
3.46 Assessment
Work in progress. Please do not use for assessment, yet!

Introduction
Write a program for a comic book store to keep track of stock for comic books. The program
allows the user to sell and restock a comic, updating the stock levels of the comics
accordingly.

This is an individual assessment activity. You will be given 8 classes of in-class time to
complete the planning of the program, and to complete the programming component. You
are allowed one sheet of A4 paper of handwritten notes to help you through this assessment.

See Appendix 1 for planning guide.

Interface Structure
Here is a rough guideline for how the interface can be structured.

Program Details
● The comic book stores the following comics:

○ Super Dude - Starting with 8 in stock
○ Lizard Man - Starting with 12 in stock
○ Water Woman - Starting with 3 in stock

● The user should be able to sell a comic one at a time, reducing the stock by one.
○ The interface should notify the user if the comic has been sold successfully.
○ The interface should notify the user with an error message if the comic has not

been sold if there is not enough stock.
● The interface should display:

○ The number of comics sold.
○ The current stock levels of all comics (at once). If the stock levels change at any

point, the interface should update.
● The user should be able to restock a chosen comic.

○ The user should be able to input how many copies the comic is being restocked
with. For example, restock 10 copies of Super Dude at once.

○ There is no limit to the amount of comics the store can stock.
● The program should display relevant error messages for appropriate situations.

Note: There does not need to be any functionality for the user to add a new comic book to the
program. However available comic books should easily be editable by editing the program code.

Final Submissions
At the end of the allotted time, hand in the following for assessment:

● your planning document
● a print-out of your final source code
● an electronic version of your source code
● screenshots of example output with annotations

Assessment schedule

Required Elements Evidence

Achieved Designing and implementing a
program that includes variables, an
indexed data structure (a list), and a
modular structure including details of
the procedural structures of the
modules.

Has a working program.

Including a working graphical user
interface with different sources of
event generating components and
event handling.

Program has a functional graphical
user interface.

Using classes and objects to
encapsulate data and methods.

Evidence in program code.

Setting out the program code clearly
and documenting the program with
comments.

Evidence in program code.

Testing and debugging the program to
ensure it works on a sample of
expected input cases.

Evidence in program code and
planning.

Required Elements Evidence

Merit Using well-chosen modular and
procedural structures, scope and
encapsulation for data and methods,
graphical user interface and event
handling mechanisms.

Evidence in program code.

Documenting the program with
variable and module names and
comments that accurately describe
code function and behaviour.

Evidence in program code.

Following a disciplined design and
implementation process.

Evidence in planning and program.

Develops with documented cycles of
incremental development.

Evidence in planning and program.

Implements comprehensive testing
process, to ensure that the program
works on inputs that include both
expected and boundary cases.

Evidence in planning document.

Required Elements Evidence

Excellence Ensuring that the overall modular
and procedural design, graphical
user interface, and event handling
design, are a well-structured, logical
decomposition of the task, and that
the program is flexible and robust.

Evidence in planning and program.

Setting out the program code
concisely and documenting the
program with comments that
explain and justify decisions.

Evidence in planning and program.

Comprehensively testing and
debugging the program in an
organised and time effective way to
ensure the program is correct on
expected, boundary and invalid
input cases.

Evidence in planning and program.

Appendix 1: Planning Guide

Task 1: Identify user inputs
What program functions can the user trigger through the interface?

Task 2: Identify information to be displayed
What information will the interface need to display to the user?

Task 3: Sketch interface design
Draft a rough design for the interface that allows the user to trigger functionality in task 1, while
also annotating where the information in task 2 will be displayed. Create another sketch listing the
interface widgets used to create the interface.

Task 4: Identify any classes required
Explain what the class will represent, plus listing what information will be stored in the class and
any functions the class will have.

Task 5: Identify any constants or existing data if required

Task 6: Identify indexed data structures

Task 7: Determine what calculations are necessary
Write out the calculations the program will have to compute.

Task 8: Develop a modular structure for your program
Describe any functions that the computer program will have, identifying any sub-functions where
required.

Task 9: Define the functions identified
Describe the functions for both the main program and any classes in terms of input and/or output
where required. You may choose to do this with flow charts or pseudo-code (not Python code!).
Add in additional steps or explanations using sequential, conditional, iterative statements where
required. Identify global and/or local variables.

Task 10: Document test cases for testing the program
Document any testing that can be used to test your program. If any input is inputted using the
keyboard, describe the expected input, plus any exceptional, boundary or invalid cases.

Task 11: Refine the plan
Note any modifications here when iterating through the development cycles.

