
TMS Journal July 2000 31

Hysteretic Behavior of Concrete Masonry Shear Walls with
Unbonded Reinforcement

Alok Madan1, Andrei M. Reinhorn2, John B. Mander3

1   Assistant Professor, Department of Civil Engineering, Indian
Institute of Technology, New Delhi, India

2 Professor, Department of Civil Engineering, State University
of New York, Buffalo, NY 14260

3 Associate Professor, Department of Civil Engineering, State
University of New York, Buffalo, NY 14260

In reinforced concrete masonry shear walls with un-
grouted cells, the longitudinal steel reinforcing bars are not
bonded (unbonded) to the neighboring masonry. As a re-
sult, the steel strains as well as forces are governed by the
relative displacements of the end anchorages and are, there-
fore, dependent on the deformations of the entire wall. Af-
ter the development of the first flexural crack at the base,
the in-plane lateral load is resisted primarily by arch action
(tie-strut mechanism) due to the absence of bonding in
such walls, as opposed to beam action which is the domi-
nant load resisting mechanism for shear walls with bonded
reinforcement. Further, the flexural cracking causes a par-
tial loss of connectivity at the base, thus, introducing, in
addition to the in-plane flexural and shear deformations, an
uplift or separation of the wall from the foundation at one
end. Repeated reversals of the in-plane lateral load result in
consecutive opening and closing of the separation at the
base. Since the unbonded longitudinal reinforcement can-
not resist compression effectively due to absence of brac-
ing along the wall height, cyclic load reversals generate a
‘rocking’ type of motion in the wall in some cases, thus
resulting in ‘pinching’ of force-displacement hysteresis
curves into ‘S’ shaped loops which are characteristic of
this class of structural walls. Because of these peculiari-
ties, the presently available analytical models for reinforced
masonry elements are deficient for estimating the hyster-
etic behavior of masonry shear walls with ungrouted longi-
tudinal (vertical) reinforcement under reversed cyclic load-
ing.

An extensive review of literature on the state-of-the-art
modeling of ungrouted post-tensioned and reinforced ma-
sonry shear walls (with unbonded vertical reinforcement)
is presented by Madan et al. (1996). An additional review
of the subsequent literature indicates that there is a need
for analytical modeling and design guidelines for evalua-
tion of hysteretic performance of such walls. The existing
analysis techniques for reinforced masonry or concrete
structures are inadequate for predicting the hysteretic re-
sponse of masonry shear walls with unbonded longitudi-
nal reinforcement under cyclic load reversals. Moreover,
the engineering design formulations based on the avail-

able analytical models for reinforced masonry and concrete
are deficient for reliable estimation of the lateral in-plane
force-displacement response parameters of these walls in
the nonlinear range of behavior (such as strength, ductility
and post-yield stiffness). More rigorous analytical models
need to be developed for this purpose which account for
the absence of bond between the vertical steel reinforce-
ment and masonry using force equilibrium and displace-
ment compatibility [Madan (1996), Madan et al. (1996)].

In unreinforced masonry shear walls subjected to an in-
plane lateral load, subsequent to the formation of a flexural
crack at the base, a part of the base may separate from and
lift off the foundation if the applied overturning moment
exceeds the restoring moment. In the case of reinforced
masonry walls with bonded reinforcement, the bonding be-
tween the steel and masonry restrains this uplift. The up-
lift, which is governed by external forces and inertial ef-
fects, causes a local increase in stresses in the region of
contact between the wall base and foundation due to re-
duction in contact area. As the contact area reduces fur-
ther with progressive uplift, the stresses may become in-
elastic resulting in a non-linear response. At the same time,
the external loads produce in-plane flexural and shear de-
formations in the flexible wall body. The modeling of the
uplift phenomenon may be simplified by assuming that the
strain deformations are limited to the wall base-foundation
contact surface, thus, considering the wall body to be rigid
[Priestley (1991)]. However, this assumption may be erro-
neous in the range where the applied overturning moment
is less than the overturning capacity of the walls. In that
case, the response will be dominated by the flexural and
shear deformations of the entire wall. In case of masonry
shear walls reinforced with unbonded reinforcement, the
problem is complicated by the fact that the reinforcing bars
exert tie-down or restoring forces on the wall which depend
on the displacements of the entire wall [Madan et al. (1996)].
A review of state-of-the-art methods for analyzing the re-
sponse of flexible structures rocking on a flexible founda-
tion indicates that the available analytical models for pre-
dicting the force-displacement envelope of such structures
undergoing strain deformations along with uplift are based
on simplifying idealizations such as assuming a rigid wall
body on an elastic plastic foundation [Priestley (1991)],
representing the flexible foundation by distributed Winkler
springs [Badawi (1989), Housner (1957)] which are effec-
tive only in compression (for modeling the non-linear con-
tact problem) or adding a rigid body rotational degree of
freedom about the center of the base [Housner (1957),
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plane lateral load Vy applied at the top of the wall with nb

number of reinforcing bars of cross-sectional areas Asj lo-
cated at coordinates yj from the center of wall section [Fig-
ure 1(d)], where the subscript j refers to the jth bar. The axial
force Px(xi) and the bending moment Mz(xi) at any discrete
section i at height xi from the base can be statically deter-
mined and their variations along the wall height are shown
in Figures 1(b) and 1(c) respectively. The inelastic flexural
response of the masonry shear wall may be analyzed using
common assumptions such as:

(a) The strain distribution in masonry at any given
section varies linearly along the depth i.e. plane
sections remain plane, which is a realistic repre-
sentation of physical behavior for shear walls with
large aspect ratios (ratio of height H to length L).

(b) The uniaxial stress-strain relationships for masonry
and steel are known.

(c) The widths of discrete cracks in masonry are con-
sidered smeared along the height of the wall i.e. a
“smeared crack model” of the wall is used. The
assumption does not allow the determination of
local conditions (e.g. local curvatures) at the dis-
crete crack locations. However, the smeared crack
modeling is a widely accepted pragmatic approach
that is efficient yet accurate for the purpose of
evaluating average moment-curvature relationship
over a large span (height in this case) and, there-
fore, the global or overall flexural response of the
wall.

Assumption (a) implies that the longitudinal masonry
strain ex(xi) in any section i at coordinate y from the center
may be calculated as:

      ε ξx i i ix y x y x,b g b g b g= + Φ (1)

where x(xi) is the strain in masonry at the center of the

ith section and F(xi) is the angle of inclination of the
linear strain profile at the i th section also known as the
curvature at that section [Figure 1(e)].

Evidently, at any section i, there are 2 unknown ma-
sonry strain variables (the masonry strain at the center
of wall section x(xi) and the curvature F(xi) of the

section) and nb unknown steel strain variables (the

strains es(xi, yi) in each of the steel rebars). To solve
for these unknown strain variables, two equations are
available at each section from the force and moment
equilibrium of the section. The force and moment equi-
librium of the i  th section may be written as:

        P x C x T xx i i s ib g b g b g= − (2)

      M x M x M xz i i s ib g b g b g= −  (3)

where C(xi) are the internal compressive forces in masonry
and Ts(xi) are the internal tensile forces in steel in the axial

Haroun (1980), Haroun et al. (1981), Haroun et al. (1985),
Natsiavas(1988), Natsiavas et al. (1988), Yi et al. (1992)]
which may be unrestrained or restrained by appropriate
rotational springs or dampers or both. There is a need for
rigorous analytical formulations that realistically model the
non-linear stress distribution at the ground-structure inter-
face resulting from uplift of the base.

A micro element model is presented in this paper for
predicting the nonlinear hysteretic behavior of masonry
shear walls with ungrouted longitudinal reinforcement ac-
counting for the interaction of flexure and uplift under lat-
eral in-plane cyclic loading. An analysis procedure is de-
veloped for evaluating the hysteretic in-plane lateral force-
displacement response of masonry shear walls with
unbonded longitudinal reinforcement subjected to reversed
cyclic loading in the inelastic range of behavior. The formu-
lation of the analytical procedure is completed assuming
cantilever boundary conditions for the shear wall and a
concentrated lateral load at the free end. As a result, the
model is applicable in the present form only to such canti-
lever walls. However, the model can be extended for other
boundary conditions by altering the analytical formulation
suitably. The proposed analytical model was used to pre-
dict the experimental force-displacement hysteresis behav-
ior of wall specimens tested under lateral in-plane cyclic
loading, as part of the experimental evaluation in a research
program based on investigation of in-plane behavior of
masonry shear walls with unbonded vertical reinforcement
with or without prestress. The present paper is part of a
series based on the results of the research program.

BACKGROUND

An analysis technique was presented by Madan et al.
(1996) for predicting the monotonic inelastic flexural mo-
ment-curvature response of masonry shear walls with
unbonded vertical reinforcement. The technique was based
on a modified fiber element model (micro element model) in
which the masonry wall is discretized into a finite number
of sections along the height and each of these finite sec-
tions is discretized into a finite number of fibers along the
section length. The modified fiber model proposed by
Madan et al. (1996) was extended in this development for
analyzing the cyclic in-plane force-displacement behavior
of masonry shear walls with unbonded vertical reinforce-
ment. A brief review of the previously proposed modified
fiber model for flexural behavior of masonry shear walls
with unbonded vertical reinforcement [Madan et al. (1996)]
is included in this section with the purpose of providing
the necessary background for further development and
completeness.

Consider the inelastic flexural response analysis of a
reinforced concrete masonry shear wall [Figure 1(a)] of
height H, width b and length L under the action of an in-
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Figure 1—Concrete Masonry Shear Wall with Distributed Vertical Reinforcement
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and M(xi) and Ms(xi) are the internal in-plane resisting mo-
ments due to masonry and steel respectively at the section
and, are calculated as:
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in which, Em(em) and Es(es) are the masonry and steel
stress-strain relationships, respectively.

In ungrouted reinforced concrete masonry shear walls
(i.e. with unbonded longitudinal reinforcement), the absence
of bonding between longitudinal steel and surrounding

masonry does not permit the assumption of local strain
compatibility between steel and masonry at any section. In
any case, however, the displacement of the anchored end
of any unbonded reinforcing bar at top or bottom of the
wall must equal the displacement of the masonry section at
that location. The lack of bond implies that the strain in the
rebar remains constant along the height of the wall, i. e.,

ε ε ε

ε ε

s j s j s i j

s i j s n j

y x y x y

x y x y

d i d i d i

d i d i

= = = =

= =+

1

1

, ... ,

, ... ,
 ( 6)

Additionally, displacement compatibility at the wall
boundary requires that the total extension of the rebar over
the height H between the anchorages must equal the total
elongation of the masonry fiber at that location [Park and
Paulay (1975)]. Thus, the component of strain in the j th

rebar due to flexural deformations esf (yi) may be calculated
from the aforementioned compatibility criteria as follows:
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where ep is the original prestressing strain in the reinforc-
ing bars (if such prestressing is applied).

The foregoing review makes it evident that the flexural
response of concrete masonry shear walls with unbonded
reinforcement is indeterminate at the sectional level [Madan
et al. (1996)]. The displacement compatibility between ma-
sonry and reinforcing steel at the location of end anchor-
ages on the wall boundary [Equation 7] provides the nec-
essary and sufficient condition for unique solution of the
unknown flexural strain variables. Detailed formulation of
the numerical solution technique is presented by Madan et
al. (1996) for obtaining the flexural moment-curvature re-
sponse at each of the discrete sections along the height in
a masonry shear wall with unbonded reinforcement under
the action of monotonic in-plane lateral loading. The in-
plane lateral force and displacement corresponding to the
flexural curvatures of the masonry shear wall may be calcu-
lated by idealizing the top of the wall as a free end and the
base as a fixed end (cantilever end conditions). Thus, the
lateral force Vy applied at height H above the base of the
wall equals the shear force at any section i along the height
of the wall and may be calculated as:

V V x V x V x

V x M x H x

y i

n z i i

= = = = =

= = −
1 2b g b g b g

b g b g b g

...

... /
  ( 8)

The lateral displacement at the top of the wall due to flex-
ural deformations may be obtained by integrating the cur-
vatures along the height as:

f x H x dx
H

= −zΦb g b g
0

(9)

The authors wish to note here that Equation 8 is valid
only for a cantilever wall with a concentrated lateral load at
the free end of the wall. Further, Equation 9 is inadmissible
for any other set of boundary conditions. Thus, the ana-
lytical procedure presented in this paper is applicable only
to cantilever walls with a lateral load at the free end. For
other boundary and loading conditions, the formulation
will have to be modified by replacing Equations 8 and 9
with the appropriate statical and kinematic relationships
respectively.

ANALYTICAL MODELING OF HYSTERETIC
FORCE-DISPLACEMENT RESPONSE

In reinforced concrete masonry shear walls with un-
grouted vertical reinforcement, the formation of a flexural
crack at the base causes a loss of connectivity, thus, result-
ing in a separation or uplift of the wall base from the foun-
dation at one end. In walls with grouted reinforcement, this
uplift is restrained by the bond between the vertical rein-
forcing bars (anchored into the foundation) and the adjoin-
ing concrete. The uplift of the base introduces yet another
unknown degree of freedom to the wall in addition to the

flexural strain variables. Since the modified fiber model was
originally proposed for flexural moment-curvature analysis
under monotonic loading [Madan et al. (1996)], the analyti-
cal model needs to be expanded to account for uplift and
cyclic load reversals for the purpose of developing an analy-
sis procedure for predicting the in-plane hysteretic force-
displacement behavior of the wall. The modified fiber model
was complemented in the present development with a theo-
retical model for estimating the uplift displacements. Addi-
tionally, cyclic constitutive models of the component mate-
rials, i.e., masonry and steel were implemented for analysis
of hysteretic response under reversed cyclic loading. Since
the proposed analysis procedure is based on a model of
flexural behavior, the shear deformations of the wall are
inherently neglected by the analysis.

Modeling of Uplift

In masonry walls with unbonded reinforcement, flexural
cracking at the base results in a partial loss of fixity at the base
thus causing a part of the base to uplift off the foundation.
Under these conditions, a rigid body motion coexists with the
flexural and shear response (strain deformations). Since the
strains in the unbonded reinforcing bars depend on the rela-
tive displacements of the end anchorages [Park and Paulay
(1975)], the steel strains are functions of strain deformations
as well as uplift displacements of the wall. The degree to
which the wall undergoes rigid body motion in comparison to
the strain deformations at any time of loading depends on
various parameters such as the overturning moment at base
Mz (x1), time rate of change of the overturning moment, wall
aspect ratio or height to length H / L ratio, axial load Px(x1) at
the base, prestress in the vertical unbonded rebars ep (yj) and
wall weight W.  The exact dependence of the magnitude of
rigid body motion on these parameters is a complex kinematic
phenomenon. Intuitively, however, progressive uplift of the
wall base causes a reduction in the area of contact between
the base and foundation thus producing a stress concentra-
tion in the contact region. Therefore, there exists a compat-
ibility between the magnitude of base uplift or rigid body
motion and the strains at the base. The following assump-
tions were made in this formulation to model the uplift or
rocking response of the masonry shear walls with unbonded
vertical reinforcement:

1. Subsequent to the formation of flexural crack at the
base, a rigid body rotation q of the shear wall (Figure
2) occurs along with the strain deformations as a result
of lateral loading. The instantaneous center of this
rigid body rotation was assumed at the point of action
of the resultant of compressive stress distribution (i.e.
the point of reaction C) at the base.

2. The incremental strain displacement jdc at the wall toe
(extreme compression fiber) can be related to the incre-
mental angle of uplift jqd between the uplifted base
and foundation at the point of separation (Figure 2).

3. The incremental strain displacement jdc at the extreme
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compression fiber (toe) can be averaged over a finite
height Hp to obtain the incremental compressive nor-
mal strain at that location jex (x1, L / 2).  The height Hp

will be referred to in this study as the average height of
the stressed zone and its value depends on the param-
eters that govern rigid body motion which have been
mentioned earlier.

Using the foregoing assumptions, a compatibility con-
dition is derived between the rigid body rotation q of the
wall and curvature F (x1) at the base.  The proposed com-
patibility relation is based on the wall length L, contact
length d between the base and foundation, distance dc of
centroid of the compressive stress distribution (point of
reaction) at base from the extreme compression fiber (toe of
the wall), the average height Hp of the stressed zone. Refer-
ring to Figure 2, the following relation may be obtained at
any stage of loading from geometry:

∂δ ∂θδ=
−
−

L d

L dc

b g
b g

 (10)

Using assumption 2 above and Figure 2, the following rela-
tion is proposed:

            ∂θ ∂δ ∂δ
δ = =

−
c t

d L db g
(11)

From assumption 3 above, the curvature at base F (x1) may
be related to the strain displacement at the extreme com-

pression fiber as follows:

∂Φ
∂ε ∂δ

x
x L

d H d
x c

p
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1 2
b g

b g
= =

, /
(12)

Thus, from the above assumptions, using Equations 10, 11
and 12, the following compatibility condition can be writ-
ten between the rigid body rotation q of the wall and base
curvature F (x1):

∂θ ε ε= − ≥0 21; if , /x crx Lb g (13a)
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in which, ecr is the cracking strain for masonry and d is the
instantaneous contact length at the base which may be
estimated as:

d
L x
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ξb g
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The instantaneous location of the resultant C of the com-
pressive stress distribution at the base may be calculated
from mechanics as:
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M x
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Figure 2: Displacement Compatibility of Wall Uplift in Masonry Walls
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in which yc is y coordinate of the point of action of com-
pressive stress resultant C. Thus, the distance dc of the
compressive stress resultant from the extreme compres-
sion fiber (toe of the wall) is obtained as:

   d
L

y
L M x

C xc c= − = −
2 2

1

1

b g
b g

 (16)

The lateral in-plane displacement vr(x,y) due to uplift or
rocking response may be estimated using small angle ap-
proximation as:

v x y xr ,b g = θ  (17)

Using assumption 1, the vertical in-plane displacement
ur(x,y) due to uplift may be approximated as:

u x y y y
M x

C x
yr c,b g b g

b g
b g

= − = −
L

N
M
M

O

Q
P
P

θ θ 1

1
(18)

The lateral in-plane displacement Dr at the top leeward
edge  (x = H, y = L / 2) due to uplift or rocking response may
be obtained from Equation 17 as:

   
 ∆r rv H L H= =, / 2b g θ  (19)

The total lateral in-plane displacement D is obtained by
adding the component due to flexure from Equation 9 as:

      ∆ ∆ ∆ Φ= + = − +zf r

H
x H x dx Hb g b g

0

θ  (20)

The vertical in-plane displacement Ur (yj) of the nth sec-
tion at the location of the jth  reinforcing bar due to wall
uplift may be calculated using Equation 18 as:

                 U y y y
M x

C x
yr j c j jd i d i

b g
b g

= − = −
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N
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O

Q
P
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θ θ 1

1
 (21)

Assuming that lower anchorage of the wall is stationary,
the relative longitudinal displacement of the upper anchor-
age with respect to the lower one due to uplift can be ap-
proximated as the vertical in-plane displacement Ur (yj)
above. Thus, the uniaxial longitudinal strain component
esr (yj) in the j th rebar due of uplift may be obtained as:

         ε
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The total longitudinal strain in jth rebar es (yj) is obtained
by adding the strain component due to flexure and pre-
stressing from Equation 7 as follows:
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(23)

in which ep is the strain due to prestress in the rebars.

Cyclic Constitutive Models

The analysis of lateral in-plane hysteretic force-displace-
ment response of the masonry shear wall under cyclic load
reversals requires specification of cyclic stress-strain rules
for masonry and steel. A piece-wise linear stress-strain en-
velope shown in Figure 3(a) was specified for masonry in
uniaxial compression. The compressive stress-strain enve-
lope consists of a bilinear ascending part to model the de-
creasing stiffness as the stress fm increases to the peak
compressive strength f ¢m.  After attaining the peak value,
the stress was assumed to drop linearly to a control stress-
strain point. At higher strains, the stress was assumed to
remain constant at a specified value until the crushing strain
is reached. At this point, the masonry stress goes to zero
and the masonry fiber is assumed to fail in compression.
The tensile stress-strain envelope was assumed to be lin-
early elastic for stresses until the cracking strength (fcr) is
reached. For higher tensile strains, the stress in the fiber is
assumed to be zero and tensile failure is assumed. The
elastic stiffness of the tensile stress-strain envelope was
assumed the same as the initial slope of the compressive
stress-strain envelope. A linear stress-strain relationship
was assumed for the masonry fibers during unloading and
reloading. The unloading branches of the stress-strain curve
were assumed to converge to a specified control point eo

on the tensile strength envelope. In any case, the stiffness
or slope of the linear unloading branch was constrained to
be less than the initial stiffness of the stress-strain enve-
lope. The slope of the reloading branch was assumed equal
to the initial slope of the strength envelope.

A bilinear elastic-perfectly plastic stress-strain enve-
lope was defined for the longitudinal steel reinforcing bars.
The slopes of both the unloading and reloading branches
were assumed equal to the initial elastic stiffness of the
envelope. Thus, a cyclic elastic-perfectly plastic constitu-
tive law illustrated in Figure 3(b) was specified for steel. A
different value of yield stress may be specified for tension
(fyt) and compression (fyc) for the sake of generalization. In
reality, reinforcing steel exhibits significant strain harden-
ing, however, as the longitudinal steel yields over its entire
length, the plastic strains tend to be modest - generally less
than 3 percent. Therefore, an elastic-plastic model for the
steel stress-strain behavior is justified. In any case, the
proposed analysis method is sufficiently flexible to allow
the implementation of more general stress-strain models.

Numerical Solution of Hysteretic Response

A numerical solution technique was proposed by Madan
et al. (1996) based on the modified fiber model for analyzing
the inelastic flexural response of concrete masonry shear
walls with unbonded reinforcement under the action of a
monotonic in-plane lateral load. The proposed method in-
volves discretization of the wall into a finite number of
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Figure 3—————Cyclic Material Constitutive Models for Masonry and Concrete

sections n along the height [Figure 1(a)]. Since the strains
in the unbonded rebars do not vary along height of the
wall, the internal steel force Ts(xi) and moment Ms(xi) also
remain constant for all the n sections. In mathematical terms,
from Equations 4(b), 5(b) and (6):

          T x T E A ys i s s s sj
j

n

s j

b

b g b g d i= =
=
∑ ε ε

1
 (24)

     M x M E A y ys i s s s sj
j

n

j s j

b

b g b g d i= =
=
∑ ε ε

1
 (25)

The numerical technique is based on the idealization
that internal action of the unbonded steel reinforcing bars
is statically equivalent to a structural force Ts given by
Equation (24) and a structural moment Ms given by Equa-
tion (25) that are unknown and depend on kinematics of the
structural masonry wall [Madan et al. (1996)].
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The numerical solution methodology was augmented in
the present development to incorporate the effect of uplift
and cyclic load reversals for analyzing the hysteretic in-
plane lateral force-displacement response of the masonry
wall under cyclic displacement control. A flowchart of the
extended solution algorithm is presented in Figure 4. The
solution procedure involves an iterative scheme which be-
gins by assuming the unknown steel force Ts and moment
Ms for a given control curvature at the base. For the as-
sumed value of the steel force, the unknown masonry strain
x(xi) is computed at the base section (i = 1) using the sec-
tional force equilibrium equation [Equation (2)]. The algo-
rithm then computes the external moment at the base Mz(x1)
using sectional moment equilibrium equation [Equation (3)]
which in turn statically determines the external moment
Mz(xi) at all the other finite sections i = 2 to n. The algorithm
then proceeds to compute the sectional masonry strain
variables x(xi) and F(xi) at each finite section above the
base (i = 2 to n) using sectional force and moment equilib-
rium equations [Equations (2) and (3)]. The solution of the
sectional force and moment equilibrium equations is ob-
tained using the Newton-Raphson method. The internal
masonry force C(xi) and moment M(xi) for the ith section
are numerically integrated from the masonry strain vari-
ables x(xi) and F(xi) by discretizing the section into nf
number of fibers each of thickness tk along the in-plane
length of the wall where the subscript k refers to the kth

fiber. Therefore, for given values of the strain variables
x(xi) and F(xi) at any section i, the masonry force and
moment at that section can be calculated using Equations
4(a) and 5(a) as follows:
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Detailed flowcharts for the numerical solution of the sec-
tional equilibrium equations are presented by Madan et al.
(1996).

Subsequent to the determination of the sectional ma-
sonry strain variables at all the discrete sections, the rigid
body rotation q due to uplift is estimated using Equation
13. Henceforth, the strains in the reinforcing bars es (yj) are
computed using the compatibility Equation 23. From the
steel strains, the stresses in the unbonded reinforcing bars
can be calculated using the prescribed cyclic constitutive
rule for steel. The steel stresses in turn provide the forces

in the rebars which are summated to compute a new esti-
mate of the steel force Ts and moment Ms. The computed
steel force and moment are compared with the assumed
values. In case the errors are more than the allowable toler-
ances, Ts and Ms are revised and the analysis is repeated
until the assumed values converge with the computed val-
ues. Upon convergence, the in-plane lateral force is calcu-
lated from Equation 8 while the lateral displacement at the
top of the wall is obtained from Equation 20 by numerically
integrating the curvatures along the height as:

∆ ∆ ∆ Φ= + = − +
=
∑f r i i i i

i

n
w x H x x H$ b g b g δ θ

1
 (28)

where $wi , is a constant for numerical integration.

Modification for Analysis of Masonry Shear
Walls with Bonded Reinforcement

The proposed analysis procedure can be easily adapted
for evaluating the hysteretic response of masonry shear
walls with bonded (i. e. grouted) longitudinal reinforce-
ment as a special case. In this case, the strains in the verti-
cal reinforcing bars can be directly related to the masonry
strain variables x(xi) and F(xi) at each finite section using
the following compatibility equation for bonded reinforce-
ment:
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x y x y
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= + =Φ 1
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Therefore, the steel force Ts and moment Ms can be calcu-
lated and iterated independently for each finite section to
obtain the inelastic flexural response at that section for a
given control curvature at the base.

EXPERIMENTAL VERIFICATION

An experimental study was performed to evaluate the
in-plane seismic response of masonry shear walls with
unbonded reinforcement [Madan (1996)]. Six shear wall
specimens were tested as part of the experimental program
for the purpose of investigating the influence of various
parameters including axial load, lateral drift amplitudes, pre-
stressing, shear deformations and reinforcement anchor-
age on the in-plane seismic behavior. Wall Specimens 2, 3
and 4 were designed to display a predominant flexural mode
of failure under lateral in-plane loading. The proposed analy-
sis technique was used to predict the hysteresis behavior
observed during the testing of these wall specimens under
reversed cyclic loading. The details of the test specimens
are illustrated in Figure 5. The salient test parameters and
results for these specimens are presented in Table 1. Fur-
ther details of the test program may be found elsewhere
[Madan (1996)].
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Displacement Controlled Quasi-static Cyclic
Analysis of Test Specimens

The numerical solution procedure presented in the fore-
going development was implemented to predict the force-
displacement hysteresis response of the wall Specimens 2,
3 and 4 tested under lateral in-plane cyclic loading. The
analysis was performed incrementally for cyclically increas-
ing and decreasing control curvatures at the base of the
shear wall model. The cracking strength of masonry fcr was
taken as 5% of the compressive strength fBm.  Because of
the absence of lateral bracing along the unbonded length,
the yield strength   f

yc
 of the unbonded reinforcing bars in

compression was assumed to be zero.

Comparison of Analytical Predictions with Test
Results

The theoretically calculated cyclic force-displacement
relationships are compared with the experimentally observed
hysteresis loops for test Specimen 2 in Figure 6 under dif-
ferent axial loads. Similar comparisons are shown for wall
Specimens 3 and 4 in Figures 7 and 8 respectively. The
figures also show the axial load on the wall specimen and
prestrain in the unbonded rebars for  the experimental test.
For analysis purposes, the average height of the stressed
zone H

p 
was assumed as 0.1 H for 31 kN (697 lbs) axial load

and 0.4 H for 116 kN (26,077 lbs) and 205 kN (46,084 lbs)
axial load. The peak strength (prism strength) of masonry
was scaled down for analyzing the force-displacement en-
velope under 116 kN (26,077 lbs) axial loads in order to
account for strength degradation due to prior cyclic load-
ing of the test specimens under the 31 kN (697 lbs) axial
load. The reduction factors for scaling the peak strength
were estimated from the deterioration of strength observed
in the test specimens in the course of testing under 31 kN
(697 lbs) axial load. In case of test Specimen 2, the peak
strength was further scaled down for analyzing the response
under 205 kN (46,084 lbs) axial load. The scaling factor was
estimated from the strength degradation observed during
the preceding tests.

The comparisons with the experimental results indicate
that the proposed analytical model predicts the hysteretic
behavior of concrete masonry shear walls with unbonded
reinforcement to a reasonable degree of accuracy. The dis-
crepancies may result from the approximations introduced
by underlying assumptions of the modified fiber model.
The limitations of these basic assumptions have been dis-
cussed previously by Madan et al. (1996). An additional
limitation is that the assumed cyclic constitutive relation-
ship for masonry is piece-wise linear, which accounts for
the lesser smoothness in the predicted force-displacement
response as compared to the observed response. Further,
the assumption that plane sections remain plane [Assump-
tion (a)] may limit the accuracy of the model for analysis of

Figure 4—Flowchart of Solution Algorithm for Hysteretic
Force-displacement Response
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Figure 5—Test Specimen – Typical Details

walls with aspect ratios in the range of 1.0, which is the
range of transition from predominant flexural behavior ex-
hibited by slender walls (walls with large aspect ratios) to
dominant shear behavior displayed by squat walls (walls
with small aspect ratios) [Shing et al. (1989)].

CONCLUSIONS

An analysis technique based on a fiber element model
(micro-element model) is presented for evaluating the hys-
teretic force-displacement behavior of masonry walls with
unbonded longitudinal reinforcement under lateral in-plane
cyclic loading. The analytical model was used to predict

experimental results obtained from cyclic loading tests on
wall specimens with unbonded reinforcing bars. The ana-
lytically predicted response shows reasonable agreement
with the experimentally observed hysteresis behavior. The
theoretical model presented in this study is based on force
equilibrium and displacement compatibility considerations
and thus provides a sound analytical approach for estimat-
ing the in-plane strength, ductility and hysteretic energy
absorption of masonry walls with unbonded reinforcement
subjected to reversed cyclic loading. Since the analytical
procedure is developed for a shear wall with cantilever end
conditions (cantilever wall) and a concentrated lateral load
at the free end, the procedure is limited in the present form

Table 1.  Summary of Test Parameters and Results (1 mm = 0.0394 in., 1kN = 224.8 lbs)

Spec. Net  Wall Vertical Shear Pretension Axial Cracking
No. He ight Reinf.  Reinf. in Rebars  Load Load

 (mm) Ratio mm2/mm  (kN)  (kN) (kN)
 (1) (2) (3) (4) (5) (6) (7)
2 2286 0.026 31/406 0.00 31 11.703

116 cracked

205 cracked
3 2286 0.026 31/406 47.37 31 11.587

4 2286 0.026 31/406 94.74 31 9.425

116 cracked
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to such cantilevers walls only. However, the modeling ap-
proach is generalized and the proposed model can be easily
modified for different boundary conditions, loading patterns
and constitutive relationships. The model can be readily
adapted for analyzing the hysteretic response of masonry
shear walls with bonded reinforcement as well. The pro-
posed modeling technique, therefore, enables rational treat-
ment of various governing factors in a versatile manner.
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Yield Ultimate Cracking Yield Max. Initial Loading
Load Load Displ. Displ. Displ. Stiffness Method
(kN) (kN) (mm) (mm) (mm) (kN/mm)
(8) (9) (10) (11) (12) (13) (14)

42.768 63.077 0.229 3.505 28.448 51.768 Inplane drift controlled.

40.939 70.447 cracked 2.591 48.260 15.864 Sinusoidal drift

36.345 70.358 cracked 0.203 28.448 176.654 history@0.1 & 0.2 Hz.
32.110 64.194 0.178 1.854 42.418 65.168 Inplane drift controlled.

Sinusoidal drift

history@0.1 Hz.
38.867 58.629 0.203 1.372 21.488 45.813 Inplane drift controlled.

50.164 74.192 cracked 1.854 21.488 27.054 Sinusoidal drift

history@0.1 & 0.02 Hz.
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Figure 6—Theoretical vs. Experimental Cyclic Force-Displacement Response for Unbonded Reinforced Masonry Wall
Test Specimen 2 (1 kN = 224.8 lbs and 1 mm = 0.0394 in.)
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Figure 7—Theoretical vs. Experimental Cyclic Force-Displacement Response for Unbonded (1 kN = 224.8 lbs and 1 mm =
0.0394 in.)

Figure 8—Theoretical vs. Experimental Cyclic Force-Displacement Response for Unbonded Prestressed Masonry Wall
Test Specimen 4 (1 kN = 224.8 lbs and 1 mm = 0.0394 in.)
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NOTATIONS

A
sj

= cross-sectional area of the jth steel reinforcing
bar.

b = effective width of shear wall.
C(xi) = internal axial compressive force in masonry at

the ith section.
d = length of the contact region at the wall base.
d

c
= in-plane distance of point of action of com-

pressive resultant at base from extreme com-
pression fiber (toe of wall).

E
m
(e

m
) = stress-strain relationship for masonry.

E
m
(e

s
) = stress-strain relationship for vertical steel.

f = flexural response parameter.
f
cr

= cracking stress of masonry.
fB

m
= masonry prism strength.

f
y

= yield strength of vertical reinforcing steel.
H = effective height of point of application of lat-

eral load V
y
 from the base.

H
p

= average height of stressed region (stress pen-
etration) due to uplift.

i = index for numbering of discrete sections.
j = index for numbering of longitudinal steel bars.
k = index for numbering of discrete steel fibers.
L = length of the wall equal to the depth of a cross-

section.
M(xi) = internal in-plane resisting moment due to ma-

sonry at the i th section.
Ms(xi) = internal in-plane resisting moment due to steel

at the i th section.
Mz(xi) = external bending moment on i th wall section.
n = number of finite sections considered along the

height.
nb = number of vertical steel reinforcing bars.
nf = number of masonry fibers considered at the

given section.

Px = vertical or axial load on shear wall.
r = rigid body uplift or rocking response param-

eter.
tk = thickness of the kth fiber.
Ts(xi) = internal axial tensile force in steel at the ith sec-

tion.
u(x, y) = displacement in x direction at location y in i th

section.
Vy = in-plane external shear force acting on ith sec-

tion.
v(x, y) = displacement in y direction at location y in i th

section.
wi = numerical weight factors.
xi = x coordinate of the ith section.
yj = y coordinate of the jth bar.
D = in-plane lateral displacement at top of the wall.
jdc = incremental strain displacements at the wall

toe (extreme compression fiber).
jqd = incremental angle of uplift between uplifted

base and foundation.
e

cr
= cracking strain of masonry.

e
m (xi, y) = Masonry strain variation along the y axis at ith

section.
e

p
= prestressing strain in the vertical steel rein-

forcing bars.
e

s
(xi, yj) = strain in the jth steel reinforcing bar at the ith

section.
es (yj) = constant strain in the j th reinforcing bar in case

of no bonding.
e

x
(xi, y) = normal strain in x direction at location y in i th

section.
F(xi) = angle of inclination of the masonry strain pro-

file at the ith section.
q = angle of rigid body rotation of wall due to uplift.
x(xi) = masonry strain at the center of the ith section =

e
m
(xi, 0)


