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Quantum communication exploits quantum mechanical resources, such as entanglement,
to achieve tasks unrealizable by classical means, such as accurate teleportation of quantum
states and unconditionally secure public key distribution. For such applications, the fun-
damental problem of quantum communication is the distribution, over optical channels, of
entanglement between distant nodes. However, the fidelity of entanglement between such
nodes decreases exponentially with channel length. The possibility of creating scalable op-
tical quantum networks requires that we overcome this difficulty by storing and processing
quantum information locally in a quantum memory, first, as a repeater increasing network
scalability, and second, as a light-matter interface to a quantum computer [Kim08].

The aim of this thesis is to address the following open problem: the theoretical limits
of atomic-ensemble quantum memories that store polarization entanglement. It is part of a
larger research program in RLE’s Optical and Quantum Communications Group investigat-
ing the system performance of ensemble-based hybrid systems in quantum communication.
The following briefly describes a preliminary model of a quantum memory used in commu-
nication with attention paid to the formalism of our treatment, specifically the marriage of
collective interactions of atomic ensembles with quantum light fields, and the Gaussian state
analysis of entanglement. We will also relate pre-existing memory and repeater architectures
to this work, and discuss in greater detail our specific formulation of the problem.

1 Collective Interactions and Entanglement Fidelity

An illustration of a model quantum communication system is shown in Fig. 1, in the case of
a single-trapped atom. Through type-II parametric downconversion, a maximally-entangled
state can be produced of the form,

|ψ1〉 =
1√
2

(
|σ+〉1 |σ−〉2 + eiφ |σ−〉1 |σ+〉2

)
(1)

where σ+ (σ−) indicates right (left) circular polarization, and φ is a phase offset. An arbitrary
polarization of any photon entering the cavity can be stored in the basis of right and left



circular polarizations, such that

|ψ2〉 = α |σ+〉+ β |σ−〉 . (2)

Through a Raman Λ-type interaction, a signal or idler photon effectively transfers its en-
tanglement to the degenerate B magnetic hyperfine levels, and subsequently to D through
a coherently-driven transition. The extra advantage we get from using an ensemble is that
a collective atomic state is produced by a single excitation, i.e., we don’t know which atom
has been excited from its ground state |g〉 at A to the metastable state |s〉 at D.

To illustrate this for an atomic ensemble, consider Na atoms prepared in their ground
states, a collective state denoted by |0〉a = |g〉⊗Na . Coherently pumping the ensemble results
in an inelastic Raman scattering event that is collectively enhanced by constructive interfer-
ence within the ensemble [Dic54]. The resulting forward-scattered Stokes light results from
coherent spontaneous emission in the ensemble, and the correlated ensemble excitation is a
collective spin state,

|1〉a = Ŝ† |0〉a =
1√
Na

Na∑
i=1

|g〉1 · · · |s〉i · · · |g〉Na
. (3)

where Ŝ = (1/
√
Na)

∑
i |g〉i 〈s|. Because the excitation is composed of many atoms, the

collective spin excitation is protected against the loss of individual atoms in the ensemble,
increasings its robustness for storage. In the weak interaction limit, in which most of the
atoms remain in their ground state, the spin excitation Ŝ is effectively a ladder operator, as
[Ŝ, Ŝ†] =

∑
i (|g〉i 〈g| − |s〉i 〈s|) /Na ≈ 1, and the outgoing Stokes light and spin excitation

are in a two-mode squeezed state [DLCZ01].
The input field in this interaction is one of a pair of polarization-entangled photons

generated by the interference of a pair of optical parametric amplifiers (OPAs) as shown
in Fig. 1. The output state of this process is given by expanding out the number ket
representations of the OPAs to first order,

|ψ〉SI =
∑
n

√
N̄(

N̄ + 1
)n+1 |n〉Sx

|n〉Iy ⊗
∑
n

(−1)n
√

N̄(
N̄ + 1

)n+1 |n〉Sy
|n〉Ix

≈ 1

N̄ + 1
|0〉Sx

|0〉Iy |0〉Sy
|0〉Ix +

√
N̄(

N̄ + 1
)3

(
|1〉Sx

|1〉Iy |0〉Sy
|0〉Ix − |0〉Sx

|0〉Iy |1〉Sy
|1〉Ix

)
= |vac〉+

√
N̄(

N̄ + 1
)3 (|0〉T |1〉R − |1〉T |0〉R) , (4)

where N̄ is the average photon number per mode; T and R denote the transmitter and
receiver, respectively; and |0〉R = |1〉Sx

|0〉Sy
, |1〉T = |0〉Sx

|1〉Sy
, |0〉R = |1〉Ix |0〉Iy , and |1〉R =

|0〉Ix |1〉Iy . Following measurement post-selection, this state is a maximally entangled singlet

state of the form in Eqn. 1 [Sha02], and expansions to higher orders account for multiple-pair
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effects. A useful property of |ψ〉SI is that its anti-normally ordered characteristic function is a
zero-mean, jointly Gaussian distribution that remains invariant under linear transformations.
Its joint density operator is ρ̂SI = ρ̂SxIy ⊗ ρ̂SyIx , whose anti-normally ordered characteristic
functions are given by

χ
ρSxIy

A (ζS, ζI) = 〈eζ∗S âSx+ζ∗I âIy e
ζS â
†
Iy

+ζS â
†
Iy 〉

= e−(1+N̄)(|ζS |2+|ζI |2)+2N̄Re(ζSζI) (5)

and

χ
ρSyIx

A (ζS, ζI) = 〈eζ∗S âSy +ζ∗I âIxe
ζS â
†
Sy

+ζI â
†
Sx 〉

= e−(1+N̄)(|ζS |2+|ζI |2)−2N̄Re(ζSζI), (6)

which contain all orders of |ψ〉SI. Following a linear transformation, the output state ρ̂out can
be determined by taking inverse transform of the output characteristic function. In a memory
or teleportation architecture, we want the output, represented by a pure or mixed state ρ̂out,
to have the highest possible fidelity with respect to its input state ρ̂in. The trace separation
quantifies this fidelity as F (ρ̂) = Tr

√√
ρ̂outρ̂in

√
ρ̂out, which reduces to a projection overlap√

〈ψin| ρ̂out |ψin〉 when the input is the pure state ρ̂in = |ψin〉 〈ψin|.

1.1 Pre-Existing Architectures

1.1.1 Cavity Quantum Memories (MIT-NU) and Coherently-Driven Atomic
Ensembles (DLCZ)

Our analysis merges the approaches of trapped single atoms in cavity quantum electrodynam-
ics (QED) proposed by MIT and Northwestern University (MIT-NU) and the ensemble-based
repeater architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) [LSSH01] [DLCZ01].
The MIT-NU and DLCZ protocols both utilize spontaneous Raman transitions to mediate
atomic storage. Whereas the former has the advantage of storing externally generated en-
tanglement and verifying its success through a cycling resonant fluorescence transition, it
is prohibitively difficult to implement because of the strong coupling requirements in cavity
QED.

In contrast, the DLCZ protocol creates a coherent atomic excitation, as in Eqn. 3, not
by an external input photon, but by the ensemble itself interacting with a classical (write)
field. The entangled state is generated probabilistically (but heralded) through postselection
and measurement quantum interference, as shown in Fig. 2. In the ideal case of low excita-
tion probability, a photodetection at either of the two detectors projects the two ensembles
into a maximally-entangled singlet state of excitations of the form in Eqn. 1. Although
scalably resilient to issues that might plague such protocols, such as propagation loss and
photodetector dark counts, DLCZ requires stable phase coherence and number-resolving
photodetectors, neither of which are easy to implement in practice. By enabling the storage
of externally-generated entanglement in a DLCZ-type protocol, we will address new error
models for entanglement fidelity in quantum memories.
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1.1.2 Stimulated Raman Transitions and Electomagnetically Induced Trans-
parency (EIT)

As an aside, it is worth noting a competing approach to photon storage that may serve as
a useful comparison in the future, namely, the usage of stimulated Raman transitions and
electromagnetically induced transparency (EIT) to increase the coupling of an input quan-
tum field with an atomic ensemble [FL02] [Luk03] [GAF+07] [GALS07]. In this approach,
an external coherent control field couples the |e〉 − |s〉 transition in a Λ-type atom, adiabat-
ically reducing the group velocity of a single photon wavepacket and trapping it within the
ensemble. Such an approach is deterministic, with high throughput, but admits neither easy
verification (as in MIT-NU) nor heralding (as in DLCZ). Like the DLCZ protocol above, its
sensitivity to externally generated entanglement is an open question.

2 Plan of Attack

Using Gaussian state outputs from the OPA’s, we can quantify fidelity loss in entanglement
distribution by accounting for multiple-pair effects, fiber propagation loss, photodetection
limitations, and phase mismatch between atomic ensembles. We have already demonstrated
the validity of a Gaussian state analysis for finite atomic ensembles, and are currently working
to describe the input-output behavior of an cavity-confined atomic ensemble in terms of an
linear time-invariant (LTI) state-space transformation.

2.1 Proposed Solution

2.1.1 DLCZ with Quantum Field Inputs

Our first task is to abstract a model for the interaction of input quantum field into our
sample quantum memory. A basis for this model is inspired by recent experimental work on
heralded single-photon atomic memories and interfaces from [STTVac07] [TGS+09], which
utilized two spatially-overlapping atomic ensembles to absorb arbitrarily polarized single
photons. Heralding was observed (although rare, at rate of 10−6, using pulsed coherent
states (N̄ ≈ 500) with an absorption probability α = 0.01. Despite operating in an effective
single-photon regime, multiple photon inputs were still present, a problem we wish to analyze
in the case of a parametric downconverter input. We consider an ensemble of Λ-type atoms
confined in a single-sided, low-finesse ring cavity, as shown in Fig. 3. The |g〉 − |e〉 and
|e〉−|s〉 transitions are coupled to the cavity modes â and b̂, respectively, each with coupling
coefficient gc. Under the rotating wave approximation, the interaction Hamiltonian for the
collective interaction process is given by

Ĥ = h̄Γ
(
âŜ†b̂† + b̂Ŝâ†

)
(7)

where Γ = g2
cNa/∆ (∆ is the detuning from the two-photon resonance). The input output

expressions for single-sided optical cavities with decay rate κ and input states âin (downcon-

4



verter) and b̂in (in vacuum) are

âout (t) =
√
κâ (t)− âin (t)

b̂out (t) =
√
κb̂ (t)− b̂in (t) , (8)

and the equations of motion for the internal state operators are,

dâ

dt
= −iΓŜb̂− κ

2
â+
√
κâin (t)

db̂

dt
= −iΓŜ†â− κ

2
b̂+
√
κb̂in (t)

dŜ†

dt
= iΓb̂â†. (9)

In principle, Eqns. 8 and 9 are all that are needed to determine âout (t) and b̂out (t). In
practice, Eqn. 9 is an operator-valued system of nonlinear differential equations.

Our ultimate goal is to find a linearized, approximate solution consistent with the op-
eration of a quantum memory. Furthermore, such a solution must be consistent with the
semiclassical limit of coherent pumping at the |g〉 − |e〉 transition, which reduces Eqn. 7 to
two-mode parametric amplification between the collective mode Ŝ and the outgoing Stokes
light b̂out. There are a variety of approaches for linearizing these expressions, including, but
not limited to, short-time Taylor series approximation, weak field approximation, and sym-
metrization using Lie group representations [DSI06]. Absent a solution (for now), we will
likely try a multi-port beamsplitter anzatz expressing b̂out as a function of the state opera-
tors. This model will be combined with a teleportation architecture based on the DLCZ and
MIT-NU approaches for our final fidelity analysis.

3 Summary

In summary, we have proposed an approach for addressing entanglement storage in ensemble-
based atomic memories, particularly errors arising from multiple pair effects in entanglement
generation.

5



Figure 1: Components of a quantum repeater node in the MIT-NU architecture. (a) Para-
metric downconversion creates pairs of polarization-entangled photons, sending the idler
photon to ensemble 1 and the signal photon to ensemble 2. Each trap contains a single
ultra-cold rubidium atom cooled to its hyperfine ground state. In the energy level dia-
gram, the AB-transition absorbs 795nm photons, and the BD-transition is coherently driven,
thereby enabling storage at D. (b) Polarization-entangled photon pairs generated by a pair
of two-mode optical parametric amplifiers (OPAs) and a beamsplitter (PBS). The polariza-
tions x̂ and ŷ are denoted by arrows and bullets, respectively. Figures taken from [LSSH01]
and [SW00].

Figure 2: Entanglement with the DLCZ protocol. (Left) Weak laser pulses induce reading
and writing through spontaneous Raman transitions. (Right) Measurement-induced interfer-
ence results in a single-excitation entangled state. Figures taken from [Kim08] and [DLCZ01].
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â (t)

∆

|s〉

|g〉

|e〉

b̂ (t)

Figure 3: DLCZ with quantum field inputs. (Left) Input-output formalism for a single-sided,
two-mode ring cavity. (Right) Interaction in a three-mode parametric amplifier
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