
Pre Report for

Debox-box

November 13, 2023

Executive Summary

Overview

Project Name Debox-box

Codebase URL Box (1).sol

Scan Engine Security Analyzer

Scan Time 2023/11/13 08:00:00

Commit Id 414396dadc161ee5b454c21b5c6a279c
299e8de31f2ba4bb0cedfcf79fd27e25

Total

Critical Issues 0

High risk Issues 2

Medium risk Issues 3

Low risk Issues 0

Informational
Issues 4

Critical Issues

The issue can cause large
economic losses, large-scale data
disorder, loss of control of authority
management, failure of key
functions, or indirectly affect the
correct operation of other smart
contracts interacting with it.

High Risk Issues

The issue puts a large number of
users' sensitive information at risk or
is reasonably likely to lead to
catastrophic impacts on clients'
reputations or serious financial
implications for clients and users.

Medium Risk
Issues

The issue puts a subset of users'
sensitive information at risk, would
be detrimental to the client's
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk Issues

The risk is relatively small and could
not be exploited on a recurring
basis, or is a risk that the client has
indicated is low-impact in view of
the client's business circumstances.

Informational Issue
The issue does not pose an
immediate risk but is relevant to
security best practices or Defence
in Depth.

Critical Issues 0% 0

High risk Issues 22% 2

Medium risk Issues 33% 3

Low risk Issues 0% 0

Informational Issues 44% 4

Summary of Findings

MetaScan security assessment was performed on November 13, 2023 08:00:00 on project Debox-
box with the repository on branch default branch. The assessment was carried out by scanning the
project's codebase using the scan engine Security Analyzer. There are in total 9 vulnerabilities /
security risks discovered during the scanning session, among which 0 critical vulnerabilities, 2 high risk
vulnerabilities, 3 medium risk vulnerabilities, 0 low risk vulnerabilities, 4 informational issues.

ID Description Severity Alleviation

MSA-001 Possibility of lock ether when the sum of pre-sale meta boxes less
than the allocateBalance High risk Fixed

MSA-002 The locked ether caused by the PER_BOX_GAS part High risk Fixed

MSA-003 Unable to transfer meta box Medium risk Acknowledged

MSA-004 Centralization Risks Medium risk Acknowledged

MSA-005 Unsafe usage of unchecked Medium risk

MSA-006 Unused event Informational Fixed

MSA-007 Missing Event Setter Informational Acknowledged

MSA-008 Typos Informational Fixed

MSA-009 The Price Model Informational Acknowledged

Findings

Critical (0)

No Critical vulnerabilities found here

High risk (2)

1.
Possibility of lock ether when the sum of pre-sale meta boxes
less than the allocateBalance

High risk Security Analyzer

When users buy or sell meta boxes, the getBuyAmount function and the getSellAmount require the _metaBoxs[meta].allocateBalance is
zero.

Let's consider this scenario:

A meta box with a key "AAA" has a allocateBalance as 100;

The "AAA" meta box only sold 80 meta boxes during the pre-sale;
The owner allocates meta boxes to all the "AAA" meta box participants.

Now the "AAA" meta box's allocateBalance is 100 - 80, 20, which is greater than 0.

As a result, the "AAA" meta box is unable to be traded, due to the getBuyAmount function and the getSellAmount requiring the
_metaBoxs[meta].allocateBalance is zero when buying and selling, and the corresponding ether will be locked forever.

File(s) Affected

Box (1).sol #95-109

Box (1).sol #79-88

Recommendation

Recommend adding logic to cover the case when the sold meta boxes during the pre-sale phase is less than the allocateBalance.

Alleviation Fixed

The team solved this issue by refunding users when a presale fails, in the new version smart contract whose sha256 value is
414396dadc161ee5b454c21b5c6a279c299e8de31f2ba4bb0cedfcf79fd27e25.

 function start(bytes32 meta, bytes memory signature) external {

 require(_metaBoxs[meta].expireTime == 0, "The box is started");

 bytes32 message = keccak256(abi.encodePacked(msg.sender, meta));

 require(_signOwner.isValidSignatureNow(message,signature), "The signature is invalid");

 uint128 expireTime = uint128(block.timestamp+BOX_SALE_PERIOD);

 _metaBoxs[meta] = BoxMeta({

 owner: msg.sender,

 expireTime: expireTime,

 preSaleCnt:0,

 tradeCnt:0,

 index:0,

 allocateBalance:uint128(BOX_SALE_CNT)

 });

 emit StartPreSale(msg.sender,meta,expireTime);

 }

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

 function getBuyAmount(bytes32 meta,uint128 cnt) public view returns(uint128,uint128){

 require(_metaBoxs[meta].allocateBalance == 0,"The box is not start trade");

 return _calculateTradeAmount(_metaBoxs[meta].tradeCnt,_metaBoxs[meta].tradeCnt+cnt);

 }

 function getSellAmount(bytes32 meta,uint128 cnt) public view returns(uint128,uint128){

 require(_metaBoxs[meta].allocateBalance == 0,"The box is not start trade");

 require(_metaBoxs[meta].tradeCnt >= cnt,"Insufficient box trade balance");

 return _calculateTradeAmount(_metaBoxs[meta].tradeCnt-cnt,_metaBoxs[meta].tradeCnt);

 }

79

80

81

82

83

84

85

86

87

88

http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol

2. The locked ether caused by the PER_BOX_GAS part High risk Security Analyzer

When users participate in a presale with the preSale function, users need to pay an amount of box_cnt * PER_BOX_PRICE + PER_BOX_GAS
ether to join the presale, there are logics for refunding and selling boxes for the box_cnt * PER_BOX_PRICE part ether.

However, it seems to lack the logic to withdraw the PER_BOX_GAS part ether that is received in the preSale function, which results in
accumulated ether being locked in the contract.

File(s) Affected

Box (1).sol #114-114

Recommendation

Recommend adding logic to process the PER_BOX_GAS part ether.

Alleviation Fixed

The team solved this issue by transferring PER_BOX_GAS part ether to _signOwner, in the new version smart contract whose sha256
value is 414396dadc161ee5b454c21b5c6a279c299e8de31f2ba4bb0cedfcf79fd27e25.

Medium risk (3)

 require(box_cnt * PER_BOX_PRICE + PER_BOX_GAS == msg.value ,"Insufficient ether");114

http://blob/master/Box%20(1).sol

1. Unable to transfer meta box Medium risk Security Analyzer

Users can only buy and sell meta boxes with the updating of the _metaBoxs and _userInfo.

However, there is no related logic for users to transfer the meta boxes.

File(s) Affected

Box (1).sol #152-169

Recommendation

Consider adding logic to transfer the meta boxes, meanwhile, process the userInfo.claims when transferring the meta boxes.

Alleviation Acknowledged

The team acknowledged this finding.

 function buy(bytes32 meta,uint128 cnt) external payable nonReentrant {

 require(cnt > 0,"Insufficient Box cnt");

 (uint128 tradeTotalAmount, uint128 fee) = getBuyAmount(meta,cnt);

 require(msg.value == tradeTotalAmount + fee ,"Insufficient pay amount");

 _updateUserInfo(meta,cnt,true);

 (uint128 ownerFees,uint128 farmAllFees,uint128 platfromFees) = _distributeFees(meta,fee);

 emit Trade(msg.sender,meta,tradeTotalAmount,ownerFees,farmAllFees,platfromFees,true,cnt);

 }

 function sell(bytes32 meta,uint128 cnt) external nonReentrant {

 require(cnt > 0,"Insufficient Box cnt");

 require(_userInfo[meta][msg.sender].cnt >= cnt,"Insufficient Box balance");

 (uint128 tradeTotalAmount, uint128 fee) = getSellAmount(meta,cnt);

 _updateUserInfo(meta,cnt,false);

 (uint128 ownerFees,uint128 farmAllFees,uint128 platfromFees) = _distributeFees(meta,fee);

 _safeTransferEth(msg.sender,tradeTotalAmount - fee);

 emit Trade(msg.sender,meta,tradeTotalAmount,ownerFees,farmAllFees,platfromFees,false,cnt);

 }

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

http://blob/master/Box%20(1).sol

2. Centralization Risks Medium risk Security Analyzer

In the provided smart contract, here are the functions that to be centralized and owned by the contract owner:

setFeeReciever(address fee_reciever): This function allows the owner to set the fee receiver address. The description could be:
"The owner can set the fee receiver address, which is the address that will receive fees collected by the contract."

setBoxFee(uint8 owner, uint8 platform, uint8 farm): This function enables the owner to set various fees related to box
transactions. The description could be: "The owner can set the fees for different parties involved in box transactions, including the
owner, platform, and farm."

allocate(bytes32 meta, BoxAllocate[] memory box_allocates): This function allows the owner to allocate box purchases to users.
The description could be: "The owner can allocate box purchases to users who participated in the pre-sale but were not allocated
their boxes. This function helps distribute boxes to users who oversubscribed during the pre-sale."

File(s) Affected

Box (1).sol #66-77

 function setFeeReciever (address fee_reciever) external onlyOwner {

 require(address(0) != fee_reciever,"fee_reciever is zero addresss");

 _feeReciever = fee_reciever;

 }

 function setBoxFee(uint8 owner,uint8 platform,uint8 farm) external onlyOwner {

 owner_fee = owner;

 platform_fee = platform;

 farm_fee = farm;

 trade_fee = owner_fee+platform_fee+farm_fee;

 require(trade_fee <= 10,"over 10%");

 }

66

67

68

69

70

71

72

73

74

75

76

77

http://blob/master/Box%20(1).sol

Box (1).sol #123-150

Recommendation

Consider implementing a decentralized governance mechanism or a multi-signature scheme that requires consensus among multiple
parties before pausing or unpausing the contract. This can help mitigate the centralization risk associated with a single owner
controlling critical contract functions. Alternatively, you can provide a clear justification for the centralization aspect and ensure that
users are aware of the potential risks associated with a single point of control.

Alleviation Acknowledged

The team acknowledged this finding.

 function allocate(bytes32 meta,BoxAllocate[] memory box_allocates) external onlyOwner {

 BoxMeta storage boxMeta = _metaBoxs[meta];

 require(boxMeta.expireTime > 0 && boxMeta.expireTime < block.timestamp, "The box pre sale in p

 BoxPreOrder[] storage boxPreOrders = _boxPreOrders[meta];

 if (boxPreOrders.length >= box_allocates.length) {

 uint128 allocateBalance = boxMeta.allocateBalance;

 for (uint i = 0; i < box_allocates.length; i++) {

 BoxAllocate memory box_allocate = box_allocates[i];

 BoxPreOrder storage boxPreOrder = boxPreOrders[box_allocate.orderIndex];

 require(boxPreOrder.cnt > 0,"The box duplicate allocation");

 uint128 boxPreOrderCnt = boxPreOrder.cnt;

 require(box_allocate.cnt <= boxPreOrderCnt && box_allocate.cnt <= allocateBalance,"Insu

 boxPreOrder.cnt = 0;

 allocateBalance -= boxPreOrderCnt;

 if (box_allocate.cnt > 0) {

 _userInfo[meta][boxPreOrder.owner].cnt += box_allocate.cnt;

 }

 if (boxPreOrderCnt > box_allocate.cnt) {

 uint128 refound = (boxPreOrderCnt - box_allocate.cnt)*PER_BOX_PRICE;

 _safeTransferEth(boxPreOrder.owner,refound);

 }

 }

 boxMeta.allocateBalance = allocateBalance;

 }

 if (boxMeta.allocateBalance == 0) {

 _metaBoxs[meta].tradeCnt = BOX_SALE_CNT;

 }

 }

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

http://blob/master/Box%20(1).sol

3. Unsafe usage of unchecked Medium risk Security Analyzer

In the new version smart contract whose sha256 value is 414396dadc161ee5b454c21b5c6a279c299e8de31f2ba4bb0cedfcf79fd27e25.

The _calculateTradeAmount function accumulates the total trade amount, and the _calculateBoxPrice function calculates the trade
amount. There is a possibility for them to be overflowing, so, it is unsafe to use the unchecked block for them.

File(s) Affected

Box.sol #242-256

Box.sol #290-302

Recommendation

Consider removing the usages of the unchecked block for the _calculateTradeAmount function and the _calculateBoxPrice function.

Low risk (0)

No Low risk vulnerabilities found here

Informational (4)

 function _calculateTradeAmount(uint128 start_index, uint128 end_innex) internal view returns (uint1

 require(end_innex > start_index, "Insufficient Box cnt");

 uint128 tradeTotalAmount = 0;

 unchecked {

 for (uint128 i = end_innex; i > start_index; i--) {

 if (i > BOX_SALE_CNT) {

 tradeTotalAmount += _calculateBoxPrice(i);

 } else {

 tradeTotalAmount += PER_BOX_PRICE;

 }

 }

 }

 uint128 fee = tradeTotalAmount * trade_fee / 100;

 return (tradeTotalAmount, fee);

 }

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

 function _calculateBoxPrice(uint128 x) internal pure returns (uint128) {

 if (x <= 100) return PER_BOX_PRICE;

 uint128 boxPrice = 100;

 unchecked {

 if (x > 1000) {

 boxPrice = (x - 1000) ** 2 / 9 + 100 * (x - 100) / 3 + 100;

 } else {

 boxPrice = 100 * (x - 100) / 3 + 100;

 }

 }

 return boxPrice * 1e14;

 }

290

291

292

293

294

295

296

297

298

299

300

301

302

http://blob/master/Box.sol
http://blob/master/Box.sol

1. Unused event Informational Security Analyzer

The presence of an event that is declared but never used in the codebase. They may increase computation costs and lead to
unnecessary gas consumption.

File(s) Affected

Box (1).sol #58-58

Recommendation

Remove the unused event or emit it in the right place to avoid negative effects and improve code readability if there is no plan for
further usage.

Alleviation Fixed

The team solved this issue by removing the redundant event, in the new version smart contract whose sha256 value is
414396dadc161ee5b454c21b5c6a279c299e8de31f2ba4bb0cedfcf79fd27e25.

2. Missing Event Setter Informational Security Analyzer

Functions update key states are recommended to emit the corresponding events.

File(s) Affected

Box (1).sol #66-69

Box (1).sol #71-77

Recommendation

Consider emitting the corresponding events.

Alleviation Acknowledged

The team acknowledged this issue.

 event StartTrade(address indexed sender, bytes32 meta);58

 function setFeeReciever (address fee_reciever) external onlyOwner {

 require(address(0) != fee_reciever,"fee_reciever is zero addresss");

 _feeReciever = fee_reciever;

 }

66

67

68

69

 function setBoxFee(uint8 owner,uint8 platform,uint8 farm) external onlyOwner {

 owner_fee = owner;

 platform_fee = platform;

 farm_fee = farm;

 trade_fee = owner_fee+platform_fee+farm_fee;

 require(trade_fee <= 10,"over 10%");

 }

71

72

73

74

75

76

77

http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol

3. Typos Informational Security Analyzer

The variable toFram is intended to be named toFarm.

The variable platfromFees is intended to be named platformFees.

File(s) Affected

Box (1).sol #166-168

Box (1).sol #59-59

Box (1).sol #194-206

Box (1).sol #157-158

Recommendation

Recommend updating these typos.

Alleviation Fixed

The team solved this issue by correcting the typos, in the new version smart contract whose sha256 value is
414396dadc161ee5b454c21b5c6a279c299e8de31f2ba4bb0cedfcf79fd27e25.

 (uint128 ownerFees,uint128 farmAllFees,uint128 platfromFees) = _distributeFees(meta,fee);

 _safeTransferEth(msg.sender,tradeTotalAmount - fee);

 emit Trade(msg.sender,meta,tradeTotalAmount,ownerFees,farmAllFees,platfromFees,false,cnt);

166

167

168

 event Trade(address indexed sender, bytes32 meta,uint128 amount,uint128 ownerFees,uint128 farmAllFee59

 function _distributeFees(bytes32 meta, uint128 fees) internal returns (uint128 toOwner,uint128 toFr

 uint128 base=trade_fee;

	 	 if (base==0) return(0,0,0);

 BoxMeta storage boxMeta = _metaBoxs[meta];

 unchecked{

 toOwner= fees*owner_fee/base;

	 	 	 if(boxMeta.tradeCnt>0) toFram = fees*farm_fee/base;

	 	 toCore = fees - toOwner - toFram;

 }

 if (toFram>0) boxMeta.index += toFram/boxMeta.tradeCnt;

 if (toOwner>0) _safeTransferEth(boxMeta.owner,toOwner);

 if (toCore>0)_safeTransferEth(_feeReciever,toCore);

 }

194

195

196

197

198

199

200

201

202

203

204

205

206

 (uint128 ownerFees,uint128 farmAllFees,uint128 platfromFees) = _distributeFees(meta,fee);

 emit Trade(msg.sender,meta,tradeTotalAmount,ownerFees,farmAllFees,platfromFees,true,cnt);

157

158

http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol
http://blob/master/Box%20(1).sol

4. The Price Model Informational Security Analyzer

The price model designed in the _calculateBoxPrice function calculates the price with three formulas,

 function _calculateBoxPrice(uint128 x) internal pure returns (uint128) {

 if (x <= 100) return PER_BOX_PRICE;

 uint128 boxPrice = 100;

 unchecked {

 if (x > 1000) {

 boxPrice = (x - 1000) ** 2 / 9 + 100 * (x - 100) / 3 + 100;

 } else {

 boxPrice = 100 * (x - 100) / 3 + 100;

 }

 }

 return boxPrice * 1e14;

 }

It may incur great slippage, especially when the variable x is greater than 1000.

File(s) Affected

Box (1).sol #225-233

Recommendation

Consider checking if the price model is an intended design.

Alleviation Acknowledged

The team acknowledged this issue.

 function _calculateBoxPrice(uint128 x) internal pure returns (uint128) {

 uint128 boxPrice = 100;

 if (x > 1000) {

 boxPrice = (x - 1000)**2 / 9 + 100*(x - 100)/3 + 100;

 }else if (x > 100) {

 boxPrice = 100 * (x - 100) / 3 + 100;

 }

 return boxPrice*10**14;

 }

225

226

227

228

229

230

231

232

233

http://blob/master/Box%20(1).sol

Audit Scope

File SHA256 File Path

Box (1).sol f581723b3cb6f4c3ae5977ae64fd7f09b8734e9365677
8019e814bbe2cb7f0a0 /Box (1).sol

Disclaimer

This report is governed by the stipulations (including but not limited to service descriptions, confidentiality,
disclaimers, and liability limitations) outlined in the Services Agreement, or as detailed in the scope of
services and terms provided to you, the Customer or Company, within the context of the Agreement. The
Company is permitted to use this report only as allowed under the terms of the Agreement. Without explicit
written permission from MetaTrust, this report must not be shared, disclosed, referenced, or depended upon
by any third parties, nor should copies be distributed to anyone other than the Company.

It is important to clarify that this report neither endorses nor disapproves any specific project or team. It
should not be viewed as a reflection of the economic value or potential of any product or asset developed
by teams or projects engaging MetaTrust for security evaluations. This report does not guarantee that the
technology assessed is completely free of bugs, nor does it comment on the business practices, models, or
legal compliance of the technology's creators.

This report is not intended to serve as investment advice or a tool for investment decisions related to any
project. It represents a thorough assessment process aimed at enhancing code quality and mitigating risks
inherent in cryptographic tokens and blockchain technology. Blockchain and cryptographic assets inherently
carry ongoing risks. MetaTrust's role is to support companies and individuals in their security diligence and to
reduce risks associated with the use of emerging and evolving technologies. However, MetaTrust does not
guarantee the security or functionality of the technologies it evaluates.

MetaTrust's assessment services are contingent on various dependencies and are continuously evolving.
Accessing or using these services, including reports and materials, is at your own risk, on an as-is and as-
available basis. Cryptographic tokens are novel technologies with inherent technical risks and uncertainties.
The assessment reports may contain inaccuracies, such as false positives or negatives, and unpredictable
outcomes. The services may rely on multiple third-party layers.

All services, labels, assessment reports, work products, and other materials, or any results from their use, are
provided "as is" and "as available," with all faults and defects, without any warranty. MetaTrust expressly
disclaims all warranties, whether express, implied, statutory, or otherwise, including but not limited to
warranties of merchantability, fitness for a particular purpose, title, non-infringement, and any warranties
arising from course of dealing, usage, or trade practice. MetaTrust does not guarantee that the services,
reports, or materials will meet specific requirements, be error-free, or be compatible with other software,
systems, or services.

Neither MetaTrust nor its agents make any representations or warranties regarding the accuracy, reliability,
or currency of any content provided through the services. MetaTrust is not liable for any content
inaccuracies, personal injuries, property damages, or any loss resulting from the use of the services, reports,
or materials.

Third-party materials are provided "as is," and any warranty concerning them is strictly between the
Customer and the third-party owner or distributor. The services, reports, and materials are intended solely
for the Customer and should not be relied upon by others or shared without MetaTrust's consent. No third
party or representative thereof shall have any rights or claims against MetaTrust regarding these services,
reports, or materials.

The provisions and warranties of MetaTrust in this agreement are exclusively for the Customer's benefit. No
third party has any rights or claims against MetaTrust regarding these provisions or warranties. For clarity,
the services, including any assessment reports or materials, should not be used as financial, tax, legal,
regulatory, or other forms of advice.

