
Security Assessment for

MUFEX

June 8, 2023

Executive Summary

Overview

Project Name MUFEX

Codebase URL -

Scan Engine Security Analyzer

Scan Time 2023/06/8 16�21�10

Commit Id -

Total

Critical Issues 0

High risk Issues 1

Medium risk Issues 2

Low risk Issues 4

Informational
Issues 3

Critical Issues

The issue can cause large
economic losses, large-scale data
disorder, loss of control of authority
management, failure of key
functions, or indirectly affect the
correct operation of other smart
contracts interacting with it.

High Risk Issues

The issue puts a large number of
users' sensitive information at risk or
is reasonably likely to lead to
catastrophic impacts on clients'
reputations or serious financial
implications for clients and users.

Medium Risk
Issues

The issue puts a subset of users'
sensitive information at risk, would
be detrimental to the client's
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk Issues

The risk is relatively small and could
not be exploited on a recurring
basis, or is a risk that the client has
indicated is low-impact in view of
the client's business circumstances.

Informational Issue
The issue does not pose an
immediate risk but is relevant to
security best practices or Defence
in Depth.

Critical Issues 0% 0

High risk Issues 10% 1

Medium risk Issues 20% 2

Low risk Issues 40% 4

Informational Issues 30% 3

Summary of Findings

MetaScan security assessment was performed on June 8, 2023 16�21�10 on project MUFEX with the
repository MUFEX on branch -. The assessment was carried out by scanning the project's codebase
using the scan engine Security Analyzer. There are in total 10 vulnerabilities / security risks
discovered during the scanning session, among which 0 critical vulnerabilities, 1 high risk
vulnerabilities, 2 medium risk vulnerabilities, 4 low risk vulnerabilities, 3 informational issues.

ID Description Severity Alleviation

MSA�001 Inappropriate Handling of Ether Balances in updateZKP Function High risk Fixed

MSA�002 Potential DoS when updating ZKP Medium risk Acknowledged

MSA�003 Out-of-Bounds Array Assignment in generalWithdraw Function Medium risk Fixed

MSA�004 Lack of zero address check Low risk Fixed

MSA�005 Lack of Access Control Low risk Fixed

MSA�006 Gas limitation for the receive function Low risk Acknowledged

MSA�007 DoS attack when creating a wallet Low risk Acknowledged

MSA�008 Gas savings Informational Fixed

MSA�009 Unclear error in require logic Informational Acknowledged

MSA�010
Potential Repeated Item Inserted into allGeneralWithdrawnIndex or
allForceWithdrawnIndex

Informational Acknowledged

Findings

Critical �0�

No Critical vulnerabilities found here

High risk �1�

1.
Inappropriate Handling of Ether Balances in updateZKP
Function

High risk Security Analyzer

The MainTreasury contract does not appropriately handle Ether balances in the updateZKP function. The function iterates over a list of
tokens and checks if the contract has enough balance of each token. However, when it comes to handling Ether, the contract still tries
to use the ERC20 balanceOf method, which is inappropriate for Ether as Ether is not an ERC20 token.

File(s) Affected

contracts/MainTreasury.sol #62�62

Recommendation

here are two potential solutions to this issue, depending on the intended functionality of the code: Modify the code to handle Ether
balances separately using address(this).balance for the Ether case.

Alleviation Fixed

The development team fixed this issue in commit�https://github.com/MUFEX�Exchange/smart-
contract/commit/e2091a77d215c97e689bc98eb9232721ed8a26d0

Medium risk �2�

1. Potential DoS when updating ZKP Medium risk Security Analyzer

For the version of commit 056df89e788c8e35f03c7a37df3eefbe81ca4127, on May 30.

The updateZKP function requires that newZkpId is greater than zkpId as shown below:
solidity function updateZKP(uint64 newZkpId, uint256 newBalanceRoot, uint256 newWithdrawRoot, uint256 newTotalBalance,

uint256 newTotalWithdraw) external override onlyVerifierSet { ... require(newZkpId > zkpId, "old zkp"); ...

However, what if a newZkpId is set to the type(uint64).max by mistake, which results in the next update will always fail since newZkpId >
type(uint64).max returns false.

File(s) Affected

contracts/MainTreasury.sol #64�64

Recommendation

Checking if it is an intended design, if not, consider increasing zkpId by one per update.

Alleviation Acknowledged

The development team acknowledged this issue.

 uint256 balanceOfThis = IERC20(token).balanceOf(address(this));62

 require(newZkpId > zkpId, "old zkp");64

https://github.com/MUFEX-Exchange/smart-contract/commit/e2091a77d215c97e689bc98eb9232721ed8a26d0

2.
Out-of-Bounds Array Assignment in generalWithdraw
Function

Medium risk Security Analyzer

In the provided generalWithdraw function, there is an error with the msgs array. The array is initialized with a size of 8 (new uint256[]
(8)), but it tries to assign a value to the 9th element (msgs[8] = amount;). This will cause an out-of-bounds error because arrays in
Solidity are 0-indexed, meaning that the index of the last element of an array with size 8 is 7.

File(s) Affected

contracts/MainTreasury.sol #95�104

Recommendation

�� If all 9 elements are required, increase the size of the msgs array to 9 during initialization:

uint256[] memory msgs = new uint256[](9);

This will create an array with enough space for the 9 elements.

�� If the assignment to the 9th element is not required, simply remove the line msgs[8] = amount;.

Alleviation Fixed

The development team fixed this issue in commit� https://github.com/MUFEX�Exchange/smart-
contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b

Low risk �4�

1. Lack of zero address check Low risk Security Analyzer

For the version of commit 056df89e788c8e35f03c7a37df3eefbe81ca4127, on May 30.

Zero addresses assigned to the address type state variables will result in an unexpected result.

Example:
solidity constructor(address treasury_) { treasury = treasury_; }

File(s) Affected

Recommendation

Adding zero value check on address type state variables.

Alleviation Fixed

The development team resolved this issue in the commit https://github.com/MUFEX�Exchange/smart-
contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b

 uint256[] memory msgs = new uint256[](8);

 msgs[0] = zkpId;

 msgs[1] = index;

 msgs[2] = withdrawId;

 msgs[3] = accountId;

 msgs[4] = uint256(uint160(account));

 msgs[5] = uint256(uint160(to));

 msgs[6] = withdrawType;

 msgs[7] = amount;

 uint256 node = MiMC.Hash(msgs);

95

96

97

98

99

100

101

102

103

104

https://github.com/MUFEX-Exchange/smart-contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b
https://github.com/MUFEX-Exchange/smart-contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b

2. Lack of Access Control Low risk Security Analyzer

For the version of commit 056df89e788c8e35f03c7a37df3eefbe81ca4127, on May 30.

In the Verifier contract, the submit function invokes updateZKP function of the mainTreasury contract.

However, there is no access control in the submit function, which results in anyone can submit a ZKP and leads to unexpected results.

File(s) Affected

contracts/Verifier.sol #102�148

Recommendation

Adding access control for the submit function.

Alleviation Fixed

The development team fixed this issue in commit https://github.com/MUFEX�Exchange/smart-
contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b

 function submit(

 uint64 zkpId,

 uint256[] memory BeforeAccountTreeRoot,

 uint256[] memory AfterAccountTreeRoot,

 uint256[] memory BeforeCEXAssetsCommitment,

 uint256[] memory AfterCEXAssetsCommitment,

 uint256[2][] memory a, // zk proof

 uint256[2][2][] memory b, // zk proof

 uint256[2][] memory c, // zk proof

 uint256 withdrawMerkelTreeToot,//@audit typo

 uint256 totalBalance,

 uint256 totalWithdraw

) public returns (bool r) {//@audit lack access control

 //

 require(BeforeAccountTreeRoot.length == AfterAccountTreeRoot.length,"BeforeAccountTreeRoot.leng

 require(BeforeAccountTreeRoot.length == BeforeCEXAssetsCommitment.length,"BeforeAccountTreeRoot

 require(BeforeAccountTreeRoot.length == AfterCEXAssetsCommitment.length,"BeforeAccountTreeRoot.

 require(BeforeAccountTreeRoot.length == a.length,"BeforeAccountTreeRoot.length != a.length");

 require(BeforeAccountTreeRoot.length == b.length,"BeforeAccountTreeRoot.length != b.length");

 require(BeforeAccountTreeRoot.length == c.length,"BeforeAccountTreeRoot.length != c.length");

 // after before

 for (uint256 i = 1; i < BeforeAccountTreeRoot.length; i++) {

 require(BeforeAccountTreeRoot[i] == AfterAccountTreeRoot[i-1],"BeforeAccountTreeRoot[i] !=

 require(BeforeCEXAssetsCommitment[i] == AfterCEXAssetsCommitment[i-1],"BeforeCEXAssetsCommi

 }

 // zk proof

 for (uint256 i = 0; i < BeforeAccountTreeRoot.length; i++) {

 uint256[4] memory input = [

 BeforeAccountTreeRoot[i],

 AfterAccountTreeRoot[i],

 BeforeCEXAssetsCommitment[i],

 AfterCEXAssetsCommitment[i]

];

 bool rst = verifyProof(

 a[i],

 b[i],

 c[i],

 input

);

 require(rst,"zk proof fail");

 }

 IMainTreasury(mainTreasury).updateZKP(zkpId, AfterAccountTreeRoot[AfterAccountTreeRoot.length -

 return true;

 }

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

https://github.com/MUFEX-Exchange/smart-contract/commit/123e80f8f0d84d4583be57d320d0278e04c0f99b

3. Gas limitation for the receive function Low risk Security Analyzer

There is a gas limit of 2300 if the call transfer ETH to the DepositWallet contract by transfer function or send function.

 receive() external payable {

 TransferHelper.safeTransferETH(treasury, msg.value);//@audit gas fee ?

 emit EtherCollected(treasury, msg.value, "");

 }

File(s) Affected

contracts/DepositWallet.sol #14�14

Recommendation

Adding another function to transfer ETH.

Alleviation Acknowledged

The development team responded that the receive function is only used by the EOA users.

4. DoS attack when creating a wallet Low risk Security Analyzer

The DepositWalletFactory contract creates a wallet contract for users with the salt. As a result, a malicious user can create a wallet
contract if he/she knew the rule of salt before MUFEX does or front-run the transaction that MUFEX intends to execute.

File(s) Affected

contracts/DepositWalletFactory.sol #27�27

Recommendation

Checking if the factory of the create wallet contract is the right one.

Alleviation Acknowledged

The development team acknowledged this issue.

Informational �3�

1. Gas savings Informational Security Analyzer

For the version of commit 056df89e788c8e35f03c7a37df3eefbe81ca4127, on May 30.

Reading a storage-type variable cost more gas than reading a memory variable.

Example A�
solidity //DepositWalletFactory.sol function batchCreateWallets(bytes32[] memory salts, address[] memory accounts) external

override returns (address[] memory wallets) { ... for (uint256 i = 0; i < salts.length; i++) { ...

DepositWallet(payable(wallets[i])).initialize(accounts[i], treasury); ... } ... } For the above example, it is gas-saving by
declaring a new memory type variable _treasury that is assigned with treasury, then using the _treasury instead of treasury to save
gas.

Example B�
solidity //MainTreasury.sol function setVerifier(address verifier_) external override onlyOwner { require(verifier ==

 receive() external payable {14

 wallet = address(new DepositWallet{salt: salt}());27

address(0), "verifier already set"); verifier = verifier_; emit VerifierSet(verifier); }

For the above example, we can use the variable verifier_ instead of verifier to save gas when emitting the event.

File(s) Affected

contracts/DepositWalletFactory.sol #33�43

Recommendation

Replacing the reading storage variable with the reading memory variable to save gas.

Alleviation Fixed

The development team resolved this issue in the commit https://github.com/MUFEX�Exchange/smart-
contract/commit/c1300117f7696c9dc6df1363c742f56b3d623624

2. Unclear error in require logic Informational Security Analyzer

In the given smart contract code, there are two require statements that use a counter variable i within the error messages. These
error messages are not informative, and since Solidity does not have support for string interpolation, the value of i will not be parsed
and displayed in the error message. This can cause confusion and make it difficult for developers or users to understand the actual
issue.

File(s) Affected

contracts/Verifier.sol #124�127

Recommendation

To address this issue, the error messages can be made more descriptive and provide some general insight into the nature of the error,
without the need for parsing the counter variable. This will provide clearer information regarding the error that occurred.

Alleviation Acknowledged

The development team acknowledged this issue.

3.
Potential Repeated Item Inserted into
allGeneralWithdrawnIndex or allForceWithdrawnIndex

Informational Security Analyzer

For the version of commit 056df89e788c8e35f03c7a37df3eefbe81ca4127, on May 30.

In the MainTreasury contract, the isWithdrawn checks if there is an index is processed or not, and the _setWithdrawn function marks an
index as processed.

 function batchCreateWallets(bytes32[] memory salts, address[] memory accounts) external override retu

 require(salts.length == accounts.length, "length not the same");

 wallets = new address[](salts.length);

 for (uint256 i = 0; i < salts.length; i++) {

 require(getWallet[salts[i]] == address(0), "used salt");

 wallets[i] = address(new DepositWallet{salt: salts[i]}());

 DepositWallet(payable(wallets[i])).initialize(accounts[i], treasury);//@audit gas saving

 getWallet[salts[i]] = wallets[i];

 }

 emit BatchWalletsCreated(salts, accounts, wallets);

 }

33

34

35

36

37

38

39

40

41

42

43

 for (uint256 i = 1; i < BeforeAccountTreeRoot.length; i++) {

 require(BeforeAccountTreeRoot[i] == AfterAccountTreeRoot[i-1],"BeforeAccountTreeRoot[i] !=

 require(BeforeCEXAssetsCommitment[i] == AfterCEXAssetsCommitment[i-1],"BeforeCEXAssetsCommi

 }

124

125

126

127

https://github.com/MUFEX-Exchange/smart-contract/commit/c1300117f7696c9dc6df1363c742f56b3d623624

However, the allGeneralWithdrawnIndex array and the allForceWithdrawnIndex array may exist duplicated items since those two
functions are unable to keep items of the allGeneralWithdrawnIndex array and the allForceWithdrawnIndex array to be unique.

Here is the PoC�
```solidity contract MainTreasuryTest is Test {

mapping(uint256 => uint256) private generalWithdrawnBitMap; 

mapping(uint256 => uint256) private forceWithdrawnBitMap; 

uint256[] private allGeneralWithdrawnIndex; 

uint256[] private allForceWithdrawnIndex; 

 

function testItemDuplicated() public { 

    generalWithdraw(4609); 

    generalWithdraw(4612); 

    assert(allForceWithdrawnIndex.length == 2); 

    assert(allForceWithdrawnIndex[0] == allForceWithdrawnIndex[1]); 

}

//index 10010_00_000_001, -

“4609 //index 10010_00_000_100, � 4612 function generalWithdraw( uint256 index ) public { require(!isWithdrawn(index, false),
"Drop already withdrawn"); _setWithdrawn(index, false); }”

function isWithdrawn(uint256 index, bool isGeneral) public view returns (bool) { 

    uint256 wordIndex = index / 256;// wordIndex = 10010,       wordIndex = 10010 

    uint256 bitIndex = index % 256; // bitIndex = 0_000_001,    bitIndex = 0_000_100; 

    console.logString("isWithDrawn"); 

    console.logUint(wordIndex); 

    console.logUint(bitIndex); 

    uint256 word; 

    if (isGeneral) { 

        word = generalWithdrawnBitMap[wordIndex]; 

    } else { 

        word = forceWithdrawnBitMap[wordIndex]; 

    } 

    uint256 mask = (1 << bitIndex);// mask = 00010, mask = 10000 

    return word & mask == mask;// 

} 

 

function _setWithdrawn(uint256 index, bool isGeneral) internal { 

    uint256 wordIndex = index / 256; 

    uint256 bitIndex = index % 256; 

    console.logString("_setWithdrawn"); 

    console.logUint(wordIndex); 

    console.logUint(bitIndex); 

    if (isGeneral) { 

        generalWithdrawnBitMap[wordIndex] = generalWithdrawnBitMap[wordIndex] | (1 << bitIndex);// 

        allGeneralWithdrawnIndex.push(wordIndex); 

    } else { 

        forceWithdrawnBitMap[wordIndex] = forceWithdrawnBitMap[wordIndex] | (1 << bitIndex); 

        allForceWithdrawnIndex.push(wordIndex); 

    } 

}

} ```

File(s) Affected



contracts/MainTreasury.sol #144�167

Recommendation

Checking if the implementation matches the design and refactoring the code if it not.

Alleviation Acknowledged

The development team responded that it is fine to have repeated wordIndex in the allGeneralWithdrawnIndex and
allForceWithdrawnIndex.

    function isWithdrawn(uint256 index, bool isGeneral) public view returns (bool) { 

        uint256 wordIndex = index / 256; 

        uint256 bitIndex = index % 256; 

        uint256 word; 

        if (isGeneral) { 

            word = generalWithdrawnBitMap[wordIndex]; 

        } else { 

            word = forceWithdrawnBitMap[wordIndex]; 

        } 

        uint256 mask = (1 << bitIndex); 

        return word & mask == mask; 

    } 

 

    function _setWithdrawn(uint256 index, bool isGeneral) internal { 

        uint256 wordIndex = index / 256; 

        uint256 bitIndex = index % 256; 

        if (isGeneral) { 

            generalWithdrawnBitMap[wordIndex] = generalWithdrawnBitMap[wordIndex] | (1 << bitIndex);//@

            allGeneralWithdrawnIndex.push(wordIndex); 

        } else { 

            forceWithdrawnBitMap[wordIndex] = forceWithdrawnBitMap[wordIndex] | (1 << bitIndex); 

            allForceWithdrawnIndex.push(wordIndex); 

        } 

    }

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167



Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of
services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the
Agreement. This report provided in connection with the Services set forth in the Agreement shall be used by
the Company only to the extent permitted under the terms and conditions set forth in the Agreement. This
report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes, nor may
copies be delivered to any other person other than the Company, without MetaTrust’s prior written consent in
each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. This report is not, nor should be considered, an indication of the economics or value of any “product”
or “asset” created by any team or project that contracts MetaTrust to perform a security assessment. This
report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or
legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any
particular project. This report in no way provides investment advice, nor should be leveraged as investment
advice of any sort. This report represents an extensive assessing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. MetaTrust’s position is
that each company and individual are responsible for their own due diligence and continuous security.
MetaTrust’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing
new and consistently changing technologies, and in no way claims any guarantee of security or functionality
of the technology we agree to analyze.

The assessment services provided by MetaTrust is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services, reports, and
materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. The assessment
reports could include false positives, false negatives, and other unpredictable results. The services may
access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR
ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS Security Assessment
AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM
EXTENT PERMITTED UNDER APPLICABLE LAW, MetaTrust HEREBY DISCLAIMS ALL WARRANTIES,



WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE SERVICES,
ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING, MetaTrust
SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON�INFRINGEMENT, AND ALL WARRANTIES ARISING FROM COURSE
OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, MetaTrust MAKES NO
WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK
PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET
CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE
COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,
ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR�FREE. WITHOUT LIMITATION TO THE
FOREGOING, MetaTrust PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION
OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED
RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR
SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS
OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER MetaTrust NOR ANY OF MetaTrust’S AGENTS MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,
RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE.
MetaTrust WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR �I� ANY ERRORS, MISTAKES, OR
INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED
AS A RESULT OF THE USE OF ANY CONTENT, OR �II� ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF
ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES,
ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD�PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR
CONCERNING ANY THIRD�PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD�PARTY
OWNER OR DISTRIBUTOR OF THE THIRD�PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED
TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT
SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER
PERSON WITHOUT MetaTrust’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR
OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING Security
Assessment MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION
AGAINST MetaTrust WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY
ACCOMPANYING MATERIALS.



THE REPRESENTATIONS AND WARRANTIES OF MetaTrust CONTAINED IN THIS AGREEMENT ARE SOLELY
FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF
ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND
WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST
MetaTrust WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO
OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,
REGULATORY, OR OTHER ADVICE.


