Assessment schedule: Digital Technologies 91637 “Comic Book Store” stock monitoring program

	Evidence/Judgements for
Achievement
	Evidence/Judgements for Achievement with Merit
	Evidence/Judgments for Achievement with Excellence

	The student has developed a complex computer program for the specified task.
The student has designed and implemented a program which:
· met most of the specifications outlined in the task for “Comic Book Store”
· Example: Completed all functions except the bulk restock function (which is implemented only
· included variables, an indexed data structure, and a modular structure including details of the procedural structures of the modules
· included a working graphical user interface with different sources of event generating components and event handling, and used classes and objects to encapsulate data and methods
· set out the program code clearly and documented the program with comments
· tested and debugged the program to ensure it worked on a sample of expected input cases

Evidence/Judgements:
The student has completed a working program to meet specifications using a documented design process, but may:
· not have anticipated user errors, for example, multiple decimal points within one number
· have included redundant pieces of code
· have poorly named variables, for example, x instead of current_input
· not be able to articulate what specific pieces of code are doing, having developed them by trial and error with little understanding
· have failed to properly contain all aspects of the logic or state of the stock monitor within the support class.
· included a working graphical user interface with different sources of events generating components and event handling, and used classes and objects to encapsulate data and methods
The student has included a functioning user interface, but it may:
· respond to a button click and the corresponding keyboard event with duplicated and repeated code instead of the same code
· have individually named buttons and then stored them in an indexed data structure as well, only because the criteria requires it
· distinguish between events with awkward/ inefficient if statements instead of, for example, if/elif/else
· respond to number inputs individually instead of as a group of possible inputs requiring the same response
· respond to operator inputs individually instead of as a group of possible inputs requiring the same response.
Set out the program code clearly and document the program with comments
· For example, a comment for code that adds one unit to the stock level: “Adds one unit to the stock level.”
Tested and debugged the program to ensure it works on a sample of expected input cases
· The program works on clean input such as clicking the appropriate buttons to Sell or Restock the inventory
This description relates to only part of what is required, and is indicative only.

	The student has skilfully developed a complex computer program for the specified task.
The student has designed and implemented a program which:
· met all the specifications outlined in the task for “Comic Book Store”
· used well-chosen modular and procedural structures, scope and encapsulation for data and methods, graphical user interface and event handling mechanisms
· documented the program with variable and module names and comments that accurately describe code function and behaviour
· followed a disciplined design and implementation process, documenting cycles of incremental development and documenting and conducting comprehensive testing processes, to ensure that the program worked on inputs that included both expected and boundary cases

Evidence/Judgements:
The student has completed a working program to meet specifications, following a disciplined design, implementation, and comprehensive testing process with documented cycles of incremental development
The student has, for example:
· anticipated and responded to user errors, for example, preventing the use of a string in the restock function, but perhaps only in such a way that the user must restart the whole restocking process
· thoughtfully edited their code, removing redundancy
· understood the purpose of all the code they have written and are able to articulate that purpose.
Has used well-chosen scope and encapsulation for data, control structures, elements of the programing language, and event handling mechanisms
The student has, for example:
· mostly maintained a clear distinction between the GUI class and the logic/support class
· created and added buttons to a list(s) using a loop(s) and a list(s) of strings
· bound the handler(s) to keyboard events using the same technique
· placed buttons using loop(s)
· responded to a button click and the corresponding keyboard event with the same code
· responded to logical groups of possible user inputs (for example, all numbers) with the same code
· ensured that a value that is only ever required in one module should not belong to the whole class.
Documented the program with variable and module names and comments that accurately describe code function and behaviour.
· The student has named variables descriptively, for example, current_input, current_operator etc.
· The comments used accurately describes code

This description relates to only part of what is required, and is indicative only.

	The student has efficiently developed a complex computer program for the specified task.
The student has designed and implemented a program:
· in which the overall modular and procedural design, graphical user interface, and event handling design, were a well-structured, logical decomposition of the task, and the resulting program is flexible and robust
· which set out the program code concisely and documented the program with comments that explained and justified decisions
· where there was evidence of comprehensive testing and debugging in an organised and time effective way and which ensured the program was correct on expected, boundary and invalid input cases

Evidence/Judgements:
The student maintained a clear distinction between the GUI class and the logic/support class so that the logic class is easily reusable for a differently styled GUI or a different context, for example, command line
· designed the GUI to be easily adapted, for example, if buttons for adding another stock item were suddenly required to be added the extra code needed would be minimal
· designed the handler to be easily adapted, for example, if functionality for adding another stock item were suddenly required the extra code needed would be minimal
· anticipated user errors (for example, multiple clicks, strings where numbers were expected or leading zeroes) and responded gracefully, for instance, excluded ‘impossible’ entries and given the user the chance to recover without losing ‘work’ or simply being told ‘ERROR’
Set out the program code concisely and documented the program with comments that explain and justify decisions

This description relates to only part of what is required, and is indicative only.

Final grades will be decided using professional judgement based on a holistic examination of the evidence provided against the criteria in the Achievement Standard.

