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We give a pedagogical introduction to quantum feedback control. An external observer’s knowl-
edge of a system is given by a density matrix whose time-evolution obeys a stochastic master
equation. We derive this master equation by analyzing the interaction of a quantum system with
an external reservoir and relate that result to the most general dissipative solution. We show that
continuous measurement necessary in feedback introduces system damping and noise, and that
homodyne-mediated optical feedback can enhance squeezing from a single-mode cavity output.

Control theory, either classical or quantum, addresses
the basic fact that dynamical systems do not always be-
have the way we want them to. We can control the state
of such a system by combining it with a controller. In
open-loop control, the system’s output is not measured
by controller, which assumes a dynamical model. Closed-
loop control, however, can continuously monitor infor-
mation from a physical system and then apply forces to
control its dynamics. The advantages of the latter are
significant, as a robust closed-loop controller can take
into account variations in system parameters and envi-
ronmental noise to produce a desired state.

The problem of measuring and controlling quantum
mechanical states of light in experiments invites us to
consider the possibility of controlling individual quan-
tum systems, in real-time, using feedback. There are two
distinct types of quantum feedback based on the man-
ner in which we perform measurement [1]. In the first, a
system interacts with an ancilla quantum system, which
yields classical information through projective measure-
ment. A classical controller processes that information
and alters the system Hamiltonian’s parameters within
its own coherence time. The second method allows the
ancilla system to interact with the system through an
interaction potential. While these two approaches are
conceptually quite different, it has been shown these two
methods are actually equivalent in their outcomes [2].

In Section 1, we will first describe quantum trajecto-
ries applicable to both cases, namely, how a quantum
state specified by a density matrix changes while mea-
surement is taking place continuously through an an-
cilla reservoir. The form of our result from this example
will motivate our derivation of the master equation fre-
quently used in feedback and continuous measurement
calculations. There are two examples that are impor-
tant in understanding the physical behavior of this for-
malism. Section 2 discusses the Gaussian-weighted posi-
tive operator-valued measures (POVMs) relevant to un-
derstanding weak measurement and partial wavefunction
collapse. In Section 3, we will demonstrate that using ho-
modyne detection for direct phase-locking feedback of a
pumped laser will enable perfect squeezing at its output.
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1. MASTER EQUATIONS

Analyzing feedback requires that we first understand
the formalism describing the time-evolution of a system
conditioned upon continuous measurement. It is possi-
ble to view this measurement process as an interaction
with an environment (reservoir) where we are continu-
ously performing measurement to obtain information. A
master equation is an equation of motion for a density
matrix describing such an open quantum system, much
like the Heisenberg equation of motion for the evolution
of a closed quantum system. We will first derive a mas-
ter equation for such open systems and relate that to the
most general stochastic master equation that is dissipa-
tive, trace-preserving, and completely positive.

1.1. System–Reservoir Interactions

Following Carmichael [3], we start with an open quan-
tum system described by the total Hamiltonian

H = HS ⊗ IR + IS ⊗HR + V, (1.1)

where HS and HR are the Hamiltonians for the system
(S) and the reservoir (R), respectively, and V is the in-
teraction potential between them. The system’s total
density operator, ρtot, satisfies

ρ̇tot =
1
i~

[H, ρtot] . (1.2)

We want an equation that describes the mean values of
Hermitian observables in S given by the reduced density
operator over the Hilbert space of R:

ρS = trR [ρtot] . (1.3)

We first transform into an interaction picture that sep-
arates the dynamics of HS⊗IR+IS⊗HR from the slower
dynamics by V :

ρ̃tot = e(1/~)(HS+HR)tρtot (t) e−(1/~)(HS+HR)t, (1.4)

which obeys the equation of motion

˙̃ρtot =
1
i~

[H, ρ̃tot] (1.5)
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where

Ṽ (t) = e(1/~)(HS+HR)tV e−(1/~)(HS+HR)t. (1.6)

Integrating Equation 1.5 and re-substituting the result
yields

ρ̃tot =
1
i~

[
Ṽ (t) , ρtot (0)

]
− 1

~2

∫ t

0

dt′
[
Ṽ (t′) ,

[
Ṽ (t′) , ρ̃tot (t′)

]]
.

(1.7)
We can apply some reasonable approximations to this

expression before continuing with our analysis:

1. Born Approximation. Because R is a large system,
its state should be unaffected by its coupling to S,
allowing us to neglect higher-order terms of V :

ρ̃tot (t) ≈ ρS (t)⊗ ρR (0) = ρS (t)⊗ ρR. (1.8)

2. Weak-Coupling Assumption. We assume that S
and R are initially uncorrelated, such that the total
density operator factorizes as

ρ (0)tot = ρS (0)⊗ ρR. (1.9)

The reservoir operators coupling to S will have zero
mean in the state ρR, we have

1
i~

trR

[
Ṽ (t) , ρtot (0)

]
= 0 (1.10)

because trR

[
Ṽ ρR (0)

]
= 0.

3. Markov Approximation. Our integrated expression
implies that the evolution of ρtot (t) depends on its
past history through integration of ρtot (t′). Be-
cause of the Born approximation, we do not assume
that the reservoir keeps a memory of system states
long enough to effect the state of the system. With
this in mind, time evolution is dependent on the
current state of the system such that

ρtot (t′) ≈ ρtot (t) . (1.11)

Using these assumptions and applying Equation 1.3 to
Equation 1.7, we finally have

˙̃ρS = − 1
~2

∫ t

0

dt′trR

[
Ṽ (t′) ,

[
Ṽ (t′) , ρ̃S (t)⊗ ρR

]]
.

(1.12)

1.2. Optical Master Equation for a Damped
Harmonic Oscillator

For some physical context, let’s examine the system-
reservoir interaction master equation given by 1.12 when
applied to a single mode cavity depicted in Figure 1. The
action of probing by an external reservoir of harmonic
oscillators (‘thermal light’) will provide some intuition

H
S

H
R

FIG. 1: Damping of a cavity by a bath of harmonic oscillators.
The cavity mode specified by HS is coupled to an external
reservoir HR, which can be thought of as a probing laser.

for measurement damping that we will consider later on
in Section 1.3.

The depicted ring cavity (S) couples to the probing
reservoir (R) through a dichroic mirror. The composite
Hamiltonian in Equation 1.1 is described by

HS = ~ωca
†a, (1.13)

HR =
∑

j

~ωbj†bj , (1.14)

V =
∑

j

~
(
κjabj

† + κja
†bj

)
= ~

(
aΓ† + a†Γ

)
. (1.15)

Here, the cavity mode system S is assumed (for simplic-
ity) to have a zero energy ground state and a charac-
teristic frequency ωc. The reservoir R is a collection of
harmonic oscillators of frequency ωj , and couples to S via
a weak coupling constant κj . Furthermore, the reservoir
is in thermal equilibrium at temperature T is specified
by the mixed state

ρR =
∏
j

e−~ωbj
†bj/kBT

(
1− e−~ωj/kBT

)
, (1.16)

with mean population

n̄ (ωj , T ) = Tr
(
ρRbj

†bj

)
=

e−~ωj/kBT

1− e−~ωj/kBT
. (1.17)

Applying the interaction potential and the reservoir
state specified above, it can be shown that its state fol-
lows the equation of motion

ρ̇ = −iω0

[
a†a, ρ

]
+ κ

2 n̄
(
2aρa† − a†aρ− ρa†a

)
+κ

2 (n̄+ 1)
(
2aρa† − a†aρ− ρa†a

)
. (1.18)

The first term of this master equation is the standard
equation of motion for a closed quantum system, and
two additional terms describe the damping of the cavity
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mode while weakly interacting with an external reservoir.
This damping is not particularly surprising, considering
that the simple interaction potential implies a likelihood
that a cavity mode can lose energy by creating reservoir
quanta (or vice versa). In the next section, we will see
that measurement backaction terms in the optical mas-
ter equation are characteristic of stochastic evolution in
continuously measured quantum systems.

1.3. General Form of the Stochastic Master
Equation

While our consideration of the system-reservoir inter-
actions and the damping of the quantum harmonic oscil-
lator accurately described the backaction that might re-
sult from a continuous measurement process on an open
quantum system, it omitted a term of Gaussian observa-
tion noise introduced in the measurement process. Fol-
lowing Jacob and Steck [4], we will derive the most gen-
eral master equation accounting for Gaussian noise. We
will see the necessity of formally accounting for Gaussian
observation noise in Section 3, as homodyne-mediated
optical feedback introduces extra photocurrent shot noise
into our observed system. For completeness, we’ve in-
cluded an appendix on the stochastic calculus needed for
understanding white noise processes in our derivations.

Our goal in the following is to consider the infinitesimal
evolution of a quantum state ρ under measurement back-
action and noise. In an infinitesimal time interval dt, a
closed quantum state ρ undergoes unitary time evolution
following Schrodinger’s wave equation:

ρ+ dρ =
(

1− i
H

~
dt

)
ρ

(
1 + i

H

~
dt

)
= ρ+

1
i~

[H, ρ] dt. (1.19)

More generally, any physical operation on a density op-
erator must preserve the positivity of the density oper-
ator: the property that density operators have nonneg-
ative eigenvalues indicating probabilities. From Nielsen
and Chuang [5], the most general form of a completely
positive transformation is given by

ρ′ =
∑

n

EnρE
†
n, (1.20)

where {En} are some operators mapping the input
Hilbert space of ρ to the output Hilbert space of ρ′.

Adding a proportional white noise term dW to the in-
finitesimal unitary transformation in Equation 1.19 yields
a general stochastic operator

E = 1− i
H

~
dt+ bdt+ cdW, (1.21)

where b and c are operators. Substituting this operator

into Equation 1.20 yields

dρ =
1
i~

[H, ρ] dt+ {b, ρ}dt+ cρc†dt+
(
cρ+ ρc†

)
dW

(1.22)
where {A,B} = AB + BA denotes the anticommutator.
Taking the ensemble average of Equation 1.22 over all
Wiener processes (denoted by 〈〈 〉〉) gives

d〈〈ρ〉〉 =
1
i~

[H, 〈〈ρ〉〉] dt+ {b, 〈〈ρ〉〉}dt+ c〈〈ρ〉〉c†dt.
(1.23)

Because 〈〈ρ〉〉 is an average over valid density operators,
it too is a density operator for which Tr [〈〈ρ〉〉] = 1. Tak-
ing the trace of this expression, and using the cyclic prop-
erty of the trace, we find that

Tr
[
〈〈ρ〉〉

(
2b+ c†c

)]
, (1.24)

which will only hold if b = −c†c/2. If we perform the
substitution for b and temporarily ignore the Gaussian
noise term, we find an expression remarkably similar to
damped harmonic oscillator master equation. Letting
L0ρ = −i/~ [H, ρ], we’ve provided an argument for what
is known as the Lindblad form of the master equation

ρ̇ = L0ρ+D [c] ρ, (1.25)

where D [c] is the standard measurement damping (‘back-
action’) term

D[c] = J [c]−A[c], (1.26)

for which

J [c]ρ = cρc†, (1.27)

A[c]ρ =
1
2

(
c†cρ+ ρc†c

)
. (1.28)

There are several alterations to be made to Equa-
tion 1.25 before we can fully account for the Gaussian
noise term

(
cρ+ ρc†

)
dW . The first is that trace preser-

vation of the density operator dρ implies that the opera-
tor c is constrained by the condition

Tr
[
ρ

(
c+ c†

)]
= 0. (1.29)

This constraint can be accounted for by explicitly includ-
ing the constraint as part of the noise term H [c] dW in
the full master equation

dρ = L0ρdt+D[c]ρdt+H [c] ρdW, (1.30)

such that

H [c] ρ = cρ+ ρc† − Tr
[
cρ+ ρc†

]
(1.31)

represents the information gain due to the measurement
process. Our remaining change is to include a efficiency
constant η accounting for the fraction of measured signal
reaching a defector and the inherent quantum efficiency
of the detector. Including that loss for a single mea-
surement channel, dividing through by dt, and letting
L = L0 + D, the general form of the master equation
governing the completely positive evolution of a quantum
state in the presence of real white noise ξ (t) = dW/dt is

ρ̇ = (L [c] dt+
√
ηξ (t)H [c]) ρ. (1.32)
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2. WEAK MEASUREMENT

The master equation given in Equation 1.32 has sev-
eral features that are worth interpreting in the context of
physical observables and measurement. In particular, we
are interested in finding out how stochastic state evolu-
tion from continuous measurement is related to the pro-
jective and POVM formalism we discussed in class. This
relationship will help us understand the partial wavefunc-
tion collapse that occurs during quantum non-demolition
(QND) measurements.

Our prior POVM formalism described measurement in
terms of operators Πm acting as projectors onto a Hilbert
space. Instead, we can define our measurement opera-
tors as a weighted sum of projectors onto the eigenstates
|n〉, each centered around the eigenvalue of an eigenstate
of that observable. Assuming, without loss of general-
ity, that we can label the countable eigenvalues of an
observable O by the integer number states n, our weak
measurement is described by the Gaussian POVM

Πm =
1
N

∑
n

e−k(n−m)2/4 |n〉 〈n| , (2.1)

where N is a normalization constant chosen such that
{Πm} resolve the identity. The initial state of a system
for which we have no information is a mixed state propor-
tional to I. The result m immediately following Gaussian
POVM measurement of that state is

ρf =
ΠmρΠ†

m

Tr
[
ΠmρΠ

†
m

] =
1
N

∑
n

e−k(n−m)2/4 |n〉 〈n| , (2.2)

which has a peak centered about the eigenvalue m and a
spread given by 1/

√
k. Therefore, the uncertainty in our

measurements is inversely proportional to k. Measure-
ments with large k are called strong, whereas those with
small k called weak. This formalism allows us to con-
sider continual weak measurements in a sequence of in-
finitesimal intervals dt. We will find that Equation 1.32 is
equivalent to a continuous sequence of Gaussian POVMs.

To see why this might be true, let’s consider infinitesi-
mal observation of a continuous spectrum of eigenstates
|x〉, where 〈x′|x〉 = δ (x− x′). The Gaussian POVM for
this measurement can be labeled continuously by α such
that,

A (α) =
(

4k∆t
π

)1/4 ∫ ∞

−∞
dxe−2k∆t(x−α)2 |x〉 〈x| (2.3)

which yields a probability distribution

P (α) = Tr
[
A (α)†A (α) |ψ〉 〈ψ|

]
(2.4)

such that 〈α〉 = 〈x〉. When ∆t is sufficiently small, the
Gaussian weight is much broader than ψ (x), which can
then be approximated by a delta function centered at

〈α〉, giving

P (α) =

√
4k∆t
π

∫ ∞

−∞
dx|ψ (x) |2e−2k∆t(x−α)2

≈
√

4k∆t
π

e−2k∆t(α−〈x〉)2 , (2.5)

which is a Gaussian probability distribution centered at
the result.

We can derive the equation of motion for the system
by calculating the first-order change by the application
of a single continuous measurement A (α). If we write α
as a stochastic variable

α→ 〈X〉+
∆W√
8k∆t

, (2.6)

take the first-order approximation with ∆t → dt and
∆W → dW , and apply the Ito rule dW 2 = dt, this new
state is given by

|ψ (t+ dt)〉 ∝ A (α) |ψ (t)〉
≈

[
1−

(
kx2 − 4kx〈x〉

)
dt

+
√

2kxdW
]
|ψ (t)〉 . (2.7)

Writing |ψ (t+ dt)〉 = |ψ (t)〉+ d |ψ (t)〉, we find that

d |ψ〉 =
[
−k (x− 〈x〉)2 dt+

√
2k (x− 〈x〉) dW

]
|ψ (t)〉

(2.8)
and therefore,

dρ = −k [x, [x, ρ]] dt+
√

2k (xρ+ ρx− 2〈x〉ρ) dW, (2.9)

as ρ (d+ dt) = ρ (t) + dρ. This expression is precisely
of the form in Equation 1.32 if x = c/

√
2k, c is Hermi-

tian, and ξ (t) = dW/dt. Therefore, the most general
stochastic evolution of a system experiencing noise is,
conditionally, equivalent to performing a continual weak
measurement through Gaussian-weighted POVMs.

3. OPTICAL FEEDBACK VIA HOMODYNE
DETECTION

As an application of this density matrix formalism for
continuous observation, we will now consider the dynam-
ics of quantum-limited photocurrent feedback on a source
cavity, as depicted in Figure 2. Our discussion is based on
the thesis work of H.M. Wiseman, who carried out much
of the early work applying quantum continuous measure-
ment towards feedback in familiar optical systems like
homodyne detection and quantum non-demolition mea-
surement [2, 6, 7, 8]. The usefulness of feedback in our
example will be evaluated in the context of quadrature
squeezed light of a laser.

First, we’ll have to find a master equation describing
feedback linear in photocurrent. In what follows, we’ll
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FIG. 2: Homodyne-mediated feedback of an optical cavity.
The cavity has some output spectrum, such as pumped laser
light, measured by a homodyne detector. The abbreviations
are: photodetector (PD), local oscillator (LO), and beam-
splitter (BS).

simplify our analysis by allowing the feedback delay time
to be negligible compared to the system’s response time.
The photocurrent from the extracavity homodyne mea-
surement of the a1 quadrature includes the local oscilla-
tor shot noise ξ (t) such that

I (t) = η〈a+ a†〉 (t) +
√
ηξ (t) , (3.1)

where the first term is an ensemble average over the con-
dition quantum state ρ. The effect of this continuous ho-
modyne measurement is given precisely by Equation 1.32.
The simplest way we can introduce feedback into our sys-
tem is by adding a feedback Hamiltonian Hfb to the total
system Hamiltonian H discussed originally in Section 1.
In our continuous observation formalism, this is tanta-
mount to adding a density operator evolution term

[ρ̇ (t)]fb = −i [Hfb, ρ (t)] . (3.2)

A feedback circuit would use the photocurrent to control
some electro-optic or electromechanical device to influ-
ence the source cavity, and so we may assume, by con-
struction, that the feedback term we are adding is linear
in photocurrent,

[ρ̇]fb =
[
〈a+ a†〉 (t) + ξ (t) /

√
η
]
Kρ, (3.3)

where K is some superoperator based on the particular
behavior of cavity we are choosing1.

Adding Equation 1.32 to Equation 3.3 is more compli-
cated than it sounds. From our discussion in Appendix
A, we know that former is an Ito equation, whereas the
latter is an Stratonovich equation. Converting Equa-
tion 1.32 into the Stratonovich form gives

ρ̇(S)
c =

[
L+

√
ηξ (t)H− 1

2
ηH2

]
ρc (3.4)

1 The construction of the operator K is outside of the scope of this
paper. We will assume a particular form later.

which added to Equation 3.3 yields

ρ̇(S)
c =

[
L − 1

2ηH
2 + 〈a+ a†〉 (t)K

]
ρ

+
√
ηξ (t)

(
H+ η−1K

)
ρ. (3.5)

Applying the definition of H in Equation 1.31 and con-
verting back to the Ito form

ρ̇(I)
c = Lρc +K

(
aρc + ρca

†) + 1
2ηK

2ρc

+
√
ηξ (t)

(
H+ η−1K

)
ρ (3.6)

and averaging over the noise ξ (t) by ρ = E [ρc] gives

ρ̇ = Lρ+K
(
aρ+ ρa†

)
+

1
2η
K2ρ, (3.7)

which is the general equation for homodyne-mediated
feedback.

We can now evaluate this feedback scheme in the con-
text of a useful application: using the phase-locking of a
regularly-pumped laser to produce a near-minimum un-
certainty squeezed states. From our previous class dis-
cussions, we know that the equilibrium state of a laser is a
mixture of equal amplitude coherent states with Poisson-
distributed photon number statistics. On the other hand,
a more regularly pumped laser can have a nonclassical
equilibrium state with a photon distribution narrower
than the classical Poisson distribution. In other words, it
is possible to start with an equilibrium state that has a
sub-shot noise intensity spectrum that is far from mini-
mum uncertainty. We can use a homodyne-mediate feed-
back loop to take advantage of the nonclassical behavior
of such a pumped laser by stabilizing its phase noise rel-
ative to a local oscillator, allowing us to pick a preferred
quadrature to be squeezed. We can achieve this phase-
locking by using the feedback homodyne current to alter
the effective optical length of the cavity using an elecro-
optic modulator.

An ideal laser obeying Poissonian statistics, with a
pump rate µ� 1 is given by a mixture of coherent states∣∣√µeiφ

〉
(0 ≤ φ ≤ 2π) whose dynamics are described by

the master equation[9]

ρ̇ = −1 + ν

4µ
[
a†a

[
a†a, ρ

]]
, (3.8)

where ν ≥ 0 represents the excess phase noise in the laser
above Heisenberg uncertainty. For small changes in the
path length of the optical cavity, the superoperator in
Equation 3.3 is defined by

Kρ = i
λ

2
√
µ

[
a†a, ρ

]
(3.9)

which we substitute into Equation 3.7 to yield the feed-
back master equation

ρ̇ = −1 + ν + λ2/2η
4µ

[
a†a

[
a†a, ρ

]]
+i

λ

2
√
µ

[
a†a, aρ+ ρa†

]
.

(3.10)
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We can parametrize the solution of this expression in
terms of the angle φ from the coherent state amplitude
α =

√
µeiθ. It can be shown that Equation 3.10 can be

written in the P (α, α∗)-representation as

Ṗ (φ) =
[
− ∂

∂φ
λ cosφ+

1
2
∂2

∂φ2

1 + ν + λ2/2η
2µ

]
P (θ) .

(3.11)
Let η be the fraction of emitted light used in the feedback
process and q parametrize the quality of squeezing (e.g.,
q = 0 for coherent light and q < 0 if one quadrature
is sub-shot noise). If the fraction θ of light available as
output is at most 1− η, the noise spectral density is

Sa1 (ω) = 1 +
θ
[
λ2/η + 2 (1 + ν)

]
λ2 + ω2

Sa2 (ω) = 1 +
θq

1 + ω2
. (3.12)

Letting λ → ∞, the optimum output noise reduction
at zero frequency is given by

Sa1 (0) = 1/η, Sa2 (0) = η, (3.13)

which exhibits the two properties of perfect squeezing on
resonance by (i) satisfying a minimum-uncertainty rela-
tion Sa1 (0)Sa2 (0) = 1, and (ii) allowing zero noise to
be attained in the a2 quadrature by letting η → 1. As a
result, we can conclude that feedback is useful for turn-
ing nonclassical laser light with sub-Poissonian number
statistics into perfect quadrature squeezing.

4. CONCLUSIONS AND RECOMMENDED
READING

We’ve presented a density operator formalism which
we can (i) use density operators to understand mea-
surement processes in quantum feedback control, and
(ii) actually analyze simple problems in quantum opti-
cal systems when using linear, homodyne-mediated feed-
back. This process has made as aware of two non-
classical effects when performing continuous measure-
ment of a quantum system—measurement backaction
(damping, really) and Gaussian stochastic noise—and
has demonstrated that quantum feedback can enhance
squeezing and noise reduction.

This noise reduction comes with a caveat, namely, that
nonclassical states cannot be produced unless the cavity
itself is already produced light that is at least partially
squeezed. Unfortunately, it has been shown that incorpo-
rating finite time-delays and realistic loss into this feed-
back scheme ultimately removes the feedback advantage
altogether and may even degrade what squeezing may
have been present to begin with [8]. On a slightly ambiva-
lent note, it was also shown that combining homodyne-
mediated feedback with an intracavity QND measure-
ment can enhance squeezing without degrading output,

but that measurement rate of pump photons in the pro-
cess would (rather unrealistically) need to be many orders
of magnitude larger than the cavity linewidth.

The following sources were useful in building a context
for this paper:

1. An Open Systems Approach to Quantum Optics (H.
Carmichael) and Quantum Noise (C.W. Gardiner)
are typically cited when referring to master equa-
tions, open quantum systems, and stochastic pro-
cesses in quantum mechanics.

2. The thesis work of Howard Wiseman found at
http://www.cit.gu.edu.au/∼s285238/, which
includes several of the papers mentioned in this
paper, provides a cohesive view of continuous
measurement and feedback in quantum optical
systems.

3. There are many theoretical proposals using Wise-
man’s feedback formalism, although few of them
have actually been experimentally implemented.
Homodyne-mediated feedback was recently applied
by Mabuchi, et al. for adaptive measurement of
optical phase [10].

5. APPENDIX A: QUANTUM STOCHASTIC
CALCULUS

An intuition for the calculus of noise processes is im-
portant when analyzing the continuous measurement and
feedback of quantum systems. Following Wiseman [2],
and Jacobs and Sheck [4], we will provide some intuition
for stochastic calculus and a summary of useful identities
that are used in the paper. We will focus largely on the
first of two different formulations of stochastic differential
equations (SDEs)—Ito and Stratonovich quations—but
provide a rudimentary intuition relating the two when
necessary.

White noise in quantum continuous measurement is
represented by a Wiener process W (t), an ideal random
walk with small, statistically-independent steps taken ar-
bitrary often. In particular, any random walk W (t) can
be represented as a zero-mean Gaussian random variable
following a probability density

P (W, t) =
1√
2πt

e−W 2/2t. (5.1)

Whereas a regular differential equation may be given by
dx/dt = α, an Ito stochastic differential equation carries
an additional differential element dW such that

dx = αdt+ βdW. (5.2)

The basic rule of applying a differential dW is that
[dW (t)]2 = dt, while dt2 = dtdW = 0.

http://www.cit.gu.edu.au/~s285238/
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To see how a Wiener increment might change our rules
of calculus, let’s take a moment to the second-order Tay-
lor expansion for a function f (x):

df (x) = f ′ (x) dx+
1
2
f ′′ (x) dx2. (5.3)

Including a Wiener increment and applying the rule that
[dW (t)]2 = dt yields

df (x) =
[
f ′ (x) +

1
2
f ′′ (x) b (x)2

]
dt+ f ′ (x) b (x) dW (t) .

(5.4)
Calculating the differential dz for a simple exponential
like f (x) = z = ex in the deterministic calculus gives
dz = zαdt, whereas the second-order expanion in the
stochastic calculation yields,

dz = z

(
α+

1
2
β2

)
dt+ zβdW. (5.5)

These derivatives show that Ito SDEs are difficult and
fairly different from our normal conception of calculus—
not even the chain rule applies! Ito SDEs, however, are
still useful because noise increments are statistically in-
dependent of (and commute with) physical observables, a
fact that we will use in our derivation of a general stochas-
tic master equation. An alternative stochastic equation
can be given in the which this fact is not true is the
Stratonovich form,

ẋ = α (x) + β (x) ξ (t) (5.6)

where α (x) and β (x) can be arbitrary real functions, and
ξ (t) is a rapidly varying stochastic continuous function
of time such that

dW (t) = ξ (t) dt. (5.7)

In the case of homodyne detection, ξ (t) can be idealized
of as local oscillator shot noise, and as Gaussian white

noise more generally. Because the average and correla-
tion time for such a noise process is zero, we also expect
that

E [ξ (t) ξ (t′)] = δ (t− t′) and E [ξ (t)] = 0. (5.8)

In our derivations, taking ensemble averages over noise
processes will be the equivalent to finding the equation
of a system undergoing continuous measurement. This
average will cause terms that are proportional to white
noise terms to go to zero.

Applying differential calculus, it is possible to con-
vert between the forms easily. The Ito form of the
Stratonovich form in Equation 5.6 is

dx =
[
α (x) +

1
2
β (x)β′ (x)

]
dt+ β (x) dW (t) . (5.9)

Similarly, the Ito equation

dx = a (x) dt+ b (x) dW (t) (5.10)
has the Stratonovich equivalent

ẋ = a (x)− 1
2
b (x) b′ (x) + b (x) ξ (t) . (5.11)

Ultimately, these classical variables x will be replaced
by density operators ρ, and we will want to derive
the time-varying probability distributions. The time-
evolution equation (also known as a Fokker-Planck) equa-
tion for the probability distribution P of a random vari-
able x described by Equation 5.10 is

Ṗ (x) =
[
−∂xa (x) +

1
2
∂2

xb (x)2
]
P (x) . (5.12)

This expression will be useful in deriving P (α, α∗)-
representation of the master equation in our treatment
of homodyne-mediated feedback.
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