

**Methanol: A Future Proof Fuel** 

**Chris Chatterton, COO** 

14<sup>th</sup> Annual Marine Money Hong Kong Ship Finance Forum Renaissance Harbour View Hotel, Hong Kong

March 28<sup>th</sup>, 2023

Singapore | Washington | Brussels | Beijing | New Delhi



**Carbon Neutrality** 

**Pricing** 

Design

**Bunkering** 

**Standards** 











**Carbon Neutrality** 

**Pricing** 

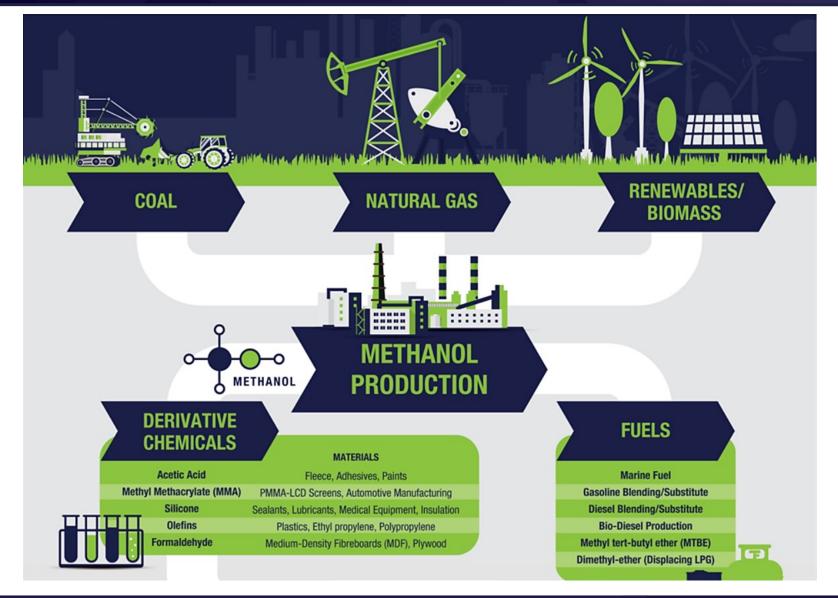
Design

**Bunkering** 

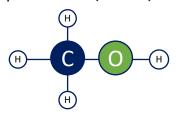
**Standards** 

# Why Methanol?








## **Feedstocks & Markets**



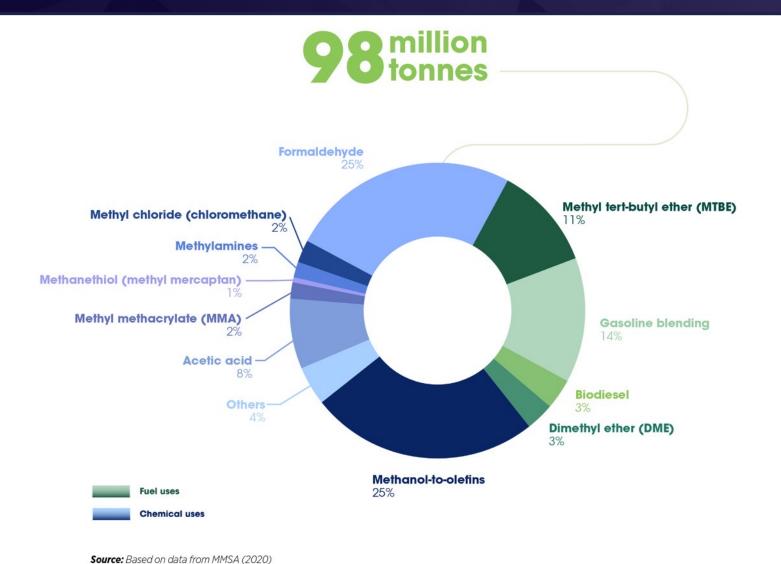


- Natural gas is still the predominant feedstock for the methanol industry ex-China
- Increasing number of projects utilize sustainable feedstocks such as captured CO<sub>2</sub> from industrial emitters and green hydrogen produced from municipal solid waste (MSW), forestry residues or agricultural waste
- Conventionally methanol goes into the production of downstream chemicals (~55% of global consumption)
- Increasingly, the fastest growing segment is where it is consumed as a fuel, in numerous applications (~45%)














### **Demand**



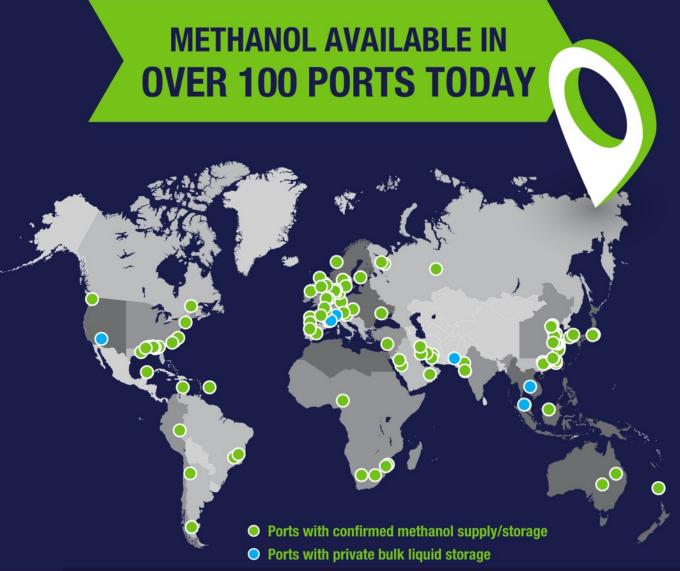


- Demand and Supply have largely been in balance over the past 20 years
- ~32M mtpa traded internationally
  - China imports >10M mtpa
- Broad sub-vertical markets across both chemicals and fuel applications means
  - Less price volatility
  - Predictable supply
  - Consistent quality








# **Availability**



### **ESTABLISHED TRADING HUBS**



- Efficient break bulking, swaps, blending
- Transparent price assessments
- Standards and safe handling
- Lowers entry costs











### **Carbon Neutrality**

**Pricing** 

Design

**Bunkering** 

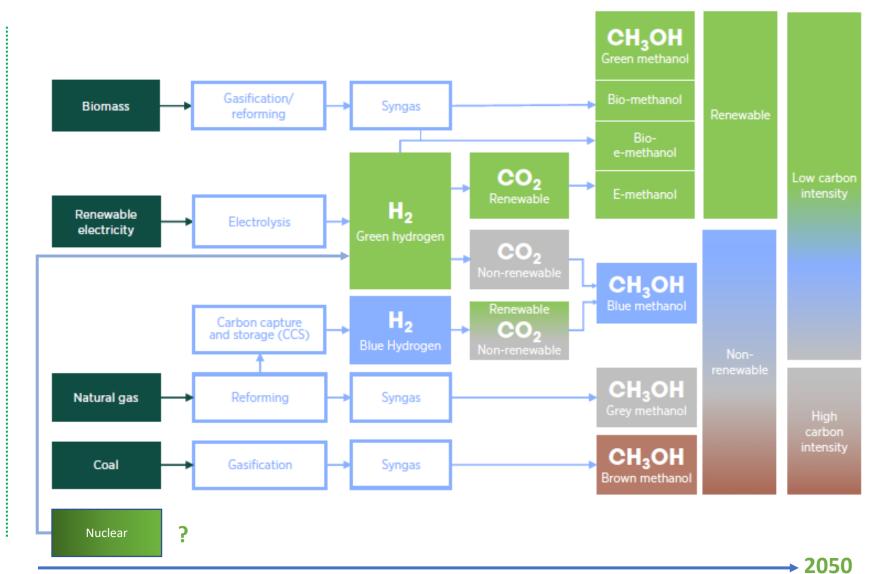
**Standards** 

# **Carbon Neutrality**



(in)








# Transitional benchmarking & scaling



| Year | Targeted reductions relative to reference year |               |  |
|------|------------------------------------------------|---------------|--|
| 2020 | Re                                             | eference year |  |
| 2025 |                                                | <b>↓</b> 2%   |  |
| 2030 |                                                | ↓ 6%          |  |
| 2035 |                                                | <b>↓13</b> %  |  |
| 2040 |                                                | <b>↓</b> 26%  |  |
| 2045 |                                                | <b>↓</b> 59%  |  |
| 2050 |                                                | <b>↓</b> 75%  |  |



(in)







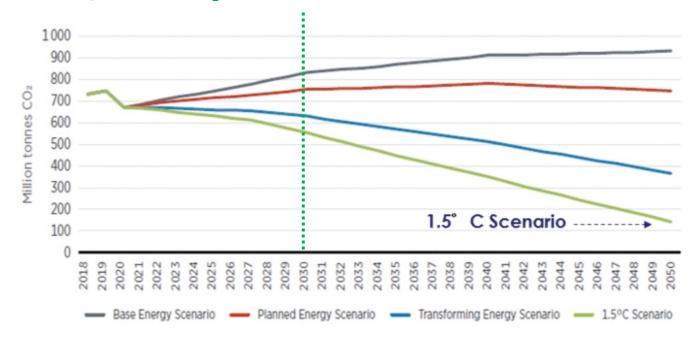
# Renewable fuels play a critical role



### A 1.5° C Scenario featuring 80% decarbonisation is based on four key measures

### **Renewable Fuels**

- Indirect electrification via e-fuels
  - ▶ 60% decarbonization
- 2. Direct employment of advanced biofuels
  - > 3% decarbonization


### **Energy Efficiency**

- 3. Improvement of vessels' energy efficiency
  - > 20% decarbonization

### Systemic changes in global trade dynamics

- 4. Reduction in final energy due to sectoral activity changes (reduced oil demand, circular economy)
  - > 17% decarbonisation

### Comparison of CO<sub>2</sub> emissions associated with each scenario, 2018-2050



**IRENA 2022** 









# **Options: Compliancy vs Competitiveness**



### **EVOLVING POLICY**

### Reduce energy consumption



### **LOGISTICS AND** DIGITALIZATION

Speed reduction

Vessel utilization

Vessel size

Alternative routes

>20%



#### **HYDRODYNAMICS**

Hull coating

Hull-form optimization

Air lubrication

Cleaning

5%-15%



#### **MACHINERY**

Machinery improvements

Waste-heat recovery

Engine de-rating

**Battery hybridization** 

5%-20%



Low-carbon energy

### **FUELS AND ENERGY**

LNG, LPG **Biofuels** Electrification Methanol **Ammonia** Hydrogen **Harvesting from** the surroundings

0%-100%

\$\$\$\$\$

### Clean up exhaust



### AFTER TREATMENT **MEASURE**

Carbon capture and storage

>30%

\$\$\$\$\$

\$\$\$\$\$



Source: DNV, MI







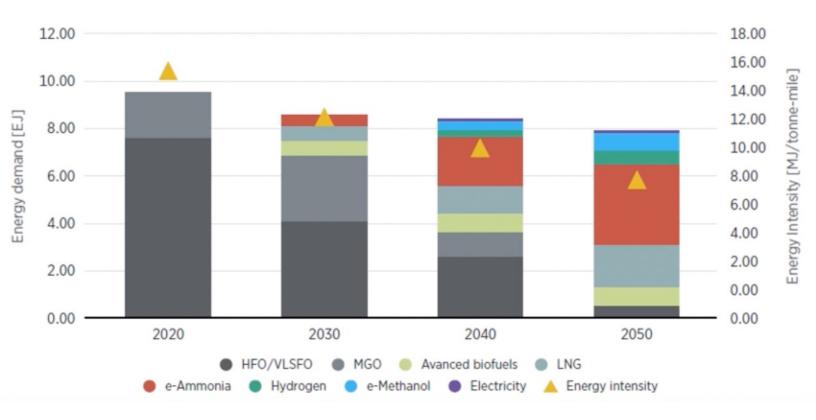


# Potential pathway ahead



Focus: Present Energy Efficiency

Focus: Short-Term Biofuels/Renewables


Focus: Mid- to Long-Term

Reduced carbon and carbon neutral, "hydrogen dense" fuels are pivotal to maritime decarbonisation

By 2050, shipping will require a total of **46 MMT of carbon neutral hydrogen** for e-fuels production

- > 73% e-ammonia
- > 17% e-methanol 8M mt
- ➤ 10% liquid H<sub>2</sub>





Based on current technology, this equates to 500GW of electrolyser and 1,000 GW\* of renewable electricity capacity

Source: IRENA 2020 \*1GW = 3.125 million PV panels (based on a silicon model panel size of 320 watts) or;
333 Utility-Scale Wind Turbines (based on the average utility-scale wind turbine size of 3MW installed)











**Carbon Neutrality** 

**Pricing** 

Design

**Bunkering** 

**Standards** 

# Pricing



**(in)** 







## **Cost scenario**



|                                                | Estimated Costs in USD                               |             |             |            |
|------------------------------------------------|------------------------------------------------------|-------------|-------------|------------|
|                                                |                                                      | 2015 – 2018 | 2030        | 2050       |
| Cost of green I                                | H <sub>2</sub> (\$/t H <sub>2</sub> ) <sup>(a)</sup> | 4000 – 8000 | 1800 – 3200 | 900 – 2000 |
| Cost of CO <sub>2</sub> (                      | 50 – 100                                             | 50 – 100    | 50 – 100    |            |
|                                                | No Carbon Credit                                     | 870 – 1690  | 460 – 790   | 290 – 560  |
| Cost of Methanol<br>(\$/t MeOH) <sup>(b)</sup> | Carbon Credit of \$50/t CO <sub>2</sub> (d)          | 780 – 1610  | 370 – 700   | 200 – 480  |
|                                                | Carbon Credit of \$100/t CO <sub>2</sub> (d)         | 700 – 1520  | 290 – 620   | 120 – 390  |

(a) Source: (IRENA, 2020)

(b) assuming \$50 per ton synthesis cost for e-methanol once the raw material, H<sub>2</sub> and CO<sub>2</sub> are provided

(c) Origin of the CO<sub>2</sub> will change over time as volumes increase

(d) The carbon credit per ton of e-methanol is based on the difference between the average CO<sub>2</sub>eq emissions from methanol production from natural gas (95.2 gCO<sub>2</sub>eq/MJ) and average CO<sub>2</sub>eq emissions from e-methanol production from renewable CO<sub>2</sub> and H<sub>2</sub> (8.645 gCO<sub>2</sub>eq/MJ). Considering a LHV of 19.9 MJ/kg for methanol, this corresponds to a 1.72 tCO<sub>2</sub>eq of emission avoided per ton of e-methanol, compared to traditional natural gas based methanol.









**Carbon Neutrality** 

**Pricing** 

Design

Bunkering

**Standards** 

# Design



**(in)** 







# Design





### Commercial

- A group of Industry Leaders joined forces to develop the Low Emission Advanced Products Tanker (LEAP) a standard design for a 50,000dwt Methanol-powered product tanker.
- The LEAP design has additional newbuild costs of just 10% compared to additional capex of 22% for LNG-dual fuel.
- Hyundai Mipo Dockyard, MAN Energy Solutions, and the Methanol Institute developed a design verified by DNV that meets all prevailing safety requirements with no loss of range, neglible loss of cargo and low additional build costs.

### Technical

- Design features Methanol fuel tank, fuel room and slop line with storage tank protected by cofferdam.
- LEAP design provides an approximate 6% improvement in EEDI Phase 3 rating compared to a diesel-only vessel.
- No significant additional 'footprint' for the Methanol fuel system as the service tank, methanol pipelines and methanol fuel supply room are located on deck.
- Cargo capacity is **54,000 cu m a reduction of just 300 cu m or 0.5%** compared to a diesel-only vessel.

### Environmental

- Using Methanol as fuel would have CO2 emissions of 54.7 tonnes per day at service speed, compared to 64.7tpd for diesel, even less with renewable or bio-methanol blends.
- Methanol as fuel has no sulfur emissions, very low Particulate Matter CO2 emissions are 15% lower than conventional marine fuel oil.
- Methanol can be blended with water to meet IMO NOx Tier III requirements removing the need for expensive exhaust gas treatment.

2016 the first Waterfront Shipping vessels entered service







## **Dalian Methanol DF VLCC**









### MAIN PARTICULARS

| Length over all          | apprx. | 332.95 m  |
|--------------------------|--------|-----------|
| Breadth                  |        | 60.00 m   |
| Depth                    |        | 30.00 m   |
| <b>Designed Draught</b>  |        | 20.50 m   |
| <b>Scantling Draught</b> |        | 21.80 m   |
| Deadweight at Td         |        | 283,000 t |
| Deadweight at Ts         |        | 307,000 t |
|                          |        |           |

### SPEED AND EEDI

| Service sp | peed | 14.8 | knots |
|------------|------|------|-------|
|            |      |      |       |
|            |      |      |       |

EEDI × Phase III

### CAPACITY

| Cargo Tanks:    | 337,000 m <sup>3</sup> |
|-----------------|------------------------|
| Ballast tanks:  | 99,000 m <sup>3</sup>  |
| Methanol tanks: | 10,900 m <sup>3</sup>  |
| VLSFO tanks:    | 1,900 m <sup>3</sup>   |
| MGO tanks:      | 1,000 m <sup>3</sup>   |

### **ENDURANCE (13.0 knots)**

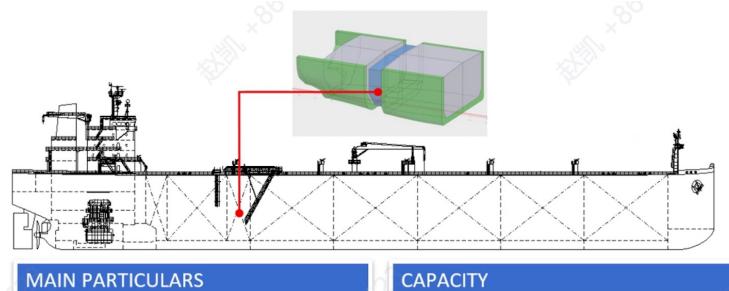
Cruising Range (MEOH) 23,000 NM

### **MAIN ENGINE**

Type MAN 7G80ME-C10.5-LGIM-EGRTC

Feb 2022: Dalian Shipbuilding Industry Co., Ltd of CSSC and COSCO Energy Shipping received AIP from DNV and CCS










## **Dalian Methanol DF VLCC**





### CAPACITY

| Length over all          | apprx. | 249.80 m  | Cargo tanks (incl. slop tanks) | 133,000 m <sup>3</sup>      |
|--------------------------|--------|-----------|--------------------------------|-----------------------------|
| Breadth                  |        | 44.00 m   | Water ballast tanks            | 39,000 m <sup>3</sup>       |
| Depth                    |        | 22.50 m   | Methanol storage tanks         | 4,000 m <sup>3</sup>        |
| <b>Scantling Draught</b> |        | 15.35 m   | HFO tanks                      | <b>2,100</b> m <sup>3</sup> |
| Deadweight at Ts         |        | 115,000 t | MGO tanks                      | 800 m <sup>3</sup>          |

### MAIN ENGINE

MAN 6G60ME-C10.5 LGIM EGRBP

### SPEED AND EEDI

Service speed 14.5 knots Phase III **EEDI** 

### ENDURANCE (14.0 knots)

Cruising Range (MEOH) 16,000 nm



As of February, 2023 there are over 100 Methanol DF vessels on the order book of MAN







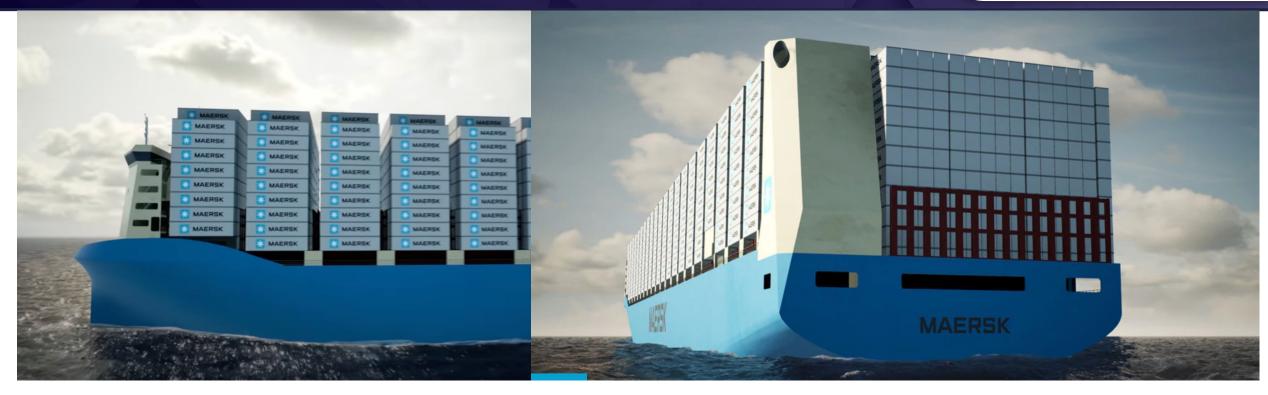


## Maersk vessels





20% improved energy efficiency per transported container vs industry average





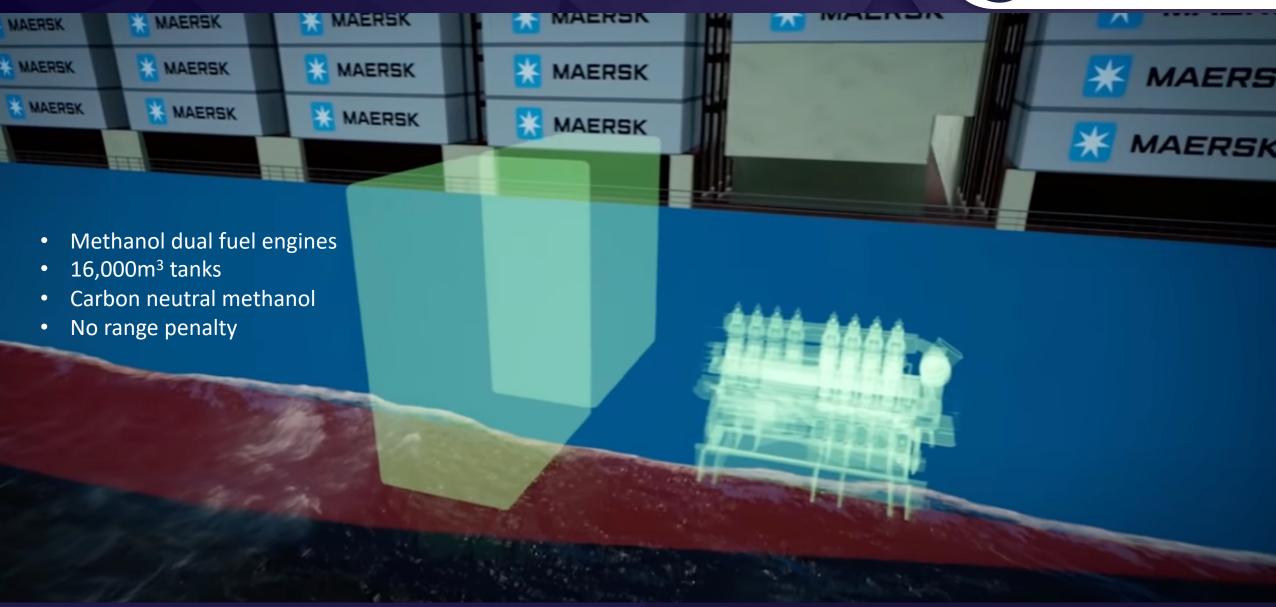



## Maersk vessels





- Forward accommodation enables larger container capacity
- Separating accommodation and funnel improves port efficiency



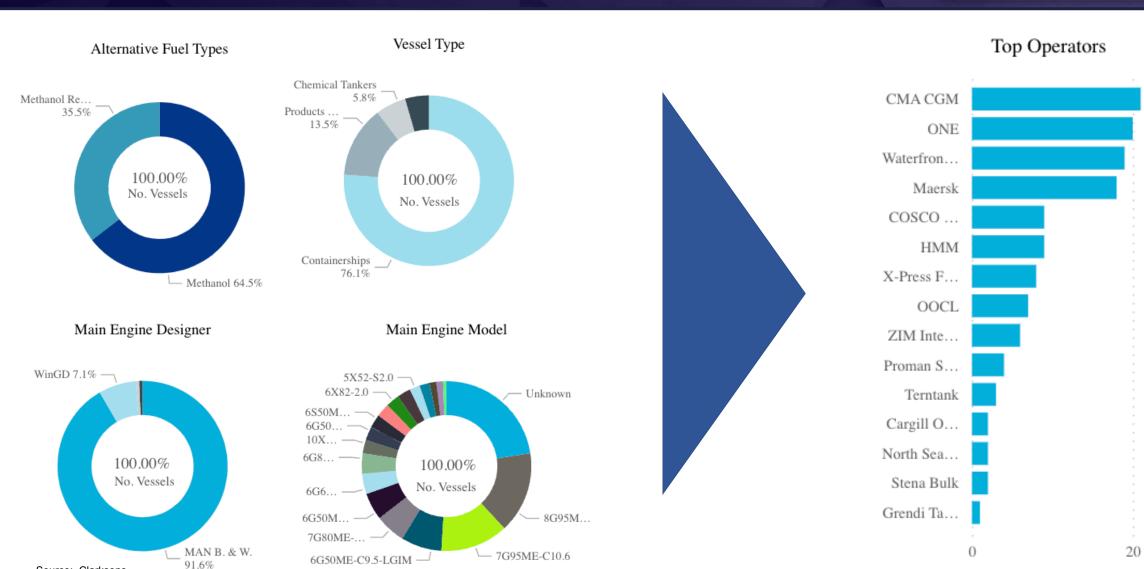





## Maersk vessels












### Order book





Source: Clarksons











**Carbon Neutrality** 

**Pricing** 

Design

**Bunkering** 

**Standards** 

# Bunkering



**(in)** 







# Methanol bunkering demonstration





- ❖ 300mt stem successfully delivered JUNE 2021
- Stem placed per LR/MI Methanol Bunkering TR
- Partners included:
  - Methanex
  - Port of Rotterdam
  - o Vopak
  - o NYK
  - TankMatch

- \* Require more such demonstrations at leading ports
- ❖ Will support pilots and general uptake of methanol
- Ports of interest:
  - Antwerp, Rotterdam
  - Zhoushan, Ningbo
  - Singapore
  - o **Panama**
  - Others

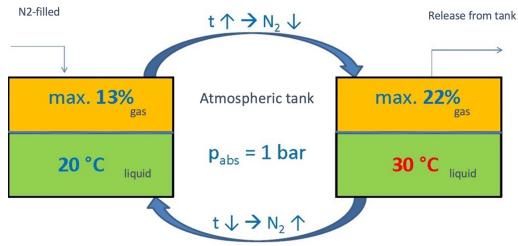




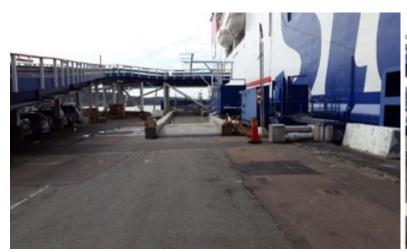







# Methanol bunkering shore-to-ship




### **Refueling station**

- o Refueling station located on open deck for natural ventilation
- Collection facility for safe disposal of leaked fuel, and skirting with collection trays below couplings
- Monitoring and controlling the refueling from a safe location (equipped with overfill alarm and automatic cutoff to monitor bunker level and overfill) together with inerting and purging capacity
- Gas, flame detection and fire extinguishing systems
- Personnel protection (shower and eyewash station for emergency use available)

#### Proportion of gaseous methanol depends on the rate of evaporation



Evaporation is not the same as boil off – it is a very slow process







**Stena Germanica Methanol Refueling** 









# **Stena Germanica**













**Carbon Neutrality** 

**Pricing** 

Design

Bunkering

**Standards** 

# Standards









### Fuel standards



### ISO/AWI 6583 Specification of methanol as a fuel for marine application is under development

### **Chemical Grade** Standards

- IMPCA
- ASTM D1152-06
- GB/T 683-2006

Purity and presence of impurities affecting downstream processes

### Industrial Grade Standards

- GB 338-2011
- AMS3004H

### **Motor Vehicle** Standard (M100)

- CCR§ 2292.1
- GB/T23510-2009

### Conventional Marine **Fuel Standards**

ISO8217:2017

### **Marine Fuel Specifications**

- ISO/AWI 6583
- MAN

Reference **Documents** 

Purity, combustion properties, presence of impurities affecting engines and boilers, and emissions

**Fuel Cells** 

**Fuel Blending** 

**Internal Combustion Engines** 

Boilers & external combustion engines

Recommendations for key parameters for marine application

- IMPCA Methanol Reference Specifications
- ASTM D1152-06 Standard Specification for Methanol
- GB/T683-2006 中华人名共和国国家标准 化学试剂甲醇
- GB338-2011 MTO级甲醇检测项目、指标与方法的研究
- SAE AMS3004H Methyl Alcohol (Aeronautics industry)

- CCR 2292.1 Fuels Specifications for M100 Fuel Methanol, California, USA
- GB/T 23510-2009 中华人名共和国国家标准 车用燃料甲醇 (M100)
- ISO 8217:2017 Fuel Standard for marine distillate fuels and residual fuels
- ISO/AWI 6583 Specification of methanol as a fuel for marine applications
- Guiding Methanol Fuel Specification for MAN B&W ME-LGIM Engines

Source: NTU, METB Singapore







### Fuel standards



### Chemical & Industrial

### **Physical Properties**

Methanol Content, Density, Distillation Range, Water, Appearance, Colour

### **By-Products**

Ethanol, Acetone, Aldehydes + Ketones, Carbonyl Compounds

### **Chemical Properties**

Carbonizables, Permanganate Time/Content, Non-volatile Matter, Evaporation Residue, Total Acidity/Alkalinity

#### **Contaminants**

Sulphur, Chloride, Iron

Source: NTU, METB Singapore

### **Motor Vehicle**

### **Physical Properties**

Methanol Content, Density, Distillation Range, Water, Appearance

### **By-Products**

Other Alcohol & Ethers, Other Hvdrocarbons

### **Chemical Properties**

Gum, Non-volatile Matter, Evaporation Residue, Total Acidity/Alkalinity

### Contaminants

Sulphur, Chloride, Sodium, Lead, Phosphorous

### **Conventional Marine Fuel**

### **Physical Properties**

Viscosity, Density, Cetane Number / CCAI, Flash Point, Pour Point, Cloud Point, Water, Appearance, Lubricity

### **Fuel Stability**

Acid Number, Total Sediment, Oxidation Stability, FAME

### **Combustion Residue**

Carbon Residue, Ash

#### Contaminants

Sulphur, Hydrogen Sulphide, Sodium, Vanadium, Al + Si, Used Lubricating Oil, Ca + Zn, Ca + P

### **MAN Engine**

### **Physical Properties**

Methanol Content, Water, Lower Calorific Value, Appearance

### **By-Products**

Ethanol, Acetone

### **Chemical Properties**

**Acidity** 

#### Contaminants

Sulphur, Chloride









## MAN ME-LGIM methanol fuel standard



- IMPCA specification used but there is potential to create a specification which will be more 'fit for purpose'
- IMO has mandated ISO to create a methanol marine specification
- IMPCA 99.85% purity
- MAN currently incorporating emulsification technology for Tier III compliance on-board to 50% blend at full engine load (80%)
- Methanol is 100% miscible in water

#### **MAN Energy Solutions**



| Info. No.: Item Name: |       |                    |            |      |                                                | Item Id.:   |           |       |
|-----------------------|-------|--------------------|------------|------|------------------------------------------------|-------------|-----------|-------|
| 316800                |       | FUEL Specification |            |      | 5741809-8                                      |             |           |       |
| Scale:                | Size: | Prod               | luct Type: |      |                                                | Projection: | Page No.: |       |
|                       | A4    |                    |            |      | ME-LGIM                                        | $\bigcirc$  |           | 1 (2) |
| Date                  | De    | s. Chk.            |            | A.C. | Revision Change                                |             | Chg. Not. | Rev.  |
| 20160428              | DF    | A JUSV             |            |      |                                                |             |           | 00    |
| 20210621              | DF    | Α                  | JUSV       | Z4   | Text update, acid number. Ethanol and water of | ontent.     |           | 01    |
|                       |       |                    |            |      |                                                |             |           | 02    |
|                       |       |                    |            |      |                                                |             |           | 03    |

#### Guiding Methanol Fuel Specification for MAN B&W ME-LGIM Engines

This fuel specification is aimed for ME-LGIM engines that will operate:

- on crude methanol or pure methanol,
- mainly on crude methanol.

Methanol is a clear, colourless, water soluble liquid which boils at 65°C. It is also known as methyl alcohol and is often abbreviated MeOH. It is most commonly produced from natural gas but can also be made from bio-feed stocks and gasification of coal.

Methanol is flammable and can form explosive mixtures with air. It burns with a non-luminous flame and is highly toxic. For information on health and safe handling, please refer to *Methanol Safe Handling Manual* [1] or other equivalent information.

Table 1 Guiding methanol fuel specification for MAN B&W ME-LGIM engines. Values refer to the methanol as delivered to the shin

| Designation                                     | Unit                 | Limit                      | Value            | Test method reference<br>(latest edition to be applied) |  |  |  |
|-------------------------------------------------|----------------------|----------------------------|------------------|---------------------------------------------------------|--|--|--|
| Lower calorific value (LCV)                     | MJ/kg                | Min.                       | 19               |                                                         |  |  |  |
| Methanol (CH <sub>3</sub> OH)                   | %w/w                 | Min.                       | 95               | IMPCA 001-14                                            |  |  |  |
| Ethanol (C <sub>2</sub> H <sub>5</sub> OH)      | %w/w                 | Max.                       | 5                | ■ IMPCA 001-14 ■                                        |  |  |  |
| Water (H <sub>2</sub> O)                        | %w/w                 | Max.                       | 5'               | ■ ASTM E1064" ■                                         |  |  |  |
| Acetone<br>(CH <sub>3</sub> COCH <sub>3</sub> ) | mg/kg                | Max.                       | 30               | IMPCA 001-14                                            |  |  |  |
| Chloride as Cl-                                 | mg/kg                | Max.                       | 0.5              | IMPCA 002-98                                            |  |  |  |
| Acidity as acetic acid                          | mg NaOH/ g<br>sample | Max.                       | 30               | ASTM D1613-17                                           |  |  |  |
| Sulphur (S)                                     | mg/kg                | Max.                       | 0.5              | ASTM D3961-98 or ASTM D5453-12                          |  |  |  |
| Appearance                                      | N/A                  | Clear, uncolou<br>suspende |                  | ◆ IMPCA 003-98 ◆                                        |  |  |  |
| Sampling                                        | N/A                  | IM                         | PCA Methanol Sai | mpling Methods [2]                                      |  |  |  |

\* A water content up to 30% w/w can be accepted under certain conditions and after agreement with MAN ES. Please note that this will affect the possibility to reach max. power.
\*\*ASTM E1064 is valid up to max 2% water.

Sampling and test methods of methanol shall be in accordance with applicable methanol sampling and test methods from standard organisations such as IMPCA [2, 3], ASTM or ISO. Other methods can also apply.

In case the engine is to be operated on methanol with higher water content. Please contact your

#### **MAN Energy Solutions**



| Info. No.: Item Name: |       |      |                           |    | Item Id.:                               |           |           |      |
|-----------------------|-------|------|---------------------------|----|-----------------------------------------|-----------|-----------|------|
| 316800                |       |      |                           |    | FUEL Specification                      |           | 5741809-8 |      |
| Scale:                | Size: | Prod | uct Type:                 |    | Projection:                             | Page No.: |           |      |
|                       | A4    |      | ME-LGIM                   |    |                                         |           | 2 (       | (2)  |
| Date                  | De    | S.   | Chk. A.C. Revision Change |    |                                         |           | Chg. Not. | Rev. |
| 20210621              | DE    | Λ    | ILISV                     | 7/ | Text undate acid number Ethanol and wat | or        |           | 01   |

MAN Energy Solution two-stroke representative for more information

Contaminants such as metal shavings, welding debris, insulation, sand, wood, cloth and oil must be removed from the methanol. It is important to note that the quality and impurity degree can vary among the suppliers due to production and handling differences and the type of bunkering/transfer process (for example: terminal tank to vessel, truck to vessel).

#### Reference

 Methanol Safe Handling Manual, Methanol Institute, www.methanol.org, January 2013.

[2] IMPCA Methanol Sampling Methods, International Methanol Producers & Consumers Association (IMPCA), www.impca.eu, October 2014.

[3] IMPCA Methanol Reference Specifications, International Methanol Producers & Consumers Association (IMPCA), www.impca.eu, December 2015.

is drawing is the sole property of MAN Energy Solutions, it must be treated as confidential by any phytom it has been submitted by MAN Energy Solutions, and it is not to be disclosed or transferred by thick party without the specific, prior written permission of MAN Energy Solutions.

ssion of MAN Energy Solutions.







Source: MAN



# THANK YOU











