

Discrete Element Modelling (DEM) on a System Level

Generating ROMs with Rocky DEM and ANSYS

Presented by:

Wynand Prinsloo

Agenda

- Introduction (What\Why ROM)
- Example Case Background
- ROM Setup
- ROM Results & Validation
- Shortfalls
- Where To Next

Q&A

- ROM = Reduced Order Model
- What: Mathematical representation of physics system.
- Why: Estimate results in continuous space by using quick equations instead of doing full physics solve.
- Process: Design of Experiments > Response
 Surface Generation > ROM Export

- ANSYS can be a powerful tool in generating ROMs and digital twins.
- Structural, Fluid and Emag ROMs covered by ANSYS.
- What about bulk flow applications?

- ANSYS can be a powerful tool in generating ROMs and digital twins.
- Structural, Fluid and Emag twins covered by ANSYS.
- What about bulk flow applications?

 Rocky integrates into ANSYS DesignXplorer (DX).

 This enables the generation of ROMs/digital twins for bulk flow applications.

 Real world test case: Shuttle cars offloading to a feeder.

 Concern: Restriction on mass flow from feeder.

Outflow affected by many variables:

- DEM answer:
 - Accurate answer.
 - New solve for each set of inputs.
 - Good for system with fixed inputs.
- ROM answer:
 - Estimated answer.
 - Instant answer for any inputs.
 - More favourable for highly variable system.

ROM Setup

ROM Strategy

Separate ROMs for shuttle cars and feeder:

ROM Strategy

- Separate ROMs for shuttle cars and feeder:
 - Allows for easy expansion of model.

ROM Setup

• Shuttle car setup:

20 tons of material.

Different conveyor speeds tested.

Shuttle Car ROM

- Shuttle car response surface:
 - Inputs:
 - Conveyor speed
 - Mass in car

- Output:
 - Mass flow from car

Shuttle Car ROM

Shuttle car in ANSYS Twin Builder

Shuttle Car ROM Results

Particle mass in shuttle

Mass flow from shuttle

Feeder setup:

Flow into feeder.

Different conveyor speeds tested.

- Feeder response surface:
 - Inputs:
 - Conveyor speed
 - Mass in feeder
 - Output:
 - Mass flow from feeder

• Feeder response surface:

- Inputs:
 - Conveyor speed
 - Time
- Output:
 - Mass flow from feeder

Feeder in ANSYS Twin Builder

ROM Setup

Feeder in ANSYS Twin Builder

ROM Results & Validation

Feeder ROM Results

Particle mass in feeder:

Mass flow from feeder:

ROM Validation

Validation Case:

2 x 20 ton Shuttle cars at a conveyor speed of 0.35 m/s.

- Feeder with conveyor speed at 0.46m/s.

ROM Validation

• Simulation results:

ROM Validation

Result comparison:

Shortfalls

Shortfalls

- DEM solving time can cause DOE generation to take large amounts of time:
 - GPU solving capabilities and advancing GPU technologies improve this issue.

Shortfalls

- OFINSOFT
- Sensitive to response surface type.
 - It is quick to test the effectiveness of different response surface types with ANSYS DX and Twin Builder.

Where To Now

- Use ROM to predict effects of system changes.
- Modify ROM to include calculation of spilled mass.
- Use ROM to optimize the system.
- Link to IOT platform to predict overloading, damage and spillage.
- Use ROM in PLC to automate conveyor speeds.