Hoon used to have two syntaxes and one mode for runes which expected model hoons, value hoons, or both. Now Hoon uses
one consistent syntax for constructing hoons and infers based on the rune whether to use the hoon as a model or value.

bar

- core
<arms>

[model value]

[model value]

hoon

hoon

model (map term foot)
[model value]

hoon (map term foot)
[hoon hoon]
hoon

(lest term)
[spec hoon]
[(unit term) (map term tome)]

body

- mold

(list model)

[@tas model]

(list [[aura @] model])
[model model]

[model model]

(list model)

[model model]

value

- call
[wing
[wing
[wing

(list (pair wing hoon))]
(list (pair wing hoon))]

hoon hoon]

hoon]

hoon]

hoon hoon]

hoon hoon hoon]

hoon (list (pair wing hoon))]
(list hoon)]

[hoon
[hoon
[hoon
[hoon
[wing
[hoon

- cell
[hoon
[hoon
[hoon
(list
(list
[hoon

hoon]

hoon hoon]

hoon hoon hoon]
hoon)

hoon)

hoon]

- nock

[hoon hoon]
hoon

atom

[hoon hoon]
[model value]

- cast

[value value]
[model value]
[toga value]
hoon

hoon

hoon

[p=hoon g=hoon]
hoon

p=spec

p=spec

description

form
form
form
form
form
form
form
form
form
form
form
form
form

form
mold
mold
mold
mold
mold
mold
mold

take
take
call
call
call
call
call
make
call

construct
construct
construct
construct
construct
construct

irregular form
a core with subject as the payload

an iron gate

a gate, a dry one-armed core with sample

a trap, a one-armed core with one arm $

trap and kick (“call”) 1t

door, a many-armed core with sample

gill, a wet one-armed core with sample

core with battery and anonymous arm $ and kick it
core with burnt sample

lead trap

mold builder wet gate

wet gate

wet core

[V I VIR VI VI VI VRV I VI o)

[a=foo b=bar c=baz]
foo=bar

a mold to recognize a tuple

that wraps a face around another mold
recognizing a union tagged by head atom
that
that
that
that
that

normalizes a union tagged by depth

a union tagged by head depth
a generic union

to an example gate

to an example

normalizes
normalizes ?($foo $bar $baz)
normalizes

foo

normalizes

a wing with changes foo(x 1, y 2, z 3)
a wing with changes, preserving type
with multi-armed door ~(arm core arg)
a gate (function) (fun arg)
a gate, reversed

a gate with pair sample

a gate with triple sample

with arbitrary hoon

a gate with many arguments

b], a’b
b c]

a cell (2-tuple) [a
a triple (3-tuple) [a
a quadruple (4-tuple) [a b c d]

an n-tuple [abcde.l]
a null-terminated list ~[a b c]

a cell, inverted

evaluate with nock 2

check for cell or atom with nock 3
increment an atom with nock 4
test for equality with nock 5

+(42)
=(a b)

load

from the arvo namespace with nock 11

typecast by example (value)

typecast by mold

name

“foo bar

a value foo=bar

convert any core to a lead core (bivariant)

convert a gold core to an iron core (contravariant)

fold

constant at compile time

typecast on value produced by passing q to p
convert a core to a zinc core (covariant)

produce the bunt of p

mold

gate for type p

mic - misc description irregular form

;= marl make a list of XML nodes (Sail)

3¢ [hoon (list hoon)] call a binary function as an n-ary

5/ hoon tape as XML element

;< spec hoon hoon hoon monadic bind

3~ hoon (list hoon) glue pipeline together with a product-sample adapter
53 spec hoon normalize with a mold, asserting fixpoint.

sem - make

55 [model value] normalize with a mold, asserting fixpoint

3~ [hoon (list hoon) glue a pipeline together with a product-sample adapter
;¢ [hoon (list hoon) call a binary function as an n-ary function :(fun a b c d)
5/ hoon tape as XML element

sig - hint

~& [hoon hoon] debugging printf

~% [term wing (list [term hoon]) hoon] jet registration

~/ [term hoon] jet registration for gate with registered context

~$ [term hoon] profiling hit counter

~| [hoon hoon] tracing printf

~_ [hoon hoon] user-formatted tracing printf

~? [hoon hoon hoon] conditional debug printf

~> S$@(term [term hoon]) hoon] raw hint, applied to computation

~< $@(term [term hoon]) hoon] raw hint, applied to product

~+ hoon cache a computation

~= [hoon hoon] detect duplicate

~! [hoon hoon] print type on compilation fail

tis - flow

=> [hoon hoon] compose two hoons

=N [taco wing hoon hoon] pin the head of a pair; change a leg with the tail

=x [term hoon hoon] define an alias

=~ (list hoon) compose many hoons

=< [hoon hoon] compose two hoons, inverted foo:bar
=+ [hoon hoon] combine a new noun with the subject

=- [hoon hoon] combine a new noun with the subject, inverted

=| [model value] combine a defaulted mold with the subject

= [taco value hoon] combine a named and/or typed noun with the subject

=; [taco value hoon] combine a named and/or typed noun with the subject, inverted
=. [wing hoon hoon] change one leg in the subject

=: [(list (pair wing hoon)) hoon] change multiple legs in the subject

=? [wing hoon hoon hoon] conditionally change one leg in the subject

=, [hoon hoon] expose namespace

wut - test

?: [hoon hoon hoon] branch on a boolean test

?< [hoon hoon] negative assertion

?> [hoon hoon] positive assertion

?- [wing (list (pair model value))] switch against a union, with no default

?+ [wing value (list (pair model value))] switch against a union, with a default

?. [hoon hoon hoon] branch on a boolean test, inverted

?~ [wing hoon hoon] branch on whether a wing of the subject is null

?@ [wing hoon hoon] branch on whether a wing of the subject is an atom

?7A [wing hoon hoon] branch on whether a wing of the subject is a cell

?= [model wing] test model match

?! hoon logical not ! foo

?& (list hoon) logical and &(foo bar baz)
?] (list hoon) logical or | (foo bar baz)
zap - wild

I s~ crash

!> hoon wrap a noun in its type (create a vase)

= hoon make the nock formula for a hoon

1?7 [@ hoon] restrict the hoon version

!y [hoon hoon] ast quote

1< [spec hoon] check that the type in a vase matches a mold

zap - wild

!5 [hoon hoon]
'@ [(list wing) hoon hoon]

other syntax

+1:[a b]
+2:[a b]
+3:[a b]
+6:[a [b
+7:[a [b

.:[a b]
-:[a b]
+:[a b]
+<:[a [b
+>:[a [b

-.Core
+.core
+>.core
+<.core

Aface

+>
«.arm

cl]
cl]

c]]
c]l]

description
type quote
conditional compilation

[a b]

0 T T

[a b]

0O T T

battery
payload
context (outer core)
sample

face in outer core

current subject

+:.

+>1.

core in which ++arm is defined

~[a b c]
[a b c]~

~2017.8.26
~marzod-taglux
12.345.567
--12.345.567
Oxdeadbeef
.1.23e4

“hoon”
‘hoon’
%hoon

?=($hoon %hoon)
?=($hoon %loon)

foo/bar
/foo/bar

,%hoon
, [a=foo b=bar]

irregular form

0 (nil)
yes (true)
no (false)

[~ a]
[a bc ~]
[[a b c] ~]

‘@da‘date

"@p pronounceable base-256 number
‘@ud decimal

‘@sd’signed decimal

‘@ux hexadecimal

‘@rs’ floating-point decimal

tape (text as list of characters)
cord (text as atom)
term (text as ASCII symbol, kabob-case)

[%foo bar]
[%foo %bar ~] wire (path)

manually switch into model mode (term)
manually switch into model mode (cell)

