
Security Assessment for

Accumulated Finance

June 29, 2024

Executive Summary

Overview

Project Name Accumulated Finance

Codebase URL https://github.com/AccumulatedFinanc
e/contracts-v2

Scan Engine Security Analyzer

Scan Time 2024/06/29 08:00:00

Commit Id 41ef980cc65a81b256ed7616e4f26d335
97e72a8

Total

Critical Issues 0

High risk Issues 0

Medium risk Issues 1

Low risk Issues 1

Informational
Issues 4

Critical Issues

The issue can cause large
economic losses, large-scale data
disorder, loss of control of authority
management, failure of key
functions, or indirectly affect the
correct operation of other smart
contracts interacting with it.

High Risk Issues

The issue puts a large number of
users' sensitive information at risk or
is reasonably likely to lead to
catastrophic impacts on clients'
reputations or serious financial
implications for clients and users.

Medium Risk
Issues

The issue puts a subset of users'
sensitive information at risk, would
be detrimental to the client's
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk Issues

The risk is relatively small and could
not be exploited on a recurring
basis, or is a risk that the client has
indicated is low-impact in view of
the client's business circumstances.

Informational Issue
The issue does not pose an
immediate risk but is relevant to
security best practices or Defence
in Depth.

Critical Issues 0% 0

High risk Issues 0% 0

Medium risk Issues 17% 1

Low risk Issues 17% 1

Informational Issues 67% 4

Summary of Findings

MetaScan security assessment was performed on June 29, 2024 08:00:00 on project Accumulated
Finance with the repository on branch default branch. The assessment was carried out by scanning
the project's codebase using the scan engine Security Analyzer. There are in total 6 vulnerabilities /
security risks discovered during the scanning session, among which 1 medium risk vulnerabilities, 1 low
risk vulnerabilities, 4 informational issues.

Besides the audited contract `Minter`, there are following two contracts in the Accumulatd Finance:

The `stToken` contract, it is an ERC20 token contract, and its owner has the privilege of the following
functions:

`pause`: Allows the owner to pause all token transfers;

`unpause`: Allows the owner to unpause all token transfers;

`mint`: Allows the owner to mint new tokens to a specified address.

The `wstToken` contract, it is a fork of the audited and deployed sfrxETH with the below little update:

renamed sfrxETH to wstToken

removed the `andSync` modifier from functions, `deposit`, `mint`, `withdraw`, and `redeem`.

the `syncRewards` function reverts if the `nextRewards` is zero.

ID Description Severity Alleviation

MSA-001 Centralization Risk Medium risk Acknowledged

MSA-002 The minWithdrawal lacks the upper boundry Low risk Fixed

MSA-003 Unused Return Value Informational Fixed

MSA-004 SafeMath Can be Remove on the Solidity Version 0.8.0 or Above
0.8.0 Informational Fixed

MSA-005
The Redundant Check on request.claimed From the
processWithdrawals Function Informational Fixed

MSA-006 No Need to Use safeTransferFrom Informational Fixed

https://etherscan.io/token/0xac3e018457b222d93114458476f3e3416abbe38f#code

Findings

Medium risk (1)

1. Centralization Risk Medium risk Security Analyzer

In the BaseMinter contract, the owner has the privilege of the following functions:

updateDepositFee: Allows the owner to update the deposit fee up to a maximum of 5%;

transferStakingTokenOwnership: Allows the owner to transfer the ownership of the staking token to a new owner;

mint: Allows the owner to mint new staking tokens to a specified address.

In the NativeMinter contract, the owner has the privilege of the following functions:

withdraw: Allows the owner to withdraw all the network coin balance from the contract to a specified address.

In the ERC20Minter contract, the owner has the privilege of the following functions:

withdraw: Allows the owner to withdraw all the base token balance from the contract to a specified address.

In the BaseMinterRedeem contract, the owner has the privilege of the following functions:

updateRedeemFee: Allows the owner to update the redeem fee up to a maximum of 5%.

In the BaseMinterWithdrawal contract, the owner has the privilege of the following functions:

updateWithdrawalFee: Allows the owner to update the withdrawal fee up to a maximum of 5%;

updateMinWithdrawal: Allows the owner to update the minimum withdrawal amount;
processWithdrawals: Allows the owner to process multiple withdrawal requests;

collectWithdrawalFees: Allows the owner to collect accumulated withdrawal fees from the contract.

In the NativeMinterWithdrawal contract, the owner has the privilege of the following functions:

withdraw: Allows the owner to withdraw the available network coin balance from the contract to a specified address.

In the ERC20MinterWithdrawal contract, the owner has the privilege of the following functions:

withdraw: Allows the owner to withdraw the available base token balance from the contract to a specified address.

File(s) Affected

Minter.sol #1949-1953

 function updateRedeemFee(uint256 newFee) public onlyOwner {

 require(newFee <= MAX_REDEEM_FEE, ">MaxFee");

 redeemFee = newFee;

 emit UpdateRedeemFee(newFee);

 }

1949

1950

1951

1952

1953

http://blob/master/Minter.sol

Minter.sol #2065-2075

Minter.sol #2114-2114

Minter.sol #2134-2134

Minter.sol #2167-2167

Minter.sol #2213-2213

Minter.sol #1859-1867

Minter.sol #1888-1893

Minter.sol #1923-1928

 function updateWithdrawalFee(uint256 newFee) public onlyOwner {

 require(newFee <= MAX_WITHDRAWAL_FEE, ">MaxFee");

 withdrawalFee = newFee;

 emit UpdateWithdrawalFee(withdrawalFee);

 }

 function updateMinWithdrawal(uint256 newMin) public onlyOwner {

 require(newMin > 0, "ZeroMinWithdrawal");

 minWithdrawal = newMin;

 emit UpdateMinWithdrawal(minWithdrawal);

 }

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

 function processWithdrawals(uint256[] calldata withdrawalIds) public onlyOwner {2114

 function collectWithdrawalFees(address receiver) public onlyOwner {2134

 function withdraw(address receiver) public virtual onlyOwner override {2167

 function withdraw(address receiver) public virtual onlyOwner override {2213

 function transferStakingTokenOwnership(address newOwner) public onlyOwner {//@audit CR @audit two

 stakingToken.transferOwnership(newOwner);

 emit TransferStakingTokenOwnership(newOwner);

 }

 function mint(uint256 amount, address receiver) public onlyOwner {

 stakingToken.mint(receiver, amount);

 emit Mint(address(msg.sender), receiver, amount);

 }

1859

1860

1861

1862

1863

1864

1865

1866

1867

 function withdraw(address receiver) public virtual onlyOwner {

 uint256 availableBalance = address(this).balance;

 require(availableBalance > 0, "ZeroWithdraw");

 SafeTransferLib.safeTransferETH(receiver, availableBalance);

 emit Withdraw(address(msg.sender), receiver, availableBalance);

 }

1888

1889

1890

1891

1892

1893

 function withdraw(address receiver) public virtual onlyOwner {

 uint256 availableBalance = baseToken.balanceOf(address(this));

 require(availableBalance > 0, "ZeroWithdraw");

 baseToken.safeTransferFrom(address(this), receiver, availableBalance);

 emit Withdraw(address(msg.sender), receiver, availableBalance);

 }

1923

1924

1925

1926

1927

1928

http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol

Recommendation

Consider implementing a decentralized governance mechanism or a multi-signature scheme that requires consensus among multiple
parties before pausing or unpausing the contract. This can help mitigate the centralization risk associated with a single owner
controlling critical contract functions. Alternatively, you can provide a clear justification for the centralization aspect and ensure that
users are aware of the potential risks associated with a single point of control.

Alleviation Acknowledged

The Accumulated Finance replied as below:
In standard design tokens for staking are withdrawn by multi-sig admin and staked using Accumulated Finance Staking Manager
automated system that prevents human errors.
If the network provides a permissionless way to stake tokens on behalf of the smart contract, withdrawal by multi-sig admin can be
disabled in the contract and additional methods to manage stake on behalf of Minter contract can be implemented.
In standard design LST rewards are minted by multi-sig admin. With the release of AEVM (Accumulated EVM), we plan to mitigate this
centralization risk by validating staking rewards, issuing LST rewards, and processing withdrawals through a set of network validators.

Low risk (1)

1. The minWithdrawal lacks the upper boundry Low risk Security Analyzer

The minWithdrawal lacks the upper boundry, as a result, if it is set as the max value of the type uint256, the requestWithdrawal function
will malfunction, due to the requre check will always fail.

 function requestWithdrawal(uint256 amount, address receiver) public nonReentrant {

 require(amount >= minWithdrawal, "LessThanMin");

File(s) Affected

Minter.sol #2071-2075

Recommendation

Adding upper boundry for the minWithdrawal.

Alleviation Fixed

This finding is addressed by adding a upper boundry, in commit 03e161dd28c036505e16902904e7d4ef627b45c3.

Informational (4)

1. Unused Return Value Informational Security Analyzer

Either the return value of an external call is not stored in a local or state variable, or the return value is declared but never used in the
function body.

File(s) Affected

Minter.sol #1908-1908

 function updateMinWithdrawal(uint256 newMin) public onlyOwner {

 require(newMin > 0, "ZeroMinWithdrawal");

 minWithdrawal = newMin;

 emit UpdateMinWithdrawal(minWithdrawal);

 }

2071

2072

2073

2074

2075

 baseToken.approve(address(this), type(uint256).max);1908

http://blob/master/Minter.sol
http://blob/master/Minter.sol

Minter.sol #2136-2136

Recommendation

Ensure the return value of external function calls is used.

Alleviation Fixed

The finding is addressed by removing the functions, in commits afc847b6bb695ded7e93806c7e6bb6cab0ad72c9, and
fd16775131dabe48fb1bbd68785c6ecaee31ba1a.

2.
SafeMath Can be Remove on the Solidity Version 0.8.0 or
Above 0.8.0

Informational Security Analyzer

Solidity version is 0.8.0 or above 0.8.0 implemented the overflow checks same as the SafeMath did.

Reference:
Arithmetic operations revert on underflow and overflow

File(s) Affected

Minter.sol #2-2

Recommendation

Removing the usage of the SafeMath library.

Alleviation Fixed

This finding is addressed by removing the usage of the SafeMath, in the commit 311ba2576115d64a6b55543204ff99ccf6909d47.

3.
The Redundant Check on request.claimed From the
processWithdrawals Function

Informational Security Analyzer

The processWithdrawals function will move a withdrawal request's status processed from false to true, and each withdrawal request
can only be processed once due to there is a require check on the request.processed:

 function processWithdrawals(uint256[] calldata withdrawalIds) public onlyOwner {

 uint256 totalWithdrawals;

 for (uint256 i = 0; i < withdrawalIds.length; i++) {

 uint256 withdrawalId = withdrawalIds[i];

 WithdrawalRequest storage request = _withdrawalRequests[withdrawalId];

 require(request.amount > 0, "ZeroAmount");

 require(!request.processed, "AlreadyProcessed");

 require(!request.claimed, "AlreadyClaimed");//@audit redundant check

Meanwhile, the request.claimed status does not be updated in the processWithdrawals function. there is no need to check the
request.claimed status from the processWithdrawals function.

File(s) Affected

Minter.sol #2121-2121

 stakingToken.approve(address(this), totalWithdrawalFees);2136

pragma solidity ^0.8.20;2

 require(!request.claimed, "AlreadyClaimed");2121

http://blob/master/Minter.sol
https://docs.soliditylang.org/en/v0.8.0/080-breaking-changes.html#silent-changes-of-the-semantics
http://blob/master/Minter.sol
http://blob/master/Minter.sol

Recommendation

Removing the redundant check on the request.claimed status.

Alleviation Fixed

This finding is addressed by removing the redundant check, in the commit 9fae5f3ad8dacee6a6b9c114d26ce512972f71a5.

4. No Need to Use safeTransferFrom Informational Security Analyzer

When deploying the ERC20Minter contract, the contract first approves itself a max allowance for the token baseToken, in order to call
the safeTransferFrom function with enough allowance from the deposit function and the withdraw function.

 constructor(address _baseToken, address _stakingToken) BaseMinter(_stakingToken) {

 baseToken = IERC20(_baseToken);

 // this contract can spend baseToken

 baseToken.approve(address(this), type(uint256).max);

 }

 ...

 function withdraw(address receiver) public virtual onlyOwner {

 uint256 availableBalance = baseToken.balanceOf(address(this));

 require(availableBalance > 0, "ZeroWithdraw");

 baseToken.safeTransferFrom(address(this), receiver, availableBalance);

 emit Withdraw(address(msg.sender), receiver, availableBalance);

 }

However, there is no need to do the approve + safeTransferFrom actions if the from address in the safeTransferFrom function is the
contract itself, it can be totally replace them with one safeTransfer function.

The similar case happens on the below functions:

The redeem function of the ERC20MinterRedeem contract.

The collectWithdrawalFees function of the BaseMinterWithdrawal contract.
Functions withdraw, and claimWithdrawal of the ERC20MinterWithdrawal contract.

File(s) Affected

Minter.sol #1908-1908

Minter.sol #1918-1918

Minter.sol #1926-1926

Minter.sol #2134-2140

 baseToken.approve(address(this), type(uint256).max);1908

 baseToken.safeTransferFrom(address(msg.sender), address(this), amount);1918

 baseToken.safeTransferFrom(address(this), receiver, availableBalance);1926

 function collectWithdrawalFees(address receiver) public onlyOwner {

 require(totalWithdrawalFees > 0, "ZeroFees");

 stakingToken.approve(address(this), totalWithdrawalFees);

 stakingToken.safeTransferFrom(address(this), receiver, totalWithdrawalFees);

 totalWithdrawalFees = 0;

 emit CollectWithdrawalFees(address(msg.sender), receiver, totalWithdrawalFees);

 }

2134

2135

2136

2137

2138

2139

2140

http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol

Minter.sol #2228-2228

Minter.sol #1991-1991

Minter.sol #2216-2216

Recommendation

Replacing the approve + safeTransferFrom actions with the safeTransfer when the from address in the safeTransferFrom function is
the contract itself.

Alleviation Fixed

This finding is addressed by replacing the approve + safeTransferFrom actions with the safeTransfer, in commits
fd16775131dabe48fb1bbd68785c6ecaee31ba1a and afc847b6bb695ded7e93806c7e6bb6cab0ad72c9.

 baseToken.safeTransferFrom(address(this), receiver, request.amount);2228

 baseToken.safeTransferFrom(address(this), receiver, redeemAmount);1991

 baseToken.safeTransferFrom(address(this), receiver, balance);2216

http://blob/master/Minter.sol
http://blob/master/Minter.sol
http://blob/master/Minter.sol

Disclaimer

This report is governed by the stipulations (including but not limited to service descriptions, confidentiality,
disclaimers, and liability limitations) outlined in the Services Agreement, or as detailed in the scope of
services and terms provided to you, the Customer or Company, within the context of the Agreement. The
Company is permitted to use this report only as allowed under the terms of the Agreement. Without explicit
written permission from MetaTrust, this report must not be shared, disclosed, referenced, or depended upon
by any third parties, nor should copies be distributed to anyone other than the Company.

It is important to clarify that this report neither endorses nor disapproves any specific project or team. It
should not be viewed as a reflection of the economic value or potential of any product or asset developed
by teams or projects engaging MetaTrust for security evaluations. This report does not guarantee that the
technology assessed is completely free of bugs, nor does it comment on the business practices, models, or
legal compliance of the technology's creators.

This report is not intended to serve as investment advice or a tool for investment decisions related to any
project. It represents a thorough assessment process aimed at enhancing code quality and mitigating risks
inherent in cryptographic tokens and blockchain technology. Blockchain and cryptographic assets inherently
carry ongoing risks. MetaTrust's role is to support companies and individuals in their security diligence and to
reduce risks associated with the use of emerging and evolving technologies. However, MetaTrust does not
guarantee the security or functionality of the technologies it evaluates.

MetaTrust's assessment services are contingent on various dependencies and are continuously evolving.
Accessing or using these services, including reports and materials, is at your own risk, on an as-is and as-
available basis. Cryptographic tokens are novel technologies with inherent technical risks and uncertainties.
The assessment reports may contain inaccuracies, such as false positives or negatives, and unpredictable
outcomes. The services may rely on multiple third-party layers.

All services, labels, assessment reports, work products, and other materials, or any results from their use, are
provided "as is" and "as available," with all faults and defects, without any warranty. MetaTrust expressly
disclaims all warranties, whether express, implied, statutory, or otherwise, including but not limited to
warranties of merchantability, fitness for a particular purpose, title, non-infringement, and any warranties
arising from course of dealing, usage, or trade practice. MetaTrust does not guarantee that the services,
reports, or materials will meet specific requirements, be error-free, or be compatible with other software,
systems, or services.

Neither MetaTrust nor its agents make any representations or warranties regarding the accuracy, reliability,
or currency of any content provided through the services. MetaTrust is not liable for any content
inaccuracies, personal injuries, property damages, or any loss resulting from the use of the services, reports,
or materials.

Third-party materials are provided "as is," and any warranty concerning them is strictly between the
Customer and the third-party owner or distributor. The services, reports, and materials are intended solely
for the Customer and should not be relied upon by others or shared without MetaTrust's consent. No third
party or representative thereof shall have any rights or claims against MetaTrust regarding these services,
reports, or materials.

The provisions and warranties of MetaTrust in this agreement are exclusively for the Customer's benefit. No
third party has any rights or claims against MetaTrust regarding these provisions or warranties. For clarity,
the services, including any assessment reports or materials, should not be used as financial, tax, legal,
regulatory, or other forms of advice.

