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Abstract

Locality might prohibit Alice and Bob from using quantum entan-
glement to transmit information superluminally, but it does not pre-
vent them from either reducing the communication required for some
problems, or playing impossible games requiring no communication at
all. Accordingly, we will review the polynomial method for determin-
ing quantum communication complexity lower bounds. We will also
review quantum psuedo-telepathy, which permits certain distributed
tasks amongst entangled parties to be completed without communica-
tion.

Communication complexity quantifies the communication requirements
of two separated parties, Alice and Bob, living far-apart in a country where
telephone calls and email are extremely expensive. Fortunately, Alice and
Bob each have quantum supercomputers, an infinite supply of nuclear en-
ergy, and can communicate without fear of eavesdroppers, since Eve has re-
cently been executed. They want to compute some function f : R→ {0, 1}
such that R ⊆ X × Y . The function f is a total function if R = X × Y ,
and a promise function if otherwise. Alice and Bob have two n-bit string
inputs x and y from X = Y = {0, 1}n, and want to compute the value of
the function f (x, y) on their inputs. However, because communication is so
expensive, they want to minimize information transmitted between them,
and accordingly define the communicational complexity of a total Boolean
function f : X × Y → {0, 1} as the minimum number of (qu)bits required
for either of them to evaluate f (x, y).

Our goal here is to quantify the limits of quantum communication be-
tween Alice and Bob. We will first provide a method for proving lower
bounds for the quantum communicational complexity of a given Boolean
function f and relate it to some other important results and conjectures in
classical information theory. We will discuss Mermin-Peres magic square
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game, the simplest example of a psuedo-telepathic game that Alice and Bob
can play in the absence of communication and still win with absolute cer-
tainly.

1 Motivation and Notation

The history of communicational complexity and our current understand-
ing of classical and quantum channel capacities motivates our intuition for
complexity lower bounds. Yao first introduced the notion of quantum com-
municational complexity by replacing bits with qubits in communicational
complexity, but failed to demonstrate that qubit communication channels
actually provided an advantage [1]. Yao’s suspicion was confirmed when
Cleve and Buhrman showed that entanglement could be used to save on
one bit of communication between two parties [2], a classical-quantum sep-
aration which was eventually generalized k parties [3]. Raz later gave a
promise problem exhibiting an exponential separation between classical and
quantum communication protocols[4].

In the context of these results, recall that if Alice and Bob share an
EPR pair, Alice can use a single qubit teleportation to transmit two classical
bits, a scheme known as superdense coding. The following result, generally
referred to as Holevo’s Theorem, quantifies this result [5].

Theorem 1 (Holevo, WDMA98) If Alice wants to send n bits of infor-
mation to Bob via a qubit channel, and they don’t share prior entanglement,
then they have to exchange at least n qubits. If they do share prior entan-
glement, then Alice has to send at least n/2 qubits to Bob, no matter how
many qubits Bob sends to Alice.

To extend this result to an arbitrary Boolean function f , we must first
establish some notation for exact protocols [6]. In the following, we will
denote D (f) as the deterministic classical communication complexity and
Q (f) as the qubit complexity without shared EPR pairs. When shared
entanglement is available, Q∗ (f) (C∗ (f)) quantifies the qubit (bit) commu-
nicational complexity. There are known results for several total functions
already. For example, the equality function EQ (x, y) = 1 iff x = y, and
the disjointness function DISJ (x, y) = NOR(x ∧ y). This latter function
evaluates to 1 iff there is no i such that xi = yi = 1, meaning that x and
y are disjoint if they are characteristic sets of vectors. The remaining in-
ner product function was used in the proof of the entanglement clause of
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Holevo’s Theorem above:

IP (x, y) = PARITY (x ∧ y) =
∑

i

xiyi (mod 2) . (1)

For each of these functions, it has been shown that Q∗ (f) ≥ n/2 and
C∗ (f) ≥ n. The results for these functions, as well as the power of quantum
channels suggested by Holevo’s theorem, implies the rather obvious result
for total Boolean functions f that Q∗ (f) ≤ Q (f) ≤ D (f).

2 Lower Bounds By Polynomials

With the intuition from the previous section, we can now relate lower bounds
for quantum communicational complexity to the rank property of a total
Boolean function f , denoted by rank (f). A total Boolean function f :
X×Y → {0, 1}, can be represented in two different ways: first, as a Boolean
matrix Mf [x, y] = f (x, y) over the R; and second, as a unique multilinear
polynomial g (x ∧ y) over n variables. In the former, rank (f) = rank (Mf ).
In the latter, rank (f) equals the number of monomials mon (g).

Theorem 2 (BW00) Q∗ (f) ≥ 1
2 log rank(f) and C∗ (f) ≥ log rank(f) [6].

Proof:
Let f∧m denote Boolean function which is the logical AND of m in-

dependent instances of f , given by f∧m : Xm × Y m → {0, 1}. Also, let
Qc (f) specify the qubit cost of a clean protocol for f that starts without
prior entanglement. This type of protocol is simpler than the prior entan-
glement case, and it can be shown that Qc (f) ≥ log rank(f) + 1 without
much difficulty.

Now suppose we have an exact protocol for f using l qubits for commu-
nication and k prior EPR-pairs. It can be shown that there exists a clean
protocol that uses 2ml + 2k and no prior entanglement, giving

2ml + 2k ≥ Qc

(
f∧m

)
≥ log rank

(
f∧m

)
+ 1 = m log rank (f) + 1, (2)

which implies that

l ≥ log rank (f)
2

− 2k − 1
2m

, (3)

which is true for m > 0, implying the theorem. By Holevo’s Theorem, a
qubit protocol for f ∧ f exists using C∗ (f) qubits, and by our first proof,

C∗ (f) ≥ Q∗ (f ∧ f) ≥ (log rank (f ∧ f)) /2 = log rank (f) . (4)
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Furthermore, because rank (f) = mon (f), the lower bound cost for quantum
communication can be determined from polynomial representations. �

We can consider our previous Boolean function lower bounds in the con-
text of this result. It has been shown that almost all total Boolean 2n × 2n

matrices Mf [x, y] have full rank 2n, which captures our previous statements
regarding EQ, DISJ, and IP, as well as most other total Boolean functions:

Corollary 3 Q∗ (EQ), Q∗
E (DISJ), Q∗ (IP) ≥ n/2 and C∗ (EQ), C∗ (DISJ),

C∗ (IP) ≥ n. For X = Y = {0, 1}n, almost all f : X × Y → {0, 1} have
Q∗ (f) ≥ n/2 and C∗ (f) ≥ n.

We can apply Theorem 2 to one remaining result, known as the ‘log-rank
conjecture,’ which implies that rank (f) specifies the deterministic classical
communicational complexity D (f) up to a polynomial factor. Combined
with Theorem 2, this implies a polynomial equivalence between classical
and exact quantum communicational complexities.

Corollary 4 If D (f) ∈ O
(
(log rankf)k

)
, then Q∗ (f) ≤ Q (f) ≤ D (f) ∈

O
(
Q∗ (f)k

)
for all f .

3 Quantum Pseudo-Telepathy

In the previous section, we reviewed some strong lower bounds for quan-
tum communicational complexity and can move on to an even more unusual
extreme! The fiber lines connecting Alice and Bob live are extremely un-
reliable, and they soon find themselves being forced to demonstrate their
mysterious telepathic powers to group of paraphysicists from MIT. Fortu-
nately, Alice and Bob shared an infinite supply of EPR-entangled photons
pairs before their fiber lines went down. More generally, their scheme is
known as a ‘psuedo-telepathy’ game, a distributed problem where k-players
can agree on a prior strategy and share unlimited entanglement [7]. Fur-
thermore, the game must be such that the players can win with unitary
probability when classical players cannot. How can we compaire the success
of classical deterministic and probabilistic strategies against entanglement
correlations?

A classical strategy is deterministic if there are two functions f : X → A
and g : Y → B such that Alice and Bob systematically output f (x) and
g (y) for their respective inputs x and y. We wish to quantify the proportion
of legitimate questions for which the strategy provides a correct answer. For
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a given game G, we formally define the maximum success proportion ω̃ (G),
over all deterministic strategies as

ω̃ (G) = max
f,g

#{(x, y) ∈ P | (x, y, f (x) , g (x)) ∈W}
#P

. (5)

The maximum success proportion for a deterministic strategy can be related
easily to the maximum probability of success in a probabilistic game. These
classical probabilistic strategies are considered successful with probability p
if they produce a correct answer with minimal probability p on all legitimate
questions. For a game G, ω (G) denotes the maximum success probability,
over all classical probabilistic strategies, given formally by

ω (G) = max
s

min
(x,y)∈P

Prs (win| (x, y)) . (6)

With these definitions, we can relate correlations from classical probabilistic
strategies to deterministic ones.

Theorem 5 (BBT04) Let G be a game. Consider any probabilistic strat-
egy s. If the questions are asked uniformly at random among all legitimate
questions, the probability that the players win using s is ω̃ (G) at best. Fur-
thermore, for any game G, ω (G) ≤ ω̃ (G).

This theorem implies that correlations from probabilistic strategies succeed
over classical ones. We know, however, that correlations from entanglement
trump those of randomized strategies. Our following two examples demon-
strates this idea explicitly.

3.1 Mermin-Peres Magic Square Game

Alice and Bob participate in a two-player coordination game where they
must fill a 3×3 table with + and − signs, but are forbidden to communicate.
Such a grid might look like this1:

1Figure from http://en.wikipedia.org/wiki/File:Mermin-Peres magic square.

png
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In each round, Alice selects a row and Bob selects a column: they must fill
entry with the common row and column with the same sign. Furthermore,
Alice must fill the remainder of the row such that there is an even number
of −’s, and Bob must fill the remainder of the column such that there is
an odd number of +’s. Prior agreement on a specific table is not possible,
as such tables actually violate the rules of the game (see the square above).
Because such agreed-upon squares are magic, a classical strategy for winning
the game is absolutely impossible.

On the other hand, Alice and Bob can succeed at the game by sharing
entangled state composed of two Bell states,

|ψ〉 =
1√
2

(|0〉1 |0〉2 + |1〉1 |1〉2)⊗
1√
2

(|0〉3 |0〉4 + |1〉3 |1〉4) , (7)

and making measurements in the Pauli basis to give the table values. The
observables for the outcomes of these measurements be given by tensor prod-
ucts of Pauli matrices,

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(8)

which each have measurement eigenvalues of either 1 (+) or −1 (−). They
carry out the measurement following this table, where the product of the
observables in any row or column is equal to ±I, thereby allowing them to
satisfy the rules of the game.

1⊗ σz σz ⊗ 1 σz ⊗ σz

σx ⊗ 1 1⊗ σx σx ⊗ σx

σx ⊗ σz σz ⊗ σx σy ⊗ σy

(9)

3.2 The Mermin-GHZ Game

The magic square parity game can be extended to a more general game
involving n players as follows [7].

Definition 1 (Mermin-GHZ) For any n ≥ 3, a game Gn involves n play-
ers, where each player receives an input xi and must produce an output yi.
The players are promised that there is an even number of 1’s amongst them
and are asked to produce an output such that

n∑
i=1

yi =
1
2

n∑
i=1

xi (mod 2) . (10)
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Using the definition of ω (G), it can be shown that there exists a classical
strategy for game Gn that is successful with probability at most 1

2 +2−dn/2e.
This implies that the best classical strategy can be no better than using
a fair coin toss. Entanglement correlations, however, win this game with
certainty.

Theorem 6 If the n players are allowed to share prior entanglement, then
they can always win game Gn

Proof: Consider two n-qubit entangled quantum states∣∣ψ+
n

〉
=

1√
2

(|0n〉+ |1n〉)
∣∣ψ−n 〉

=
1√
2

(|0n〉 − |1n〉) (11)

and the Hadamard H and phase gates P specified by

H =
(

1 0
0 −1

)
P =

(
1 0
0 i

)
. (12)

Applying the Hadamard gates to each qubit in |ψ+
n 〉 and |ψ−n 〉 yields an equal

superposition of all even and odd n-bit strings, respectively:(
H⊗n

) ∣∣ψ+
n

〉
=

1√
2n−1

∑
y even

|y〉
(
H⊗n

) ∣∣ψ−n 〉
=

1√
2n−1

∑
y odd

|y〉 (13)

. Furthermore, applying P to any two qubits in |ψ+
n 〉 yields |ψ−n 〉 (and

vice versa); applying P to any four qubits of |ψ±n 〉 leaves the global state
undisturbed. Therefore, if n players have qubits |ψ+

n 〉, and exactly m of
them apply P to their state, the global state is |ψ+

n 〉 if m ≡ 0 (mod 4), and
|ψ−n 〉 if m ≡ 2 (mod 4). The players then follow the strategy to win with
certainty:

1. If xi = 1, apply P to qubit.

2. Apply H to qubit.

3. Measure qubit in the {|0〉 , |1〉}-basis in order to obtain xi.

4. Produce yi.

The first step implies that an even number of players will apply P to their
qubit. If that number is divisible by 4 (i.e., 1

2

∑
i xi is even), then the global

state is |ψ+
n 〉 after step 1 and an even superposition of |y〉 after step 2.

Therefore, the number
∑

i yi of players who measure and output 1 is even.
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If the number of players is only even and not divisible by 4 (i.e., 1
2

∑
i xi

is odd), then the resulting state is |ψ−n 〉 after step 1, and the superposition
over |y〉 following the Hadamard step is odd. In this case,

∑
i yi is odd and

the condition is satisfied.
�

3.3 Conclusion

In the preceding, we have given an overview of the complexity costs, limita-
tions, and capabilities of quantum communication between parties sharing
entanglement. Our two cases, lower bounds for total Boolean functions and
the quantum psuedo-telepathy games leave a lot of low-hanging fruit for
potential research problems. For example, it is not generally known if there
exists a total function f for which a quantum communication protocol would
be more efficient than a classical one. The latter is particularly interesting,
as (far as I can tell) there is currently no criterion for determining if a
particular game pseudo-telepathic or not.
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