
1

ENGLISH

2

In 1969, millions of people around the Earth gathered
around their television sets to witness an event that
was happening 384,000 km away. The Eagle lunar
landing was on its way to land on the moon, and it re-
lied on the non-stop calculations of its on-board com-
puter, which accomplished this with less computing
power than a modern digital watch. However, three
minutes before landing, the computer triggered seve-
ral alarms: a radar that should have been switched off
during the landing procedure unexpectedly switched
on. The on-board computer, which needed to devote
its scarce computing resources to landing the lunar
module, could easily become overwhelmed by this
extra work. Fortunately, the software that managed
the on-board computer, designed by a team of engi-
neers led by Margaret Hamilton, was smart enough to
detect the problem. The computer alerted the astro-
nauts, effectively saying “I am overloaded with more
tasks than I should be doing right now, so I’m going
to focus only on the important tasks, those that have
to do with landing.” Without this novel and intelligent
design, we may have never taken that “small step for
man and giant leap for mankind”.

It took more than 30 years before NASA recognized
Margaret Hamilton’s accomplishments. Hamilton
was the director of MIT’s Software Engineering Divi-
sion, charged with developing the on-board software
for the entire Apollo program: the only piece of sof-
tware that has allowed humanity to set foot on other
worlds.

3

MOON is an educational game where players will simulate a sim-
ple computer.

Help the astronauts of the Eagle lunar module to fulfill their mis-
sion while you learn how to count in binary, perform logical ope-
rations, and find out how a computer works... while also having
fun!

MOON is recommended for 10-year-olds and older, for 1 to 4
players and an estimated duration of 15-45 minutes (depending
on the selected difficulty).

1. Place the 4 CPU registers (A, B, C, and D) and their correspon-
ding switched-off bits in the middle of the table. This will be the
central board.

2. Place the operation cards on the left of the central board, sor-
ted by their energy usage: first those requiring 2 energy units
(INC, DEC), then those requiring 1 energy unit (NOT, ROL, ROR,
ROL, MOV), and finally those requiring 1/2 energy units (OR,
AND, XOR).

3. Shuffle the goal cards and place the deck face-down on the
right side of the central board. These cards represent the calcula-
tions astronauts need to make to land on the moon.

4. Take 3 energy units and place them next to you.

MOON simulates a real computer. Operations modify data in the
same way as in real microprocessors. So, let’s review how to count
in binary before you start playing.

SET UP A GAME

4

Both the individual RAM modules and the CPU registers have se-
veral bits that work as binary counters. Each position has an asso-
ciated number (1, 2, 4 and 8 in 4-bit registers).

If all the bits of a register are swit-
ched off, the value zero is stored.

If there are any switched-on bits, you have to add the numbers
placed on the top of the CPU. This will be the value stored in that
register.

For example, this combination repre-
sents the number 3 because the bits
in positions 1 and 2 are switched on,
so 1 + 2 = 3.

This represents the number 9 becau-
se the bits in positions 1 and 8 are
switched on, so 1 + 8 = 9.

COUNTING IN BINARY

5

Prepare the game as explained on page 3 of this manual.
For the first game, we recommend to use 3 energy units
per round and not to use OR, AND, and XOR operations.
Later, you can adjust the difficulty of the game to your level.

To win the game, you must help the astronauts fulfill
their mission by solving all the goal cards. Each goal
cards shows a combination of bits. To solve the goal
card, you must store that combination of bits in register
A of the CPU.

At the beginning of the game, flip the first three goal
cards and copy them in registers B, C and D. Once they
are properly placed, discard these 3 goal cards.

Then, flip the top card in the stack of goal cards, and place it fa-
ce-up next to the stack.

In each round, you can perform as many operations
as you wish depending on the energy units available
(remember that there are operations such as OR that
require 1/2 energy units, while others like INC requi-
re 2 energy units).

You are not required to spend all energy units in one round, but
you cannot save energy for the next round.

Use your energy units to perform operations on registers A, B,
C and D of the CPU and achieve the goal. Remember that a goal
card will not be solved until its value is stored in register A of the
CPU.

Whether you have resolved the goal card or not, at the end of the
round, you have to move the unsolved goal cards up one position,

COOPERATIVE MODE

6

take the top card in the stack of goal cards, and pla-
ce it face-down next to the stack:

This is when you will recover all the energy you had
at the beginning of the round.

If a goal card advances to 5th position
at the end of the round, you are a slow

CPU, the game is over and the lunar mission failed.

This can happen even if there are no goal cards left in
the stack but it takes you more than 5 rounds to solve
the last goal cards.

In other words, at the end of the round the goal cards
move up regardless the number of cards left in the
stack.

On the other hand, if you manage to solve all the goals of the stack
promptly, astronauts will be able to land into the moon safely and
you win!

Moreover, there are goal cards that don’t have a
combination of bits but a bug.

These special cards cannot be discarded and
they will block one of the positions of the list of
pending goals for the rest of the game.

During the game, you will need to modify the bits of the CPU re-
gisters to reach a goal specified in a goal card. You will do this by
using certain CPU operations: INC, DEC, ROL, ROR, MOV, NOT,
OR, AND and XOR.

This operation is used on 1 register and costs 2 energy
units. It adds 1 to the total value stored in the register:
INC

7

If the register stores the maximum value (all bits switched on), an
overflow happens and the register is reset to zero:

This operation is used on 1 register and costs 2 energy
units. It subtracts 1 to the total value stored in the register:

If all the bits of the register are switched off, subtracting 1 will cause
an underflow that sets all the bits of the register to one (switched on):

This operation is used on 1 register and costs 1 ener-
gy unit. It involves shifting every bit on the register to the left

DEC

ROL

8

and placing the remaining bit on the left in the rightmost position:

In many cases, it is equivalent to multiplying the value of the
register by 2:

This operation is used on 1 register and costs 1 energy
unit. It involves shifting every bit on the register to the right and
placing the remaining bit on the right in the leftmost position:

In many cases, it is equivalent to dividing the value of the register
by 2:

ROR

9

This operation is used on 2 registers or 1 register and a
RAM module and costs 1 energy unit (1/2 in competitive mode).

It copies all bits from one register to another, overwriting the va-
lue stored in the destination (it can be useful to copy a value into
your RAM module and then recover it later to prevent other pla-
yers from modifying it).

This operation is used on 1 register and costs 1 energy
unit.

It negates every bit on the register: switched-on bits are switched
off, and switched-off bits are switched on. This involves flipping all
the bits of the register.

This operation is used on 2 registers and costs 1/2
energy unit.

It copies only the switched-on bits from one register to another.

MOV

NOT

OR

10

This operation is used on 2 registers and costs 1/2
energy unit.

It copies only the switched-off bits from one register to another.

This operation is used on 2 registers and costs 1/2
energy unit.

It copies only the switched-on bits from one register to another,
but if the bit was already on, it’s turned off.

AND

XOR

11

You can adapt the difficulty of the game in several ways:

1. Changing the number of energy units available per round. We
suggest you use 3 units of energy (easy) for the first games and
then reduce it progressively (normal: 2.5; hard: 2; master: 1.5).

2. Changing the number of “bug” cards the goal cards deck will
have (easy: none; normal: 1; hard: 2; master: 2).

3. Changing the initial state of the registers. For an easy difficulty,
take the first 3 goal cards of the deck at the start of the game, and
copy their values into registers B, C and D (these three cards can
then be considered solved). For normal difficulty, do the same with
the first 2 goal cards and registers B and C. For hard difficulty, the
first goal card is copied to register B. For master difficulty, register
A is set to value 1 and the rest of registers are set to 0.

4. Adding event cards to the goal cards deck.

Add event cards to the deck of goal cards to make the games
more exciting:

cards reset a registers (all its bits are switched off):

DIFFICULTY

EVENTS

RESET

12

register cards disable the register:

operation cards disable the operation.

cards repair an existing ERROR in a register or operation
(you cannot keep them around to repair future errors).

Before playing in competitive mode, it’s a good idea to have pla-
yed in collaborative mode first. Review the previous sections to
learn the basics of the game.

Prepare the game as explained on page 3 of this manual. Each pla-
yer chooses a color, takes the RAM card of that color and sets all
the positions of their RAM module to zero. Distribute the energy
units to each player according to the game’s desired difficulty: 4
for easy, 3 for normal, 2.5 for difficult, and 2 for master.

Shuffle the goal cards and place them face-down to the right of
the CPU. Each player takes a goal card from the deck, looks at it

ERROR

ERROR

OK

COMPETITIVE MODE

13

(without showing it to the other players) and places it face-down
next to their RAM module.

In each turn, each player may play as many operation cards as
allowed by their energy units. A player is not required to use all
their energy units. Energy units cannot be transferred from one
player to another.

Any player can modify the values of any of the bits in the 4 regis-
ters of the CPU in their turn, but will not be able to copy or modify
the values stored in the RAM of other players.

If a player manages to store their goal in register A of the CPU
during their turn, the player will show their goal card to the rest
of the players, keep it next to their RAM module and take another
goal card from the deck.

Once the deck of goal cards deck is exhausted, the player who has
solved the most goal cards will be the winner.

In competitive mode, there are two additional changes with respect
to the cooperative mode:

1. The MOV operation requires 1/2 energy unit (instead of 1 energy
unit).

2. Bug cards are used to view another player’s goal card at any
time during the game. When a player takes this card from the deck,
they show it to the other players and saves it for later use. The bug

14

card can only be used during the player’s turn and, when used, the
player who was forced to show their goal card will take posses-
sion of the bug card, which they can then use during one of their
turns. These cards do not count as a solved goal to decide the
winner at the end of the game.

You can also make each player have special features in the com-
petitive games. Look at the back of the RAM cards to see which
hacker you want to be:

Green: you can use INC or DEC by consuming only 1
energy unit.

Yellow: you can use ROL or ROR consuming only 1/2
energy units.

Purple: you can make 2 MOV operations without consu-
ming energy on each turn.

Red: you can do 2 logic operations OR, AND, XOR without
consuming energy on each turn.

MOON’s modular design allows you to expand the number of bits
in its CPU, substantially increasing the complexity of the game.

The base game comes with 8 extra bits to extend the registers A,
B, C and D to 5 bits or 6 bits.

HACKERS

EXTRA BITS

15

Since goal cards only contain 4-bit combinations, we will need two
goal cards to indicate the 5-bit or 6-bit combinations to be solved.

In cooperative mode, we will draw two goal cards when solving
a goal:

-- You solve a goal

-- You show the following goal.

-- At the end of the round, you draw one goal card.

The goal will be made up of all the rightmost bits of the two goal
cards. For example, playing with registers of 6 bits, the goal will
comprise the 4 bits of the card on the right and the 2 rightmost bits
of the card on the left:

In competitive mode, you will put each part of the goal to each
side of your RAM module to avoid mixing them.

16

This game was created within the framework of the COM-
PUS project co-funded by the Erasmus+ Programme of the
European Union and developed by the University of Deusto
(Spain), AGR Priority (Spain), Fundación Educativa ACI - Es-
clavas SC-Fatima (Spain), Școala Gimnazială Ferdinand I (Ro-
mania) and OEIIZK: Osrodek Edukacji Informatycznej i Zas-
tosowan Komputerow w Warszawie (Poland). To learn more

about the project, visit http://compus.deusto.es.

The European Commission support for the production of this
publication does not constitute an endorsement of the con-
tents which reflects the views only of the authors, and the
Commission cannot be held responsible for any use which

may be made of the information contained therein.

English translation: Borja Sotomayor.

© 2019, Pablo Garaizar. Creative Commons CC BY-SA

