

Urbit Keygen JS
Library

Code Review

November 30th 2018

Version 2.0.0

Prepared by

Bloctrax

Table of Contents
Introduction 3

Overall Assessment 3

Specification 4

Source Code 4

Severity Level Reference 5

Issues Descriptions and Recommendations 5

Appendix 8

Exhibit A - Disclaimer 9

2

Introduction
This document includes the results of the code review for Urbit’s Keygen JS library as

found in the section titled ‘Source Code’. The code review was performed by the Bloctrax

team from November 9th 2018 to November 18th 2018.

The purpose of this engagement is to review Urbit’s Keygen JS library source code, and

provide feedback on the design, architecture, and quality of the source code.

Overall Assessment
This section contains the original assessment for posterity, however, after receiving the

original version of this report the Urbit team resolved some of the issues described below.

See the “Issues Descriptions and Recommendations” section for details on individual

issues and their corresponding resolutions.

Our overall assessment of the Urbit key library is that there are a number of deviations

from the specification that should be addressed by either updating the spec, or updating

the implementation to match it.

In addition, the test suite looks to be healthier than previous versions of the codebase that

we reviewed. It appears there is now 100% statement/branch/line coverage and the core

logic of the library appears to be more extensively tested. For example, property tests

have been added for some functionality, and the generateWallet functionality now tests a

variety of different inputs and asserts on all the provided outputs. The generateWallet

tests could be improved, however, by making sure that the generated wallet can actually

do what it's designed to. For example, wallet2.json ends up with three different shards any

2 of which should be able to re-generate the original ticket, but this isn’t tested. In

addition, it would be good to ensure that all of the derived seeds can actually be used to

generate the keys/addresses they’re associated with. I.E. by definition, the test asserts

that the provided ticket can be used to generate the hard-coded wallet, but it does not

assert that the generated non-master seeds can be used to generate their associated keys.

3

Specification
Our understanding of the specification was based on the following sources:

● Our understanding of the desired behavior based on our previous review of the

Urbit Constitution Solidity code.

● Discussions with the Urbit team.

● The Urbit Wallet Specification document which was provided to us by the Urbit

team.

Source Code
The following source code was reviewed:

Repository Commit

index.js 7ed2da1ad09a3aea06441c35848af3987ad21f84

Note:​ This document contains a review only of the code contained in the file listed above.

The review does not include any of the dependencies being used, including but not limited

to third party libraries and Urbit’s own urbit-ob library.

4

https://github.com/urbit/keygen-js/blob/7ed2da1ad09a3aea06441c35848af3987ad21f84/src/index.js

Severity Level Reference

Level Description

High The issue poses existential risk to the
project, and the issue identified could lead

to massive financial or reputational
repercussions.

Medium The potential risk is large, but there is
some ambiguity surrounding whether or
not the issue would practically manifest.

Low The risk is small, unlikely, or not relevant
to the project in a meaningful way.

Code Quality

The issue identified does not pose any
obvious risk, but fixing it would improve

overall code quality, conform to
recommended best practices, and perhaps

lead to fewer development issues in the
future.

Issues Descriptions and Recommendations

Issues Descriptions and Recommendations 5

Deviations from the Urbit wallet specification 6

Issues with the Urbit Wallet specification itself 7

Unnecessary function implementation 7

Lack of detail in the specification 7

5

Deviations from the Urbit wallet specification

 Resolved by updating the Urbit wallet specification to match the

implementation.

The Urbit wallet specification states that the salt for argon2u should be “urbitwallet” but

the implementation uses “urbitkeygen”.

The specification states that in order to generate an Ethereum address from the wallet’s

private key, use ​secp256k1​ to get the uncompressed public key from the private key,

however, the existing code just uses the already generated public key directly. This should

achieve the same result, but should perhaps be called out more explicitly in the

specification.

In addition to the above, the existing implementation is generating checksummed

Ethereum addresses, but the specification makes no mention of the checksumming

process.

The specification implies (but does not outright state) that for network keys, the

generated private key / public key pairs will be returned for both the encryption and

authentication keys, however, the existing implementation actually returns the public key

and the seed that was used to generate the private key, but not the private key itself.

The specification states that the network seed should be run through SHA-512, and then

the first 256 bits of the result should be used as the encryption key, and the last 256 bits

as the authentication key, however, the existing implementation does exactly the

opposite.

The ​urbitKeysFromSeed​ function, aside from the previously discussed deviations from

the specification, does a lot of reversing of values that is not mentioned in the

specification at all. We assume this has something to do with the implementation of the

corresponding function in the Urbit ecosystem, but we can’t verify that unless the

specification is updated to match.

6

Issues with the Urbit Wallet specification itself

 Resolved by making ship required argument and updating specification.

The specification states that a value of zero can be used for the “no one specific ship” case,

however, zero is a valid ship which seems like an edge case that could potentially cause an

issue.

Unnecessary function implementation

 Urbit team opted to leave as is.

The keygen library defines a function called ​toChecksumAddress​ which is then tested

against a reference implementation in the test suite. It seems like it would be better to just

expose the reference implementation instead of re-implementing it and then testing

against another implementation.

Lack of detail in the specification

 Revision issue resolved by updating the specification, and the Urbit team

does not believe that the specification needs to explicitly mention the bips32 chain code.

The specification does not specify that the revision will always default to zero if not

provided.

The specification makes no mention of the bips32 chain code.

7

Appendix

Appendix 8

Exhibit A - Disclaimer 9

8

Exhibit A - Disclaimer

The scope of this report and review is limited to a review of only the code presented by

the Urbit team and only the source code Bloctrax notes as being within the scope of

Bloctrax’s review within this report. Specifically, this report does not constitute

investment advice and is not intended to be relied upon as investment advice. The report

is not an endorsement of this project or team, nor is it a guarantee as to the absolute

quality or security of this project.

Bloctrax makes no warranties, either express, implied, statutory, or otherwise, with

respect to the services or deliverables provided in this report, and Bloctrax specifically

disclaims all implied warranties or merchantability, fitness for a particular purpose,

noninfringement and those arising from a course of dealing, usage or trade with respect

thereto, and all such warranties are hereby excluded to the fullest extent permitted by

law.

Bloctrax will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand against company by any other party. If no event will

Bloctrax be liable for consequential, incidental, special, indirect, or exemplary damages

arising out of this agreement or any work statement, however caused and (to the fullest

extent permitted by law) under any theory of liability (including negligence), even if

Bloctrax has been advised of the possibility of such damages.

Bloctrax assumes no responsibility for the use of software, whether created by Urbit, or

any third party and shall have no liability whatsoever to any person or entity for the

accuracy or completeness of any outcome generated by such software.

9

