bar

sem

- core
<arms>

{moss seed}

{moss seed}

seed

seed

moss (map term foot)
{moss seed}

twig (map term foot)
{seed seed}

seed

- mold

(list moss)

{@tas moss}

(list {{aura @} moss})

{moss moss}
{moss moss}
(list moss)
{moss moss}
seed

- call

{wing (list (pair wing seed))}
{wing (list (pair wing seed))}

{wing seed seed}
{seed seed}

{seed seed}

{seed seed seed}
{seed seed seed seed}

{wing twig (list (pair wing seed))}

- cell

{seed seed}

{seed seed seed}
{seed seed seed seed}
(list twig)

(list seed)

{seed seed}

- nock

{seed seed}

seed

atom

{seed seed}

{moss seed}

- cast

{seed seed}

{moss seed}

{toga seed}

seed

seed

seed

- make

{moss seed}

{seed (list seed)
{seed (list seed)
seed

- hint

{seed seed}

{term wing (list {term seed}) seed}

{term seed}
{term seed}
{seed seed}
{seed seed}
{seed seed seed}

s@(term {term seed}) seed}
S@(term {term seed}) seed}

description
form a core with subject as the payload
form an iron gate

irregular form

form a gate, a dry one-armed core with sample

form a trap, a one-armed core with one arm $

form a trap and kick (“call”) it

form a door, a many-armed core with sample

form a gill, a wet one-armed core with sample

form a core with battery and anonymous arm $ and kick it
form a core with burnt sample

form a lead trap

form a mold to recognize a tuple {a/foo b/bar c/baz}
mold that wraps a face around another mold foo/bar

mold recognizing a union tagged by head atom

mold that normalizes a union tagged by depth

mold that normalizes a union tagged by head depth
mold that normalizes a generic union ?($foo $bar $baz)
mold that normalizes to an example gate

mold that normalizes to an example _foo

take a wing with changes

take a wing with changes, preserving type
call with multi-armed door

call a gate (function) (fun arg)
call a gate, reversed

call a gate with pair sample

call a gate with triple sample

make with arbitrary twig

foo(x 1, y 2, z 3)

~(arm core arg)

construct a cell (2-tuple) [a b], a’b
construct a triple (3-tuple) [a b c]
construct a quadruple (4-tuple) [a b c d]
construct an n-tuple [abcde.l]
construct a null-terminated list ~[a b c]

construct a cell, inverted

evaluate with nock 2

check for cell or atom with nock 3

increment an atom with nock 4 +(42)
test for equality with nock 5 =(a b)
load from the arvo namespace with nock 11

typecast by example (seed)

typecast by mold “foo bar
name a value foo=bar
convert any core to a lead core (bivariant)

convert a gold core to an iron core (contravariant)

fold constant at compile time

normalize with a mold, asserting fixpoint

glue a pipeline together with a product-sample adapter

call a binary function as an n-ary function :(fun a b c d)
tape as XML element

debugging printf

jet registration

jet registration for gate with registered context
profiling hit counter

tracing printf

user-formatted tracing printf

conditional debug printf

raw hint, applied to computation

raw hint, applied to product

sig - hint (continued)

seed
{seed
{seed

{seed
{taco
{term
(list
{seed
{seed
{seed
{moss
{taco
{taco
{wing

{(list (pair wing seed)) seed}

wut - test

?: {seed
?7< {seed
7> {seed
?- {wing
2+ {wing
?7. {seed
?2~ {wing
2@ {wing
?2h {wing
?= {moss
7?1 seed
?2& (list
2] (list
zap - wild
s~

1> seed
I= seed
1?7 {@ see

seed}
seed}

- flow

seed}

wing seed seed}
seed seed}
seed)
seed}
seed}
seed}
seed}

seed seed}
seed seed}
seed seed}

seed seed}
seed}
seed}

(list (pair moss seed))}

description irregular form
cache a computation

detect duplicate

print type on compilation fail

compose two twigs

pin the head of a pair; change a leg with the tail

define an alias

compose many twigs

compose two twigs, inverted foo:bar

combine a new noun with the subject

combine a new noun with the subject, inverted
combine a defaulted mold with the subject

combine a named and/or typed noun with the subject

combine a named and/or typed noun with the subject, inverted
change one leg in the subject
change multiple legs in the subject

branch on a boolean test

negative assertion

positive assertion

switch against a union, with no default

seed (list (pair moss seed))} switch against a union, with a default

seed seed}
seed seed}
seed seed}
seed seed}
wing}

seed)
seed)

d}

other syntax

+1
+2
+3
+6
+7

+:
+<
+>

:[a b]
:[a b]
:[a b]
:[a [b c
:[a [b c

[a b]
[a b]
[a b]
:[a [b c
:[a [b c

—-.Core

+.core

+>
+<

.Core
.Ccore

Aface

+>

«.arm

[a b]
a
b
1] b
1] c
[a b]
a
b
11 b
1] c
battery
payload

context (outer core)

sample

face in outer core

current subject

+i.

+>1.

core in which ++arm

branch on a boolean test, inverted

branch on whether a wing of the subject is null
branch on whether a wing of the subject is an atom
branch on whether a wing of the subject is a cell
test pattern match

logical not ! foo

logical and &(foo bar baz)
logical or | (foo bar baz)
crash

wrap a noun 1in its span (create a vase)
make the nock formula for a twig
restrict the hoon version

~ 0 (nil)

%.y & yes (true)

%.n | no (false)

‘a [~ a]

~[a b c] [a b c ~]

[a bcl~ [[a bc] ~]

~2017.8.26 ‘@da date

~marzod-taglux ‘@p pronounceable base-256 number
12.345.567 “@ud decimal

--12.345.567 "@sd signed decimal

Oxdeadbeef "@ux hexadecimal

.1.23e4 ‘@rs floating-point decimal
“hoon” tape (text as list of characters)
%hoon “hoon’ cord (text as atom)

S$hoon mold form of cord

?=($hoon %hoon) %.y
?=(Shoon %loon) %.n

foo+bar [%foo bar]
is defined /foo/bar [%foo %bar ~] wire (path)

