

Urbit Constitution
JS Library

Code Review

December 16th 2018

Version 2.0.0

Prepared by

Bloctrax

Table of Contents
Introduction 3

Overall Assessment 3

Specification 4

Source Code 4

Severity Level Reference 5

Issues Descriptions and Recommendations 5

Appendix 1​​2

Exhibit A - Disclaimer 1​3

2

Introduction
This document includes the results of the code review for Urbit’s Constitution JS library,

as found in the section titled ‘Source Code’. The code review was performed by the

Bloctrax team from November 28th 2018 to December 16th 2018.

The purpose of this engagement is to review Urbit’s Constitution JS library source code

and provide feedback on the design, architecture, and quality of the source code.

Overall Assessment
Our overall assessment of the Urbit Constitution JS library is that this version is

substantially better than the version we previously reviewed and appears not to suffer

from the extremely poor code quality that the previous version did.

Despite that, this version still has a number of concerning outstanding issues. Most

importantly, the urbit-azimuth library has undergone significant revisions since the

version that the Constitution JS library is pinned to. These changes range from relatively

simple things to be fixed, such as renaming Constitution to Ecliptic and Ships to Azimuth,

to more concerning issues, such as missing entire fields and methods that the Constitution

JS library relies upon in the latest version of the contracts.

These issues are further compounded by the overall low code coverage of the library. Our

assessment shows that the library only has ~61% statement coverage (and lower branch

coverage). This is unreasonably low, especially for a project written in JavaScript where

small syntactic issues (and even typos) will not manifest themselves until runtime.

The importance of improving the test coverage of this project is further emphasized by

the fact that we caught several different issues where code will either throw or not work

at runtime. These issues would have been flagged and identified by even the most trivial

missing unit tests. We believe that investing significant time to improve the quality of the

3

project’s test suite is likely to uncover further issues that we did not catch during the

course of our review.

Specification
Our understanding of the specification was based on the following sources:

● Our understanding of the desired behavior based on our previous review of the

Urbit Constitution Solidity code.

● Discussions with the Urbit team.

Source Code
The following source code was reviewed:

Repository Commit

constitution-js 819102e717b7c0166a6967a353c02e03cb70965f

Note:​​ This document contains a review only of the JavaScript code contained in the code

repository listed above. The review does not include any of the dependencies being used.

4

https://github.com/urbit/constitution-js

Severity Level Reference

Level Description

High The issue poses existential risk to the
project, and the issue identified could lead

to massive financial or reputational
repercussions.

Medium The potential risk is large, but there is
some ambiguity surrounding whether or
not the issue would practically manifest.

Low The risk is small, unlikely, or not relevant
to the project in a meaningful way.

Code Quality

The issue identified does not pose any
obvious risk, but fixing it would improve

overall code quality, conform to
recommended best practices, and perhaps

lead to fewer development issues in the
future.

Issues Descriptions and Recommendations
 ​Mismatch between latest Urbit constitution contracts, and Constitution JS library 6

Mismatch between external and internal contract implementations 6

Unusable code 6

Broken and unrunnable code 7

Remaining FIXMEs in the code 9

Incorrect documentation 9

isParent function should handle zero galaxy 10

pollIsActive function should add additional check 10

Suggestion: additional assertions and guard statements 10

Code duplication 11

5

Mismatch between latest Urbit constitution contracts, and Constitution JS library

The Constitution JS library is pinned to an older version of the Urbit Constitution

contracts that does not match the current state / branding. For example, the code

references the ​Constitution​ contract instead of ​Ecliptic​ and ​Ships​ instead of

Azimuth​.

Mismatch between external and internal contract implementations

The public ​conditonalSR.js​ file tries to expose a function called ​getStartTime​ from

the ​internal/conditionalSR.js​ file, but that function does not exist.

Unusable code

The ​initContracts​ and ​initContractsPartial​ functions in ​contracts.js​ do

not initialize the ​conditionalSR​ and ​linearSR​ contracts so those won’t be usable

even though they both have internal and public implementations (​conditionalSR.js,
linearSR.js​ and ​internal/conditionalSR.js, internal/linearSR.js

respectively).

In addition, there is an ​internal/pool.js​ implementation, but no external

implementation so that contract will not be usable as well. It’s also not initialized by the

initContracts​ and ​initContractsPartial​ functions either.

6

Broken and unrunnable code

There are several portions of the Urbit constitution JS library that are broken and/or will

not run as expected.

1. internal/ships.js​ has a function called ​getSpawnProxy​ where the

contracts​ argument is misspelled as ​contarct​. This will cause a runtime error.

2. ships.js​ and ​internal/ships.js​ both expose a method called

getOwnedShipAtIndex​, but that method does not exist on any of the actual

solidity contracts.

3. Both the internal implementations of ​conditionalSR​ and ​linearSR​ have a

method called ​getApprovedTransfer​ that relies on a solidity method / field

called ​transfers​, but neither of the solidity contracts has that method. Any code

dependent on these functions will be broken.

4. The ​csrCanWithdraw​ function is not tested at all and is likely broken. It does a

comparison in the form of ​com.withdrawn >= lim​, but ​com.withdrawn​ is an

array, not a number. Similarly, it has a conditional check in the form of ​if
(com.forfeit && rem.length <= com.forfeited)​, but there is no

forfeit field and the forfeited field is an array not a number.

5. The internal implementation of ​conditionalSR​ calls the ​withdrawLimit

method with one argument (​address​) but the solidity contract accepts two

arguments (​address​ and ​batch​).

6. The internal implementation of ​conditionalSR​ calls the ​withdraw​ method with

zero arguments, but the solidity contract accepts two arguments (​batch ​and
address​).

7. The internal implementation of ​conditionalSR​ calls the ​withdrawTo​ method,

but that function does not exist on the solidity contract.

8. The internal implementation of ​constitution​ calls the ​transferShip​ method

on the ​Ecliptic​ contract, but that function does not exist on the solidity

contract.

7

9. The internal implementation of ​constitution​ calls the

startConstitutionPoll​ method on the ​Ecliptic​ contract, but that function

does not exist on the solidity contract.

10. The internal implementation of ​constitution​ calls the

castConstitutionVote​ method on the ​Ecliptic​ contract, but that function

does not exist on the solidity contract.

11. The internal implementation of ​constitution​ calls the

updateConstitutionPoll​ method on the ​Ecliptic​ contract, but that

function does not exist on the solidity contract.

12. The internal implementation of ​linearSR​ calls the ​transfers​ method on the

LinearStarRelease​ contract, but that function does not exist on the solidity

contract.

13. The internal implementation of ​linearSR​ calls the ​withdrawTo​ method on the

LinearStarRelease​ contract, but that function does not exist on the solidity

contract.

14. The internal implementation of ​polls​ calls the ​constitutionPolls​ method on

the ​polls​ contract, but that function does not exist on the solidity contract.

15. The internal implementation of ​polls​ calls the

constitutionHasAchievedMajority​ method on the ​polls​ contract, but

that function does not exist on the solidity contract.

16. The internal implementation of ​polls​ calls the

hasVotedOnConstitutionPoll​ method on the ​polls​ contract, but that

function does not exist on the solidity contract.

17. The internal ​pool​ contract does not seem to line up with any of the solidity

contracts in the latest version of the Urbit Azimuth library.

18. The internal implementation of ​ships​ calls the ​ships​ function on the ​ships

contract, but that function does not exist on the ​Azimuth​ solidity contract.

19. The internal implementation of ​ships​ calls the ​getOwnedShipsByAddress

function on the ​ships​ contract, but that function does not exist on the ​Azimuth

solidity contract.

20. The internal implementation of ​ships​ calls the ​getOwnedShipCount​ function

on the ​ships​ contract, but that function does not exist on the ​Azimuth​ solidity

contract.

8

21. The internal implementation of ​ships​ calls the ​getOwnedShipAtIndex​ function

on the ​ships​ contract, but that function does not exist on the ​Azimuth​ solidity

contract.

22. The internal implementation of ​ships​ calls the ​hasBeenBooted​ function on the

ships​ contract, but that function does not exist on the ​Azimuth​ solidity contract.

Remaining FIXMEs in the code

There are two remaining FIXMEs in the code. One in the

canStartConstitutionPoll​ function in ​check.js​, and one in the ​tests.js​ file in

a commented out test, which should also be addressed.

Incorrect documentation

Several portions of the documentation (either code comments, README, or otherwise)

are incorrect.

1. The documentation in ​polls.js​ states that ​hasVotedOnDocumentPoll,​ the

proposal argument, should be the address of the proposal, but actually it should be

the hash of the proposal (​bytes32​ in solidity).

2. The documentation in ​ships.js​ states that ​isManagementProxy​ accepts an

owner address​ and a ​manager address​, but actually the underlying Azimuth

contract accepts ​owner​ as a ​pointID​ and ​manager​ as an ​address.
3. The documentation in ​ships.js​ states that ​isVotingProxy​ accepts an ​owner

address​ and a ​manager address​, but actually the underlying Azimuth contract

accepts ​owner​ as a ​pointID​ and ​manager​ as an ​address.
4. The documentation in ​ships.js​ states that ​getKeys​ will return an object with

the ships key configuration, which is true if the an object is passed as the ​ship

parameter, but if ​ship​ is passed as a ​pointID​ then the function will return an

array​ inside a ​promise​.
5. The documentation in ​ships.js​ states that ​getSpawned​ will return a ​bool

indicating whether the ship has been spawned, but the implementation of

9

getSpawned​ in the ​Azimuth​ contract returns an ​array​ of ​points​ created

under the provided ​point​.
6. The documentation states that all the functions in ​ships.js​ are supposed to

return ​promises​, regardless of whether they call out to the network or not, but

many of the functions are non ​async​ functions that just return an ​unpromisified

result in the case where they are passed a ​ship​ object as an argument.

7. All the documentation strings in the ​conditonalSR.js​ file state that the

functions return concrete types when in fact they return concrete types wrapped

in ​promises​.

isParent function should handle zero galaxy

The ​isParent​ function in ​check.js​ should check if ​ship >= 0​ instead of ​ship > 0

because 0 is a valid galaxy.

pollIsActive function should add additional check

The ​pollIsActive​ function in ​check.js​ should check that now is larger than or equal

to the start of the poll.

Suggestion: additional assertions and guard statements

Several of the functions in the Urbit Constitution JS library would benefit from additional

assertions and guard statements.

1. The ​initContracts​ function should throw if any of the contract keys are

missing.

2. The ​pollIsActive​ function in ​check.js​ should check that now is larger than or

equal to the start of the poll.

3. The ​canCreateGalaxy​ function should check that ​shipID​ is a valid galaxy.

4. The ​canSpawn​ function should check that the ​target​ is a valid ship.

10

Code duplication

The exact same ​tx​ function is repeated in several different files in the ​internal​ folder. It

would be better to define this function one time and reuse it.

11

Appendix

 ​Exhibit A - Disclaimer 1​3

12

Exhibit A - Disclaimer

The scope of this report and review is limited to a review of only the code presented by

the Urbit team and only the source code Bloctrax notes as being within the scope of

Bloctrax’s review within this report. Specifically, this report does not constitute

investment advice and is not intended to be relied upon as investment advice. The report

is not an endorsement of this project or team, nor is it a guarantee as to the absolute

quality or security of this project.

Bloctrax makes no warranties, either express, implied, statutory, or otherwise, with

respect to the services or deliverables provided in this report, and Bloctrax specifically

disclaims all implied warranties or merchantability, fitness for a particular purpose,

noninfringement and those arising from a course of dealing, usage or trade with respect

thereto, and all such warranties are hereby excluded to the fullest extent permitted by

law.

Bloctrax will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand against company by any other party. If no event will

Bloctrax be liable for consequential, incidental, special, indirect, or exemplary damages

arising out of this agreement or any work statement, however caused and (to the fullest

extent permitted by law) under any theory of liability (including negligence), even if

Bloctrax has been advised of the possibility of such damages.

Bloctrax assumes no responsibility for the use of software, whether created by Urbit, or

any third party and shall have no liability whatsoever to any person or entity for the

accuracy or completeness of any outcome generated by such software.

13

