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Week Number Date Topic PS Due
0 07 September (Registration Day)
1 14 September Math Review 1
2 21 September Electrostatics and Magnetostatics 2
3 28 September Magnetic Materials, Circuits, and Actuators 3
4 05 October Exam Review

Midterm I
5 13 October (Tuesday) Magnetic Circuits and Actuators 4
6 19 October Electric Machines 5
7 26 October Electromagnetic Waves and Polarization 6
8 3 November Electromagnetic Waves at Boundaries 7
9 9 November Exam Review

Midterm II
10 16 November Electromagnetic Waves at Oblique Incidence 8
11 23 November Quantum Mechanics in 1-D Potentials —
12 30 November Tunneling and Flash Memory 9
13 7 December Band Structure and Semiconductors

Final

Table 1: Schedule of tutorials this term.
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Source Material

These tutorial notes draw on the great wealth of course notes and textbooks from device
engineering and physics classes in Course 6.

1. 6.013 Electromagnetics and Applications and 6.632 Electromagnetic Wave
Theory are great follow-up courses in electromagnetics. 6.013 has a different applica-
tions focus than 6.007, and 6.632 has a fairly thorough coverage of birefringent media
and metamaterials (dielectrics with negative indexes of refraction!). Several problems
and expositions on electromagnetic waves, polarization, and phase matching at bound-
aries are sourced from this material.

2. 6.453 Quantum Optical Communications covers the intersection of quantum me-
chanics, optics, and linear systems (6.011), with a particular emphasis on communica-
tions applications of quantum mechanics (such as quantum teleportation and cryptog-
raphy). Some discussion on quantum mechanics and phasor notation are borrowed.

3. 6.730 Physics for Solid-State Applications and 6.720 Integrated Microelec-
tronic Devices are graduate classes in solid state physics and its applications to
modern semiconductor devices, such as integrated circuits. These classes are great if
you’re interested in understanding 6.007’s later topics, such as band structure, carrier
transport, transistor design, etc. 6.728 and 6.012 are definitely functional prerequisites.
The last tutorial on PN-junctions and III-V doping borrows some exposition from here.

4. 6.161 Modern Optics Project Laboratory is course 6’s optics lab, which will
definitely be useful if you do any optics, photonics, or laser related research at MIT
(UROP, MEng, and beyond!). If you enjoyed lab 4 (the optics and absorption lab),
working with lasers, or having Bill as your TA, you should check it out.

Textbooks

1. Jin A. Shen, Liang C.; Kong. Applied Electromagnetism. PWS, Cambridge, Mass.,
1987.

2. David Griffiths. Introduction to Electrodynamics. 2nd edition, 1999.

3. David Griffiths. Introduction to Quantum Mechanics. 2nd edition, 1999.

4. J. A. Kong. Electromagnetic Wave Theory. EMW, Cambridge, Mass., 2000.

5. Paul Lorrain and Dale R Corson. Electromagnetic fields and waves. W. H. Freeman
San Francisco, 2nd edition, 1970.
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Errata

Fall 2009

1. Written by William Herrington and Bhaskar Mookerji. Some obvious bugs removed in
QM and device sections.

“Given enough eyeballs, all bugs are shallow.”
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Tutorial 1: Work, Units, and Math Review

Some pointers:

1. Labs are on Monday and Tuesday evening (7–9PM), with pizza at 6:30PM. Make sure
your pre-labs are done before lab.

2. The first problem set is due this Thursday (September 17) in lecture.

3. Office hours will be held on Wednesday in a room TBD.

4. Notes will be handed out in tutorial as an incentive for attendance. Let your TA know
if you have conflicts.

1 Work and Power: Through and Across Variables

• ‘Across’ Variables. Generally answers ‘how hard we are pushing?’

• ‘Through’ Variables. Generally answers ‘how much stuff is flowing?’

• Power:

– The product of a through and an across variable.

– The rate energy is being expended.

– Units of Watts.

Example 1: Through and Across Variables

Match the following across variables with the correct through variables.

Units Across Through Units

Force Current

Voltage Flow

Torque Velocity

Pressure Angular Velocity
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2 Units

On the homework set, Problem 1.2 relies heavily on the manipulation of units.

• What are the SI units for the ‘Through’ and ‘Across’ variables in the table above?

• The SI unit for Power is the Watt which is equal to

• What is a Joule?

Example 2: Batteries

• Referencing problem 1.2, how much energy is stored in a 1 W · hr battery?

• What about a 1 amp hour battery?

Example 3: Application of Units to energy conversion

• What is the question: ‘How high would your Prius rise if the battery’s energy were
used to propel it skyward?’ really asking?

• At what is the equal to the
battery’s initial energy?

3 Differential Operations and Integration

3.1 The ∇ Operator

The ∇ (‘nabla’ or ‘del’) operator quite a lot when you’re thinking about electrodynamics,
particularly plane waves.

What is the ∇ operator?

• ∇ is a vector operator defined as ∇ = x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

, in the normal cartesian
coordinate system.

• This operator can be applied to both scalar and vector fields.

1. Option 1. Application to a scalar field f (x, y, z):

– ∇f =
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– What is this operation called?

– What does it represent?

2. Option 2: Dot Product. Application to a vector field ~v = x̂vx + ŷvy + ẑvz

– ∇ • ~v =

– What is this operation called?

– What does it represent?

3. Option 3: Cross Product.

– ∇× ~v =

– What is this operation called?

– What does it represent?

3.2 Vector Integration

The usage of integration in class will focus on line and surface integral solutions of Maxwell’s
equations. In the following, we’ll outline a few example cases which will show up fre-
quently:

1. Potentials. ∫
dr ·E =

∫ b

a

drr̂ ·E (r) r̂ =

∫ b

a

drE (r) (1)

2. Surface integrals (using Gaussian surfaces).

∫
dA ·E =

∫
dAr̂ ·E (r) r̂ = E (r)

∫
dA (2)

3. Line integrals (using Faraday loops).

∫
dr ·E =

∫
drr̂ ·E (r) r̂ = E (r)

∫
dr (3)

4 Complex Numbers and Phasors

Real physical quantities that vary periodically with time, such as alternating-current (AC)
voltage or the electric fields of lasers, are called time-harmonic. Analyzing these quantities
with complex representations (or phasors) will simplify our analysis of them later in the
course.
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jy

x

re jA

r

A

r cos A

r sin A

Figure 1: Euler’s Theorem in the complex plane.

4.1 Complex Arithmetic

Complex numbers speak in two dialects: rectangular and polar form. A complex number
z̃ = x+ jy1 can be represented as a phasor using Euler’s formula:

z̃ = x+ jy = rejθ = r cos θ + jr sin θ, (4)

where
r = mag (z̃) =

√
x2 + y2 and θ = arctan

(y
x

)
. (5)

This relation is polar, so you can imagine it geometrically, as in Figure 1. Also remember
that the real and imaginary parts are given by

x = Re [z̃] =
z + z∗

2
and y = Im [z̃] =

z − z∗
2j

. (6)

Example 4: Phasors

What are the phasor representations of

− 1

2
+ j

√
3

2
and

√
2 (1 + j) ? (7)

1You may have noticed that we’re using ‘j’ (the Course 6 convention) instead of ‘i’ (the Course 8 con-
vention). We’ll be using ‘j’ in the EM-waves part of 6.007, and ‘i’ when looking at quantum mechanics
(a handout on the reasons why later in the course). In the literature, the relation i → −j usually holds,
although it’s not always the case.
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Example 5: Sums of Phasors

We’re given two complex numbers z1 and z2 with valid phasor representations. What has to
be true about them for z1 + z2 to have a valid phasor representation?

4.2 Phasors and Time-Harmonic Vectors

Using the relation, z̃ = x + jy = rejθ. There are three equivalent representations of a
real-valued sinusoid z (t) of frequency ω:

1. Amplitude and phase representation: z (t) = r cos (ωt− θ).
2. Phasor (complex-amplitude) representation: z (t) = Re [z̃ejωt].

3. Quadrature-component representation: z (t) = x cos (ωt) + y sin (ωt).

Example 6: Decaying Plane Wave

Simplify Re
[
ej(ωt−kz)

]
into its amplitude and phase representation, where k = kR + jkI .

Example 7: Time-Harmonic Vector

Let C = jx̂+ (1 + j) ŷ + (3− j4) ẑ. What is C (t)?
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Example 8: Time Harmonic Vector in the Plane

Let A = x̂+ jŷ. How does the tip of A move as a function of time?

Example 9: Orthogonality of Time Harmonic Vectors

Let B = jA. Is A (t)×B (t) = 0 or A (t)×B (t) 6= 0?
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Tutorial 2: Electrostatics and Magnetostatics

More pointers:

1. Lab writeups are due on Tuesday (September 22).

2. The second problem set is due this Thursday (September 24) in lecture.

1 Questions about problem set 1?

2 Practice with Electrostatics and Magnetostatics

1. Terminology: B vs. H?

2. Static Maxwell’s Equations:

Gauss:

"

ε0dA ·E =

˚

dV ρfree = Qenc Faraday:

˛

dl ·E = 0

Ampere:

˛

dl ·H =

"

dA ·J = Ienc (1)

Example 1: Short Questions on Maxwell’s Equations

1. Draw a Faraday (Ampere) loop for finding B (r) from a line and planar source. Draw
a Gaussian surface for finding E (r) from a point, line, and plane sources.
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2. What is E (r) from an infinite sheet of charge density σ?

3. What is E (r) from an infinite line of charge density λ?

4. What is H (r) for a long solenoid with coil density n = N/L, radius a, and current I?
What is H (r) if the solenoid is made into a toroidal coil with radius b?

Example 2: Gauss Law: Spherical Capacitor

Consider a capacitor that consists of a solid conducting sphere of radius a inside a con-

centric conducting spherical shell. The shell has an inner radius b and an outer radius c. A
charge of +q coulombs is placed on the inner conductor, and a charge of −q is placed on the
outer conductor .

1. For each of the following indicate which statement is correct and explain why.

• The positive charge on the inner conductor is distributed uniformly . . .

· throughout the spherical volume. · on the surface of the sphere.
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• The negative charge on the spherical shell is distributed uniformly . . .

· on the inner surface. · throughout the shell’s volume.
· on the outer surface. · with q/2 on the inner surface and q/2 on the outer surface.

2. Setting Φ = 0 at infinity find the potential Φ (r) at:

• r = c

• b < r < c

• a < r < b

• r = a

3. What is the expression for voltage between the inner and the outer sphere?

4. What is the expression for capacitance of this capacitor?

Example 3: Charge, Fields, and Electrostatic Potentials (Midterm Spring 2008)

An unusual capacitor structure consisting of a series of six parallel metal plates, each hold-
ing a fixed amount of charge in shown in Figure 1. The electrostatic potential within the
capacitor is plotted below as a function of the x-direction.

1. From the above plot of the electrostatic potential as a function of x, determine at what
x-positions are the six plates located.
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(a) An unusual capacitor. (b) Electrostatic potential through the capacitor.

Figure 1: Electrostatic potential in a weird capacitor.

PlateA PlateB PlateC PlateD PlateE PlateF

2. What is the electric filed magnitude between each pair of the plates?

EAB EBC ECD EDE EEF

3. What is the charge Q on each plate?

QA QB QC QD QE QF

4. What two plates could we swap for this capacitor to have a higher electrostatic poten-
tial? What’s the new maximum voltage in the capacitor?

5. Air’s breakdown voltage is 3.6×106V/m. Will the capacitor experience the breakdown
(yes/no)? If so, will the maximum electrostatic potential be higher or lower?
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Tutorial 2: Electrostatics and Magnetostatics

Example 1: Short Questions on Maxwell’s Equations

1. What is H (r) for a long solenoid with coil density n = N/L, radius a, and current I?
What is H (r) if the solenoid is made into a toroidal coil with radius b?

The goal of this document is to make some clarifications regarding the Ampere’s Law ques-
tions in the second tutorial. I thought my explanations in class were a bit confusing, so the
derivations below will discuss them in greater detail.

We have Ampere’s Law, which states that:

Ampere:

�
dl ·H =

"
dA ·J = Ienc (1)

and the two examples in question shown in Figure 1. Solving H-field problems typically
involves four steps:

1. Define a Faraday Loop to use (there are really only two).

2. Use symmetries of the system (planar, cylindrical, rotational) to determine the direc-
tion of H.

3. Determine the enclosed current.

4. Determine the length of the loop that overlaps the field from part 2.

Solenoid

The solenoid is the first example we had where it was possible to solve the problem without
truly understanding the full mechanics of the problem. As we discussed in tutorial, two
components of the field—Hr and Hφ—were 0 because of the cylindrical symmetry of the
solenoid. If you remember Prof. Ram’s lecture on the planar current sheet in class, you can
think a solenoid as a planar current sheet rolled into a cylinder, leaving only Hz (the field
in the direction perpendicular to current flow). This leaves two remaining points when we
apply the Faraday loop shown in Figure 1.

1. What exactly is the length of overlap? Figure 1 has two loops to consider. The
first one isn’t labeled well, so let’s say that its inner edge is r1 from the origin, and
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b
a

                                     splayed out)

Amperian Loop (actually on top of toroid, but

(inside toroid, top view)

Current In

Current Out

Exterior to toroid

Interior to toroid

Figure 1: Toroid and solenoid, spread out and detailed view. Second figure taken
from David Griffiths’ Introduction to Electrodynamics (highly recommended, by the
way).

that its outer edge is r2. Each side is of length L. Then for the inner loop:

[Hz (r1)−Hz (r2)]L = Ienc ·N (2)

and for the outer loop:
[Hz (a)−Hz (b)]L = 0. (3)

This detail wasn’t address in tutorial: careful accounting of overlaps is important, and
both of these expressions use field overlaps at two different locations. It’s easy to forget
to do this sometimes, as H can sometimes be 0 . . .

2. What’s H outside the solenoid? The magnetic field outside the solenoid is simply
0. Why is this true? Consider the second Ampere’s law expression listed above. The
enclosed charge is 0, and therefore the resulting field is zero. An even more formal
argument is that Hz (a) = Hz (b) because Ienc = 0, which implies that Hz is constant
outside the solenoid. This is mighty strange, considering that Hz (r →∞) should be
0. Therefore, as Hz = constant, then Hz = 0 since Hz (r →∞) = 0.

Again, this leaves us with the interior of the solenoid:

Hz ·L = Ienc ·N → Hz = nI. (4)

Toroid

The toroid is also shown in Figure 1. I had mentioned in tutorial that the toroid was a
solenoid wrapped into a circle, providing the most superficial means of doing the problem,
namely, that we could set L = 2πb and finding that Hφ = NI/2πb. Thinking about the
problem from scratch is particularly useful, because it points out some features of the toroid
that I didn’t mention in class,
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1. Like the solenoid, the toroid has entry and exit points for the current. The figure
I drew from class incorrectly showed that Faraday loop was just the circle of radius
2πb running through the center of the toroid. Figure 1 shows a top down view of the
solenoid with the actual Faraday loop. Here, imagine that the portion of the loop
exterior to the toroid has been stretched to the side to show the full path of the loop
(normally, the inner and the exterior portions would overlap in the top-down view).
The interior and external paths are joined by two line segments, just like the horizontal
line segments in the solenoid’s Faraday loop. As the entry and exit windings for the
toroid can be fairly close to each other, we can bring the two edges of the toroid’s
Faraday loop infinitesimally close to each other, and as a result, can validly say that
L ≈ 2πb.

2. The symmetries to this problem are remarkably similar to solenoid’s. Using Faraday
loops or the more formal argument described for the solenoid, the field external to the
solenoid is 0. The remaining field is then,

Hφ · 2πb = Ienc ·N → Hφ =
NI

2πb
. (5)
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Tutorial 3: Magnetic Materials, Actuators, and Circuits

1. The third problem set is due this Thursday (October 1) in lecture. Coil guns lab next
Monday/Tuesday (October 5/6).

2. First midterm quiz on Thursday, October 8. Quiz review on energy conversion/conservation,
electromagnetic fields and forces, magnetic materials, and magnetic circuits next Mon-
day (October 5). Problem set 4 due after Columbus Day weekend.

1 Questions about problem set 2?

2 Magnetic Materials

Matter is magnetized in the presence of a magnetic field. The tiny atomic dipoles constituting
matter form a net alignment (or polarization) in two ways:

1. Paramagnetism. Dipoles associated with the spins of unpaired electrons experience
a torque that ultimately alines them parallel to the applied field.

2. Diamagnetism. The orbital speed of electrons is altered so that the orbital dipole
moment is aligned in a direction opposite to the applied field.

Some substances (ferromagnets) retain magnetization even after the external field is removed—
such materials’ magnetization is determined by the entire ‘magnetic memory’ of the material
(hysteresis).

Whatever the cause, the macroscopic magnetic polarization is described by the vector mag-
netization M, the magnetic dipole moment per unit volume. The resulting field B is related
to M and H approximately linearly by the magnetic susceptibility χm,

B = µ0 (H + M) = µ0 (1 + χm) H. (1)

This expression can be shown in two ways: (i) using the magnetic ‘monopole’ analogy
described in class, or (ii) considering the ‘bound’ and ‘free’ currents flowing through matter.
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Figure 1: H, B, and M in a uniformly magnetized cylinder (‘bar magnet’).

Example 1: Coax Cable with Linear Insulation

A coax cable is made of two conducting cylinders separated by a linear insulating mate-
rial of magnetic susceptibility χm. With uniform distribution, a current I flows along the
inner conductor and returns along the outer one.

Xm

I

I

(‘magnetic susceptibility’)

1. Find the fields H and B between the cylinders.

2. Using part 1, calculate the magnetization M in the material.
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Example 2: Hysteresis Curves and Magnetization

M

H

(a) Diamagnetic.

M

H

(b) Paramagnetic.

M

H

(c) Ferromagnetic.

Figure 2: Draw the magnetization M as a function of H as H increases from 0 to
∞, decreases to −∞, and returns to 0.

Figure 3: Circle the hysteresis curve that represents a ferromagnet with the strongest
remnant field. Circle the easiest magnet to change from N-S to S-N.

3 Faraday’s Law

Faraday’s law tells us that there are two types of electric fields: those sourced directly from
electric charges, and those associated with changing magnetic fields. This law quantifies this
second type as follows,

Vemf =

˛

dl ·E = − ∂

∂t

"

dA ·µ0H = − ∂

∂t
λ (2)
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Example 3: Simple Electromotive Force: Bar Actuator

A metal bar of mass m slides frictionlessly on two parallel conducting rails a distance l

Figure 4: Moving bar of mass m in magnetic field.

apart (Figure 4). A resistor R is connected across the rails and a uniform magnetic field
B = µ0H, pointing into the page, fills the entire region.

1. If the bar moves to the right at speed v, what is the current in the resistor? In what
direction does it flow?

2. What is the magnetic force on the bar? In what direction?

3. If the bar starts at v (t = 0) = v0, and is left to slide, what is its speed at a later time
t0?

4. What is the energy delivered to the resistor as a function of m and v0?

Example 4: Inducting Heating

A uniform magnetic field B, pointing up, fills the shaded circular region in the figure below.
If B = B (t), what is the induced electric field? Does it run clockwise or counter-clockwise?
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4 Magnetic Circuits (for next time)

I don’t believe these were covered in lecture last week, so I won’t introduce a new concept
during tutorial. We’ll cover strategies for solving magnetic circuit problems prior to exam
review next week.

5 Questions about problem set 3?

6 Whitespace Filler of the Week

Valentine by a Telegraph Clerk

The tendrils of my soul are twined
With thine, though many a mile apart.
And thine in close coiled circuits wind
Around the needle of my heart.

Constant as Daniel, strong as Grove.
Ebullient throughout its depths like Smee,
My heart puts forth its tide of love,
And all its circuits close in thee.

O tell me, when along the line
From my full heart the message flows,
What currents are induced in thine?
One click from thee will end my woes.

Through many a volt the weber flew,
And clicked this answer back to me;
I am thy farad staunch and true,
Charged to a volt with love for thee.
— James Clerk Maxwell
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Figure 1: H, B, and M in a uniformly magnetized cylinder (‘bar magnet’).

I have a clarification on the bar magnet example, that I explained poorly in class. Amusingly,
a textbook I have (the source for the figure) was wrong as well.

Either way, we had that relation B = µ0(H + M) which was true inside (M 6= 0) and
outside (M = 0) the material. Outside, B and H both pointed in the same direction since
B = µ0H.

In the magnet, M was pointing from right to left (this is the ẑ- axis). The field opposing was
H, a fact which has to do with Gauss’ law for B and the divergences of B, H, and M.

First, remember that ∇ ·B = 0 (always true). In the case of the bar magnet, ∇ ·M 6= 0, as
M is a position-dependent magnetization vector pointing from one end of the bar magnet
to another (if you don’t delieve me, consider ∇ ·M for M = M (z)). If ∇ ·B = 0 and
∇ ·M 6= 0, this means that ∇ ·H 6= 0, because ∇ ·B = 0 = µ0(∇ ·H + ∇ ·M), implying
that ∇ ·H = −∇ ·M. Therefore, for ∇ ·B = 0 everwhere, H and M must point in different
directions through a given surface in the bar magnet, thereby canceling out.
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Tutorial 4: Exam Review

1. Energy and power (definitions and units)

Power = Through ·Across

2. DC Motors (τ , K, I, R, β, current and voltage source operation, etc.)

3. Maxwells equations in free space

(a) Electrostatics and magnetostatics

i. Calculate fields to due charges (Gauss Law) and currents (Amperes Law)

Gauss:

"

dA · ε0E =

˚

dV ρfree = Qenc Faraday:

˛

dl ·E = 0

Ampere:

˛

dl ·H =

"

dA ·J = Ifree

ii. Lorentz Force Law—forces on charges and currents (e.g., wires, point charges)

F = qE + qv ×B = qE + Il×B

(b) Calculating capacitance of air-filled structure Q = CV .

(c) Scalar potential definition (in units of voltage).

E = −∇V V (b, a) = −
ˆ b

a

dl ·E
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(d) Boundary conditions on electric and magnetic fields.

n̂ · (Einside − Eoutside) = σsurface/ε0 n̂× (Einside − Eoutside) = 0

n̂ · (µ0Hinside − µ0Houtside) = 0 n̂× (Hinside −Houtside) = K

(e) Energy density of electric and magnetic fields (equation, not full derivation)—
remember that it is a density, so total energy must be an integral over volume of
the density.

NΦ = λ = Li wm =
1

2
B ·H Wm =

1

2
Li2 =

λ2

2L

Q = CV we =
1

2
ε0E ·E We =

1

2
CV 2 =

Q2

2C

4. Response of materials—magnetization

(a) Origin of magnetization B, H, M fields and their relationship

B = µ0 (H + M) µ0 (1 + χm) H = µH

(b) Magnetic susceptibility types of magnetic response (dia-, para-, ferro-)

(c) Hysteresis—coercivity and remnance.

5. Magnetoquasistatics

(a) Faradays law—electromotive force (EMF)

Faraday: Vemf =

˛

dl ·E = − ∂

∂t

"

dA ·µ0H = − ∂

∂t
λ Joule: J = σE

(b) Calculating inductance
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Tutorial 4: Exam Review Problems

Example 1: Electrostatics: Capacitance of concentric spheres

Two concentric spherical metal shells of radius a and b (b > a) form a capacitor, with
charges +q and −q on the inner and outer shells, respectively.

1. What is the field E between the two spheres?

2. What is the potential difference between them?

3. What is the capacitance of the spherical capacitor?
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Example 2: Inductance of a Coax Cable (From Griffiths)

A long coax cable carries a current I (the current flows down the surface of the inner
cylinder, radius a, and back along the outer cylinder, radius b) as shown in Figure 1.

Figure 1: Coax cable.

1. What are H and B between the two cylinders? In what direction do they point?

2. What is the energy density (per unit volume) between the two cylinders?

3. What is the total energy between the two cylinders over a length l?

4. What is the self-inductance L of the cable per unit length l?
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Example 3: Inductance of a Filled Toroid (From Griffiths)

Find the self-inductance L of a toroidal coil with rectangular cross-section (inner radius
a, outer radius b, height h—as shown in Figure 2), which carries a total of N turns. The
toroid is filled with a ferromagnetic material of magnetic susceptibility χm—i.e., permeability
µ = µ0 (1 + χm).

Figure 2: Toroid cross section.

1. A DC current I is applied to the toroidal coil. What are H inside and outside the
toroid? What are B inside and outside the toroid?

2. What is the total flux linkage through the toroid?

3. Using part 2, what is the self-inductance of the toroid?
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Example 4: Magnetic Levitation (From Shen and Kong)

A magnetoplane is a high-speed train that uses magnetic levitation to fly in the air above a
conducting track. Each vehicle has beneath it a superconducting coil with current Iv levitat-
ing above the conducting surface. Using the method of images, we know that we can replace
the conducting surface with a mirror current distribution with current Ic = Iv, as shown in
Figure 3.

Figure 3: Magnetic levitation using superconducting coils.

1. The equivalent current distribution shown in Figure 3 creates an equivalent field Hc

exerting a force on the vehicle coil located a distance d away. What is Hc (magnitude
and direction)?

2. The side-view of a single segment of the coils is shown in Figure 3; each side has a
length l. What is the force experienced by the top segment from the field found in
part 1? What is the total magnetic force?
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Tutorial 5: Magnetic Circuits and Actuators

1. The fourth problem set is due this Thursday (October 15) in lecture. Coil gun lab
report due Wednesday (October 16),

2. First midterm back in lecture tomorrow.

1 Magnetic Circuits

A magnetic circuit representation is an engineering tool, a simplification of Faraday’s Law
that allows us to find out how much flux linkage (i.e., stored magnetic energy) will result
from a structure containing permanent magnets, ferromagnetic materials, electromagnets,
and even air.

As Faraday’s law and charge conservation were used with KVL and KCL circuit analysis
in 8.02, Ampere’s and Gauss’ laws can be applied to the branches of a magnetic circuit
(Figure 1). The voltage source is replaced by a magnetomotive force, related to the turns N ,

Figure 1: Analogy between magnetic and electric circuits.

applied current I, and fields of branches m of length lm and cross-sectional area Am:

F =
∑

m

Hmlm = NI
∑

m

BmAm = 0. (1)

F and Φ can be related to form a magnetic Ohm’s law (‘Hopkinson’s law’),

R =
l

µA
F = NI = ΦR. (2)
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Finally, the inductance of a structure is related to its reluctance,

L =
N2

R . (3)

Unlike EMF, which drives electrical charge in circuits, the magnetomotive force F (MMF)
is definitely a misnomer, it may ‘drive’ flux, but not real physical quantity. No power is
actually flowing in the circuit. Furthermore, magnetic circuit representation involves several
assumptions and simplifications:

1. All of the magnetic flux is linked by all the turns of the coil.

2. The flux is confined exclusively within the magnetic core.

3. The density of the flux is uniform across the cross-sectional area of the core.

The full analogies are in Table 1

Electric Magnetic Units
Current I Magnetic Flux
Current Density J Magnetic Flux Density
Conductivity σ Permeability
Applied Voltage V Magnetomotance
Electric Field Strength E Magnetic Field Strength
Resistance R Reluctance
Conductance ρ Permeance

Table 1: Corresponding quantities in electric and magnetic circuits.
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Example 1: Magnetic Circuit with an Air Gap

We’ll analyze the electromagnet and air gap in Figure 2 using Ampere’s and Gauss’ laws.
A current I is applied to two windings. Denote the iron core as f and air gap as g. Let
Li (i = f, g) be measured along the center of the center of the cross-section around the yolk.

Figure 2: Electromagnet with a soft-iron yolk. Each winding has NI/2 A-turns.

1. Using Ampere’s Law, what’s the magnetomotance F? What is the Gauss’ law relation
for the iron core and the air gap?

2. Calculate the flux through the air gap using part 1.

3. Draw the equivalent magnetic circuit.
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Example 2: Variable Reluctance Motion Sensor

An iron core electromagnet forms the sensor: a tabbed steel disk connected to a rotat-
ing shaft rotates between the pole pieces of the sensor. The area of the tab is assumed equal
to the area of the cross section of the pole pieces and is equal to a2.

Figure 3: Variable reluctance sensor for measuring angular position.

1. The principle of operation is that an electromotive force, Vemf, is induced across the
coil by the passage of the tab between the pole pieces when the disk rotates with speed
ω. Draw the shape of the waveform Vemf = es measured across the coil.

2. Using Figure 3(a), draw the equivalent magnetic circuit.

3. What is the equivalent reluctance Rgap?

4. What is the flux φ (θ)? What is the peak Vemf?
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2 Energy Method

The energy method is an amazing application of fundamental ideas in thermodynamics to
the understanding of physical actuators. The first law of thermodynamics states that both
work and heat are forms of energy, and that the total energy is conserved. Generally, we can
write this as

dQ = dE − dW. (4)

Ignoring heat (dQ), we can expand the work done on a system into a set of generalized
displacements dx and generalized forces J such that any infinitesimal transformation can be
given by

dW =
∑

i

Jidxi. (5)

Note that the displacement is usually an extensive quantity, i.e. proportional to system size,
while the forces are intensive and independent of size.

3 Magnetic Actuators and Systems

With this in mind, work in a magnetic system can be expanded in terms of its state variables
as,

dWm = idλ− Fxdx (6)

Differentiating by dt relates the power flow in the system as,

dWm

dt
= i

dλ

dt
− Fx

dx

dt
, (7)

and we can integrate over a constant contour of λ to solve for the force:

Fx =
−dWm

dx
Wm =

λ2

2L
, (8)

which is typically our quantity of interest.
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Example 3: Air Gap Revisited

Consider the toroidal loop with a gap that we studied in Problem Set 3, shown below.
In this case, the toroidal loop has a rectangular cross-section with area A = ab as shown.
The wire wound around the toroid is a short circuited superconductor with initial current I.
For this problem, assume that all of the energy is in the magnetic field of the gap.

Figure 4: Look! Another toroid!

1. What is the stored magnetic energy in the gap in terms of Hg? What is Hg in terms
of i? In terms of λ and L?

2. What is the inductance L of the toroid? What is Hg in terms of the area of the gap?

3. If we make g = g0− x (earlier x = 0), what is the stored energy in terms of Hg? What
is the force fx in the left face of the gap?

4. If we alter the area of overlap so that Anew = a (b− d), what is the new inductance L
of the gap? Hg? Stored magnetic energy and f? (In what direction does f act?)
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Tutorial 6: Magnetic Actuators (cont.) and Electric Machines

1. The fourth problem set is due this Thursday (October 22) in lecture.

1 The Energy Method

Last tutorial, we ended on electromagnetic energy conservation. Recall that for magnetic
systems,

dWm = idλ− Fxdx. (1)

Differentiating by dt relates the power flow in the system, and we can integrate over a
constant contour of λ to solve for the force

Fx = −dWm

dx

∣∣∣
λ

Wm =
λ2

2L
, (2)

Similarly, for electric systems,
dWe = V dQ− Fxdx (3)

which yields the force,

Fx = −dWe

dx

∣∣∣
Q

We =
Q2

2C
. (4)

2 Electric Fields in Materials — Dielectrics and Polarization

Within good approximation, most everyday objects are either conductors or insulators (di-
electrics). Conductors are substances that contain an effectively unlimited supply of free
charges: valence electrons of a given atom permeate the entire material. Electrons in di-
electrics, by contrast, are bound to specific atoms or molecules and can only move within
that atom or molecule. In the presence of an electric field E, the charge distributions of
atoms can change two ways:

1. ‘Stretching’ neutral atoms (or non-polar molecules). The center of charge of
the electron orbital is displaced from the center of charge of the nucleus, leaving the
atom or molecule polarized with an induced dipole moment p = αE, where α is called
the atomic polarizability.

2. ‘Rotating’ polar molecules. Polar and ionic molecules with permanent dipole mo-
ments experience a torque from τ = p× E and are aligned parallel to E.
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The collective dipole alignment of the material is called the polarization P, the dipole mo-
ment per unit volume. For a given dielectric material, the field arising from this polarization
can be calculated from the bound volume (ρb) and surface (σb) charges:

ρb = −∇ ·P σb = P · n̂, (5)

where P is the polarization in the material and n̂ is the surface normal enclosing the dielec-
tric.

Lastly, as the field H characterized the magnetic field arising from free currents in the
material, the displacement field D arises from free charges, and is related to the polarization
and electric field vectors through the constitutive relation,

D = ε0E + P = ε0 (1 + χe) E = εE (6)

where Gauss’s law still holds for ρfree:

"

dA ·D = ρfree. (7)

Page 2



6.007 Fall 2009 Tutorial 6: Magnetic Actuators (cont.) and Electric Machines

Example 1: Air Gap Revisited

Consider the toroidal loop with a gap that we studied in Problem Set 3, shown below.
In this case, the toroidal loop has a rectangular cross-section with area A = ab as shown.
The wire wound around the toroid is a short circuited superconductor with initial current I.
For this problem, assume that all of the energy is in the magnetic field of the gap.

Figure 1: Look! Another toroid!

1. What is the stored magnetic energy in the gap in terms of Hg? What is Hg in terms
of i? In terms of λ and L?

2. What is the inductance L of the toroid? What is Hg in terms of the area of the gap?
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3. If we make g (x) = g0 − x (earlier x = 0), what is the stored energy in terms of Hg?
What is the force fx in the left face of the gap?

4. If we alter the area of overlap so that Anew (d) = a (b− d), what is the new inductance
L of the gap? Hg? Stored magnetic energy and f? (In what direction does f act?)
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Example 2: Capacitor with a Spring

Figure 2: Two charged Plates, one attached to a spring.

Consider the capacitive structure shown in Figure 2. Two conducting plates are positioned
near each other. The top plate is attached to a spring, so that the spring exerts no force
when the overlap distance of the two plates is x◦ as shown above. Assume the plates extend
a distance w into the page along the ŷ direction. Also assume that the spring exerts a force
of fs = K(x− x◦) [N ], where x is the position of the left edge of the top plate.

After assembling the system shown, we then place a charge of +Q on the top plate and −Q
on the bottom plate and watch how the system moves.

1. What is the force acting on the top plate in the ẑ direction (as a function of Q)?

2. What is the force acting on the top plate in the x̂ direction (as a function of Q)?

3. Ignoring the spring, if we allow the top plate to move in the ±x̂ direction how will the
voltage change as the plates move?
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4. If we connect a voltage source with voltage V across the two plates and let the top
plate move in the ±x̂ direction

(a) for what value of overlap x will the system reach equilibrium?

(b) what is the capacitance of the parallel plate structure at this point?

(c) what is the total charge Q at this point?
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Example 3: iPhone Accelerometer — Linear electrostatic actuator

The iPhone uses an accelerometer with a detached silicon mass to detect its orientation.
The mass is connected to dielectric arms and the capacitance of the structure depends on
the position of the mass. We can detect orientation relative to the gravitational field by
measuring the flow of charge onto or off of the capacitors as their capacitance changes. We
will consider the one dimensional version of this device shown in Figure 3.

w

w

x

v
+

A
1 2

g

depth d into paper

Si mass

W

Figure 3: One dimensional version of the iPhone accelerometer. Capacitors 1 and
2 are connected in parallel to bias voltage v. Each has plate width w, separation g,
and an adjustable dielectric of length w. The dielectric completely fills the capacitor
in the vertical dimension and moves without fiction. At x = 0, each capacitor is half
filled with dielectric; thus the valid range of x is −w/2 < x < w/2. The structure
extends depth d into the paper.

1. The capacitors of our 1D accelerometer are connected in parallel as shown. Find
q1(v, x) and q2(v, x), where qn is the charge on the top plate of capacitor n and v is
the applied voltage.

2. Determine the total electrostatic force on the silicon mass as a function of position x.
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3. In terms of the density of silicon ρ, what is the gravitational force on the free silicon
mass? Find the steady state deflection when gravity points in the +x̂ direction. Note
the allowed range of x is −w/2 ≤ x ≤ w/2.

4. Assume g = 1 µm, w = 10 µm, W = 50 µm, d = 10 µm, V = 3.3 V, and ρ =
2.3 g/cm3. The dielectric is SiO2 with ε = 3ε0. The device is initially aligned so that
gravity points in the +x̂ direction. If the device flips orientation, how many electrons
flow past point A in the figure?
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Tutorial 7: Electromagnetic Waves and Polarization

1. The fifth problem set is due this Thursday (October 29) in lecture.

2. Liquid crystal display lab tonight and tomorrow!

3. Recommended reading this week: The Lorentz Oscillator and its Applications, Chapter
3 in Shen and Kong, and phasor manipulations from the first problem set and tutorial.

1 Electromagnetic Fields

An amazing thing happens when we solve Maxwell’s Equations in a vacuum: electromagnetic
fields can leave their sources and travel alone through space. Our primary interest for the
next two weeks is to understand these plane wave solutions—

E (r, t) = Re
[
Ẽej(ωt−k · r)] (1)

—in the context of polarization (Ẽ) and propagation (k) in free space and materials.

1.1 The Wave Vector k

The wave vector k specifies the direction of propagation (i.e., power flow of the wave) and
the spatial variation of an electromagnetic wave. Generally,

k = kxx̂+ kyŷ + kz ẑ |k| = 2π

λ
. (2)

Maxwell’s Equations for the plane wave solution in Equation 1 are given by,

Faraday: k× E = −ωµH Gauss: k ·E = 0

Ampere: k×H = ωεE Gauss: k ·H = 0 (3)

from which it can be shown that

ω2µε = k2 = k ·k, (4)

which relates the spatial and temporal frequencies (known as a dispersion relation), and
that

η =
|E|
|H| =

√
µ

ε
, (5)
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which defines an electromagnetic impedance in a medium. In free space, η = 377Ω ≈
120π.

The Poynting vector S specifies the density of power flow from E and H and is generally
in the direction of k. There are two formulae depending on whether the fields are real or
written as phasors:

S = E×H 〈S〉 =
1

2
Re

[
Ẽ× H̃∗

]
. (6)

1.2 Polarization

An electromagnetic wave’s polarization describes its orientation as it propagates through
space. Let’s consider an expanded and simplified version of Equation 1,

Ẽ (z) = x̂Exe
−jkz + ŷEye

−jkzejφ. (7)

The polarization here is completely described by the ratio Ey/Ex and the phase difference φ
between the two waves. Let’s consider some special cases, There are as many ways to write

polarization as there are ways of manipulating phasors, so I recommend you review the
manipulations from the first tutorial. Furthermore, the representation of the polarization
of a wave is not unique. In general, any polarization can be broken down into a sum of
orthogonal polarizations (think basis vectors in signals and systems).

2 Birefringence

Birefringent media change light polarization by changing φ. In a birefringent medium, the
x̂ and ŷ directions have different indices of refraction nx and ny. By convention, we assume
that x̂ is aligned with the ‘fast’ (or extraordinary) axis and that û is aligned with the ‘slow’
(or ordinary) axis, resulting in nx > ny. Equation 1 becomes

Ẽ (z) = x̂Exe
−jkxz + ŷEye

−jkyzejφ. (8)
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Figure 1: Perfect polarizer.

The x̂ component develops a phase kxl after traveling a distance l in the medium. The
resulting phase difference is given by

∆φ = φ (L)− φ (0) = kl (nx − ny) . (9)

Lastly, when a perfect polarizer is placed in a polarized beam of light, the intensity, I, of the
light that passes through is given by

I = I0 cos2 θi, (10)

where I0 is the initial intensity and θi is the angle between the light’s initial polarization
direction and the axis of the polarizer. This is shown in Figure 1 below, where θi = θ1 − θ0.

3 The Lorentz Oscillator Model (Introduction)

Our experiences in everyday life tell us that transparent optical materials have a non-uniform
frequency response: prisms and raindrops disperse white light into rainbows, and deflect
certain colors more than others. The Lorentz Oscillator model is a semi-classical model
describing this frequency response in term so of material polarization and a driving electric
field (light). This second-order model is given by,

d2P

dt2
+ γ

dP

dt
+ ω2

0P =
Nq2

m
E

= ε0ω
2
pE. (11)

Substituting P̃ = Pejωt and Ẽ = Eejωt (or equivalently take its Fourier transform), the
relative permittivity is given by

ε̃r (ω) =
ε̃

ε0
= 1 +

ω2
p

(ω0 − ω)2 + jωγ
, (12)

and accordingly, the index of refraction is given by

ñ =
c

vp
=

√
µε

µ0ε0
=

√
µr ε̃r = n− jκ. (13)
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Example 1: Electromagnetic Waves

1. Matching waves:

E Statement
ŷE0e

−jx+jz 1. Wave in a lossy medium

(x̂+ jẑ)E0e
j2y 2. Right-circularly polarized wave

ẑE0e
ye−j2x 3. Left-circularly polarized wave

(ŷ − jẑ)E0e
−j2x−j3z 4. Evanescent wave in lossless medium

ŷE0e
−jx−αx 5. Wave propagating at π/4 to x̂

x̂E0e
−jye−2z 6. Impossible E!

7. None of the above!

Table 1: Match each wave to one statement that describes it.

2. What is the H fields that accompanies E = x̂E0 cos (ωt− kz) and E = ŷE0e
−jx+jz?

3. What is the power flow (S and 〈S〉) for each of these waves?

4. What is the propagation frequency ω of the first wave?
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Example 2: Birefringence and Wave Plates

1. Your thesis is due tomorrow and you need to rotate laser light (λ = 700nm) polarized
along the ŷ-axis to the x̂-axis. Your have some birefringent glass with ∆n = 0.5. How
must the glass be aligned to achieve this rotation? How thick should it be?

2. An EM wave described by E (r, t) = x̂E0 cos (ωt− kz) − ŷE0 sin (ωt− kz) is sent
through an appropriately chosen 3/4 wave plate. What is the resulting EM wave?
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Example 3: Waves in Conductors—Lorentz Oscillator

An x̂-polarized electromagnetic wave E is traveling in conducting medium.

1. What is a general wave vector k describing E’s in the medium?

2. What are E, H, S, and 〈S〉?

3. What is the penetration depth d in terms of λ and ωp?
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Tutorial 8: Electromagnetic Waves at Boundaries

1. Problem set 7 is due this Thursday (November 5) in lecture. LCD lab write-up due
Tuesday in lecture.

2. Midterm 2 next Thursday, November 12.

3. Recommended reading this week: The Lorentz Oscillator and its Applications.

1 The Lorentz Oscillator Model

Our experiences in everyday life tell us that transparent optical materials have a non-uniform
frequency response: prisms and raindrops disperse white light into rainbows, and deflect
certain colors more than others. The Lorentz Oscillator model is a semi-classical model
describing this frequency response in term so of material polarization and a driving electric
field (light). This second-order model is given by,

d2P

dt2
+ γ

dP

dt
+ ω2

0P =
Nq2

m
E

= ε0ω
2
pE. (1)

Substituting P̃ = Pejωt and Ẽ = Eejωt (or equivalently take its Fourier transform), the
relative permittivity is given by

ε̃r (ω) =
ε̃

ε0
= 1 +

ω2
p

(ω0 − ω)2 + jωγ
, (2)

and accordingly, the index of refraction is given by

ñ =
c

vp

=

√
µε

µ0ε0
=

√
µr ε̃r = n− jκ. (3)

2 Reflection and Transmission at Boundaries

When an electromagnetic wave is normally incident at a boundary, Ei and Hi are parallel to
the surface of the boundary. Applying boundary conditions for the incident, reflected, and
transmitted waves, it can be shown that,

r12 =
Er

0

Ei
0

=
η2 − η1

η2 + η1

=
n1 − n2

n2 + n1

(4)



6.007 Fall 2009 Tutorial 8: Electromagnetic Waves at Boundaries

t12 =
Et

0

Ei
0

=
2η2

η2 + η1

=
2n1

n2 + n1

. (5)

Reflection and transmission of power at boundaries with oblique (θ > 0) angles of incidence
is described by Fresnel’s equations (covered in lecture this week).

3 Interference

Under some conditions we can add the electric fields from two or more waves. Depending on
the relative phases of the individual waves the sum can be larger, smaller, or the same as the
amplitude of one of the components. This effect is called interference, and the observation
of interference patterns is one of the strong arguements for the wave nature of light. The
truth, of course, is quite a bit stranger.

For now lets restrict ourselves to the case of two waves, at the same wavelength, traveling
along z. Lets assume that wave 1 has zero phase at the position z = 0 and wave 2 has phase
φ at z = 0. We can then write the expressions for each wave, and the sum.

Wave 1:

Wave 2:

Sum:

When the waves are both traveling in the same direction along z, what happens to the
amplitude of the wave as φ is changed?

This gives us the following conditions for constructive and destructive interference.

Constructive:φ = 2Nπ (6)

Destructive:φ = (2N + 1)π (7)

If one wave travels along +ẑ and the other along −ẑ what happens to the sum of the waves
written above?

Why would we call this a standing wave pattern?
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Example 1: Metal Mirrors

In this problem, we’ll consider the power reflectivity (|r|2) for metals using the Lorentz
oscillator model. Consider power reflectivity for a variety of metals plotted below. The
metal sample we have in mind is thick and has a plasma frequency ωp dependent on the free
electron density in the metal.

Problem 3.3: Reflection from a Metal Surface 

From Problem 1.6 we learned that the complex refractive index of a metal in the limit where the period of 

the light wave is much shorter than the momentum relaxation time of the electrons in the metal is given by  

 
2

( ) j 1
pl

r in n n
!

!
!
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) *
 with  

m

Ne
pl

0

2

0

+
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where N is the free electron density in the metal. For 
pl! !,  the optical wave can propagate in the metal; 

for 
pl! !-  the wave can not propagate in the metal. Thus one expects that metals are good reflectors for 

pl! !- . For simplicity we only treat the case of normal incidence. 

 

(a) Give an expression for the power reflectivity at an air/metal interface for pl!! ,  and 
pl! !- . 

(b) A typical metal has an electron density . Determine the corresponding plasma 

frequency 

32810.6 &$ mN

pl!  and plasma wavelength 
pl.  and the value for the reflectivity at nm125$.  

and nm150$. . 

(c) Below, you can see the diagram of reflectance R versus wavelength .  for 4 different metals. 

Calculate the approximate N (density of electrons) from this diagram for Ag, Au and Cu. 

 

 
[Optics, Hecht, 1987, Fig 4.42] 

(G) Problem 3.4: Goos-Hänchen Shift and Dispersion 

This problem is about deriving the Goos-Hänchen shift. This shift occurs when a beam of finite size that 

is polarized parallel or orthogonal to the plane of incidence undergoes total internal reflection at an 

interface from an optically denser to an optically thinner medium.  

 

The superposition of two plane waves with slightly different angles of incidence but with the same 

frequency or wavelength is given by 

 

/ 01 2j j/ j( , , )
k r k rTE TM tE x z t E e e e !1 1 &$ %
! !

! !! !

1  with  

!
"#$%&'(!)'*!+! ",-'!.!

 

1. In the Lorentz oscillator model of a metal, which parameter(s) (ωp, ω0, γ) do we assume
is negligible (i.e., zero)? What is n (ω)?

2. Plot n and κ for a metal as a function of ω. For what range of frequencies would we
expect a metal to be a good reflector?
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3. Given an expression for the power reflectivity at an air/metal interface for ω > ωp and
ω < ωp.

4. Use the figure to give qualitative explanations of the following:

• Why is copper yellow?

• Why is silver used for mirrors instead of (cheaper) aluminum?
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Example 2: Multiple Slit Grating

Draw the diagram used to compute the pattern for a two slit grating:

What assumptions do we need to make to get the far field pattern:

Draw the diagram you would use to compute a four slit pattern:

Write an expression for the electric field at some angle θ in the far field, assuming all slits
are illuminated with the same amplitude and phase. .

We can extend this result to the case of N slits using the expression for the sum of the first
N terms in a geometric series.

Using a similar logic, it’s possible to solve the case of a double slit illuminated off axis. Write
the electric field sum, taking into account the phase of the light at each aperature.

Page 5



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.007 – Applied Electromagnetics
Fall 2009

Tutorial 9: Midterm 2 Review

Notes:

1. The second midterm this Thursday will be held in 36-156 from 7:30 - 9:30PM (the
usual lecture room 37-212 is not available). It will cover material from problem sets
4-7 and labs 2-3 (lectures 11 - 28). You’ll be allowed one page of notes, front and back.

2. Extra office hours will be held on Tuesday in 26-314 from 3-6PM. Regular office hours
will also be held on Wednesday in 36-144 from 6-8PM (despite the holiday). Bill,
Kevin, and I will be in lab on Monday/Tuesday in case there are extra questions.

3. Send me (mookerji@mit.edu) an email if you need to take a conflict exam.

4. Relevant readings: The Lorentz Oscillator and its Applications, Shen and Kong: 1
(complex phasor notation), 3 (uniform place waves), 4 (reflection/transmission of
waves), 8 (plane waves in anisotropic media).

Notes:

1. Forces and the energy method

(a) Magnetic circuits

(b) Electric actuators and sensors

2. Quasi-static limit of Maxwell’s equations

3. Maxwell’s equations in differential form

(a) Solving for Helmholtz wave equation, which gives waves in terms of angular fre-
quency, ω, and spatial frequency, k or β, related by dispersion relation (ω = ck0

in free space, ω = c
n
k in a material with index of refraction n).

(b) Impedance, η, relates E and H; in free space, η0 =
√

µ0/ε0 ≈ 377Ω.

(c) Phasor notation for uniform plane waves: E = Re
[
Ẽej(ωt−βz)

]
.

(d) Power/Area = Intensity → I = |S|; Poynting vector S = E×H, and for phasors〈
S̃
〉

= 1
2

〈
Ẽ× H̃∗

〉
.

4. Waves in polarizable media
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(a) Linear materials → D = εE, B = µH

(b) Lorentz oscillator model

(c) Dissipation in non-magnetic materials: complex ε̃(ω)

i. Complex index of refraction: ñ =
√

εr = n− jκ

ii. Complex wave number: k̃ = ñk0 = k − jα

iii. Complex impedance: η̃ =
√

µ/ε̃

5. Polarization of fields

(a) Linear polarizers and intensity transmitted (Malus’ Law)

(b) Circular/elliptical polarization, right-handed and left-handed

(c) Birefringence

i. Wave plates

ii. Uniaxial material with optic axis (has extraordinary index, ne, for waves
polarized in optic axis direction, and ordinary index, n0, for waves propagating
along optic axis)

(d) Liquid crystals and LCD displays.

6. Reflection/Transmission at boundaries

(a) Boundary conditions for E and H

(b) Diffraction

(c) Normal incidence reflection and transmission

Page 2
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.007 – Applied Electromagnetics
Fall 2009

Tutorial 10: Midterm 2 Questions and Oblique
Transmission/Reflection

Notes:

1. Optics lab writeup due tomorrow (November 17); problem Set 8 due Thursday (Novem-
ber 19).

2. Recommended reading in Shen and Kong, Chapter 4 (pg. 85—112). This chapter does
a great job of explaining TE and TM wave reflection and transmission.

1 Quiz 2 material

1.1 Partially Filled Capacitor

Partially Filled Capacitor, similar to the quiz problem.

There are two methods to solve for the capacitance of this structure. You can either apply
boundary conditions at the interface to get the fields in both regions or you can recognize
that this is two capacitors in series (NOT two capacitors in parallel as in previous problem
sets).

Boundary Conditions Solution:

Which of the following equations describes the fields we are interested in at the boundary
between material 1 and 2?

n̂× (H1 −H2) = Js n̂× (E1 − E2) = 0 (1)

n̂ · (B1 −B2) = 0 n̂ · (D1 −D2) = ρs (2)
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What is the E-field in Region 1 and how do we find it?

What is the E-field in Region 2 and how do we find it?

What is the capacitance of the structure?

Series Capacitors Solution:

What is the capacitance of the top half of the structure?

What is the capacitance of the bottom half of the structure?

What is the capacitance of the total structure?

1.2 Forces using the energy method revisited

In previous tutorials/lectures, we developed a method for computing forces using the stored
energy in the system.

Recall that for magnetic systems,

dWm = idλ− Fxdx. (3)

Differentiating by dt relates the power flow in the system, and we can integrate over a
constant contour of λ to solve for the force

Fx = −dWm

dx

∣∣∣
λ

Wm =
λ2

2L
, (4)

Similarly, for electric systems,
dWe = V dQ− Fxdx (5)

which yields the force,

Fx = −dWe

dx

∣∣∣
Q

We =
Q2

2C
. (6)

Page 2
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How do we apply the formulas above?

First, understand that we need to define the variable x as increasing in the direction we
expect the force to be acting. Then, write an expression for the stored energy (or induc-
tance/capacitance) in terms of the problem dimensions and the variable x.

I would advise you on problem sets and quizzes to define the magnitude of the force and
then describe how it’s acting on the system (closing the gap, opening the gap, drawing the
plates together, forcing the plates apart, etc.).

1.3 What happens when you leave the battery connected? Or why we keep Q
and λ constant.

Partially Filled Capacitor, similar to the quiz problem.

In applying the energy method we need to keep Q constant for electrostatic problems or λ
constant for magnetostatic problems.

Consider the diagram above, what happens to Q as we change the distance between plates?
Is Q2 > Q1 or is Q2 < Q1?

We know that the charge changes, so in addition to moving the plates we are also moving a
charge either along or against the voltage drop in the source.

2 Oblique Incidence Reflection and Transmission

In questions of oblique incidence, we consider a plane wave from a medium (ε0, µ0) incident
on another medium (εt, µt). Such a case is shown in Figure 1, where the incident plane wave
is linear polarized in ŷ. The x̂− ŷ plane is called the plane of incidence, which is the plane
formed by the normal to the boundary surface and the incident incident k. The incident wave
in Figure 1 is called transverse electric (or ‘TE’) because E is perpendicular (or transverse) to
the plane of incidence. If E is in the plane of incidence and H is transverse, the incident wave
is a TM (transverse magnetic) wave. Remember that a TE (TM) wave’s incident, reflected,
and transmitted E’s (H’s) will always be orthogonal to the plane of incidence.

Page 3
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Figure 1: Reflection and transmission of TE waves at a plane boundary separating
Regions 0 and t. Each arrow has a magnitude k and direction θ given by k.

2.1 Boundary Conditions and Phase Matching

Solving an oblique incidence problem boils down to knowing two things: first, reflected and
transmitted wave amplitudes (given dutifully by the Fresnel coefficients), and second, the
reflected and transmitted wave vectors k, whose angles are determined by Snell’s law (how
are the magnitudes determined?). Let’s examine the TE case in Figure 1.

The wave solutions in each region are written in Equation 7. Recall that the E’s will be
pointing in ŷ for a TE wave, so we can write down each E and relate their amplitudes using
the Fresnel coefficients (which we use assumed values):

Incident Reflected Transmitted

k = x̂kx + ẑkz k = −x̂krx + ẑkrz k = x̂ktx + ẑktz

Ei = ŷEie
−jk · r Er = ŷrTEEie

−jkr · r Et = ŷtTEEie
−jkt · r

Hi =
k× Ei

ωµ0

Hr =
kr × Er

ωµ0

Ht =
kr × Et

ωµt
(7)

The Fresnel coefficients can be derived by applying boundary conditions to the incident,
transmitted, and reflected waves at the x = 0 boundary. If the incident wave medium has
index n0 and the transmitted wave medium has index n1, the Fresnel coefficients to relate
the amplitudes of ETE

r and ETE
t are1

tTE =
(2 cos θi)n1

(cos θi)n1 + (cos θt)n2

rTE =
(cos θi)n1 − (cos θt)n2

(cos θi)n1 + (cos θt)n2

. (8)

The H fields in these regions are then determined using Ampere’s law, assuming we figure
out the k’s (which we’ll get to in a minute).

1There are several equivalent ways of writing the Fresnel coefficients, this one is the easiest to calculate
using n’s and θ’s.

Page 4
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We now know the amplitudes for the TE wave case, so we need to determine kr and kt.
A second consequence of applying boundary conditions is called phase matching. These
conditions imply that the tangential components of three wave vectors k (incident), kt, and
kr are equal,

kz = krz = ktz. (9)

In terms of angles defined in Figure 1,

k sin θi = kr sin θr = kt sin θt. (10)

This equality has a few practical consequences,

1. The first equality relates the incident and reflective angles. Because the k vector
magnitudes in the incident medium are equal, θi = θr as sin θi = sin θr.

2. The second equality yields Snell’s law, which relates the k vectors in the incident (index
n0) and transmitted (index n1 = nt) media,

sin θt
sin θi

=
k

kt
=

√
µ0ε0√
µtεt

=
n0

nt
, (11)

or,
n0 sin θi = n1 sin θt. (12)

Recall that the critical angle θc = θi for total internal reflection is given when θt = π/2.

3. It can be shown by setting rTM = 0 (Equation 16) that

θr + θt = θi + θt =
π

2
, (13)

which implies that

n0 sin θi = n1 sin θt = n1 sin
(π

2
− θi

)
= n1 cos θi, (14)

or
tan θi =

n1

n0

. (15)

The initial angle for which the TM wave is totally transmitted is called Brewster’s angle.
Physically we can explain this by visualizing the dielectric media as consisting of dipoles
that are excited by the transmitted wave and radiating at the same frequency. Each
individual dipole has a radiation pattern that is maximum in a direction perpendicular
to the dipole axis and null along the dipole axis. For a TM wave excitation, all dipoles
oscillate parallel to the plane of incidence along the E-field lines. At the Brewster angle
of incidence, the reflected kr vector is in the same direction as the dipole oscillation in
the transmitted medium. Thus, no TM wave is reflected.

The TM analysis is a straightforward permutation of the analysis in Equation 7 (where
TE→ TM, E→ H, and µ→ −ε), and Fresnel coefficients are,

tTM =
(2 cos θi) /n1

(cos θi) /n1 + (cos θt) /n2

rTM =
(cos θi) /n1 − (cos θt) /n2

(cos θi) /n1 + (cos θt) /n2

. (16)

Page 5
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Example 1: Optical Fiber

Figure 2: An optical fiber consists of a glass core of index n1 surrounded by a coating
of index n2 < n1. Suppose the beam of light enters the fiber from air at an index of
θ

1. Using Snell’s law, write down the expression for the smallest angle φ for which total
internal reflection will occur.

2. Show that the greatest possible value for φ for which a ray can be propagated down a

fiber is given by sin θmax = (n2
1 − n2

2)
1/2

.

Page 6



6.007 Fall 2009 Tutorial 10: Midterm 2 Questions and Oblique Transmission/Reflection

Example 2: Incidence Waves

A uniform plane wave in air impinges on a lossless dielectric medium at π/4. The transmitted
wave propagates at π/6 with respect to the normal. It’s frequency is 300MHz.

1. Find ε2 in terms of ε0.

2. Find the reflection coefficient r.

3. Obtain the mathematical expressions for the incident E, reflected E, and transmitted
E.

4. In both media, sketch the standing-wave pattern of |Ex,total| as a function of z.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.007 – Applied Electromagnetics
Fall 2009

Tutorial 11: Quantum Mechanics in 1-D Potentials

Notes:

1. Problem set 9 due Thursday after Thanksgiving.

2. Recommended reading in French and Taylor: Chapters 3 and 4. Chapters 1 and 2 in
David Griffiths’ Introduction to Quantum Mechanics are also useful. Both should be
in Hayden, Barker, and/or the Physics Department Reading Room.

Quantum mechanics is an amazing model of the universe, allowing us describe atomic scale
behavior with great accuracy—but in a way completely divorced from our perception of
reality. Are such small things particles? Waves? Wave-particles? Not really. It’s equally
well-said that they may behavior like neither, and in this way we must treat them with
mathematical abstraction.

1 Rules for 1-D Quantum Mechanics

Our mathematical abstraction of choice is the wave function, sometimes denoted as ψ, and
it allows us to predict the statistical outcomes of experiments (i.e., the outcomes of our
measurements) according to a few rules

1. At any given time, the state of a physical system is represented by a wave function
ψ (x), which—for our purposes—is a complex, scalar function dependent on position.
The quantity ψ (x) = ψ∗ (x)ψ (x) is a probability density function. Furthermore, ψ is
complete, and tells us everything there is to know about the particle.

2. Every measurable attribute of a physical system is represented by an operator that acts
on the wave function. In 6.007, we’re largely interested in position (x̂) and momentum
(p̂) which have operator representations in the x-dimension

x̂→ x p̂→ ~
i

∂

∂x
. (1)

Outcomes of measurements are described by the expectation values of the operator

〈x̂〉 =

∫
dxψ∗xψ 〈p̂〉 =

∫
dxψ∗

~
i

∂ψ

∂x
. (2)
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In general, any dynamical variable Q can be expressed as a function of x and p, and
we can find the expectation value of

〈Q (x, p)〉 =

∫
dxψ∗Q

(
x,
h

i

∂

∂x

)
ψ. (3)

3. The time evolution of the wave function is described by the Schrodinger wave equation,
a partial differential equation that is fundamentally a statement of energy conservation:

i~
∂ψ

∂t
=

(
p̂2

2m
+ V (x̂)

)
ψ

= − ~2

2m

∂2ψ

∂x2
+ V (x̂)ψ. (4)

The operator acting on ψ on the right is called the Hamiltonian. Fixed energy
solutions—eigenstates—of this equation are called stationary states (because they don’t
evolve in time), and are found by solving

Eψ = − ~2

2m

∂2ψ

∂x2
+ V (x̂)ψ. (5)

2 Heisenberg Uncertainty and Photons

In lecture, our characterization of measurement uncertainty dealt with the observation of
electrons with photons of definite energy and momentum

E = ~ω p = ~k =
2π~
λ
. (6)

The Heisenberg microscope shows that it’s difficult to simultaneously know the position and
momentum of observed electrons with great precision:

∆x∆p ≥ ~
2
. (7)

From basic probability theory, it can be shown that the uncertainty in x is given by,

(∆x)2 = 〈x2〉 − 〈x〉2. (8)

2.1 Infinite Square-Well

There are painfully few exactly-solvable potentials in quantum mechanics. The energy eigen-
states of the infinite square well problem has several important features:

Page 2
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1. Solutions to 1-D Schrodinger equation are eigenstates given by

ψn (x) =

√
2

L
sin (knx) =

√
2

L
sin
(nπ
L
x
)

(9)

with associated energies

En =
~2k2

n

2m
=
n2π2~2

2mL2
. (10)

Note that these are called energy eigenstates because they were states of definite energy,
meaning that ∆E = 0.

2. The eigenstates are alternately even and odd with respect to the center of the well.

3. The eigenstates are mutually orthogonal, meaning that
∫
ψ∗m (x)ψn (x) = δmn, (11)

where δmn is 0 if m 6= n, and 1 if m = 1. For calculating expectation values for the
infinite square well where m = n, the following identity will be useful:

sin2 (θ) =
1

2
[1− cos (2θ)] . (12)

3 Qualitative Properties of Wave Functions

When we are only interested in qualitative behavior of the wave function then we can sketch
expected wave functions for different energy levels following some simple rules:

1. Outside of the potential well we expect the wave function to decay smoothly to zero.
The larger the difference between the potential V and the particle energy E, the faster
we expect the wave function to decay. If the potential V at the boundary is infinite,
then the wave function will go to zero right at the boundary.

2. Inside the potential well, we expect the wave function to behave roughly like a sine or
cosine function.

3. We expect any symmetry in the potential well to be reflected in the wave function.
If we identify a point of symmetry in the potential, then the wave function should be
either an even or odd function about that point.

4. The number of nodes in the wave function for a state should be the state number (n)
minus 1 (n = 1 for ground state, 2 for first excited state, and so on).

5. The curvature of the wave function is related to the kinetic energy of the state. If
the well has a potential that varies with position, then in regions with higher kinetic
energy the wave function should have a shorter “wavelength”.

6. If the well has a potential that varies with position, the particle will spend less time in
regions where it has higher potential energy so the wave function will be (relatively)
smaller in those regions.
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Example 1: Mystery Wave Function

Consider the wave function
ψ (x, t) = Ae−λ|x|e−iωt, (13)

where A, λ, and ω are positive, real constants.

1. Normalize ψ.

2. Determine the expectation values of x and x2.

3. Find the standard deviation of x. Sketch the graph of |ψ|2, as a function of x, and
mark the points 〈x〉 + σ and 〈x〉 − σ to illustrate the sense in which σ represents the
‘spread’ in x. What is the probability that the particle would be found outside this
range?
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Example 2: Qualitative Wave Functions

Using the rules from “Qualitative Properties of Wave Functions”, sketch the wave function
for the first several energy states for the following potential wells.
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.007 – Applied Electromagnetics
Fall 2009

Tutorial 12: Tunneling and Flash Memory

Notes:

1. Quantum tunneling lab tonight and tomorrow. Final problem set due Thursday.

The coming two weeks is devoted to understanding the implications of quantum mechan-
ics to modern electronics (semiconductors and metals, in particular) and optoelectronics
(lasers). Wave function transmission/reflection is analogous to examples of evanescent wave
reflection/transmission for EM waves incident at the critical angle or sound waves leaking
through walls, so it may help to make these connections as we finish this material.

1 1D Wave Functions, Potentials, and Scattering

Evanescence occurs in a wave propagation problem when a thin medium (labeled ‘2’) is
situated between two identical media (labeled ‘1’) and the properties of these media are such
that the wave equation has propagating solutions in medium 1, but decaying solutions in
medium 2. In optics, medium 1 might be vacuum and medium 2 might be a conductor (metal)
or plasma. In quantum mechanics, medium 1 is a region of space where the particle’s total
energy is greater than its potential energy, and medium 2 is a region of space (or ‘barrier’)
where the particle total energy is less than its potential energy.

In each region, we are looking for stationary (fixed in time) solutions to Schrodinger’s equa-
tion,

− ~2

2m

d2ψ

dx2
+ V ψ = Eψ. (1)

As in normal incidence reflection/transmission for EM plane waves, we can follow several
steps for relating the amplitudes of the reflected and transmitted waves—

1. Write down wave functions in each region of constant potential. Solutions will either
oscillate (eikx) or decay (e−kx) depending on the sign of k2 when solving the wave
equation—

d2ψ

dx2
= k2ψ k2 =

2m

~2
(V − E) . (2)

—which, in turn, is dependent on weather V > E or V < E.

2. Match boundary conditions for wave function and its derivative at the boundary (here
x = 0) of finite potential.

ψ1

(
0+

)
= ψ2

(
0−

)
. (3)
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dψ1

dx
|x=0+ =

dψ2

dx x=0−
. (4)

3. Normalize wave functions or use initial conditions.

In class, we discussed a few examples using constant potentials. Potentials with spatial
variation can be handled by the WKB approximation technique (see 6.728).

1. Finite potential step. For this scattering problem, an propagating wave is incidence
at a barrier V (x = 0 → ∞) at x = 0. If E > V , the reflection and transmission
solution,

R = |1− k2/k1

1 + k2/k1

|2 T =
4k2/k1

|1 + k2/k1|2
, (5)

was exactly similar to the case of EM normal incidence. If E < V , R = 1 and T = 0,
and the incident wave is totally reflected.

2. Finite potential barrier. An incident wave here is can be transmitted partially
through finite barrier of potential V spanning from x = −a to x = a. For the E < V
case,

T =
1

1 + V 2

4E0(V−E0)sinh2(2κa)

≈ 1

1 + V 2

16E0(V−E0)

e−4κa =
16E0 (V − E0)

V 2
e−4κa, (6)

where the last step is an approximation taken for wide barriers. This problem and its
applications to flash memory are examples later in the handout.

2 Simple Approximations of Molecular Structure

Our discussion on solids this week will be mostly qualitative, starting with the square-well
approximation of the Coulomb potential. More on band structure of solids next week.
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Figure 1: Floating Gate Flash Memory Structure. The dielectric constant of SiO2

is 3εo. The thickness of the oxide between the substrate and the floating gate is
10 nm and the thickness of the oxide between the control gate and floating gate is
45 nm. The floating gate is 10 nm thick.

3 Flash Memory Structure

Flash memory stores information by changing the charge on a floating gate (a piece of metal
that is not contacted to other conductors). We interpret a floating gate with a positive
charge as a 1 and a floating gate with a negative charge as a 0. The details by which the
flash memory is read (e.g. how we detect the presence of a positive or negative charge) is a
topic best left to 6.012. A one sentence explanation is: when there is a positive charge on
the floating gate, current can flow from the source to the drain and we read a 1; when there
is negative charge on the gate, current cannot flow and we read a 0.

The interesting part (that you won’t learn in 6.012) is how we change the charge on the
floating gate. To write a bit, we must somehow put electrons on or take electrons off of the
isolated bit of metal. The write operation is accomplished through electron tunneling and is
explored in a following problem.
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Example 1: Finite Potential Barrier Reflection/Transmission

Consider a potential barrier V = V0 from x = 0 to x = a and 0 everywhere else.

1. Write the Schrodinger wave solutions in each region? What is the wave vector k for
each solution?

2. What are the boundary condition equations for each reflecting interface?

3. What ratio of amplitude coefficients determine T? Using the boundary equations from
the previous part, relate the incoming and outgoing coefficients for the wave function
amplitudes as a matrix equation.
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Example 2: Tunneling of Electrons out of Quantum Wells

George Gamow is interested in designing a delay circuit using a quantum well structure.
The basic idea is to capture an electron in a quantum well temporarily, and then detect after
it has leaked out. The potential energy diagram of the structure is drawn in the figure below.
The electron is initially in the ground state of Well 1. The electron is promoted to an excited

state near the top of the well by absorbing light from a laser pulse (the laser pulse lasts only
a few femtoseconds). When the electron reaches the excited state, there is a possibility that
it will tunnel into an excited state of Well 2, where it can lose energy to lattice vibrations
and decay to the ground state (this decay takes about 1 psec). If designed properly, the
electron will make it to the ground state of Well 2 where it will remain for a time τ (about 1
nsec) before tunneling out to the right side of Well 2 where it will be collected. In the figure
all potential barriers are at V0 above the bottom of the wells, which is at E = 0. Assume
that Well 1 has a width L1, and that well 2 has a width L2.

1. If a classical electron, of mass m, is in Well 2 at energy E2, what is the classical velocity
of the electron?
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2. How many times per second would the classical electron inside Well 2 with energy E2

hit the thin barrier (of width d)?

3. What is the probability that quantum mechanical electron tunnels through the thin
barrier (of width d) during a bounce?

4. If the electron is at energy E2 inside Well 2, find an expression for the tunneling rate
out of Well 2. (Note 1/τ is not an acceptable answer.)
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Example 3: Reading and Writing Flash Memory

To begin, let’s assume that we have already written information to our memory and charge
is stored on the floating gate. Let’s further assume that we have an excess of electrons on
the floating gate (thus the bit represented is a logical 0). We are interested in how long the
bit will remain a logical 0. We know that the electrons will eventually tunnel through the
oxide, depleting the charge on the floating gate. When the charge on the floating gate is
nearly depleted, we will no longer be sure of the logical value of the bit.

If a single free electron is present in the floating gate, it will see the 10 nm thick poten-
tial barrier, shown in the figure below. The 3.2 eV potential barrier represents the energy
difference between the electron levels of the conductor that forms the floating gate and the
electron levels of SiO2 (an insulator). As the floating gate is only 10 nm wide, it is a quantum
well within which the energy of the electron is quantized.

10 10 45nm

SiO2SiO2 FGSubstrate CG

3.2eV

0eV

1. Estimate the ground state energy level (n = 1) of the electron on the floating gate by
using the energy level spacings of the infinite potential well.

2. What is the transmission probability T that the electron will tunnel through thick
dielectric? What is T for the thin dielectric?

To write a flash memory bit, we apply a 13 V potential across the floating gate as shown in
the right figure. (The source, drain, and substrate electrodes are grounded, while the control
gate is biased at 13 V.)
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1. Sketch the magnitude of the electric field across the structure. Assume that the gates
and substrate are metals (hence the electric field inside of them is zero). It may help
to visualize the structure as capacitors in the following manner:

2. What is the potential drop (in volts) across the thick SiO2 dielectric? What is the
potential drop across the thin SiO2 dielectric?

3. Use your answer to (b) to sketch the potential well that will be experienced by an
electron incident from the substrate. Sketch the ground state wave function that would
be a solution to the Schrodinger equation for this potential for an electron incident
from the substrate. Finally sketch the probability distribution associated with the
wave function.
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Tutorial 13: Band Structure and Semiconductors

Notes:

1. Optional extra-credit labs tonight and tomorrow.

2. Review session and extra office hours for the final exam TBA. Let your TA know if
there are any topics you might need help with before the week is over.

1 Band Structure in Solids

Band structure in solids is an emergent behavior of the periodicity of the electrostatic po-
tential that electrons experience. Bonding in chains of atoms is representationed by super-
positions of Coulomb potentials (centered at the proton):

V (r) = − e2

4πε0r
. (1)

You can think of it this way, that a solid is a crystalline material with a basic unit cell
(i.e., the atoms that are repeated through the lattice) repeats itself everywhere in space in
three dimensions. Under the periodic boundary conditions throughout the entire crystal, a
fundamental result is that allowed electron states cluster in sharply defined energy bands,
leaving bandgaps of forbidden energies in-between. Electrons fill the allowed bands following
the Pauli Exclusion Principle, and the location of the last filled electron state (either at the
edge of the valence band or in the conduction band) determines if a material is a metal,
insulator, or semiconductor.

2 Semiconductors

Semiconductors have small bandgaps. Diamond (an insulator), for example, has a 6eV
bandgap. For electronic devices that operate near room temperature, the most widely used
semiconductors have bandgaps on the order of 0.7eV to 2eV. Si and GaAs have room tem-
perature bandgaps of 1.12eV and 1.42eV, and graphene (a 1-D sheet of carbon atoms) is a
0eV semiconductor.

1. Intrinsic semiconductors. An intrinsic semiconductor fulfills our notion of an ‘ideal’
semiconductor, a perfectly crystalline material that is sufficiently pure (i.e., low con-
centrations of foreign atoms or impurities). At T = 0, Si is strictly an insulator. We
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can make an intrinsic semiconductor conduct through either introducing foreign ions
(extrinsic semiconductors), or through the following:

(a) Increasing the temperature. You might remember from the previous problem set
on tunneling that the mean kinetic energy of an electron is 3kBT/2, where kB is the
Boltzmann constant (kB = 1.38× 10−23J/K) and T is the temperature in Kelvin.
At room temperature, 3kBT/2 ≈ 26meV. While this isn’t quite comparable
to a semiconductor bandgap, the probability that a rogue electron is liberated
from the valence band and jumps into the conduction band grows with increasing
temperature1. An electron excited to the conduction band leaves behind an empty
state in the valence band called a hole, with an effective charge e+. These holes
can be filled by other electrons in the valence band, causing the hole to effectively
migrate like an electron.

(b) Interactions with light. An electron-hole pair results from the break up of a
covalent bond in the valence band. Energy conservation says that a photon with
energy ~ω liberates an electron-hole pair with kinetic energy ~ω − Egap.

2. Extrinsic semiconductors. We can also add foreign atoms to change the number of
electrons or holes in conduction and valence bands in two ways.

(a) N-type. Electrons are the majority. Column V elements (P, As, Sb) in the periodic
table use four electrons to bond to Si (column IV), and spare a fifth electron that
is ‘donated’ to the conduction band.

(b) P-type. Holes are the majority. Column III elements (B, Al) are short one electron
and can only bond with three Si neighbors. A hole in the covalent bonding
structure can ‘migrate’ away and be replaced by an ‘accepted’ bonding electron.

2.1 Electron Mobility and Charge Transport

In 6.007’s short discussion of charge transport, we defined related conductivity and current
density to a new property of charge carriers, m∗, which we called the effective mass :

J = σEDC σ =
ne2τ

m∗ . (2)

Here, n is the concentration of dopant atoms and τ is the time between scattering events of
electrons. Note that this mass is used to describe the movement of the electron according
to F = m∗a. In conductors and doped semiconductors, m∗ is a fraction of me.

1If the mean kinetic energy of an electron is 3kBT/2 ≈ 26meV, the approximate deBroglie wavelength is
about 7.6nm at room temperature. How many atoms are in a sphere of 7.6nm? Let’s say 10000. An electron
is somewhat spread out over many atoms, so it’s useful to think of an electron or hole probabilistically spread
out over many atoms.
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Example 1: Energy Bands and Optoelectronic Devices

Energy band diagrams of two different semiconductors are drawn below, each as undoped,
p-type doped, or n-type doped semiconductor.

1. Label each semiconductor as undoped, p-type doped, or n-type doped.

2. Using the semiconductors from part (a) you are asked to design a light emitting device
that emits red color. Please draw on the energy diagram below the series of semicon-
ducting layers that would form the device. Label the band gap and type of each of the
materials you use. Pay attention to the polarity of the battery attached below.
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3. Using the semiconductors from part (a) you are asked to design a photodetector that
is sensitive to blue color photons and other higher energy photons. Please draw on the
energy diagram below the series of semiconducting layers that would form the device.
Label the band gap and type of each of the materials you use. Pay attention to the
polarity of the battery attached below.
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Example 2: Electron Transport

1. Electron transport in a solid-state lattice can be modeled in semiclassical form as a
mass m∗ responding to an external force Fext. If we know that the energy of the lattice

En depends on the lattice spatial frequency k, then the velocity expectation value
< vn > and external force Fext are expressed as:

< vn >=
< p >

m
=

1

~
∂

∂k
En

Fext = ~
dk

dt

Derive an expression for the semiclassical effective mass in terms of En using Fext = m∗a
and equating the two expressions for acceleration. Assume < vn > is the same as vn.
You may want to use the change of variables ∂

∂t
= ∂

∂k
dk
dt

.
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2. Table 1 below shows different effective masses (as ratio against free-space electron mass
m0)for different semiconductor materials. Which materials makes the faster transis-
tors?
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