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Abstract

Quantum networks enable the long-distance communication of quantum states through tele-
portation, but require, in advance, the robust distribution of entanglement between relevant
parties. Engineering these networks requires quantum interconnects, which convert quantum
states in one physical system to those of another reversibly, and with high fidelity. In this
thesis, we describe implementations of long-distance quantum communication networks using
polarization entanglement and atomic ensembles. We concisely describe the interactions of a
quantum optical field with a heralding atomic ensemble, accounting for multiple-pair events
at entanglement generation, as well as finite transmission and photodetection efficiencies
under number-resolving and non-resolving photodetection schemes. Using these results, we
perform a detailed quantitative performance analysis of quantum networks that distribute
and swap entanglement.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Director, MIT Research Laboratory of Electronics
Julius A. Stratton Professor of Electrical Engineering

3



4



— http://xkcd.com/465/

5

http://xkcd.com/465/


Acknowledgments

My gratitude for finishing this work goes to Prof. Jeffrey Shapiro, my thesis supervisor and

theory principal within the Quantum and Optical Communications Group at the Research

Laboratory for Electronics (RLE). In the past year and a half, he has been an extremely ac-

cessible, effective advisor, and I have learned a great deal regarding problem-solving intuition

and the time management of large theoretical projects.

I am also grateful for generous advice and feedback during the course of this project,

particularly with

• Dr. Franco Wong (MIT RLE), Prof. Vladan Vuletic (MIT Physics), and Dr. Zachary

Dutton (Raytheon BBN Technologies), for talking to me about the physics of quantum

memories, entanglement sources, and atom-photon interactions.

• Prof. Steven Johnson (MIT Mathematics), for discussing with me the mathematics of

quantum optics and software engineering issues related to the numerical simulations

in this thesis.

• Dr. Ranjith Nair and Dr. Brent J. Yen (MIT RLE), my two office mates, for discussing

a wide variety of problems during the course of this work.

Of course, none of this have been possible without the help of my parents, Dipankar

and Mallika Mookherji, to whom this thesis is dedicated, and the many friends that make

up the greater fabric of my life. This research was funded through the DARPA Quantum

Entanglement Science and Technology (QuEST) program.

6



Contents

1 Introduction 15

1.1 Architectures for Long-Distance Quantum Networks . . . . . . . . . . . . . . 16

1.2 Polarization Quantum Entanglement . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Entanglement Repeaters and Quantum Teleportation . . . . . . . . . 21

1.3 Overview and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Notation and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Quantum Memories and Repeaters using Fundamental Light-Matter In-

teractions 27

2.1 Describing Light and Atomic Fields . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Collective Atom-Field Interactions . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Engineering Quantized Field Absorption . . . . . . . . . . . . . . . . . . . . 33

3 Heralded Polarization Entanglement Distribution with Atomic Ensembles 39

3.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Number State Fidelity and Success . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Photon Number Probability Distributions . . . . . . . . . . . . . . . 43

3.2.2 Calculation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Full Loss Calculation (PNRD and NRPD) . . . . . . . . . . . . . . . 53

3.3 Quantum Communication with Atomic Ensembles and Polarization Entan-

glement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Entanglement Connection . . . . . . . . . . . . . . . . . . . . . . . . 57

7



4 Conclusions 69

A Numerical Simulations for Quantum Memory Interaction Hamiltonian 73

A.1 Analytical Dynamical and Trilinear Hamiltonians . . . . . . . . . . . . . . . 76

A.2 Code for Numerical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 77

8



List of Figures

1-1 Components of a quantum repeater node in the MIT-NU architecture. (a)

Parametric downconversion creates pairs of polarization-entangled photons,

sending the idler photon to atom-trap 1 and the signal photon to atom-trap

2. Each trap contains a single ultra-cold rubidium atom cooled to its hyperfine

ground state. In the energy level diagram, the AB-transition absorbs 795 nm

photons, and the BD-transition is coherently driven, thereby enabling storage

at D. (b) Polarization-entangled photon pairs generated by a pair of type-II

optical parametric amplifiers (OPAs) and a polarizing beam splitter (PBS).
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Chapter 1

Introduction

Quantum communication exploits quantum mechanical resources, such as entanglement, to

achieve tasks unrealizable by classical means, such as accurate teleportation of quantum

states and unconditionally secure private key distribution. For such applications, the fun-

damental problem of quantum communication is the establishment, over optical channels,

of entanglement between distant nodes. However, the rate of entanglement distribution to

nodes decreases exponentially with channel length. The possibility of creating scalable op-

tical quantum networks requires that we overcome this difficulty by storing and processing

quantum information locally in quantum memories: first, as repeaters increasing network

scalability, and second, as light-matter interfaces to quantum computers [Kim08].

The aim of this thesis is to address the following open problem: the theoretical limits

of atomic-ensemble quantum memories that store polarization entanglement. It is part of a

larger research program in RLE’s Optical and Quantum Communications Group investigat-

ing the system performance of ensemble-based hybrid systems in quantum communication.

This thesis marries the formalism of collective interactions of atomic ensembles and quantum

optical fields with a number-state analysis of our architecture’s performance. The remain-

der of this chapter introduces pre-existing memory and repeater architectures forming the

foundation of this work, discusses the importance of polarization entanglement to quantum

communication, and outlines the contributions made in this thesis.
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Figure 1-1: Components of a quantum repeater node in the MIT-NU architecture. (a) Para-
metric downconversion creates pairs of polarization-entangled photons, sending the idler
photon to atom-trap 1 and the signal photon to atom-trap 2. Each trap contains a sin-
gle ultra-cold rubidium atom cooled to its hyperfine ground state. In the energy level di-
agram, the AB-transition absorbs 795 nm photons, and the BD-transition is coherently
driven, thereby enabling storage at D. (b) Polarization-entangled photon pairs generated by
a pair of type-II optical parametric amplifiers (OPAs) and a polarizing beam splitter (PBS).
The polarizations x̂ and ŷ are denoted by arrows and bullets, respectively. Figures taken
from [LSSH01] and [SW00].

1.1 Architectures for Long-Distance Quantum Networks

An illustration of a model quantum communication system is shown in Fig. 1-1, in the

case of a single-trapped atom. Through type-II parametric downconversion, a post-selected

maximally-entangled state can be produced of the form,

|ψ1〉 =
1√
2

(
|σ+〉1 |σ−〉2 + eiφ |σ−〉1 |σ+〉2

)
(1.1)

where σ+ (σ−) indicates right (left) circular polarization, and φ is a phase offset. An arbitrary

polarization of any photon entering the cavity can be stored in the basis of right and left

circular polarizations, such that

|ψ2〉 = α |σ+〉+ β |σ−〉 . (1.2)

Through a Raman Λ-type interaction, a signal or idler photon effectively transfers its en-

tanglement to the degenerate B magnetic hyperfine levels, and subsequently to the D levels

through a coherently-driven transition. However, the efficient coupling of a single photon to

a single trapped atom is a daunting technical task, requiring that the atom be held in an
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Figure 1-2: Entanglement with the DLCZ protocol. (Left) Weak and strong coherent
pulses induce writing and and reading through spontaneous Raman transitions, respectively.
(Right) Measurement-induced interference results in a single-excitation entangled state. Fig-
ures taken from [Kim08] and [DLCZ01].

ultrahigh-Q cavity. By using an atomic ensemble, we eliminate the need for such a high-

quality cavity because a collective atomic state is easily produced by a single photon. Such

a state is one in which a single atom has been excited from its ground state |g〉 at A to the

metastable state |s〉 at D.

To illustrate this behavior for an atomic ensemble, consider Na atoms prepared in their

ground states, a collective state denoted by |0〉a = |g〉⊗Na . Coherently pumping the ensemble

creates an inelastic Raman scattering event that is collectively enhanced by constructive

interference within the ensemble [Dic54]. The resulting forward-scattered Stokes light arises

from coherent spontaneous emission in the ensemble, and the correlated ensemble excitation

is a collective spin state,

|1〉a = Ŝ† |0〉a =
1√
Na

Na∑
i=1

|g〉1 · · · |s〉i · · · |g〉Na . (1.3)

where Ŝ = (1/
√
Na)

∑
i |g〉i 〈s|. Because the excitation is composed of many atoms, the

collective spin excitation is protected against the loss of individual atoms in the ensemble,

increasings its robustness for storage. In the weak interaction limit, in which most of the

atoms remain in their ground state, the spin excitation Ŝ is effectively a ladder operator, as

[Ŝ, Ŝ†] =
∑

i (|g〉i 〈g| − |s〉i 〈s|) /Na ≈ 1, and the outgoing Stokes light and spin excitation

17



are in a two-mode squeezed state [DLCZ01]. Generally, the term with the nth atom in |s〉

acquires the phase ei(kw−ks)·xn , where kw is the wave vector of pump field, ks is that of the

detected Stokes photon, and xn is the nth atom’s position. Collective excitations can be

read out very efficiently when converted into single anti-Stokes photons, which are emitted

into a well-defined mode because of collective interference. A resonant laser excitation of

the collective state in Eqn. 1.3 results in NA− 1 atoms in |g〉 and one delocalized excitation

in |e〉. Through decay to the |g〉⊗Na , an anti-Stokes photon is emitted along the |e〉 − |g〉

transition. Denoting kas and kr as the wave vectors of the anti-Stokes photon and read laser,

respectively, satisfying the phase matching condition ks + kas = kr + kw results in a very

high probability amplitude for the anti-Stokes photon to be in the kr + kw − ks direction

due to constructive interference [TGS+09].

Our analysis merges the approaches of trapped single atoms in cavity quantum electrody-

namics (QED) proposed by MIT and Northwestern University (MIT-NU) and the ensemble-

based repeater architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) [LSSH01,

DLCZ01]. The MIT-NU and DLCZ protocols both utilize spontaneous Raman transitions

to mediate atomic storage. Whereas the MIT-NU protocol has the advantage of storing

externally generated entanglement and verifying its success through cycling-transition fluo-

rescence, it is prohibitively difficult to implement because of the strong coupling requirements

of cavity QED.

In contrast, the DLCZ protocol creates a collective atomic excitation, as in Eqn. 1.3, not

by an external input photon, but by the ensemble itself interacting with a classical (write)

field. The entangled state is generated probabilistically (but heralded) through postselection

and measurement quantum interference, as shown in Fig. 1-2. In the ideal case of low

excitation probability, a photodetection event at either of the two detectors projects the two

ensembles into a maximally-entangled singlet state of excitations. Although scalably resilient

to issues that might plague such protocols, such as propagation loss and photodetector dark

counts, DLCZ requires stable phase coherence and number-resolving photodetectors, neither

of which are easy to implement in practice. By enabling the storage of externally-generated

entanglement in a DLCZ-type protocol, we will address new error models for entanglement

fidelity in quantum memories.

18



As an aside, it is worth noting a competing approach to photon storage that may serve

as a useful comparison in the future, namely, the usage of stimulated Raman transitions and

electromagnetically induced transparency (EIT) to increase the coupling of an input quan-

tum field with an atomic ensemble [FL02, Luk03, GAF+07, GALS07]. In this approach, an

external coherent control field couples the |e〉 − |s〉 transition in a Λ-type atom, adiabati-

cally reducing the group velocity of a single photon wavepacket and trapping it within the

ensemble. Such an approach is deterministic, with high throughput, but admits neither easy

verification (as in MIT-NU) nor heralding (as in DLCZ). Like the DLCZ protocol above, its

compatibility with externally-generated entanglement is an open question.

1.2 Polarization Quantum Entanglement

Because we will be concerned with the behavior of atomic ensembles that are illuminated

by the entangled signal and idler produced by optical parametric amplification (OPA), it is

important to have an appropriate model for such light beams. As our goal is to quantify the

effects of multiple-pair emissions from such a source on the resulting stored entanglement,

we cannot immediately default to a postulated biphoton picture. Instead, we shall use the

full Gaussian-state description, in which the the input field in this interaction is one of a pair

of polarization-entangled light beams generated by the interference of a pair of anti-phased

optical parametric amplifiers as shown in Fig. 1-1. We assume that the signal and idler

cavities are matched with identical linewidths Γ, and pumping fractions, G2, of oscillation

threshold, with no depletion of or excess noise on the pump [Sha02, SW00]. Following

interference, the output fields are in an entangled, zero-mean Gaussian pure state with the

normally-ordered and phase-sensitive correlation functions

〈Â†kj (t+ τ) Âkj (t)〉 =
GΓ

2

[
e−(1−G)Γ|τ |

1−G
− e−(1+G)Γ|τ |

1 +G

]
〈ÂSj (t+ τ) ÂIj (t)〉 =

(−1)j−1GΓ

2

[
e−(1−G)Γ|τ |

1−G
+
e−(1+G)Γ|τ |

1 +G

]
, (1.4)

where {Âkj (t) e−jωkt : k = S (signal) , I (idler) , j = 1, 2} are the positive-frequency, photon-

units OPA-output fields. The low-flux output state of this process at a detuning ∆ω is given

19



by expanding out the number ket representations of the OPAs to first order,

|ψ〉SI =
∑
n

√
N̄(

N̄ + 1
)n+1 |n〉Sx |n〉Iy ⊗

∑
n

(−1)n
√

N̄(
N̄ + 1

)n+1 |n〉Sy |n〉Ix

≈ 1

N̄ + 1
|0〉Sx |0〉Iy |0〉Sy |0〉Ix +

√
N̄(

N̄ + 1
)3

(
|1〉Sx |1〉Iy |0〉Sy |0〉Ix − |0〉Sx |0〉Iy |1〉Sy |1〉Ix

)
= |vac〉+

√
N̄(

N̄ + 1
)3 (|H〉S |V 〉I − |V 〉S |H〉I) , (1.5)

where N̄ = 4G2/
[
(1−G2 −∆ω2/Γ2)

2
+ 4∆ω2/Γ2

]
is the average photon number per mode;

and |H〉S = |1〉Sx |0〉Sy , |V 〉S = |0〉Sx |1〉Sy , |H〉I = |1〉Ix |0〉Iy , and |V 〉I = |0〉Ix |1〉Iy . Follow-

ing measurement postselection, this state is a maximally entangled singlet state of the form

in Eqn. 1.1 [Sha02], and expansions to higher orders account for multiple-pair effects. A

useful property of the full state |ψ〉SI is that its anti-normally ordered characteristic function

is a zero-mean, jointly Gaussian distribution that remains Gaussian under linear transfor-

mations. Its joint density operator is ρ̂SI = ρ̂SxIy ⊗ ρ̂SyIx , whose anti-normally ordered

characteristic functions are given by

χ
ρSxIy
A (ζS, ζI) = 〈e−ζ∗S âSx−ζ∗I âIy eζS â

†
Sx

+ζS â
†
Iy 〉

= e−(1+N̄)(|ζS |2+|ζI |2)+2N̄Re(ζSζI) (1.6)

and

χ
ρSyIx
A (ζS, ζI) = 〈e−ζ∗S âSy−ζ∗I âIxeζS â

†
Sy

+ζI â
†
Ix 〉

= e−(1+N̄)(|ζS |2+|ζI |2)−2N̄Re(ζSζI), (1.7)

which contain all multiple-pair orders of |ψ〉SI. Following a linear transformation, the output

state ρ̂out can be determined by taking the inverse Fourier transform of the output char-

acteristic function, with that characteristic function being easily calculated from the input

characteristic function and the field transformation. In a memory or teleportation architec-

ture, we want the output—represented by a pure or mixed state ρ̂out— to have the highest

20



possible fidelity with respect to its input state ρ̂in. The trace separation quantifies this fi-

delity as F (ρ̂) = Tr
[√
ρ̂outρ̂in

√
ρ̂out

]
, which reduces to a projection overlap 〈ψin| ρ̂out |ψin〉

when the input is the pure state ρ̂in = |ψin〉 〈ψin|.

1.2.1 Entanglement Repeaters and Quantum Teleportation

The most immediate problem affecting the distribution of polarization-entangled photons

is photon propagation loss. Although a 1 km length of low-loss, optical telecom fiber

(λ = 1.55 µm)—a relatively short distance—has a transmission nearing 95%, photon trans-

mission decays exponentially with increasing distances, ruling out direct transmission of en-

tangled photons over hundreds of kilometers. In classical communication, this type of signal

attenuation is easily compensated with fiber-based amplifiers. However, for quantum com-

munication, the no-cloning theorem prevents noiseless amplification of the non-orthogonal

quantum states required for teleportation [WZ82].

Fig. 1-3(a) shows a ‘quantum repeater’ approach that overcomes the amplifier restriction

by incrementally extending entanglement across a larger network [SSdRG09]. Lettered boxes

represent memories, and pairs of memories form nodes on the network. For two nodes, A—B

and C—D, that are each separately entangled, a joint Bell measurement between memories

B and C will entangle systems A and D. This process, known as entanglement swapping,

establishes entanglement between two networks links that may have never interacted. One

can then establish entanglement between memories A and Z that are separated by a distance

L by independently creating entanglement at N equally-spaced adjacent nodes out of 2N

memories. N − 1 entanglement swapping operations in this network ultimately entangle

memories A and Z. For the repeater protocol to work in an asynchronous fashion, these links

must be heralding quantum memories.

Once entanglement distribution is successful, we can carry out long-distance quantum

communication using teleportation, a protocol described in Fig. 1-3(b). In qubit telepor-

tation, Charlie (C) sends a message (M) to Bob (B) using Alice (A) as an intermediary.

Charlie’s message is in the form of an arbitrary, unknown qubit spanned by the orthonormal

basis {|0〉 , |1〉} represented by |ψ〉C = α |0〉C + β |1〉C , where |α|2 + |β|2 = 1. The steps of

the protocol are as follows:
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• Step 1, Entanglement distribution. An optical source, like that described in

Section 1.2, generates polarization-entangled idler and signal photons that are shared

and stored by Alice and Bob, respectively. These photons can be any of the four

maximally-entangled Bell states,

∣∣ψ±〉
AB

=
1√
2

(|0〉A |1〉B ± |1〉A |0〉B)
∣∣φ±〉

AB
=

1√
2

(|0〉A |0〉B ± |1〉A |1〉B) , (1.8)

as long as that state is known to Alice and Bob. In the following, we will assume that

Alice and Bob have successfully shared the singlet state |ψ−〉AB. The joint state of

Alice, Bob, and Charlie form the initial state of the total system:

|ψ〉ABC =
∣∣ψ−AB〉⊗ |ψC〉 =

1√
2

(|0〉A |1〉B − |1〉A |0〉B) (|α |0〉C + β |1〉C〉) . (1.9)

• Steps 2 and 3, Bell measurement and classical communication. If we define

|00〉CA =
1√
2

(∣∣φ+
〉
CA

+
∣∣φ−〉

CA

)
|10〉CA =

1√
2

(∣∣ψ+
〉
CA
−
∣∣ψ−〉

CA

)
|11〉CA =

1√
2

(∣∣φ+
〉
CA
−
∣∣φ−〉

CA

)
|01〉CA =

1√
2

(∣∣ψ+
〉
CA

+
∣∣ψ−〉

CA

)
, (1.10)

Eqn. 1.9 can be written in terms of the Bell states as

|ψ〉ABC =
1

2

[∣∣ψ+
〉
CA

(α |1〉B − β |0〉B)−
∣∣ψ−〉

CA
(α |1〉B + β |0〉B)

]
+

1

2

[∣∣φ−〉
CA

(β |0〉B + α |1〉B) +
∣∣φ+
〉
CA

(β |0〉B − α |1〉B)
]
. (1.11)

Alice performs a joint measurement on her idler photon and the message qubit en-

trusted to her by Charlie, projecting Bob’s state into one of four single-qubit rotations

of Charlie’s initial state. Alice sends her measurement result—one of 00, 01, 10, or

11—to Bob over a classical communications channel. Charlie’s qubit is destroyed in

this measurement process.

• Step 4, State transformation. Bob receives Alice’s measurement data and per-

forms the appropriate single-qubit rotation on his signal photon using waveplates to
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recover Charlie’s state. Because Alice’s measurement outcomes are all equally likely,

the teleportation reveals no information about Charlie’s initial state.

Together, entanglement repeaters and teleportation form basis for high-fidelity communica-

tions of quantum states over long distances.

1.3 Overview and Goals

Using Gaussian-state outputs from the OPA’s, we can quantify fidelity loss in entanglement

distribution by accounting for multiple-pair effects, fiber propagation loss, photodetection

limitations, and phase mismatch between atomic ensembles. A Gaussian-state analysis for

finite atomic ensembles, while valid for the DLCZ protocol, is not applicable for the distribu-

tion of externally-generated entanglement. The discussion in this thesis focuses on building

a new abstraction for quantum memories and a corresponding formalism for its architectural

analysis.

The remainder of the thesis is organized as follows:

• Chapter 2 summarizes the atomic physics concerning the interactions between multi-

atom ensembles and quantized light fields. Sections 2.1 and 2.2 formally introduce

quantized fields and common assumptions regarding their interactions with collective

atomic states, particularly in the context of three-level Raman interactions. In Sec-

tion 2.3, we apply this formalism to derive the trilinear Hamiltonian describing a

heralding DLCZ-type memory.

• Chapter 3 synthesizes the primary theoretical results of this thesis: an architec-

tural analysis of a DLCZ-type quantum communication system, driven by a dual-OPA

source, with particular emphasis paid to multiple-pair effects. In Section 3.1, we pro-

vide an overview of this architecture and discuss relevant experimental parameters for

a prototype system. Assuming perfect absorption by the memories, we determine the

fidelity and success probability of our heralding architecture in Section 3.2 by applying

a number-state analysis. Section 3.3 applies a Gaussian state analysis to polarization

entanglement connection.
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• Chapter 4 summarizes our theoretical results and discusses possible future directions

for studying architectures for quantum communication with polarization entanglement.

• Appendix A presents a Quantum Monte Carlo simulation of the pump, signal, and

idler modes of a trilinear Hamiltonian. We’ll use this simulation to: (i) justify an

ansatz solution in the Chapter 3’s number-state analysis; and (ii) explain why approx-

imate solutions in the literature fail to adequately describe memory-loading dynamics.

Section A.1 argues that trilinear Hamiltonians are not analytically diagonizable using a

finite Lie group representation. Section A.2 lists the code for the numerical simulation

of the trilinear Hamiltonian’s associated master equation.

1.4 Notation and Abbreviations

Table 1.1 summarizes symbols and abbreviations common throughout this thesis.
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Symbol/Abbreviation Definition
Symbols

â, b̂, Ŝ Pump, heralding, and spin excitation operators
|g〉, |e〉, |s〉 Ground, excited, and metastable atomic states

Na Number of neutral atoms in atomic ensemble
gc, κ Cavity mode coupling strength and decay rate
Ω, ∆ Rabi frequency and excited-state detuning
N̄ Average photon number per mode

fn,m
(
N̄
)

Dual-OPA thermal coefficient
η Beam splitter transmission efficiency

B̂ Beam splitter operator
Bn1,n2

N1,N2
(η, φt, φr) Beam splitter coefficient relating

n1 + n2 input photons to N1 +N2 output photons
Abbreviations

DLCZ Duan-Lukin-Cirac-Zoller (Protocol)
MIT-NU MIT-Northeastern University (Protocol)
PNRD Photon-number resolving detection
NRPD Non-resolving photon detection
POVM Positive operator valued measure
OPA Optical parametric amplifier

SPDC Spontaneous parametric down conversion
NPBS/PBS (Non-)Polarizing beam splitter
QWP/HWP Quarter/Half-wave plate

h.c. Hermitian conjugate (adjoint)

Table 1.1: Common symbols and abbreviations employed in this thesis.
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...

QM QM QM QM QM QM QM QM

A B C D W X Y Z...

...

QM QM

QMQMQMQM

Entanglement Creation

First Entanglement Swapping

Last Entanglement Swapping

A Z

A D W Z...

(a) Principle of a quantum repeater architecture. Entanglement is independently created at short
distances between nodes AB . . .YZ. Entanglement is swapped between neighboring links such that
locations A and D, for example, share entanglement over an intermediate distance. Swapping occurs
over successively larger distances until links at the desired separation, A and Z, are entangled. Figure
based on [SSdRG09].

Step 4

Source

Message
M

Transmitter
T

Classical 

Communication 

Channel

Teleported 

Message

M’

Joint Bell Measurement State Transformation

Receiver 
R

State Transformation

Receiver 
R

Step 1

Step 2 Step 3

Entanglement 

(b) Optical qubit teleportation. Two nodes sharing entanglement can teleport a qubit using local
Bell measurements and a classical communication channel. Figure based on [Sha08].

Figure 1-3: Fundamentals of quantum communication using entanglement connection and
teleportation.
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Chapter 2

Quantum Memories and Repeaters

using Fundamental Light-Matter

Interactions

Photons interact very weakly with their environment and undergo minimal quantum state

decoherence, making them robust carriers of quantum information over reasonable distances.

These strengths in passive communication are quite problematic, however, when building

larger networks, as photons are very difficult to localize and store. In the following, we

will discuss the finer details of modeling the coherent transfer of quantum states of light to

atomic ensembles, particularly conditions for strong Raman interaction and unity absorption

of photons by optically thick atomic gases. This treatment places an emphasis on underlying

physical assumptions required for operating such memories.

2.1 Describing Light and Atomic Fields

In this section, we introduce boson excitation representations of electromagnetic fields and

atomic spin, and some important underlying assumptions and approximations relevant for

describing their interactions in Section 2.2. We consider an ensemble of NA Λ-type atoms

confined in a single-sided, ring cavity, as shown in Fig. 2-1. The |g〉 − |e〉 and |e〉 − |s〉

transitions are coupled to the cavity-modes â and b̂ with coupling coefficient gge and ges,
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Dielectric Mirror

b̂out (t)

b̂in (t)

b̂ (t)

âout (t)

âin (t)

â (t)

Reflective Mirror (R = 1)

Herald

Spin Excitation

Pump

∆

|s〉

|g〉

|e〉

b̂ (t)
â (t)

Ŝ (t)

Figure 2-1: DLCZ with quantum field inputs. (Left) Input-output formalism for a single-
sided, two-mode ring cavity. (Right) Interaction in a three-mode parametric amplifier

respectively. For reasons discussed in Section 2.2, the two cavity-mode fields have a frequency

detuning ∆ from the excited state |s〉. Because the algebra describing the interactions of

three boson operators is quite complicated, we will have to simplify this calculation. We

start by assuming that the |g〉 − |e〉 transition is coupled to a classical field, as in the

DLCZ case, and then replace the classical Rabi frequency term in the resulting interaction

Hamiltonian with a quantized field term. This derivation is partially based on the discussion

by Hammerer and Polzik in [HSP10], although similar and less-detailed discussions can be

found other quantum optics texts [Ste10].

A monochromatic, quantized, paraxial electromagnetic field propagating nominally in

the z-direction through vacuum is represented by

Ê (~r, t) =

√
2πω

c

∑
mσ

eωum (r⊥; z) ei(kmz−ωt)âmσ (z) + h.c., (2.1)

where eσ is the polarization vector (labeled by σ) and km is the longitudinal wave number.

The mode functions {um (r⊥; z)} characterize the transverse profile of the field and form a

complete orthogonal basis in the plane defined by r⊥. The first and second terms of this field

are also denoted later as the positive (Ê(+)) and negative (Ê(−)) frequency fields, respectively.

In defining the field annihilation operator âmσ, we make a dipole approximation (also known

as a long-wavelength approximation), that assumes that the wavelength of the field is much

longer than the effective size of the atomic ensemble, thereby neglecting variations of the field
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over the atoms’ extent1. For this approximation to be valid in the case of a pencil-shaped

atomic ensemble of length La, the wave vectors of the pump and herald fields must satisfy

(ka − kb)La � π [DLCZ01]. The position-space annihilation operator in Eqn. 2.1 has the

commutator [
âmσ (z) , â†mσ (z′)

]
= cδm,m′δσ,σ′δ (z − z′) . (2.2)

The normalization c is chosen such that the traveling wave fields âmσ (z, t) have the ap-

propriate free-space commutator. Further details regarding the slowly-varying annihilation

operator are given in [HSP10].

The populations of the two ground states |g〉 and |s〉 are described by angular momentum

operators acting on the mth atom,

σ̂x,m =
1

2
(|g〉m 〈g| − |s〉m 〈s|) σ̂y,m =

1

2
(|g〉m 〈s|+ |s〉m 〈g|) σ̂z,m =

1

2i
(|g〉m 〈s| − |s〉m 〈g|)

(2.3)

and the atomic lowering operator,

σ̂+,m = σ̂y,m + iσ̂z,m = |g〉m 〈s| , (2.4)

where x is the quantization axis chosen by convention. The collective angular momentum

operators are then Ŝi =
∑

j σ̂i,j (i = x, y, z) and Ŝ2 = Ŝ2
x+ Ŝ2

y + Ŝ2
z , which obey the standard

angular momentum commutators
[
Ŝi, Ŝj

]
= iεijkŜk and

[
Ŝi, Ŝ

2
]

= 0, respectively. The

collective states are specified uniquely by the angular momentum states |s,mx〉, where s

is the total angular momentum quantum number specified by Ŝ2, and mz is the x-axis

angular momentum quantum number specified by Ŝx. The ensemble state where all the

atoms are in the ground state |g〉 is labeled by the corresponding angular momentum state

|s = NA/2,mx = NA/2〉. For NA � 1 and small perturbations to the ensemble, Ŝx can be

approximated by its expectation value 〈Ŝx〉, which is NA/2 for the collective ground state.

1With this assumption, the light-ensemble interaction Hamiltonian is simply a dot product between the
quantized field operator (Eqn. 2.1) and the atomic dipole operator (Eqn. 2.9), as shown in Eqn. 2.8.
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By defining canonical position and momentum operators,

X̂A =
Ŝy

〈Ŝx〉
P̂A =

Ŝz

〈Ŝx〉
, (2.5)

the normalized, collective annihilation operator is,

Ŝ =
X̂A + iP̂A√

2
=

1√
〈Ŝx〉

∑
m

σ̂+,m =
1√
〈Ŝx〉

∑
m

|g〉m 〈s| , (2.6)

whose action is consistent with Eqn. 1.3.

2.2 Collective Atom-Field Interactions

In the following, we will first consider an interaction with a single atom at location r, extend

the result to the entire ensemble, and show that parametric amplification occurs between the

heralding and spin modes. The total Hamiltonian describing the optical fields, the atoms,

and their interaction is

Ĥ = ĤA + ĤF + Ĥint. (2.7)

The atoms’ stable ground states are denoted by |gm〉 and their excited states by |em〉. The

atomic and optical Hamiltonians are ĤA =
∑

m ω0 |em〉 〈em| and ĤF =
∑

m ωâ
†
mâm, respec-

tively. With the dipole approximation, the atom-field interaction Hamiltonian is

Ĥint = −d̂ · Ê, (2.8)

where d̂ is the atomic dipole operator d̂ = −qre, as a function of electronic charge q = −e

and the atomic electron position re. The dipole operator governs the transitions between

states, and it can be shown that for magnetic hyperfine states {|gm〉} and {|em〉}, all matrix

elements 〈gm|d |gm′〉 and 〈em|d |em′〉 of the dipole operator vanish. For a single atom, we

get

d̂ = 〈g| d̂ |e〉 (σ̂+ + σ̂−) = d̂(+) + d̂(−), (2.9)
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with positive and negative frequency components defined similarly to Eqn 2.1. Expanding

out the dipole and field operators, the interaction Hamiltonian simplifies to

Ĥint = −
(
d̂(+) + d̂(−)

)
·
(
Ê(+) + Ê(−)

)
= −d̂(−) · Ê(−) − d̂(+) · Ê(+) − d̂(+) · Ê(−) − d̂(−) · Ê(+)

≈ −d̂(+) · Ê(−) − d̂(−) · Ê(+) (2.10)

under the rotating wave approximation. This approximation leverages the relative time scales

of dynamics under unitary time evolution. Recalling the time dependencies d(±) ∼ e∓iω0t and

E(±) ∼ e∓iωt, the first two like-sign operator products oscillate quickly at e±i(ω+ω0)t, while

the cross-sign operator products oscillate slowly at e±i(ω−ω0)t. With |ω − ω0| � |ω + ω0|, we

can focus on relatively slow dynamics by assuming that the fast terms have zero average

value and dropping those products. Note that transformation to the rotating frame, with

respect to the incoming optical frequency, changes the free atomic Hamiltonian in Eqn. 2.7

to ĤA =
∑

m ∆m |em〉 〈em|, where ∆m is the detuning of the mth excited state with respect

to the pump laser frequency ω.

The detuning of the optical fields from ω0 allows us to adiabatically eliminate the excited

state from our later analysis. Expanding out Eqn. 2.10 by its matrix elements gives

Ĥint = −
∑
m,m′

Ê(−) · d̂(+)
m,m′ |gm〉 〈em′ |+ h.c.. (2.11)

With the atomic free evolution and the interaction Hamiltonian taken together, the time

evolution of these matrix elements is given by

d

dt
|gm〉 〈em′| = −i∆m′ |gm〉 〈em′|+iÊ(+)·

∑
m′′

(
d̂

(−)
m′,m′′ |gm〉 〈gm′′| − d̂

(−)
m′′,m′ |em′′〉 〈em′|

)
. (2.12)

Here we can drop two more terms: first, for weak excitations, we can eliminate the excited-

state operator |em′′〉 〈em′|, and second, provided that Ê(+) · d̂(−)
m,m′ � ∆m′ , we can eliminate

the left-hand time derivative because its dynamics are slow relative to time-evolution at the

detuning ∆m′ . Under this adiabatic approximation, the matrix elements of the Hamiltonian
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are

|gm〉 〈em′′ | ≈
∑
m′′

Ê(+) (r) · d̂(−)
m′,m′′

∆m′
|gm〉 〈gm′′ | . (2.13)

With the rotating-wave and adiabatic approximations, we determine the effective ground

state Hamiltonian Ĥ ′int by substituting Eqn. 2.13 into Eqn. 2.11 and simplifying. The effective

ground state Hamiltonian is then

Ĥ ′int = −
∑

m,m′,m′′

(
Ê(−) (r) · d̂(+)

m′,m′′

)(
d̂

(−)
m′′,m′ · Ê(+) (r)

)
∆m′′

|gm′〉 〈gm| . (2.14)

In describing the interaction between a quantum field, a classical field, and the entire

ensemble, we integrate over Eqn. 2.14 for all atoms in space and apply the quantized electric

field given in Eqn. 2.1. Assuming that the classical and quantum fields are co-propagating

in the z direction, it can be shown that resulting Hamiltonian is

Ĥ =

∫
dz

[
|Ω (z, t)|2

4∆
Ŝ† (z) Ŝ (z)−

(
g∗ (z) Ω (z, t)

2∆
b̂† (z) Ŝ† (z) + h.c.

)]
, (2.15)

where b̂ is the heralding field operator as included in Eqn. 2.1, and the coupling constant

g (z) and Rabi frequency Ω (z, t) are,

g (z) =

√
2πωn (z)

c
d̂(−)
es · ~eq Ω (z, t) = 2d̂(−)

eg · 〈Ê(+)〉e−i(k0z−ω0t), (2.16)

where n (z) is the density distribution of the ensemble, ~eq is the polarization of the quantized

field, and the dot product terms describe the atom-light field overlap [HSP10]. The first term

of the Hamiltonian describes the level shift of the ground state in the presence the classical

pump field (the ac Stark effect), the second term describes the parametric interaction between

the heralding optical field and the collective ensemble excitation. This is consistent with the

heralding photon and spin wave parametric amplification described in the original DLCZ

protocol, up to a scale factor in the interaction strength [DLCZ01]. For abstracting the

behavior in quantum memories, it sufficient to omit the sum over multiple modes and the

integration over z by incorporating collective enhancement into the coupling term such that
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g → g
√
Na. Replacing the strong classical field Rabi frequency Ω with a quantized pump

field ggeâ yields a trilinear Hamiltonian describing the effective interaction been quantized

pump, spin wave, and heralding modes:

Ĥint =
|gesgge|Na

∆

(
âb̂†Ŝ† + Ŝb̂â†

)
. (2.17)

In Chapter 3, we assume an anzatz solution such that N entangled photons are absorbed

by an ensemble memory and are converted, without loss, to N spin excitations and N

heralding photons. Justifications for this assumption are provided in Appendix A using the

algebraic symmetries of Eqn. 2.17 and a numerical simulation, respectively. Note that that

operations preserving the Gaussian properties of a quantum state’s Wigner function (e.g.,

for polarization-entangled light) must be quadratic in its boson operator terms [BvL05].

Any quadratic interaction Hamiltonian is thus a Gaussian operation, and the solutions for

its input-output behavior is a Bogoliubov transformation of the input modes. However, it

is not even possible to determine the analytical dynamics for Eqn. 2.17, because it is not

a quadratic Hamiltonian. In the following section, we will describe some subtleties and

prospects for achieving strong interactions between quantized excitations, in the trilinear

case.

2.3 Engineering Quantized Field Absorption

The interaction strength in Eqn. 2.17 includes an inverse dependence on the detuning from

the excited state energy, and a direct dependence coupling coefficients between the cavity

fields and the ensemble. Under what conditions is it possible to make a heralding memory

for a quantum field near-unity efficient?

Although reducing the detuning ∆ of the input field increases interaction strength, it also

has the adverse effect of moving the memory’s operating regime out of Raman scattering

and into fluorescence, in which the ensemble experiences inhomogeneous broadening between

the ground and excited states, thereby eliminating the intra-ensemble quantum interference

required in the DLCZ protocol. The derivation of the parametric Hamiltonian (Eqn. 2.15) in
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Section 2.2 assumed an adiabatic approximation with a very large detuning. In our ensemble,

we will have to assume a homogenous distribution of atoms coincident with the write field,

as atoms closer to resonance with the write field will have a larger amplitude of emitting

a heralding photon. Near-resonant excitation of the excited state impart phases differing

from atom to atom in an inhomogeneous ensemble. Ottaviani, et al. have characterized the

collective atomic character of near-resonance or inhomogeneously broadened ensembles (i.e.,

Doppler broadening) [OSdR+09], whose results are summarized in Fig. 2.3. They assume an

ensemble with inhomogeneous broadening of 0.5 GHz and a Gaussian temporal pulse shape

for the input centered at 0.2 µs with a duration specified by a full-width half maximum

at 0.1 µs. The collectivity is defined as the fidelity of an ideal Dicke state against that

produced by a near-resonance input field. Figures 2-2(a) and 2-2(b) show that collectivity

decreases significantly for resonant pulses, but is almost unity for the pulse duration using

detuning only twice the inhomogeneous broadening. Collectivity is enhanced by spontaneous

broadening, which suppresses fluorescent heralding after the pulse, but undergoes decay

through spin decoherence. Furthermore, the heralding probability closely follows the pulse

shape of the input field when it is off-resonance. For larger detunings, a much broader

frequency class of atoms in the ensemble contribute to the heralding photon, as shown in

Fig. 2-2(c).

We can compensate for finite detunings and heralding probabilities in these ensembles

by increasing the ensemble’s optical depth, which is limited in free-space interactions by

ensemble size and coupling strength. Several approaches use multi-pass optical cavities to

increase the likelihood of a successful Raman scattering event between a cavity field and

the enclosed ensemble [JDB+04, BTVac05, SdRA+07, TSLVac06, STTVac07]. The cavity-

ensemble heralding efficiency is captured by the cooperativity parameter C = g2
cNA/κcγ ,

where gc is the single-atom coupling constant to the cavity mode, κc is the cavity decay rate,

and γ is the excited state spontaneous decay rate. It can be shown that the cooperativity

is approximately C ∼ fd, where d is the optical depth of the ensemble and the finesse f is

approximately the number of passes the optical field makes in the cavity. Optical cavities

are used in the magnon-type memory (Fig. 2-3), in which a single collective excitation is

shared between between two spatially-overlapping atomic ensembles [TGS+09]. Photons of
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arbitrary polarization states are stored between two ensembles that absorb only left- (σ+)

and right-circularly (σ−) polarized light, respectively, and emit only linearly (π) polarized

light into the cavity resonator, thereby eliminating any which-path information. The memory

itself is an ensemble of approximately 8000 cesium atoms loaded from a far-detuned magneto

optical trap (MOT) into a one-dimensional optical lattice overlapping a medium-finesse

(f = 140) optical cavity. A spatially homogenous, DC magnetic field allows time-dependent

control of polarization storage through Larmor precession of the ensembles magnetic moment.

In theory, single-photon conversion efficiencies for this type of magnon memory are quite high.

It was also shown in Section 2.2 and Appendix A that a heralding quantum memory operating

with a single- or few-photon pump field performs a ‘non-Gaussian’ operation because of

its Hamiltonian’s (Eqn. 2.17) algebraic symmetries. Several approaches exist for enhancing

nonlinear optical effects between optical and ensemble excitations, such as optically imprinted

Bragg mirrors ([AL02, BZL03]), interactions between ensembles of atoms in optical lattices

([MdVPC08]), and atomic blockades using Rydberg-level atoms ([LFC+01]).

Bandwidth requirements for atomic ensembles impose restrictions on the phase matching

bandwidth of our polarization-entanglement source. In Section 1.2, we introduced OPA

sources for polarization entanglement. To be compatible with ensemble-based quantum

memories and enable efficient quantum state transfer, the signal and idler output fields

must be nearly-resonant with the center frequency of the desired atomic transition and have

a narrow spectral bandwidth—anywhere between 10 and 100 MHz—matching that of the

ensemble [SSdRG09].

There are two techniques for reducing the spectral bandwidth of the output from sponta-

neous parametric down conversion. The first is cavity-enhanced down conversion, in which a

nonlinear crystal in a cavity will only emit light in prescribed cavity modes. Because cavity

output is spectrally multimode, a Fabry-Perot etalon or filter cavity is required to select

a single cavity mode [KWS06, SKB09]. Recently, groups have created type-II polarization

entanglement sources compatible with alkali-gas ensembles of rubidium and cesium by ap-

plying spectral filtering and frequency locking, resulting in bandwidths of 2.7 MHz and 9.6

MHz, and corresponding spectral brightnesses of approximately 330 and 6 entangled pairs

per second per mW of pump power per MHz of output bandwidth [SKUB09, BQY+08].
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(a) Mean excited state population pe (t). (b) Collectivity of an atomic excitation as a function
of time of Stokes photon emission ts.

(c) Contributions of atomic frequencies to collec-
tive atomic excitation and Stokes photon emission.
Contributions from the collective atomic distribution
dominate resonant fluorescence at higher detunings.

Figure 2-2: Contributions of resonance fluorescent absorption and Raman scattering to the
collectivity of a Dicke excitation. The calculations assume that the excited-state energies of
the atoms are Gaussian-distributed about some center frequency. All quantities are plotted
for different detunings ∆0 from that center frequency. In Figures 2-2(a) and 2-2(b), dashed
lines include spontaneous emission broadening Γ = 5MHz and the fine blue line denotes the
squared Rabi frequency Ω2 (t) of the pump laser. Figures are taken from [OSdR+09].
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Figure 2-3: Operation of a magnon-type quantum memory. (a) Read/Write Control. Arrows
indicate polarization vector. A static magnetic field induces Larmor precession, and the
optical pump (OP) controls the atomic ground state and write/read processes. (b) Atomic
energy levels. Ensembles A and B are prepared in a hyperfine ground state. The write
(green) and read (red) processes are σ± − π and π − σ± spontaneous Raman transitions,
respectively. (c) Ensemble Larmor Precession. The ensemble precession is quantified by
measured cavity transmission. Times for optical pumping (top), write (tw), and read (tr)
processes are labeled accordingly. Figures are taken from [STTVac07].
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Chapter 3

Heralded Polarization Entanglement

Distribution with Atomic Ensembles

This chapter combines the operating principles of ensemble-based quantum memories, as

described in Chapter 2, with architectures for polarization entanglement distribution, entan-

glement connection, and quantum teleportation. We will first discuss our architecture for

entanglement distribution and provide a very basic abstraction for quantum memories. The

remainder characterizes figures of merit—fidelity, heralding probability, and protocol success

probability—under various transmission loss and photodetection conditions.

3.1 Architecture Overview

We will first discuss our overall architecture and loss model, followed by particular details of

a dual-OPA polarization entanglement source and quantum memories. Our architecture for

polarization entanglement distribution, shown in Fig. 3-1, is a modification of the standard

DLCZ architecture shown in Fig. 1-2. In the original DLCZ protocol, both ensembles are

coherently pumped and the probability that both ensembles will emit single photons is low

compared to that for emission from a single ensemble. Interference at the 50-50 beam splitter

in Fig. 1-2 erases any which-path information for the emission event, so a single detection at

either photon counter D1 or D2 is used to herald entanglement of the two ensembles. The

ideal situation in Fig. 3-1 is when a polarization singlet is emitted from the source and the
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Figure 3-1: Modified DLCZ architecture for distributing polarization entanglement, using
a spontaneous parametric downconversion (SPDC) source and interferometer measurement
for entanglement verification.

overall system is lossless. The polarizing beam splitters (PBS) then load the signal and idler

photons from the singlet into a coherent superposition of excitations of ensembles 1 and 2

and ensembles 3 and 4, respectively. This loading is heralded by the single-photon detections

from pair (D1, D2) and (D3, D4).

Fig. 3-2 encompasses the error modes for the Fig. 3-1 distribution architecture. The

Type-II SPDC source may produce multiple signal-idler pairs, which will be modeled with

the full joint Gaussian state description of its output. Propagation losses between the PBS

and the atomic ensembles (labelled ‘pre’), and between the atomic ensembles and the 50-

50 beam splitter (labelled ‘post’) are modeled by fictitious beam splitters whose vacuum-

state input ports inject Gaussian quantum noise. Finite quantum efficiency photodetectors

(labelled ‘pho’) are similarly modeled, and we have ignored dark counts, which are known to

be reasonably low at heralding wavelengths for silicon Geiger-mode avalanche photodiodes

(APDs) [TYD+10]. Our number state model for these fictitious beam splitters, described in

Section 3.2, includes the effects of phase differences between input ports, which we can use

to characterize the effects of phase mismatch between pairs of ensembles. We will assume

that any accumulated phase offsets leading to the ensembles can be incorporated into the

pre-transmission efficiency.

The preceding imperfections expose two fundamentally different failure modes for this
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â2

PBS 50/50

b̂mem
1,v

µ1 ηpost
1
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âpho
1,v

ηpho2
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Figure 3-2: Hong-Ou-Mandel (HOM) interferometer measurement with loss (labeled).

protocol that affect fidelity and probability of success, respectively. First, is it possible for

heralding detections at the APDs to declare the protocol’s success even when the ensembles

themselves are not in a polarization singlet state. For example, a multiple-pair event from

the entanglement source could lead to multiple heralding photons emitted by a quantum

memory. Post-memory attenuation and finite-quantum efficiency photodetection could elim-

inate all but one of those heralding photons, and the usage of Geiger-mode APDs might

completely preclude our ability to distinguish between multiple-photon and single-photon

events. A relative phase offset between two ensembles, either because of pump photon phase

mismatch or pre-transmission phase accumulation, would similarly affect the final fidelity

of the loaded quantum state. Lastly, because post-memory imperfections reduce potential

heralding detections, it possible to declare the protocol a failure—and reduce the probability

of success—even when the ensembles are successfully loaded.

3.2 Number State Fidelity and Success

We characterize this architecture’s performance of heralding entanglement distribution by

determining its fidelity figure-of-merit and measurement statistics under different photode-

tection schemes: photon-number resolving detection (PNRD), which can distinguish between
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single-photon and multi-photon photodetection events; and non-resolving single-photon de-

tection (NRPD), which is unable to exclude multi-photon error events. For these two

schemes, the projective measurement operators M̂j (j = 1, 2, 3, 4) represent four success-

ful heralding outcomes at the photodetectors Di (i = 1, 2, 3, 4). The input to each 50-50

beam splitter in Fig. 3-1 is a superposition state of linearly co-polarized heralding photons

from the atomic memories, so we expect that successful entanglement distribution to yield

single clicks at the signal and idler photodetector pairs. This DLCZ-like protocol for heralded

polarization entanglement distribution therefore requires the occurrence of a single detection

on either photodetectors D1 or D2, as well as a corresponding event on either D4 or D3. In

the following, successful heralding is given by the projective measurements

M̂PNRD
j =



(|1〉11 〈1|)⊗ (|0〉22 〈0|)⊗ (|1〉33 〈1|)⊗ (|0〉44 〈0|) j = 1

(|0〉11 〈0|)⊗ (|1〉22 〈1|)⊗ (|1〉33 〈1|)⊗ (|0〉44 〈0|) j = 2

(|0〉11 〈0|)⊗ (|1〉22 〈1|)⊗ (|0〉33 〈0|)⊗ (|1〉44 〈1|) j = 3

(|1〉11 〈1|)⊗ (|0〉22 〈0|)⊗ (|0〉33 〈0|)⊗ (|1〉44 〈1|) j = 4

, (3.1)

M̂NRPD
j =



(
Î1 − |0〉11 〈0|

)
⊗ (|0〉22 〈0|)⊗

(
Î3 − |0〉33 〈0|

)
⊗ (|0〉44 〈0|) j = 1

(|0〉11 〈0|)⊗
(
Î2 − |0〉22 〈0|

)
⊗
(
Î3 − |0〉33 〈0|

)
⊗ (|0〉44 〈0|) j = 2

(|0〉11 〈0|)⊗
(
Î2 − |0〉22 〈0|

)
⊗ (|0〉33 〈0|)⊗

(
Î4 − |0〉44 〈0|

)
j = 3(

Î1 − |0〉11 〈0|
)
⊗ (|0〉22 〈0|)⊗ (|0〉33 〈0|)⊗

(
Î4 − |0〉44 〈0|

)
j = 4

, (3.2)

where |n〉i (n = 0, 1) are the vacuum and single-photon states, and Îi is the identity operator

for the âi mode measured at photodetector Di (i = 1, 2, 3, 4).

The heralding probability Pherald is the probability a heralding—a (D1, D2) single slick

and a (D3, D4) single click. The success probability Psuccess is the probability that heralding

has occurred and the four ensembles have loaded a polarization Bell state. The fidelity Fj

is the projection of the post-heralding ensemble state onto the appropriate Bell state for M̂j
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heralding, i.e.,

|ψj〉 =
1√
2

(
|1〉1S |0〉

2
S |0〉

3
S |1〉

4
S + (−1)j |0〉1S |1〉

2
S |1〉

3
S |0〉

4
S

)
(j = 1, 2, 3, 4) . (3.3)

Following a photodetection measurement, the joint density operator of the four atomic en-

sembles is determined by applying M̂j and tracing over the optical modes:

ρ̂jpost =
1

P herald
j

tr1,2,3,4

(
ρ̂outM̂j

)
(3.4)

where ρ̂out is the joint density operator of the heralding light fields and the ensembles

P herald
j = tr

(
ρ̂outM̂j

)
. (3.5)

If |ψj〉 is the entangled state of the four ensembles as heralded by M̂j, and the entanglement

storage fidelity is Fj, we find that the success probability is

Psuccess =
4∑
j=1

P herald
j Fj =

4∑
j=1

tr
(
ρ̂outM̂j

)
〈ψj| ρ̂jpost |ψj〉 . (3.6)

We will determine these measurement statistics using a full number-state analysis. Because

the successful heralding outcomes defined by M̂j are symmetric, all the fidelities Fj are equal

to each other. We will, therefore, calculate only F1 without any loss of generality. In what

immediately follows, we will formalize our approach for calculating the joint density operator

of the light-ensemble system following entanglement distribution.

3.2.1 Photon Number Probability Distributions

Our first task is to concisely represent the effects of propagation loss on light beams of

arbitrary statistical composition, as shown by the unitary beam splitter transformation in

Fig. 3-3. The matrix representation of linear-loss beam splitters in Fig. 3-2 corresponds to

the SU (2) Lie group representation from angular momentum quantization [CST89]. We can

use this equivalence to concisely relate the input and output field density operators from the

loss using a joint photon-number probability distribution.
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b̂1,
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ρ̂in ρ̂out = B̂† (η) ρ̂inB̂ (η)

|n1〉 |N1〉

b̂2, |N2〉

â2, |n2〉

â1,

Figure 3-3: Beam splitter action on an input density operator ρ̂in with two input ports and
two output ports. Labeled at each port are the input and output bases used in Eqns. 3.10
and 3.11. The boson annihilation operations at the input and output are âi and b̂i, respec-
tively, and the accompanying index i represents signal (i = 1) and auxiliary modes (i = 2).

A two-port beam splitter with quantum efficiency η and input-field phase shifts φt and

φr is described by the general SU (2) beam splitter operator,

B̂ (η, φt, φr) = e−i(φt−φr)L̂3e−2i cos−1(√η)L̂2e−i(φt+φr)L̂3 , (3.7)

where the {L̂i} are the Schwinger angular momentum operators for a two-dimensional quan-

tum harmonic oscillator:

L̂1 =
1

2

(
â†1â2 + â†2â1

)
L̂2 =

1

2i

(
â†1â2 − â†2â1

)
L̂3 =

1

2

(
â†1â1 + â†2â2

)
. (3.8)

Given a joint input state—either a pure state |ψ〉in, or a pure or mixed state ρ̂in—of the

signal and auxiliary inputs, the output state of the beam splitter is

|ψout〉 = B̂† (η, φt, φr) |ψin〉 , ρ̂out = B̂† (η, φt, φr) ρ̂inB̂ (η, φt, φr) . (3.9)

In the number-state representation, as shown in Fig. 3-3, the beam splitter output of a

general joint input state

ρ̂in =
∞∑

n1,n2=0

∞∑
n′1,n

′
2=0

ρin (n1, n2;n′1, n
′
2) |n1, n2〉 〈n′1, n′2| (3.10)
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is,

ρ̂out =
∞∑

N1,N2=0

∞∑
N ′1,N

′
2=0

ρout (N1, N2;N ′1, N
′
2) |N1, N2〉 〈N ′1, N ′2| , . (3.11)

The output state (Eqn. 3.11) follows from the input state (Eqn. 3.10) by first applying the

unitary beam splitter transformation in Eqn. 3.7, and then inserting the identity operator

in the |N1, N2〉 basis. The output matrix elements in Eqn. 3.11 are

ρout (N1, N2;N ′1, N
′
2) =

∑
n1,n2=0

∑
n′1,n

′
2=0

Bn1,n2

N1,N2
(η, φt, φr)

[
B
n′1,n

′
2

N ′1,N
′
2

(η, φt, φr)
]∗
ρin (n1, n2;n′1, n

′
2) ,

(3.12)

where

Bn1,n2

N1,N2
(η, φt, φr) = 〈N1, N2| B̂† (η, φt, φr) |n1, n2〉

= Rn1,n2

N1,N2
(η) eiφt(N1−n2)+φr(N1−n1). (3.13)

The transformation coefficients,

Rn1,n2

N1,N2
(η) =

∣∣Bn1,n2

N1,N2
(η, φt, φr)

∣∣ = 〈N1, N2| e−2i cos−1(√η)L̂2 |n1, n2〉 , (3.14)

can be calculated in terms of the Jacobi polynomials P
(α,β)
n (x) as

Rn1,n2

N1,N2
(η) =

√
N1!N2!

n1!n2!
ηN1−n2 (1− η)N1−n1P

(N1−n1,N1−n2)
N2

(2η − 1) , N1 ≥ n1, n2, (3.15)

where

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α (1 + x)−β

(
d

dx

)n [
(1− x)n+α (1 + x)n+β

]
,

α, β > −1, −1 ≤ x ≤ 1. (3.16)

The restriction N1 ≥ n1, n2 ensures the orthogonality of the Jacobi polynomials in Eqn. 3.15

over the range of quantum efficiency 0 ≤ η ≤ 1; we will extend the range of this coefficient

shortly. The R coefficient characterizes the output photon-number probability distribution

for the joint input state |n1, n2〉. For a number-diagonal joint input state, it can be shown
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that

Pout (N1, N2) = 〈N1, N2| ρ̂out |N1, N2〉 =

N1+N2∑
n1=0

n2=N1+N2−n1

Pout (N1, N2|n1, n2)Pin (n1, n2) , (3.17)

where the conditional and joint probabilities are

Pout (N1, N2|n1, n2) =
[
Rn1,n2

N1,N2
(η)
]2

and Pin (n1, n2) = ρin (n1, n2;n1, n2) , (3.18)

respectively.

The beam splitter’s physical symmetries allow us to extend the Jacobi polynomials over

the full range photon-number output probabilities:

Rn1,n2

N1,N2
(η) =



(−1)N1−n1 RN1,N2
n1,n2

(η) n2 ≤ N1 < n1

RN2,N1
n2,n1

(η) n1 ≤ N1 < n2

(−1)N1−n1 Rn2,n1

N2,N1
(η) n1 > N1, n2 > N1

0 n1 + n2 6= N1 +N2

. (3.19)

We have made the unitary constraint explicit, as the Jacobi polynomials are not ad hoc

restricted to events for which n1 + n2 = N1 +N2. Eqn. 3.12 simplifies because beam splitter

unitarity requires n1 + n2 = N1 +N2 and n′1 + n′2 = N ′1 +N ′2. We thus eliminate the second

and fourth summations in Eqn. 3.12 because n2 = N1 + N2 − n1 and n′2 = N ′1 + N ′2 − n′1,

and restrict the remaining first and third summation there to n1 ∈ {0, 1, . . . , N1 + N2} and

n′1 ∈ {0, 1, . . . , N ′1 +N ′2}, respectively.

3.2.2 Calculation Examples

Accounting for each linear loss and interference element described in Figures 3-1 and 3-

2, we calculate the singlet-distribution fidelity and the protocol’s probability of success by

applying compositions of the beam splitter transformation described in Eqn. 3.9 to the

Gaussian input state whose low-flux approximations becomes the singlet state in Eqn. 1.5.

Together, Eqns. 3.12 and 3.15 abstract the the beam splitter’s action, in the number-state
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basis, into a numerical calculation. Before analyzing the full architecture with all losses, we’ll

discuss two simpler calculations—lossless distribution and distribution with pre-transmission

and photodetection losses—that form the repertoire of techniques necessary for analysis of

the general problems of interest.

Lossless Case

Is the preceding mathematical formalism consistent with our expectations for lossless en-

tanglement distribution? We assume that the input field phase shifts (φt, φr) are identically

zero. Each of the four orthogonal signal and idler modes experience linear loss independently.

Therefore, to avoid redundancy in the notation, we write the Gaussian state in Eqn. 1.5, at

all orders, as

|ψ〉in =
∞∑

n,m=0

(−1)n
√

N̄n+m(
1 + N̄

)n+m+2 |n〉Sy |m〉Sx |m〉Iy |n〉Ix →
∞∑

n,m=0

fn,m
(
N̄
)
|ni〉i , (3.20)

where fn,m
(
N̄
)

abstracts the thermal statistics of the OPAs. Any state or term having

a variable indexed by i (i = 1, 2, 3, 4) actually denotes a product of four terms acting at

separately on those photodetection branches, similar to Einstein index notation, so that

|ni〉i ≡ |n〉Sy |m〉Sx |m〉Iy |n〉Ix and any usage of the ni will have a implicit dependence on

n and m. The complete conversion of a pump field by a quantum memory is then given

by |Na
i 〉
i
a |0〉

i
b |0〉

i
S → |0〉

i
a |Na

i 〉
i
b |Na

i 〉
i
S, where a, b, and S denote the pump, heralding, and

spin excitation modes, respectively. All photons impinging on the ensembles that form the

memory are converted into heralding photons and spin excitations. The resulting state of

the heralding photons and the spin excitations in therefore

|ψ〉post-ensemble =
∑
n,m

(−1)n
√

N̄n+m(
1 + N̄

)n+m+2 |n〉
1
b |m〉

2
b |m〉

3
b |n〉

4
b |n〉

1
S |m〉

2
S |m〉

3
S |n〉

4
S

→
∑
n,m

fn,m
(
N̄
)
|ni〉ib |ni〉

i
S . (3.21)
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Following interference of the heralding photons at the beam splitters in Fig. 3-1, the joint

state of the ensembles and the heralding photons at the photodetectors is

|ψ〉out =
∑
Np
i

∑
n,m

fn,m
(
N̄
)︸ ︷︷ ︸

SPDC

Bn,m
Np

2 ,N
p
1

(
1

2

)
Bm,n
Np

4 ,N
p
3

(
1

2

)
︸ ︷︷ ︸

Interference Amplitude

|Np
i 〉
i
p |ni〉

i
S , (3.22)

where we have suppressed the phase arguments in the beam splitter coefficients because

φt = φr = 0. In Eqn. 3.22, the interference amplitude terms correspond to the mixing of

m and n photons at both the signal and idler subsystems in Fig. 3-1, yielding Np
i photons

photons at the photodetector Di. The joint output written as a pure-state density operator

is thus

ρ̂out = |ψ〉out 〈ψ|out =
∑

Np
i ,N

p′
i

∑
n,m,n′,m′

fn,m
(
N̄
)
fn′,m′

(
N̄
)
Bn,m
Np

2 ,N
p
1

(
1

2

)
Bm,n
Np

4 ,N
p
3

(
1

2

)

·
[
Bn′,m′

Np′
2 ,N

p′
1

(
1

2

)
Bm′,n′

Np′
4 ,N

p′
3

(
1

2

)]∗
|Np

i 〉
i
p |ni〉

i
S

〈
Np′
i

∣∣i
p′ 〈n

′
i|
i
S .

(3.23)

Following the definition of heralding probability in Eqn. 3.5, we trace over all modes and

find that photon number resolving detectors yield

P herald
1 = tr

(
ρ̂outM̂1

)
=
∑
n,m

∣∣∣∣fn,m (N̄)Bn,m
0,1

(
1

2

)
Bm,n

1,0

(
1

2

)∣∣∣∣2 =
N̄

2
(
1 + N̄

)3 , (3.24)

where the last equality is calculated by summation expansion. Following projective mea-

surement, the joint state of the ensembles is given by the mixed-state density operator,

ρ̂1
post =

1

P herald
1

∑
n,m,n′,m′

fn,m
(
N̄
)
fn′,m′

(
N̄
)
Bn,m

0,1

(
1

2

)
Bm,n

1,0

(
1

2

)
·
[
Bn′,m′

0,1

(
1

2

)
Bm′,n′

1,0

(
1

2

)]∗
|ni〉iS 〈n

′
i|
i
S , (3.25)
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which, projected against the ideal singlet state |ψ1〉 gives the fidelity of the entanglement

distribution

F1 = 〈ψ1| ρ̂1
post |ψ1〉

=
1

2P herald
1

∑
n,m,n′,m′

fn,m
(
N̄
)
fn′,m′

(
N̄
)
Bn,m

0,1

(
1

2

)
Bm,n

1,0

(
1

2

)
·
[
Bn′,m′

0,1

(
1

2

)
Bm′,n′

1,0

(
1

2

)]∗
(δn,1δm,0 − δn,0δm,1) (δn′,1δm′,0 − δn′,0δm′,1)

=
N̄

2P herald
1

(
1 + N̄

)3 = 1, (3.26)

Here, the second and third terms from expanding the Kronecker delta expression cancel, and

the last equality follows from Eqn. 3.24. Unity fidelity is the expected result in this ideal,

lossless case. Because the post-measurement state is symmetric with respect to all M̂j, the

protocol’s overall success probability—defined by Eqn. 3.6—is four times the value we found

in Eqn. 3.24,

Psuccess =
2N̄(

1 + N̄
)3 , (3.27)

which equals the probability of successful generation of a single pair of signal and idler

photons from a dual OPA source. Again, this is an expected result for the ideal case of

lossless operation.

The non-resolving photodetection calculations are a bit more complicated, and there we

use the identity

tr [|n〉 〈n′| (I − |0〉 〈0|)] = 1− δn,0δn′,0 (3.28)

and the prior definition of a NRPD POVM measurement given in Eqn. 3.2. Applied to the

joint state density operator in Eqn. 3.23, the post-measurement state of the ensembles is

ρ̂1
post =

∑
Np
i ,N

p′
i

∑
n,m,n′,m′

fn,m
(
N̄
)
fn′,m′

(
N̄
)
Bn,m

0,Np
1

(
1

2

)
Bm,n
Np

4 ,0

(
1

2

)[
Bn′,m′

0,Np′
1

(
1

2

)
Bm′,n′

Np′
4 ,0

(
1

2

)]∗
·
(

1− δ0,Np
1
δ0,Np′

1
− δ0,Np

4
δ0,Np′

4
+ δ0,Np

1
δ0,Np′

1
δ0,Np

4
δ0,Np′

4

)
|ni〉iS 〈n

′
i|
i
S

=
∑
n,m

∣∣∣∣fn,m(N̄)B
n,m
0,n+m

(
1

2

)
Bm,n
n+m,0

(
1

2

)∣∣∣∣2 |ni〉iS 〈ni|iS (3.29)
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Figure 3-4: Figures of merit for lossless architecture (PNRD and NRPD). Figures 3-4(a)
and 3-4(b) show divergences between heralding probability and fidelity for PNRD (gray)
and NRPD (black) architectures. The protocol’s overall success probability is identical in
either case (Fig. 3-4(c)).

In the last step’s simplification, we have enforced the photon number conservation constraint

implicit in the definition of the beam splitter coefficient. For the sake of brevity, the details

of the corresponding fidelity, heralding probability, and success probability calculations are

omitted, being straightforward extensions of PNRD calculation. Fig. 3-4 shows the combined

results of the PNRD and NRPD calculations.

Despite the absence of losses in this example, we can still gain some intuition for the

effects of different photodetection schemes on our figures of merit. Fig. 3-4 compares the

resulting figures of merit between the PNRD and NRPD photodetection schemes in a lossless

architecture in which increasing N̄ leads to an increasing likelihood of multi-pair emissions

from the entanglement source. The heralding probability for the NRPD exceeds that for

PNRD, which is not surprising, as PNRD forms a subset of the possible detection events

present with the NRPD scheme. In the absence of loss, the NRPD fidelity is independent
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of detection events at either D1/D4 or D2/D3 and falls dramatically for high values of N̄ ,

being ultimately unable to distinguish between valid single-photon heralding events and

higher-order excitations stored in the ensemble. The PNRD fidelity, on the other hand,

holds at unity, because this detector perfectly identifies single-pair loading in the lossless

scenario under consideration here. The success probability, however, is identical for the

PNRD and NRPD schemes, because any decline in NRPD fidelity is compensated for by

a corresponding increase in heralding probability. A single term in the success probability

sum—the product of the fidelity and heralding probability—represents the joint probability

of loading the required Bell state and the measurement of the corresponding heralding event.

Single photon events do not require photon-number resolving capabilities, and as such, the

loading success is equally likely under either scheme, when the system is lossless.

Pre-Transmission and Photodetection Losses

Including loss in our analysis introduces nested binomial distributions of pump and signal

photons, and the added computational complexity of deeper and deeper nested summations.

As such, the results of this example and all subsequent sections are calculated numerically,

with a range of N̄ chosen so that the input Gaussian state can be safely truncated to a

finite number of excitations. For all subsequent calculations in this thesis, N̄ ranges from

0.05 to 0.3 in steps of ∆N̄ = 0.05, and we take nmax = mmax = 3 to be the maximum

number of excitations. For the the full range of a single transmission efficiency 0 ≤ η ≤ 1, it

can be shown (numerically) that figures of merit, such as heralding probability, with higher

truncation values differ insignificantly from those calculated at nmax = mmax = 3.

Introducing auxiliary vacuum states indexed by Npre and Npho, the joint output state of

the heralded photons, ensemble excitations, and noise modes is given by,

|ψ〉out =
∑

Na
i ,N

pre
i ,Ni,N

pho
i

∑
n,m

fn,m
(
N̄
)
Bni,0
Na
i ,N

pre
i

(ηpre
i )B

Na
1 ,N

a
2

N2,N1

(
1

2

)
B
Na

3 ,N
a
4

N4,N3

(
1

2

)

·BNi,0

Np
i ,N

pho
i

(
ηpho
i

)
|Np

i 〉
i
p |N

a
i 〉
i
S |N

pre
i 〉

i
pre

∣∣∣Npho
i

〉i
pho

. (3.30)

Eqn. 3.30 contains several important features. First, recall that each term indexed by i
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actually represents four independent terms. The ni photons from the SPDC source mix with

vacuum (zero photons), converting into Na
i pump photons for the quantum memory and

Npre
i noise photons. The pump photons are completely converted into Na

i heralding photons

and Na
i spin excitations. At the 50-50 beam splitter, the (Na

1 , N
a
2 ) and (Na

3 , N
a
4 ) photons

interfere, yielding (N1, N2) and (N3, N4) photons which are each mixed with vacuum to

yield Np
i photons at each Di photodetector. The summation lower limit for each summation

variable is 0, and upper limit is given by the sum of the inputs to a given beam splitter (e.g.,

ni for each the Na
i and Npre

i summations, Na
1 +Na

2 for each of the N1 and N2 summations).

Tracing out the noise modes and and applying photon-number conservation to eliminate

nested summations, the PNRD heralding probability for single-photon counts at detectors

D1 and D4 is given by

PPNRD
1 =

∑
Na
i ,Ni

∑
n,m

∣∣∣∣fn,m (N̄)Bni,0
Na
i ,ni−Na

i
(ηpre
i )B

Na
1 ,N

a
2

N2,N1

(
1

2

)
B
Na

3 ,N
a
4

N4,N3

(
1

2

)
·BN1,0

1,N1−1

(
ηpho

1

)
BN2,0

0,N2

(
ηpho

2

)
BN3,0

0,N3

(
ηpho

3

)
BN4,0

1,N4−1

(
ηpho

4

)∣∣∣2 . (3.31)

From Eqn. 3.15, the photon-number probability amplitude following the OPA coefficient

corresponds to the familiar binomial probability distribution that results from mixing of a

number state with vacuum. Applying the NRPD POVM and photon-number conservation,

as in Eqn. 3.25, and factoring the remaining photodetection efficiency amplitudes gives the

heralding probability:

PNRPD
1 =∑

Na
i ,Ni

∑
n,m

∣∣∣∣fn,m (N̄)Bni,0
Na
i ,ni−Na

i
(ηpre
i )B

Na
1 ,N

a
2

N2,N1

(
1

2

)
B
Na

3 ,N
a
4

N4,N3

(
1

2

)
BN2,0

0,N2

(
ηpho

2

)
BN3,0

0,N3

(
ηpho

3

)∣∣∣∣2∣∣∣BN1,0
0,N1

(
ηpho

1

)∣∣∣2 − N1∑
Np

1 =0

∣∣∣BN1,0
Np

1 ,N1−Np
1

(
ηpho

1

)∣∣∣2
∣∣∣BN4,0

0,N4

(
ηpho

4

)∣∣∣2 − N4∑
Np

4 =0

∣∣∣BN4,0
Np

4 ,N4−Np
4

(
ηpho

4

)∣∣∣2
 .

(3.32)

The terms of this summation are also the diagonal coefficients of the ensembles’ post-

measurement density operator, which is required for calculating the fidelity and overall
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success probability of the protocol. To avoid redundancy, the numerical calculations of

these quantities and their interpretation is described in Section 3.2.3.

3.2.3 Full Loss Calculation (PNRD and NRPD)

In the previous section, we previewed a set of techniques used in the analysis of entanglement

distribution, which we now use to account for all losses. In the following, we assume that

the input field phase shifts (φt, φr) of each loss-modeling beam splitter are identically 0.

As in the previous sections, we only list expressions for matching photodetection events at

D1 and D4, as corresponding expressions for D2 and D3 are found by simple substitution.

Accounting for all losses, the full output state of the architecture, as shown in Fig. 3-2, is

given by,

|ψ〉out =
∑
n,m

fn,m
(
N̄
)

·
∑

Na
i ,N

pre
i ,N l

i ,N
post
i ,

Ni,N
p
i ,N

pho
i

Bni,0
Na
i ,N

pre
i

(ηpre
i )B

Na
i ,0

N l
i ,N

post
i

(
ηpost
i

)︸ ︷︷ ︸
Pre-Interference Loss

B
N l

1,N
l
2

N2,N1

(
1

2

)
B
N l

3,N
l
4

N4,N3

(
1

2

)
︸ ︷︷ ︸

Interference Terms

BNi,0

Np
i ,N

pho
i

(
ηpho
i

)
︸ ︷︷ ︸
Photodetection Loss


· |Np

i 〉
i
p |N

a
i 〉
i
S︸ ︷︷ ︸

Heralded & Ensemble Modes

∣∣∣Npho
i

〉i
pho

∣∣Npost
i

〉i
post
|Npre

i 〉
i
pre︸ ︷︷ ︸

Auxiliary Noise Modes

. (3.33)

and the corresponding joint density operator of the heralded photon and ensemble modes is

ρ̂p,Sout =
∑

n,m,n′,m′

fn,m
(
N̄
)
fn′,m′

(
N̄
)

·
∑
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i
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i

∑
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N l′
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i )B

Na
i ,0

N l
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(a) Single loss (ηpre1 ).
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(b) Signal path losses (ηpre1 and ηpre2 ).
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(d) Matched losses (ηpre1 and ηpre4 ).

Figure 3-5: F1 fidelities with non-uniform pre-transmission losses (PNRD) for N̄ = 0.05−
0.3

(
∆N̄ = 0.05

)
. The caption in each subfigure specifies which of ηpre

i (i = 1, 2, 3, 4) is
varied for that calculation; those not specified are fixed at 0.9.

and the PNRD probability that a heralding event M̂1 has occurred is then
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∞∑
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)∣∣∣2 . (3.35)

The results of numerical calculations with these expressions are shown in Figures 3-6

and 3-5. These figures distinguish between what we term ‘uniform’ and ‘non-uniform’ losses.

Fig. 3-6 assumes that varying pre-transmission and photodetection losses are identical for all

four arms of the interferometer, whereas Fig. 3-5 makes no such assumption by considering

54



æ æ æ æ æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

à à
à

à
à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

ì
ì

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ô
ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

0.0 0.2 0.4 0.6 0.8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Efficiency

H
er

al
di

ng
P

ro
ba

bi
lit

y

N=0.30

N=0.05

(a) Heralding probability (uniform loss).

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ æ æ æ æ

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à
à

à à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì
ì

ì ì

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò

ò

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô
ô

ô

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à
à à à à à à à à à à à à à à à à à à

ì
ì

ì
ì

ì
ì

ì
ì

ì ì ì ì ì ì ì ì ì ì ì

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò

ò ò ò ò ò ò ò ò ò

ô
ô

ô
ô

ô
ô

ô
ô

ô
ô

ô
ô

ô ô ô ô ô ô ô

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç
ç ç ç ç ç ç

0.0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Efficiency

F
id

el
it

y

Pre-Transmission

Photodetection

N=0.05

N=0.30

(b) Fidelity (pre- and photodetection losses).

Figure 3-6: Figures of merit with uniform losses (PNRD) for N̄ = 0.05− 0.3
(
∆N̄ = 0.05

)
.

Heralding probabilities are independent of a uniform loss’ location: either before (pre-
transmission) or after (post-transmission or photodetection) the ensemble (Fig. 3-6(a)). Pre-
transmission losses preferentially decrease the fidelity of entanglement distribution compared
to post-transmission and photo-detection losses (Fig. 3-6(b)).

the effects of only a single loss or paired losses as labelled in the captions. The presence of

uniform losses in one location—before or after the ensembles or during photodetections—

has identical effects on the heralding probability. This heralding probability doesn’t depend

on where a single uniform loss is located, as a pump photon lost prior to the ensemble or

a heralding photon lost after the ensemble ultimately will have the same heralding result.

This is definitely not the case for the F1 fidelity, as a pre-transmission loss of a pump photon

precludes successful entanglement distribution. In this case, it is difficult to tell if matching

signal and idler photons were stored simultaneously. By contrast, any post-transmission

or photodetection loss has a much smaller effect on the fidelity. Post-transmission and

photodetection loss are quantitatively equal in their fidelity effects. Lastly, increasing pump

power in the OPA source matches intuition, as increasing N̄ makes heralding events more

likely, but decreases the desired fidelity due to multiple-pair effects.

In Fig. 3-5, we see that fidelity of entanglement is fairly robust against a single pre-

transmission loss, as well as uniform losses present only in the signal subsystem or uniform

losses between paths matched for a successful heralding event detection. Uniform losses

shared between mis-matched paths (e.g., varying η1 and η3) degrade fidelity significantly,

almost as though transmission loss were uniformly shared by all the paths as in Fig. 3-6(b).
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(a) F1, uniform pre-transmission loss (ηpre).
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(b) F1, uniform photodetection loss (ηpho).
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(c) Heralding probability (any uniform loss).

Figure 3-7: Figures of merit with uniform losses (NRPD) for N̄ = 0.05− 0.3 (∆N = 0.05).
Figures 3-7(a) and 3-7(b) show the F1 fidelities for varying pre-transmission and photode-
tection efficiencies, respectively, with all other efficiencies fixed at η = 0.9. Fig. 3-7(c) shows
heralding probability for varying pre-transmission efficiency.

The remaining analysis case is non-resolving photodetection (NRPD), which we show in

Fig. 3-7. The details of this calculation are nearly identical to that shown in Sections 3.2.2

and 3.2.2. Not surprisingly, as in the lossless NRPD analysis, the heralding probability is

higher than in the PNRD case, and increasing N̄ severely diminishes fidelity when both

pre-transmission and photodetection losses occur. In the case of the latter, photodetection

loss has almost no effect on the final fidelity of entanglement distribution. Pre-transmission

losses in Fig. 3-7(a) demonstrate a residual dependence on pre-transmission loss for higher

transmission efficiencies, consistent with our prior PNRD analysis.
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Figure 3-8: Polarization entanglement connection. We assume that ensembles A and B
are independently in polarization singlet states or Gaussian states following entanglement
distribution in Section 3.1. The anti-Stokes photons from reading the A and B signal en-
sembles are interfered at the 50-50 beam splitter. Photon detections at DA and DB heralds
entanglement connection between the idler ensembles A and B.

3.3 Quantum Communication with Atomic Ensembles

and Polarization Entanglement

After successfully distributing entanglement to a pair of nodes, resulting in local entangle-

ment, we will want to extend our quantum communication capabilities over distances pro-

hibited by direct transmission. In this section, we use post-selected, polarization-entangled

ensembles to accomplish a basic task in long-distance quantum communication, namely en-

tanglement swapping. The high level concepts underlying this procedure was described in

Section 1.2.1 of this thesis’ introduction, and is a modification of the DLCZ protocol’s ap-

plication to quantum communication [DLCZ01].

3.3.1 Entanglement Connection

Fig. 3-8 outlines a procedure for accomplishing polarization entanglement connection with

atomic ensembles. Polarization entanglement is generated independently, at two different
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nodes, as described in Section 3.1 and Fig. 1-3(a). A Bell-state measurement between the(
SAy , S

A
x

)
and

(
SBy , S

B
x

)
ensemble pairs establishes polarization entanglement between the

remaining idler ensemble pairs
(
IAy , I

A
x

)
and

(
IBy , I

B
x

)
. Coherent, on-resonance pulses at each

of the signal ensembles reads a Dicke excitation out of the |s〉 − |e〉 atomic transition into

a well-defined spatial mode. Loss-modeling beam splitters before interference (ηpre) and

at photodetection (ηpho) characterize the quantum efficiency losses, although to maintain

consistency with [RS06], we calculate fidelity with respect to ηmeas = ηpreηpho. In the fol-

lowing, we determine the fidelity and probability of success when ensembles A and B are

independently in singlet or Gaussian states.

Although a full Bell state measurement is not possible using linear optics [LCS99], the

observation of single clicks at both DA and DB, when these are unity quantum efficiency

photon-number resolving detectors, uniquely heralds the measurement of a singlet state and

successful completion of entanglement connection protocol when the A and B ensembles were

both in their singlet states. Two signal ensemble pairs in independent singlet states can be

separated into four orthogonal basis states

|ψ〉A ⊗ |ψ〉B =
1√
2

(
|1〉SAy |0〉SAx |0〉IAy |1〉IAx − |0〉SAy |1〉SAx |1〉IAy |0〉IAx

)
⊗ 1√

2

(
|1〉SBy |0〉SBx |0〉IBy |1〉IBx − |0〉SBy |1〉SBx |1〉IBy |0〉IBx

)
= |φyy〉+ |φyx〉+ |φxy〉+ |φxx〉 , (3.36)

where each |φij〉 (i, j = x, y) labels a joint state with signal-photon polarizations i and j

in each path prior to interference. Because of photon-twinning at interference, only two of

these orthogonal states—|φxy〉 and |φyx〉—contribute to the probability of a heralding event:

either (x̂, ŷ)- or (ŷ, x̂)-polarized photon pairs at (DA, DB), with equal probability. As such,

the entanglement connection fidelity will be unity in both the PNRD and the NPRD cases—

FC =
Psuccess

Pherald

=
Pxy + Pyx
Pxy + Pyx

= 1 (3.37)

—independent of pre-transmission and photodetection quantum efficiency losses.

Now let us consider performance when ensembles A and B are modeled as being in

58



Gaussian states parameterized by an average spin excitation number N̄ . In the absence

of any important nonlinear elements in Fig. 3-8, we will perform a characteristic function

analysis instead of a number-state analysis. The joint density operator of these ensembles

is ρ̂in
SI = ρ̂ASI ⊗ ρ̂BSI , where ρ̂iSI = ρ̂SixIiy ⊗ ρ̂SiyIix (i = A,B), which is represented by the anti-

normally ordered characteristic function,

χρinA (ζ) = 〈DA

(
âSAy , ζSAy

)
DA

(
âSAx , ζSAx

)
DA

(
ŜIAy , ζIAy

)
DA

(
ŜIAx , ζIAx

)
·DA

(
âSBy , ζSBy

)
DA

(
âSBx , ζSBx

)
DA

(
ŜIBy , ζIBy

)
DA

(
ŜIBx , ζSBx

)
〉

= exp
[
−
(
1 + N̄

) (
|ζSAy |

2 + |ζSAx |
2 + |ζIAy |

2 + |ζIAx |
2
)

−
(
1 + N̄

) (
|ζSBy |

2 + |ζSBx |
2 + |ζIBy |

2 + |ζIBx |
2
)

+ 2Re
(
ÑζSAx ζIAy

)
− 2Re

(
ÑζSAy ζIAx

)
+ 2Re

(
ÑζSBx ζIBy

)
− 2Re

(
ÑζSBy ζIBx

)]
, (3.38)

where Ñ =
√
N̄
(
N̄ + 1

)
, DA (âi, ζi) = e−ζ

∗
i âieζiâ

†
i is the antinormally-ordered displacement

operator, and

ζ = [ζS, ζI ]
T =

[
ζSAy , ζSBy , ζSAx , ζSBx , ζIAy , ζIBy , ζIAx , ζIBx

]T
. (3.39)

The optical modes reaching the detectors Di in Fig. 3-2 are

âout
S =

√
ηphoηpreBâS

in +
√
ηpho (1− ηpre)Bâpre

v +
√

1− ηphoâpho
v (3.40)

where we have defined the operator-valued vectors

âout
S =

[
â′SAy , â

′
SBy
, â′SAx , â

′
SBx

]T

âin
S =

[
âSAy , âSBy , âSAx , âSBx

]T

âpre = [âpre
1 , . . . , âpre

4 ]T

âpho =
[
âpho

1 , . . . , âpho
4

]T

(3.41)
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with the linear transformation of the signal modes:

B =

 M2×2 02×2

02×2 M2×2

 M2×2 =
1√
2

 1 1

1 −1

 . (3.42)

All of the idler modes Ŝin
I =

[
ŜIAy , ŜIBy , ŜIAx , ŜIBx

]T

remain unchanged. The Gaussian mixed-

state of the Stokes light arriving at the detectors and the idler ensemble excitations is given

by the antinormally-ordered characteristic function

χρoutA

(
ζ, ζ̃
)

= 〈DA

(
âout
S , ζS

)
DA

(
Ŝin
I , ζI

)
〉

= χρinA

([√
ηmeasζ̃SAy ,

√
ηmeasζ̃SBy ,

√
ηmeasζ̃SAx ,

√
ηmeasζ̃SBx , ζIAy , ζIBy , ζIAx , ζIBx

]T)

· exp

−∑
{ζ̃i}

ηpho (1− ηpre) |ζ̃i|2 −
∑
{ζi}

(
1− ηpho

)
|ζi|2

 (3.43)

where the scaled ζ̃ result from the transformation of the beam splitter transformation in

Eqn. 3.42:

ζ̃ = B†ζ =


ζ̃SAy

ζ̃SBy

ζ̃SAx

ζ̃SBx

 =
1√
2


ζSAy + ζSBy

ζSAy − ζSBy
ζSAx + ζSBx

ζSAx − ζSBx

 . (3.44)

Rewriting Eqn. 3.43 in terms of ζ, the characteristic function is now

χρoutA (ζ) = exp
[
−
(
1 + ηmeasN̄

) (
|ζSAy |

2 + |ζSAx |
2 + |ζSBy |

2 + |ζSBx |
2
)

−
(
1 + N̄

) (
|ζIAy |

2 + |ζIAx |
2 + |ζIBy |

2 + |ζIBx |
2
)

+ Ñ
√

2ηmeas

[
Re
(
ζSAx ζIAy

)
+ Re

(
ζSBx ζIAy

)
− Re

(
ζSAy ζIAx

)
− Re

(
ζSBy ζIAx

)
+ Re

(
ζSAx ζIBy

)
− Re

(
ζSBx ζIBy

)
− Re

(
ζSAy ζIBx

)
+ Re

(
ζSBy ζIBx

)]]
. (3.45)

A useful property of Gaussian antinormally-ordered characteristic functions is that they

can be renormalized into a probability density function, whose moments can be calculated.
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We find the heralding probability and fidelity by re-expressing Eqn. 3.45 as

χρoutA (ζ) =
π8pZ (ζ)

D1

(3.46)

where pZ (ζ) is the probability density function for a zero-mean Gaussian random vector ζ

with covariance matrices

〈ζζ†〉 =
1

D1

 (1 + ηmeasN̄
)
I4×4 04×4

04×4

(
1 + N̄

)
I4×4

 〈ζζT 〉 =
1

D1

 04×4 N4×4

NT
4×4 04×4

 (3.47)

for

N4×4 = Ñ
√

2ηmeas


0 0 −1 −1

0 0 −1 1

1 1 0 0

1 −1 0 0

 (3.48)

and determinant D1 =
(
1 + ηmeasN̄

)4 (
1 + N̄

)4−256Ñ8η4
meas. The output density operator of

the Stokes field can be expressed as the operator-valued Fourier transformation of Eqn. 3.45:

ρ̂out =

∫ ∏
i=x,y

d2ζIAi
π2

d2ζIBi
π2

DN

(
ŜIAi , ζIAi

)
DN

(
ŜIBi , ζIBi

)
·
∫ ∏

i=x,y

d2ζSAi
π2

d2ζSBi
π2

χρoutA (ζ)DN

(
â′SAi

, ζSAi

)
DN

(
â′SBi

, ζSBi

)
, (3.49)

where DN (âi, ζi) = e−ζiâ
†
i eζ
∗
i âi is the normally-ordered displacement operator. To perform

trace operations on the operator-valued Fourier transform in Eqn. 3.49, we know that

〈0|DN (âi, ζi) |0〉 = 1 〈1|DN (âi, ζi) |1〉 = 1− |ζi|2 (3.50)

and that

tr [DN (âi, ζi)] = πδ (ζi) tr
[
DN (âi, ζi)

(
Î − |0〉 〈0|

)]
= πδ (ζi)− 1. (3.51)

Performing trace operations on the âi mode of an output density operator is equivalent to
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Figure 3-9: Figures of merit for Gaussian state entanglement connection (PNRD and NRPD)
for N̄ = 0.01− 0.05 (∆N = 0.01).

setting ζi = 0 in its characteristic function, so any Gaussian moment calculations in the

following may involve a marginal distribution of that specified by Eqn. 3.47.

We will first consider the particular case of a y−polarized click at DA and a x−polarized

click at DB, and then extrapolate to other possibilities: a x−polarized click at DA and a

y−polarized click at DB, and co-polarized clicks at both DA and DB. Applying these trace

identities in a PNRD scheme, the post-measurement state of the ensembles is

ρ̂yxpost =
1

P yx
herald

∫ ∏
i=x,y

d2ζIAi
π2

d2ζIBi
π2

DN

(
ŜIAi , ζIAi

)
DN

(
ŜIBi , ζIBi

)
·
∫
d2ζSAy
π2

d2ζSBx
π2

χρoutA (ζ)
(

1− |ζSAy |
2
) (

1− |ζSBx |
2
)
, (3.52)
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where the heralding probability is

P yx
herald =

∫
d2ζSAy
π2

d2ζSBx
π2

χρoutA

([
ζSAy , ζSBy , ζSAx , ζSBx , 0, 0, 0, 0

]T)(
1− |ζSAy |

2
) (

1− |ζSBx |
2
)
.

(3.53)

Applying the Gaussian moment factoring theorem, this heralding probability is

P yx
herald =

1

D2

〈
(

1− |ζSAy |
2
) (

1− |ζSBx |
2
)
〉

=
1

D3
2

[
D2

2 − 2
(
1 + ηmeasN̄

)
D2 +

(
1 + ηmeasN̄

)2
]

=
η2

measN̄
2(ηmeasN̄(ηmeasN̄ + 3) + 3)2

(ηmeasN̄ + 1)10
, (3.54)

where 〈 〉 denotes ensemble averaging treating ζ as a complex-valued Gaussian random

vector whose probability density function is a marginal distribution of Eqn. 3.47, with

D2 =
(
1 + ηmeasN̄

)4
. Note that the second-moments of the signal modes reaching the pho-

todetectors are all identical, so the heralding probabilities for each of the four heralding

probabilities mentioned earlier are equal. Therefore, Pherald = 4P yx
herald for the PNRD case.

Applying the trace identities in Eqn 3.51, the post-measurement joint density operator for

the NRPD scheme is

ρ̂yxpost =
1

P yx
herald

∫ ∏
i=x,y

d2ζIAi
π2

d2ζIBi
π2

DN

(
ŜIAi , ζIAi

)
DN

(
ŜIBi , ζIBi

)
·
∫
d2ζSAy
π2

d2ζSBx
π2

χρoutA (ζ)
[
πδ
(
ζSAy

)
− 1
] [
πδ
(
ζSBx
)
− 1
]
. (3.55)

Tracing out the idler excitation modes, the NRPD heralding probability is

P yx
herald =∫ ∏

i=x,y

d2ζSAi
π2

d2ζSBi
π2

χρoutA

([
ζSAy , ζSBy , ζSAx , ζSBx , 0, 0, 0, 0

]T)[
πδ
(
ζSAy

)
− 1
] [
πδ
(
ζSBx
)
− 1
]
,

(3.56)
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which yields

P yx
herald =

η2
measN̄

2

(ηmeasN̄ + 1)4
. (3.57)

This PNRD heralding probability and PNRD fidelity, as well as the NRPD heralding proba-

bility and fidelity are shown in Fig. 3-9. The results for heralding probability are consistent

with our understanding of multiple-excitation effects, as described previously in the context

of entanglement distribution in Section 3.2.3: reading from ensembles with a higher average

spin excitation N̄ will yield more anti-Stokes photons, resulting in a higher likelihood of a

heralding event when the photodetectors cannot resolve photon number.

The fidelity, when a y-polarized DA click and a x-polarized DB click provide the herald,

is given by

Fyx = 〈ψ1| ρ̂yxpost |ψ1〉

=
1

P yx
herald

∫ ∏
i=x,y

d2ζIAi
π2

d2ζIBi
π2

[
1−
|ζIAx ζIBy − ζIAy ζIBx |

2

2

]

·
∫
d2ζSAy
π2

d2ζSBx
π2

χρoutA (ζ)
(

1− |ζSAy |
2
) (

1− |ζSBx |
2
)

=
1

D1P
yx
herald

〈
(

1− |ζSAy |
2
) (

1− |ζSBx |
2
)(

1−
|ζIAx ζIBy − ζIAy ζIBx |

2

2

)
〉. (3.58)

The necessary higher-order moments for this calculation are, from Gaussian moment
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factoring

〈|ζIAx ζIBy − ζIAy ζIBx |
2〉 = 〈|ζIAx |

2〉〈|ζIBy |
2〉+ 〈|ζIAy |

2〉〈|ζIBx |
2〉

〈|ζSAy |
2|ζIAx ζIBy − ζIAy ζIBx |

2〉 = 〈|ζSAy |
2〉〈|ζIAx |

2〉〈|ζIBy |
2〉+ 〈|ζSAy |

2〉〈|ζIAy |
2〉〈|ζIBx |

2〉

+ |〈ζSAy ζIAx 〉|
2〈|ζIBy |

2〉+ |〈ζSAy ζIBx 〉|
2〈|ζIAy |

2〉

〈|ζSBx |
2|ζIAx ζIBy − ζIAy ζIBx |

2〉 = 〈|ζSBx |
2〉〈|ζIAx |

2〉〈|ζIBy |
2〉+ 〈|ζSBx |

2〉〈|ζIAy |
2〉〈|ζIBx |

2〉

+ |〈ζSBx ζIBy 〉|
2〈|ζIAx |

2〉+ |〈ζSBx ζIAy 〉|
2〈|ζIBx |

2〉

〈|ζSAy |
2|ζSBx |

2|ζIAx ζIBy − ζIAy ζIBx |
2〉 = 〈|ζSAy |

2〉〈|ζSBx |
2〉〈|ζIAx |

2〉〈|ζIBy |
2〉

+ 〈|ζSAy |
2〉〈|ζSBx |

2〉〈|ζIAy |
2〉〈|ζIBx |

2〉

+ |〈ζSAy ζIAx 〉|
2|〈ζSBx ζIBy 〉|

2 + |〈ζSAy ζIBx 〉|
2|〈ζSBx ζIAy 〉|

2

+ |〈ζSBy ζIAx 〉|
2〈|ζSBx |

2〉〈|ζIBy |
2〉+ |〈ζSAy ζIBx 〉|

2〈|ζSBx |
2〉〈|ζIBy |

2〉

+ |〈ζSBx ζIBy 〉|
2〈|ζIAx |

2〉〈|ζSAy |
2〉+ |〈ζSBx ζIAy 〉|

2〈|ζSAy |
2〉〈|ζIBx |

2〉

−
[
〈ζSAy ζIAx 〉〈ζ

∗
SAy
ζ∗IBx 〉〈ζSBx ζIBy 〉〈ζ

∗
SBx
ζ∗IAy 〉

+〈ζSAy ζIBx 〉〈ζ
∗
SAy
ζ∗IAx 〉〈ζSBx ζIAy 〉〈ζ

∗
SBx
ζ∗IBy 〉

]
(3.59)

Applying the covariance matrix in Eqn. 3.47 to these higher-order moment expressions, the

PNRD fidelity is given by

Fyx =

[
1

D3
1

[
D2

1 − 2
(
1 + ηmeasN̄

)
12 +

(
1 + ηmeasN̄

)2
]

− 1

2D1

(
2
(
1 + N̄

)2

D2
1

−
4
(
1 + ηmeasN̄

) (
1 + N̄

)2
+ 8η

(
1 + N̄

)
Ñ2

D3
1

+
2
(
1 + ηmeasN̄

)2 (
1 + N̄

)2
+ 8ηÑ2

(
1 + ηmeasN̄

) (
1 + N̄

)
D4

1

)]
. (3.60)

The Fxy fidelity is easily seen to be the same as the Fyx fidelity, as in the heralding probability

calculation presented earlier. While the Fxx and Fyy fidelities will also equal, they will differ

from the cross-polarized fidelities. To find Fyy, we need to evaluate

Fyy =
1

D1P
yy
herald

〈
(

1− |ζSAy |
2
)(

1− |ζSBy |
2
)(

1−
|ζIAx ζIBy − ζIAy ζIBx |

2

2

)
〉. (3.61)
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The calculation is identical to that for Fyx save for the eighth-order moment, which factors

into

〈|ζSAy |
2|ζSBy |

2|ζIAx ζIBy − ζIAy ζIBx |
2〉 =

〈|ζSAy |
2〉〈|ζSBy |

2〉〈|ζIAx |
2〉〈|ζIBy |

2〉+ 〈|ζSAy |
2〉〈|ζSBy |

2〉〈|ζIAy |
2〉〈|ζIBx |

2〉

+ |〈ζSBy ζIAx 〉|
2〈|ζSAy |

2〉〈|ζIBy |
2〉+ |〈ζSAy ζIAx 〉|

2〈|ζSBy |
2〉〈|ζIBy |

2〉

+ |〈ζSAy ζIBx 〉|
2〈|ζIAy |

2〉〈|ζSBy |
2〉+ |〈ζSBy ζIBx 〉|

2〈|ζSAy |
2〉〈|ζIAy |

2〉. (3.62)

Comparing Eqn. 3.62 and 3.59, it immediately becomes obvious that the Fyy and Fyx

differ in their contribution to the overall entanglement fidelity. Prior to our Gaussian state

analysis, we assumed that ensembles A and B had loaded pure singlet states prior to en-

tanglement swapping. Their pure singlet states yield a perfect fidelity in both NRPD and

PNRD photodetection schemes with the heralding of cross-polarized photons at detectors

DA and DB. However, the measurement of co-polarized photons is indistinguishable from

a cross-polarized photon measurement, even though entanglement need not be successfully

swapped when the herald comes from co-polarized photons. As such, we define the fidelity

of entanglement as

FE =
Psuccess

Pherald

=
2P yx

heraldFyx + 2P yy
heraldFyy

Pherald

. (3.63)

Figs. 3-9(b) and 3-9(c) show the fidelity of entanglement following a swapping operation.

As in polarization entanglement distribution, reading and producing multiple-excitations

increases heralding probability at the expense of the entanglement fidelity. In this regard,

the fidelity plots for emphasize some significant differences between the PNRD and NRPD

cases. From the post-measurement density operator, this NRPD fidelity is given by

Fyx = 〈ψ1| ρ̂yxpost |ψ1〉

=
1

P yx
herald

∫ ∏
i=x,y

d2ζIAi
π2

d2ζIBi
π2

[
1−
|ζIAx ζIBy − ζIAy ζIBx |

2

2

]

·
∫
d2ζSAy
π2

d2ζSBx
π2

χρoutA (ζ)
[
πδ
(
ζSAy

)
− 1
] [
πδ
(
ζSBx
)
− 1
]
. (3.64)
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Unlike the difference in moment factoring present in the PNRD fidelity calculation, the

NRPD fidelity is identical for to cross-polarized and co-polarized photodetection events, as

is evident from the NRPD POVM applied in Eqn. 3.64. This calculation is only dependent on

the second-moments of the idler ensembles and the normalizations inherent in the marginal

probability distributions following photodetection, each of which is independent of photon

polarization. Equation 3.64 thus simplifies to

Fyx =
1

P yx
herald

[
(N̄ + 1)6(ηmeasN̄ + 1)7 − 2(N̄ + 1)6(ηmeasN̄ + 1)6 + 1

(N̄ + 1)10(ηmeasN̄ + 1)9
+

1

D1

−
(
N̄ + 1

)2

D3
1

]
,

(3.65)

which is plotted in Fig. 3-9(b). The PNRD case lets us actively discard garbage photodetec-

tion events that might result from multiple-excitations present at entanglement distribution.

In this case, we know that having matching, single counts at DA and DB will very likely

correspond to a successful entanglement swapping operation with photon-number resolving

detectors. On the other hand, high N̄ , even in the presence of high measurement effi-

ciency, severely affects our NRPD entanglement fidelity, because NRPD cannot distinguish

false heralding events. Also surprising is the ratio of the fidelity of entanglement for cross-

polarized and co-polarized photodetection events, as shown in Fig. 3-9(c). These fidelities

are very close to each other, although they begin to diverge as N̄ increases. That they are so

close in value is somewhat surprising because cross-polarized photodetection was predicted

for unity entanglement fidelity in the case of a pure singlet distribution, whereas co-polarized

photodetection would not necessarily be indicative of a singlet state remaining in the idler

ensembles.
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Chapter 4

Conclusions

To date, the theoretical progress of quantum information science and engineering has sur-

passed its experimental achievements. This thesis paints a detailed picture of what future

long-distance quantum communication networks might look like, and their limitations. In

the course of this work, we have analyzed quantum networks that distribute polarization

entanglement using neutral atomic ensembles. This analysis focuses on three areas. We

first abstracted quantized light-ensemble interactions within a heralding atomic memory

and determined that these interactions preclude a Gaussian state analysis of local entan-

glement distribution (Chapter 2, Appendix A). After describing the potential losses in an

entanglement distribution architecture, we applied the SU (2) representation of beam splitter

operators to model loss in a number state basis, and performed a Gaussian state analysis

of polarization entanglement swapping (Chapter 3). A number-state analysis of the entan-

glement distribution captures the joint state of the heralding light and atomic excitations,

accounting for imperfections in transmission loss, photodetection efficiency and counting

resolution, and multiple-pair events at the downconversion source.

The numerical characterization of entanglement distribution and connection presented in

this thesis is so far consistent with our physical intuition of how such networks should be-

have. In particular, the probability of a successful heralding event is independent of whether

a single, significant, uniform efficiency loss is located either before or after an ensemble mem-

ory, or during photodetection. With regards to the probability measuring a single photon,

all losses are effectively the same. The same is not true for fidelity. A uniform transmission
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loss between the entanglement source and the ensembles will significantly reduce the likeli-

hood that you’ve stored a polarization Bell state, but significant quantum efficiency losses

at photodetection are less likely to diminish that fidelity. Increasing the pump power at the

entanglement source increases the likelihood of multiple-pair events, increasing the herald-

ing probability but making the fidelity more sensitive to transmission and photodetection

efficiency losses. These results are true for both number-resolving and non-resolving pho-

todetectors. For both entanglement distribution and connection, heralding probabilities for

non-resolving detectors are higher, but the fidelities are significantly lower. Many of these

same issues appear in entanglement swapping as well.

Two areas in this thesis are particularly ripe for extension and exploration: further in-

vestigation into the mechanisms and imperfections of ensemble memories that distribute

polarization entanglement, and formalizing the number state analysis of systems with loss-

modeling beam splitters. Several possible extensions are relatively straightforward, such

as the inclusion of phase offsets between orthogonally-polarized paths in during entangle-

ment distribution. Others require a more careful consideration of the underlying physics

of quantum memories. For example, the performance analysis of polarization entanglement

distribution presented in this thesis omits the presence of spin decoherence in the atomic

ensembles. In quantifying the singlet-storage fidelity, there is a tradeoff between the time

scale of decoherence of Dicke excitations, the time it takes for a single heralding photon to

reach a photodetector, and the post-memory transmission efficiency (which scales with the

post-transmission length). Spin decoherence of the ensemble may therefore be a significant

factor limiting the optimal physical distance that local entanglement distribution can cover.

Another possible departure would be to discard the DLCZ approach entirely, using a stimu-

lated Raman or EIT approach, instead of a spontaneous Raman process. The Hamiltonian

in this approach would be amenable to a traditional Gaussian state analysis, and would

allow for deterministic control of read and write processes in entanglement distribution. As

of the writing of this thesis, however, there is currently no accepted means of nondestructive

verification of successful entanglement distribution in a coherently-controlled Λ-level atomic

ensemble. This open problem makes certain long-distance quantum communication tasks,

such as repeated entanglement connection, difficult to accomplish using a driven Raman
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process.

Unrelated to the question of memories is formalizing the architectural analysis of loss-

modeling beam splitters. The SU (2) number-state representation for single beam splitters

is discussed in great detail by [CST89]. Summation compositions of beam splitter coeffi-

cients determined important architectural figures of merit—heralding probability, fidelity,

and success probability—in the course of this work, but were calculated numerically. With

a number-state basis, what general properties or figures of merit of a quantum network can

we determine if we limit ourselves to linear optical elements (e.g., 50-50 and polarizing beam

splitters, loss elements), photodetectors, and photon-number conserving nonlinear optical

elements (e.g., heralding quantum memories or Kerr crystals)? In particular, do any of the

properties of a beam splitter coefficient introduced in Chapter 3 permit any useful, analytical

simplifications when using the joint density operator of a network to calculate a figure of

merit? Is a number-state analysis consistent with a SPDC Gaussian state analysis when

nonlinear elements are excluded and we are limited entirely to the propagation of optical

fields? Answers to these questions could possibly alleviate the exhausting notational and

computational difficulties currently necessitated by number-state analysis.
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Appendix A

Numerical Simulations for Quantum

Memory Interaction Hamiltonian

In Section 3.2.2, we discussed the dynamics of a trilinear Hamiltonian and applied an anzatz

solution assuming unity heralding probability to our architectural analysis. In the following,

we provide a model for the trilinear Hamiltonian’s dynamics in the presence of cavity loss

and spontaneous emission, and use a quantum Monte Carlo simulation of this model to

empirically justify our anzatz.

In Chapter 2, we abstracted a model for the interaction of input quantum field into an

ensemble-based quantum memory. A basis for this model is inspired by recent experimental

work on heralded single-photon atomic memories and interfaces from [STTVac07] [TGS+09],

which utilized two spatially-overlapping atomic ensembles to absorb arbitrarily polarized

single photons. Heralding was observed (at rate of 10−6, using pulsed coherent states (N̄ ≈

500) with an absorption probability α = 0.01. Despite operating in an effective single-

photon regime, multiple photon inputs were still present, a problem we wish to analyze in

the case of a parametric downconverter input. We consider an ensemble of Λ-type atoms

confined in a single-sided, low-finesse ring cavity, as shown in Fig. 2-1. The |g〉 − |e〉 and

|e〉−|s〉 transitions are coupled to the cavity modes â and b̂, respectively, each with coupling

coefficient gc. Under the rotating wave approximation, the interaction Hamiltonian for the
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collective interaction process is given by

Ĥ = h̄Γ
(
âŜ†b̂† + b̂Ŝâ†

)
(A.1)

where Γ = g2
cNa/∆ (∆ is the detuning from the two-photon resonance). The input output

expressions for single-sided optical cavities with decay rate κ and input states âin (downcon-

verter) and b̂in (in vacuum) are

âout (t) =
√
κaâ (t)− âin (t)

b̂out (t) =
√
κbb̂ (t)− b̂in (t) , (A.2)

and the Eqn.s of motion for the internal state operators are,

dâ

dt
= −iΓŜb̂− κ

2
â+
√
κâin (t)

db̂

dt
= −iΓŜ†â− κ

2
b̂+
√
κb̂in (t)

dŜ†

dt
= iΓb̂â†. (A.3)

In principle, Eqns. A.2 and A.3 are all that are needed to determine âout (t) and b̂out (t).

Including the spontaneous emission γ of the excited state |e〉, we can alternatively solve for

the dynamics of expected values of these modes by numerically integrating the master Eqn.

for the density state ρ̂:

dρ̂

dt
= i
[
ρ̂, Ĥint

]
+
(

2κaD [â] + 2κbD
[
b̂
]

+ γD
[
Ŝ
])
ρ̂, (A.4)

where

D [â] ρ̂ = âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â (A.5)

is a superoperator that describes cavity and spontaneous emission losses by mixing each

mode with a zero-temperature bath of harmonic oscillators. This approach assumes that

ρ̂ (0+) = ρ̂in. For this particular problem, the joint Hilbert space of three boson modes is

quite large, and using the limited memory available, the simulation was was carried out in
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(a) No loss (gc = 5, κa = κb = γ = 0).
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(b) Including cavity and ensemble spontaneous emis-
sion losses (gc = 5, κa = 0.2, κb = 2, and γ = 0.01).

Figure A-1: Photon-number expectation values for â (pump), b̂ (signal), and Ŝ (idler)
starting with |n (0+)〉a = |3〉a, averaged for 50 simulations. For each mode, occupation
probabilities are given for the ground (blue), first excited (green), and second excited (red)
states.

the Schrodinger picture using an effective dissipative Hamiltonian

Ĥeff = Ĥint −
i

2

(
2κaâ

†â+ 2κbb̂
†b̂+ γŜ†Ŝ

)
. (A.6)

Fig. A-1 shows the simulated dynamics of a three-photon Fock state in a pump mode

interacting with an cavity-confined ensemble. In the absence of loss (Fig. A-1(a)), the ex-

pectation value of the three modes oscillate, conserving the total expected photon number.

Even in the absence of loss, the pump photons are not completely converted to ensemble

excitations and heralding photons, possibly because of quantum noise [GALS07]. The intro-

duction of loss (Fig. A-1(b)) shows that it is possible load a Fock state during an initial time

interval, leading behind an idler ensemble excitation, and collecting the heralding photons

leaking out of the cavity.
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A.1 Analytical Dynamical and Trilinear Hamiltonians

In general, a Hamiltonian that cannot be analytically diagonalized will not have analytical

dynamics [BR97, KC09], and will therefore not be useful in a Gaussian state analysis. A

three-mode interaction describes a heralding quantum memory where an input quantum

field (pump mode â) creates a stationary ensemble excitation (idler mode b̂) and a heralding

Stokes photon (signal mode Ŝ). Parameterizing the strength of this interaction by Γ, the

trilinear Hamiltonian describing this process is then

Ĥ = Ĥ0 + Ĥint (A.7)

where

Ĥ0 = ωaâ
†â+ ωbb̂

†b̂+ ωSŜ
†Ŝ (A.8)

Ĥint = Γâb̂†Ŝ† + Γ∗Ŝb̂â† (A.9)

with [
Ĥ0, Ĥint

]
= 0. (A.10)

There are underlying SU (2) and SU (1, 1) symmetries of this Hamiltonian because the fol-

lowing operators are invariant under time evolution:

N̂ab = â†â+ b̂†b̂

N̂aS = â†â+ Ŝ†Ŝ

N̂bS = b̂†b̂− Ŝ†Ŝ. (A.11)

Only two of these are linear independent, as N̂ab − N̂aS = N̂bS, and, assuming that each

mode begins from rest, we can also say that

N̂abc = 2â†â+ b̂†b̂+ Ŝ†Ŝ N̂bc = b̂†b̂− Ŝ†Ŝ (A.12)
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are conserved quantities. Choosing ωb = ωS = ωa/2, Eqn. A.7 can be written (up to a

constant) as

Ĥ = ωa

(
â†â+ K̂0

)
+ ΓâK̂+ + Γ∗â†K̂−, (A.13)

where K̂± are the operators spanning the SU (1, 1) Lie algebra. The trilinear Hamiltonian

expressed in terms of its Lie group symmetries is not analytically diagonalizable because

its terms are not bilinear, and therefore do not form a finite-dimensional Lie algebra (a

non-negotiable requirement for diagonalization) [BR97, KC09].

A.2 Code for Numerical Calculations

Eqn. A.4 was simulated1 using the Quantum Optics Toolbox for Matlab 52, modified from

pre-existing sample source provided by Paul D. Nation [Tan99, NB10]. The QOToolbox

bridges high-level symbolic representations and numerical calculations in quantum optics

rather seamlessly, and is good for quickly bypassing a laborious calculation to build physical

intuition. This code generates graphs of expectation values for modes â, b̂, and Ŝ on a

truncated Fock space with n = 11, assuming a three-photon Fock state input to the â mode

and all other modes starting at rest.

function [] = run new mc()

% Quantum Monte−Carlo simulation of a trilinear Hamiltonian

% Input field: harmonic oscillator initially in Fock or

% squeezed state.

% Modes interact with thermal bath to simulate

% open−quantum system loss.

%

% Modified by Bhaskar Mookerji (mookerji@mit.edu)

% from the original author:

% Paul D. Nation 2010 (Dartmouth College),

% paul.d.nation@dartmouth.edu

N0=11;

1Simulated with Matlab 7.11.0.584 (R2010b) using a 2.4GHz Intel Core2Duo MacBook Pro 7.1, 4GB
1067MHz DD3 memory.

2Original source at http://qwiki.stanford.edu/index.php/Quantum_Optics_Toolbox. Packaged for
Mac OS X by Paul D. Nation at http://dml.riken.jp/~paul/page5/index.html.
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N1=11; %number of basis states for first mode

N2=N1; %number of basis states for second mode

K=2; %value of parametric coupling strength (rate)

gamma0=0.00;

gamma1=0.00;

gamma2=0.0;

alpha=sqrt(3);%coherent state amplitude

epsilon=0.5i; %squeezing parameter

tfinal=10.0;

dt=0.02;

tlist=0:dt:tfinal; %evaluation times for evaluating differential equation

taulist=K.∗tlist;

ntraj=1; %number of trajectories to run

%defining lowering operators

a0=tensor(destroy(N0),identity(N1),identity(N2));

a1=tensor(identity(N0),destroy(N1),identity(N2));

a2=tensor(identity(N0),identity(N1),destroy(N2));

p=(a1−1i∗a2);

%define number oeprators for modes 0−>2

num0=a0∗a0;

num1=a1∗a1;

num2=a2∗a2;

%dissipative operators for zero−temp. bath

C0=sqrt(2∗gamma0)∗a0;

C1=sqrt(2∗gamma1)∗a1;

C2=sqrt(2∗gamma2)∗a2;

%inital state for system: coherent state for mode 0 and vacuum for 1&2

vacuum=tensor((basis(N0,1)),basis(N1,1),basis(N2,1));

D=expm(alpha∗a0−conj(alpha)∗a0); %mode 0 displacement operator

S=expm(0.5∗conj(epsilon)∗a0ˆ2−0.5∗epsilon∗(a0)ˆ2);

%D=1;

%S=1;

%initial state=a0∗a0∗a0∗vacuum;

initial state=S∗vacuum;

%Wigner function variables

% psi0=ptrace(initial state,1);

xvec = [−100:100]∗10/100; yvec = xvec;

% W = wfunc(psi0,xvec,yvec,1);

% f1 = figure(1); pcolor(xvec,yvec,real(W));

% colorbar;
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% shading interp; title(Wigner function of squeezed state);

%interaction picture Hamiltonian

H=1i∗K∗(a0∗a1∗a2−a0∗a1∗a2);

%effective non−unitary Hamiltonian (includes losses)

Heff=H−0.5∗1i∗((C0∗C0)+(C1∗C1)+(C2∗C2));

% %options for solver (needed to prevent error accumulation)

options.lmm=BDF;

options.iter=NEWTON;

options.mxstep=100000;

options.reltol=1e−6;

options.abstol=1e−6;

%call to monte−carlo solver

mc2file(test.dat,−1i∗Heff,{C0,C1,C2},{},initial state,tlist,ntraj,options);

mcsolve(test.dat,out.dat,clix.dat);

fid=fopen(out.dat,rb); %open data file

%init. arrays for expectation values of num. oper. at tlist times

photon num0=zeros(1,length(tlist));

photon num1=zeros(1,length(tlist));

photon num2=zeros(1,length(tlist));

%init matricies for prob. of nth num. state at times tlist

Pn0=zeros(N0,length(tlist));

Pn1=zeros(N1,length(tlist));

Pn2=zeros(N2,length(tlist));

variance=zeros(1,length(tlist));

statepump=zeros(1,length(tlist));

statesignal=zeros(1,length(tlist));

expec0=zeros(1,N0);

for k=1:ntraj

if gettraj(fid) 6=k, error(Unexpected data in file); end

psi=qoread(fid,dims(initial state),size(tlist)); %readout state vectors at eval times

%expectation values of number operator in modes 0−>2

photon num0=photon num0+expect(num0,psi)./norm(psi).ˆ2;

photon num1=photon num1+expect(num1,psi)./norm(psi).ˆ2;

photon num2=photon num2+expect(num2,psi)./norm(psi).ˆ2;

%calculate avg. probability of being in n−th number state at tlist times

for j=1:length(tlist)
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p0=ptrace(psi{j},1)/trace(ptrace(psi{j},1));

p1=ptrace(psi{j},2)/trace(ptrace(psi{j},2));

p2=ptrace(psi{j},3)/trace(ptrace(psi{j},3));

p12=ptrace(psi{j},[2,3])/trace(ptrace(psi{j},[2,3]));

elems0=diag(full(p0(:,:)));

elems1=diag(full(p1(:,:)));

elems2=diag(full(p2(:,:)));

for p=1:N0

if sum(elems0(1:p))>0.99

statepump(j)=p;

break

end

end

for s=1:N1

if sum(elems1(1:s))>0.99

statesignal(j)=s;

break

end

end

Pn0(:,j)=Pn0(:,j)+elems0(:); %distribution of pump over number states

Pn1(:,j)=Pn1(:,j)+elems1(:); %distribution of mode 1 over number states

Pn2(:,j)=Pn2(:,j)+elems2(:); %distribution of mode 2 over number states

n1=expect(num1,psi{j});

n0=expect(num0,psi{j});

n2=expect(num2,psi{j});

variance(j)=(expect(num1ˆ2,psi{j})−n1ˆ2)/n1;

[A0,B0]=eig(full(p0(:,:)));

b0=diag(B0);

ex=zeros(1,N0);

for q=1:N0

for p=1:N0

ex(q)=ex(q)+A0(p,q)∗conj(A0(p,q))∗(p−1);

end

expec0(q)=ex(q);

end

[A1,B1]=eig(full(p1(:,:)));

end

end

fclose(fid); %close data file (prevents errors)

%avg. num. of photons in each mode at times tlist

avg photon0=photon num0/ntraj;

avg photon1=photon num1/ntraj;

avg photon2=photon num2/ntraj;

%probability of mode 0,1,2 being in the ith−# state for the jth elem. in
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%tlist

Pn0=Pn0./ntraj;

Pn1=Pn1./ntraj;

Pn2=Pn2./ntraj;

disp(length(avg photon0))

figure(Name,Photon Number Statistics);

subplot(4,2,1); plot(taulist, avg photon0)

title(Mode 0 (Pump))

subplot(4,2,3); plot(taulist, avg photon1)

title(Mode 1 (Signal))

subplot(4,2,5); plot(taulist, avg photon2)

title(Mode 2 (Idler))

subplot(4,2,7); plot(taulist, 2∗avg photon0+avg photon1+avg photon2)

title(Total Excitations)

subplot(4,2,2); plot(taulist, Pn0(1:3,1:end))

title(Occupation Probabilities)

save(avg photon0.mat,avg photon0);

save(avg photon1.mat,avg photon1);

save(Pn0.mat,Pn0);

save(Pn1.mat,Pn1);

save(taulist.mat,taulist);

end %ends program−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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