<Block>, AuthorityId, <AuthorityId as RuntimeAppPublic>::Signature>,
key_owner_proof: OpaqueKeyOwnershipProof,
) -> Option<()>;
/// Generates a proof of key ownership for the given authority in the
/// given set. An example usage of this module is coupled with the
/// session historical module to prove that a given authority key is
/// tied to a given staking identity during a specific session. Proofs
/// of key ownership are necessary for submitting equivocation reports.
/// NOTE: even though the API takes a `set_id` as parameter the current
/// implementations ignores this parameter and instead relies on this
/// method being called at the correct block height, i.e. any point at
/// which the given set id is live on-chain. Future implementations will
/// instead use indexed data through an offchain worker, not requiring
/// older states to be available.
fn generate_key_ownership_proof(
set_id: ValidatorSetId,
authority_id: AuthorityId,
) -> Option<OpaqueKeyOwnershipProof>;
}
}
#[cfg(test)]
mod tests {
use super::*;
use sp_application_crypto::ecdsa::{self, Public};
use sp_core::{blake2_256, crypto::Wraps, keccak_256, Pair};
use sp_runtime::traits::{BlakeTwo256, Keccak256};
#[test]
fn validator_set() {
// Empty set not allowed.
assert_eq!(ValidatorSet::<Public>::new(vec![], 0), None);
let alice = ecdsa::Pair::from_string("//Alice", None).unwrap();
let set_id = 0;
let validators = ValidatorSet::<Public>::new(vec![alice.public()], set_id).unwrap();
assert_eq!(validators.id(), set_id);
assert_eq!(validators.validators(), &vec![alice.public()]);
}
#[test]
fn ecdsa_beefy_verify_works() {
let msg = &b"test-message"[..];
let (pair, _) = ecdsa_crypto::Pair::generate();
let keccak_256_signature: ecdsa_crypto::Signature =
pair.as_inner_ref().sign_prehashed(&keccak_256(msg)).into();
let blake2_256_signature: ecdsa_crypto::Signature =
pair.as_inner_ref().sign_prehashed(&blake2_256(msg)).into();
// Verification works if same hashing function is used when signing and verifying.
assert!(BeefyAuthorityId::<Keccak256>::verify(&pair.public(), &keccak_256_signature, msg));
assert!(BeefyAuthorityId::<BlakeTwo256>::verify(
&pair.public(),
&blake2_256_signature,
msg
));
// Verification fails if distinct hashing functions are used when signing and verifying.
assert!(!BeefyAuthorityId::<Keccak256>::verify(&pair.public(), &blake2_256_signature, msg));
assert!(!BeefyAuthorityId::<BlakeTwo256>::verify(
&pair.public(),
&keccak_256_signature,
msg
));
// Other public key doesn't work
let (other_pair, _) = ecdsa_crypto::Pair::generate();
assert!(!BeefyAuthorityId::<Keccak256>::verify(
&other_pair.public(),
&keccak_256_signature,
msg,
));
assert!(!BeefyAuthorityId::<BlakeTwo256>::verify(
&other_pair.public(),
&blake2_256_signature,
msg,
));
}
#[test]
#[cfg(feature = "bls-experimental")]
fn bls_beefy_verify_works() {
let msg = &b"test-message"[..];
let (pair, _) = bls_crypto::Pair::generate();
let signature: bls_crypto::Signature = pair.as_inner_ref().sign(&msg).into();
// Verification works if same hashing function is used when signing and verifying.
assert!(BeefyAuthorityId::<Keccak256>::verify(&pair.public(), &signature, msg));
// Other public key doesn't work
let (other_pair, _) = bls_crypto::Pair::generate();
assert!(!BeefyAuthorityId::<Keccak256>::verify(&other_pair.public(), &signature, msg,));
}
}