HYDRATION ASSESSMENT \& RECOMMENDATIONS

Body Water and Electrolyte Basics

Total body water
Hydration terminology
Fluid compartments
Role of sodium in fluid balance
Hydration physiology
Hydration and performance

Total Body Water

~50-70\% of body mass

TBW $=\sim 0.73 \times$ fat free mass

Hydration Terminology

Hyperhydration / Overhydration

Hydration Terminology

Euhydration - "normal" body water content within homeostatic range

Dehydration - the process of dynamic loss of body water - e.g., the transition from euhydration to hypohydration

Rehydration - the process of dynamic gain of body water (via fluid intake) - e.g., the transition from hypohydration to euhydration

Hypohydration - state of body water deficit
Over- or Hyperhydration - state of body water excess

Fluid Compartments

Role of Sodium in Fluid Balance

Plasma ISF		- ECF	Sodium (Na^{+}) is the most abundant electrolyte in the extracellular space
			Sodium controls water movement between fluid compartments
		-ICF	Water follows solute to maintain osmotic equilibrium

Role of Sodium in Fluid Balance

SSE \#111

Stimulates thirst - leading to increased fluid intake and better maintenance or restoration of euhydration

Helps maintain proper fluid and electrolyte balance among fluid compartments

Supports cardiovascular function during exercise via better maintenance of plasma volume

Promotes whole body rehydration by stimulating renal fluid retention (decreased urine loss)

Hydration Physiology - Hypohydration

Hypohydration - body water deficit

Hypovolemia - decreased plasma volume
Hyperosmolality - increased plasma osmolality (concentration of dissolved solutes, mostly sodium, in the blood)

\uparrow Cardiovascular strain - lower stroke volume and higher heart rate
\uparrow Body core temperature - decreased ability to dissipate body heat
through sweating and skin blood flow
\uparrow Fatigue - early onset of fatigue leading to reduced performance

Hydration Physiology - Overhydration

Overdrinking low or no sodium fluids

SSE \#111

Overhydration - body mass gain because of a fluid surplus
\(\left.\sqrt{\square} \begin{array}{l}+ prolonged exercise (>4 hours)

+ smaller individual (low baseline total body water)

+ excessive sodium loss\end{array}\right]\)| Additional risk |
| :--- |
| factors |

Exercise Associated Hyponatremia - dilution of plasma sodium concentration to < $135 \mathrm{mmol} / \mathrm{L}$

Water flux into the ICF-severity of symptoms related to cell swelling depends on how much and how fast plasma sodium $\left[\mathrm{Na}^{+}\right]$decreases

Hydration and Performance

Cognition

Team Sports

Aerobic Exercise

回崔回 Ftyr回

Muscle Endurance， Strength，\＆ Anaerobic Power

Hypohydration can impair performance，especially if exceeds $\mathbf{2 - 3 \%}$ body mass loss and in hot／humid conditions

Fluid Balance

Assessment before exercise
Hydration status
Sweat loss
Sweating rate
Data collection
Example calculations

Can you think of a simple way for an Athletic Trainer or Sports Dietitian to monitor the hydration status of their athletes?

Monitoring Hydration Status: Urine Color

Urine color can be used as a reliable marker of hydration status
Athletes with a urine color of 5 on a urine color chart are 6 times more likely to be hypohydrated

A mean urine color of 3 provides a reasonable assurance the athlete is hydrated

Urine color can be monitored by the athlete or by the ATC

Post urine color charts in bathrooms

Hydration Assessment Before Exercise

Are you hypohydrated?

Urine Specific Gravity (USG)

USG is sensitive to changes in hydration state
ACSM \& NATA recommend cut-off points for dehydration of ≥ 1.020 for USG.

Medications can alter urine color and USG including vitamins

Best to use more than one measure (ie: change in body weight, urine color and USG)

MONITORING HYDRATION DURING PLAY

Hydration Status

Body mass loss
Sweat
Urine
Respiration
(fuel oxidation, water vapor)

Body mass gain
Drinking
Eating

Hydration status $=\%$ change in nude body mass
Calculation: [(Δ body mass) / baseline body mass]*100
Example: 2% hypohydration $=2 \%$ body mass deficit through fluid loss

Hydration Status

2007 Fluid Replacement Position Stand

Acute body mass change can be used to calculate sweating rate and perturbations in hydration status when corrected for urine losses, drink volume, and trapped sweat.

Other non-sweat factors (fuel oxidation and respiratory water loss) can overestimate sweating rate but do not require correction for $<3 \mathrm{~h}$ exercise.

Therefore, using acute body mass change to estimate hydration status is appropriate for most individual and team sports, since practices and games are typically < 3 h .

Hydration Status

Using change in body mass to determine hydration status becomes less accurate with longer events

For example, during ultraendurance events $\geq 2 \%$ of body mass loss can occur through non sweat sources:

161-km mountain ultramarathon running competition ($\sim 25-30 \mathrm{~h}$)
1.2-3.5\% of body mass loss due to non-sweat sources

Hoffman et al. Sports Med, 2017
Correction in Sports Med, 2018.

Data Collection - Change in Hydration Status

Supplies needed

\checkmark Digital platform body weight scale with precision of 0.10 kg or better
\checkmark Towels

Instructions

Before Exercise
\checkmark Ask athlete to use restroom, void bladder and bowels
\checkmark Weigh athlete while they are wearing minimal clothing (e.g., compression shorts, sports bra)

After Exercise
\checkmark Ask athlete to towel dry thoroughly
\checkmark Weigh athlete while wearing the same minimal clothing as before exercise

Example \#1

Data

Baseline body mass: 104.55 kg
(1) Post-exercise body mass: 101.00 kg

Example \#1

Calculate the athlete's \% change in hydration status after practice

Body mass decreased from 104.55 kg to 101.00 kg , so Δ body mass $=-3.55 \mathrm{~kg}$

Hydration status $=[(\Delta$ body mass) / baseline body mass]*100

$$
(-3.55 \mathrm{~kg} / 104.55 \mathrm{~kg}) * 100
$$

-3.4% change in body mass

Example \＃2

Data
C．Baseline body mass： 56.35 kg

C．Post－match body mass： 55.45 kg

ㅁㅜㅜㅁ 5䢒院家
 142

Example \#2

Calculate the athlete's \% change in hydration status after the match

Body mass decreased from 56.35 kg to 55.45 kg , so Δ body mass $=-0.90 \mathrm{~kg}$

Hydration status $=[(\Delta$ body mass) / baseline body mass]*100

(-0.90 kg / 56.35 kg) *100
-1.6% change in body mass

Example \#3

Data
Baseline body mass: 66.15 kg
fa Post exercise body mass: 66.80 kg

$\square \square \square \square \square$ 갚표

Example \#3

Calculate the athlete's \% change in hydration status after exercise

Body mass increased from 66.15 kg to 67.00 kg , so Δ body mass $=+0.65 \mathrm{~kg}$

Hydration status $=[(\Delta$ body mass $) /$ baseline body mass]* 100

$(0.65 \mathrm{~kg} / 66.15 \mathrm{~kg}$) *100
$+1.0 \%$ change in body mass

Sweating Rate－Normative Data in Athletes

Sweating Rate - Normative Data by Sport

Sports sharing same letter are not different ($p>0.05$)

Factors impacting the variability in sweating rate

Exercise intensity

 Body sizeEnvironmental conditions
（temperature，humidity，solar load，wind） Heat acclimatization
Fitness
Clothing／equipment worn
Body composition
Hydration status
Age（maturation）
Genetics
Methodology

Sweat Loss Calculations

Sweat Loss = [Pre-Ex Body Mass - (Post-Ex Body Mass - Fluid \& Food + Urine \& Resp)]

Respiratory losses $=0.2 \mathrm{~g} / \mathrm{kcal}$ of energy expended during exercise. Because of the relatively small contribution of respiratory losses to total body mass loss and because energy expenditure is difficult to measure, this part of the equation is usually dropped for acute bouts of exercise.

Sweat Loss = [Pre-Ex Body Mass - (Post-Ex Body Mass - Fluid \& Food + Urine)]

Data Collection - Sweat Rate

Supplies needed

\checkmark Digital platform body weight scale with precision of 0.10 kg or better
\checkmark Towels
\checkmark Clock or Stopwatch
\checkmark Drink Bottles
\checkmark Small digital scale
\checkmark Urine cup

Instructions

Before Exercise
\checkmark Ask athlete to use the restroom, void bladder and bowels
\checkmark Weigh athlete while he/she is wearing minimal clothing (e.g., compression shorts, sports bra)
\checkmark Weigh drink bottles and food (bars, gels, etc), if applicable

During Exercise
\checkmark Collect urine loss in cup and weigh, if applicable

After Exercise

\checkmark Ask athlete to towel dry thoroughly
\checkmark Weigh athlete while wearing the same minimal clothing as before exercise
\checkmark Weigh drink bottles and food, if applicable

Example \＃1

Data

（）Baseline body mass： 104.55 kg
（1）Practice duration： 2.5 h
Fluid consumed： 1.25 kg
Food consumed：two 50－g energy bars
（ Urine loss＝N／A
Post exercise body mass： 101.00 kg

Example \#1

Calculate the athlete's sweat rate

Sweat Loss $=[$ Pre-Ex Body Mass $-($ Post-Ex Body Mass - Fluid \& Food + Urine $)]$
$104.55 \mathrm{~kg}-(101.00 \mathrm{~kg}-1.35 \mathrm{~kg}+0 \mathrm{~kg})$
4.90 kg (or L) of sweat lost in 2.5 h

Sweat Rate $=4.90 \mathrm{~L} / 2.5 \mathrm{~h}=1.96 \mathrm{~L} / \mathrm{h}$

Example \＃2

Data

C．Baseline body mass： 56.35 kg

C．Match duration： 1.5 h
C．Fluid consumed： 0.85 kg
C．Urine loss：N／A
C Post exercise body mass： 55.45 kg

Example \#2

Calculate the athlete's sweat rate

Sweat Loss $=[$ Pre-Ex Body Mass $-($ Post-Ex Body Mass - Fluid \& Food + Urine $)]$
$56.35 \mathrm{~kg}-(55.45 \mathrm{~kg}-0.85 \mathrm{~kg}+0 \mathrm{~kg})$
1.75 kg (or L) of sweat lost in 1.5 h

Sweat Rate $=1.75 \mathrm{~L} / 1.5 \mathrm{~h}=1.17 \mathrm{~L} / \mathrm{h}$

Example \#3

Data

Baseline body mass: 66.15 kg

Exercise duration: 2 h 20 min

Fluid consumed: 2.05 kg
Urine loss: 0.20 kg

Post exercise body mass: 66.80 kg

Example \#3

Calculate the athlete's sweat rate

Sweat Loss $=[$ Pre-Ex Body Mass $-($ Post-Ex Body Mass - Fluid \& Food + Urine $)]$
$66.15 \mathrm{~kg}-(66.80 \mathrm{~kg}-2.05 \mathrm{~kg}+0.20 \mathrm{~kg})$
1.20 kg (or L) of sweat lost in 2.33 h

Sweat Rate $=1.20 \mathrm{~L} / 2.33 \mathrm{~h}=\mathbf{0 . 5 2} \mathbf{L} / \mathrm{h}$

Planned Drinking vs Drinking to Thirst

Drink to Thirst

Short duration activities < 60 to 90 min
Cooler conditions
Lower intensity

Planned Drinking

Longer duration activities > 90 min
Particularly in the heat
High intensity
High sweat rates
When performance is a concern
When carbohydrate intake of $1 \mathrm{~g} / \mathrm{min}$

Electrolyte Balance

Sweat composition

Sweat sodium concentration
Sweat sodium loss
Data collection
Example calculations

回権 Broz 2 R1PQ

Sweat Composition

	Concentration
Sodium	$10-90 \mathrm{mmol} / \mathrm{L}$
Chloride	$10-90 \mathrm{mmol} / \mathrm{L}$
Lactate	$5-40 \mathrm{mmol} / \mathrm{L}$
Urea	$4-12 \mathrm{mmol} / \mathrm{L}$
Potassium	$2-8 \mathrm{mmol} / \mathrm{L}$
Ammonia	$1-8 \mathrm{mmol} / \mathrm{L}$
Others (e.g., bicarbonate, calcium, magnesium, glucose, amino acids, iron, copper, zinc)	$<1 \mathrm{mmol} / \mathrm{L}$ each

Sweat Sodium Loss - Athlete Normative Data

Sweat Sodium Loss - Normative Data by Sport

Sports sharing same letter are not different ($p>0.05$)

Data Collection - Sweat Sodium Concentration

Supplies needed

\checkmark Absorbent sweat patch
\checkmark Forceps
\checkmark Alcohol wipes and/or deionized water
\checkmark Gauze or paper towels
\checkmark Gloves
\checkmark Storage tube
\checkmark Analytical device

Instructions

Before Exercise
\checkmark Clean the athlete's forearm with alcohol and/or deionized water, wipe dry
\checkmark Apply patch to mid-forearm
During/After Exercise
\checkmark Monitor patch via visual inspection
\checkmark Use gloved hands and clean forceps to remove patch upon moderate saturation
\checkmark Place absorbent pad into storage tube Storage/Anlaysis
\checkmark If analysis is not done immediately, seal tube and store refrigerated for up to 1 week
\checkmark Measure sodium concentration using ion chromatography or ion selective electrode
\checkmark Use published regression equations to predict whole body sweat sodium concentration

Example \＃1

Data

（＊）
Forearm sweat sodium concentration： $80 \mathrm{mmol} / \mathrm{L}$
（ Practice duration： 2.5 h
Sweat loss： 4.90 L

回社回 E® P R Tancin

Example \#1

Calculate the athlete's total sweat sodium loss

Whole Body Sweat $\left[\mathrm{Na}^{+}\right]=0.57(80 \mathrm{mmol} / \mathrm{L})+11.05=56.65 \mathrm{mmol} / \mathrm{L}$

Whole Body Sweat Sodium Loss = $56.65 \mathrm{mmol} / \mathrm{L} * 4.90 \mathrm{~L}=277.59 \mathrm{mmol}$

$$
=277.59 \mathrm{mmol}^{*} 22.99 \mathrm{mg} / \mathrm{mmol}
$$

$=6382 \mathrm{mg}$ sodium

Example \＃2

Data
Corearm sweat sodium concentration： $62 \mathrm{mmol} / \mathrm{L}$

C．Match duration： 1.5 h
C Sweat loss： 1.75 L

回获回 速
 ate

Example \#2

Calculate the athlete's total sweat sodium loss

Whole Body Sweat $\left[\mathrm{Na}^{+}\right]=0.57(62 \mathrm{mmol} / \mathrm{L})+11.05=46.39 \mathrm{mmol} / \mathrm{L}$

Whole Body Sweat Sodium Loss $=46.39 \mathrm{mmol} / \mathrm{L}^{*} 1.75 \mathrm{~L}=81.18 \mathrm{mmol}$

$$
=81.18 \mathrm{mmol} * 22.99 \mathrm{mg} / \mathrm{mmol}
$$

$=1866 \mathrm{mg}$ sodium

Example \＃3

Data

Farearm sweat sodium concentration： $38 \mathrm{mmol} / \mathrm{L}$

Exercise duration： 2 h 20 min
Sweat loss： 1.20 L

$\square \square \square$ $73-1$ 回定官

Example \#3

Calculate the athlete's total sweat sodium loss

Whole Body Sweat $\left[\mathrm{Na}^{+}\right]=0.57(38 \mathrm{mmol} / \mathrm{L})+11.05=32.71 \mathrm{mmol} / \mathrm{L}$

Whole Body Sweat Sodium Loss $=32.71 \mathrm{mmol} / \mathrm{L}^{*} 1.20 \mathrm{~L}=39.25 \mathrm{mmol}$

$$
=39.25 \mathrm{mmol} * 22.99 \mathrm{mg} / \mathrm{mmol}
$$

$=902 \mathrm{mg}$ sodium

Recommendations

\checkmark Begin exercise properly hydrated
\checkmark Use a personalized fluid intake strategy based on sweat test results, exercise duration, and environmental conditions
\checkmark Drink enough fluid to prevent $>2 \%$ dehydration, especially in warm weather
\checkmark Do not overconsume fluids during exercise
\checkmark Consume sodium with fluids if exercise is $>2 \mathrm{~h}$ in hot weather and/or if sweat electrolyte losses are very high (>3g)

$$
\begin{aligned}
& \text { gy } \\
& \text { ons }
\end{aligned}
$$

Link to Summary Video

