[bookmark: h.oszk3dxu5v86]Achievement Standard Digital Technologies 91637
Develop a complex computer program for a specified task

Version 2	Level 3	Credits 6

	Achievement
	Achievement with Merit
	Achievement with Excellence

	Develop a complex computer program for a specified task involve.
	Skilfully develop a complex computer program for a specified task involves.
	Efficiently develop a complex computer program for a specified task involves.

[bookmark: h.pl2b7gwlgios]Teacher Guidelines
This task has been developed to be used with Python and Tkinter. This program requires the student to create a computer program for a comic book store to keep track of stock for comic books. This program shall allow the user to sell and restock a comic, update the stock levels of a comic and display accordingly.

This program requires a graphical user interface, and also classes and objects. Preferably, their program should define a class and then make several (at least two) objects of the class, so they get the idea of a class being like a "template" for making multiple objects of the same type (but with different values in the fields). You may not use any code that is auto-
generated by an IDE.

The time allocated for this assessment should be adapted to suit your students. The format of whether students should be able to access their previous work, should also be considered.

To assess if a student is implementing incremental development, it would be good practice for student to submit or save a new version of their source code at the end of each working day.

Planning needs to show a disciplined design process, similar to appendix 1. Planning should show development and use of testing plans to ensure that the program works on inputs that include both expected and boundary cases.

Program should show good use of variable and module names as well as comments that justify code function and behaviour.

[bookmark: h.wiemsk2k4qq9]Achievement Standard Digital Technologies 91637
Develop a complex computer program for a specified task

Version 2	Level 3	Credits 6

	Achievement
	Achievement with Merit
	Achievement with Excellence

	Develop a complex computer program for a specified task involve.
	Skilfully develop a complex computer program for a specified task involves.
	Efficiently develop a complex computer program for a specified task involves.

[bookmark: h.ce2gqh958xkr]Student Instructions
[bookmark: h.fwi1s32q1nf9]Introduction
Write a computer program for a comic book store to keep track of stock for comic books. This program shall allow the user to sell and restock a comic, update the stock levels of a comic and display accordingly.

This is an individual assessment activity. You will be given 8 classes of in-class time to complete the planning of the program, and to complete the programming component. You are allowed one sheet of A4 paper of handwritten notes to help you through this assessment.

See Appendix 1 for planning guide.
[bookmark: h.zdzmpawnbhb5]Program Details
· The comic book stores the following comics:
· Super Dude - Starting with 8 in stock
· Lizard Man - Starting with 12 in stock
· Water Woman - Starting with 3 in stock
· The user should be able to sell a comic one at a time, reducing the stock by one.
· The interface should notify the user if the comic has been sold successfully.
· The interface should notify the user with an error message if the comic has not been sold if there is not enough stock.
· The interface should display:
· The number of comics sold.
· The current stock levels of all comics (at once). If the stock levels change at any point, the interface should update.
· The user should be able to restock a chosen comic.
· The user should be able to input how many copies the comic is being restocked with. For example, restock 10 copies of Super Dude at once.
· There is no limit to the amount of comics the store can stock.
· The program should display relevant error messages for appropriate situations.

Note: There does not need to be any functionality for the user to add a new comic book to the program. However available comic books should easily be editable by editing the program code.
[bookmark: h.bgip0avnp05x]Final Submission
At the end of the allotted time, hand in the following for assessment:
· your planning document
· a print-out of your final source code
· an electronic version of your source code
· screenshots of example output with annotations
[bookmark: h.nv4f8cxfejq2]

[bookmark: h.2tax6kofz4mg]
[bookmark: h.nniur9lx8diu]Assessment schedule

	
	Required Elements
	Evidence

	Achieved
	Designing and implementing a program that includes variables, an indexed data structure (a list), and a modular structure including details of the procedural structures of the modules.
	Has a working program.

	
	Including a working graphical user interface with different sources of event generating components and event handling.
	Program has a functional graphical user interface.

	
	Using classes and objects to encapsulate data and methods.

	Evidence in program code.

	
	Setting out the program code clearly and documenting the program with comments.
	Evidence in program code.

	
	Testing and debugging the program to ensure it works on a sample of expected input cases.
	Evidence in program code and planning.

	
	Required Elements
	Evidence

	Merit
	Using well-chosen modular and procedural structures, scope and encapsulation for data and methods, graphical user interface and event handling mechanisms.
	Evidence in program code.

	
	Documenting the program with variable and module names and comments that accurately describe code function and behaviour.

	Evidence in program code.

	
	Following a disciplined design and implementation process.
	Evidence in planning and program.

	
	Develops with documented cycles of incremental development.

	Evidence in planning and program.

	
	Implements comprehensive testing process, to ensure that the program works on inputs that include both expected and boundary cases.
	Evidence in planning document.

	
	Required Elements
	Evidence

	Excellence
	Ensuring that the overall modular and procedural design, graphical user interface, and event handling design, are a well-structured, logical decomposition of the task, and that the program is flexible and robust.
	Evidence in planning and program.

	
	Setting out the program code concisely and documenting the program with comments that explain and justify decisions.

	Evidence in planning and program.

	
	Comprehensively testing and debugging the program in an organised and time effective way to ensure the program is correct on expected, boundary and invalid input cases.
	Evidence in planning and program.

[bookmark: h.zdsvoljjnrw1]

[bookmark: h.xyo8zcxsuf4r]
[bookmark: h.4gd3vbl4in9o]Appendix 1: Planning Guide
[bookmark: h.p7hnhydrszgg]Task 1: Identify user inputs
What program functions can the user trigger through the interface?
[bookmark: h.qyfz1dsh39pd]Task 2: Identify information to be displayed
What information will the interface need to display to the user?
[bookmark: h.614xezbmq6em]Task 3: Sketch interface design
Draft a rough design for the interface that allows the user to trigger functionality in task 1, while also annotating where the information in task 2 will be displayed. Create another sketch listing the interface widgets used to create the interface.
[bookmark: h.pvndi18i9ly8]Task 4: Identify any classes required
Explain what the class will represent, plus listing what information will be stored in the class and any functions the class will have.
[bookmark: h.xbvyfdrddzlo]Task 5: Identify any constants or existing data if required
[bookmark: h.2m9k3a2pqdiu]Task 6: Identify indexed data structures
[bookmark: h.99h9dtk1e9bf]Task 7: Determine what calculations are necessary
Write out the calculations the program will have to compute.
[bookmark: h.6v2s48ehxd3a]Task 8: Develop a modular structure for your program
Describe any functions that the computer program will have, identifying any sub-functions where required.
[bookmark: h.wjhd6z55j2wg]Task 9: Define the functions identified
Describe the functions for both the main program and any classes in terms of input and/or output where required. You may choose to do this with flow charts or pseudo-code (not Python code!). Add in additional steps or explanations using sequential, conditional, iterative statements where required. Identify global and/or local variables.
[bookmark: h.p6ult974rxt5]Task 10: Document test cases for testing the program
Document any testing that can be used to test your program. If any input is inputted using the keyboard, describe the expected input, plus any exceptional, boundary or invalid cases.
[bookmark: h.5p0diaabv9ok]Task 11: Refine the plan
Note any modifications here when iterating through the development cycles.
[bookmark: h.w3j4k9h82k0m]Task 12: Document testing
Show screenshots of your program working with descriptions of each image. These images should test the tests cases listed above.
