

Urbit Constitution
JS Library

Code Review

December 16th 2018

Version 2.0.0

Prepared by

Bloctrax

Table of Contents
Introduction 3

Overall Assessment 3

Specification 4

Source Code 4

Severity Level Reference 5

Issues Descriptions and Recommendations 5

Appendix 12

Exhibit A - Disclaimer 13

2

Introduction
This document includes the results of the code review for Urbit’s Constitution JS library,

as found in the section titled ‘Source Code’. The code review was performed by the

Bloctrax team from November 28th 2018 to December 16th 2018.

The purpose of this engagement is to review Urbit’s Constitution JS library source code

and provide feedback on the design, architecture, and quality of the source code.

Overall Assessment
Our overall assessment of the Urbit Constitution JS library is that this version is

substantially better than the version we previously reviewed and appears not to suffer

from the extremely poor code quality that the previous version did.

Despite that, this version still has a number of concerning outstanding issues. Most

importantly, the urbit-azimuth library has undergone significant revisions since the

version that the Constitution JS library is pinned to. These changes range from relatively

simple things to be fixed, such as renaming Constitution to Ecliptic and Ships to Azimuth,

to more concerning issues, such as missing entire fields and methods that the Constitution

JS library relies upon in the latest version of the contracts.

These issues are further compounded by the overall low code coverage of the library. Our

assessment shows that the library only has ~61% statement coverage (and lower branch

coverage). This is unreasonably low, especially for a project written in JavaScript where

small syntactic issues (and even typos) will not manifest themselves until runtime.

The importance of improving the test coverage of this project is further emphasized by

the fact that we caught several different issues where code will either throw or not work

at runtime. These issues would have been flagged and identified by even the most trivial

missing unit tests. We believe that investing significant time to improve the quality of the

3

project’s test suite is likely to uncover further issues that we did not catch during the

course of our review.

Specification
Our understanding of the specification was based on the following sources:

● Our understanding of the desired behavior based on our previous review of the

Urbit Constitution Solidity code.

● Discussions with the Urbit team.

Source Code
The following source code was reviewed:

Repository Commit

constitution-js 819102e717b7c0166a6967a353c02e03cb70965f

Note: This document contains a review only of the JavaScript code contained in the code

repository listed above. The review does not include any of the dependencies being used.

4

https://github.com/urbit/constitution-js

Severity Level Reference

Level Description

High The issue poses existential risk to the
project, and the issue identified could lead

to massive financial or reputational
repercussions.

Medium The potential risk is large, but there is
some ambiguity surrounding whether or
not the issue would practically manifest.

Low The risk is small, unlikely, or not relevant
to the project in a meaningful way.

Code Quality

The issue identified does not pose any
obvious risk, but fixing it would improve

overall code quality, conform to
recommended best practices, and perhaps

lead to fewer development issues in the
future.

Issues Descriptions and Recommendations
 Mismatch between latest Urbit constitution contracts, and Constitution JS library 6

Mismatch between external and internal contract implementations 6

Unusable code 6

Broken and unrunnable code 7

Remaining FIXMEs in the code 9

Incorrect documentation 9

isParent function should handle zero galaxy 10

pollIsActive function should add additional check 10

Suggestion: additional assertions and guard statements 10

Code duplication 11

5

Mismatch between latest Urbit constitution contracts, and Constitution JS library

The Constitution JS library is pinned to an older version of the Urbit Constitution

contracts that does not match the current state / branding. For example, the code

references the Constitution contract instead of Ecliptic and Ships instead of

Azimuth.

Mismatch between external and internal contract implementations

The public conditonalSR.js file tries to expose a function called getStartTime from

the internal/conditionalSR.js file, but that function does not exist.

Unusable code

The initContracts and initContractsPartial functions in contracts.js do

not initialize the conditionalSR and linearSR contracts so those won’t be usable

even though they both have internal and public implementations (conditionalSR.js,
linearSR.js and internal/conditionalSR.js, internal/linearSR.js

respectively).

In addition, there is an internal/pool.js implementation, but no external

implementation so that contract will not be usable as well. It’s also not initialized by the

initContracts and initContractsPartial functions either.

6

Broken and unrunnable code

There are several portions of the Urbit constitution JS library that are broken and/or will

not run as expected.

1. internal/ships.js has a function called getSpawnProxy where the

contracts argument is misspelled as contarct. This will cause a runtime error.

2. ships.js and internal/ships.js both expose a method called

getOwnedShipAtIndex, but that method does not exist on any of the actual

solidity contracts.

3. Both the internal implementations of conditionalSR and linearSR have a

method called getApprovedTransfer that relies on a solidity method / field

called transfers, but neither of the solidity contracts has that method. Any code

dependent on these functions will be broken.

4. The csrCanWithdraw function is not tested at all and is likely broken. It does a

comparison in the form of com.withdrawn >= lim, but com.withdrawn is an

array, not a number. Similarly, it has a conditional check in the form of if
(com.forfeit && rem.length <= com.forfeited), but there is no

forfeit field and the forfeited field is an array not a number.

5. The internal implementation of conditionalSR calls the withdrawLimit

method with one argument (address) but the solidity contract accepts two

arguments (address and batch).

6. The internal implementation of conditionalSR calls the withdraw method with

zero arguments, but the solidity contract accepts two arguments (batch and
address).

7. The internal implementation of conditionalSR calls the withdrawTo method,

but that function does not exist on the solidity contract.

8. The internal implementation of constitution calls the transferShip method

on the Ecliptic contract, but that function does not exist on the solidity

contract.

7

9. The internal implementation of constitution calls the

startConstitutionPoll method on the Ecliptic contract, but that function

does not exist on the solidity contract.

10. The internal implementation of constitution calls the

castConstitutionVote method on the Ecliptic contract, but that function

does not exist on the solidity contract.

11. The internal implementation of constitution calls the

updateConstitutionPoll method on the Ecliptic contract, but that

function does not exist on the solidity contract.

12. The internal implementation of linearSR calls the transfers method on the

LinearStarRelease contract, but that function does not exist on the solidity

contract.

13. The internal implementation of linearSR calls the withdrawTo method on the

LinearStarRelease contract, but that function does not exist on the solidity

contract.

14. The internal implementation of polls calls the constitutionPolls method on

the polls contract, but that function does not exist on the solidity contract.

15. The internal implementation of polls calls the

constitutionHasAchievedMajority method on the polls contract, but

that function does not exist on the solidity contract.

16. The internal implementation of polls calls the

hasVotedOnConstitutionPoll method on the polls contract, but that

function does not exist on the solidity contract.

17. The internal pool contract does not seem to line up with any of the solidity

contracts in the latest version of the Urbit Azimuth library.

18. The internal implementation of ships calls the ships function on the ships

contract, but that function does not exist on the Azimuth solidity contract.

19. The internal implementation of ships calls the getOwnedShipsByAddress

function on the ships contract, but that function does not exist on the Azimuth

solidity contract.

20. The internal implementation of ships calls the getOwnedShipCount function

on the ships contract, but that function does not exist on the Azimuth solidity

contract.

8

21. The internal implementation of ships calls the getOwnedShipAtIndex function

on the ships contract, but that function does not exist on the Azimuth solidity

contract.

22. The internal implementation of ships calls the hasBeenBooted function on the

ships contract, but that function does not exist on the Azimuth solidity contract.

Remaining FIXMEs in the code

There are two remaining FIXMEs in the code. One in the

canStartConstitutionPoll function in check.js, and one in the tests.js file in

a commented out test, which should also be addressed.

Incorrect documentation

Several portions of the documentation (either code comments, README, or otherwise)

are incorrect.

1. The documentation in polls.js states that hasVotedOnDocumentPoll, the

proposal argument, should be the address of the proposal, but actually it should be

the hash of the proposal (bytes32 in solidity).

2. The documentation in ships.js states that isManagementProxy accepts an

owner address and a manager address, but actually the underlying Azimuth

contract accepts owner as a pointID and manager as an address.
3. The documentation in ships.js states that isVotingProxy accepts an owner

address and a manager address, but actually the underlying Azimuth contract

accepts owner as a pointID and manager as an address.
4. The documentation in ships.js states that getKeys will return an object with

the ships key configuration, which is true if the an object is passed as the ship

parameter, but if ship is passed as a pointID then the function will return an

array inside a promise.
5. The documentation in ships.js states that getSpawned will return a bool

indicating whether the ship has been spawned, but the implementation of

9

getSpawned in the Azimuth contract returns an array of points created

under the provided point.
6. The documentation states that all the functions in ships.js are supposed to

return promises, regardless of whether they call out to the network or not, but

many of the functions are non async functions that just return an unpromisified

result in the case where they are passed a ship object as an argument.

7. All the documentation strings in the conditonalSR.js file state that the

functions return concrete types when in fact they return concrete types wrapped

in promises.

isParent function should handle zero galaxy

The isParent function in check.js should check if ship >= 0 instead of ship > 0

because 0 is a valid galaxy.

pollIsActive function should add additional check

The pollIsActive function in check.js should check that now is larger than or equal

to the start of the poll.

Suggestion: additional assertions and guard statements

Several of the functions in the Urbit Constitution JS library would benefit from additional

assertions and guard statements.

1. The initContracts function should throw if any of the contract keys are

missing.

2. The pollIsActive function in check.js should check that now is larger than or

equal to the start of the poll.

3. The canCreateGalaxy function should check that shipID is a valid galaxy.

4. The canSpawn function should check that the target is a valid ship.

10

Code duplication

The exact same tx function is repeated in several different files in the internal folder. It

would be better to define this function one time and reuse it.

11

Appendix

 Exhibit A - Disclaimer 13

12

Exhibit A - Disclaimer

The scope of this report and review is limited to a review of only the code presented by

the Urbit team and only the source code Bloctrax notes as being within the scope of

Bloctrax’s review within this report. Specifically, this report does not constitute

investment advice and is not intended to be relied upon as investment advice. The report

is not an endorsement of this project or team, nor is it a guarantee as to the absolute

quality or security of this project.

Bloctrax makes no warranties, either express, implied, statutory, or otherwise, with

respect to the services or deliverables provided in this report, and Bloctrax specifically

disclaims all implied warranties or merchantability, fitness for a particular purpose,

noninfringement and those arising from a course of dealing, usage or trade with respect

thereto, and all such warranties are hereby excluded to the fullest extent permitted by

law.

Bloctrax will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand against company by any other party. If no event will

Bloctrax be liable for consequential, incidental, special, indirect, or exemplary damages

arising out of this agreement or any work statement, however caused and (to the fullest

extent permitted by law) under any theory of liability (including negligence), even if

Bloctrax has been advised of the possibility of such damages.

Bloctrax assumes no responsibility for the use of software, whether created by Urbit, or

any third party and shall have no liability whatsoever to any person or entity for the

accuracy or completeness of any outcome generated by such software.

13

