

Online Physics Support for GCSE & A-Level

Check out my website www.physicswithkate.com for:

worked answers
videos of me solving these questions
free resources
revision classes
1:1 support
and much more

A Level Physics - Edexcel

Topic 9 – Thermodynamics

Specific Heat Capacity and Specific Latent Heat

Topic 9 – Thermodynamics

Specific Heat Capacity and Specific Latent Heat

Paper 2 – Thermal Physics – Specific Heat Capacity – Edexcel

2017

11 An electric iron rated at 2600 W contains a steel plate which is heated to a working temperature of 215 °C. Room temperature is 18 °C.	
Deduce whether the plate could reach its working temperature in less than 1 minute.	
mass of steel plate = $890 \mathrm{g}$	
specific heat capacity of steel = $450 \mathrm{Jkg^{-1}K^{-1}}$	(3)
(Total for Question 11 = 3 r	narks)

2023

12	A student placed a n several minutes.	netal block of mass 220 g in boiling w	ater at 100	0°C for	
		nsferred the metal block into 300 g of 0 g. The final temperature of the water			le a glass
	The table shows spe	cific heat capacity values for copper a	and tin.		
		Metal	copper	tin	
		Specific heat capacity / ${\bf J}{\bf kg}^{-1}{\bf K}^{-1}$	390	230	
	Deduce whether the	metal block was made from copper o	r tin.		
	specific heat capacit	y of water = $4200 \mathrm{Jkg^{-1}K^{-1}}$ y of glass = $840 \mathrm{Jkg^{-1}K^{-1}}$			
		, 8			

			Total for	Question	12 = 5 marks

A data book contains the following information for ethanol. latent heat of fusion = $109 \,\mathrm{kJ \, kg^{-1}}$ latent heat of vaporisation = 838 kJ kg⁻¹ 545 J is transferred from a sample of ethanol when it condenses. Which of the following shows how to calculate the mass of ethanol that condenses? \triangle **A** 545 ÷ 109 000 **B** $545 \div 838000$ \square **D** 838 000 ÷ 545 (Total for Question 5 = 1 mark) 2019 11 A wet handkerchief is dried in 56 s using a hot iron rated at 2400 W. Determine whether energy is transferred to the water in the handkerchief at a greater rate than it is transferred to the iron. initial temperature of wet handkerchief = 18 °C initial mass of wet handkerchief = 35.9 g final mass of dry handkerchief = 18.2 g specific heat capacity of water = $4.19 \times 10^3 \,\mathrm{J\,kg^{-1}\,K^{-1}}$ specific latent heat of vaporisation of water = $2.26 \times 10^6 \,\mathrm{J\,kg^{-1}}$ (5)

2021

12	Latte is a type of coffee made with hot frothy milk. The milk is heated by pumping steam into it.
	Calculate the maximum mass of milk that could be warmed to a temperature of 65 $^{\circ}$ C by absorbing 15 g of steam at 100 $^{\circ}$ C.
	initial temperature of milk = 4.0° C specific heat capacity of milk = $3900\mathrm{Jkg^{-1}K^{-1}}$ specific heat capacity of water = $4200\mathrm{Jkg^{-1}K^{-1}}$ specific latent heat of vaporisation of water = $2.3\times10^6\mathrm{Jkg^{-1}}$
	Maximum mass =
_	(Total for Question 12 = 4 marks)

15	Aluminium is one of the most widely recycled metals. Aluminium cans are heated from room temperature until all the aluminium has melted. The molten aluminium is then used to make new cans. This process uses only 5% of the energy needed to extract aluminium from raw materials.
	On a website it is claimed that recycling one aluminium can of mass 14 g saves enough energy to listen to music on a mobile phone continuously for 7 days.
	Assess the validity of this claim.
	melting point of aluminium = 660 K specific heat capacity of aluminium = 902 Jkg ⁻¹ K ⁻¹ specific latent heat of aluminium = 396 kJ kg ⁻¹ room temperature = 293 K mobile phone p.d. = 3.7 V mobile phone current = 120 mA
	(Total for Question 15 = 6 marks)

Question Number	Acceptable answers		Additional guidance	Mark
11	 use of ΔE = mcΔθ use of P = E/t Correct calculation of an appropriate quantity and comment consistent with their value. 	(1) (1) (1)	MP2 Candidates need to calculate either a time, a final temperature, an energy or a power Examples: Yes, because $t = 30$ s, which is less than one minute Or Yes, because it could reach temperature of 408 °C in one minute Or Yes, because it would transfer 156 000 J in one minute Or Yes, because the power required is 1.3 kW Example of calculation $\Delta E = 0.89 \text{ kg} \times 450 \text{ J kg}^{-1} \text{ K}^{-1} \times (215 \text{ °C} - 18 \text{ °C})$ $= 78 900 \text{ J}$ $t = 78 900 \text{ J} \div 2600 \text{ W} = 30 \text{ s}$	3

Question Number	Acceptable answers		Additional guidance	Mark
12	 Energy lost by block = energy gained by water and/ or glass Use of ΔE = mcΔθ using temperature change of block c = 310 (J kg⁻¹ K⁻¹) Or Required temperature change for tin = 103 K Or required starting temperature for tin = 126 °C Block is copper with justification e.g. some energy transferred to surroundings (so causes an underestimate in c) 	(1) (1) (1)	Example of calculation: $0.22 \text{ kg} \times c \times (100 - 23) \text{ K}$ = $0.05 \text{ kg} \times 840 \text{ J kg}^{-1} \text{ K}^{-1} \times 4 \text{ K} + 0.3 \text{ kg} \times 4200 \text{ J kg}^{-1} \text{ K}^{-1} \times 4 \text{ K}$ 16.94 c = 168 + 5040 = 5208 J $c = 307 \text{ J kg}^{-1} \text{ K}^{-1}$ MP1 may be awarded for approach comparing energy gained by water and/or glass with maximum energy lost by block without equating them	5
	or block not fully at 100°C (so causes an underestimate in c) or tin cannot produce the required temperature change	(1)		

(Total for Question 12 = 5 marks)

5	$B - 545 \div 838\ 000$	1
	Incorrect Answers:	
	Correct method: mass = energy transfer ÷ latent heat of vaporisation	
	A – uses energy transfer ÷ latent heat of fusion	
	C – uses latent heat of fusion ÷ energy transfer	
	D – uses latent heat of vaporisation ÷ energy transfer	

Question Number	Acceptable answers		Additional guidance	Mark
11	 Use of ΔQ = mcΔθ for correct temperature change Use of ΔQ = LΔm Use of P = E/t It is not transferred faster because: 823 (W to water) < 2400 (W to iron) Or 46 100 (J to water) < 134 400 (J to iron) Or 19.2 (s to evaporate water at rate of 2400 W) < 56 (s taken) 	(1) (1) (1) (1) (1)	Example of calculation mass of water = $0.0359 \text{ kg} - 0.0182 \text{ kg} = 0.0177 \text{ kg}$ $\Delta Q = 0.0177 \text{ kg} \times 4190 \text{ J kg}^{-1} \text{ K}^{-1} \times (100 \text{ °C} - 18 \text{ °C})$ $= 6100 \text{ J}$ $\Delta Q = (0.0177 \text{ kg}) \times 2.26 \times 10^6 \text{ J kg}^{-1}$ $= 40 \ 000 \text{ J}$ $P = (6100 \text{ J} + 40 \ 000 \text{ J}) / 56 \text{ s} = 823 \text{ W}$	5

Question Number	Acceptable answers		Additional guidance	Mark
12	 Use ofincrease in thermal energy of milk = latent heat energy released by steam + decrease in thermal energy of condensed steam Use of ΔQ = mcΔθ Use of ΔQ = LΔm m = 0.15 kg (150 g) 	(1) (1) (1) (1)	Example of calculation $(mc\Delta\theta)_{\text{milk}} = (mc\Delta\theta)_{\text{water}} + L\Delta m_{steam}$ $m \times 3900 \text{ J kg}^{-1} \text{ K}^{-1} \times (65.0 \text{ °C} - 4.00 \text{ °C})$ $= (0.015 \text{ kg} \times 4200 \text{ J kg}^{-1} \text{ K}^{-1} \times (100 \text{ °C} - 65.0 \text{ °C}))$ $+ (2.3 \times 10^6 \text{ J kg}^{-1} \times 0.015 \text{ kg})$ $m = 0.15 \text{ kg}$	4

Question Number	Acceptable answers		Additional guidance	Mark
15	 Use of ΔE = mcΔθ Use of ΔE = LΔm Apply 5% to calculate energy saved Use of P = VI or Use of Q = It Use of P = ^W/_t or Use of E = QV 2.69 × 10⁵ J compared with 1.93 × 10⁵ J for energy saved, and concludes claim invalid. Or a phone could run for 5 days compared to 7 days and conclusion claim invalid Or a phone could run for 433 900 s compared to 604 800 s and conclusion claim invalid 	(1) (1) (1) (1) (1)	Example of calculation: For aluminium when being heated up to m.pt.: $\Delta E = 14 \times 10^{-3} \text{ kg} \times 902 \text{ J kg}^{-1} \text{K}^{-1} \times (660 - 293) \text{K}$ $\Delta E = 4.63 \times 10^{3} \text{ J}$ For aluminium when melting: $\Delta E = 14 \times 10^{-3} \text{ kg} \times 396 \times 10^{3} \text{ J kg}^{-1} = 5.54 \times 10^{3} \text{ J}$ Energy saved $= \frac{0.95}{0.05} \times (4630 + 5540) \text{J}$ Energy saved $= 1.93 \times 10^{5} \text{ J}$ $P = 3.7 \text{ V} \times 120 \times 10^{-3} \text{ A} = 0.444 \text{ W}$ $\Delta E = 0.444 \text{ W} \times 7 \times 24 \times (60 \times 60) \text{ s} = 2.69 \times 10^{5} \text{ J}$	6

If you found this useful or have any questions, drop me an email or follow me on my socials

kate@physicswithkate.com

Visit www.physicswithkate.com for:

worked answers
videos of me solving these questions
free resources
revision classes
1:1 support
and much more