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A reinforced masonry shear wall subjected to in-plane
lateral and axial loads behaves as a two-dimensional con-
tinuum in a state of plane stress. In a grouted masonry
shear wall with longitudinal steel reinforcement, bond be-
tween masonry and steel enables effective transfer of forces
between the longitudinal steel rebars and adjoining ma-
sonry through shear stresses, commonly known as bond
stresses, acting at the surface of the rebar. The load-resist-
ing mechanism of the wall can be explained using the tradi-
tional analogy of a parallel chord pin-jointed truss [Park et
al. (1975), Collins et al. (1991)] shown in Figure 1(a). Force
in the longitudinal tension chord of a parallel chord truss
changes at the discrete pin-joints due to forces entering
the joints from the diagonal compression struts. Analo-
gously, in a two-dimensional reinforced masonry wall con-
tinuum, forces in the longitudinal rebars change continu-
ously from point to point along the rebar length due to the
diagonal compression field in the masonry [Figure 1(a)].
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The change in the longitudinal steel tensile force, which
also equals the change in the longitudinal component of
masonry compressive force, produces change in the inter-
nal resisting moment (couple) required for balancing the
external shear force. This mode of shear resistance, termed
as ‘beam action’ [Figure 1(a)], is viable only in the presence
of bond stresses.

In an ungrouted masonry shear wall with longitudinal (ver-
tical) steel reinforcement, forces in the longitudinal reinforc-
ing bars cannot change along the length because of the com-
plete absence of bonding between the reinforcing steel and
adjacent masonry. As a result, ‘beam action’ is replaced by an
alternative mechanism known as the ‘arch action’ after devel-
opment of a flexural crack at the base. In arch action, external
shear is resisted by an inclined internal compression field in
the masonry [Figure 1(b)]. The change in internal resisting
couple along the height, required for the shear resistance, is

Figure 1—Shear Resisting Mechanism of a Masonry Wall – Bonded vs. Unbonded Reinforcement
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developed in this case by the longitudinal variation of the
lever arm (jd) between the tensile steel force and compressive
masonry force resultants due to inclined trajectory of the
compressive force (“tie-strut” mechanism).

Past research studies demonstrated that the relative con-
tribution of flexure and shear to the lateral load behavior of
reinforced masonry shear walls is governed by the height-to-
width ratio (aspect ratio) of the wall [Shing et al. (1989), Hart
(1991)]. Generally, flexural behavior dominates in a slender
wall (i.e., a flexure-critical wall), while shear deformations gov-
ern the response of a short wall (i.e., a shear-critical member).
In a slender masonry shear wall with ungrouted (unbonded)
vertical reinforcement, flexural cracking of the mortar bed joint
between the wall base and foundation results in a partial loss
of connectivity at the base, causing a part of the wall to
separate and lift up from the foundation. Uplift initiates when
the overturning moment due to lateral load exceeds the total
restoring moment offered by the vertical dead load on the
wall base [Priestley (1991)] and the tie-down forces exerted
by vertical reinforcing bars.

The analysis of flexible structures undergoing uplift is a
complex problem, since uplift is ideally a rigid body motion of
the structure under stable dynamic equilibrium with no in-
crease in the internal strain energy (zero energy mode of re-
sponse). In the case of flexible structures in equilibrium under
external forces, rigid body motion may coexist with strain
deformations on partial loss of end restraint. A detailed sur-
vey of existing analytical models of uplift in flexible structures
on flexible foundations is presented by Madan (1996) and
Madan et al. (1998). However, the problem of masonry shear
walls with ungrouted (unbonded) verical reinforcement is
further complicated by the fact that tie-down forces in
unbonded reinforcing bars depend on displacements of the
wall boundary. In a squat masonry wall with unbonded verti-
cal (longitudinal) reinforcement, the lateral load produces slid-
ing of the wall if the load exceeds the shear capacity at the
wall base-foundation interface. In either case (uplift or slid-
ing), flexural and shear deformations in the wall are accompa-
nied by a rigid body motion of the wall. In masonry walls with
grouted (bonded) longitudinal reinforcement, bonding be-
tween the longitudinal steel rebars and masonry restrains
this rigid body motion.

A review of current analytical models for lateral load
behavior of ungrouted reinforced and post-tensioned ma-
sonry shear walls was performed by Madan, Reinhorn et al.
(1996). That review indicated that a common practice in
strength analysis of reinforced masonry is to assume that
the strain in a reinforcing bar at any section is compatible
with the masonry strain at the location of the rebar in that
section. As a consequence, the response of any section
can be determined from force equilibrium and displacement
compatibility of that section only (independent of the mem-
ber response), using a suitable numerical technique based
on a layered model of the section or a “layer-by-layer”

modeling approach [Collins et al. (1990)]. Vecchio and Collins
(1988) presented a layered section model (fiber element
model) to perform detailed inelastic analysis of a reinforced
concrete section subjected to combined moment and shear.
This analysis method, referred to as the “dual section analy-
sis”, enables determination of the complete nonlinear shear
and flexural response of a given section in a reinforced
concrete member based on equilibrium and compatibility of
that section only. The “dual section analysis” procedure is
discussed in detail by Vecchio and Collins (1988).

In reinforced masonry shear walls with unbonded longi-
tudinal reinforcement, however, strains in the reinforcing
bars at any section cannot be directly related to the defor-
mations of that section [Madan, Reinhorn et al. (1996)]. In
this case, the steel rebar strains depend on the relative
displacements of the end anchorages [Park et al. (1975)]
and are thus governed by displacements of the wall bound-
ary. As a result, analysis of the sectional response in ma-
sonry shear walls with unbonded longitudinal reinforce-
ment cannot be completed at the sectional level without
considering the structural response of the entire wall
[Madan, Reinhorn et al. (1996)]. In view of these differ-
ences, the available analysis techniques are deficient in
predicting the in-plane lateral load response of masonry
shear walls with unbonded reinforcement. The present pa-
per is part of a series based on the results of a research
program that investigates the in-plane behavior of masonry
shear walls with unbonded longitudinal reinforcement with
or without prestress. An integrated analytical method, based
on a micro-element model, is presented for determining the
nonlinear force-displacement envelope as well as detailed
stress and strain response of masonry shear walls with
unbonded longitudinal reinforcement under the action of
an in-plane lateral load. The proposed analysis technique
accounts for the interaction of flexure, shear and uplift in
such walls under in-plane lateral loading. Further, the mod-
eling approach is generalized since the model can also be
implemented for analysis of masonry shear walls with
bonded reinforcement by making minor modifications in
the numerical procedure.

ANALYTICAL MODELING

Consider a reinforced concrete masonry shear wall [Fig-
ure 2(a)] of height H, length L and width b under the action
of an in-plane lateral load F with Nb number of unbonded
reinforcing bars of cross-sectional areas Asj located at co-
ordinates yj from the center of wall section [Figure 2(e)]. In
each case, the subscript j refers to the j th bar. Horizontal
steel reinforcement of area Ah is provided in the wall for
shear resistance at an effective spacing sh along the height.
Details of analytical modeling of the in-plane response of
the wall are presented in this part of the paper. Idealizing
the wall as a cantilever structure fixed at the base, the ver-
tical axial force Px, in-plane bending moment Mz, and lateral
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shear force Vy acting on any transverse section can be
determined from mechanics. Their variations along the x
direction are shown in Figures 2(b), 2(c) and 2(d), respec-
tively. The internal forces at any section i located at height
xi from the base may be related to the external forces by
examining the static force and moment equilibrium of the
section as follows:

        P x C x T xx i i s ib g b g b g= − (1)

      M x M x M xz i i s ib g b g b g= − (2)

         V x V x V xy i i s ib g b g b g= + (3)

where C(xi) and Ts(xi) are the internal compressive forces in

masonry and internal tensile forces in steel, respectively, in
the vertical x direction; M(xi) and Ms(xi) are the internal
resisting moments due to masonry and steel, respectively,
about the z direction; V(xi) is the internal shear force in the
horizontal y direction due to masonry’s shear resistance
(diagonal cracking strength) and shear reinforcement; while
Vs(xi) is the shear resistance of masonry in the y direction
due to dowel action of longitudinal steel is the shear resis-
tance of masonry in the y direction due to dowel action of
longitudinal steel.

Mechanics of Materials

Masonry - The stress-strain state in the masonry ele-
ment or fiber was solved using modified compression field

Figure 2—Concrete Masonry Shear Wall with Distributed Vertical Reinforcement: Geometry, Behavior and Modeling
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theory [Collins et al. (1990)]. The theory, which was origi-
nally developed for concrete by Vecchio and Collins (1988),
relates the average stresses and average strains in a cracked
or uncracked reinforced element [Figure 3(a)] under an ex-
ternal loading. The theory is based on force equilibrium
and displacement compatibility. Using realistic uniaxial
stress-strain relationships for concrete and steel, the modi-
fied compression field theory provides a sound analytical
approach for obtaining a unique solution of the complete
biaxial stress and strain response of the element for any
two known values of stresses and strains. The analysis
involves an iterative numerical procedure that accounts for
strain softening effects, local stress conditions at crack
locations and variation in the angle of inclination of the
concrete compression field. Details of the theory and nu-
merical procedure may be found elsewhere [Collins et al.
(1990), Madan (1996)]. The modified compression field
theory is adopted in the present study for modeling the
biaxial stress-strain response of a concrete masonry ele-
ment.

The uniaxial stress-strain behavior of masonry may be
defined using suitable constitutive models. The equation
proposed by Mander et al. (1988) was used to model the
relationship between stress,  fm , and strain, em , for ma-
sonry in uniaxial compression.  The equation generates a
single continuous curve for modeling the experimentally-
observed stress-strain relationship for confined or uncon-
fined concrete in uniaxial compression [Figure 3(b)] and
may be written as:
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in which fBm is the peak compressive stress and eBm is the
corresponding strain; Em is the initial slope of the stress-
strain curve and Esec is the slope of the secant to the peak
stress.

The stress-strain relationship suggested by Collins et
al. (1990) was used for masonry in uniaxial tension. The
proposed relation between tensile stress, fmt , and tensile
strain, emt, may be expressed as follows:

if ε ε εm cr mt m mtf E≤ =then (6a)

ε ε
α α
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1 500
(6b)

where ecr is the cracking strain; fcr is the cracking stress or
modulus of rupture for masonry; a1 is a factor accounting

for bond characteristics of the steel reinforcement and a2

is a factor depending on the nature of loading.  Thus, a
linearly elastic stress-strain relation is specified for masonry
in tension until the cracking strain is reached [Figure 3(b)].
At higher strains, the cracked masonry may resist tensile
stresses due to tension stiffening, depending on the bond
characteristics of the reinforcement.  With unbonded rein-
forcement, however, the masonry is unable to resist tensile
stresses after cracking and, thus, fails in tension.  There-
fore, a1 = 0 for masonry walls with unbonded longitudinal
reinforcement.

Reinforcing Steel - In general, the masonry shear wall is
provided with horizontal steel for shear reinforcement as
well as vertical steel for flexural reinforcement.

Horizontal Steel: For modeling purposes, the total hori-
zontal shear reinforcement was assumed smeared along
the wall height to provide an effective horizontal steel area
equal to Ah/sh per unit height of the wall. Smearing of hori-
zontal steel precludes evaluation of local variations in hori-
zontal stresses and strains in the vicinity of discrete crack
locations. However, the foregoing approach, proposed by
Vecchio and Collins (1988) for reinforced concrete panels,
is efficient and accurate for the purpose of evaluating the
average horizontal stresses and strains (averaged over a
finite height) in the steel and masonry at a given location in
the wall. Since the horizontal shear reinforcement is fully
bonded to the neighboring masonry, the horizontal steel
strains and masonry strains may be related by the follow-
ing compatibility equation:

          ε εh i y ix y x y, ,b g b g= (7)

in which eh (xi , y) is the horizontal steel strain in the ith

section at coordinate y and ey is the normal strain in the
masonry in the y direction [Figure 3(a)].

The equilibrium of any longitudinal section requires that

         σ σh i
w h

h
y ix y

b s

A
x y, ,b g b g= (8)

in which bw equals the wall width b, sh (xi , y) is the horizon-
tal steel stress in the i th section at coordinate y and sy is
the normal stress in masonry in the y direction [Figure 3(a)].

Vertical Steel: As discussed previously, if the vertical
(longitudinal) reinforcement is fully bonded to the neigh-
boring masonry, the strain es (xi , yj) in the vertical rebar j at
any cross-section i is commonly assumed to be equal to
the masonry strain at the location of the rebar in that sec-
tion. The compatibility condition may be expressed as:

   ε ε εs i j p x i jx y x y, ,d i d i= + (9)

in which ep is the strain in the masonry resulting from the
applied vertical prestress in the rebar.



TMS Journal July 2000 49

Figure 3—Micro Mechanics of Masonry Wall and Material Properties

(a)  Average Stresses and Strains in Differential
Masonry Element

(b)  Constitutive Model for Masonry

(c)  Constitutive Model for Steel

(d)  Longitudinal Equilibrium of
Masonry Fiber Element
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In the case of masonry shear walls with unbonded ver-
tical reinforcement, the foregoing compatibility relation is
not admissible, since the longitudinal strain in the unbonded
vertical steel reinforcing bar is governed by the relative
displacement of the end anchorages and, thus, cannot be
expressed as an independent function of the masonry strain
at any single location. In this case, a compatibility condi-
tion exists between the unbonded vertical steel strains and
the wall displacements. Assuming that the rebars are an-
chored at the upper end in the top beam and at the lower
end in the foundation beam [Figure 2(a)], the relative longi-
tudinal displacement of the end anchorages of the jth rebar
may be closely approximated as the vertical displacement
of the wall at top end of the rebar. The uniaxial longitudinal
strain es(yj) in the jth unbonded rebar due to wall displace-
ment may be thus calculated as:

     ε εs j p
j

y
u H y

H
d i

d i
= +

,
(10)

where u(x, y) is the vertical displacement in the longitudinal
x direction at coordinates (x, y).

A bilinear elastic-plastic stress-strain curve [Figure 3(c)]
was adopted for both bonded and unbonded steel. Thus,
the steel stress,  fs , is functionally related to strain es  as:

               f E fs s s s yε εb g = ⋅ ≤0 (11)

where Es
0 and fy are the modulus of elasticity and yield

strength of steel, respectively.

In case of bonded horizontal steel, the bilinear relation
Equation 11 was used to model uniaxial tensile as well as
compressive stress-strain behavior. However, the unbonded
vertical reinforcing bars were assumed to be ineffective in
compression. This is a reasonable assumption in the ab-
sence of any bracing along the height of the wall.

Modeling of Flexural and Shear Response

The in-plane stress response of the wall was modeled
on the basis of following assumptions:

1. The distribution of normal strain ex (xi , y) in masonry
at any section i is linear along the depth of the sec-
tion (in the y direction), i.e., plane sections remain
plane.

2. The normal strain ex (xi , y) and shear stress  txy (xi , y)
in a masonry element located at coordinate y in the ith

section uniquely define the state of stress and strain
in that element, according to modified compression
field theory.

3. The shear stress distribution txy (x, y) at two sec-
tions separated by a small distance dx is the same,
i.e., txy (xi, y) = txy (xi  + jx, y) if  jx << H.

From assumption 1 above, the normal masonry strain in

any section i at distance y from the center [Figure 2(f)] may
be expressed as:

  ε ξx i i ix y x y x,b g b g b g= + ⋅Φ (12)

in which x(xi) is the normal strain in masonry at the center
of ith section and F(xi) is the angle of inclination of the
linear strain profile at the ith section, also referred to as the
flexural curvature of that section [Figure 2(f)].

The internal forces in equilibrium equations 1, 2 and 3
may be calculated as:
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while the internal moments may be obtained as

            M x y x y b dyi x i
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∑ ε ε

1
(17)

in which Es (es ) is the slope of the secant (secant modulus)
to the point on the stress-strain curve of steel correspond-
ing to strain es and sx (xi , y) is the normal stress in a ma-
sonry element at coordinate y in the ith section. From as-
sumption (2) above, sx (xi , y) can be uniquely determined
for a given normal strain ex(xi , y) and shear stress txy (xi , y),
i.e.,

     σ σ ε τx i x x i xy ix y x y x y, , , ,b g b g b g= (18)

The longitudinal equilibrium of the section [Figure 3(d)]
requires that the normal stress sx (xi , y) and shear stress
txy (xi, y) distributions are related as:

τ ∂xy ix y x,
lim

b g = → 0

   
σ ∂ σ

∂

x i x i
L
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x x y x y b dy

b x
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in which j is the rebar number such that yj ≤  y≤  yj+1.
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In Equation 19, the first term accounts for shear stresses
due to masonry shear resistance including the effect of
horizontal shear reinforcement, while the second term rep-
resents the contribution of dowel action provided by lon-
gitudinal reinforcement. In the case of unbonded longitu-
dinal reinforcement, strains in the unbonded rebars do not
vary along the length of the rebar. As a result, the shear
resistance due to dowel action is not mobilized and Equa-
tion 19 reduces to:

τ ∂xy ix y x,
lim

b g = → 0

(20)

σ ∂ σ

∂

x i x i
L

y

x x y x y b dy

b x

+ − ⋅ ⋅

⋅
−
z , ,
/

b g b g
2

Modeling of Uplift Behavior

Since strains in the unbonded longitudinal reinforcing
bars depend on the relative dispacements of the end an-
chorages, the steel strains are functions of masonry strain
deformations as well as uplift displacements of the wall. As
discussed earlier, uplift is a dynamic phenomenon with a
complex dependence on many governing factors, includ-
ing the overturning moment at the base Mz(x1), wall aspect
ratio or height to length H / L ratio, axial load Px(x1) at the
base, prestressing force in the vertical unbonded rebars,
wall weight W and time rate of change of the overturning
moment. Progressive uplift of the wall base causes a reduc-
tion in the contact area between the base and foundation
thus producing a stress concentration (penetration) in the
contact region. Therefore, compatibility exists between the
magnitude of rigid body uplift and strains at the base. The
following assumptions were made to model the uplift re-
sponse of the masonry shear walls with unbonded vertical
reinforcement:

(a) After initiation of flexural cracking at the base, rigid
body rotation q of the shear wall (Figure 4) occurs
along with strain deformations under lateral load-
ing.  The instantaneous center of this rigid body
rotation was assumed as the point of action of the
resultant of compressive stress distribution (the
point of reaction C ) at the base.

(b) The incremental displacement, jdc, due to the stress
concentration at the extreme compression fiber (toe
of the wall) can be related by geometry to the incre-
mental angle of uplift, jqd , between the uplifted
base and foundation at the point of separation (Fig-
ure 4).

(c) The incremental vertical displacement jdc at the
extreme compression fiber can be averaged over a
finite height, Hp, to obtain the incremental normal
compressive strain at that location jex (x1, L / 2).
The height, Hp, termed as the average height of the
stressed zone in this paper, depends on parameters

that govern rigid body motion and were mentioned
earlier. Intuitively, however, the average height of
the stressed zone, Hp, at the extreme compression
fiber (above the toe) of the wall bears a direct corre-
lation to both the axial (vertical) load on the wall and
the wall aspect (height to length) ratio.  A physical
interpretation of the relationship may be realized by
noting that the greater the axial load or aspect ratio,
the higher the inclination of the internal masonry
compression field towards the vertical axis of the
wall.

Using the foregoing assumptions and geometry shown
in Figure 4, a compatibility relationship can be derived be-
tween the increments in rigid body rotation, q, of the wall
and curvature,F(x1), at the base in terms of wall length (L),
contact length (d), distance (dc) of the centroid of compres-
sive stress distribution (point of reaction C) at the base
from the extreme compression fiber, and the average height
of the stressed zone (Hp) at the extreme compression fiber.
Detailed derivation of the compatibility condition is pre-
sented by Madan et al. (1998) and only the proposed com-
patibility equation is included here:

   ∂θ ε ε= − ≥0 21if , /x L crb g (21a)

   ∂θ ∂Φ ε ε=
−

−
− <

H L d

L d
x x L

p

c
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b g
b g b g b g1 1 2; if , / (21b)

in which ecr is the cracking strain for masonry and d is the
instantaneous contact length at the base may be estimated
as:

d
L x

x
= +

2
1

1

ξb g
b gΦ

(22)

The instantaneous location of the compressive stress re-
sultant C may be calculated as:

   y
M x

C xc = 1

1

b g
b g

(23)

in which yc is the y coordinate of point of action of the
compressive stress resultant C.

Thus, the distance dc of the stress resultant from the
extreme compression fiber is given as:

                     d
L

y
L M x

C xc c= − = −
2 2

1

1

b g
b g

(24)

Wall Displacements and Unbonded Rebar
Strains

Idealizing the top of the wall as a free end and the base
as a fixed end (cantilever end conditions), the vertical (lon-
gitudinal) in-plane displacement us(x, y) due to strain de-
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formations of the wall may be obtained as:

            u x y x y dxs x

x
, ,b g b g= z ε

0

(25)

The vertical in-plane displacement ur(x, y) due to rigid
body uplift may be estimated from geometry (Figure 4) us-
ing assumption (a), Equation 23 and small angle approxima-
tion as:

      u x y y y
M x

C x
yr c,b g b g b g

b g
= ⋅ − = ⋅ −

L
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M

O
Q
P
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θ θ 1

1
(26)

The total vertical in-plane displacement u(xi, y) of a point
located at y coordinate in the i th section may be calculated
by adding the vertical displacement components due to
strain deformations and uplift. Thus, from Equations 25
and 26,
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The uniaxial longitudinal strain in jth unbonded rebar ec(yj)
may be calculated using Equations 10 and 27 as follows:
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The strain deformation-produced lateral in-plane displace-
ment vs(xi , y) of a point located at y coordinate in the ith

section may be obtained as:

    v x y dx x H x dxs i xy
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yx ii
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γ Φ
020

(29)

Using assumption (a) and small angle approximation again,
the uplift-produced lateral in-plane displacement vr(xi , y)
of location y in section i may be estimated as:

v x y xr i i,b g = ⋅θ (30)

The total lateral in-plane displacement v(xi , y) is obtained
by adding the two components from Equations 29 and 30
as:
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The lateral displacement D at the top leeward edge (x = H, y
= L / 2) of the wall may be calculated from Equation 31 as:

  

∆

Φ

= =

+ ⋅ − + ⋅zzz
−

v H L

dx x H x dx Hxy

H

L

LH

, /

/

/

2

02

2

0

b g

b g b gγ θ
(32)

 

δt

Compressive Stress 
Distribution 

θ 

δc 

H 

Vy 

C 

σ 
x (x1, L/2) 

θ θ
δ
 

L - d d 

d c 

Figure 4—Displacement Compatibility of Uplift in Masonry Shear Walls with Unbonded Reinforcement
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NUMERICAL ANALYSIS PROCEDURE

The biaxial stress distribution in the wall and non-linear-
ity of component materials necessitate a numerical solu-
tion for the response. The numerical modeling and solution
technique are described in this part of the paper.

Numerical Model of the Wall

The numerical solution of the inelastic lateral force-dis-
placement response of masonry shear walls with unbonded
reinforcement was obtained by discretizing the masonry
shear wall into a finite number of sections, Ns, along the
height [Figure 2 (a)]. Each of the finite sections was further
discretized into differential elements or fibers along the
length [Figure 2(g)]. The problem involves 3Ns + Nb + 1
unknowns or variables which are: the masonry strain vari-
ables x(xi) and F(xi) and shear stress distribution txy (xi,
y) at each of the Ns sections, the strains es(yj) in the Nb

unbonded vertical rebars; and the rigid body rotation, q,
due to wall uplift. In order to obtain a solution, 3Ns equa-
tions are available from equilibrium (Equations 1, 2 and 3)
of the Ns sections, Nb compatibility equations (Equations
28) are available for determining strain in each of the Nb

unbonded rebars and 1 compatibility equation (Equation
21) is proposed for estimating the rigid body rotation q.  A
number of shear stress distributions may satisfy these equa-
tions. However, a unique shear stress distribution is deter-
mined at each section by the longitudinal equilibrium equa-
tion (Equation 20).

Since strains in the unbonded longitudinal reinforcing
bars es(yj) are constant along the height of the wall, the
internal steel force Ts(xi) and moment Ms(xi) are also invari-
ant along the wall height (in the x direction). The proposed
numerical analysis methodology is based on the idealiza-
tion that the action of unbonded longitudinal reinforcing
steel is statically equivalent to an unknown structural force,
Ts, given by Equation 14 and an unknown structural mo-
ment, Ms, given by Equation 17. The structural force and
moment act on the entire masonry wall and depend on the
kinematics of the wall boundary [Madan, Reinhorn et al
(1996)]. Dropping the argument xi for these variables and
rearranging Equations 1 and 2, the force equilibrium equa-
tions for any section i can be rewritten to express the steel
force Ts  and moment Ms as a structural force and moment

respectively:

           P x T C xx i s ib g b g+ = (33)

         M x M M xz i s ib g b g− = (34)

         V x V x V xy i i s ib g b g b g= + (35)

The numerical analysis involves an iterative procedure
in which the unknown structural force Ts and moment Ms

due  to the longitudinal reinforcing steel are estimated. In-
plane strain deformations and uplift displacements of the
masonry wall are evaluated for estimated values of the struc-
tural variables Ts and Ms.  Strains, es(yj), in the unbonded
longitudinal rebars are calculated from the compatibility
Equation 28 by numerical integration as follows:

      

ε

ε ξ

θ

s j

p i i j i i
i

N

j

y

H
w x y x x

H

M x

C x
y

s

d i

b g b g

b g
b g

=

+ ⋅ + ⋅ ⋅
R
S|
T|

U
V|
W|

+

⋅ −
L
N
M
M

O
Q
P
P

=
∑

1

1

1

1

Φ ∆ (36)

in which wi are weighting factors for numerical integration.
The estimates are then checked by calculating new values
of Ts and Ms from Equations 14 and 17, respectively, based
on an assumed uniaxial stress-strain relationship for the
longitudinal steel. In case of error, the analysis is repeated
with revised estimates of the structural variables Ts and Ms

until the calculated values converge to estimated values
within an allowable tolerance. This tolerance was specified
in the range of 0.5 to 1.0 % in this study.

Numerical Formulation for Solution of Sectional
Response Variables

For a section i discretized into Nf  number of fibers along
the length of the wall (in the y direction), the fiber stresses
can be numerically integrated to obtain the internal ma-
sonry forces C(xi) and V(xi) and masonry moment M(xi)
using Equations 13, 15 and 16 as follows:
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1
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in which the subscript k refers to the kth fiber. Thus, yk is
the y coordinate of the fiber midpoint, tk  the thickness, wk

the weighting factor of kth fiber for numerical integration,
sx(xi , yk) is the average normal stress in the kth fiber and
txy (xi  , yk) is the average shear stress on the face of kth

fiber in the ith section [Figure 2(g)].

From assumption 1 (or Equation 12) and assumption 2
(or Equation 18), the normal stress sx(xi, yk) in the fiber is a
function of the strain variables x(xi) and F(x1) and shear
stress txy (xi, yk).  In mathematical terms,
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Substituting into Equations 37 and 39,
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where the symbol~ ( )τ xy ix  denotes the shear stress distri-
bution at the ith section.

Since masonry exhibits a nonlinear stress-strain rela-
tionship, the internal masonry force C(xi) and  moment M(xi)
are nonlinear functions (equations 41 and 42) of the strain
variables x(xi) and F(xi).  However, given the values of
the structural force Ts and moment Ms due to longitudinal
reinforcing steel, the internal masonry force C(xi) and  mo-
ment  M(xi) are uniquely defined for any section i using
section equilibrium equations 33 and 34. Therefore, for the
estimated values of steel force Ts and moment Ms , the
masonry force C(xi) and  moment  M(xi) are defined for the
ith section, and the unknown masonry strain variables x(xi)
and F(xi) can be obtained by using a suitable numerical
method to solve the simultaneous nonlinear Equations 41
and 42 for an assumed shear stress distribution ~τ xy(xi)a.
Detailed methodology and flowcharts of the numerical so-
lution using a Newton-Raphson procedure may be found
elsewhere [Madan, Reinhorn et al. (1996)]. The solution of
the masonry strain variables x(xi) and F(xi) completely
determines the stress and strain conditions in all the ma-
sonry fibers at the section for the assumed shear stress
distribution ~τ xy(xi)a  (Assumptions 1 and 2), therefore,
stress and strain distributions along the section length are
provided.

The correct shear stress distribution at section i for the
given structural force Ts and moment Ms (due to longitudi-
nal reinforcing steel) is obtained using the dual section
analysis proposed by Vecchio and Collins (1988). A conju-
gate section at an infinitesimally small distance dx away is
considered. For the sake of clarity, the discrete section i
will be denoted as section i1 and the conjugate section will
be referred to as section i2 [Figure 3 (d)]. The masonry
stress and strain distributions are calculated at the conju-
gate section i2 in the same manner (outlined in the previ-
ous paragraph) as for section i1 (i.e. section i), assuming
the shear stress distribution to be identical to that at sec-
tion i1 (Assumption 3), i.e.,

    ~ ~ ~τ τ τxy i xy i xy i
a

x x x1 2b g b g b g= = (43)

A new estimate of the shear stress distribution ~τ xy(xi)c is
then computed by considering the longitudinal equilibrium
of the elements or fibers bounded by the conjugate sec-
tions using equilibrium Equation 20  [Figure 3(d)]. The shear
stress intensity is computed at a defined number of nodes
nn along the section depth [Figure 2(h)] using Equation 20.
The horizontal shear stress txy (xi , yn) acting on the nth

node is calculated from the longitudinal equilibrium Equa-
tion 20 [Figure 3(d)] using the normal stress distributions
obtained for the conjugate sections as outlined in the pre-
vious paragraph. The numerical formulation for the solu-
tion of the longitudinal equilibrium equation (Equation 20)
is presented by Vecchio and Collins (1988) and Madan

(1996). The new shear stress distribution ~τ xy(xi)c, thus com-
puted by solving Equation 20, is compared with the as-

sumed distribution ~τ xy (xi)a at the location of each node
[Figure 5]. If the comparison does not satisfy a defined
convergence criteria, the assumed shear stress distribu-
tion is revised and the analysis repeated for the section.
The shear stress distribution is thus iterated until the con-
vergence criteria is satisfied by the assumed and computed
shear stress distributions. The shear stress distribution
assumed for any iteration is a corrected estimate based on
a weighted average of the assumed and computed distribu-
tions of the previous iteration [Figure 5].

Algorithm for Numerical Analysis

Based on the foregoing numerical modeling and formu-
lation, an incremental iterative algorithm was developed for
analyzing the inelastic lateral force-displacement response
of concrete masonry shear walls with unbonded reinforce-
ment. The solution procedure functions by displacement
control effected by incrementing curvature at the base of
the wall F(x1).  A flowchart of the numerical solution algo-
rithm is presented in Figure 5. The procedure begins by
assuming the unknown structural quantities Ts and Ms for a
control curvature F(x1) at the base section (i = 1). The
solution algorithm computes the unknown masonry strain
x(x1) at the base section for the assumed value of the struc-

tural variable Ts  using sectional force equilibrium Equa-
tions 33 and 41. The algorithm proceeds to compute the
external moment Mz(x1) at the base section using sectional
moment equilibrium Equations 34 and 42, which in turn
determine the external moments Mz(xi) at higher sections
by static equilibrium of the sections. The solution proce-
dure then computes the sectional masonry strain variables
x(xi) and F(xi) at each of the finite sections (i = 2, Ns)
above the base by using sectional equilibrium Equations
33, 34, 41, 42. The shear stress distribution at each section
is determined using the dual section analysis technique
described in the foregoing paragraph. Subsequent to de-
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Figure 5—Flowchart of Numerical Solution Algorithm
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termination of the masonry strain profiles ex(xi, y) and shear
stress distributions tx (xi, y) at all the discrete sections, the
algorithm checks for the existence of uplift or rigid body
motion. Uplift is assumed to initiate with the onset of crack-
ing at the windward edge of the base. The uplift angle, q,
was computed using Equations 21 to 24. Thereafter, strains
es(yj) in vertical unbonded rebars are computed using Equa-
tion 36, which further provide the steel force Ts and moment
Ms using Equations 14 and 17, respectively. The computed
steel force and moment are compared with the assumed
values to check if the errors are greater than the specified
tolerances. If so, the steel force Ts and moment Ms are re-
vised and the entire analysis is repeated for the control
curvature F (x1).  The steel force and moment are iterated
until convergence is achieved. After force and moment
convergence is achieved, the algorithm computes the lat-
eral in-plane force, F, corresponding to the control curva-
ture F (x1) at the base section using the static equilibrium
of the wall as follows:

      F V x
M x

H xy
z= =
−0

0

0
b g b g

b g (44)

in which the subscript o refers to any arbitrary section.

The lateral in-plane displacement (D) at the wall top is
computed from Equation 32 using numerical integration as
follows:
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in which wi and ′wi  are weighting actors for numerical inte-
gration.

Numerical Analysis Procedure for the Special
Case of Bonded Reinforcement

The proposed numerical analysis procedure can be ap-
plied with some modifications for analysis of masonry shear
walls with grouted (bonded) longitudinal reinforcement as
well. Because of bonding, however, the steel force Ts and
moment Ms vary from one cross-section to another and are
therefore calculated at the ith section as:
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Strains es(xi , yj) in the longitudinal reinforcing bars at
any section i are directly related to the sectional masonry
strain variables x(xi) and F(xi) using compatibility Equa-
tion 9 and assumption 1 [Equation 12] as follows:
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This compatibility condition needs to be considered in-
stead of Equation 28 when computing strains in the bonded
reinforcing bars at any section. Further, the steel force Ts

and moment Ms need to be calculated and iterated at each
section to obtain the independent response of that sec-
tion. In addition, the contribution of dowel action provided
by the longitudinal reinforcement also needs to be consid-
ered when calculating the shear stress distribution at any
section. This would imply using Equation 19 instead of
Equation 20. Further, in case of bonded reinforcement, the
rigid body rotation q due to uplift should be set to zero by
setting the value of the parameter Hp in Equation 21 to be
zero. The modifications required in material properties have
been noted previously.

ANALYSIS

The numerical procedure described in the preceding part
of the paper was implemented to analyze the lateral in-plane
force-displacement characteristics of the reinforced masonry
shear wall model shown in Figure 2. The vertical (longitudi-
nal) reinforcing bars are unbonded and anchored into rigid
beams at the top and bottom ends of the wall. The bottom
beam is fixed to the ground and a concentrated lateral load
is applied to the top beam. For numerical analysis, the shear
wall model was discretized into 5 sections along the height.
The shear wall was modeled as a cantilever (fixed at the
base and free at the top) for calculating external bending
moments and shear forces acting on the discrete sections.
The numerical integration of masonry stresses was per-
formed by subdividing each discrete section into a finite
number of fibers along the wall length. A parabolic varia-
tion of normal stress was assumed within the fiber element
for numerical integration. An adaptive subdivision scheme
was used to arrive at the optimum number and thickness of
fibers based on the non-linearity of stress distribution over
the wall length. The scheme proposed by Collins et al. (1990)
for fiber element modeling of a reinforced concrete section
enables self-generation of fiber elements over the section
by automatically refining the fiber size in regions with high
stress gradients. The iterative solution of the sectional
masonry strain variables x(xi) and F(xi) was obtained us-
ing the Newton-Raphson method. Shear stresses were com-
puted at 100 uniformly spaced nodes along the section
depth [Figure 2(h)] using Equation 20. Numerical integra-
tion in Equations 36 and 45 was performed using Simpson’s
rule. The crushing strain of masonry was assumed to be
1.5% based on typical stress-strain curves obtained from
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compression testing of concrete masonry prisms [Englekirk
and Hart (1984)], which show that the material can sustain
stress until strains as high as 2% prior to failure due to
crushing. Past research data indicated that the cracking
stress, fcr, of masonry typically ranges from 5% to 15% of
the masonry prism strength, f ¢m, (peak compressive stress).
A conservative value of cracking stress, equal to 5% of the
masonry prism strength, was adopted for the numerical
analysis.

EXPERIMENTAL VERIFICATION

An experimental study was performed at the State Uni-
versity of New York at Buffalo to evaluate the seismic per-
formance of concrete masonry shear walls with unbonded
vertical reinforcement [Madan (1996)]. Six wall specimens
were tested under in-plane lateral loading in displacement
control to investigate the influence of various parameters
including axial loading, wall aspect ratio, loading method
(monotonic or cyclic), prestress in longitudinal reinforce-
ment, and reinforcement anchorage and splicing, on the in-
plane lateral load behavior of such walls. Experimental data
obtained from the testing was used to verify the proposed
model by comparing the observed response with that pre-
dicted using the model. For the sake of brevity, results of
comparison for only two wall specimens (test specimens 2
and 6) are presented herein. The first test specimen (Speci-
men 2) was designed to exhibit a predominantly flexural
mode of failure (flexure-critical), and the second wall speci-
men (Specimen 6) was designed for a dominant shear fail-
ure mode (shear-critical). During the tests, each specimen
was first subjected to in-plane lateral quasi-static cyclic
loading under a constant axial load of 31 kN (6,970 lb) fol-
lowed by cyclic loading under a constant 115 kN (25,852 lb)
axial load. The unbonded vertical reinforcing bars in test
Specimen 6 were prestressed. The typical configuration of
the two test specimens is illustrated in Figure 6. The figure
also displays the important test parameters for Specimens
2 and 6. In order to ensure shear transfer at the top beam-
wall interface, the uppermost course in the wall is con-
structed with grouted bond beam units. The top beam is
connected to the wall through a steel plate with shear key
projections that are embedded in the grout. The in-plane
horizontal (lateral) and vertical (axial) loads were applied
using servo-controlled hydraulic actuators, each equipped
with an in-series load cell to measure the loads. The test
specimens were also instrumented with several sonic dis-
placement transducers and linear potentiometers to mea-
sure the absolute as well as relative displacements. Details
of the test setup, instrumentation and methodology are
presented by Madan, 1996.

Extensive data were measured and collected during the
experimental program that involved testing of six wall speci-
mens under in-plane cyclic loading. Analysis of the dis-
placement data established that the average height of the

stressed zone, Hp, at the extreme compression fiber (above
the toe) in flexure-critical wall specimens generally varies
from 0.1H to 0.4H for a practical range of axial loads and
wall aspect ratios [Madan (1996)]. Further, the height of the
stressed zone, Hp, is approximately proportional to the mag-
nitude of the axial load. For shear-critical test specimens,
on the other hand, the average height of the stressed zone,
Hp, above the wall toe was found to be negligible. The
observation is reasonable since the shear-critical wall speci-
mens did not undergo uplift during testing due to their
small aspect ratio. For the purpose of numerical analysis,
the value of height, Hp, in flexure-critical test Specimen 2
was 0.1H, in the case of 31 kN (6,970 lb) axial load, and 0.4H,
in the case of 116 kN (26,080 lb) axial load. For numerical
analysis of shear-critical Specimen 6, the height, Hp, was
specified as zero in order to eliminate the uplift component
of the response. The prism strength of masonry was scaled
down for analyzing the in-plane response under 116 kN
(26,080 lb) axial load in order to account for strength degra-
dation due to prior cycling of the test specimens under 31
kN (6,970 lb) axial load. The reduction factors for scaling
were estimated from the strength deterioration observed in
the test specimens at the end of testing under 31 kN (6,970
lb) axial load.

The observed hysteretic load-displacement curves ob-
tained from quasi-static cyclic testing of the flexure-critical
wall Specimen 2 under axial loads of 31 kN (6,970 lb) and 116
kN (26,080 lb) are shown in Figures 7 (a) and (b) respec-
tively. The salient parameters of the test are also included
in the figure. The monotonic load-displacement relation-
ships predicted by the proposed model are superimposed
on the experimental hysteresis loops for each case. Figures
7 (c) and (d) show similar comparisons of experimental vs.
theoretical load-displacement relationships for the shear-
critical test Specimen 6 under axial loads of 31 kN (6,970
lb)and 116 kN (26,080 lb), respectively. Comparisons of the
experimentally measured force-displacement curves and
theoretically estimated envelopes demonstrate that the pro-
posed analysis procedure, in general, predicts the in-plane
lateral force-displacement envelope of the tested shear wall
specimens with a fair degree of accuracy. Minor deviations
in the analytically predicted behavior from experimentally
observed response may be explained in terms of variation
in material properties and limitations of the underlying as-
sumptions of the model. One such assumption is that plane
sections remain plane, which may not be valid in the dis-
turbed end regions. The abrupt descent of the theoretically
obtained lateral load-deformation envelope for test Speci-
men 2 under 116 kN (26,080 lb) axial load signifies crushing
of masonry at the extreme compression fiber at the wall
base (i.e. the toe of the wall), which causes a sharp decline
in the lateral strength of the wall at 32 mm (1.25 in.) lateral
displacement. Since the envelope of experimentally mea-
sured curves does not display such a transition, it may be
argued that the crushing strain was underestimated in
theory. Further, the analytical model is developed for mono-
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tonic loading and, thus, does not account for strength and
stiffness degradation under repeated load reversals. Hence,
analytical predictions of the lateral strength and stiffness
of wall specimens under 116 kN (26,080 lb) axial load may
diverge from experimental results due to error in estimating
degraded masonry strength and stiffness after cycling un-
der 36 kN (8,093 lb) axial load.

Figure 8 presents a typical illustration of the spatial varia-
tion in elemental stress conditions over the wall surface.
That figure illustrates the distributions of principal com-
pressive stress, shear stress, and angle of inclination of
principal compressive stress (each plotted along the wall
length) at the base, mid-height and top sections of wall
Specimen 2 under 31 kN (6,970 lb) axial load. A qualitative
study of the figure reveals that the intensity of principal
compressive stress distribution at the top section of the
wall is greatest at the loaded end and decreases along the
wall length. On the other hand, the intensity of compres-
sive stress distribution at the base section is maximum at
some point near the toe and decreases towards the heel of
the wall. In fact, the principal stresses at the base section
enter into the tensile range within a very short span of
length away from the wall toe, thus indicating a concen-
trated compression in the contact region near the toe and a

loss of contact (or uplift) at the heel. The foregoing obser-
vations suggest that the compression field in the masonry
wall follows an inclined trajectory from the loaded end of
the wall to the compressed contact region at the toe. The
results of stress distribution provided by the analysis can
be used to calculate the exact direction and magnitude of
the compressive stress resultant (masonry compression
strut) across the masonry wall.

DESIGN CONSIDERATIONS

Application of the proposed micro-element model (mi-
cro-model) is tedious and time-consuming. Because of the
substantial computational effort required, it may not be
cost-effective to implement the model for routine design of
masonry shear walls with unbonded reinforcement. For
design purposes, it is more efficient to use the flexure model
presented by Madan, Reinhorn et al. (1996) to evaluate in-
plane flexural strength and ductility of the wall. However,
since the flexure model inherently neglects shear behavior,
design based on the model needs to be complemented with
a methodology for assessing safety of the wall against
shear failure. Current code provisions for masonry design
account for the interaction of shear and flexure using overly
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Figure 6—Test Wall Specimen 2: Typical Details (1 mm = 0.039 in., 1 kN = 224.8 lb)

 Specimen Test Axial Effective Vertical Shear Reinforcement PretensioningDominant
No. No. Load Wall Height Reinforcement (A

h
 / s

h
) Force Failure Loading History

 (kN) (mm) (mm2/ mm) (kN) Mode

2
1 31 2286 0.026 1.219 / 406 0.00 Flexure Sinusoidal Drift History
2 116 2286 0.026 1.219 / 406 0.00 Flexure @ 0.1 and 0.2 Hz

6
1 31 1016 0.029 1.219 / 203 59.97 Shear Sinusoidal Drift History
2 116 1016 0.029 1.219 / 203 0.00 Shear @ 0.1 and 0.01 Hz
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simplified semi-empirical equations, which may be unduly
conservative or inaccurate for the purpose of inelastic de-
sign. Vecchio and Collins (1988) have presented interac-
tion curves for inelastic analysis of concrete sections un-
der combined shear and moment. However, there remains a
need for rational guidelines to account for interaction of
shear and flexure in strength or inelastic design of masonry.

In masonry shear walls with unbonded vertical reinforce-
ment, the component of shear stress due to dowel action of
the longitudinal reinforcement (i.e., the second term in Equa-
tion 19) is zero, so no shear force is resisted by the longitu-
dinal rebars, i. e., Vs(xi) = 0 at any section i. Thus, Equation
3 reduces to

V x V xy i ib g b g= (49)

The critical section for shear failure in masonry shear
walls with unbonded vertical reinforcement under in-plane
lateral load is at the base. From Equation 49, the shear ca-
pacity of the base section is essentially the shear capacity,
Vu, of masonry in contact with the foundation, which de-
pends on the moment M and axial force C in the masonry.

A parametric study was performed to study interaction of
the shear force Vu and moment Mu in monotonically loaded
masonry at the ultimate limit state for varying values of
axial force C.  Results of the study are summarized by the
interaction curves plotted in Figure 9. The curves shown in
the figure employ dimensionless parameters to depict the
interaction of shear force and bending moment in concrete
masonry sections at the ultimate limit state for different
magnitudes of axial force. Therefore, these curves can be
universally applied for evaluating the shear and flexural
capacity of concrete masonry subjected to combined shear
and flexure. The figure illustrates that, in general, failure is
governed by flexure for aspect ratios (M / Vd) greater than
1.0. For aspect ratios smaller than 1.0, failure depends on
the level of axial force – the higher the axial force, the more
prone the member is to shear failure. The interaction curves
presented in Figure 9 can be adopted for strength design of
unreinforced masonry or even masonry with unbonded
steel reinforcement.

In this paper, an integrated design methodology is pro-
posed for masonry shear walls with unbonded reinforce-

Figure 7—Theoretical vs. Experimental In-Plane Force Displacement Response for (a) Test Specimen 2 under 31 kN axial
load, (b) Test Specimen 2 under 116 kN axial load, (c) Test Specimen 6 under 31 kN axial load, (d) Test Specimen 6 under
116 kN axial load (1 mm = 0.039 in., 1kN = 224.8 lb)

Shear Critical Wall
(a) (b)

(d)(c)
Model Experiment

Flexure Critical Wall
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ment. The methodology involves implementation of the
flexure model proposed earlier by the authors [Madan,
Reinhorn and Mander (1996)] in conjunction with the inter-
action curves presented in Figure 9. The authors recom-
mend that flexure model be used for evaluating the flexural
strength and ductility of the masonry shear wall. The ulti-
mate moment, Mu, in masonry at the base obtained from
results of flexural response analysis can be subsequently
used to estimate the shear force capacity, Vu, of masonry at
the base by using the shear - moment capacity interaction
curves presented in Figure 9. Since the shear strength of
the wall equals the shear force capacity of masonry at the
base, the wall can be designed to resist shear failure by
ensuring that the external shear force does not exceed the
estimated shear force capacity of masonry at the base, i.e.,
Vy < Vu.

CONCLUSIONS

The fiber element (micro-element) model presented in
this paper provides a unified analytical approach for evalu-
ating the in-plane lateral force-displacement envelope of
masonry shear walls with unbonded vertical reinforcement
by taking into account the interaction of flexure, shear and
uplift. The model enables detailed nonlinear analyses of
such walls by furnishing a complete solution of the force
and displacement as well as stress and strain fields in the
wall using rational considerations of force equilibrium and
displacement compatibility. The model permits the use of
realistic constitutive models for component materials and
treats the various governing factors in a general manner.
Further, the modeling approach is versatile, in that the ana-
lytical formulation of the model can be readily modified to

Figure 8—Spatial Variation of Stress Conditions in Test Specimen 2 under 31 kN Axial Load (1 mm = 0.039 in., 1kN =
224.8 lb, 1MPa = 145 psi)
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account for different boundary conditions and loading pat-
terns. The proposed micro-model provides a powerful re-
search tool and may be effectively implemented in situa-
tions that warrant such a meticulous analysis. For purposes
of design, the proposed analytical technique was applied
to a parametric study to generate interaction curves that
can be conveniently used for evaluating the shear resis-
tance of concrete masonry sections subjected to combined
shear and bending. The interaction curves, in conjunction
with the flexure model proposed by the authors in an earlier
paper [Madan, Reinhorn and Mander (1996)] provide an
integrated design methodology for masonry shear walls
with unbonded longitudinal reinforcement, taking into ac-
count interaction of shear and flexure under in-plane lateral
loading.
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NOTATIONS

Ah = horizontal steel reinforcement of area.
Asj = cross sectional areas.
b = width.
bw = equals wall width b.
C = point of reaction.
C(xi) = internal compressive forces in masonry.
d = contact length.
dc = distance.
dx = small distance.
Em = initial slope of the stress-strain curve.
Es

0 = modulus of elasticity.
Esec = slope of the secant to the peak stress.
fcr = cracking strain.
fm = stress.
f ¢m = peak compressive stress.
fmt = tensile stress.
fs = steel stress.
fy = yield strength of steel.
F = lateral in-plane force.
H = height.
Hp = average height of the compressed zone.
j = refers to the jth bar.
k = refers to the kth fiber.
L = length.

M(xi) = internal resisting moments due to masonry.
Ms = unknown structural moment.
Ms(xi) = internal resisting moments due to steel.
Mz = in plane bending movement.
Mu = ultimate moment.
Nb = unbonded vertical rebars.
Nf = number of fibers along the length of the

wall (in the y direction).
Ns = finite number of sections.
Px = vertical axial force.
tk = the thickness.
Ts = unknown structural force.
Ts(xi) = internal tensile forces in steel.
u(xi, y) = vertical displacement in the longitudinal x

direction at coordinates (x, y)
ur(xi, y) = the vertical in-plane displacement due to

rigid body uplift.
us(xi, y) = the vertical (longitudinal) in-plane displace-

ment due to strain deformations of the wall.
v(xi, y) = total lateral in-plane displacement.
vr(xi, y) = uplift-produced lateral in-plane displace-

ment.
vs(xi, y) = strain deformation-produced lateral in-plane

displacement.
V(xi) = internal shear force in the horizontal y di-

rection due to masonry’s shear resistance.

Figure 9—Dimensionless Shear Moment Capacity Interaction Curves for Shear Design of Masonry Walls with Unbonded
Reinforcement
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Vs(xi, y) = shear resistance of masonry in the y direc-
tion due to dowel action of longitudinal steel.

Vy = lateral shear force.
Vu = shear force capacity.
wi = weighting factors for numerical integration.
wi¢ = weighting factors for numerical integration.
wk = weighting factor of the kth fiber.
W = wall weight.
x = coordinate.
y = coordinate.
yc = y coordinate of point of action.
yj = jth rebar at the y coordinate.
yk = y coordinate of the fiber midpoint.
a

1
= factor accounting for bond characteristics

of the steel reinforcement.
a

2
= factor depending on the nature of loading.

dx = conjugate section at an infinitesimally small
distance.

D = lateral displacement.
e

cr
= cracking strain.

eh(xi, y) = horizontal steel strain in the i th section at
coordinate y.

e
m

= strain.
e ¢

m
= peak compressive strain.

e
mt

= tensile strain.
e

p
= strain in the masonry resulting from the ap-

plied vertical prestress in the rebar.
e

s
= steel strain.

e
s
(yj) = uniaxial longitudinal strain.

e
s
(xi , yj) = strain in the vertical rebar j at any cross-sec-

tion i.
e

x
(xi , y) = distribution of normal strain.

e
y

= normal strain in the masonry in the y direc-
tion.

F (x
i
) = angle of inclination of the linear strain pro-

file or the flexural curvature at the i th sec-
tion.

s
h

= horizontal steel stress in the ith section at
coordinate y.

s
x
(xi , y) = normal stress in a masonry element at coor-

dinate y in the i th section.
s

x
(xi , yk) = normal stress in the fiber.

s
y

= normal stress in masonry in the y direction.
q = rigid body rotation.
t

xy
(x, y) = shear stress distribution.

~τ xy(x
i
) = shear stress distribution of the ith section.

t
xy
(x

i
)a = assumed shear stress distribution.

t
xy
(x

i
)c = estimate of the shear stress distribution.

t
xy
(x

i 
, y) = shear stress distribution.

t
xy
(x

i 
, y

k
) = average shear stress on the face of kth fiber

in the ith section.
x(x

i
) = masonry strain variable.

¶d
c

= incremental vertical displacement.
¶e

x
(xi, L/2) = incremental normal compressive strain.

¶q
d

= incremental angle of uplift.
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