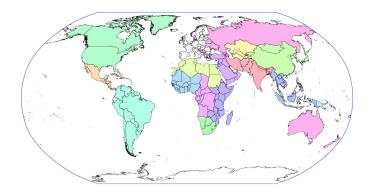
Model Card Content: Hair Segmentation

Model Details

- A lightweight model to segment hair on a selfie image with one person captured by a smartphone camera. Returns a two class mask hair/background.
- Developed by researchers at Google, 2019, version 2019-01-14.
- Encoder decoder network with skip connections (see description in https://ai.googleblog.com/2018/03/mobile-real-time-video-segmentation.html).
- Licensed under **Apache License**, **Version 2.0**.
- Please cite as: A. Tkachenka et al. Real-time Hair segmentation and recoloring on Mobile GPUs. CVPR Workshop on Computer Vision for Augmented and Virtual Reality, Long Beach, CA, USA, 2019.
- Project webpage: https://sites.google.com/corp/view/perception-cv4arvr/hair-segmentation.
- Example usage included as part of the open source MediaPipe example documentation hosted at http://github.com/google/mediapipe.

Intended Use

- The model is segments single person hair within images or videos captured by a smartphone camera.
- Intended to be used for mobile AR (augmented reality) applications.
- Not appropriate for human life-critical decisions. The primary intended application is entertainment.


Limitations

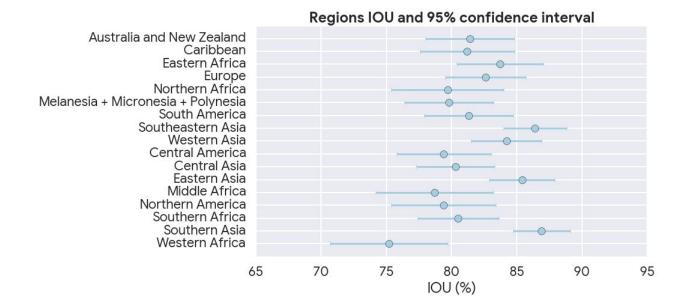
- This model is made faster by being optimized for the use cases where the front-facing camera is used in "selfie" mode. As such, it is not suitable for people too far away from the camera (e.g. further than 5 feet/1.5 meters) or multiple people in an image.
- Hairstyles with thin and long pieces, such as mohawks and hairstyles with elongated braids, may not be reliably segmented
- Hair with any sort of large occlusion like headwear may not be reliably segmented
- Although the model has been trained and tested thoroughly across various "in-the-wild" smartphone camera conditions, including low-end devices, low light, motion blur etc., they can affect the performance characteristics.

Evaluation Dataset Disaggregating Factors

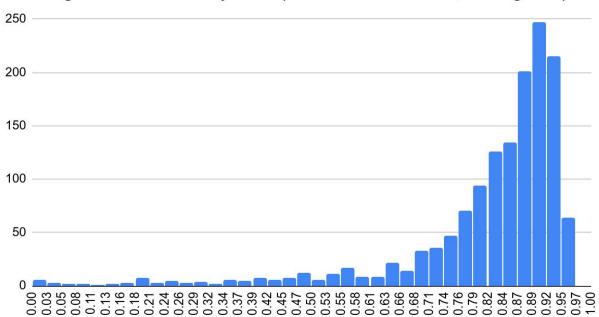
• **Geographical region of data capture**. Real-world frontal camera images have been captured in the following 17 geographic subregions (based on the <u>UN geoscheme</u> with merges and no EU countries):

Northern	Caribbean	Central	Australia and
Africa		Asia	New Zealand
Eastern	Central	Eastern	Europe
Africa	America	Asia	(without EU)
Middle Africa	South America	South- eastern Asia	Melanesia, Micronesia, and Polynesia
Southern	Northern	Southern	
Africa	America	Asia	
Western Africa		Western Asia	

Metric


- IOU, Intersection over Union: A measure of similarity. In the segmentation case, the ratio between the area of intersection of two masks and the area covered by their union (also known as Jaccard Index https://en.wikipedia.org/wiki/Jaccard_index).
- Parity of this metric across subgroups serves as the indicator of "fairness" for this machine learning model.

Evaluation Datasets


• 1445 images, 85 images from each of 17 the geographical subregions

Evaluation Results

Region	IOU	Standard deviation	95% confidence interval
Australia and New Zealand	81.4%	16.1%	81.4% ± 3.4%
Caribbean	81.2%	16.9%	81.2% ± 3.6%
Eastern Africa	83.7%	15.4%	83.7% ± 3.3%
Europe	82.6%	14.7%	82.6% ± 3.1%
Northern Africa	79.7%	20.1%	79.7% ± 4.3%
Melanesia + Micronesia + Polynesia	79.8%	16.2%	79.8% ± 3.4%
South America	81.3%	15.9%	81.3% ± 3.4%
Southeastern Asia	86.4%	11.1%	86.4% ± 2.4%
Western Asia	84.2%	12.5%	84.2% ± 2.7%
Central America	79.4%	17.0%	79.4% ± 3.6%
Central Asia	80.3%	13.9%	80.3% ± 3.0%
Eastern Asia	85.4%	11.7%	85.4% ± 2.5%
Middle Africa	78.7%	21.3%	78.7% ± 4.5%
Northern America	79.4%	18.7%	79.4% ± 4.0%
Southern Africa	80.5%	14.5%	80.5% ± 3.1%
Southern Asia	86.9%	10.5%	86.9% ± 2.2%
Western Africa	75.2%	21.3%	75.2% ± 4.5%
Total for all regions	81.5%	16.3%	81.5% ± 0.8%

Images distribution by IOU (evaluation dataset, all regions)

